Concepts
11g Release 2 (11.2)
E10581-03
August 2011
Oracle Warehouse Builder Concepts, 11g Release 2 (11.2)
E10581-03
Copyright © 2000, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Richa Agarwala
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle Warehouse Builder Concepts provides an architectural and conceptual overview for features and functionality of Oracle Warehouse Builder. This document lays a conceptual foundation for much of the practical information contained in other manuals.
This preface contains these topics:
Oracle Warehouse Builder Concepts, is primarily intended for database administrators and application developers who are new to Oracle Warehouse Builder, and who develop and maintain data integration systems. Readers of this document typically perform one or more of the following tasks:
To use this document, you should be familiar with relational database concepts, distributed database administration, and the operating system under which you already run, or plan to run, an Oracle Warehouse Builder environment.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information about Oracle Warehouse Builder, see these Oracle resources:
For information about data warehousing, see these Oracle resources:
For information about licensing options, see:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This section summarizes the new high-value features in Oracle Warehouse Builder for this release.	
This section contains the following topics:	
While the new features of Oracle Warehouse Builder for this release cover multiple areas, significant changes for new and existing customers are:	
Note: Go to the detailed sections under "Complete New Feature List for Oracle Warehouse Builder 11g Release 2 (11.2)" for links to the relevant documentation.Numerous smaller changes and improvements have been made throughout the product and, therefore, this list is not intended to be exhaustive.	
The major new features in Oracle Warehouse Builder for this release can be grouped into the following categories:	
Oracle Warehouse Builder now provides extensive built-in support for non-Oracle databases. JDBC connectivity is added alongside previous support for ODBC and database gateways, and Oracle Warehouse Builder now supports in-database ELT operations on non-Oracle databases. Other enhancements improve access to data from non-Oracle sources such as mainframe and flat file data.	
Features in this area include:	
The ETL and data quality functionality in Oracle Warehouse Builder can now be integrated into SOA-style architectures.	
Features in this area include:	
The data warehousing-specific support in Oracle Warehouse Builder has improved. These improvements provide smarter dimensional object operators for ETL and support for more storage types for dimensional objects.	
Features in this area include:	
The Design Center user interface in Oracle Warehouse Builder has been extensively redesigned to improve developer productivity and make advanced features more accessible.	
Features in this area include:	
Oracle Warehouse Builder administration tasks are simplified and improved by multiple features in this release. Administration has been extended to support new feature areas such as heterogeneous database support and Web services integration.	
Features in this area include:	
ETL mappings have been enhanced to add new transformation capabilities and to improve the productivity of developers working with flat files and designing and debugging ETL mappings.	
Features in this area include:	
This section provides detailed descriptions of all major new features in Oracle Warehouse Builder for this release.	
The Mapping Editor has been enhanced with advanced find capabilities to make it easier to locate and make updates to operators, groups, and attributes in a mapping diagram, in the Available Objects tab, and in the Selected Objects tab.	
This feature enhances extraction, transformation, and loading (ETL) mapping developer productivity, especially on large and complex mappings and, for example, when working with complex data sources with large numbers of tables, views, or columns.	
See Also: "Overview of the Mapping Editor" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Oracle Warehouse Builder now supports integration with Oracle Business Intelligence Suite Enterprise Edition (OBI EE). This integration includes:	
See Also: Oracle Database Licensing Information and these topics in Oracle Warehouse Builder Sources and Targets Guide:	
Oracle Warehouse Builder now supports OLAP cube storage in cube-organized materialized views. This brings the performance advantages of such storage to users of Oracle Warehouse Builder data warehouse design.	
The new Code Template-based mapping framework enables implementation of data integration techniques and patterns for integration of content from non-Oracle databases with maximum performance and flexibility.	
JDBC connectivity supports a wide variety of sources. Additionally, Oracle-supplied or user-developed Code Templates can use other native data integration techniques, such as bulk unloads and loads, for maximum performance on any platform.	
Code Template mappings bring heterogeneous data integration support to the familiar flow-based data integration mapping paradigm that leverages existing developer skills with Oracle Warehouse Builder. Code Template mappings that load Oracle targets still support the full range of transformation capabilities available in other Oracle Warehouse Builder mappings.	
See Also:	
In the mapping editor, users can now copy and paste operators within a mapping or across mappings, including attribute settings.	
This enhancement saves time and reduces errors in the development of complex ETL mappings that reuse common or similar elements.	
See Also: "Copying Operators Across Mappings and Pluggable Mappings" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
In the Design Center, there is now a drop-down box that displays the active configuration of the user. This feature improves usability of the multi-configuration feature.	
See Also: "Activating Configurations" in Oracle Warehouse Builder Installation and Administration Guide	
There are numerous improvements to support for importing flat files, including a simplified Flat File Sample Wizard, support for multi-character and hexadecimal format delimiters and enclosures, simplified support for fixed format fields, and support for bulk flat file loads into heterogeneous targets.	
Flat files are frequently used for simple and high-performance data movement in ETL applications. These changes improve ETL developer productivity and provide more flexible handling of more types of flat files in more scenarios.	
See Also: "Flat Files as Targets" and "Importing Definitions from Flat Files Using Sampling" in Oracle Warehouse Builder Sources and Targets Guide	
Oracle Warehouse Builder now has improved support for table functions, including importing metadata for existing table functions, a wizard for creating table functions from within Oracle Warehouse Builder, and better support for table functions in mappings.	
Improved support simplifies using table functions for much more flexible and powerful transformations, such as user-defined aggregations, data mining sampling operators, and so on.	
See Also: "Table Function Operator" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
It is now possible to add Oracle Warehouse Builder experts to the mapping editor menu.	
This feature makes it possible to enhance and extend the functionality of the mapping editor, improving developer productivity.	
See Also: "Overview of the Mapping Editor" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Expressions associated with operator attributes can now be entered directly into an Operator Edit Dialog or Expression Editor, rather than requiring that these expressions be entered into a property in the Property Inspector.	
Developers can finish more of their work in one place when creating operators in ETL mappings, thus improving their productivity.	
See Also: "About Expressions" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Platform extensibility enables users to define new platforms, represent the native data types for those platforms, and create ETL mappings that manipulate that data according to the requirements of the platform.	
This feature is part of the overall improved support for heterogeneous databases in this release.	
See Also:	
Orphan management policy for dimensions or cubes refers to the process of handling source rows that do not meet the requirements necessary to form a valid dimension or cube record.	
Oracle Warehouse Builder now supports the following orphan management policies:	
Automated orphan management policies improve ETL developer and administrator productivity by addressing an important cause of cube and dimension load failures.	
See Also: "Performing ETL Using Dimensional Objects" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
You can now temporarily or permanently group objects in the Mapping Editor so that they are collapsed to a single icon. This hides complexity in mappings. Users can also spotlight a single operator, which temporarily hides all objects in the mapping except for those objects that connect directly to the operator.	
These features improve productivity for developers working with complex mappings with large numbers of operators.	
See Also: "Grouping Operators in Mappings and Pluggable Mappings" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Auditing and reporting on run time jobs have been enhanced to show execution of all jobs required to support heterogeneous connectivity.	
Users receive a unified view of all Oracle Warehouse Builder job executions on both Oracle and non-Oracle platforms.	
See Also: "Monitoring Quality with Data Auditors and Data Rules" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
The user interface for managing the registration of locations in control centers has been reworked to improve usability, especially when working with locations registered in multiple control centers.	
This change improves productivity of Oracle Warehouse Builder administrators responsible for managing locations across control centers.	
See Also: "Locations Registered in Multiple Control Centers" in Oracle Warehouse Builder Sources and Targets Guide	
The Dependency Manager, which is used to browse data lineage and impact analysis information, now includes advanced metadata searching capabilities.	
Users can now more easily locate specific objects in large and complex dependency graphs. This improves productivity by making it easier to find specific objects and their lineage, and discover impacts from design changes.	
See Also: "Managing Metadata Dependencies" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
The user interface for managing Oracle Warehouse Builder locations has been reworked to improve usability and support access to non-Oracle data sources using newly supported connectivity methods.	
These changes improve Oracle Warehouse Builder administrator and developer productivity in heterogeneous and Oracle-only environments.	
See Also: "Designing Source and Target Schemas" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
The Control Center Agent provides a Java-based run time environment that can be installed on Oracle and non-Oracle database hosts. Heterogeneous ETL mappings and Web services-related code are deployed to the Control Center Agent, and run time audit metadata is accessible within Oracle Warehouse Builder.	
The Control Center Agent provides fundamental infrastructure for the heterogeneous, Code Template-based mapping support and Web services-related features of Oracle Warehouse Builder for this release.	
See Also: "Enterprise Java Bean" and "Control Center Reports" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Extensive changes have been made to the key lookup operator:	
These changes make the lookup operator more powerful in many situations, including improving Type 2 slowly changing dimension support.	
There are numerous enhancements to the Oracle Warehouse Builder Mapping Editor, including:	
VARRAY	
, EXPAND	
, and CONSTRUCT	
. These enhancements will improve productivity for ETL mapping developers, especially when working with complex mappings where the mapping debugger adds the most value.	
See Also: "Debugging Mappings" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
In this release, Oracle Warehouse Builder provides the ability to import metadata from COBOL Copybook definitions.	
This improves developer productivity, by simplifying working with complex flat file data structures extracted from mainframe sources.	
See Also: "Importing Metadata Definitions from COBOL Copybooks" under "Using Flat Files as Sources or Targets" in Oracle Warehouse Builder Sources and Targets Guide	
The Oracle Warehouse Builder user interface for viewing and managing multiple configurations has been redesigned to simplify and clarify previously complex tasks, including:	
These improvements enable users to take full advantage of the flexibility provided by multiple configurations.	
The Oracle Warehouse Builder Design Center user interface has been updated to use the Fusion Client Platform, the same core Integrated Development Environment (IDE) platform as Oracle JDeveloper and Oracle SQL Developer.	
The advantages of this user interface framework include:	
This change brings the Design Center in Oracle Warehouse Builder in line with other development tools from Oracle.	
PL/SQL code generated for Oracle Warehouse Builder ETL mappings now includes detailed comments to help developers associate specific operators in a mapping with sections of the generated code.	
Developers can more easily troubleshoot issues with Oracle Warehouse Builder-generated code that can only be detected when the code is deployed. This additional information enhances developer productivity.	
See Also: "Creating PL/SQL Mappings" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Users can create hierarchically nested folders to logically group related objects. Folders can be created within Oracle and non-Oracle database modules, non-Oracle database modules, application modules. User folders can be nested as necessary to organize objects further.	
Folders can be used to group related objects. Any object in one of the supported module types, such as a table or a mapping, can be moved into a folder.	
For example, if a single database module contained tables, views, and ETL mappings for product and customer data, folders "Product" and "Customer" could be created, and the objects related to each category moved into the separate folders.	
User folders can also be created to contain pluggable mappings. This allows organization of related pluggable mappings into groups.	
User-created folders improve ETL developer productivity on complex projects, by making it easier to logically group and manage large numbers of objects.	
See Also:	
In this release, Oracle Warehouse Builder introduces the Mapping Connection dialog box, a spreadsheet-like "quick mapper" for connecting operators in a mapping. This functionality replaces the Auto Mapping dialog box in earlier releases.	
This improvement saves developer time and reduces errors when working with operators with a large number of inputs or outputs.	
See Also: "Connecting Operators, Groups, and Attributes" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
The Repository Browser has been updated to support foldering, to expose the new types of metadata associated with the release 11.2 feature set, and to support OC4J 10.3.3.	
These changes improve manageability for Oracle Warehouse Builder.	
See Also: "Common Repository Browser Tasks" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Chunking in Oracle Warehouse Builder automates the use of a "divide and conquer" approach to parallelize the processing of large updates. Users enable chunking for a mapping and define chunking criteria to partition the updates. Oracle Warehouse Builder generates PL/SQL code for the mapping, and at execution time, updates are divided according to chunking criteria, a pool of threads is allocated, and the chunks are processed in parallel.	
The benefits of applying chunking include:	
See Also: The section on chunking data under "Using Oracle Source and Target Operators" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
The Repository Upgrade automatically upgrades an Oracle Warehouse Builder repository to the current release with less user intervention.	
This feature simplifies the task of upgrading from one release to the next.	
See Also: "Upgrading an Oracle Warehouse Builder 11g R1 Repository" and "Upgrading an Oracle Warehouse Builder 10g R2 Repository" in Oracle Warehouse Builder Installation and Administration Guide	
A new process flow activity supports calling an EJB or Java program from within a process flow.	
Customers benefit from being able to incorporate existing or new logic implemented in Java into their data integration processes.	
See Also: "Enterprise Java Bean" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Oracle Warehouse Builder can now generate SQL*Plus code to extract data from database schemas supporting the deprecated LONG data type, such as occurs in PeopleSoft application data sources.	
Support for LONG data types used in PeopleSoft data enables Oracle Warehouse Builder users to integrate more effectively with PeopleSoft data or any other data source that uses the LONG	
data type.	
See Also:	
Process flows now support an activity type for running an OMB*Plus script.	
New process flow activity types increase the breadth of user-defined activities that can be incorporated into process flows and thus orchestrated and managed as part of your overall data integration process.	
The JOIN	
operator in Oracle Warehouse Builder now supports several new behaviors related to the use of subqueries in joins:	
EXISTS	
, NOT	
EXISTS	
, IN	
, and NOT	
IN	
. More flexible handling for JOIN	
operations improves developer productivity and makes possible more flexible data transformations.	
See Also:	
Oracle Warehouse Builder ETL and data quality mapping, process flows, transformations, and data auditors can be published as Web services. Oracle Warehouse Builder can also consume Web services in process flows.	
This feature provides point-and-click integration of the ETL and data quality functionality of Oracle Warehouse Builder into SOA-based designs, and facilitates integration with SOA-based process orchestration technologies such as Oracle BPEL Process Manager. (SOA stands for Service-Oriented Architecture).	
See Also: "Creating and Consuming Web Services in Warehouse Builder" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
This section provides an introduction to Oracle Warehouse Builder, and discusses the architectural components and objects that you create.	
This section contains these topics:	
Oracle Warehouse Builder is a full-featured data integration, data warehousing, data quality and metadata management solution designed for the Oracle database. Oracle Warehouse Builder is an integral part of Oracle Database 11g Release 2 (11.2) and is installed as part of every database installation (other than Oracle Database XE).	
The major feature areas of Oracle Warehouse Builder include:	
Oracle Warehouse Builder is also an extensible data integration and data quality solutions platform. Oracle Warehouse Builder can be extended to manage metadata specific to any application, and can integrate with new data source and target types, and implement support for new data access mechanisms and platforms, enforce your organization's best practices, and foster the reuse of components across solutions.	
Oracle Warehouse Builder can be used in a wide range of scenarios, centered on Oracle Database, and adds value as a solution for data integration, data movement, and data quality. The data systems you create with Oracle Warehouse Builder are driven by rich metadata about sources and targets, and tight integration with, and awareness of, core features in Oracle Database. The ETL and data quality features provided by Oracle Warehouse Builder add value in each of the use cases described in this section.	
The most common use cases include:	
Business Intelligence and Data Warehousing	
Oracle Warehouse Builder can be used in the design of relational objects for your operational data store, and dimensional objects for the data warehouse performance layer. You can implement ETL processes for loading warehouses, including smart operators that simplify loading dimensional objects, even for complex loading processes required for slowly changing dimensions. Oracle Warehouse Builder can implement business intelligence applications and data marts.	
Oracle Warehouse Builder can also be used to profile data sources and to develop or discover data rules. Data rules can be used to measure data quality, monitor, and enforce quality requirements during loading, or as an out-of-band process. Data cleansing logic can be incorporated into the warehouse loading process.	
Master Data Management	
Oracle Warehouse Builder application adapters (or connectors) enable access to data stores representing critical business entities such as customers and products at a logical, rather than physical, level. This simplifies the design of data movement, data quality and data cleansing, and enrichment processes.	
Oracle Warehouse Builder data quality features can be used to discover, audit, and enforce the contents of your master data stores and their compliance with your data rules. Automated data cleansing and enrichment processes are easy to implement.	
Data Migration, Conversion, and Modernization	
Oracle Warehouse Builder can be used to design the target for any migration or conversion process and can implement data movement processes. Data quality features offer high value in such scenarios as well. Data profiling of the source systems can reveal data quality issues before they are introduced into the new system. Oracle Warehouse Builder can be used to profile source data, design the target system, and to implement and orchestrate complex data movement, transformation and cleansing processes without requiring custom code.	
Data Profiling and Quality Management	
Once you connect to your data sources in Oracle Warehouse Builder (including Oracle databases, sources accessed through gateways, and flat file sources) you can apply full-featured data profiling to generate statistics about data quality, and to discover complex patterns, foreign key relationships, and functional dependencies. You can then design complex data rules and create data auditors to monitor compliance with those rules in any source or target system in your landscape, regardless of whether those sources are loaded using Oracle Warehouse Builder or other ETL tools.	
For customers who have selected solutions other than Oracle Warehouse Builder for data profiling and data quality, these can be applied independently of Oracle Warehouse Builder ETL and design features.	
Note: Depending on how you utilize Oracle Warehouse Builder, you may require licenses for additional database options and technologies. Refer to Oracle Database Licensing Information for complete details about Oracle Warehouse Builder options.	
Once Oracle Database is installed, you do not need to take additional actions other than to unlock the Oracle Warehouse BuilderSYS	
and Oracle Warehouse BuilderSYS_AUDIT	
accounts, and run the Repository Assistant. This section provides	
Oracle recommends that you start with the following steps to learn about using Oracle Warehouse Builder:	
The first time you start Oracle Warehouse Builder, the Start Page is displayed with links to get you started using the product.	
Note: Standalone software for Oracle Warehouse Builder is available with Oracle Database. Use the Oracle Warehouse Builder standalone software to host the Oracle Warehouse Builder repository on an earlier release of Oracle Database. Also, use the standalone software to install Oracle Warehouse Builder on client computers. See "Working with the Oracle Warehouse Builder Standalone Install Package" in Oracle Warehouse Builder Installation and Administration Guide	
Before you can use any of the Oracle Warehouse Builder client components, first ensure you have access to an Oracle Warehouse Builder workspace.	
To begin using Oracle Warehouse Builder:	
If an administrator has previously completed the installation, contact that person for the required connection information.	
On a Windows platform, from the Start menu, select Programs. Select the Oracle home in which Oracle Warehouse Builder is installed, then Oracle Warehouse Builder, and then Design Center.	
On a Linux platform, run Oracle Warehouse Builderclient.sh	
located in the Oracle Warehouse Builder/bin/unix	
directory in the Oracle home for Oracle Warehouse Builder.	
Use the Projects Navigator to manage design objects for a given workspace. The design objects are organized under a project, which provide a means for structuring the objects for security and reusability. Each project contains nodes for each type of design object that you can create or import.	
Use the Connections Navigator to establish connections between the Oracle Warehouse Builder workspace and databases, data files, and applications.	
Use the Globals Navigator to manage objects that are common to all projects in a workspace and to administer security.	
Note: The Security node is visible to users who have an administrator role.	
In this procedure, you configure your project and access source and target data.	
To configure a project in the Design Center:	
For more information about locations see "Locations Navigator".	
Although you can use a flat file as a target, the most common and recommended scenario is to use the Oracle Database as the target schema.	
To define the target schema, begin by creating a module. Modules are grouping mechanisms in the Projects Navigator that correspond to locations in the Connections Navigator. The Oracle target module is the first of several modules you create in Oracle Warehouse Builder.	
In the Projects Navigator, expand the Databases node. Right-click Oracle and select New. The Create Module Wizard appears. Set the module type to Warehouse Target and specify whether the module will be used in development, quality assurance, or production. This module status is purely descriptive and has no bearing on subsequent steps you take.	
When you complete the wizard, the target module displays with nodes for mappings, transformations, tables, cubes and the various other types of objects you utilize to design the target warehouse.	
At your discretion, you can either create another Oracle module to contain Oracle source data or proceed to the next step.	
Under the Connections Navigator, notice the Control Centers node. A Control Center is an Oracle Database schema that manages the execution of the ETL jobs you design in the Design Center in subsequent steps.	
During installation, Oracle Warehouse Builder creates the DEFAULT_CONTROL_CENTER	
schema on the same database as the workspace.	
If you choose to utilize the default execution environment, continue to the next step. Alternatively, you can define new control centers at any time. For more information and procedures, see "Deploying to Target Schemas and Executing ETL Logic" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide.	
Thus far, these instructions describe the creation of a single project corresponding to a single execution environment. You can, however, reuse the logical design of this project in different physical environments such as testing or production environments.	
Deploy a single data system to several different host systems or to various environments, by creating additional configurations. See "Managing Configurations" in Oracle Warehouse Builder Installation and Administration Guide.	
From the main menu in the Design Center, select Tools and then Preferences.	
As a new user, you may be interested in setting the Environment Preferences and the naming mode under Naming Preferences. For information on all the preferences, see "Oracle Warehouse Builder Design Center and Runtime Preferences".	
In this section, you create modules for each type of design object into which you intend to import metadata.	
For an example and additional information on importing data objects, see "Importing Warehouse Builder Data into Business Intelligence Applications" in Oracle Warehouse Builder Sources and Targets Guide.	
The next step uses the Data Profiling Option to ensure data quality as described in "Overview of Data Profiling" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide.	
Data can only be transformed into actionable information when you are confident of its reliability. Before you load data into your target system, you must first understand the structure and the meaning of your data, and then assess the quality.	
Consider using the Data Profiling Option to better understand the quality of your source data. With the Data Profiling Option, you can correct the source data and establish a means to detect and correct errors that may arise in the loading of transformed data.	
See Also:	
In this section, you create and design the data objects for the Oracle target module. In previous steps, you may have already imported existing target objects.	
To design the target schema:	
For additional information, see "Designing Target Schemas" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide.	
For additional information, see "Validating Data Objects" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide.	
Generation produces a DDL or PL/SQL script to be used in subsequent steps to create the data objects in the target schema. For more information about generation, see "Generating Data Objects" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide.	
This procedure describes how to design mappings that define the flow of data from a source to target objects.	
To design ETL logic:	
See detailed procedures in "Defining Mappings" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide, concluding with generating the code for the mapping.	
Deployment is the process of copying the relevant metadata and code you generated in the Design Center to a target schema. This procedure is necessary to enable the target schema to execute ETL logic such as mappings.	
To deploy and execute the generated code:	
In this step, you define the objects in the target schema. You need do this only once.	
The simplest approach is to deploy directly from the Design Center by selecting an object and clicking the Deploy icon. In this case, Oracle Warehouse Builder deploys the objects with the default deployment settings.	
Alternatively, if you want more control and feedback on how Oracle Warehouse Builder deploys objects, from the Design Center menu select Tools, then Control Center Manager.	
Whether you deploy objects from the Design Center or the Control Center Manager, be sure to deploy all associated objects. For example, when deploying a mapping, also deploy the target data objects such as tables that you defined and any associated process flows or other mappings.	
For more information, see "Deploying to Target Schemas and Executing ETL Logic" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide.	
In this step, you move data for the first time. Repeat this step each time you want to refresh the target with new data.	
You have two options for executing the ETL logic in mappings and process flows. You can create and deploy a schedule as described in "Defining Schedules", or you can execute jobs manually as described in "Starting ETL Jobs" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide.	
It is essential to ensure the quality of data entering your data warehouse over time. Data auditors enable you to monitor the quality of incoming data by validating incoming data against a set of data rules and determining if the data confirms to the business rules defined for your data warehouse.	
See Also: "Monitoring Quality with Data Auditors and Data Rules" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Although the Control Center Manager displays histories for both deployment and execution, the Repository Browser is the preferred interface for monitoring and reporting on Oracle Warehouse Builder operations.	
See Also: "About the Repository Browser" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Oracle Database provides Oracle Warehouse Builder as part of the standard software when the database is installed. Oracle Warehouse Builder is an integral part of Oracle Database. Oracle Warehouse Builder runs on all versions (Standard Edition, Standard Edition One, Enterprise Edition) and typically all platforms that Oracle Database is certified on and ported to.	
The basic Oracle Warehouse Builder architectural components on the server side are:	
The main Oracle Warehouse Builder components on the client or desktop side, which are discussed in Chapter 3, "User Interface Tour", are:	
Figure 2-1 illustrates the components that comprise Oracle Warehouse Builder and where they reside and run on clients and servers.	
See Also: "Overview of Installation and Configuration Architecture" in Oracle Warehouse Builder Installation and Administration Guide for diagrams of additional configurations	
A major feature of the architecture in Oracle Warehouse Builder is the single, unified Oracle Warehouse Builder Repository for the database instance, which is pre-seeded with a schema and database objects. The run time environment and the design environment reside in this single repository. The repository schema, named Oracle Warehouse BuilderSYS, gets created when you install Oracle Database. Once the database is installed, you do not need to perform additional actions, other than unlocking the Oracle Warehouse BuilderSYS and Oracle Warehouse BuilderSYS_AUDIT accounts.	
Note:	
See Also: These topics in Oracle Warehouse Builder Installation and Administration Guide:	
To start using Oracle Warehouse Builder, you create at least one, new workspace. Users access their respective workspaces, instead of the repository as a whole. Thus, if you are Oracle Warehouse Builder administrator, instead of granting users access to a repository, you grant them access to one or more workspaces. Because all workspaces are stored in a single repository schema, creating workspaces is simplified.	
In defining the repository, an administrator creates one or more workspaces, with each workspace corresponding to a set of users working on related projects. For example, a common practice is to create separate workspaces for Development, Testing, and Production. This practice provides team focus in addition to security. Users such as developers can have access to the Development and Testing workspaces, and can be restricted from the Production workspace. Later in the implementation cycle, the Repository Assistant in Oracle Warehouse Builder can be used to manage existing workspaces or to create new ones.	
See Also:	
Each workspace has a default Control Center that points to itself, and it is started and stopped with its corresponding Control Center Service. A Control Center stores detailed information about every deployment and execution, which you can access either by object or by job.	
You can use the default Control Center to deploy to the local system, or you can create additional Control Centers for deploying to different systems as needed. Only one Control Center is active at any given time, and this is the Control Center associated with the current active configuration.	
The Control Center Agent (CCA) runs on the Oracle Containers for J2EE (OC4J) server. Some capabilities of Oracle Warehouse Builder related to accessing non-Oracle data, such as Code Templates and Web services, depend on Java code that executes outside the database, in an OC4J server called the Java or J2EE Run time. For some heterogeneous data access scenarios, you must install a standalone Java Run time on hosts where there is no Oracle database installed.	
You start the Control Center Agent with ccastart	
from the command line. Oracle Warehouse Builder provides the cca_admin	
utility to enable dynamic changes to Control Center Agent settings, without the need to shut down and subsequently restart the run-time environment.	
Note: A Code Template (CT) contains the knowledge required by Oracle Warehouse Builder to perform a specific set of tasks against a specific technology, system, or set of systems. You must start the Control Center Agent before you deploy Code Templates.Refer to "About Code Templates" in Oracle Warehouse Builder Sources and Targets Guide and "About Prebuilt Code Templates Shipped with Warehouse Builder" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
The data in your Oracle Warehouse Builder project is stored in a target schema within the server. This data is in the form of data objects such as tables, views, and dimension and cube objects. In a traditional data warehousing implementation, there is typically only one target schema, which is the data warehouse target. You can design both relational and dimensional target schemas. To design a target schema, you first create the target module that will contain all the data objects. A target module is a container that holds the metadata definitions of all your data warehouse objects. Each target module corresponds to a target location that represents the physical location where the objects are stored.	
In addition to context-sensitive help available with the F1 key, Oracle Warehouse Builder provides a Help Menu with links to utilities, training, the discussion forum, Oracle Technology Network and more. The Help Menu also contains the Help Center, the online version of the complete Oracle Warehouse Builder documentation library.	
The Help menu available from the Design Center contains these menu items:	
The Help Center contains the complete Oracle Warehouse Builder documentation set in HTML format, available for online reading and searching. The Help Center opens with the Contents tab active. Click the plus symbol to expand the contents. Use the Search facility to enter topics on which to search.	
Oracle Warehouse Builder provides the documentation described in Table 2-1.	
Table 2-1 Oracle Warehouse Builder Documentation Library	
Title	Description and Use
---	---
Oracle Warehouse Builder Installation and Administration Guide	You will use "Part I: Installing and Configuring Oracle Warehouse Builder" to perform any necessary installation tasks and to configure the Oracle Warehouse Builder repository. "Part II: Administering Oracle Warehouse Builder," starting with the chapter "Managing Configurations" provides detailed procedures for configurations, the Control Center and Repository, Control Center Agent, managing content, using the Metadata Loader, and managing security.
Oracle Warehouse Builder Release Notes	The release notes contain any late-breaking information about corrections, troubleshooting, and known issues. You can scan through the release notes during the set up processes to see the last-minute notes about this release.
Oracle Warehouse Builder Concepts	Similar to Oracle Database Concepts, this book provides a high-level explanation of the architecture, user interface, and components within Oracle Warehouse Builder. It provides a user interface tour chapter and overviews of the processes and steps used to perform typical tasks within Oracle Warehouse Builder. This book provides links to more detailed information and procedures within the other books.
Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	This book provides comprehensive procedures for designing target schemas, performing data transformations, generating code, and doing all the tasks for optimizing and managing data quality.
Oracle Warehouse Builder Sources and Targets Guide	This book lists all of the supported sources and targets and provides procedures for importing from sources and deploying to targets.
Oracle Database 2 Day + Data Warehousing Guide	This book is part of the Oracle Database 2 Day + series and provides a good starting place to understand the data warehousing features offered with the database in addition to Oracle Warehouse Builder.
Oracle Warehouse Builder API and Scripting Reference	This book describes the scripting language available with Oracle Warehouse Builder and provides a complete language reference.
Oracle Warehouse Builder Help (Only available as online help within Oracle Warehouse Builder.)	The comprehensive help system that provides online versions of the complete documentation library, and context-sensitive help for all UI objects.
Oracle Warehouse Builder provides a dynamic workspace for your projects and one, common look-and-feel for all editors, including automatic layout, dockable panels, and zoom capabilities. The Property Inspector standardizes the properties inspection interface for all objects. This section introduces the general user interface elements that are essential to using Oracle Warehouse Builder.	
This section contains these topics:	
A workspace resides within Oracle Warehouse Builder repository on Oracle Database. Oracle Warehouse Builder repository can contain one or more workspaces, depending on how you want to organize your users and functional areas. The first step in building a new workspace is to assign it a name and to specify the path and directory where its source files will be saved. Oracle Warehouse Builder organizes your workspace into projects and creates and organizes many of the configuration files required by the type of data system you are creating. For a description of projects, see "Projects".	
The workspace is hosted on an Oracle database. As a general user, you do not have full access to all the workspaces. Instead, you can access those workspaces to which you have been granted access and privileges. You log in to a workspace by starting the Design Center, which is the primary graphical user interface. The Design Center is used to import source objects, design ETL processes such as mappings, and ultimately define the integration solution. For information about the Design Center, see "Design Center".	
Figure 3-1 shows a representation of the Oracle Warehouse Builder repository in Oracle Database. Within the repository, at least one workspace containing one project exists. In the figure, numeral 1. points to a workspace and numeral 2. points to several projects within that workspace. Multiple workspaces can reside within Oracle Warehouse Builder repository.	
The project is the highest-level and largest object in Oracle Warehouse Builder workspace. Each project acts as the container for all objects in the data system that contains the sources and targets. The work you do on your data system is done within the context of a project. Projects store and organize related metadata definitions. You should include all the objects in a project that you think can or will share information. These definitions include data objects, mappings, and transformation operations. The definitions are organized into folders within the project. By creating multiple projects, you can organize the design and deployment of a large system.	
You can create projects according to functional areas like Sales, HR, Customer Service, and so forth. Projects are organized in tree hierarchies with modules for specialized types of metadata and Oracle Warehouse Builder objects. Multiple users can concurrently access an Oracle Warehouse Builder project. Changes and updates are managed through a locking mechanism to ensure data integrity.	
Projects contain these main structures, which are described in this section:	
Figure 3-2 shows projects in a workspace as they are displayed by the Projects Navigator in a tree hierarchy.	
To create a project	
MY_PROJECT,	
and select New. The Create Project dialog box is displayed.	
Each Oracle Warehouse Builder workspace has a default project called MY_PROJECT	
. You can rename MY_PROJECT	
, or you can delete it after you create other projects. However, a workspace must contain at least one project at all times.	
Because projects are the main design component in Oracle Warehouse Builder, some restrictions are enforced to prevent you from deleting them unintentionally. You cannot delete:	
To delete a project	
or	
Right-click the project and select Delete.	
The Oracle Warehouse Builder Warning dialog box provides the option of putting the project in the recycle bin.	
A module is a container for actions that appears in the Projects Navigator, and that corresponds to a specific location in the Locations Navigator. A single location can correspond to one or more modules. However, a given module can correspond to only one metadata location and data location at a time. You can create a new module from the Projects Navigator.	
The association of a module to a location enables you to perform certain actions more easily. For example, group or batch actions such as creating snapshots, copying, validating, generating, deploying, and so on, can be performed on all the objects within a module by selecting an action on the context menu when the module is selected.	
To define the target schema, begin by creating a module. The Oracle target module is the first of several modules you create in Oracle Warehouse Builder.	
See Also: "Creating Modules" in Oracle Warehouse Builder Sources and Targets Guide and "Configuring Target Modules" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
You can create folders to organize all or some objects in a target module based on specific object characteristics. Related tables and views that must be generated or deployed can be placed under a common folder. For example, you may create user folders to group tables based on their functionality (sales, marketing, administration and so forth).	
See Also: These topics in Oracle Warehouse Builder Sources and Targets Guide:	
Collections are structures in Oracle Warehouse Builder that store the metadata you want to export to other tools and systems. Collections enable you to perform the following tasks:	
When you create a collection, you do not create new objects or copies of existing objects. You create shortcuts pointing to objects already existing in the project. You can use a collection to quickly access a base object and make changes to it.	
You can define more than one collection within a project and an object can be referenced by more than one collection. For example, each user that accesses a project can create his own collection of frequently used objects. The users can also add the same objects (such as mappings, tables, or process flows) to their separate collections.	
Each user can also delete either the shortcut or the base object. Shortcuts to deleted objects are deleted in the collection. When you open an object in a collection, you obtain a lock on that object. Oracle Warehouse Builder prevents other users from editing the same object from another collection.	
Use the Create Collection Wizard to define a collection as follows.	
To define a new collection	
Oracle Warehouse Builder displays the Create Collection dialog box.	
The name should be unique within the module. In physical naming mode, type a name between 1 to 200 characters. Spaces are not allowed. In logical mode, the maximum number of characters is 200 and spaces are allowed.	
To add references to objects in the collection	
Select multiple objects by holding down the Shift key while selecting the objects.	
If you selected multiple objects, ensure that you hold down the Shift key while right-clicking the objects.	
The selected objects are listed under the collection in the Projects Navigator.	
The Design Center is the primary place for designing, managing, and building your data integration solution. You access all other tools from this central user interface and perform all commands for selected objects from here. The navigators in the Design Center are tree structures from which you select and manipulate projects and the different kinds of objects such as data locations, relational and dimensional data objects, flat files, ETL mappings to move and transform data, process flows to coordinate sequences of tasks, data profiles, rules and auditors for managing data quality, and so on. The Design Center also serves as a way for you to learn about the various kinds of components you may use in your projects, and also enables you to easily start wizards to create most of the common object types.	
Design Center hosts multiple specific editors and tools for working with the different objects. Most tools feature contextual linking, so that as you are working on an object such as a process flow, you can easily open the relevant editors on objects such as ETL mappings referenced in the process flow.	
Figure 3-3 shows the Design Center canvas laid out as it usually appears the first time you start using Oracle Warehouse Builder. In this figure, the Start Page has been closed and the View menu is open to show some of the options for adding to the canvas.	
Common Look and Feel with Oracle Application Development Framework	
The Design Center user interface uses the Fusion Client Platform, the same core Integrated Development Environment (IDE) platform as Oracle JDeveloper and SQL Developer. The Design Center takes full advantage of usability research behind the Fusion Client Platform and provides developers with an environment that is consistent with other Oracle products.	
Some of the productivity features of the Design Center and Java development environment are:	
Accessing Commands for Selected Objects in the Design Center	
The Design Center provides several ways of accessing commands for selected objects:	
The Design Center contains the following menus:	
Note: Many of the commands available on the menu bar are also available on popup menus that you can access by right-clicking an object.	
The Design menu provides commands for creating a new object, and for configuring and editing parameters for the selected object. From this menu you import and export metadata to and from locations, objects, or folders. You validate the design of one or more selected objects. This menu provides commands for generating PL/SQL code and for deploying the PL/SQL code for one or more selected objects.	
The Save command on the Design menu saves your changes to the workspace. The Revert to Saved command discards changes to the workspace.	
Edit	
The Design Center Edit menu contains commands as follows.	
View	
The Design Center View menu contains the following commands:	
Tools	
The Design Center Tools menu contains the following commands:	
Window	
The Design Center Window menu contains commands for displaying and hiding the navigators and OMB*Plus.	
Help	
The Design Center Help menu provides access to the online help and other resources. Refer to "Getting Help for Oracle Warehouse Builder" for a description.	
The Design Center toolbar provides easy access to the most commonly used commands, which are also available from the menu bar and on popup menus that you can access by right-clicking an object.	
OMB*Plus is an optional panel that is available from the Design Center. You can display or hide it by choosing OMB*Plus from the main menu. The OMB*Plus command window enables you to manage objects in the design workspace using the OMB*Plus scripting language.	
With the OMB*Plus scripting language you can:	
See Also: Oracle Warehouse Builder API and Scripting Reference for complete information about OMB*Plus, and Chapter 10, "Scripting and Automation" in this guide	
You use the Control Center Manager to deploy design objects and subsequently execute the generated code. This is the client interface that interacts with the target schema through the Control Center Service, and provides access to the information stored in the active Control Center. As soon as you define a new object in the Design Center, the object is listed in the Control Center Manager under its deployment location. The Control Center Manager enables you to view and manage all aspects of deployment and execution, including status and results.	
Oracle Warehouse Builder uses only one Control Center Manager and corresponding Control Center Service for each database instance.	
See Also: These topics in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide:	
The Design Centers provides navigators to organize your workspace into categories that make it easier to find what you are looking for. Collapsible panels put common elements within easy reach. Objects and files that make up a composite node are exposed by clicking on the composite node.	
The Navigator area in the Design Center contains the following tabs:	
The Projects Navigator provides a tree that organizes the various object categories in the workspace into folders or containers. Database sources and targets, flat files, external tables, ETL mappings, process flows, data rules, data auditors, and so forth are listed in the order in which they appear in a project. Within the workspace you can have one or more projects, and within each project are various categories of objects. When you select an object, you can create a new one like it, or edit, validate, and deploy it.	
Every workspace must have at least one project, which initially is named MY_PROJECT	
. You can rename this project or use it as a template to create additional projects. When you create a new project, the Project Welcome page provides a guide for configuration. The Projects Navigator can be restored from the View Menu.	
Use the Locations Navigator to manage locations, connectors, and control centers for the entire workspace from one central location. You can display or hide it by choosing Locations Navigator from the View menu.	
You can create locations and control centers while defining other objects. When you create a module, you can define its location. When you create a configuration, you can define a control center. You can create modules and configurations in the Projects Navigator. In contrast to these objects, you can only create a connector in the Locations Navigator.	
The Globals Navigator provides users access to a set of shared objects:	
Users with administrative rights can create a new object or edit an existing one most easily by right-clicking the object or object folder, then choosing a command from the menu. They can also copy objects from the Projects Navigator and paste them into an appropriate folder in the Globals Navigator. In this way, any user can develop an object for use by the team, and an administrator can publish it in the Globals Navigator.	
The Security folder is displayed only to administrative users. It enables them to manage the access rights of all workspace users to objects in the workspace.	
The Globals Navigator is an optional panel in the Design Center. You can display or hide it by choosing Globals Navigator from the View menu.	
Oracle Warehouse Builder provides contextual, JDev-style editors for accessing and editing the different types of data objects and document objects. Editors in Oracle Warehouse Builder use one common look and feel across all objects, including automatic layout, dockable panels, and zoom capabilities. Many editors for components are fully-integrated, modeless editors. These appear in the editor area along with the other editors, and enable more productive navigation. Additionally, the property inspector standardizes the properties interface for all objects. The property inspector categories are used consistently throughout Oracle Warehouse Builder to make using it more predictable.	
The first time you open an editor, it displays with a menu bar, multiple tool bars, multiple windows along the left side, and a canvas or document area on the right.	
See Also: "Overview of the Mapping Editor" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide and Appendix B, "Object Editors"	
In addition to the items listed in this section, editors typically contain Naming Mode, Rename Mode, Read/Write, and Validation Mode. The percent zoom and navigation mode are also indicated. You will find that editors are contextual and they can be customized. This section describes how editors appear when you first start using the Design Center, which is the main graphical user interface in Oracle Warehouse Builder.	
The following items are common to most editors in Oracle Warehouse Builder:	
You can resize a window by placing your mouse on the border of the window, pressing the mouse button when the double sided arrow appears, and dragging your mouse to indicate the desired size. You can move a window by placing the mouse on the Title Bar, and dragging the mouse to the desired location. To show or hide windows, select Window from the menu bar and either activate or deactivate the check mark corresponding to the window.	
When you first start an editor, Oracle Warehouse Builder displays a navigator in the upper left corner. The navigator provides a tree of all the activities on the canvas and their parameters. When you select an activity on the canvas, Oracle Warehouse Builder goes to the activity on the navigator tree.	
When you first start an editor, Oracle Warehouse Builder displays the properties inspector in the lower left corner. The properties inspector displays the properties for the object, its operators, and attributes in the operators. Also, when you select an object either from the canvas or the navigator, Oracle Warehouse Builder displays the properties in the properties inspector.	
When you right-click an object, a wizard is invoked that guides you to make this object globally available in the object gallery for the JDev-based IDE. It presents a series of panels that capture the necessary information to create the object's component type. This enables you to specify the component name for the new component and to select the package into which you'd like to organize the component. If the package does not yet exist, the new component becomes the first component in that new package. When you click Finish, Oracle Warehouse Builder creates a new JDeveloper-type component by saving its XML component definition file. If you have set your Java generation options to generate classes by default, Oracle Warehouse Builder also creates the initial custom Java class files.	
When you first start an editor, Oracle Warehouse Builder displays a palette along the left side that contains activity icons you can drag and drop onto the canvas. The operator palette features collapsible panels and divider sections to organize related operators. A quick search field is provided to help locate operators. You can add commonly-used operators to your Favorites list for easier access later, and another panel keeps track of your recently used ones. You can relocate the palette anywhere on the editor. You can choose to hide or display the palette by clicking on Operator Palette listed under View in the menu bar.	
Editors typically provide the following task-oriented toolbars: general, graphic, generation, and palette. With the exception of the palette, the editor by default displays the toolbars below the menu bar. You can move, resize, or hide each of the toolbars.	
You can control how an editor displays objects on the canvas by selecting View from the menu bar and selecting Options.	
Use the F1 key to see help for each of the options. You can either select or deselect any of the options.	
The Generation panel displays the generation and validation results for a data object. This panel is hidden when you first open the editor window. It appears the first time you generate or validate a data object.	
The Generation window contains Script and Message tabs. The Script tab displays the generated scripts to implement the data object selected in the canvas. The Message tab displays the validation messages for the selected data object. Double-click a message to view the complete message text.	
Oracle Warehouse Builder provides wizards to guide you in making numerous design decisions in defining objects and operators. Each wizard begins with a welcome page that provides an overview of the steps you must perform, and each wizard concludes with a summary page listing your selections.	
See Also: "About Operator Wizards" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide and these topics in Oracle Warehouse Builder Sources and Targets Guide:	
The Repository Browser provides Web-based access to workspaces to view design details and metadata properties, and to generate reports about workspace objects and data.	
With the Repository Browser you can also view reports for both high-level and detailed ETL run time information as follows:	
See Also:	
This section discusses data sources and targets, and how Oracle Warehouse Builder provides solutions for accessing and moving data among disparate systems with simple to complex requirements.	
This section contains the following topics:	
Metadata is the data that describes the contents of a given object in a data source or target. For example, metadata for a table indicates the column names and data types for each column.	
Before you import source metadata into Oracle Warehouse Builder, first create a module that will contain these metadata definitions. The type of module you create depends on the source from which you are importing metadata. For example, to import metadata definitions from an Oracle database, you create or use an Oracle module. To import metadata definitions from flat files, you create a flat file module.	
See Also: "Modules and Locations" in this guide, and "General Steps for Importing Metadata from Sources" in Oracle Warehouse Builder Sources and Targets Guide	
Oracle Warehouse Builder must have metadata for any source or target object that will be manipulated in your project. The most basic metadata needed by Oracle Warehouse Builder can be created or derived in several ways:	
The metadata management and reporting features in Oracle Warehouse Builder, and data lineage and impact analysis, depend on, and leverage the metadata about the sources and targets and transformations that move data among them, which accumulates in your Oracle Warehouse Builder projects over time.	
See Also: "Connecting to Sources and Targets in Oracle Warehouse Builder" in Oracle Warehouse Builder Sources and Targets Guide	
The Import Metadata Wizard automates importing metadata from a database into a module in Oracle Warehouse Builder. You can import metadata from Oracle Database and non-Oracle databases. Each module type that stores source or target data structures has an associated Import Wizard, which automates the process of importing the metadata to describe the data structures. Importing metadata saves time and avoids keying errors, for example, by bringing metadata definitions of existing database objects into Oracle Warehouse Builder.	
The Welcome page of the Import Metadata Wizard lists the steps for importing metadata from source applications into the appropriate module. The Import Metadata Wizard for Oracle Database supports importing of tables, views, materialized views, dimensions, cubes, external tables, sequences, user-defined types, and PL/SQL transformations directly or through object lookups using synonyms.	
When you import an external table, Oracle Warehouse Builder also imports the associated location and directory information for any associated flat files.	
See Also: These topics in Oracle Warehouse Builder Sources and Targets Guide:	
A module is a container structure for the data objects in Oracle Warehouse Builder. Modules are equivalent to schemas from a database perspective. A location stores credentials needed to access a schema. Locations are linked to modules to provide access to metadata and the data itself. A module can have many locations associated with it, but only one can be the configured location at any point in time.	
The association of a module to a location enables you to perform certain actions more easily in Oracle Warehouse Builder. For example, you can reimport metadata by reusing an existing module. Furthermore, when you deploy ETL processes in subsequent steps, modules enable you to deploy related objects, such as process flows.	
Modules are created by expanding the Projects Navigator until you find the node for the data object type for which you want to create the module. For example, if the source data is stored in an Oracle Database, then you expand the Databases node to view the Oracle node. If the source data is in an SAP R/3 system, then you expand the Applications node to view the SAP node. By right-clicking the node, you can select New and start the Create Module Wizard.	
See Also: "Modules" in this guide, and "Creating Modules" in Oracle Warehouse Builder Sources and Targets Guide	
A connector is a logical link created by a mapping between a source location and a target location. The connector between schemas in two different Oracle Databases is implemented as a database link, and the connector between a schema and an operating system directory is implemented as a database directory.	
You do not need to create connectors manually if your user ID has the credentials for creating these database objects. Oracle Warehouse Builder will create them automatically the first time you deploy the mapping. Otherwise, a privileged user must create the objects and grant you access to use them. You can then create the connectors manually and select the database object from a list.	
To create a database connector, from within the Connection Navigator, expand the Locations folder and the subfolder for the target location. Right-click DB Connectors and select New. The Create Connector wizard opens with prompts for creating the connection. You can create a directory connection by right-clicking Directories and selecting New, following the same steps.	
See Also:	
This section summarizes the supported sources and targets for each Location node as displayed in the Connections Navigator.	
Oracle Warehouse Builder supports sources from:	
Oracle Warehouse Builder supports the following targets:	
See Also: "Supported Sources and Targets" in Oracle Warehouse Builder Sources and Targets Guide for a detailed and complete list	
Oracle Warehouse Builder supports using flat files as data sources. Flat files are typically in plain text comma-separated or tab-separated format, or proprietary binary formats, and may be stored on different types of operating systems. You first ensure that you have direct access either locally, or by creating a network connection, through TCP/IP or NFS for example. Oracle Warehouse Builder provides the Create Flat File Wizard to create a file object, which will contain the imported flat-file definitions.	
The Create Flat File Wizard provides intuitive prompts for importing metadata. To start the wizard, you right-click the file module and select Import. You can filter the filenames from which to import by applying wildcards. The wizard creates definitions for the files and inserts the file names under the Flat File module in the Project Navigator.	
The locations that correspond to this module appear as folders on your computer's file system. The metadata is imported into a file module in Oracle Warehouse Builder and becomes visible in the workspace.	
You can then sample the metadata from these flat files. The Flat File Sample Wizard enables you to view a sample of the flat file and define record organization and file properties. You can sample and define common flat file formats such as string and ASCII. The Flat File Sample Wizard also enables the importation of new data types such as GRAPHIC, RAW, and SMALLINT.	
After you have created the flat-file locations and have imported the flat-file metadata, you are ready to import data. You introduce data from a flat file into an Oracle Warehouse Builder mapping either through an external table or a flat-file operator. Depending on how the data is to be transformed, use one of the following options:	
See Also: "Using Flat Files as Sources or Targets" in Oracle Warehouse Builder Sources and Targets Guide for procedures	
If the data is to be joined with other tables or requires complex transformations, then use the External Table option. An external table can be used as a source and enables data from the associated flat file to be viewed from SQL as a table. When you use an external table in a mapping, its column properties are based on the SQL properties that you defined when importing the flat file. Oracle Warehouse Builder generates SQL code to select rows from the external table. You can also get parallel access to the file through the table. You can either import an existing external table from another database or define a new external table.	
You can also use an external table to combine the loading and transformation within a single set-based SQL DML statement. You do not have to stage the data before inserting it into the target table.	
See Also: "Using External Tables" in Oracle Warehouse Builder Sources and Targets Guide for procedures	
In cases where large volumes of data are to be extracted and little transformation is required, use the flat file operator. When you use a flat file operator, SQL*Loader code is generated. From the flat file operator, you can load the data to a staging table, add indexes, and perform transformations as necessary. The transformations you can perform on data introduced by a flat file operator are limited to SQL*Loader transformations only.	
Oracle Warehouse Builder achieves seamless management of JDBC-accessible data systems through its Code Template (CT) technology. Code Templates provide native heterogeneous connectivity to Oracle and JDBC-accessible data systems and disparate platforms. Code templates can be used as an alternative to Oracle Gateways as a means of accessing other databases. In addition to Oracle Warehouse Builder being the best ETL solution for Oracle databases, with Oracle Warehouse Builder you can move data that is located in non-Oracle systems into and out of your project quickly and easily. JDBC connectivity provides an alternative to Oracle Gateways as a means of accessing other databases.	
Code Template technology in Oracle Warehouse Builder also provides direct data movement among JDBC-accessible databases, without stopping in an Oracle database in between. For example, to move data from DB/2 to SQL Server for some reason, then you can do so from Oracle Warehouse Builder without moving the data through Oracle at all.	
See Also: "Using Code Templates to Load and Transfer Data" in Oracle Warehouse Builder Sources and Targets Guide	
Note: When getting ready to generate code for a CT, you must have only the editor open for the CT on which you are focused. Otherwise, when you generate code for the CT, you will get conflicting results.	
Oracle alternatively provides the generic connectivity agent and optional Oracle Database Gateways for connecting to non-Oracle databases such as SQL Server, Sybase, Informix, Teradata, DRDA, ODBC, and other sources. Oracle Warehouse Builder can communicate with non-Oracle systems using Oracle Database Heterogeneous Services and a complementary agent if you choose this route.	
The generic connectivity agent is intended for low-end data integration solutions. The transfer of data is subject to the rules of specific ODBC or OLE DB drivers installed on the client computer. In this case, you do not need to purchase a separate transparent gateway. You use the generic connectivity agent included with Oracle Database. You must still create and customize an initialization file for your generic connectivity agent.	
Oracle Database Gateways provide specific connection agents, designed and optimized for other databases, which you install and configure separately as needed. For example, for a Sybase data source, you install the Sybase-specific gateway. The non-Oracle system appears as a remote Oracle Database to which you can then create a connection and import its data into Oracle. This is especially useful for database environments that do not intend to harbor data marts or data warehouses, but that need integration with a set of other data sources.	
See Also:	
A transportable module enables Oracle Warehouse Builder to rapidly copy a group of related database objects from one database to another.	
You use the Design Center to create a transportable module for which you specify the source database location and the target database location. Then you select the database objects to be included in the transportable module. The metadata of the selected objects are imported from the source database into the transportable module. The metadata is stored in the workspace. To physically move the data and metadata from source into target, you must configure and deploy the transportable module to the target location. During deployment, both data and metadata are extracted from the source database and created in the target database.	
See Also: "Moving Large Volumes of Data Using Transportable Modules" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
The data in the data system that you implement with Oracle Warehouse Builder is stored in target schemas. This data is in the form of data objects such as tables, views, dimensional objects, and cubes. This section discusses relational and dimensional data objects that you design for your target system, and business intelligence objects for analytical views.	
This section contains these topics:	
Oracle Warehouse Builder uses relational and dimensional data objects and intelligence objects as follows:	
See Also:	
Oracle Warehouse Builder provides contextual data object editors to create, edit, configure, validate, and deploy Oracle data objects. The data object editors work with relational, dimensional, and business intelligence objects.	
Use data object editors to:	
See Also:	
Oracle Warehouse Builder Data Viewers are available for dimensions and cubes, as well as relational objects (tables, views, materialized views, sequences, external tables and so forth). The dimension and cube Data Viewers enable interactive, logical-level browsing of the contents of these objects at a logical level, regardless of the details of the underlying physical storage. The dimension Data Viewer lets you browse and drill into the dimension members organized by hierarchy and level. The cube Data Viewer enables interactive browsing of the contents of the cube, and pivoting and drilling down into the data along any dimension.	
To access a Data Viewer, from the Projects Navigator, right-click a data object and select Data.	
By default, the Data Viewer for the selected object displays the first hundred rows of data. To retrieve the next set of rows, click Get More. Alternatively, you can click More to perform the same action. The columns and column names displayed in the Data Viewer are taken directly from the location in which the actual table is deployed.	
See Also: "Using the Data Viewer to View Data Stored in Data Objects" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
The term dimensional object refers to both dimensions and cubes. Oracle Warehouse Builder provides wizards to create and maintain dimensions by answering simple questions. Oracle Warehouse Builder supports two types of dimensional objects:	
See Also: "Defining Dimensional Objects" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for complete procedures	
Oracle Warehouse Builder separates the logical design of dimensional objects from their storage. The logical design, which consists of business rules, first focuses on the structure and the content of the dimensional object. You can then choose to store the dimensional object in a relational ROLAP or an analytic MOLAP implementation.	
Oracle Warehouse Builder enables you to use the same metadata to create and manage both your relational and multidimensional data stores. Separating the logical design from the physical implementation has the advantage of making design of ETL logic transparent. Regardless of the physical storage implementation, the logic for loading dimensions and cubes is identical.	
Dimensional objects provide complex analytic power to your data warehouse. After you load data into dimensional objects, you can run complex analytical queries that answer your business questions. These analytic queries include time-series analysis, inter-row calculations, access to aggregated historical and current data, and forecasts. Multidimensional objects are more effective in answering these types of queries quickly.	
See Also: "ROLAP Implementation of Dimensional Objects" and "MOLAP Implementation of Dimensional Objects" under "Overview of Implementing Dimensional Objects" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
A dimension consists of a set of levels and a set of hierarchies defined over these levels. Working with cubes and dimensional objects consists of four high-level processes:	
When you define dimensional objects such as cubes, you describe the logical relationships that help store data in a more structured format. For example, to define a dimension, you describe its attributes, levels, and hierarchies.	
Oracle Warehouse Builder provides the following two methods to define dimensions:	
See Also: "Defaults Used By the Create Dimension Wizard" under "Creating Dimensions" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
To implement a dimension is to create the physical structure of the dimensional object. Oracle Warehouse Builder provides the following implementations for dimensions:	
You set the Deployment Option configuration property to specify the type of implementation for a dimensional object. For more information on setting this property, see "Configuring Dimensions" and "Configuring Cubes" in Warehouse Builder Online Help.	
The dimensional data is stored in implementation objects that are typically tables. For relational dimensions, Oracle Warehouse Builder can use a star schema, a snowflake schema, or a manual schema to store the implementation objects.	
In addition to creating DDL scripts that can be deployed to a database, a ROLAP implementation enables you to create CWM2 metadata for the dimensional object in the OLAP catalog.	
The dimension data is stored in an analytic workspace in Oracle Database 11g. This analytic workspace, in turn, is stored in the database.	
To instantiate the dimensional objects in the database, you must deploy them. To specify the type of implementation for dimensional objects, you set the deployment option. The configuration parameter Deployment Options enables you to set the deployment option.	
Oracle Warehouse Builder provides the following deployment options for dimensional objects.	
Deploying Dimensional Objects that Use a MOLAP Implementation	
Dimensional objects that use a MOLAP implementation can be deployed just after you define them. You can use the Design Center or the Control Center Manager to deploy a dimensional object.	
Deploying Dimensional Objects that Use a Relational or ROLAP Implementation	
Before you deploy a relational or ROLAP dimensional object, ensure that the implementation details are specified. This means that the dimensional object should be bound to its implementation objects. Also ensure that the dimensional object is valid.	
After you perform binding, deploy the dimensional object. Before you deploy a dimensional object, ensure that all its implementation objects are deployed. For a dimension, this includes the sequence that is used to generate the surrogate identifier of the dimension levels. Alternatively, you can deploy the implementation objects with the dimensional object.	
After you deploy a dimension, you load data into it by creating a mapping. Use the Mapping Editor to create the mapping, which loads data from the source objects into the dimensional object. You then deploy and execute this mapping.	
See Also:	
The OLAP catalog is the metadata repository provided for the OLAP option in the Oracle Database. This metadata describes the data stored in both relational tables and in analytic workspaces.	
When you deploy a dimensional object using Oracle Warehouse Builder, you can specify if the dimensional object metadata should be stored in the OLAP catalog.	
OLAP metadata is dynamically projected through a series of views called the active catalog views (views whose names begin with ALL_OLAP2_AW).	
In Oracle Database 11g, the OLAP catalog metadata is used by OLAP tools and applications to access data stored in relational star and snowflake schemas. External application such as Oracle Business Intelligence Enterprise Edition use the OLAP catalog to query relational and multidimensional data. The application does not need to be aware of whether the data is located in relational tables or in analytic workspaces, nor does it need to know the mechanism for accessing it.	
Figure 5-1 describes how the OLAP catalog enables applications to access data stored in relational tables and analytic workspaces.	
The OLAP catalog uses the metadata it stores to access data stored in relational tables or views. The OLAP catalog defines logical multidimensional objects and maps them to the physical data sources. The logical objects are dimensions and cubes. The physical data sources are columns of a relational table or view.	
The orphan management policy in Oracle Warehouse Builder enables you to manage orphan records in dimensions and cubes. An orphan record is one that does not have a corresponding, existing parent record.	
Orphan records can occur when:	
Oracle Warehouse Builder enables you to specify a different orphan management policy for loading dimensional data and removing dimensional data.	
See Also: "Orphan Management for Dimensional Objects" under "Overview of Cubes" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
A relational dimension is a structure that organizes data. Examples of commonly used dimensions are Customers, Time, and Products.	
Relational dimensions provide improved query performance because users often analyze data by drilling down on known hierarchies. An example of a hierarchy is the Time hierarchy of year, quarter, month, day. The Oracle Database uses these defined hierarchies by rewriting queries that retrieve data from materialized views rather than detail tables.	
Typical relational dimension tables have the following characteristics:	
Warehouse keys that provide administrative control over the dimension, support techniques that preserve dimension history, and reduce the size of cubes.	
See Also: "Creating Relational Data Objects" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
When you create a dimension object using Oracle Warehouse Builder, the dimension must conform to the following rules:	
LONG	
, LONG RAW	
, or NCLOB	
column. Note: For dimensions with a ROLAP implementation, there are implications and limitations related to the various dimension structures when either reporting on the underlying tables or deploying to the OLAP catalog. Refer to the topic, "Limitations of Deploying Dimensions to the OLAP Catalog" under "Overview of Dimensions" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
See Also: "About the OLAP Catalog" under "Overview of Implementing Dimensional Objects" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Creating a dimension consists of:	
See Also: "Defining Dimensional Objects" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
A dimension attribute is a descriptive characteristic of a dimension member. It has a name and a data type. A dimension attribute is applicable to one or more levels in the dimension. They are implemented as level attributes to store data.	
In Oracle Warehouse Builder, you define dimension attributes when you define a dimension. The list of dimension attributes must include all the attributes that you may need for any of the levels in the dimension. Dimension attributes are the only attributes that are visible in Oracle Business Intelligence Suite Enterprise Edition (OBI EE) and other OLAP tools.	
For example, the Products dimension has a dimension attribute called Description. This attribute is applicable to all the levels Total, Groups, and Products and stores the description for each of the members of these levels.	
The levels in a dimension represent the level of aggregation of data. A dimension must contain at least one level, except in the case of a dimension that contains a value-based hierarchy. Every level must have level attributes and a level identifier.	
For example, the dimension Products can have the following levels: Total, Groups, and Product.	
Surrogate, Business, and Parent Identifiers	
Every level must have two identifiers: a surrogate identifier and a business identifier. When you create a dimension, each level must implement the dimension attributes marked as the surrogate identifier and business identifier (attributes, in the case of a composite business identifier) of the dimension.	
A surrogate identifier uniquely identifies each level record across all the levels of the dimension. It must be composed of a single attribute. Surrogate identifiers enable you to hook facts to any dimension level as opposed to the lowest dimension level only.	
For a dimension that has a relational or ROLAP implementation, the surrogate identifier should be of the data type NUMBER	
. Because the value of the surrogate identifier must be unique across all dimension levels, you use the same sequence to generate the surrogate identifier of all the dimension levels.	
For a relational implementation, the surrogate identifier serves the following purposes:	
A business identifier consists of a user-selected list of attributes. The business identifier must be unique across the level and is always derived from the natural key of the data source. The business identifier uniquely identifies the member. For example, the business identifier of a Product level can be its Universal Product Code (UPC), which is a unique code for each product.	
Note: For a dimension that has a MOLAP implementation, the business identifier can consist of only one attribute.	
The business identifier does the following:	
When you populate a child level in a dimension, you must specify the business identifier of its parent level. When you populate a cube, you must specify the business identifier of the dimension level to which the cube refers.	
A parent identifier is used to annotate the parent reference in a value-based hierarchy. For more information on value-based hierarchies, see "Value-based Hierarchies".	
For example, an EMPLOYEE	
dimension with a value-based hierarchy, has the following dimension attributes: ID	
, FIRST_NAME	
, LAST_NAME	
, EMAIL	
, PHONE	
, JOB_ID	
, HIRE_DATE	
, and MANAGER_ID	
. In this dimension, ID is the surrogate identifier and MANAGER_ID	
is the parent identifier.	
A level attribute is a descriptive characteristic of a level member. Each level in the dimension has a set of level attributes. To define level attributes, you select the dimension attributes that the level will implement. A level attribute has a distinct name and a data type. The data type is inherited from the dimension attribute that the level attribute implements. The name of the level attribute can be modified to be different from that of the dimension attribute that it implements.	
Every level must implement the attribute marked as the surrogate identifier and the business identifier in the set of the dimension attributes.	
A dimension hierarchy is a logical structure that uses ordered levels or a set of data values (for a value-based hierarchy) as a means of organizing data. A hierarchy describes parent-child relationships among a set of levels. A level-based hierarchy must have at least one level. A level can be part of more than one hierarchy.	
For example, the Time dimension can have the following two hierarchies:	
Fiscal Hierarchy: Fiscal Year > Fiscal Quarter > Fiscal Month > Fiscal Week > Day	
Calendar Hierarchy: Calendar Year > Calendar Quarter > Calendar Month > Day	
All hierarchies must be strict 1:n relationships. One record in a parent level corresponds to multiple records in a child level. But one record in a child level corresponds to only one parent record within a hierarchy.	
A dimension role is an alias for a dimension. In a data warehouse, a cube can refer to the same dimension multiple times, without requiring the dimension to be stored multiple times. Multiple references to the same dimension may cause confusion. So you create an alias for each reference to the dimension, thus allowing the joins to be instantly understandable. In such cases, the same dimension performs different dimension roles in the cube.	
For example, a sales record can have the following three time values:	
Instead of creating three time dimensions and populating them with data, you can use dimension roles. Model one time dimension and create the following three roles for the time dimension: order booked time, order shipped time, and order fulfillment time. The sales cube can refer to the order time, ship time, and fulfillment time dimensions.	
When the dimension is stored in the database, only one dimension is created and each dimension role references this dimension. But when the dimension is stored in the OLAP catalog, Oracle Warehouse Builder creates a dimension for each dimension role. Thus, if a time dimension has three roles, three dimensions are created in the OLAP catalog. However, all three dimensions are mapped to the same underlying table. This is a workaround because the OLAP catalog does not support dimension roles.	
Note: Dimension roles can be created for dimensions that have a relational implementation only.	
A level relationship is an association between levels in a dimension hierarchy. Level relationships are implemented using level attributes that store the reference to the parent level in the hierarchy.	
For example, the Products dimension has the following hierarchy: Total > Groups > Product. Oracle Warehouse Builder creates two level relationships: Product to Groups and Groups to Total. Two new attributes implement this level relationship: one in the Product level and one in the Groups level. These attributes store the surrogate ID of the parent level.	
When you load data into a dimension, Oracle Warehouse Builder creates control rows. Control rows link fact data to a dimension at any level, thus enabling the reuse of a dimension in different cubes.	
See Also: "Using Control Rows" in Chapter 3, "Defining Dimensional Objects" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
A value-based hierarchy is a dimension in which hierarchical relationships are defined by a parent dimension attribute and a child dimension attribute. This is different from a level-based hierarchy, referred to as a hierarchy in this chapter, in which the hierarchical relationships are defined between levels.	
You create a value-based hierarchy when the parent-child relationships cannot be grouped into meaningful levels. A value-based hierarchy has no levels. When you create the dimension attributes, you must specify which dimension attribute is the parent attribute.	
For example, consider an EMPLOYEE	
dimension that has the following dimension attributes: ID	
, FIRST_NAME	
, LAST_NAME	
, EMAIL	
, PHONE	
, JOB_ID	
, HIRE_DATE	
, DESCRIPTION	
, and MANAGER_ID	
. This dimension contains a parent-child relationship in which the MANAGER_ID	
attribute identifies the manager of each employee. But these relationships may not form meaningful levels across the organization. This is because the number of levels between an employee and the CEO is not the same for all employees. There may be four levels between employee A and the CEO, whereas, there may be six levels between employee B and the CEO. In such cases, you create a value-based hierarchy with MANAGER_ID	
as the parent identifier.	
You can create value-based hierarchies using the Data Object Editor only. For more information about specifying a parent attribute, see "Attributes Tab" in Warehouse Builder Online Help.	
Note: Value-based hierarchies can be created only in dimensions that use a MOLAP implementation.	
Implementing a dimension consists of specifying how the dimension and its data are physically stored. You can choose either a relational implementation, ROLAP implementation, or MOLAP implementation for a dimension. For more information about setting the implementation method, see "Dimension Implementation".	
When you store dimension data in a relational form, you can implement the dimension using one of the following methods:	
In a star schema implementation, Oracle Warehouse Builder stores the dimension data in a single table. Because the same table or view stores data for more than one dimension level, you must specify a dimension key column in the table. The dimension key column is the primary key for the dimension. This column also forms the foreign key reference to the cube.	
Each level implements a subset of dimension attributes. By default, the level attribute name is the same as the dimension attribute name. To avoid name conflicts caused by all level data being stored in the same table, Oracle Warehouse Builder uses the following guidelines for naming in a star table:	
Note: To ensure that no prefixes are used, you must explicitly change the level attribute name in the Create Dimension wizard or the Data Object Editor.	
For example, if you implement the Products dimension using a star schema, Oracle Warehouse Builder uses a single table to implement all the levels in the dimension.	
Figure 5-2 displays the star schema implementation of the Products dimension. The attributes in all the levels are mapped to different columns in a single table called PRODUCTS	
. The column called DIMENSION_KEY	
stores the surrogate ID for the dimension and is the primary key of the table.	
For relational or ROLAP dimensions that use a star implementation, you can bind attributes from more than one levels to the same database column. A database column that is bound to attributes from more than one dimension levels is referred to as a shared column. For a Type 2 SCD, you cannot set the level attributes that are bound to a shared column as triggering attributes.	
In a snowflake schema implementation, Oracle Warehouse Builder uses more than one table to store the dimension data. Separate database tables or views store the data pertaining to each level in the dimension.	
Figure 5-3 displays the snowflake implementation of the PRODUCTS	
dimension. Each level in the dimension is mapped to a different table.	
A Slowly Changing Dimension (SCD) is a dimension that stores and manages both current and historical data over time in a data warehouse. In data warehousing, there are three commonly recognized types of SCDs: Type 1, Type 2, and Type 3.	
With the appropriate licensing, you can use Oracle Warehouse Builder to define, deploy, and load all three types of SCDs. You can create slowly changing dimensions only for dimensions that use a relational implementation.	
Note: Type 1 does not require additional licensing; however, Type 2 and Type 3 SCDs require Oracle Warehouse Builder Enterprise ETL Option. Refer to Oracle Database Licensing Information.	
See Also: "Overview of Slowly Changing Dimensions" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for complete information about the types of SCDs and how to use them	
In a Type 1 Slowly Changing Dimension (SCD), the new data overwrites the existing data. Typically, this type is not considered an SCD and most dimensions are of this type. Thus the existing data is lost as it is not stored anywhere else. This is the default type of dimension you create. You need not specify any additional information to create a Type 1 SCD. Unless there are specific business reasons, you must assume that a Type 1 SCD is sufficient.	
See Also: "Creating Slowly Changing Dimensions" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for detailed information about all types of SCDs	
A time dimension is a dimension that stores temporal data. Time dimensions are used extensively in data warehouses. Oracle Warehouse Builder enables you to create and populate time dimensions. You can use Oracle Warehouse Builder to create both fiscal and calendar time dimensions.	
When you create a time dimension using the wizard, Oracle Warehouse Builder creates the mapping for you to execute to populate the time dimension. Also, the data loaded into the time dimension conforms to the best practices recommended by Oracle Warehouse Builder for a time dimension.	
See Also: "Creating Time Dimensions" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
A cube is a data object that contains measures, and links to one or more dimensions. The axes of a cube contain dimension members, and the body of the cube contains measure values. Most measures are additive. For example, sales data can be organized into a cube whose edges contain values for Time, Products, and Promotions dimensions and whose body contains values from the measures Value sales, and Dollar sales.	
Note: In the relational implementation of a cube, the cube is linked to dimension tables over foreign key constraints. Since data integrity is vital, these constraints are critical in a data warehousing environment. The constraints enforce referential integrity during the daily operations of the data warehouse.	
See Also: "Overview of Cubes" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
A cube consists of the set of measures defined over a set of dimensions as follows.	
A measure is data, usually numeric and additive, that can be examined and analyzed. Examples of measures include sales, cost, and profit. A cube must have one or more measures. You can also perform aggregation of measures. Only numeric measures can be aggregated.	
A cube is defined by a set of dimensions. A cube can refer to a level that is not the lowest level in a dimension.	
For cubes that use a pure relational implementation, you can reuse the same dimension multiple times with the help of dimension roles. For more information on dimension roles, see "Dimension Roles".	
Before you validate a cube, ensure that all the dimensions that the cube references are valid.	
To define a dimension reference, specify the following:	
For a cube that uses a relational implementation, you can refer to intermediate levels in a dimension. However, for cubes that use a MOLAP implementation, you can only reference the lowest level in the dimension. Oracle Warehouse Builder supports a reference to the non surrogate identifier of a level, for example, the business keys.	
When you define a MOLAP cube, the order in which you define the dimension references is important. The physical ordering of dimensions on disk is the same as the order in which you define the dimension references. The physical ordering is tightly coupled with the sparsity definition. Define the dimension references in the order of most dense to least dense. Time is usually a dense dimension, and listing it first expedites data loading and time-based analysis. For more information on defining dimension references, see "Dimensions Page" or "Dimensions Tab" in Warehouse Builder Online Help. For more information on sparsity, see Advanced Dialog Box" in Warehouse Builder Online Help.	
You can define aggregations that should be performed on the cube. For ROLAP cubes, you can only define a single aggregation method for the cube. For MOLAP cubes, you can define a different aggregation method for each dimension of each measure. Oracle Warehouse Builder enables you to use the same aggregation function for all the cube measures or specify different aggregate functions for each measure.	
Oracle Warehouse Builder supports the following default aggregation methods: SUM, SSUM (scaled SUM), AVERAGE, HAVERAGE (hierarchical average), MAX, MIN, FIRST, LAST, AND, OR, HIERARCHICAL_FIRST and HIERARCHICAL_LAST. If you do not want to perform aggregation, select NOAGG. The methods AND and OR are not applicable for cubes that use a multidimensional implementation.	
Note: You cannot define aggregation for pure relational cubes.	
When you implement a cube, you specify the physical storage details for the cube. You can implement a cube in a relational form or a multidimensional form in the database.	
The types of implementation are:	
To set the type of implementation for a cube, use the Deployment Option configuration property.	
The database object used to store the cube data is called a fact table. A cube must be implemented using only one fact table. The fact table contains columns for the cube measures and dimension references. For more information on setting the implementation option for a cube, see "Dimension Implementation".	
To implement a cube:	
Each dimension reference corresponds to a column on the fact table and optionally a foreign key from the fact table to dimension table. The 1:n relationships from the fact tables to the dimension tables must be enforced.	
Figure 5-4 displays the bindings for the relational implementation of the SALES	
cube. The data for the SALES	
cube is stored in a table called SALES	
.	
Storing the cube and its data in an analytic workspace is called a MOLAP implementation. You can store multiple cubes in the same analytic workspace. For more information on OLAP implementation, see "MOLAP Implementation of Dimensional Objects".	
Certain business scenarios may require the dimensions in a cube to be evaluated in a particular order. The order in which the dimensions are evaluated is called the solve dependency order of the cube. For example, in the Sales cube, the Time dimension must be evaluated before the Products dimension. For each dimension of the cube, you can specify a dependency on another dimension of the cube.	
The advantage of specifying the dependency order is that it enables Oracle Warehouse Builder to optimize the query speed of calculating the joins of the dimension and cubes. For example, retrieving results from the sales cube based on Time criteria may be more selective than retrieving result based on Products criteria. In this case, you can specify that for the Sales cube, the Products dimension depends on the Time dimension.	
Specifying the solve dependency order is optional. If you do not specify a dependency order, the optimizer determines the solve-order with additional flexibility.	
See Also: "Configuring Cubes" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
This section discusses basic concepts related to design and implementation of data extraction, transformation and loading (ETL) mappings in Oracle Warehouse Builder.	
This section contains the following topics:	
Data transformation is the term for converting data from a source data format into a destination data format. Data transformations typically require two steps: a) data mapping (from source to target) to capture any transformations that must occur, and b) code generation to create the actual transformation process. After you import your source data and define the target, you decide how to transform the source data into the output desired for the target. The Mapping Editor in Oracle Warehouse Builder guides you on how to transform the data by designing mappings. A mapping describes the sequence of operations required to extract data from sources, transform the data, and load the data into one or more targets.	
Transformations are PL/SQL functions, procedures, packages, and types that enable you to transform data. You use transformations when designing mappings and process flows that define ETL processes.	
Mappings provide a visual representation of the flow of the data and the operations performed on the data. Based on the ETL logic that you define in a mapping, Oracle Warehouse Builder generates the code required to implement your design. Oracle Warehouse Builder can generate code for the following languages:	
Note: You can create and define mappings using OMB*Plus, the scripting interface for Oracle Warehouse Builder as described in Oracle Warehouse Builder API and Scripting Reference.	
The mapping operator is the basic design element for a mapping. As you design a mapping, you select operators from the Mapping Editor palette, and you can visually drag them onto the work area or canvas. Operators handle how to represent sources and targets in the data flow. Operators also define how to transform the data from source to target. The operators you select affect how you will design the mapping.	
Based on the operators you select, Oracle Warehouse Builder assigns the mapping to one of the following Mapping Generation Languages:	
Each of these languages require you to adhere to certain rules when designing a mapping.	
See Also: The following topics in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide:	
A pluggable mapping is a reusable grouping of mapping operators that works as a single operator. Pluggable mappings are similar to functions in programming languages such as SQL*Plus and C, and enable you to re-use the ETL logic contained within.	
Once defined, a pluggable mapping appears as a single mapping operator, nested inside a mapping. You can use a pluggable mapping more than once in the same mapping, or in other mappings. You can include pluggable mappings within other pluggable mappings.	
Like any operator, a pluggable mapping has a signature, which consists of input and output attributes that enable you to connect it to other operators in various mappings. The signature is similar to the input and output requirements of a function in a programming language.	
A pluggable mapping can be either reusable or embedded:	
Note: The use of pluggable mappings requires the Oracle Warehouse Builder Enterprise ETL Option. Refer to Oracle Database Licensing Information for details about this option.	
See Also: "Using Pluggable Mappings" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for procedures	
Transformations are PL/SQL functions, procedures, table functions, and packages that enable you to transform data. You use transformations when designing mappings and process flows that define ETL processes.	
Transformations are organized as follows:	
Oracle Warehouse Builder provides a set of predefined transformations that enable you to perform common transformation operations. These predefined transformations are part of the Oracle Library that consists of built-in and seeded functions and procedures. You can directly use these predefined transformations to transform your data.	
A custom transformation is one that is created by the user. Custom transformations can use predefined transformations as part of their definition. You can also import PL/SQL packages. Although you can modify the package body of an imported package, you cannot modify the package header, which is the signature for the function or procedure.	
See Also: "About Transformations" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
A transformation library consists of a set of reusable transformations. Each time you create a project, Oracle Warehouse Builder creates a Transformation Library containing transformation operations for that project. This library contains the standard Oracle Library and an additional library for each Oracle module defined within the project.	
Transformation libraries are available under the Public Transformations node of the Global Navigator in the Design Center.	
Transformation libraries are one of the following types:	
See Also: "About Transformation Libraries" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Oracle Warehouse Builder provides the ability to define table function operators in mappings. Use table function operators to represent a table function in a mapping. Table function operators enable you to manipulate a set of input rows and return another set of rows of the same or different cardinality. Using table functions can greatly improve performance when loading your data warehouse.	
See Also: "Table Function Operator" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
This section discusses how metadata is managed and made secure in Oracle Warehouse Builder and introduces the Metadata Loader, snapshots, the Metadata Dependency Manager, and lineage and impact analysis.	
This section contains these topics:	
Oracle Warehouse Builder enables you to design security on the metadata you store in the design repository. The design repository is an Oracle Database with users, roles, and access privileges already defined. Oracle Warehouse Builder metadata security operates in addition to the Oracle Database security. The Oracle Database provides security for data while Oracle Warehouse Builder provides security for the metadata.	
In addition to being registered in the repository, all users must also be database users in the design repository database. Database users have access to the data in the database by using SQL Plus. However, they do not have access to Oracle Warehouse Builder and its metadata unless the users are also registered in Oracle Warehouse Builder.	
Metadata security is optional and flexible. You can:	
Also, after you define a security strategy, you can later adapt the strategy to be more or less restrictive. The following sections describe how to implement metadata security using the Design Center.	
Security policies can be managed from within the Repository Assistant or by using OMB*Plus commands.	
See Also:	
Only users with administrative privileges can access the Security Service and change security policy in Oracle Warehouse Builder.	
When you install Oracle Warehouse Builder and then use the Repository Assistant to create a design repository, Oracle Warehouse Builder assigns the design repository owner you define to be the default administrator. The first time you start the Design Center after installation, you must log in as the design repository owner. You can then define additional administrators or other users as necessary.	
Log in to the Oracle Warehouse Builder Design Center as the design repository owner and Oracle Warehouse Builder displays the Globals Navigator.	
Under the security node, there are two predefined roles, ADMINISTRATOR and EVERYONE. The one predefined user is the design repository owner, REPOS_OWNER in this example, which is assigned the ADMINISTRATOR role by default.	
To perform actions under the Security node, select an object and right-click to view all of the possible operations. Or select an object and select Edit from the menu bar.	
See Also: These topics in Oracle Warehouse Builder Installation and Administration Guide:	
Oracle Warehouse Builder provides several solutions for copying and moving metadata for the purposes of backup, history management, and version management. You can either take snapshots of your metadata or use the Metadata Loader (MDL) utility.	
Snapshots enable you to capture the metadata definitions of design objects created in the Project Navigator. You can capture all the design objects in a project or selectively choose objects in a project to include in a snapshot.	
The Metadata Loader utility enables you to copy and move all types of metadata objects in a repository. With this utility, you can move metadata between Oracle Warehouse Builder repositories that reside on platforms with different operating systems.	
With both solutions, you can export the metadata into a third-party version control tool such as ClearCase or SourceSafe.	
See Also: These topics in Oracle Warehouse Builder Installation and Administration Guide	
Using the Metadata Loader (MDL) utility, you can import and export metadata from any object in the Project Navigator, Global Navigator, and Connection Navigator. You can then move exported files into a third-party version control tool such as Oracle Repository, ClearCase, or SourceSafe. You can enter annotations for your MDL export file to keep track of the information contained in the file.	
The Metadata Loader enables you to populate a new repository and transfer, update, or restore a backup of existing repository metadata. You can copy or move metadata objects between repositories, even if those repositories reside on platforms with different operating systems.	
You can use the Design Center to run the Metadata Loader utilities. The Design Center provides a graphical interface that guides you through the process of exporting and importing metadata.	
See Also: "Using the Metadata Loader" in Oracle Warehouse Builder Installation and Administration Guide	
A snapshot captures all the metadata information about the selected objects and their relationships at a given point in time. While an object can only have one current definition in a workspace, it can have multiple snapshots that describe it at various points in time. Snapshots are stored in the Oracle Database, in contrast to Metadata Loader exports, which are stored as separate disk files. You can, however, export snapshots to disk files. Snapshots are also used to support the recycle bin, providing the information needed to restore a deleted metadata object.	
When you take a snapshot, you capture the metadata of all or specific objects in your workspace at a given point in time. You can use a snapshot to detect and report changes in your metadata. You can create snapshots of any objects that you can access from the Projects Navigator.	
Note that a snapshot of a collection is not a snapshot of just the shortcuts in the collection but a snapshot of the actual objects.	
See Also:	
You can manage your snapshots from the Metadata Change Management window in the Design Center. To open this window, select Change Manager from the Tools menu.	
The Metadata Change Management window contains a menu bar and a toolbar. You can start most tasks in several different ways, either by using the menus, clicking the tools, or right-clicking a snapshot or a component.	
See Also: "Managing Snapshots" in Oracle Warehouse Builder Installation and Administration Guide for complete procedures	
The Metadata Dependency Manager (MDM) enables you to plan your project by previewing the impact of the changes or future changes for "what-if" analysis. When you plan to introduce changes to your source systems, you can gauge the impact of that change on your warehouse design. If changes have already been introduced, then you can plan the time required to update your ETL design and rebuild your data warehouse.	
See Also: "Managing Metadata Dependencies" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for complete procedures	
The Metadata Dependency Manager is a graphical interface that represents the dependencies between objects. Knowing that an object has dependencies with another object helps identify potential impacts when things change.	
The Metadata Dependency Manager has the following components:	
Menu Bar	
The Metadata Dependency Manager menu bar provides commands for performing various tasks. Some of these commands are also available on the toolbars.	
Analysis	
The Analysis menu contains the following commands:	
Edit	
The Edit menu contains the following commands:	
View	
The View menu contains the following commands:	
Window	
The Metadata Dependency Manager Window menu contains commands for toggling between displaying and hiding the following windows:	
Toolbars	
The Metadata Dependency Manager provides two toolbars as shortcuts to frequently used commands:	
Use the Bird's Eye View to quickly change the portion of the diagram currently displayed on the canvas. This view displays a miniature version of the diagram on the canvas, with a scrollable box that represents the dimensions of the canvas. Drag the box to the area of the diagram currently of interest to you.	
Use the DM Tree to change the content of the canvas. The DM Tree has these tabs:	
Use the Property Inspector to view an object's properties.	
To change the current object in the Property Inspector, right-click the object on the canvas and select Update Property Inspector.	
For a description of a property, select the property in the Inspector. The description appears at the bottom of the window.	
Use the canvas to display one or more lineage and impact diagrams. Each diagram is displayed on a separate tab.	
You can use these techniques to create and manipulate diagrams on the canvas:	
Oracle Warehouse Builder provides the Metadata Dependency Manager to detect and resolve the impact of the changes made to the object definitions or the metadata in the workspace. The Metadata Dependency Manager generates lineage and impact diagrams for any data object. A lineage diagram traces the data flows for an object back to the sources and displays all objects along those paths. An impact diagram identifies all the objects that are derived from selected object.	
This type of information can help you in many circumstances as follows:	
See Also: These topics in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Lineage and Impact Analysis (LIA) diagrams show the relationships among objects managed by Oracle Warehouse Builder. These relationships are constructed by mappings and structural relationships (for example, a primary key and foreign key relationship). The lineage diagram for a particular object shows its source objects, and the impact diagram shows its targets.	
Lineage and impact are mirror images of each other. If Object A is part of the lineage diagram of Object B, then Object B is part of the impact diagram of Object A. When you read a diagram from left to right, you are seeing impact. When you read it from right to left, you are seeing lineage.	
Tip: "Managing and Exploring Objects in an LIA Diagram" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
For example, you might have a mapping that extracts data from a file and loads it into a table by way of an external table. This is the relationship:	
Figure 7-1 shows a lineage diagram of an external table named ADDRESS_EXT_TABLE	
. ADDRESS_CSV	
is a flat file, and it is part of the lineage of ADDRESS_EXT_TABLE	
. Thus, any change to ADDRESS_CSV	
will impact ADDRESS_EXT_TABLE	
.	
Figure 7-2 shows an impact diagram of ADDRESS_EXT_TABLE	
, which includes the ADDRESS_TBL	
. Any change to ADDRESS_EXT_TABLE	
will impact ADDRESS_TBL	
. ADDRESS_EXT_TABLE	
is part of the lineage of ADDRESS_TBL	
.	
You can see both the lineage and the impact of an object by clicking the plus signs (+) on either side of the object icon, as shown in Figure 7-3.	
This section discusses data quality management and data profiling. Through data management capabilities, Oracle Warehouse Builder ensures consistent, dependable data quality. Data profiling is the first step for any organization to improve information quality and provide better decisions.	
This section contains these topics:	
Oracle Warehouse Builder offers a set of features that assist you in creating data systems that provide high quality information to your business users. With Oracle Warehouse Builder you can implement a process that assesses, designs, transforms, and monitors data quality. The aim of building a data warehouse is to have an integrated, single source of data that can be used to make business decisions. Since the data is usually sourced from multiple disparate systems, it is important to ensure that the data is standardized and cleansed before loading into the data warehouse.	
Using Oracle Warehouse Builder for data management provides the following benefits:	
The rest of this section is devoted to discussing the phases of implementing and using data quality processes.	
Ensuring data quality involves the following phases:	
Figure 8-1 shows the phases involved in providing high quality information to your business users.	
In the quality assessment phase, you determine the quality of the source data. The first step in this phase is to import the source data, which could be stored in different sources, into Oracle Warehouse Builder. You can import metadata and data from both Oracle and non-Oracle sources.	
After you load the source data, you use data profiling to assess its quality. Data profiling is the process of uncovering data anomalies, inconsistencies, and redundancies by analyzing the content, structure, and relationships within the data. The analysis and data discovery techniques form the basis for data monitoring. For a quick summary of data profiling, see "Data Profiling: Assessing Data Quality".	
The quality design phase consists of designing your quality processes. You can specify the legal data within a data object or legal relationships between data objects using data rules. For more information about data rules, see "Data Rules: Enforcing Data Quality".	
As part of the quality design phase, you also design the transformations that ensure data quality. These transformations could be mappings that are generated by Oracle Warehouse Builder as a result of data profiling or mappings you create. The quality transformation phase consists of running the correction mappings you designed to correct the source data.	
Data monitoring is the process of examining warehouse data over time and alerting you when the data violates business rules set for the data. For more information about data monitoring, see "Data Auditors: Monitoring Data Quality".	
Data profiling enables you to assess the quality of your source data before you use it in data integration scenarios and systems. Oracle Warehouse Builder provides the Data Profile Wizard to guide you through creating a data profile, and the Data Profile Editor to configure and manage data profiles. Because data profiling is integrated with the ETL features in Oracle Warehouse Builder and other data quality features, such as data rules and built-in cleansing algorithms, you can also generate data cleansing mappings and schema correction scripts. This enables you to automatically correct any inconsistencies, redundancies, and inaccuracies in both the data and metadata.	
Data profiling enables you to discover many important things about your data. Some common findings include:	
To begin the process of data profiling, you first use the Data Profile Wizard to create a data profile from within the Design Center. You then use the Data Profile Editor to run data profiling on the objects contained in the data profile, and to create correction tables and mappings.	
See Also: These topics in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide:	
A data rule is a definition of valid data values and relationships, which determine legal data within a table or legal relationships between tables. Data rules can be applied to tables, views, dimensions, cubes, materialized views, and external tables. They are used in many situations including data profiling, data and schema cleansing, and data auditing.	
The metadata for a data rule is stored in the workspace. To use a data rule, you apply the data rule to a data object. For example, you could create a data rule called gender_rule	
, which could specify that valid values are 'M' and 'F'. You could then apply this data rule to the emp_gender	
column of the Employees	
table. Applying the data rule ensures that the values stored for the emp_gender	
column are either 'M' or 'F'. You can view the details of the data rule bindings on the Data Rule tab of the Data Object Editor for the Employees	
table.	
A data rule can be derived from the results of data profiling, or it can be created using the Data Rule Wizard or OMB*Plus scripting commands.	
See Also: These topics in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide:	
Oracle Warehouse Builder provides a way to create custom data auditors, which are processes that provide data monitoring by validating data against a set of data rules to determine which records comply and which do not. Data auditors gather statistical metrics on how well the data in a system complies with a rule by auditing and marking how many errors are occurring against the audited data. The monitoring process builds on your data profiling and data quality initiatives.	
See Also: These topics in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for procedures for using data auditors:	
Using the data profiling features in Oracle Warehouse Builder enables you to:	
See Also: "Performing Data Profiling" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for detailed information and procedures	
The selection of data objects determines which aspects of that data that you can profile and analyze.	
Data profiling offers these main types of analysis:	
Figure 8-2 displays a representation of the types of data profiling and how you can perform each type.	
Attribute analysis seeks to discover both general and detailed information about the structure and content of data stored within a given column or attribute.	
Attribute analysis consists of:	
Pattern analysis attempts to discover patterns and common types of records by analyzing the string of data stored in the attribute. It generates several regular expressions that match many of the values in the attribute, and reports the percentages of the data that comply with each candidate regular expression. Oracle Warehouse Builder can also search for data that conforms to common regular expressions, such as dates, e-mail addresses, telephone numbers and Social Security numbers.	
Table 8-1 shows a sample attribute, Job Code, that could be used for pattern analysis.	
Table 8-1 Sample Columns Used for Pattern Analysis	
Job ID	Job Code
---	---
7	337-A-55
9	740-B-74
10	732-C-04
20	43-D-4
Table 8-2 shows the possible results from pattern analysis, where D represents a digit and X represents a character. After looking at the results and knowing that it is company policy for all job codes be in the format of 999-A-99, you can derive a data rule that requires all values in this attribute to conform to this pattern.	
Domain analysis identifies a domain or set of commonly used values within the attribute by capturing the most frequently occurring values. For example, the Status column in the Customers table is profiled and the results reveal that 90% of the values are among the following values: "MARRIED", "SINGLE", "DIVORCED". Further analysis and drilling down into the data reveal that the other 10% contains misspelled versions of these words with few exceptions. Configuration of the profiling determines when something is qualified as a domain; therefore, be sure to review the configuration before accepting domain values. You can then let Oracle Warehouse Builder derive a rule that requires the data stored in this attribute to be one of the three values that were qualified as a domain.	
Data type analysis enables you to discover information about the data types found in the attribute. This type of analysis reveals metrics such as minimum and maximum character length values as well as scale and precision ranges. In some cases, the database column is of data type VARCHAR2	
, but the values in this column are all numbers. Then you may want to ensure that you only load numbers. Using data type analysis, you can have Oracle Warehouse Builder derive a rule that requires all data stored within an attribute to be of the same data type.	
Unique key analysis provides information to assist you in determining whether an attribute is a unique key. It does this by looking at the percentages of distinct values that occur in the attribute. You might determine that attributes with a minimum of 70% distinct values should be flagged for unique key analysis. For example, using unique key analysis you could discover that 95% of the values in the EMP_ID	
column are unique. Further analysis of the other 5% reveals that most of these values are either duplicates or nulls. You could then derive a rule that requires that all entries into the EMP_ID	
column be unique and not null.	
Functional dependency analysis reveals information about column relationships. This enables you to search for things such as one attribute determining another attribute within an object.	
Table 8-3 shows the contents of the Employees table in which the attribute Dept. Location is dependent on the attribute Dept. Number. Note that the attribute Dept. Number is not dependent on the attribute Dept. Location.	
Referential analysis attempts to detect aspects of your data objects that refer to other objects. The purpose behind this type of analysis is to provide insight into how the object you are profiling is related or connected to other objects. Because you are comparing two objects in this type of analysis, one is often referred to as the parent object and the other as the child object. Some of the common things detected include orphans, childless objects, redundant objects, and joins. Orphans are values that are found in the child object, but not found in the parent object. Childless objects are values that are found in the parent object, but not found in the child object. Redundant attributes are values that exist in both the parent and child objects.	
Table 8-4 and Table 8-5 show the contents of two tables that are candidates for referential analysis. Table 8-4, "Employees Table (Child)" is the child object, which inherits from Table 8-5, "Department Table (Parent)", the parent object.	
Table 8-4 Employees Table (Child)	
ID	Name
---	---
10	Alison
20	Rochnik
30	Meijer
40	Jones
Referential analysis of these two objects would reveal that Dept. Number 15 from the Employees table is an orphan and Dept. Numbers 18, 20, and 55 from the Department table are childless. It would also reveal a join on the Dept. Number column.	
Based on these results, you could derive referential rules that determine the cardinality between the two tables.	
In addition to attribute analysis, functional dependency analysis, and referential analysis, Oracle Warehouse Builder offers data rule profiling. Data rule profiling enables you to create rules to search for profile parameters within or between objects.	
This is very powerful as it enables you to validate rules that apparently exist and are defined by the business users. By creating a data rule, and then profiling with this rule you can verify if the data actually complies with the rule, and whether the rule needs amending or the data needs cleansing.	
For example, the HR department might define a rule that states that Income = Salary + Bonus for the Employee table shown in Table 8-6. You can then catch errors such as the one for employee Alison.	
Table 8-6 Sample Employee Table	
ID	Name
---	---
10	Alison
20	Rochnik
30	Meijer
40	Jones
See Also: "Data Cleansing and Correction with Data Rules" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Oracle Warehouse Builder provides Six Sigma results and metrics embedded within the other data profiling results to provide a standardized approach to data quality.	
See Also: "Viewing Profile Results" under "Performing Data Profiling" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for information on Six Sigma results	
Six Sigma is a methodology that attempts to standardize the concept of quality in business processes. It achieves this goal by statistically analyzing the performance of business processes. The goal of Six Sigma is to improve the performance of these processes by identifying the defects, understanding them, and eliminating the variables that cause these defects.	
Six Sigma metrics give a quantitative number for the number of defects for each 1,000,000 opportunities. The term "opportunities" can be interpreted as the number of records. The perfect score is 6.0. The score of 6.0 is achieved when there are only 3.4 defects for each 1,000,000 opportunities. The score is calculated using the following formula:	
where NORMSINV is the inverse of the standard normal cumulative distribution.	
When you perform data profiling, the number of defects and anomalies discovered are shown as Six Sigma metrics. For example, if data profiling finds that a table has a row relationship with a second table, the number of records in the first table that do not adhere to this row-relationship can be described using the Six Sigma metric.	
Six Sigma metrics are calculated for the following measures in the Data Profile Editor:	
Oracle Warehouse Builder enables you to automatically create corrected data objects and correction mappings based on the results of data profiling. On top of these automated corrections that make use of the underlying Oracle Warehouse Builder architecture for data quality, you can create your own data quality mappings to correct and cleanse source data.	
See Also: "Overview of Automatic Data Correction and Data Rules" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
When you perform data profiling, Oracle Warehouse Builder generates corrections for the objects that you profiled. You can then decide to create corrected objects based on results of data profiling. The corrections are in the form of data rules that can be bound to the corrected object.	
See Also: "Generating Corrections Based on Data Profiling Results" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
You can perform the following types of corrections on source data objects:	
Schema correction creates scripts that you can use to create a corrected set of source data objects with data rules applied to them. The corrected data objects adhere to the data rules derived from the results of data profiling.	
The correction tables have names that are prefixed with TMP__. For example, when you profile the EMPLOYEES	
table, the correction table will be called TMP__EMPLOYEES	
.	
Data correction is the process of creating correction mappings to remove anomalies and inconsistencies in the source data before loading it into the corrected data objects. Correction mappings enforce the data rules defined on the data objects. While moving data from the old "dirty" tables in the profile source tables into the corrected tables, these mappings correct records that do not comply with the data rules.	
The name of the correction mapping is the object name prefixed with M_. For example, the correction mapping for the EMPLOYEE	
table is called M_EMPLOYEE	
.	
To perform data correction on source data, you specify the following information:	
See Also: "Data Cleansing and Correction with Data Rules" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for complete procedures	
Data Correction Actions	
Based on the data profiling results, Oracle Warehouse Builder derives a set of data rules that you can use to cleanse the source data. You can automatically generate corrections based on these data rules by performing data correction actions.	
For each data rule derived as a result of data profiling, you must choose a correction action that specifies how data values that are not accepted due to data rule enforcement should be handled. The correction actions you can choose are:	
Cleansing Strategies for Data Correction	
When you decide to automatically generate corrected objects based on data profiling results, you must specify how inconsistent data from the source should be cleansed before being stored in the corrected object. To do this, you specify a cleansing strategy for each data rule that is applied to the correction object. Error tables are used to store the records that do not conform to the data rule.	
The cleansing strategy you use depends on the type of data rule and the rule configuration.	
See Also: These topics in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide:	
Oracle Warehouse Builder provides general-purpose data matching and merging capabilities that can be applied to any type of data, including data deduplication features. Matching determines which records refer to the same logical data. Oracle Warehouse Builder provides a variety of match rules to compare records. Match rules range from a simple exact match to sophisticated algorithms that can discover and correct common data entry errors. Merging consolidates matched records into a single consolidated "golden standard" record based on survivorship rules called merge rules that you select or define for creating a merged value for each column.	
See Also : "Matching, Merging, and Deduplication" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide for complete procedures	
This section discusses the concepts of deploying design objects to a target schema, and executing the ETL logic defined in the deployed objects.	
This section contains these topics:	
After you design your ETL and data quality processes, you deploy and execute the resulting design objects in order to implement the design in the target schema. The Control Center Manager provides a comprehensive deployment console for viewing and managing all aspects of deployment and execution. It provides access to the information stored in the active Control Center.	
The following topics provide overviews of deploying and executing design objects:	
See Also: "Deploying to Target Schemas and Executing ETL Logic" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
Deployment is the process of creating physical objects in a target location according to the logical objects in an Oracle Warehouse Builder workspace.	
For example, when you create a table using the Design Center, the metadata for this table is stored in the workspace. If the table described in your design does not already exist in the database schema referenced by the specified location, then you must create the table by deploying it. Similarly, after you design a PL/SQL mapping, you must generate code for it (which creates a PL/SQL package implementing the mapping logic), then deploy the generated code to the specified location, which loads the generated PL/SQL package to the referenced schema. You can deploy objects from within the Design Center, or use the Control Center Manager. You can also use OMB*Plus commands to deploy objects.	
As soon as you define a new object in the Design Center, the object is listed in the Control Center Manager under its deployment location.	
Deploying a mapping or a process flow includes these steps:	
Note:	
See Also: "Deploying Objects" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide	
After you deploy an object, Oracle Warehouse Builder assigns a deployment status to it. You can view the deployment status in the Control Center Manager.	
The status represents the result of the deployment as follows:	
Execution is the process of starting the ETL logic defined in the deployed objects. For example, you define a mapping that sources data from a table, performs transformations on the source data, and loads it into the target table. When you deploy this mapping, the PL/SQL code generated for this mapping is stored in the target schema. When you execute this mapping, the job for the ETL logic is started and the data is picked up from the source table, transformed, and loaded into the target table.	
During the lifecycle of a data system, you typically will take these steps in the deployment process to create your system and perform the execution process to move data into your system:	
The Control Center for the selected configuration specifies the execution environment for the objects.	
You can deploy them individually, in stages, or all at once.	
If an object fails to deploy, then fix the problem and try again.	
Execute the mappings or process flows that contain the ETL logic for the objects.	
Accommodate user requests, changes to the source data, and so forth.	
Set the modified objects to Upgrade or Replace.	
Whenever you deploy and execute a design object, auditing information is generated and stored for you to view and manage.	
The auditing information is specific to the type of object:	
You view and manage the audit information through these methods:	
Oracle Warehouse Builder provides these scheduling options:	
Integration with Third-party Schedulers	
Integration with third-party schedulers depends on the features of the third party scheduler. For example, mappings and process flows in Oracle Warehouse Builder are PL/SQL packages, and if there is a way in a third party scheduler to invoke a PL/SQL package, then refer to the documentation for that third party scheduler. You can also expose a mapping or a process flow as a Web Service if you are using a product like Oracle BPEL that can invoke Web services as part of orchestrating complex processes.	
See Also:	
This section introduces OMB*Plus and Experts, the scripting and automation features that contribute to making Oracle Warehouse Builder an extensible platform.	
This section contains the following topics:	
The OMB*Plus scripting language is built around a Java extension of the Tcl language called Jacl. OMB*Plus provides Tcl-based basic language features such as variables, procedures, and control structures. Additionally, Oracle Warehouse Builder-specific command syntax provides scripting commands for batch processing and for manipulating the user interface in Oracle Warehouse Builder:	
You can write syntactic constructs such as variable support, conditional and looping control structures, error handling, and standard library procedures. You can also use Tcl to perform tasks on the host that is running Design Center, such as file system I/O.	
A key benefit of OMB*Plus is its extensibility. For example, you can execute SQL*Plus statements and use PL/SQL packages from OMB*Plus.	
You can use the OMB*Plus scripting interface to:	
OMB*Plus is accessed as described in these topics:	
From within Oracle Warehouse Builder you can access OMB*Plus from the Design Center as follows:	
The Design Center displays the OMB*Plus panel.	
Note:	
You start the OMB*Plus console according to the procedure specific to your operating system.
To start OMB*Plus on Windows systems, you run OMB*Plus from the Start menu under the Warehouse Builder program group.
To access the Oracle Warehouse Builder repository, you use the OMBCONNECT
statement.
To start OMB*Plus on Linux and UNIX systems, you run OMBPlus.sh
from the command prompt under the Oracle home.
To access the Oracle Warehouse Builder repository, you use the OMBCONNECT
statement.
Experts are mini-applications or task-flows that developers build to carry out specific tasks in Oracle Warehouse Builder. Experts enable you to capture your knowledge, expertise, and best practices in Oracle Warehouse Builder and make them repeatable. The most basic use for Experts is to guide a user through a sequence of related tasks in Design Center. Experts enable the re-use the graphical UI components and capabilities of Oracle Warehouse Builder. For example, the Flat File Sampler Wizard in Oracle Warehouse Builder may be re-used as a component within an Expert, where the developer needs the user to define the structure of a file. The developer can have full control over how the information and metadata that is returned by the wizard is used, and can call other components, write and embed scripts, call SQL or Java, and so forth.
Uses for Experts include:
Combined with the OMB*Plus scripting features and other extension mechanisms, Experts facilitate using Oracle Warehouse Builder as a platform for delivering complex, reusable data integration solutions.
This section includes these additional topics about Experts:
See Also: The chapter "About Experts" in Oracle Warehouse Builder API and Scripting Reference for details and procedures for developing Experts |
The design environment for Experts is in the context of projects in Design Center, primarily with the Expert Editor, which is similar to the environment for process flows: a graph in which task objects are represented by icons, flow of control is represented by connecting lines, and design activities are performed by drag-and-drop and setting up object properties. Tasks can include creating or modifying objects in your projects, invoking commonly used built-in dialogs, creating custom dialog boxes, and invoking OMB*Plus scripts for complex flow of control and interaction with Oracle Warehouse Builder. Variables are available to preserve state among tasks in an Expert. Nested Experts are also supported, so that logic implemented in one Expert can be called in others.
Experts can also invoke arbitrary Java code in JAR files that you set up to be loaded with Oracle Warehouse Builder. As a result, you can implement new functionality in Java and integrate it into the Oracle Warehouse Builder user interface.
At run time, Experts follow the same paradigm as traditional Oracle Warehouse Builder functionality, in that code (in this case, OMB and OMU scripts) is generated from the model/logical design, and is then executed.
In a workspace, Experts can be created in a public Experts folder or in the private Experts folder that is included in each project. Private Experts are typically used only in the context of its parent project. As with other public objects, public Experts are stored in the globals area and can be used across all projects in the workspace. Public Experts typically encapsulate functionality that is useful across different types of projects.
Depending upon how they are implemented, Experts can be invoked in several different contexts:
The Guided Assistance feature enables the creation of a set of Experts in an Oracle Warehouse Builder workspace, such that when a user logs in to the workspace, they are immediately offered a point-and-click list of Experts to choose from to perform one of several common tasks. Placing Experts in a folder called STARTUP in the Public Experts folder causes them to appear in the Guided Assistance Experts list. Guided Assistance Experts can also be accessed through a Help menu item in Design Center. Administrators can use this feature to provide developers on a project a set of Experts and encourage their use for consistency and time-saving on common tasks.
See Also: The topic "Guided Assistance" under "About Experts" in Oracle Warehouse Builder API and Scripting Reference |
This appendix describes the preferences available in Oracle Warehouse Builder.
This appendix contains the following topics:
Oracle Warehouse Builder provides a set of user preferences that enable you to customize your user interface and environment. You set preferences from the Design Center by selecting an object and clicking Design on the Design Center menu.
Preferences are organized, and each preference contains values that you set according to your design needs. You may also view and set preferences from the Oracle Warehouse Builder client console menu under Tools>Preferences.
Oracle Warehouse Builder has the following preferences:
The Code Template Editor preferences provide settings for how the editor will be laid out on screen. This enables management of screen real estate while you are editing a Code Template.
Use the Control Center Monitor category to set preferences that control the display of components in the Control Center. When you use the Control Center to deploy or execute objects, the Job Details window displays the results of deployment or execution. The Control Center Monitor preferences enable you to control which items to display in the object tree of the Job Details window.
Note: Oracle Warehouse Builder displays the Job Details window only if you select the Show Monitor preference under the Process node of the Deployment preferences category.If this option is not selected, then you can view the Job Details window by double-clicking the row representing the deployment or execution job in the Control Center Jobs panel of the Control Center. |
The Control Center Monitor category contains the following preferences:
Use the Data Profiling category to set the preferences for data profiling.
This category contains the following preferences:
The Deployment category enables you to set deployment preferences such as displaying the deployment monitor, prompting for execution parameters, and showing completion messages. This enables you to control some of the popup windows that are displayed by the Control Center Manager during object deployment.
Deployment preferences are divided into two sections: Process and Monitor. Expand the Deployment node in the Preferences dialog box. Click the node for which you want to set preferences.
Process
The Process node sets the following deployment options:
If you do not set this option, then Oracle Warehouse Builder saves any design changes before the deployment job.
Monitor
The Monitor node sets the following deployment monitoring options:
The Environment category enables you to set generic preferences that control the client environment such as displaying welcome pages for wizards and recycle bin preferences.
You can set the following environment preferences:
If you do not select this option, you can still collect schema statistics from the Design Center by selecting Optimize Repository from Tools menu.
Note: You can access public views from your default workspace. From your default workspace, when you log in to SQL*Plus, you can access public views (design-time public views or run time public views) without needing to call a separate procedure.If you try to access public views from any workspace other than the default, then you must call: If you want to switch to a workspace other than the default one, then you can call the |
The Expert Editor preferences provide settings for how the editor will be laid out on screen. This enables management of screen real estate while you are editing a Code Template.
The Generation/Validation category enables you to set preferences related to generation and validation of Oracle Warehouse Builder design objects. Use these preferences to control what is displayed in the Generation Results dialog box or Validation Results dialog box. These dialog boxes are displayed when you generate or validate an object from the Design Center.
The Generation/Validation category contains the following preferences:
The Lineage and Impact Analysis preferences provide settings for how the editor will be laid out on screen. This enables management of screen real estate while you are editing a Code Template.
The Logging Preferences category enables you to set log file options such as file location, file size, and types of messages saved to any log file. The log file contains messages relating to your design process. By default a message log is saved to the default location.
The Logging Preferences category contains the following preferences:
OWB_HOME\owb\bin\admin
. <logfilename>.0
, and <logfilename>.1
. When the maximum size of the first log file <logfilename>.0
is reached, Oracle Warehouse Builder starts writing to the second log file, <logfilename>.1
. When the maximum size of the second one is reached, Oracle Warehouse Builderstarts overwriting the first log file. The Mapping Editor preferences provide settings for how the editor will be laid out on screen. This enables management of screen real estate while you are editing a Code Template.
The Naming Preferences category enables you to set naming preferences by selecting whether you want to view objects in Business Name or Physical Name mode. You can also set how you want to propagate object name changes, and whether you want to synchronize names with the target.
The Naming Preferences category contains the following preferences:
Oracle Warehouse Builder maintains a business name and a physical name for each object stored in the repository. A business name is a descriptive logical name for an object. A physical name is the actual object name recognized by the repository.
When you generate DDL scripts for a named object, the physical names are used. Physical names must conform to the syntax rules for basic elements as defined in the Oracle Database SQL Language Reference.
Names must be unique within their category:
Business Name Mode Use Business Name mode to create a business name for an object or to change the business name of an existing object. When this mode is selected, Oracle Warehouse Builder editors, wizards, and property sheets display the business names of objects.
A business name must conform to these rules:
Copy operations from a source to a target in a mapping are not case-sensitive.
When you create a business name, Oracle Warehouse Builder generates a corresponding, valid physical name that resembles the business name. If you create a business name that duplicates an existing physical name, then Oracle Warehouse Builder appends an underscore and a number in order to create a unique name.
Physical Name Mode Use Physical Name mode to create a physical name for an object or to change the physical name of an existing object. When this mode is selected, Oracle Warehouse Builder editors, wizards, and property sheets display the physical names of objects. Physical names are converted to UPPERCASE.
An object's physical name must conform to these rules:
Note: A collection can have a physical name containing up to 200 characters. |
Oracle Warehouse Builder prevents you from entering an invalid physical name. For example, you cannot enter a duplicate name, a name with too many characters, nor a name that is a reserved word.
Setting the Name Mode To create or change a business name for an object, Oracle Warehouse Builder must be in Business Name mode. To create or change a physical name for an object, Oracle Warehouse Builder must be in Physical Name mode.
The default naming preferences for Oracle Warehouse Builder are as follows:
Icons for the name mode and name propagation settings are located in the lower-left corner of the editors. These icons indicate the current naming preference setting.
Oracle Warehouse Builder saves your naming preferences across sessions. The Name Mode preference is stored in a file on the client workstation. If you use Oracle Warehouse Builder from another workstation, your preferences may be different.
The Process Flow Editor preferences provide settings for how the editor will be laid out on screen. This enables management of screen real estate while you are editing a Code Template.
The Recent Logons preferences enables you to set preferences regarding the most recent logons. The table on this page displays details of the most recent logons. The details include the repository user name, host name, port number, and service name.
Use the Maximum Logons Remembered field to specify the number of recent logons for which Oracle Warehouse Builder client should store details. For example, if you set this field to 4, the table displays details of the four most recents logons.
To modify the details of a particular logon, click the detail you want to modify and enter the new value.
To delete a recent logon, right-click the row header and select Delete.
Note: Only administrators can edit the security preferences. |
The Security Parameters category contains the following settings:
Persist Location Password in Metadata
This option determines whether location passwords are persisted across Oracle Warehouse Builder design sessions.
By default, this option is deselected, which is the more secure setting. Oracle Warehouse Builder retains location passwords for the length of the design session only. That is, the first time you start tools such as the Data Viewer or Debugger, you must enter the appropriate location passwords.
If this option is selected, then Oracle Warehouse Builder persists encrypted versions of location passwords in the workspace. The result is that you can start tools such as the Data Viewer and Debugger without entering passwords each time.
See Also: "Encrypting Passwords to Warehouse Builder Locations" in Oracle Warehouse Builder Installation and Administration Guide for more information about the encryption methodology. |
Share Location Password During Runtime
This parameter determines whether the location passwords that users enter during the design phase can be shared with other users. For example, assume that user Dev1
designs mapping MAP1
. To access the sources and targets for this mapping, Dev1
defines the locations to each source and target, including a username and password. When other users subsequently attempt to execute MAP1
or view data associated with it, Oracle Warehouse Builder preference determines whether each user must enter the password each time in the Design Center, or the first time in the Control Center.
Share Location Password During Run time works in conjunction with Persist Location Password in Metadata. The most secure mode, and the default behavior, is for both options to be deactivated. In this case, each user, including Dev1
, must enter their password once for each Design Center session and for the first time they attempt to use that location in the Control Center. Depending on your security requirements, you may want each user to define their own location for a given source or target
If both Share Location Password During Runtime and Persist Location Password in Metadata are activated, then any user can access a schema given that any user previously defined the location. Therefore, user Oper2
can execute MAP1
given that Dev1
or any other user previously defined the location with valid credentials.
Default Metadata Security Policy
This parameter specifies the default security policy to be applied. Minimum security enables all users full control over objects that any newly registered user creates. Maximum security, however, restricts access to the newly registered user who created the object, and to Oracle Warehouse Builder administrators.
This setting is not retroactive. That is, if you change this setting in an existing Oracle Warehouse Builder implementation, then the setting does not affect existing users and existing objects. You must manually change the security settings on existing objects.
See Also: "Managing Security" in Oracle Warehouse Builder Installation and Administration Guide for more information about changing the security settings manually. |
This file contains the Control Center property values. The properties defined in this file override any property values stored in the Control Center repository and is read once during Control Center service startup. The Control Center service must be restarted for any changes to this file to become active. The file provides a default for all Control Center repositories. For defaults on per repository basis, a new file is created suffixed with the repository name in upper case.
The file is under strict operating system access control with update privileges only by the DBA, and read access by the user running the Control Center service. The backward slash character '\' is used as an escape character so '\\' is the equivalent to '\'.
Runtime.Properties file has the following features:
The behaviour of the following operators can be restricted: Shell (External Process), SQLPlus, FTP, OMBPlus. This is required because, by default, the Control Center service is executed using the same security context as the Oracle service.
The following properties can be use to control the operator behaviour:
The following values are used to control the operator behaviour:
where, NATIVE_JAVA uses the Java 'Runtime.exec' interface (Default), SCHEDULER uses a DBMS Scheduler external job submitted by the Control Center repository owner that is executed by the default operating system user configured by the DBA. DISABLED prevents execution through these operators.
Note: This option does not effect the users ability to schedule jobs through Oracle Warehouse Builder. |
The Java Activity Operator creates an operating system process to instantiate Java classes using the Java executable. By default the Java executable is taken from the Control Center Service path. However, the following property can be defined to set which executable or script is used.
This additional feature is provided to force the execution of the constrained operators through a proxy command. This could be used to prevent execution of unauthorized commands or to change the security context at the operating system level.
The following properties can be used to pre-pend a command and parameter_list. This is optional to the user specified command and parameter_list:
For example:
Note: For proxy_parameter_list, a single backslash '\' must be entered as a sequence of four backslashes '\\\\' as both the parameter_list decoder and the properties file use backslash as an escape character. |
The following boolean property (true | false) controls whether the version of the Control Center service is validated against the Control Center repository:
property.RuntimePlatform.0.skip_version_check
Connection Pooling properties control the use of the Control Center connection pool. The pool can improve performance in an environment where connections to the database are being made frequently.
The "connection.pooling" property turns the pooling on or off (on | off). For example:
The "connection.max_pool_size" property controls the maximum number of open connections in the pool. The value -1 is treated as unlimited and 0 is equivalent to turning the pooling off. For example:
The "connection.max_reallocations" property controls the number of times the connection is reallocated from the pool before being closed. The value -1 is treated as unlimited and 0 is equivalent to turning the pooling off. For example:
The following properties enable turning the explicit garbage collection. This is useful in a multi-CPU system where the implicit garbage collector may not be called efficiently.
This property controls the setting of the Control Center connection timezone. The settings of the timezone is required to support TIMESTAMP WITH LOCAL TIMEZONE calculations. This property should be used when the default behaviuor does work as required. If not set the default behaviour to SERVICE.
The property supports the following keyword elements:
where, SERVICE uses the timezone of the Java VM that is running the Control Center service. This can be overridden by added the -Duser.timezone
JAVA VM argument in the run_service script. If you enter a timezone that is not known to the JVM, then the JVM picks a default timezone like +02:00 or Windows can result in GMT+02:00, not +02:00 or Europe/Paris. An optimization also removes the GMT prefix, where, DATABASE uses the timezone offset of the database.
NONE, does not initialize the session with a timezone. This causes TIMESTAMP WITH LOCAL TIMEZONE calculations to fail.
The property can also be set with an Oracle Database timezone or offset. For example:
This property controls the setting of the Control Center JVM timezone. The settings of the timezone is required to support TIMESTAMP WITH LOCAL TIMEZONE calculations. This property should be used when the default behavior works as required, else set the timezone as retrieved from the host operating system. The setting of this property is equivalent to adding -Duser.timezone to the JVM argument list. If both are set then these values are taken in preference.
user.timezone=GMT
or
properties.JVM.0.System.user.timezone=GMT
This property controls whether a dummy OCI connection is made prior to any thin JDBC connection. This is necessary to ensure that the correct OCI shared libraries are loaded in order to resolve an issue where a Discoverer deployment loads a set of OCI shared libraries that are incompatible with a later use of Change Management.
The "connection.oci_fix" property turns the OCI fix on or off (on | off). For Example:
Any properties prefixed by "properties.JVM.0.System." will have the prefix removed and will be added into the JVM's System properties. This is equivalent to adding properties using the -D directive
to the JVM's command line.
Runtime logging properties controls the runtime logging files that are placed by Oracle Warehouse Builder.
FTP, Shell and SQLPlus operator are disabled by default.
This appendix provides information about the Graphical Navigator and object editors in Oracle Warehouse Builder.
This appendix contains the following topics:
In design mode, Oracle Warehouse Builder provides the Graphical Navigator from which you can start object and document editors. Objects from the component palette and tree panel can be dropped onto this navigator. The Oracle Warehouse Builder object editors also support keyboard navigation, including tabbing and shortcuts.
When you double-click an object such as a table, a document panel opens containing one or more viewers and editors that are specific to that object type. These editors appear as tabs at the bottom of the document window. When you select an object, a property inspector and menu options are available for that object, and you can include related objects. Additionally, you can drag and drop appropriate objects from the Navigator tree to the Graphical canvas and then relate these objects with rubber bands.
This sections provides a list of the various editors in Oracle Warehouse Builder:
See Also: "Creating Cubes" and "Editing Cube Definitions" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide |
See Also: "Creating Dimensions" and "Editing Dimension Definitions" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide |
These tabs are available for table objects.
These tabs in the Data Viewer are available for viewing objects.
See Also: "Using the Data Viewer to View Data Stored in Data Objects" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide |
These editor tabs are available for materialized view objects.
See Also: "Configuring Materialized Views" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide |
Contains these tabs:
See Also: "Defining Object Types" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide |
Contains these tabs:
See Also: "Defining Nested Tables" in Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide |
Create Business Area Wizard and Business Area Editor
Contains these tabs:
See Also: "Creating a Business Area" and "Using the Create Business Area Wizard" in Oracle Warehouse Builder Sources and Targets Guide |
Contains these tabs:
ABAP script
A script that can be generated in Oracle Warehouse Builder that extracts and loads data from SAP systems.
activity
A unit of work for a process flow. See also process flow.
analytic workspace
A container within Oracle Database that stores data in a multidimensional format. Analytic workspaces provide the best support for OLAP processing.
Code Template (CT)
A cross-platform, reusable object that contains the information required to perform a specific set of tasks against a specific technology or set of technologies, for example data integration or data transformation tasks.
Code Template mapping
A mapping that contains an association with a Code Template. Typically used to extract or load data (both with and without transformations) from non-Oracle databases, such as IBM DB2 and Microsoft SQL Server.
Control Center Agent (CCA)
The agent that runs the Code Templates in the Oracle Containers for J2EE (OC4J) server. You must start the Control Center Agent before you deploy Code Templates or CT mappings. Also referred to as the J2EE Runtime.
Control Center Manager
The graphical console of the Control Center Service for centrally viewing and managing all aspects of deployment and execution. Provides access to the information stored in the active configuration. Includes update capabilities to enable management of your data system's life cycle.
Control Center Service
A service that runs outside the database, which can monitor and execute things that cannot be run directly in the database, such as: PL*SQL scripts, SQL*Loader, and shell scripts. Enables deployment of Oracle Warehouse Builder mappings and processes to targets (databases, etc.), and the execution of these mappings and processes.
control row
A row that links fact data to a dimension at any level.
CT mapping
cube
A data object that contains measures, and links to one or more dimensions. The axes of a cube contain dimension members, and the body of the cube contains measure values.
data auditors
Processes that provide data monitoring by validating data against a set of data rules to determine which records comply and which do not.
data rule
Metadata (as definitions) about data profiling results, which can be bound to the profiled data objects, and then be available in any context in which the profiled objects are used in ETL.
data transformation
A set of operations, which are specified in a mapping, that change source data into consistent, compatible output for a target.
DDL script
A script that can be generated in Oracle Warehouse Builder that creates or drops database objects.
deployable parameter
The parameter for an object that specifies it is to be deployed. By default this parameter is selected. To prevent an object from being deployed, clear this parameter.
deployable parameter
The parameter for an object that specifies it is to be deployed. By default this parameter is selected. To prevent an object from being deployed, clear this parameter.
deployment
The process of creating physical objects in a target location according to the logical objects defined in an Oracle Warehouse Builder workspace.
dimension
An object that contains additional metadata to identify and categorize data. Same as dimensional object. Can be a cube.
dimension attribute
A descriptive characteristic of a dimension member, having a name and a data type.
ETL
The process of extracting data from its source location, transforming it as defined in a mapping, and loading it into target objects (or schemas). ETL stands for extract, transform, and load.
execution
The process of running the code for the ETL logic that is defined in the deployed objects in order to instantiate the logic within the objects.
Expert
Mini-applications or task-flows that perform a specific sequence of tasks in Oracle Warehouse Builder.
flat files
Non-hierarchical, non-object-oriented file structures in plain text comma-separated or tab-separated format, ASCII format, or proprietary binary formats.
folders
Structures in which to organize all or some objects within a target module based on specific object characteristics. For example, you may create user folders to group tables based on their functionality (sales, marketing, administration and so forth).
hierarchy
A structure that uses ordered levels to organize data. Oracle Warehouse Builder uses hierarchies to define relationships between adjacent levels in time dimensions.
item folder
Item folders are business views.
J2EE Runtime
Refer to Control Center Agent (CCA). Also, sometimes called Java Runtime.
level attribute
For time dimensions, a descriptive characteristic of a level value.
location
Object that stores the connection information to the various files, databases, and applications that Oracle Warehouse Builder accesses for extracting and loading data. Locations also store connection information to ETL management tools and Business Intelligence tools.
logical definition
The data objects created when you design a target schema.
mapping
An object that contains operations for extraction, transformation, and loading (ETL) that moves data from sources to targets.
mapping operator
The representation of an operation for a distinct task you want to perform in a mapping. For example, operations include extracting data, loading data, and transforming data.
match bin set
Relating to the match merge feature, a match bin set consists of one or more similar records.
module
A container object that appears in the Projects Navigator and that corresponds to a specific location in the Locations Navigator. A module can correspond to only one metadata location and data location at a time.
ODI
OMB*Plus
The Oracle Warehouse Builder scripting API, which is based on the Java implementation of Tcl called Jacl.
OMB
The OMB-prefixed commands ('B' for batch component) of OMB*Plus.
OMU
A subset of OMB*Plus that provides scripting commands for manipulating the user interface in Oracle Warehouse Builder. Also OMU-prefixed commands ('U' for UI component).
operator
Oracle Warehouse Builder contains pre-built operators for transformations, mappings, names and addresses, and so forth. Operators in Oracle Warehouse Builder are customizable and take advantage of the library of PL/SQL functions, procedures, package functions, and package procedures for Oracle Database. See also mapping operator.
Oracle Data Integrator
Oracle Data Integrator (ODI). See Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Oracle Warehouse Builder Repository
The single, unified repository for the database instance, which is pre-seeded with a schema and database objects. The runtime environment and the design environment reside in this single repository. The repository schema, named OWBSYS, gets created when you install Oracle Database.
pluggable mapping
A reusable grouping of mapping operators that works as a single operator. Similar in concept to a function in a programming language.
process flow
An object that describes dependencies and activities between Oracle Warehouse Builder mappings and external processes, applets, or applications. Process flows begin with a start activity and conclude with an end activity and can also start other process flows. Compare to schedule. See also activity.
process flow module
A container for a grouping of process packages.
process flow package
A container for a grouping of process flows.
project
The highest-level and largest object in Oracle Warehouse Builder workspace. Each project contains the metadata and definitions for objects in the data system that contains the sources and targets.
relational target schema
A target schema that contains relational data objects such as tables, views, materialized views, and sequences. All of the data for a data store or data warehouse is contained in these objects.
repository
Refer to Oracle Warehouse Builder Repository.
SQL*Loader control file
A file or script that can be generated in Oracle Warehouse Builder that extracts and transports data from file sources.
table function
A set of operators that enable manipulation of a set of input rows, which return another set of rows of the same or different cardinality. Can return a set of output rows that can be queried like a physical table.
target module
A container that holds the metadata definitions of all your data warehouse objects. Each target module corresponds to a target location that represents the physical location where the objects are stored.
target schema
A schema that contains the data objects that store your data warehouse data. You can design a relational target schema or a dimensional target schema.
transportable module
Type of module that enables rapid copying of a group of related database objects in one database, to be pasted or inserted into another database.
transformation operators
Prebuilt operators that enable commonly performed operations such as filtering, joining, and sorting. Oracle Warehouse Builder also includes prebuilt operators for complex operations such as merging data, cleansing data, or profiling data.
user folder
A folder you can create to organize all or some objects in a target module based on specific object characteristics. Related tables and views that must be generated or deployed can be placed under a common folder. For example, you may create user folders to group tables based on their functionality (sales, marketing, administration and so forth).
validation
The process of verifying metadata definitions and configuration parameters to ensure that data object definitions are complete and that scripts can be generated and deployed.
value-based hierarchy
A dimension in which hierarchical relationships are defined by a parent dimension attribute and a child dimension attribute.
workspace
Oracle Warehouse Builder structure that contains all the related projects and their objects. Graphically displayed as the canvas in the Design Center where Oracle Warehouse Builder windows, navigators, wizards, and dialog boxes are laid out to create a work environment that one or more users log in to.
 Copyright © 2000, 2011, Oracle and/or its affiliates. All rights reserved. |