Application Security Guide
11g Release 1 (11.1.1)
E10043-10
November 2011
Oracle Fusion Middleware Application Security Guide, 11g Release 1 (11.1.1)
E10043-10
Copyright © 2003, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Carlos Subi
Contributing Author: Vinaye Misra, Gail Flanegin
Contributor: Amit Agarwal, Soumya Aithal, Moushmi Banerjee, Andre Correa, Marc Chanliau, Pratik Datta, Jordan Douglas, Guru Dutt, Todd Elwood, Vineet Garg, Vikas Ghorpade, Sandeep Guggilam, Shiang-Jia Huang, Dan Hynes, Michael Khalandovsky, Supriya Kalyanasundaram, Lakshmi Kethana, Ganesh Kirti, Ashish Kolli, Rohit Koul, Nithya Muralidharan, Frank Nimphius, Craig Perez, Sudip Regmi, Bhupindra Singh, Kk Sriramadhesikan, Mamta Suri, Kavita Tippana, Srikant Tirumalai, Ramana Turlapati, Jane Xu, Sam Zhou.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications..
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This manual explains the features and administration of the Oracle Platform Security Services.
This preface is divided into the following sections:
The intended audience of this guide are experienced Java developers, administrators, deployers, and application managers who want to understand and use Oracle Platform Security Services.
The overall structure of the guide is divided into parts, each of which groups related major topics. Parts I through III are relevant to administrators; parts IV contains information about the OPSS policy model and is intended for developers; and part V contains reference information.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
Additional information is found in the following documents:
For a comprehensive list of Oracle documentation or to search for a particular topic within Oracle documentation libraries, see http://www.oracle.com/technology/documentation/index.html
.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action.
italic	Italic type indicates book titles, emphasis, terms defined in text, or placeholder variables for which you supply particular values.
monospace	Monospace type within a paragraph indicates commands, URLs, Java class names and method names, file and directory names, text that appears on the screen, or text that you enter.
This chapter describes the most important changes introduced in releases 11gR1, 11gR1 PS1, 11gR1 PS2, Oracle Identity Management 11gR1, 11gR1 PS3, Oracle Identity Management 11gR1 PS1, and 11gR1 PS5.	
The features introduced in release 11gR1 PS5 include the following:	
upgradeOpss	
. For details, see Appendix G, "Upgrading Security Data." Documentation updates include the following:	
The features introduced in Oracle Indentity Management 11gR1 PS1 include the following:	
The features introduced in release 11gR1 PS3 include the following:	
upgradeOpss	
to upgrade security data from 11gR1 PS1 or 11gR1 PS2 to 11gR1 PS3. The features introduced in Oracle Identity Management 11gR1 include the following:	
Additions to This Guide	
New material in this guide includes:	
The features introduced in release 11gR1 PS2 include the following:	
jps.deployment.handler.disabled	
of the Oracle WebLogic Server has been introduced. upgradeSecurityStore	
. migrateSecurityStore	
to control the migration behavior upon encountering duplicate items. It applies only when migrating application policies. The features introduced in release 11gR1 PS1 include the following:	
migrateSecurityStore	
supports the embedded LDAP store as a target. reassociateSecurityStore	
supports an existing LDAP node as a target. The single most important new feature in the 11gR1 release is the introduction of the Oracle WebLogic Server as the environment where applications run and where security is provisioned.	
The features introduced in release 11gR1 include the following:	
The features de-supported in release 11gR1 include the following:	
To upgrade from a previous release to the current, see any of the following documents:	
Oracle Platform Security Services (OPSS) is a security platform that can be used to secure applications deployed in any of the supported platforms or in standalone applications. This chapter introduces the main features of this platform in the following sections:	
The scope of this document does not include Oracle Web Services security. For details about that topic, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.	
For an overview of Oracle Fusion Middleware security topics, see Oracle Fusion Middleware Security Overview.	
OPSS provides enterprise product development teams, systems integrators, and independent software vendors with a standards-based, portable, integrated, enterprise-grade security framework for Java SE and Java EE applications.	
OPSS is the underlying security platform that provides security to Oracle Fusion Middleware including WebLogic Server, Server Oriented Architecture (SOA) applications, Oracle WebCenter, Oracle Application Development Framework (ADF) applications, and Oracle Entitlement Server. OPSS is designed to be portable to third-party application servers, so developers can use OPSS as the single security framework for both Oracle and third-party environments, thus decreasing application development, administration, and maintenance costs.	
OPSS provides an abstraction layer in the form of application programming interfaces (APIs) that insulate developers from security and identity management implementation details. With OPSS, developers do not need to know the details of, for example, cryptographic key management, repository interfaces, or other identity management infrastructures. Using OPSS, in-house developed applications, third-party applications, and integrated applications benefit from the same, uniform security, identity management, and audit services across the enterprise.	
For OPSS-related news, including FAQs, a whitepaper, and code examples, and forum discussions, see http://www.oracle.com/technology/products/id_mgmt/opss/index.html	
.	
OPSS complies with the following standards: role-based-access-control (RBAC); Java Enterprise Edition (Java EE); and Java Authorization and Authentication Services (JAAS).	
Built upon these standards, OPSS provides an integrated security platform that supports:	
Details about a given OPSS feature functionality are found in subsequent chapters of this guide.	
For details about the WebLogic Auditing Provider, see section Configuring the WebLogic Auditing Provider in Oracle Fusion Middleware Securing Oracle WebLogic Server.	
OPSS is supported in the following application server platforms:	
This guide documents OPSS features relevant to the Oracle WebLogic Server that apply uniformly to all other platforms. Those topics that apply specifically to third-party servers are found in Oracle Fusion Middleware Third-Party Application Server Guide.	
OPSS comprises the application server's security and Oracle's Fusion Middleware security. Figure 1-1 illustrates the layered architecture that combines these two security frameworks:	
The top layer includes the OPSS security services; the next layer includes the service providers, and the bottom layer includes the OPSS security store with a repository of one of three kinds.	
Security Services Providers	
Security Services Provider Interface (SSPI) provides Java EE container security in permission-based (JACC) mode and in resource-based (non-JACC) mode, and resource-based authorization for the environment.	
SSPI is a set of APIs for implementing pluggable security providers. A module implementing any of these interfaces can be plugged into SSPI to provide a particular type of security service, such as custom authentication or a particular role mapping.	
For details, see section The Security Service Provider Interfaces (SSPIs) in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.	
Oracle Platform Security Services	
Java Authorization (JAZN) functionality includes the Credential Store Framework (CSF), the Common Audit Framework (CAF), Keystore Service, and other components, and combined with SSPI as Oracle Platform Security Services (OPSS).	
The benefits that OPSS offers include the following:	
OPSS combines SSPI and JPS to provide a framework where the application server and Oracle applications can seamlessly run in a single environment.	
OPSS supports security for Java EE applications and for Oracle Fusion Middleware applications, such as Oracle WebCenter and Oracle SOA Suite.	
Developers can use OPSS APIs to secure all types of applications and integrate them with other security artifacts, such as LDAP servers, RDBMS, and custom security components.	
Administrators can use OPSS to deploy large enterprise applications with a small, uniform set of tools and administer all security in them. OPSS simplifies the maintenance of application security because it allows the modification of security configuration without changing the application code.	
By default and out-of-the-box, Oracle WebLogic Server stores users and groups in its embedded LDAP repository. Domains can be configured, however, to use identity data in other kinds of LDAP repositories, such as Oracle Internet Directory, ActiveDirectory, Novell eDirectory, and OpenLDAP. In addition, Oracle WebLogic Server provides a generic, default LDAP authenticator that can be used with other LDAP servers not in the preceding list.	
Out-of-the-box, policies and credentials are stored in file-based stores; these stores can be moved (or reassociated) to an LDAP repository backed by an Oracle Internet Directory.	
Out-of-the-box, keys and certificates are stored in a file-based keystore, which can be reassociated with a database or an LDAP repository.	
Note: This guide does not attempt to describe in detail WebLogic security features; wherever specific information about SSPI is used or assumed, the reader is referred to the appropriate document.	
Oracle ADF is an end-to-end Java EE framework that simplifies development by providing out-of-the-box infrastructure services and a visual and declarative development experience.	
Oracle ADF Security is based on the JAAS security model, and it uses OPSS. Oracle ADF Security supports LDAP- or file-based policy and credential stores, uses permission-based fine-grained authorization provided by OPSS, and simplifies the configuration of application security with the aid of visual declarative editors and the Oracle ADF Security wizard, all of them available in Oracle JDeveloper 11g (any reference to this tool in this guide stands for its 11g release).	
Oracle ADF Security authorization allows protecting components (flows and pages), is integrated with Oracle JDeveloper at design time, and is available at run time when the application is deployed to the integrated server where testing of security features is typically carried out.	
During the development of an Oracle ADF application, the authenticators are configured with the Oracle WebLogic Server Administration Console for the particular domain where the application is deployed, and the policy store is file-based and stored in the file jazn-data.xml	
. For deployment details, see Section 6.3.1, "Deploying to a Test Environment."	
To summarize, Oracle ADF Security provides:	
For related information, see Scenario 2: Securing an Oracle ADF Application.	
Depending on the application type, the guidelines to administer application security with Oracle WebLogic Administration Console, OPSS scripts, Fusion Middleware Control, or Oracle Entitlements Server are as follows:	
For details about security administration, see Chapter 5, "Security Administration."	
This section summarizes the main OPSS features typically used when securing applications, in the following scenarios:	
For other use cases, see Section 19.2, "Security Integration Use Cases."	
A Java EE application can be enhanced to use OPSS APIs such as the CSF, User and Role, or Policy Management: user attributes, such as a user's email, phone, or address, can be retrieved using the Identity Governance Framework API or the User and Role API; external system credentials (stored in a wallet or in a LDAP-based store) can be retrieved using the CSF API; authorization policy data can be managed with the policy management APIs; and application keys and certificates can be managed with Keystore Service APIs.	
Java EE applications, such as servlets, JSPs, and EJBs, deployed on Oracle WebLogic Server can be configured to use authentication and authorization declaratively, with specifications in the file web.xml,	
or programmatically, with calls to isUserInRole	
and isCallerInRole	
.	
Custom authenticators include the standard basic, form, and client certification methods. Authentication between servlets and EJBs is controlled using user roles and enterprise groups, typically stored in an LDAP repository, a database, or a custom authenticators.	
Oracle Application Development Framework (ADF) is a Java EE development framework available in Oracle JDeveloper that simplifies the development of Java EE applications by minimizing the need to write code that implements the application's infrastructure, thus allowing developers to focus on the application features. Oracle ADF provides these infrastructure implementations as part of the Oracle JDeveloper framework, therefore enhancing the development experience with visual and declarative approaches to Java EE development.	
Oracle ADF implicitly uses OPSS, and, for most part, the developer does not have to code directly to OPSS APIs; of course, the developer can nevertheless use direct calls to OPSS APIs.	
Oracle ADF leverages container authentication and subsequently uses JAAS based authorization to control access to Oracle ADF resources. These authorization policies may include application-specific roles and JAAS authorization permissions. Oracle ADF connection credentials are stored securely in the credential store.	
Oracle ADF and Oracle WebCenter applications deployed on Oracle WebLogic Server include WebLogic authenticators, such as the default WebLogic authenticator, and may include a single sign-on solution (Oracle Access Manager or Oracle Application Server Single Sign-On).	
Usually, applications also use one or several of the following OPSS features: anonymous and authenticated role support, policy management APIs, and the Credential Store Framework.	
For details about these topics, see the following sections:	
For details on how to develop and secure Oracle ADF applications, see chapter 29 in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Most of the OPSS features that work in Java EE applications work in Java SE applications, but there are some differences, which are noted in this section.	
Configuration	
All OPSS-related configuration and data files are located under configuration directory in the domain home. For example, the configuration file for a Java SE environment is defined in the file jps-config-jse.xml	
by default installed in the following location:	
To specify a different location, use the following switch:	
The syntax of this file is identical to that of the file jps-config.xml	
. This file is used by code running in WebLogic containers. For details, see Appendix A, "OPSS Configuration File Reference."	
For details about security configuration for Java SE applications, see Section 22.2, "Authentication for Java SE Applications," and Section 23.1, "Configuring Policy and Credential Stores in Java SE Applications."	
Required JAR in Class Path	
To make OPSS services available to a Java SE application, ensure that the following JAR file is added to your class path, located in the modules area of the Oracle installation home:	
Login Modules	
Java SE applications can use standard JAAS login modules. However, to use the same login module on WLS, implement a custom authentication provider that invokes the login module. The SSPI interfaces allow integrating custom authentication providers in WLS.	
The login module recommended for Java SE applications is the IdentityStore login module.	
For details, see section Authentication Providers in Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic Server.	
This chapter describes various characteristics of users and roles, such as the anonymous role, the authenticated role, role mapping, and the role category. It also includes the definition of terms used throughout this guide and an overview of the User and Role API Framework.	
OPSS delegates authentication to Oracle WebLogic Server authenticator providers managed with the WebLogic Administration Console.	
This chapter is divided into the following sections:	
For further details about managing users and roles programmatically, see Chapter 25, "Developing with the User and Role API."	
This section definies most of the OPSS security terms.	
Users	
A user, or enterprise user, is an end-user accessing a service. User information is stored in the identity store. An authenticated user is a user whose credentials have been validated.	
An anonymous user is a user whose credentials have not been validated (hence unauthenticated) that is permitted access to only unprotected resources. This user is specific to OPSS and its use can be enabled or disabled by an application. For details about anonymous user support, see Section 2.4, "The Anonymous User and Role."	
Roles	
An enterprise role or enterprise group is a collection of users and other groups. It can be hierarchical, that is, a group can include arbitrarily nested groups (other than itself).	
A Java EE logical role is a role specified declaratively or programmatically by a Java EE application. It is defined in an application deployment descriptor and, typically, used in the application code. It can be mapped to only enterprise groups or users, and it cannot be mapped directly to application roles.	
An application role is a collection of users, groups, and other application roles; it can be hierarchical. Application roles are defined by application policies and not necessarily known to a Java EE container. Application roles can be many-to-many mapped to external roles. For example, the external group employee	
(stored in the identity store) can be mapped to the application role helpdesk service request	
(in one stripe) and to the application role self service HR	
(in another stripe).	
For details about the anonymous role, see Section 2.4, "The Anonymous User and Role." For details about the authenticated role, see Section 2.3, "The Authenticated Role."	
Principal	
A principal is the identity to which the authorization in the policy is granted. A principal can be a user, an external role, or an application role. Most frequently, it is an application role.	
Application Policy	
An application policy is a functional policy that specifies a set of permissions that an entity (the grantee, a principal or code source) is allowed within an application, such as viewing web pages or modifying reports. That is, it specifies who can do what in an application.	
An application policy uses:	
Policies that use an entitlement are called entitlement-based policies; policies that use one or more permissions are called resource-based policies.	
Figure 2-1 illustrates the application policy model.	
OPSS Subject	
An OPSS subject is a collection of principals and, possibly, user credentials such as passwords or cryptographic keys. The server authentication populates the subject with users and groups, and then augments the subject with application roles. The OPSS Subject is key in identity propagation using other Oracle Identity Management products such as OAM, for example. For details about how anonymous data is handled, see Section 2.4.1, "Anonymous Support and Subject."	
Security Stores	
The identity store is the repository of enterprise users and groups and must be LDAP-based. Out-of-the-box the identity store is the WebLogic LDAP DefaultAuthenticator. Other types of identity stores include Oracle Internet Directory, Sun Directory Server, and Oracle Virtual Directory.	
The policy store is the repository of application and system policies. This store is administered with Oracle Enterprise Manager Fusion Middleware Control.	
The credential store is the repository of credentials. This store is administered with Oracle Enterprise Manager Fusion Middleware Control.	
The OPSS security store is the logical repository of system and application-specific policies, credentials, and keys. The only type of LDAP-based OPSS security store supported is Oracle Internet Directory.	
For details, see Chapter 3, "Understanding Identities, Policies, Credentials, Keys, and Certificates."	
Other Terms	
A system component is a manageable process that is not a WebLogic component. Examples include Oracle Internet Directory, WebCache, and Java SE components.	
A Java component is a peer of a system component, but managed by an application server container. Generally it refers to a collection of applications and resources in one-to-one relationship with a domain extension template. Examples include Oracle SOA applications, Oracle WebCenter Spaces.	
OPSS supports many-to-many mapping of application roles in the policy store to enterprise groups in the identity store, which allows users in enterprise groups to access application resources as specified by application roles. Since this mapping is many-to-many, it is alternatively referred to as the role-to-group mapping or as the group-to-role mapping.	
Notes: Oracle JDeveloper allows specifying this mapping when the application is being developed in that environment. Alternatively, the mapping can be also specified, after the application has been deployed, using OPSS scripts, Fusion Middleware Control, or Oracle Entitlements Server, as explained in Section 9.2.2, "Managing Application Roles."The mapping of an application role to an enterprise group rewrites the privilege of the enterprise group as the union of its privileges and those of the mapped application role. Therefore, it (possibly) augments the privileges of the enterprise group but never removes any from it.	
OPSS roles can be structured hierarchically by the relation “is a member of.” Thus a role can have as members users or other roles.	
Important: When building a role hierarchy, ensure that you do not introduce circular dependencies to prevent unwanted behavior. For example, setting roleA to be a member of roleB, and roleB to be a member of roleA would create such a circular dependency.	
In a role hierarchy, role members inherit permissions from the parent role. Thus, if roleA is a member of roleB, then all permissions granted to roleB are also permissions granted to roleA. Of course, roleA may have its own particular permissions, but, just by being a member of roleB, roleA inherits all the permissions granted to roleB.	
For details about managing an application role hierarchy with OPSS scripts, see Section 9.3.4, "grantAppRole," and Section 9.3.5, "revokeAppRole."	
For details about managing an application role hierarchy with Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.	
The following example illustrates a role hierarchy consisting of the following nested application users and roles:	
developerAppRole	
has the following members: directorAppRole	
has the following members: Here is the relevant portions of the file jazn-data.xml	
specifying the above hierarchy:	
Table 2-1 summarizes the permissions that each of the five users and roles in the above hierarchy gets according the inheritance rule:	
Table 2-1 Granted and Inherited Permissions	
Role	Permission Granted
---	---
developerAppRole	P1=java.io.FilePermission
managerAppRole	P2= java.util.PropertyPermission
directorAppRole	P3=foo.CustomPermission
developer	P1 and P3 (both inherited)
developer_group	P1 and P3 (both inherited)
OPSS supports the use of a special role: the authenticated role. This role has the following characteristics:	
The permissions granted to the authenticated role need not be specified explicitly but are implicitly derived from the enterprise groups and application roles of which it is a member.	
A typical use of the authenticated role is to allow authenticated users access to common application resources, that is, to resources available to a user that has been authenticated.	
For details on how an application can manually configure the use of the authenticated role, see Section 21.1, "Configuring the Servlet Filter and the EJB Interceptor."	
OPSS supports the use of two special entities: the anonymous user and the anonymous role. Like the authenticated role, these entities need not be declared and applications configure their use in the JpsFilter or JpsInterceptor. Any of them can be used by an application in the application's role hierarchy.	
When enabled, before the user is authenticated and while the user is accessing unprotected resources, the user is represented by a subject populated with just the anonymous user and the anonymous role. Eventually, if that subject attempts access to a protected resource, then authorization handles the subject as explained in Anonymous Support and Subject.	
The permissions granted to the anonymous user and role need not be specified explicitly but are implicitly derived from the enterprise groups and application roles of which they are a member.	
A typical use of the anonymous user and role is to allow unauthenticated users to access public, unprotected resources.	
For details on how an application can manually configure the use of the anonymous user and role, see Section 21.1, "Configuring the Servlet Filter and the EJB Interceptor."	
Throughout this section, it is assumed that the use of the anonymous user and anonymous role are enabled.	
When an end-user first accesses an unprotected resource, the system creates a subject and populates it with two principals corresponding with the anonymous user and the anonymous role. While unprotected resources are involved, that subject is not modified and authentication does not take place.	
When a protected resource is accessed, then authentication kicks in, and the subject (which thus far contained just the anonymous role) is modified according to the result of the authentication process, as follows.	
If authentication is successful, then:	
Notice that a successful authentication results then in a subject that has exactly one principal corresponding to a non-anonymous user, one principal corresponding to the authenticated role, and possibly other principals corresponding to enterprise or application roles.	
If authentication is not successful, then the anonymous user is retained, the anonymous role is removed or retained (according to how the application has configured the JpsFilter or JpsInterceptor), and no other principals are added. By default, the anonymous role is removed from the subject.	
A (WebLogic) administrator is any user member of the group Administrators, and any user that exists in a security realm can be added to this group.	
For details about the default groups that exist in a security realm, see section Users, Groups, And Security Roles in Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.	
Generally, there is no default name for an administrator, with just one exception: when you install the examples, you get a default user name and password for the administrator of the sample domain. It is recommended, however, that these examples not be used in any production environment.	
For details, see section Install WebLogic Server in a Secure Manner in Oracle Fusion Middleware Securing a Production Environment for Oracle WebLogic Server.	
Once a domain is configured, users that have been created in the security realm can be added or removed from the Administrators group at anytime by any member of the Administrators group. The two basic tools for managing these accounts are the Oracle WebLogic Administration Console and the Oracle WebLogic Scripting Tool (WLST).	
For details, see section Add Users to Groups in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help, and section Using the WebLogic Scripting Tool in Oracle Fusion Middleware Oracle WebLogic Scripting Tool.	
This section provides several links to information about creating user accounts and protecting their passwords.	
A few recommendations regarding password creation are explained in section Securing the WebLogic Server Host in Oracle Fusion Middleware Securing a Production Environment for Oracle WebLogic Server.	
This section explains how principal comparison affects OPSS authorization and describes the system parameters that control the principal name comparison logic, in the following sections:	
Upon a successful user authentication, the system populates a Subject with principals whose names accord with the user and enterprise group names (of enterprise groups the user is included in) stored in the identity store.	
On the other hand, when the user (or enterprise group) needs to be authorized, the system considers how application roles have been mapped to enterprise groups, and builds another set of principals from names in application grants stored in the policy store.	
In order to authorized a principal, the principal names populated in the Subject (from names found in the identity store) and those built from names in the policy store are compared. The user (or group) is authorized if and only if a match of principal names is found.	
It is therefore crucial that principal names be compared properly for the authorization provider to work as expected.	
Suppose, for instance, a scenario where the identity store contains the user name "jdoe", but, in grants, that user is referred to as "Jdoe". Then one would want the principal name comparison to be case insensitive, for otherwise the principals built from the names "jdoe" and "Jdoe" will not match (that is, they will be considered distinct) and the system will not authorize "jdoe" as expected.	
The following two WebLogic Server system parameters control the way principal names are compared in a domain and allow, furthermore, to compare principals using DN and GUID data:	
To set these parameters using the WebLogic Server Console, proceed as follows:	
These parameters can alternatively be set using OPSS scripts. For more details about configuring the WebLogic server, see section Configuring a Domain to Use JAAS Authorization in Oracle Fusion Middleware Securing Oracle WebLogic Server.	
The name comparison logic chosen at runtime is described by the following pseudo-code fragment:	
Since by default both PrincipalEqualsCompareDnAndGuid	
and PrincipalEqualsCaseInsensitive	
are false, name principal comparison defaults to case sensitive.	
The role category allows a security administrator to organize application roles. Rather than displaying the flat list of roles in an application, an administrator can organize them arbitrarily in flat sets or categories.	
For details about managing an application role category with Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.	
The following fragment illustrates the configuration of a role category:	
The role category name is case insensitive. The role category can be managed with the interface RoleCategoryManager	
.	
For details about this interface, see the Javadoc document Oracle Fusion Middleware Java API Reference for Oracle Platform Security Services.	
Applications use the identity, policy, credential stores and keystores configured in the domain in which they run. This chapter introduces the basic concepts regarding identity, policy, credential, and keystore data, and it is divided into the following sections:	
For definitions of the terms used in this chapter, see Section 2.1, "Terminology."	
For scenarios illustrating the use of stores, see Chapter 4, "About Oracle Platform Security Services Scenarios."	
OPSS uses server authentication providers, components that validate user credentials or system processes based on a user name-password combination or a digital certificate. Authentication providers also make user identity information available to other components in a domain (through subjects) when needed.	
Java EE applications must use LDAP-based authentication providers; Java SE applications use file-based identity stores out-of-the-box, but the identity store can be configured to be LDAP-based.	
For further details, see section Authentication in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.	
Note: OPSS does not support automatic migration of users and groups used in application development to a remote WebLogic Server where an application may be deployed. Instead, one must independently create the necessary application identities using the Oracle WebLogic Administration Console, OPSS scripts, or the appropriate tool depending on the authentication provider(s) configured in your domain.	
This section covers the following topics:	
The following list enumerates the LDAP repositories supported for an identity store:	
For information about Oracle Fusion Middleware Certification and Supported Configurations, visit http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html	
.	
In regards to support for reference integrity in Oracle Internet Directory servers, see Important note Section 8.2, "Using an LDAP-Based OPSS Security Store."	
For a list of WebLogic authenticator providers, see chapter 4, Authentication Providers in Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic Server.	
For details about the available authenticators, and choosing and configuring one, see section Configuring Authentication Providers in Oracle Fusion Middleware Securing Oracle WebLogic Server, and section Configure Authentication and Identity Assertion providers in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.	
By default and out-of-the-box, Oracle WebLogic Server stores users and groups in the DefaultAuthenticator. This authenticator is setup to use cn	
as the default attribute.	
The data stored in any LDAP authenticator can be accessed by the User and Role API to query user profile attributes. For details about WebLogic LDAP authenticators, see the following sections:	
Important: If your domain uses the DefaultAuthenticator, then the domain administration server must be running for an application to query data using the User and Role API.OPSS requires that a domain have at least one LDAP-based authenticator configured in a domain.	
For details about X.509 identity assertion, see section How an LDAP X509 Identity Assertion Provider Works in Oracle Fusion Middleware Securing Oracle WebLogic Server.	
For details about authentication using the SAML 1.1 or SAML 2.0 identity assertion provider, see section Configuring the SAML Authentication Provider in Oracle Fusion Middleware Securing Oracle WebLogic Server.	
Oracle WebLogic Server offers several LDAP-based authenticators. For a choice of available LDAP servers for the identity store, see Supported LDAP Identity Store Types. The Weblogic DefaultAuthenticator is the default authenticator configured and ready to use out-of-the-box after installation. Other authenticators can be configured using the WebLogic Administration Console.	
For details about the use of authenticators in Java SE applications, see Section 22.2.2, "Configuring an LDAP Identity Store in Java SE Applications."	
Oracle WebLogic Server allows the configuration of multiple authenticators in a given context, each of which has a control flag set. One of them must be an LDAP-based authenticator.	
OPSS initializes the identity store service with the LDAP authenticator chosen from the list of configured LDAP authenticators according to the following algorithm:	
Again, this subset (of LDAPs realizing the maximum flag) is not empty.	
The LDAP authenticator singled out in step 3 is the one chosen to initialize the identity store service. For details about host name verification when establishing an SSL connection with an LDAP authenticator, see Oracle Fusion Middleware Securing Oracle WebLogic Server.	
For details about the default values that OPPS uses to initialize the various supported LDAP authenticators, see javadoc User and Role API documentation in Section H.1, "OPSS API References." If a service instance initialization value is provided by default and also (explicitly) in the service instance configuration, the value configured takes precedence over the default one.	
The WebLogic Identity Assertion providers support certificate authentication using X.509 certificates, SPNEGO tokens, SAML assertion tokens, and CORBA Common Secure Interoperability version 2 (CSIv2) identity assertion.	
The Negotiate Identity provider is used for SSO with Microsoft clients that support the SPNEGO protocol. This provider decodes SPNEGO tokens to obtain Kerberos tokens, validates the Kerberos tokens, and maps Kerberos tokens to WebLogic users.	
For general information about identity assertion providers, see section Identity Assertion Providers in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.	
For an overview of SSO with Microsoft clients, see section Overview of Single Sign-On with Microsoft Clients in Oracle Fusion Middleware Securing Oracle WebLogic Server.	
For details about Kerberos identification, see section Creating a Kerberos Identification for WebLogic Server in Oracle Fusion Middleware Securing Oracle WebLogic Server.	
On WebSphere, OPSS supports LDAP-based registries only; in particular, it does not support WebSphere's built-in file-based user registry.	
For details about configuration and seeding a registry, see Oracle Fusion Middleware Third-Party Application Server Guide	
A Java 2 policy specifies the permissions granted to signed code loaded from a given location.	
A JAAS policy extends Java 2 grants by allowing an optional list of principals; the semantics of the permissions are granted to only code from a given location, possibly signed, and run by a user represented by those principals.	
JACC extends the Java 2 and JAAS permission-based policy to EJBs and Servlets by defining an interface to plug custom authorization providers, that is, pluggable components that allow the control and customizing of authorizations granted to running Java EE applications.	
An application policy is a collection of Java 2 and JAAS policies, which is applicable to just that application (in contrast to a Java 2 policy, which are applicable to the whole JVM).	
The policy store is a repository of system and application-specific policies and roles. Application roles can include enterprise users and groups specific to the application (such as administrative roles). A policy can use any of these groups or users as principals.	
In the case of applications that manage their own roles, Java EE application roles (configured in files web.xml	
or ejb-jar.xml	
) get mapped to enterprise users and groups and used by application-specific policies.	
Policy Store Types	
A policy store can be file-, LDAP-, or DB-based. A file-based policy store is an XML file, and this store is the out-of-the-box policy store provider. The only LDAP-based policy store type supported is Oracle Internet Directory. The only DB-based policy store type supported is Oracle RDBMS (releases 10.2.0.4 or later; releases 11.1.0.7 or later; and releases 11.2.0.1 or later).	
Policy Store Scope, Migration, and Reassociation	
There is exactly one policy store per domain. During development, application policies are file-based and specified in the file jazn-data.xml	
.	
When the application is deployed on WebLogic with Fusion Middleware Control, they can be automatically migrated into the policy store. For details about this feature, see Section 8.6.1, "Migrating with Fusion Middleware Control." By default, the policy store is file-based.	
When the application is deployed on WebSphere, the behavior of migration at deployment can be manually specified as described in Section 21.4.1, "Parameters Controlling Policy Migration," and Section 21.4.4, "Parameters Controlling Credential Migration."	
For reassociation details, see Section 8.5, "Reassociating the OPSS Security Store."	
For details about the resource catalog support within a policy store, see Section 20.3.1, "The Resource Catalog."	
A credential store is a repository of security data (credentials) that certify the authority of users, Java components, and system components. A credential can hold user name and password combinations, tickets, or public key certificates. This data is used during authentication, when principals are populated in subjects, and, further, during authorization, when determining what actions the subject can perform.	
OPSS provides the Credential Store Framework, a set of APIs that applications can use to create, read, update, and manage credentials securely.	
A credential store can be file-, LDAP-, or DB-based. A file-based credential store, also referred to as wallet-based and represented by the file cwallet.sso	
, is the out-of-the-box credential store. The only LDAP-based credential store type supported is Oracle Internet Directory. The only DB-based credential store type supported is Oracle RDBMS (releases 10.2.0.4 or later; releases 11.1.0.7 or later; and releases 11.2.0.1 or later).	
Credential Store Scope, Migration, and Reassociation	
An application can use either the domain credential store or its own wallet-based credential store. The domain credential store can be wallet-based (by default), LDAP-, or DB-based. The only LDAP-based credential store type supported is Oracle Internet Directory.	
The migration of application credentials to the credential store can be configured to take place automatically when the application is deployed. For details, see Section 8.6.1, "Migrating with Fusion Middleware Control."	
Credentials can also be reassociated from one type of store to another. For details, see Section 8.5, "Reassociating the OPSS Security Store."	
The Keystore Service provides a central repository for keystores and trust stores containing all the keys and certificates used by a domain's components and applications. This eliminates the need to associate keystores with individual applications.	
The administrator works with a single user interface providing a unified way to view and manage all keystores.	
The central repository can be any of the following:	
This is the out-of-the-box keystore repository, and it is named file-keystores.xml.	
Note: This file is not present immediately after installation; rather, it is generated later.	
Keys and certificates in the domain keystore repository can be reassociated from one type to another. For details, see Section 8.5, "Reassociating the OPSS Security Store".	
This chapter describes some typical security scenarios supported by Oracle Platform Security Services. It also includes the list of LDAP, DB, and XML servers supported, the management tools that an administrator would use to administer security data in each scenario, and the package requirements for policies and credentials.	
These topics are explained in the following sections:	
Oracle Platform Security Services supports the following LDAP-, DB-, and file-based repositories:	
Important: If using Oracle Internet Directory 10.1.4.3 with OPSS, a mandatory one-off patch for bug number 8351672 is recommended on top of Oracle Internet Directory 10.1.4.3. Download the patch for your platform from Oracle Support athttp://myoraclesupport.oracle.com . To ensure optimal performance, the following Oracle Internet Directory tuning is recommended: ldapmodify -D cn=orcladmin -w <password> -v <<EOF dn: cn=dsaconfig,cn=configsets,cn=oracle internet directory changetype: modify add: orclinmemfiltprocess orclinmemfiltprocess: (objectclass=orcljaznpermission) orclinmemfiltprocess: (objectclass=orcljazngrantee) EOF	
For details about LDAP authenticators, see section Configuring LDAP Authentication Providers in Oracle Fusion Middleware Securing Oracle WebLogic Server. In particular, the DefaultAuthenticator is available out-of-the-box, but its use is recommended only in developing environments for no more than ten thousand entries, for users, and for no more than twenty five hundred entries, for groups.	
Policies, credentials, and keys stored in an LDAP-based store must use the same physical persistent repository. For details, see the following chapters:	
The Oracle WebLogic Server requires that a domain DB-based OPSS security store be up and running for the server to start.	
The tools available to a security administrator are the following:	
The tool to manage security data depends on the type of data stored and the kind of store used to keep that data. For applications deployed on WebSphere Application Server, there is also the WebSphere Application Server Administration Console; for details, see WebSphere Application Server documentation. Note that OPSS scripts are available for both platforms: WebLogic and WebSphere.	
If a domain uses the DefaultAuthenticator to store identities, then use the Oracle WebLogic Server Administration Console to manage the stored data. The data stored in the DefaultAuthenticator can also be accessed by the User and Role API to query user profile attributes. To insert additional attributes to users or groups in the DefaultAuthenticator, an applications also uses the User and Role API.	
Important: If your domain uses the DefaultAuthenticator, then the domain administration server must be running for an application to operate on identity data using the User and Role API.	
For details about configuring this authenticator, see Section 3.1.2.1, "Using an LDAP Authenticator."	
Otherwise, if authentication uses any other LDAP server different from the default authenticator or a DB, then, to manage users and groups, use the services of that LDAP server.	
Policies, Credentials, Keys, and Certificates	
Policies, keys, and credentials must use the same kind of storage (file-, LDAP-, or DB-based), and if LDAP-based, the same LDAP server (Oracle Internet Directory only).	
To manage policies and credentials use Fusion Middleware Control as explained in Section 9.2, "Managing Policies with Fusion Middleware Control" and Section 10.4, "Managing Credentials with Fusion Middleware Control," or the OPSS scripts, as explained in Section 9.3, "Managing Application Policies with OPSS Scripts" and Section 10.5, "Managing Credentials with OPSS Scripts."	
Alternatively, to manage policy data, use Oracle Entitlements Server as explained in Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.	
Keys and certificates are managed with Fusion Middleware Control and WLST. For details, see Chapter 11, "Managing Keys and Certificates with the Keystore Service".	
The following list summarizes the tools used to manage security data:	
Changes to policies, credentials, or keys do not require server restart; changes to the file jps-config.xml	
do require server restart.	
For details about the automatic migration of application policies and credentials to the domain stores when the application is deployed, see Section 8.6, "Migrating the OPSS Security Store."	
For details about managing tools on WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.	
File-based application policies are defined in the file jazn-data.xml	
. The only supported way to package this file with an application is to place it in the directory META-INF of an EAR file.	
File-based application credentials are defined in a file that must be named cwallet.sso	
. The only supported way to package this file with an application is to place it in the directory META-INF of an EAR file. For details, see Section 21.3, "Packaging a Java EE Application Manually."	
For information about deployment on WebLogic, see Chapter 6, "Deploying Secure Applications."	
On WebSphere, the behavior at deployment is controlled by properties specified in the file META-INF/opss-application.xml	
. For details about policy migration, see Oracle Fusion Middleware Third-Party Application Server Guide. For details about credential migration, see Oracle Fusion Middleware Third-Party Application Server Guide.	
Note: Oracle JDeveloper automatically packages the EAR file for a secured Oracle ADF application with all the required files (and with the appropriate security configurations), when the EAR file is produced within that environment.	
The scenarios explained in this section describe the security features adopted by most Oracle ADF applications, Oracle WebCenter, and Web Services Manager Control.	
They assume that the application employs a security scheme that has the following characteristics:	
One of these security schemes is typically employed by applications, such as Oracle ADF or Oracle SOA applications, that require fine-grained JAAS authorization. The various security components in these cases are managed with the appropriate tool.	
Based on these assumptions, the following scenarios are typical variations on the basic theme; note, however, that the list of variations is not exhaustive.	
Related Documentation	
For details about configuring the Default Authenticator, see section Configure Authentication and Identity Assertion Providers in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.	
For details about configuring the OPSS security store, see Chapter 8, "Configuring the OPSS Security Store."	
For details about managing policies, see Chapter 9, "Managing the Policy Store."	
For details about managing credentials, see Chapter 10, "Managing the Credential Store."	
For details about managing Oracle Fusion Middleware on WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.	
For details about managing the Keystore Service, see the chapter on keystore management.	
Common Scenario 1	
This scenario describes a Java EE application during development.	
Authentication: The application uses the Default Authenticator, typical in development environments.	
Authorization: The policy and credential stores are file-based.	
Variation: The application uses the WebLogic support for SSO and Java EE security.	
For details about WebLogic support for SSO, see section Configuring Single Sign-On with Web Browsers and HTTP Clients in Oracle Fusion Middleware Securing Oracle WebLogic Server.	
Common Scenario 2	
This scenario describes a Java EE application during development.	
Authentication: The application uses the Default Authenticator, typical in development environments.	
Authorization: The policy and credential stores are LDAP-based using the services of the same instance of an Oracle Internet Directory LDAP server.	
Variation: JAAS is enabled and policies include permissions for the anonymous and the authenticated roles.	
For details about configuring support for the anonymous and authenticated roles, see Section 2.3, "The Authenticated Role," and Section 2.4, "The Anonymous User and Role."	
Common Scenario 3	
This scenario describes a Java EE application during development.	
Authentication: The application uses the Default Authenticator, typical in development environments.	
Authorization: The policy and credential stores are LDAP-based using the services of the same instance of an Oracle Internet Directory LDAP server.	
Variation: The application uses Java EE security, JAAS is enabled, and policies include permissions for the anonymous and the authenticated role. It also uses the Credential Store Framework (CSF) APIs to query, retrieve, and manage policies.	
For details about configuring support for the anonymous and authenticated roles, see Section 2.3, "The Authenticated Role," and Section 2.4, "The Anonymous User and Role."	
For details about CSF APIs, see Section 24.1, "About the Credential Store Framework API."	
The following scenarios differ from the common scenarios in that the application uses an authenticator other than the DefaultAuthenticator (typically used in the application development phase) or some API to access security data.	
Scenario 4	
Authentication: The application uses an LDAP authenticator (other than the DefaultAuthenticator).	
Authorization: Both, the policy and credential use the same Oracle Internet Directory LDAP-based store.	
Variation: The application uses the User and Role API to access user profiles in the DB and the Credential Store Framework (CSF) APIs to access credentials.	
For details about User and Role API, see Chapter 25, "Developing with the User and Role API."	
For details about CSF APIs, see Section 24.1, "About the Credential Store Framework API."	
Scenario 5	
Authentication: The application uses the Oracle Internet Directory LDAP authenticator, typical in test and production environments.	
Authorization: The policy and credential stores are file-based and packaged with the application. These data is automatically mapped to domain security data at deployment.	
Variation: Post-deployment, the policy and credential stores are reassociated to an LDAP-based store configured through one-way SSL transmission channel.	
For details about automatic migration of application security data at deployment, see Section 8.6, "Migrating the OPSS Security Store."	
For details about reassociation, see Section 8.5, "Reassociating the OPSS Security Store."	
For details about SSL configuration and related topics, see the following:	
Scenario 6	
This scenario describes a Java SE application using OPPS APIs.	
Authentication: The application uses the LoginService API.	
Authorization: The application uses the method CheckPermission	
.	
In addition, the application uses the User and Role API to query attributes into the domain authenticator, and the Credential Store Framework API to query the credential store.	
This part describes basic OPSS administration features in the following chapters:	
This chapter introduces the tools available to an administrator and the typical tasks to manage application security; it is divided into the following sections:	
For advanced administrator tasks, see Appendix E, "Administration with WLST Scripting and MBean Programming."	
The four basic tools available to a security administrator are Oracle Enterprise Manager Fusion Middleware Control, Oracle WebLogic Administration Console, Oracle Entitlements Server, and the Oracle WebLogic Scripting Tool (WLST). For further details on these and other tools, see chapter 3, Getting Started Managing Oracle Fusion Middleware in Oracle Fusion Middleware Administrator's Guide.	
The main criterion that determines the tool to use to administer application security is whether the application uses just container-managed security (Java EE application) or it includes Oracle ADF security (Oracle ADF application).	
Oracle-specific applications, such as Oracle Application Development Framework (Oracle ADF) applications, Oracle Server-Oriented Architecture (SOA) applications, and Web Center applications, are deployed, secured, and maintained with Fusion Middleware Control and Oracle Entitlements Server.	
Other applications, such as those developed by third parties, Java SE, and Java EE applications, are typically deployed, secured, and administered with Oracle WebLogic Administration Console or with WLST.	
The recommended tool to develop Java applications is Oracle JDeveloper 11g. This tool helps the developer configure file-based identity, policy, and credential stores through specialized graphical editors. In particular, when developing Oracle ADF applications, the developer can run a wizard to configure security for web pages associated with Oracle ADF resources (such as Oracle ADF task flows and page definitions), and define security artifacts using a specialized, visual editor for the file jazn-data.xml	
.	
For details about procedures and related topics, see the following sections in the Oracle JDeveloper online help documentation:	
For further details about Oracle ADF Security and its integration with Oracle JDeveloper, see Accessing the Oracle ADF Security Design Time Tools, in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
For further details about Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.	
Table 5-1 lists some basic security tasks and the tools used to execute them. Recall that the tool chosen to configure and manage application security depends on the type of the application: for Java EE applications, which use just container-managed security, use the Oracle WebLogic Administration Console; for Oracle ADF applications, which use OPSS authorization, use Fusion Middleware Control and Oracle Entitlements Server.	
Manual settings without the aid of the tools listed below are not recommended. For information about using the Oracle WebLogic Administration Console, see the list of links following the table below. For details about Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.	
Table 5-1 Basic Administrative Security Tasks and Tools	
Task	Use Fusion Middleware Control Security Menu
---	---
Configure WebLogic Domains	WebLogic Admin Console
Configure WebLogic Security Realms	WebLogic Admin Console
Manage WebLogic Domain Authenticators	WebLogic Admin Console
Enable SSO for MS clients, Web Browsers, and HTTP clients.	WebLogic Admin Console
Manage Domain Administrative Accounts	WebLogic Admin Console
Configuring the identity store service	WebLogic Admin Console or the WebSphere command
Manage Credentials for Oracle ADF Application	Credentials
Security Provider Configuration	
Security Provider Configuration	
Enable JAAS in Oracle ADF Application	Security Provider Configuration
Map application to enterprise groups for Oracle ADF Application	Application Roles or
Manage system-wide policies for Oracle ADF Applications	System Policies
Configure OPSS Properties	Security Provider Configuration
Reassociate Policy and Credential Stores	Security Provider Configuration
Details about using the Oracle WebLogic Administration Console for the tasks above are found in the following documents:	
Note: OPSS does not support automatic backup or recovery of server files. It is recommended that the server administrator periodically back up all server configuration files, as appropriate.For details about backing up and recovering Oracle Fusion Middleware, see chapter 15, Introducing Backup and Recovery, in Oracle Fusion Middleware Administrator's Guide.	
A new production environment based on an existing environment can be set up in either of the following ways:	
Fusion Middleware Control is a Web-based tool that allows the administration of a network of applications from a single point. Fusion Middleware Control is used to deploy, configure, monitor, diagnose, and audit Oracle SOA applications, Oracle ADF applications, Oracle WebCenter, and other Oracle applications using OPSS. Note that this section mentions only security-related operations.	
In regards to security, it provides several administration tasks; using this tool, an administrator can:	
For details see:	
For a summary of security administrative tasks and the tools used to execute them, see Basic Security Administration Tasks.	
For further details about other functions, see the Fusion Middleware Control online help documentation.	
For details about managing Oracle Fusion Middleware on WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.	
The Oracle WebLogic Administration Console is a Web-based tool that allows, among other functions, application deployment and redeployment, domain configuration, and monitoring of application status. Note that this section mentions only security-related operations.	
Typical tasks performed with the Oracle WebLogic Administration Console include the following:	
For details about Oracle WebLogic Administration Console, see Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.	
Typical security tasks performed with Oracle Entitlements Server include the following:	
For a list of some of the most frequent security tasks to administer application security with Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.	
Most of the operations available in the Oracle WebLogic Administration Console can be effected with OPSS scripts, a set of command-line interface that allows the scripting and automation of administration tasks, including domain configuration and application deployment.	
For the list of security-related OPSS scripts, see Appendix I, "OPSS Scripts." For the complete list of WLST scripts, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.	
For details about managing Oracle Fusion Middleware on WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.	
An application can be deployed to an Oracle WebLogic Server using any of the following tools: the Oracle WebLogic Server Administration Console, Oracle Enterprise Manager Fusion Middleware Control, Oracle JDeveloper, or the WebSphere Application Server console. An application can also be started by setting the its bits in a location known to the WebLogic server, without the need to restart the server; this kind of application start is known as hot deployment.	
The recommended way to deploy an application depends on the platform, the application type, and whether the application is in the developing phase or in a post-development phase. For example, in the post-development phase, typically, the appliction is started in a production environment by means of a hot deployment.	
The recommendations stated in this chapter apply to Oracle ADF applications and to Java EE applications using OPSS.	
During development, the application is typically deployed with Oracle JDeveloper to the embedded Oracle WebLogic Server. Once the application transitions to test or production environments, it is typically deployed with Fusion Middleware Control or the Oracle WebLogic Server Administration Console or by a hot deployment.	
This chapter focuses on administrative tasks performed at deployment of an Oracle ADF or pure Java EE application. The last section explains the packaging requirements to secure Java EE applications, a topic relevant only when the application is packaged manually.	
This chapter is divided into the following sections:	
Additional Documentation	
For further details about deployment, see Chapter 8, Deploying Applications, in Oracle Fusion Middleware Administrator's Guide.	
For an overview of the entire security life-cycle of an application, from development to production, see Oracle Fusion Middleware Security Overview.	
For details about securing an Oracle ADF application during development, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
For details about the application life cycle, see Section 19.4, "Appendix - Security Life Cycle of an ADF Application."	
For details about the files in an EAR file relevant to application security management and configuration, such as web.xml	
and weblogic-application.xml	
, see Chapter 21, "Manually Configuring Java EE Applications to Use OPSS."	
The steps that lead to the deployment of an Oracle ADF application into a remote Oracle WebLogic Server are, typically, as follows:	
This flow is illustrated in the following graphic:	
The types of application we consider in this chapter are Java EE applications, which are further categorized into pure Java EE applications and Oracle Fusion Middleware ADF applications. The distinction of these two kinds of Java EE applications is explained in sections Section 1.5.1, "Scenario 1: Enhancing Security in a Java EE Application," and Section 1.5.2, "Scenario 2: Securing an Oracle ADF Application."	
Table 6-1 lists the tool used to deploy a developed application according to its type.	
Table 6-1 Tools to Deploy Applications after Development	
Application Type	Tool to Use
---	---
Pure Java EE Application	Oracle WebLogic Administration Console, Fusion Middleware Control, WebSphere Application Server Administrator Console, WebSphere Application Server WASAdmin commands. The recommended tool is Oracle WebLogic Administration Console.
Oracle ADF Application	Fusion Middleware Control or OPSS script. The recommended tool is Fusion Middleware Control.
This section focuses on the security configurations available when deploying an application that uses Oracle ADF security or a Java EE application that uses OPSS with Fusion Middleware Control on the WebLogic server.	
Specifically, it describes the options you find in the page Configure Application Security at the third stage of the deploy settings.	
The appearance of this page varies according to what is packaged in the EAR fie, as follows:	
jazn-data.xml	
with application policies, the application policy migration section is shown. cwallet.sso	
, the credential migration section is shown. This page, showing the policy migration sections, is partially illustrated in the following graphic:	
The settings in this page concern the migration of application policies and credentials (packed in application EAR file) to the corresponding domain store, and they are explained next.	
Application Policy Migration Settings	
These settings control of the policy migration in the following scenarios:	
If for some reason you do not want the migration to take place, select instead Ignore. The option Overwrite is also supported.	
The option Ignore is typically selected when an application is redeployed and you want to leave the current application policies in the domain unchanged, that is, when you want to preserve changes to the policy store made during previous deployments.	
To migrate ADF application roles and grants, and not to migrate development-time only security roles and grants, check the box Migrate only application roles and grants. Ignore identity store artifacts. Typically, this box is checked when deploying to a production environment. Note that when this box is checked, you will need to map application roles to enterprise groups once the application has been deployed.	
About Application Stripes: The policy store is logically partitioned in stripes, one for each application name specified in the filesystem-jazn-data.xml under the element <applications>. Each stripe identifies the subset of domain policies pertaining to a particular application.	
Typical Use Cases This page supports specifying the migration of policies in the following two most common scenarios:	
Application Credential Migration Settings	
These settings control of the credential migration in the following scenarios:	
Note: Application code using credentials may not work if the credential migration is ignored. Typically, one would choose the Ignore option under the assumption that the credentials are manually created with the same map and key, but with different values.	
An Oracle ADF application is a Java EE application using JAAS authorization, and it is typically developed and tested using Oracle JDeveloper; this environment allows a developer to package the application and deploy it in the Embedded Oracle WebLogic Server integrated with the tool. When transitioning to a test or production environment, the application is deployed using Oracle Fusion Middleware Control to leverage all the Oracle ADF security features that the framework offers. For details, see Overview.	
For step-by-step instructions on how to deploy an Oracle ADF application with Fusion Middleware Control, see:	
This section is divided into the following topics:	
The security options available at deployment are explained in Deploying Java EE and Oracle ADF Applications with Fusion Middleware Control.	
When deploying an Oracle ADF application to a test environment with Fusion Middleware Control, the following operations take place:	
Oracle JDeveloper automatically writes the necessary configuration for this migration to occur.	
Note: Before migrating a file-based policy store (that is, the filejazn-data.xml) to a production environment, verify that any grant contains no duplicate permissions. If a duplicate permission (one that has the same name and class) appears in a grant, the migration runs into an error and it is halted. In this case, manually edit the jazn-data.xml file to remove any duplicate permissions from a grant definition, and invoke the migration again.	
Oracle JDeveloper automatically writes the necessary configuration for this migration to occur.	
Identities packed with the application are not migrated. The domain administrator must configure the domain authenticator (with the Administration Console), update identities (enterprise users and groups) in the environment, as appropriate, and map application roles to enterprise users and groups (with Fusion Middleware Control).	
Other Considerations	
At any time after an application is deployed in a test environment, an administrator can perform the following tasks using Fusion Middleware Control or the Administration Console:	
Notes: If the application is undeployed with Fusion Middleware Control from a server running in production mode, then the application-specific policies are automatically removed from the policy store. Otherwise, if you use any other tool to undeploy the application, then the removal of application-specific policies must be performed manually.Credentials are not deleted upon an application undeployment. A credential may have started it life as being packaged with an application, but when the application is undeployed credentials are not removed.	
There are two ways to secure Java EE applications that do not use OPSS but that use standard Java authorization: administratively, with the Administration Console or a OPSS script; or programmatically, with deployment descriptors.	
A Java EE application deployed to the Oracle WebLogic Server is a WebLogic resource. Therefore, an administrator would set security for the deployed application the same way that he would for any other resource.	
For details about deployment procedures, see section 8.3, Deploying and Undeploying Java EE Applications, in Oracle Fusion Middleware Administrator's Guide.	
For details about deploying applications with WLST commands, see section Deployment Commands in Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.	
For an overview of WebLogic Server deployment features, see chapter Understanding WebLogic Server Deployment in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.	
Related Documentation	
Further information about securing application resources, can be found in the following documents:	
In Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server	
In Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help:	
In Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server:	
In Oracle Fusion Middleware Programming Security for Oracle WebLogic Server:	
The recommendations that follow apply only to Java EE applications using JAAS authorization, such as Oracle Application Development Framework, Oracle SOA, and Oracle WebCenter applications, and they do not apply to Java EE applications using standard authorization. For deploying the latter, see Deploying Standard Java EE Applications.	
The recommended tool to deploy applications is Fusion Middleware Control, and the user performing the operations described in the following sections must have the appropriate privileges, including the privilege to seed a schema in an LDAP repository.	
It is assumed that a production has been set up as explained in Section 5.2.1, "Setting Up a Brand New Production Environment."	
Important Note: File-based stores are not recommended in production environments.	
The migration to a new production environment is divided into three major portions: migrating providers other than policy or credential providers, migrating policy and credential providers, and migrating audit policies, as explained in the following sections:	
Migration can be used for backup and recoverer security data: to backup security data, migrate to an XML-based store; to recover security data, migrate from a saved XML-based store to the target security store.	
The configuration of providers (other than policy and credential providers) in the production environment must be repeated as it was done in the test environment. This task may include:	
configureIdentityStore	
. For details about this last command, see Migrating Identities Manually. Note: Oracle WebLogic Server provides several tools to facilitate the creation of domains, such as thepack and unpack commands. For details, see Oracle Fusion Middleware Creating Templates and Domains Using the Pack and Unpack Commands.	
Identity data can be migrated manually from a source repository to a target repository using the OPSS script migrateSecurityStore	
. This migration is needed, for example, when transitioning from a test environment that uses a file-based identity store to a production environment that uses an LDAP-based identity store.	
This script is offline, that is, it does not require a connection to a running server to operate; therefore, the configuration file passed to the argument configFile	
need not be an actual domain configuration file, but it can be assembled just to specify the source and destination repositories of the migration.	
This script can be run in interactive mode or in script mode. In interactive mode, you enter the script at a command-line prompt and view the response immediately after. In script mode, you write scripts in a text file (with a py file name extension) and run it without requiring input, much like the directives in a shell script.	
For platform-specific requirements to run an OPSS script, see Important Note.	
Script and Interactive Modes Syntaxes	
To migrate identities on WebLogic, use the script (first) or interactive (second) syntaxes (arguments are written in separate lines for clarity):	
The migration of identities on WebSphere is accomplished with a similar script. For details, see Oracle Fusion Middleware Third-Party Application Server Guide.	
The meaning of the arguments (all required except dstLdifFile	
) is as follows:	
configFile	
specifies the location of a configuration file jps-config.xml	
relative to the directory where the script is run. src	
specifies the name of a jps-context in the configuration file passed to the argument configFile	
, where the source store is specified. dst	
specifies the name of another jps-context in the configuration file passed to the argument configFile	
, where the destination store is specified. The destination store must be an LDAP-based identity store. For list of supported types, see Section 3.1.1, "Supported LDAP Identity Store Types." dstLdifFile	
specifies the relative or absolute path to the LDIF file created. Required only if destination is an LDAP-based Oracle Internet Directory store. Notice that the LDIF file is not imported into the LDAP server. The contexts passed to src	
and dst	
must be defined in the passed configuration file and must have distinct names. From these two contexts, the script determines the locations of the source and the target repositories involved in the migration.	
After an LDIF file is generated, the next step typically involves manual editing this file to customize the attributes of the LDAP repository where the LDIF file would, eventually, be imported.	
In a production environment, it is strongly recommended that the OPSS security store (policy, credential, and key stores) be reassociated to an LDAP-based Oracle Internet Directory; if the test policy and credential stores were also LDAP, the production LDAP is assumed to be distinct from the test LDAP; if the test policy store was file-based, verify that no grant has duplicate permissions; see note in Policy Management.	
For details on how to reassociate stores, see Section 8.5.1, "Reassociating with Fusion Middleware Control."	
The migration of policies and credentials can take place in the following ways: automatically, when an application is deployed; or manually, before or after the application is deployed.	
To disable the automatic migration of policies and credentials for all applications deployed in a WebLogic Server (regardless of the application migration particular settings), set the system property jps.deployment.handler.disabled	
to TRUE.	
When deploying an application to a production environment, an administrator should know the answer the following question:	
Have policies or credentials packed in the application EAR been modified in the test environment?	
Assuming that you know the answer to the above question, to deploy an application to a production environment, proceed as follows:	
Note: You can select Append (that is, to migrate application policies) in combination with checking the box Migrate only application roles and grants. Ignore identity store artifacts, even when application roles have been modified in the test environment to the extent of mapping them to test enterprise groups.Selecting this combination migrates application policies but disregards the maps to test enterprise groups. Later on, in step 3 below, you must remap application roles to production enterprise groups.	
migrateSecurityStore	
to migrate modified data, as follows: Note: There is a way to configure the application so that, at deployment, the migration of policies preserves GUIDs (instead of recreating them).This setting can only be configured manually. For details, see parameter	
By default, the script migrateSecurityStore	
recreates GUIDs and may take a long time to migrate large volume of policies; for these reasons, during the transition from a test to a production environment, you may want to consider migrating policies and credentials with an alternate procedure that uses Oracle Internet Directory bulk operations. For details, see Migrating Large Volume Policy and Credential Stores.	
Migrating policies manually with the script migrateSecurityStore	
requires assembling a configuration file where the source and destination are specified.	
Here is a complete sample of a configuration file, named t2p-policies.xml	
, illustrating the specification of policy sources in LDAP, DB, and XML storages, and of policy destinations in LDAP and DB storages:	
Note that since the migration involves LDAP and DB stores, the file includes a jps-context named bootstrap_credstore_context	
that specifies the directory where the bootstrap credential file cwallet.sso	
is located. Furthermore, for each pair of map name and key name in the sample above, you must provide the corresponding bootstrap credentials using the WLST script addBootStrapCredential	
as illustrated in the following example:	
where myUserName	
and myPassaword	
specify the user account name and password to access the target database.	
The following examples of use of migrateSecurityStore	
assume that:	
t2p-policies.xml	
is located on the target system in the directory where the script is run. Under these assumptions, to migrate policies from a test (or source) LDAP store to a production (or destination) LDAP store, invoke migrateSecurityStore	
in the target system as follows:	
To migrate policies from a test (or source) XML store to a production (or destination) LDAP store, invoke migrateSecurityStore	
in the target system as follows:	
To migrate policies from a test (or source) DB store to a production (or destination) DB store, invoke migrateSecurityStore	
in the target system as follows:	
The script migrateSecurityStore	
recreates GUIDs and may take a long time to migrate large volume of credentials; for these reasons, during the transition from a test to a production environment, you may want to consider migrating policies and credentials with an alternate procedure that uses Oracle Internet Directory bulk operations. For details, see Migrating Large Volume Policy and Credential Stores.	
Migrating credentials manually with migrateSecurityStore	
requires assembling a configuration file where the source and destination are specified.	
Since migrateSecurityStore	
recreates GUIDs and takes a long time to migrate large volume of data, you may want to consider migrating stores with an alternate procedure that uses Oracle Internet Directory bulk operations. For details, see Migrating Large Volume Policy and Credential Stores.	
Here is a complete sample of a configuration file, named t2p-credentials.xml	
, illustrating the specification of credential sources in LDAP, DB, and XML storages, and of credential destinations in LDAP or DB storages:	
Note that since the migration involves LDAP and/or DB stores, the file includes a jps-context named bootstrap_credstore_context	
that specifies the directory where the bootstrap credential file cwallet.sso	
is located.	
The following examples of use of migrateSecurityStore	
assume that the file t2p-credentials.xml	
is located on the target system in the directory where the script is run.	
Under that assumption, to migrate credentials from a test (or source) LDAP store to a production (or destination) LDAP store, invoke migrateSecurityStore	
in the target system as follows:	
To migrate credentials from a test (or source) XML store to a production (or destination) LDAP store, invoke migrateSecurityStore	
in the target system as follows:	
To migrate credentials from a test (or source) DB store to a production (or destination) DB store, invoke migrateSecurityStore	
in the target system as follows:	
Migrating stores with the alternate procedure explained in this section is suitable to preserve source GUIDs or for large volume stores (where migrating with the script migrateSecurityStore	
would take an unacceptable amount of time).	
Note: Large volume migration of stores is supported for LDAP-based stores only. It is not supported for DB-based stores.	
For illustration purpose, assume that the policy store LDAP to be migrated is configured in the file jps-config.xml	
with a service instance as in the following fragment:	
Important: If you intend to use the procedure that follows with a destination Oracle Internet Directory version 10.1.4.3.0, then you must first apply a patch for bug number 8417224. To download this patch for your platform, visit Oracle Support athttp://myoraclesupport.oracle.com .	
To migrate a source Oracle Internet Directory store to a destination Oracle Internet Directory store using bulk commands, proceed as follows:	
ldifwrite	
as illustrated in the following line: This command writes all entries under the node cn=jpsnode, c=us	
to the file srcOid.ldif	
. Once generated, move this file, as appropriate, to the destination Oracle Internet Directory file system so it is available to the commands that follow.	
bulkload	
as illustrated in the following line: If duplicated DNs (common entries between the source and destination directories) are detected, review them to prevent unexpected results.	
bulkload	
as illustrated in the following line: For details about the above commands, see chapter 14, Performing Bulk Operations, in Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory.	
To migrate audit policies, use the export and import operations as explained next.	
First, export the audit configuration from a test environment to a file using one of the following tools:	
exportAuditConfig	
. For details, see Appendix C, "exportAuditConfig." Then, import that file into the production environment using one of the following tools:	
importAuditConfig	
. For details, see Appendix C, "importAuditConfig." The import/export operations above migrate audit policies only, and they do not migrate the audit data store settings. If you had configured an audit data source in your test environment, repeat the steps to configure a data source in the production environment. For details, see Section 13.2.2, "Set Up Audit Data Sources."	
Normally, you would not want audit data records from a test environment to be migrated to production; however, to do so, use the database import/export utilities for that purpose. For details, see Section 13.5.5, "Importing and Exporting Data."	
To migrate keys and certificates manually with migrateSecurityStore	
, create a configuration file to specify the source and destination service instances. Next use the migrateSecurityStore	
command with appropriate options as shown in the examples at the end of this section.	
Here is a complete example of a configuration file, named t2p-keys.xml	
, illustrating the specification of keystore service sources in LDAP, DB, and XML storages, and of keystore service destinations in LDAP or DB storages:	
Note that since the migration involves LDAP and/or DB stores, the file includes a jps-context named bootstrap_credstore_context that specifies the directory where the bootstrap credential file cwallet.sso is located.	
Examples	
Note: The followingmigrateSecurityStore examples assume that the file t2p-keys.xml is located on the target system in the directory where the script is run.	
To migrate all keys and certificates from a test (source) LDAP store to a production (destination) LDAP store, invoke migrateSecurityStore	
in the target system as follows:	
To migrate all keys and certificates from a test (source) XML store to a production (destination) LDAP store, invoke migrateSecurityStore	
in the target system as follows:	
To migrate keys and certificates for a specific application stripe from a test (source) database store to a production (destination) database store, invoke migrateSecurityStore	
in the target system as follows:	
This part describes advanced OPSS administration features in the following chapters:	
This chapter explains how to use the identity store service in OPSS. Topics include:	
This section describes key concepts of the OPSS identity store service:	
The identity store service enables you to query the identity store for user and role (group) information.	
By default, a service instance supports querying against a single LDAP identity store. You can configure the service to support a virtualized identity store which queries multiple LDAP identity stores. This feature, known as identity virtualization, is described in Section 7.3, "Configuring the Identity Store Service".	
Figure 7-1 shows the architecture of the identity store service. Depending on the configuration, the service can support either an XML file or one or more LDAP servers as the identity store.	
When the service is configured for LDAP, it queries a single LDAP store by default. You can also configure the service to query multiple LDAP stores.	
The identity store service supports:	
The service configuration depends on the application server; you must specify the provider that supports the service.	
The identity store service is available in a stand-alone Java SE environment.	
For more information, see Section 7.3.6, "Java SE Environments".	
Before you can make use of the identity store service, you need to configure the identity store provider. OPSS support both XML- and LDAP-based providers.	
This fragment from the jps-config.xml file shows the configuration of both XML and LDAP providers. The serviceProvider	
elements are children of the serviceProviders	
element.	
For details, see Section 8.7.1, "Configuring the Identity Store Provider".	
This section describes how to configure the identity store service to LDAP-based stores. Topics include:	
This section explains the different configuration parameters for the identity store service. It includes:	
You use the following parameters to configure the service for multi-LDAP queries:	
virtualize	
property - This property can be either true (multi-LDAP lookup) or false (single-LDAP lookup). The default is false	
. virtualize	
' is enabled) - The calling application uses these parameters to specify global LDAP configuration such as the search base, create base, and so on. If any of these parameters are not configured, OPSS uses default values. Table 7-1 shows the global parameters and their default values, if applicable.	
Table 7-1 Global LDAP Identity Store Parameters	
Parameter	Default Value
---	---
group.create.bases	same as user.create.bases
group.filter.object.classes	groupofuniquenames The global value is used if explicitly provided.
group.mandatory.attrs	-
group.member.attrs	uniquemember
group.object.classes	groupofuniquenames
group.search.bases	-
group.selected.create.base	-
group.selected.search.base	-
groupname.attr	cn If the global value is explicitly given, it is used.
max.search.filter.length	-
search.type	-
user.create.bases	If only one authenticator, uses it as the create base value. If multiple authenticators, no default value is set; user must explicitly set the global value.
user.filter.object.classes	inetorgperson
user.login.attr	uid
user.mandatory.attrs	-
user.object.classes	inetorgperson If the global value is explicitly given, it is used.
user.search.bases	Same as group.search.bases
username.attr	cn The global value is used if explicitly provided.
As mentioned earlier, these are specific to the back-end LDAP store. For details, see:	
You configure LDAP authenticators in Oracle WebLogic Server using either the WebLogic console or WLST command-line. At runtime, Oracle WebLogic Server passes the configuration details to OPSS. Oracle WebLogic Server allows you to configure multiple authenticators in a given context, and selects the first authenticator to initialize the identity store service by default. This process is explained in Section 3.1.2.2, "Configuring the LDAP Identity Store Service".	
After the authenticators are configured, the identity store service can be set up to query one LDAP identity store or multiple stores. Configuring for multiple stores requires setting up the virtualize	
property.	
This section explains how to set up these options.	
You can configure the identity store service to query only one LDAP store. See Example 7-1 which displays a fragment of the jps-config.xml	
file with a single LDAP service instance.	
As in the single LDAP setup, you start by configuring the authentication providers in Oracle WebLogic Server.	
Next, take these steps in Fusion Middleware Control:	
Note: Be sure to add the property to the identity store service instance in the default context.	
To configure the virtualize property using WLST, take these steps:	
py	
script file to connect to the administration server in the domain of interest. You need to specify the userName	
, userPass	
, localHost	
, and portNumber	
for the operation. See Appendix E, "Configuring OPSS Service Provider Instances with a WLST Script" for details about this script.	
$ORACLE_HOME/common/bin	
. wlst.sh	
command to execute the script. For example, if the domain configuration file contains an authenticator named idstore.ldap, the following command:	
configures the provider for multi-LDAP lookup.	
If desired, you can update jps-config.xml	
to set query parameters listed in Section 7.3.1, "What is Configured?". These parameters are optional; default values are provided.	
After configuring for multi-LDAP query, restart Weblogic admin and managed servers.	
Example 7-1 shows a sample jps-config.xml	
file configured for single-LDAP queries in the Oracle WebLogic Server environment:	
Example 7-1 Single-LDAP Configuration in Oracle WebLogic Server	
Example 7-2 shows a sample jps-config.xml	
file configured for multi-LDAP queries in the Oracle WebLogic Server environment:	
Example 7-2 Multi-LDAP Configuration in Oracle WebLogic Server	
Note that:	
virtualize	
property of the service instance is set to true	
, enabling multi-LDAP queries. extendedProperty	
element enables you to set front-end parameters if desired to override default values. For more information, see "Front-End Parameters" in Section 7.3.1, "What is Configured?".	
Identity Virtualization supports a "split profile," where an application makes use of attributes for a single identity that are stored on two different sources.	
This feature requires additional configuration beyond that described in this chapter. For details, see Appendix K, "Adapter Configuration for Identity Virtualization".	
OPSS supports the set of LDAP-based Oracle WebLogic Server authentication providers (WebLogic authenticators) for access to identity stores. If the out-of-the-box WebLogic authenticators are not applicable to your LDAP server type, you can customize a generic authenticator for this task.	
This section explains how you can configure such an authenticator when the 'virtualize' flag is enabled for the identity store service.	
Note the following points in this context:	
idstore.type	
' property in jps-config.xml	
. virtualize	
' flag is enabled, and the Oracle WebLogic Server domain has two or more authenticators (for example, the defaultAuthenticator and generic LDAP), you need to tell the Identity Store Service which LDAP server's 'idstore.type	
' is to be overriden. You provide this information as follows in jps-config.xml	
:	
If you need to override an additional LDAP provider instance, simply add another similar entry to the file.	
Topics in this section include:	
See the example in Section 22.2.2, "Configuring an LDAP Identity Store in Java SE Applications," for details.	
To configure the identity store service to handle multiple LDAPs in third-party application servers:	
Example 7-3 shows a sample jps-config.xml file configured to run multi-LDAP queries for third-party application servers:	
Example 7-3 Multi-LDAP Configuration in Third-Party Application Servers	
Note that:	
virtualize	
property of the service instance is set to true	
, enabling multi-LDAP queries. extendedProperty	
elements enable you to set front-end parameters if desired to override default values. For more information, see "Front-End Parameters" in Section 7.3.1, "What is Configured?".	
In the Java SE environment, you directly modify the jps-config.xml	
file as follows:	
virtualize	
' flag in the identity store service. See Section 22.2.2, "Configuring an LDAP Identity Store in Java SE Applications" for details.	
To programmatically query the LDAP identity store, you use OPSS to obtain the JPS context; this acts like a bridge to obtain the store instance. Subsequently you use the User and Role API to query the store.	
Example 7-4 Querying the LDAP Identity Store Programmatically	
To see how to enable the 'virtualize	
' property in the identity store service, refer to Example 7-3.	
For additional information about using MBeans, see Section E.2, "Configuring OPSS Services with MBeans".	
Connections between the identity store and an LDAP server can be SSL-enabled. This section explains how the connections are configured in the various scenarios.	
When the connection to the identity store originates at a client residing in Oracle WebLogic Server, SSL configuration is handled by Oracle WebLogic Server. For details, see Section 8.2.3.	
Both the Identity Directory API and the User and Role API can operate in a multi-LDAP identity store configuration (virtualize = true).	
In this scenario, you can SSL-enable the connection from the identity store to the LDAP servers.	
The procedure is as follows:	
Create the keystore using the script $MW_HOME/oracle_common/bin/libovdconfig.sh with the "-createKeyStore" option:	
where:	
host	
is the Oracle WebLogic Server host port	
is the Oracle WebLogic Server Admin Server port username	
is the Oracle WebLogic Server admin user name domainPath	
is the complete path to the domain home Import the certificate to the keystore using the keytool	
command. The syntax is as follows, for a keystore named adapters.jks	
:	
To implement two-way SSL in a multi-LDAP identity store configuration, take these steps:	
Both the Identity Directory API and the User and Role API can operate in a single-LDAP identity store configuration (virtualize = false	
).	
For this scenario, SSL between the identity store and the LDAP server is configured with the same basic steps outlined in Section 7.5.2. However, there is no need to create a keystore using libovdconfig.sh	
. Instead, the trusted certificate must be imported into the application server's trust-store.	
For example:	
The OPSS security store is the repository of system and application-specific policies, credentials, and keys. For an introduction to policies, credentials, keys and certificates, see the following sections:	
This chapter explains the features of the OPSS security store common to policies, credentials, and keys, and it is divided into the following sections:	
For details about Java EE and WebLogic Security, see section Java EE and WebLogic Security in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.	
Note: When a WebLogic domain is setup to use policies based on the OPSS security store, JACC policies and the Java Security Manager become unavailable on all managed servers in that domain.	
The OPSS security store is the repository of system and application-specific policies, credentials, and keys. This centralization facilitates the administration and maintenance of policy, credential, and key data.	
The OPSS security store can be file-, LDAP-, or DB-based depending on the choice of repository type, and it can be reassociated (that is, the repository type can be changed) from file-based to LDAP- or DB-based; from DB-based to LDAP- or DB-based; and from LDAP-based to LDAP- or DB-based. No other reassociation is supported. For details about the tools and procedures available to reassociate the OPSS security store, see sections Reassociating with Fusion Middleware Control and Reassociating with the Script reassociateSecurityStore. Out-of-the-box, the OPSS security store is file-based.	
The security data relevant to a Java EE application is typically packaged with the application and it can be migrated at deploy time to the OPSS security store. For details about the tools and procedures available to migrate to the OPSS security store, see sections Migrating with Fusion Middleware Control and Migrating with the Script migrateSecurityStore.	
An LDAP-based policy store is typically used in production environments. The only LDAP server supported in this release is the Oracle Internet Directory (release 10.1.4.3 or later).	
To use a domain LDAP-based OPSS security store the domain administrator must configure it, as appropriate, using Oracle Enterprise Manager Fusion Middleware Control or OPSS scripts.	
For a list of properties that can be specified in a service instance, see Appendix F, "Properties Common to All LDAP-Based Instances."	
The information in this section is divided into the following topics:	
In domains where several server instances are distributed across multiple machines, it is highly recommended that the OPSS security store be LDAP- or DB-based.	
Typically, applications do not change policy, credential, or key data. When they do, however, it is crucial that these changes be correctly propagated to all managed servers and clusters in a domain and, therefore, it is recommended that any such changes be performed in the domain administration server (and not in managed servers).	
In a single-node server domain, the propagation of local changes to security data is irrelevant: in this scenario, local changes are equivalent to global changes.	
In a multiple-node server domain, however, the JMX framework propagates local changes to a file-based policy to each runtime environment, so that the data is refreshed based on caching policies and configuration. For details about properties you can set on policies and credentials, see sections Appendix F, "Policy Store Properties," and Appendix F, "Credential Store Properties."	
In a multiple-node server environment, it is highly recommended that both the policy and credential stores be centralized in a LDAP- or DB-based store and configured in the administration server.	
The only supported LDAP-based OPSS security store is Oracle Internet Directory. In order to ensure the proper access to the Oracle Internet Directory, you must set a node in the server directory as explained below.	
Fusion Middleware Control automatically provides bootstrap credentials in the file cwallet.sso	
when that tool is used to reassociate to an LDAP-based repository. To specify these required credentials manually, see section Section 21.4.7, "Specifying Bootstrap Credentials Manually."	
Setting a Node in an Oracle Internet Directory Server	
The following procedure is carried out by an Oracle Internet Directory administrator.	
To set a node in the LDAP Oracle Internet Directory directory, proceed as follows:	
jpstestnode.ldif	
, for illustration purpose) specifying the following DN and CN entries: The distinguished name of the root node (illustrated by the string jpsroot above) must be distinct from any other distinguished name. Some LDAP servers enforce case sensitivity by default. One root node can be shared by multiple WebLogic domains. It is not required that this node be created at the top level, as long as read and write access to the subtree is granted to the Oracle Internet Directory administrator.	
ldapadd	
, as illustrated in the following example (there should be no line break in the command invocation): ldapsearch	
, as illustrated in the following example (there should be no line break in the command invocation): oidstats.sql	
to generate database statistics for optimal database performance, as illustrated in the following example: The above utility must be run just once after the initial provisioning. For details about this utility, consult the Oracle Fusion Middleware User Reference for Oracle Identity Management.	
To reassociate a policy store, see Reassociating the OPSS Security Store.	
This section describes how to set up a one-way SSL channel between Oracle WebLogic server or a Java SE application and the LDAP Oracle Internet Directory. Such connection may be required, for example, when reassociating to an LDAP-based target store.	
Prerequisite: Configuring the Oracle Internet Directory Server	
To configure the Oracle Internet Directory server to listen in one-way SSL mode, see section Enabling SSL on Oracle Internet Directory Listeners in Oracle Fusion Middleware Administrator's Guide.	
Exporting Oracle Internet Directory's Certificate Authority (CA)	
The use of orapki	
to create a certificate is needed only if the CA is unknown to the Oracle WebLogic server.	
The following sample illustrates the use of this command to create the certificate serverTrust.cert	
:	
The above invocation prompts the user to enter the keystore password.	
Before You Begin	
Before configuring SSL, note that:	
Setting Up the WebLogic Server in Case of a Java EE Application	
The difference in the following procedures is because the identity store service and the policy store service use different socket factories.	
To establish a one-way SSL connection between the server and the identity store, proceed as follows (if applicable, the trust CA is assumed exported):	
keytool	
to import the Oracle Internet Directory's CA into the WebLogic truststore. The following invocation, which outputs the file myKeys.jks	
, illustrates the use of this command to import the file serverTrust.cert	
:	
To establish a one-way SSL connection between the server and the policy store, proceed as follows (if applicable, the trust CA is assumed exported):	
keytool	
to import trust CA to the trust key store, as illustrated in the following invocation: Setting Up the WebLogic Server in Case of a Java SE Application	
The setting up in the case of Java SE applications is the same for both the identity and the policy store services.	
keytool	
to import the Oracle Internet Directory's CA into the WebLogic truststore. The following invocation, which outputs the file myKeys.jks	
, illustrates the use of this command to import the file serverTrust.cert	
:	
A DB-based security store is typically used in production environments. The only supported DB-based security store is Oracle RDBMS (releases 10.2.0.4 or later; releases 11.1.0.7 or later; and releases 11.2.0.1 or later).	
To use a DB-based OPSS security store the domain administrator must configure it, as appropriate, using Oracle Enterprise Manager Fusion Middleware Control or OPSS scripts. In case any checks are needed before the server completes its initialization, see Section L.14, "Permission Failure Before Server Starts."	
For a list of properties that can be configured, see Appendix F, "OPSS Configuration Properties."	
This section contains the following topics:	
To use a database repository for the OPSS security store, one must first use Oracle Fusion Middleware Repository Creation Utility (RCU) to create the required schema and to seed some initial data. This setup is also required before reassociating the OPSS security store to a DB-based security store.	
For details about RCU, see chapters Repository Creation Utility Overview and Running Repository Creation Utility in Oracle Fusion Middleware Repository Creation Utility User's Guide.	
The creation the schema and seeding of initial data are explained in the following sections:	
To create the OPSS schema in an Oracle database with RCU, proceed as follows:	
Then click Next to have RCU check the entered data and perform pre-creation operations; once this check is successfully completed, RCU displays the Select Components dialog.	
When finished selecting components, click Next to display the Schema Passwords dialog where you supply passwords, and then click Next to display the Map Tablespaces dialog which shows the tablespace summary. Use one default tablespace and one temporary tablespace; the default tablespace names are PREFIX_IAS_OPSS and PREFIX_IAS_TEMP, respectively.	
To create a non-default tablespace or datafile, click the button Manage Tablespaces to display the Manage Tablespaces dialog, where you can specify the information to create them. When finished, click OK. If the specified tablespaces are not yet in the database, RCU creates them and informs about this in the Creating Tablespaces; click OK to display the Summary dialog, which displays the summary of data you have entered, and then click Create to effect the creation of the additional tablespace(s) or datafile(s).	
Dropping the OPSS schema is required only if one no longer wishes to use that DB for storing OPSS security policies.	
After the OPSS schema has been successfully created, use RCU to drop the OPSS schema as follows:	
To create a JDBC data source in a WebLogic domain using the Oracle WebLogic Administration Console, proceed as follows:	
jps-config.xml	
. For more details on the above procedure, see section Creating a JDBC Data Source in Oracle Fusion Middleware Configuring and Managing JDBC for Oracle WebLogic Server.	
To set up a data source on WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.	
Note: 11.2 Oracle JDBC driver deprecated the following time zones: Etc/UCT, UCT, Etc/UTC, Etc/Universal, Etc/Zulu, and Universal. When setting a time zone for your Oracle JDBC driver, make sure that it is a non-deprecated time zone.	
This section describes a few tasks that an administrator can follow to maintain a DB-based security store.	
A DB-based security store maintains a change log that should be periodically purged. To purge it, an administrator can use the provided SQL script opss_purge_changelog.sql	
, which will purge change logs older than 24 hours, or connect to the database and run SQL delete	
(with the appropriate arguments) as illustrated in the following lines:	
If the OPSS management API performs slowly while accessing the DB-based security store, run the DBMS_STATS	
package to gather statistics about the physical storage of a DB table, index, of cluster. This information is stored in the data dictionary and can be used to optimize the execution plan for SQL statements accessing analyzed objects.	
When loading large amount of data into a DB-based security store, such as when creating thousands of new application roles, it is recommended that DBMS_STATS	
be run within short periods and concurrently with the loading activity. Otherwise, when the loading activity is small, DBMS_STATS	
needs to be run just once and according to your needs.	
The following sample illustrates the use of DBMS_STATS	
:	
where DEV_OPSS	
denotes the name of the DB schema created during the RCU setup (see section Creating the OPSS Schema in an Oracle Database). For details about the DBMS_STATS	
package, see the Oracle Database Administrator's Guide.	
To run DBMS_STATS	
periodically, use a shell script or an SQL script, as described next.	
The following sample script runs the command DBMS_STATS	
every 10 minutes:	
where opssstats.sql	
contains the following text:	
The following sample SQL script also runs the command DBMS_STATS	
every 10 minutes:	
To stop the periodic invocation of DBMS_STATS	
by the above SQL script, first find out its job number by issuing the following commands:	
Then issue a command like the following, in which it is assumed that the query above returned the job number 31:	
Establishing a one- or two-way SSL connection to a DB-Based OPSS security store is optional and explained in section Configuring SSL for the Database in Oracle Fusion Middleware Administrator's Guide .	
For additional information about SSL-related topics see the following documents:	
http://www.oracle.com/technology/tech/java/sqlj_jdbc/pdf/wp-oracle-jdbc_thin_ssl_2007.pdf.	
For examples of store configurations for Java SE applications, see Section 23.1, "Configuring Policy and Credential Stores in Java SE Applications."	
For examples of store configurations for Java EE applications, see Example 1 and Example 4.	
For details about configuring other artifacts, see Configuring the Identity Provider, Property Sets, and SSO.	
Reassociating the OPSS security store consists in relocating the policy, credential, and key stores from one repository to another one. The source can be file-, LDAP-, or DB-based; the target can be LDAP- or DB-based. The only type of LDAP target supported is Oracle Internet Directory; the only type of DB target supported is DB_ORACLE.	
Reassociation changes the repository preserving the integrity of the data stored. For each security artifact, reassociation searches the target store and, if it finds a match for it, it updates the matching artifact; otherwise, creates a new artifact.	
Reassociation is typically performed, for example, when setting a domain to use an LDAP- or DB-based OPSS store instead of the out-of-the-box file-based store. This operation can take place at any time after the OPSS store has been configured and instantiated, and it is carried out using either Fusion Middleware Control or reassociateSecurityStore	
as explained in the following sections:	
Reassociation migrates the OPSS policy store (policies, credentials, and keys) from one repository to another and reconfigures the appropriate security store providers. This section explains how to perform reassociation with Fusion Middleware Control pages.	
For information about other uses of the Security Provider Configuration page, see Configuring the Identity Provider, Property Sets, and SSO.	
Important Points	
jps-config.xml	
file produced by reassociation is good for only Java EE applications. In case of Java SE applications, edit the file jps-config-jse.xml	
to match the one described in Section 23.1.3, "Configuring DB-Based OPSS Security Stores." To reassociate the OPSS security store with Fusion Middleware Control, proceed as follows:	
The table in the area Security Stores shows the characteristics of the current provider configured in the domain.	
When checking this box, keep in mind the following points:	
The port of the target LDAP server must be configured to handle an anonymous SSL transmission; this port is distinct from the default (non-secure) LDAP server port.	
If the reassociation is to use a one-way SSL to a target LDAP store, be sure to follow the instructions in Setting Up a One- Way SSL Connection to the LDAP before completing this step. Among other things, that setup identifies the port to support a one-way SSL channel, and it is that port that should be specified in this step. Reassociation through a two-way SSL channel is not supported in this release.	
Fusion Middleware Control modifies the file weblogic.policy	
by adding the necessary grant to support the anonymous SSL connection.	
To solve most common errors arising from the specifications in these two fields, see Section L.2, "Reassociation Failure."	
To add a new property: click Add to display the Add New Property dialog; in this dialog, enter strings for Property Name and Value; click OK. The added property-value pair is displayed in the table Custom Properties.	
These properties are typically used to initialize the instance when it is created.	
A property-value pair you enter modifies the domain configuration file jps-config.xml	
by adding a <property>	
element in the configuration of the LDAP service instance.	
To illustrate how a service instance is modified, suppose you enter the property name foo	
and value bar	
; then the configuration for the LDAP service instance changes to contain a <property>	
element as illustrated in the following excerpt:	
Reassociation modifies the domain configuration file $DOMAIN_HOME/config/fmwconfig/jps-config.xml	
: it deletes any configuration for the old store provider, inserts a configuration for the new store provider, and moves the policy and credential information from the source to the destination store.	
If the destination store is LDAP-based, the information is stored under the domain DN according to the following format:	
As long as the configuration of the installation relies upon the above domain DN, that node should not be deleted from the LDAP Server.	
The procedure explained in this section is optional and performed only to enhance the security to access an Oracle Internet Directory.	
An access control list (ACL) is a list that specifies who can access information and what operations are allowed on the Oracle Internet Directory directory objects. The control list is specified at a node, and its restrictions apply to all entries in the subtree under that node.	
ACL can be used to control the access to policy and credential data stored in an LDAP Oracle Internet Directory repository, and it is, typically, specified at the top, root node of the store.	
To specify an ACL at a node in an Oracle Internet Directory repository, proceed as follows:	
where storeRootDN stands for a node (typically the root node of the store), and userDN stands for the DN of the administrator data (the same userDN that was entered to perform reassociation).	
ldapmodify	
to apply these specifications to the Oracle Internet Directory. Here is an example of an LDIF file specifying an ACL:	
For more information about access control lists and the command ldapmodify	
, see chapter 18 in Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory.	
The OPSS store can be reassociated with the OPSS script reassociateSecurityStore	
. For details, see Section 9.3.29, "reassociateSecurityStore."	
A domain includes one and only one policy store. Applications can specify their own policies, but these are stored as policies in the policy store when the application is deployed to a server. All applications deployed in a domain use a common policy store, the policy store. The policy store is logically partitioned in stripes, one for each application name specified in the file $DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml	
under the element <applications>	
.	
Migrating the OPSS security store consists in relocating the policy, credential, and key stores from one repository to another one. The source can be file-, LDAP-, or DB-based; the target can be LDAP- or DB-based. The OPSS binaries and the target policy store must have compatible versions; for details, see Section L.21, "Incompatible Versions of Binaries and Policy Store."	
During application development, an application specifies its own policies, and these can be migrated to the OPSS security store when the application is deployed with Fusion Middleware Control. Policies can also be migrated manually; in addition, each application component can specify the use of anonymous user and role, authenticated role, and JAAS mode.	
The configuration of the policy store is performed by an administrator.	
These topics are explained in the following sections:	
Application policies are specified in the application file jazn-data.xml	
and can be migrated to the policy store when the application is deployed to a server in the WebLogic environment with Fusion Middleware Control; they can also be removed from the policy store when the application is undeployed or be updated when the application is redeployed.	
All three operations, the migration, the removal, and the updating of application policies, can take place regardless of the type of policy repository, but they do require particular configurations.	
For details, see procedure in Section 6.5.2, "Migrating Policies and Credentials at Deployment."	
Application-specific policies or system policies can be migrated manually from a source repository to a target repository using the OPSS script migrateSecurityStore	
.	
This script is offline, that is, it does not require a connection to a running server to operate; therefore, the configuration file passed to the argument configFile	
need not be an actual domain configuration file, but it can be assembled just to specify the source and destination repositories of the migration.	
Note: Since the scriptmigrateSecurityStore recreates GUIDs and takes a long time to migrate large volume of data, you may want to consider migrating stores with an alternate procedure that uses Oracle Internet Directory bulk operations. For details, see Section 6.5.2.3, "Migrating Large Volume Policy and Credential Stores.".	
For further details about OPSS scripts and their syntax, see section Overview of WLST Command Categories, in Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.	
For platform-specific requirements to run an OPSS script, see Important Note.	
To migrate all policies (system and application-specific, for all applications) on WebLogic use the script (first) or interactive (second) syntaxes (arguments are written in separate lines for clarity):	
The meanings of the arguments (all required) are as follows:	
configFile	
specifies the location of a configuration file jps-config.xml	
relative to the directory where the script is run. Typically, this configuration file is created just to be used with the script and serves no other purpose. This files contains two jps-contexts that specify the source and destination stores. In addition, if the migration involves one or two LDAP-based stores, then this file must contain a bootstrap jps-context that refers to the location of a cwallet.sso	
file where the credentials to access the LDAP based involved in the migration are kept.	
src	
specifies the name of a jps-context in the configuration file passed to the argument configFile	
. dst	
specifies the name of another jps-context in the configuration file passed to the argument configFile	
. The contexts passed to src	
and dst	
must be defined in the passed configuration file and must have distinct names. From these two contexts, the script determines the locations of the source and the target repositories involved in the migration.	
To migrate just system policies on WebLogic, use the script (first) or interactive (second) syntaxes (arguments are written in separate lines for clarity):	
The meanings of the arguments (all required) are identical to the previous case.	
To migrate just application-specific policies on WebLogic, for one application, use the script (first) or interactive (second) syntaxes (arguments are written in separate lines for clarity):	
The meanings of the arguments configFile	
, src	
, and dst	
are identical to the previous cases. The meaning of other five arguments is as follows:	
srcApp	
specifies the name of the source application, that is, the application whose policies are being migrated. dstApp	
specifies the name of the target application, that is, the application whose policies are being written. If unspecified, it defaults to the name of the source application. migrateIdStoreMapping	
specifies whether enterprise policies should be migrated. The default value is True. To filter out enterprise policies from the migration, that is, to migrate just application policies, set it to False. overWrite	
specifies whether a target policy matching a source policy should be overwritten by or merged with the source policy. Set to true to overwrite the target policy; set to false to merge matching policies. Optional. If unspecified, defaults to false. mode	
specifies whether the migration should stop and signal an error upon encountering a duplicate principal or a duplicate permission in an application policy. Either do not specify or set to lax to allow the migration to continue upon encountering duplicate items, to migrate just one of the duplicated items, and to log a warning to this effect. If the input does not follow the syntax requirements above, the script execution fails and returns an error. In particular, the input must satisfy the following requisites: (a) the file jps-config.xml	
is found in the passed location; (b) the file jps-config.xml	
includes the passed jps-contexts; and (c) the source and the destination context names are distinct.	
For complete examples illustrating the use of this script, see Section 6.5.2.1, "Migrating Policies Manually."	
This section explains how to use Fusion Middleware Control to configure parameters used by the User and Role APIs, property and property sets, and to specify the Single Sign-On Provider, in the following sections:	
Note: The area of the page Security Provider Configuration labeled Web Services Manager Authentication Providers pertains to the configuration of Login Modules and the Keystore for Web Services Manager only and is not relevant to ADF or Java EE applications.For details about the login modules available, their parameters, and the keystore for those components, see chapter 9 in Oracle Fusion Middleware Security and Administrator's Guide for Oracle Web Services.	
To configure the parameters used by the User and Role API that interact with the identity store, proceed as follows:	
A property set is collection of properties typically used to define the properties of a service instance or generic properties of the domain.	
For a list of OPSS configuration properties, see Appendix F, "OPSS Configuration Properties."	
The elements <property>	
and <properySet>	
in the file $DOMAIN_HOME/config/fmwconfig/jps-config.xml	
are used to define property and property sets. Property sets can be referenced by the element <propertySetRef>	
.	
To define a property or a property set, proceed as follows:	
The addition or deletion of property sets modifies the domain configuration file $DOMAIN_HOME/config/fmwconfig/jps-config.xml	
; the changes do not take effect until the server is restarted.	
The elements <property>	
and <propertySet>	
added by the previous procedure are inserted directly under the element <jpsConfig>	
.	
This section explains the OPSS Single Sign-On (SSO) Framework and how to configure an SSO solution using Fusion Middleware Control, in the following sections:	
The OPSS SSO Framework provides a way to integrate applications in a domain with an SSO solution. Specifically, it provides applications a common set of APIs across SSO products, to handle login, logout and auto login.	
One of these solutions, the OAM solution, is available out-of-the-box, and it includes the following features:	
For a configuration example of an OAM solution, see OAM Configuration Example.	
An SSO solution must provide a standard way for applications to login and logout users. After successful authentication, the SSO service is responsible to redirect the user to the appropriate URL.It is assumed that the domain where the solution is applied has been configured to allow the Subject to contain the anonymous user and role before login and after logout, and authenticated roles after login. It is also assumed that the SSO provider has implemented a Credential Mapping Service. In the case of the out-of-the-box OAM solution, the provider implements CredentialMapperService that produces the appropriate OAM token.	
The OPSS SSO framework does not support multi-level authentication.	
Integration with the desired SSO solution requires a separate installation and appropriate configuration of the solution. For details about recommended solutions, see Part IV, "Single Sign-On Configuration".	
To specify the SSO solution used by a domain, proceed as follows:	
The SSO service configuration entered with the procedure described in Configuring an SSO Solution with Fusion Middleware Control is written to the file jps-config.xml	
. The data specified includes:	
The following fragment of a jps-config.xml	
file illustrates the configuration of an OAM SSO provider:	
Table 8-1 describes the meaning of the properties involved in the configuration of an SSO provider.	
Table 8-1 SSO Provider Properties	
Property Name	Description
---	---
The SSO provider logout URL.	
The SSO provider BASIC logout URL.	
The SSO provider FORM logout URL.	
The SSO provider DIGEST logout URL.	
The self-registration URL for auto-login.	
The SSO provider logout URL.	
param.login.successurl	The URL redirect after a succesful login.
The URL redirect after a query cancelation.	
The URL redirect after auto-login.	
The token for auto-login.	
The URL redirect after loggin out.	
Regarding the configuration of an SSO provider, note the following important remarks:
login.url.FORM
. The value need not be a URL. autologin.url
. logout.url
. The OAM solution supports global logout. param.login.successurl
param.login.cancelurl
param.autologin.targeturl
param.login.token
param.logout.targeturl
app.context
in URI specifications, illustrated in values within the property set props.auth.uri
in the preceding example, is allowed for only ADF applications when integrating with the OAM solution. props.auth.level
is required. props.auth.url
is required. sso.provider.class
within a service instance of the SSO provider is the fully qualified name of the class implementing a specific SSO solution. In the case of the OAM solution, the provided class name is oracle.security.wls.oam.providers.sso.OAMSSOServiceProviderImpl
.
default.auth.level
within a service instance of the SSO provider must be set to 2, as illustrated in the preceding example. token.type
within a service instance of the SSO provider is required. This token type identifies the token set on the HTTP request by the SSO provider upon a successful authentication; the SSO provider uses this token, after the first time, to ensure that the user does not need to be reauthenticated and that his sign-on is still valid. In the case of the OAM solution, the token type must be OAMSSOToken
, as illustrated in the preceding example.
token.provider.class
within a service instance of the SSO provider is the fully qualified name of the token class, and it is provider-specific. CredentialMapping
with class JpsPermission
. The following fragment of the file system-jazn-data.xml
illustrates the specification of this permission to the application MyApp
:
Note the use of system variables in the URL specification. For details, see Example in <url>.
The following sections explain how an administrator can manage policies using either Fusion Middleware Control, OPSS scripts, or Oracle Entitlements Server:
Typical operations include:
This chapter also includes the following sections:
Only a user with the appropriate permissions, such as the domain administrator, can access data in the policy store.
The following sections explain how an administrator can manage policies using either Fusion Middleware Control, OPSS scripts, or Oracle Entitlements Server. Typical operations include:
To avoid unexpected authorization failures and to manage policies effectively, note the following important points:
Important Point 1: Before deleting a user, revoke all permissions, application roles, and enterprise groups that have been granted to the user. If you fail to remove all security artifacts referencing a user to be deleted, they are left dangling and, potentially, be inadvertently inherited if another user with the same name or uid is created at a later time.Similar considerations apply to when a user name or uid is changed: all policies (grants, permissions, groups) referring to old data must be updated so that it works as expected with the changed data. |
Important Point 2: Policies use case sensitivity in names when they are applied. The best way to avoid possible authorization errors due to case in user or group names is to use the spelling of those names exactly as specified in the identity store.It is therefore recommended that:
See Section L.4, "Failure to Grant or Revoke Permissions - Case Mismatch." |
Important Point 3: The name of a resource type, a resource, or an entitlement can contain printable charactes only and it cannot start or end with a white space.For other considerations regarding the use of characters in policies, in particular in role names, see Section L.16, "Characters in Policies." |
Fusion Middleware Control allows managing system and application policies in a WebLogic domain, regardless of the type of policy store provider used in the domain, as explained in the following sections:
This section explains how to use Fusion Middleware Control to manage application policies.
The area Policy Store Provider is read-only; when expanded, it displays the policy store provider currently in use in the domain or cell.
To create an application policy for the selected application stripe, click Create to display the Create Application Grant page where you add principals and permissions for the grant being created.
In the Search area of that dialog, first select Permissions or Resource Types; if Permissions was selected, then identify permissions matching a class or resource name, and determine the Permission Class and Resource Name; if Resource Types was selected, then identify the resource types matching a type name, and determine a type; then click OK to return to the Create Application Grant page. The permission you selected is displayed in the table in the Permissions area.
In the Search area of that dialog, select a Type, enter strings to match principal names and display names, and click the blue button; the result of the query is displayed in the Searched Principals table; then select one or more rows from that table, and click OK to return to the Create Application Grant page. The principals you selected are displayed in the table in the Grantee area
This section explains how to use Fusion Middleware Control to manage application roles.
The area Policy Store Provider is read-only; when expanded, it displays the policy store provider currently in use in the domain or cell.
In the area General, specify the following attributes of the role being created:
In the area Members, specify the users, groups, or other application roles, if any, into which the role being created is mapped.
To add application roles to the application role being created:
To understand how permissions are inherited in a role hierarchy, see Section 2.2.1, "Permission Inheritance and the Role Hierarchy."
This section explains how to use Fusion Middleware Control to manage system policies for an Oracle WebLogic Server domain or for a WebSphere Application Server cell.
The procedure below enables creating two types of system policies: principal policies and codebase policies. A principal policy grants permissions to a list of users or groups. A codebase policy grants permissions to a piece of code, typically a URL or a JAR file; for example, an application using the Credential Store Framework requires an appropriate codebase policy. Wildcards and patterns are not supported in codebase URLs.
The area Policy Store Provider is read-only; when expanded, it displays the policy store provider currently in use in the domain or cell.
To create a system policy:
An OPSS script is either a WLST script, in the context of the Oracle WebLogic Server, or a WASAdmin script, in the context of the WebSphere Application Server. The scripts listed in this section apply to both platforms: WebLogic Application Server and WebSphere Application Server.
An online script is a script that requires a connection to a running server. Unless otherwise stated, scripts listed in this section are online scripts and operate on a policy store, regardless of whether it is file-, LDAP-, or DB-based. There are a few scripts that are offline, that is, they do not require a server to be running to operate.
Read-only scripts can be performed only by users in the following WebLogic groups: Monitor, Operator, Configurator, or Admin. Read-write scripts can be performed only by users in the following WebLogic groups: Admin or Configurator. All WLST scripts are available out-of-the-box with the installation of the Oracle WebLogic Server.
WLST scripts can be run in interactive mode or in script mode. In interactive mode, you enter the script at a command-line prompt and view the response immediately after. In script mode, you write scripts in a text file (with a py file name extension) and run it without requiring input, much like the directives in a shell script.
WASAdmin scripts can be run in interactive mode only.
Important Note
Before invoking an OPSS script you must run (according to the platform you use) one of the scripts below to ensure that the required JARs are added to the class path.
On WebLogic:
To run an online script, you must connect to a WebLogic server as follows:
servername
', 'password
', 'localhost:portnum
')For details about running OPSS scripts on WebSphere, see Oracle Fusion Middleware Third-Party Application Server Guide.
OPSS provides the following scripts on all supported platforms to administer application policies (all scripts are online, unless otherwise stated):
All class names specified in the above scripts must be fully qualified path names. The argument appStripe
refers to the application stripe (typically, identical to the application name) and identifies the subset of policies pertaining to a particular application.
For important information about the authenticated and the anonymous roles and WLST scripts, see Section 9.5, "Granting Policies to Anonymous and Authenticated Roles with WLST Scripts."
For the correct usage of the application stripe in versioned applications, see Section 9.6, "Application Stripe for Versioned Applications in WLST Scripts."
The script listAppStripes
lists application stripes. This script can be run in offline or online mode. When run in offline mode, a configuration file must be passed, and it lists the application stripes in the policy store referred to by the configuration in the default context of the passed configuration file. When run in online mode, a configuration file must not be passed, and it lists stripes in the policy store of the domain to which you connect. In any mode, if a regular expression is passed, it lists the application stripes with names that match the regular expression; otherwise, it lists all application stripes.
If this command is used in offline mode after reassociating to a DB-based, the configuration file produced by the reassociation must be manually edited as described in Running an Offline Script after Reassociating to a DB-Based Store.
Script Mode Syntax
Interactive Mode Syntax
The meanings of the arguments are as follows:
configFile
specifies the path to the OPSS configuration file. Optional. If specified, the script runs offline; the default context in the specified configuration file must not have a service instance reference to an identity store. If unspecified, the script runs online and it lists application stripes in the policy store. regularExpression
specifies the regular expression that stripe names returned should match. Optional. If unspecified, it matches all names. To match substrings, use the character *. Examples of Use
The following (online) invocation returns the list of application stripes in the policy store:
The following (offline) invocation returns the list of application stripes in the policy store referenced in the default context of the specified configuration file:
The following (online) invocation returns the list of application stripes that contain the prefix App:
The script createAppRole
creates an application role in the policy store with given application stripe and role name.
Script Mode Syntax
Interactive Mode Syntax
The meanings of the arguments (all required) are as follows:
appStripe
specifies an application stripe. appRoleName
specifies a role name. Example of Use
The following invocation creates an application role with application stripe myApp
and role name myRole
:
The script deleteAppRole
removes an application role from the passed stripe. Specifically, this script applies a cascading deletion by removing:
Script Mode Syntax
Interactive Mode Syntax
The meanings of the arguments (all required) are as follows:
appStripe
specifies an application stripe. appRoleName
specifies a role name. Example of Use
The following invocation removes the role with application stripe myApp
and name myRole
:
The script grantAppRole
adds a principal (class and name) to a role with a given application stripe and name, and it can be used to build or modify an application role hierarchy.
Interactive Mode Syntax
The meanings of the arguments (all required) are as follows:
appStripe
specifies an application stripe. appRoleName
specifies a role name. principalClass
specifies the fully qualified name of a class; this class must be included in the class path so that it is available at runtime. Typically, if the principal is a user, the class is weblogic.security.principal.WLSUserImpl
, and if the principal is a group, the class is weblogic.security.principal.WLSGroupImpl
. principalName
specifies the principal name. Example of Use
The following invocation adds the principal myPrincipal
, defined by the default principal implementation class WLSGroupImpl
, to the role myRole
in the application stripe myApp
:
The script revokeAppRole
removes a principal (class and name) from a role with a given application stripe and name, and it can be used to modify an application role hierarchy.
Script Mode Syntax
Interactive Mode Syntax
The meanings of the arguments (all required) are as follows:
appStripe
specifies an application stripe. appRoleName
specifies a role name. principalClass
specifies the fully qualified name of the principal class. principalName
specifies the principal name. Example of Use
The following invocation removes the principal myPrincipal
, defined by the default principal implementation class WLSGroupImpl
, from the role myRole
in the application stripe myApp
:
The script listAppRoles
lists all roles with a given application stripe.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the argument (required) is as follows:
appStripe
specifies an application stripe. Example of Use
The following invocation returns all the roles with application stripe myApp
:
The script listAppRoleMembers
lists all members in a role with a given application stripe and role name.
Script Mode Syntax
Interactive Mode Syntax
The meanings of the arguments (all required) are as follows:
appStripe
specifies an application stripe. appRoleName
specifies a role name. Example of Use
The following invocation returns all the members in a role with application stripe myApp
and name myRole
:
The script grantPermission
creates a permission granted to a codebase or URL or principal, in either an application policy or the global policy section.
Script Mode Syntax
Interactive Mode Syntax
The meanings of the arguments (optional arguments are enclosed in between square brackets) are as follows:
appStripe
specifies an application stripe. If not specified, then the script works on system policies. codeBaseURL
specifies the URL of the code granted the permission. principalClass
specifies the fully qualified name of a class (grantee). principalName
specifies the name of the grantee principal. permClass
specifies the fully qualified name of the permission class. permTarget
specifies, when available, the name of the permission target. Some permissions may not include this attribute. permActions
specifies the list of actions granted. Some permissions may not include this attribute and the actions available depend on the permission class. Examples of Use
The following invocation creates an application permission (for the application with application stripe myApp
) with the specified data:
The following invocation creates a system permission with the specified data:
The script revokePermission
removes a permission from a principal or codebase defined in an application or the global policy section.
Script Mode Syntax
Interactive Mode Syntax
The meanings of the arguments (optional arguments are enclosed in between square brackets) are as follows:
appStripe
specifies an application stripe. If not specified, then the script works on system policies. codeBaseURL
specifies the URL of the code granted the permission. principalClass
specifies the fully qualified name of a class (grantee). principalName
specifies the name of the grantee principal. permClass
specifies the fully qualified name of the permission class. permTarget
specifies, when available, the name of the permission target. (Note that some permissions may not include this attribute.) permActions
specifies the list of actions removed. Note that some permissions may not include this attribute and the actions available depend on the permission class. Examples of Use
The following invocation removes the application permission (for the application with application stripe myApp
) with the specified data:
The following invocation removes the system permission with the specified data:
The script listPermissions
lists all permissions granted to a given principal.
Script Mode Syntax
Interactive Mode Syntax
The meanings of the arguments (optional arguments are enclosed in between square brackets) are as follows:
appStripe
specifies an application stripe. If not specified, then the script works on system policies. principalClass
specifies the fully qualified name of a class (grantee). principalName
specifies the name of the grantee principal. Examples of Use
The following invocation lists all permissions granted to a principal by the policies of application myApp
:
The following invocation lists all permissions granted to a principal by system policies:
The script deleteAppPolicies
removes all policies with a given application stripe.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the argument (required) is as follows:
appStripe
specifies an application stripe. If not specified, then the script works on just system policies. Example of Use
The script createResourceType
inserts a new <resource-type> entry in the policy store within a given application stripe and with specified name, display name, description, and actions. Optional arguments are enclosed in between square brackets; all other arguments are required.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where to insert the resource type. resourceTypeName
specifies the name of the resource type to insert. displayName
specifies the name for the resource type used in UI gadgets. description
specifies a brief description of the resource type. provider
specifies the provider for the resource type. matcher
specifies the class of the resource type. If unspecified, it defaults to oracle.security.jps.ResourcePermission
. actions
specifies the actions allowed on instances of the resource type. delimiter
specifies the character used to delimit the list of actions. If unspecified, it defaults to comma ','. Example of Use
The following invocation creates a resource type in the stripe myApplication with actions BWPrint and ColorPrint delimited by a semicolon:
The script getResourceType
returns the relevant parameters of a <resource-type> entry in the policy store within a given application stripe and with specified name.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe from where to fetch the resource type. resourceTypeName
specifies the name of the resource type to fetch. Example of Use
The following invocation fetches the resource type myResType from the stripe myApplication:
The script deleteResourceType
removes a resource type with a given name from the passed application stripe. This script applies a cascading deletion by removing all resource instances of the resource type from entitlements and all grants that use resource instances of the resource type.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe from where to remove the resource type. resourceTypeName
specifies the name of the resource type to remove. Example of Use
The following invocation removes the resource type myResType from the stripe myApplication:
The script createResource
creates a new resource of a specified type in a specified application stripe. The passed resource type must exist in the passed application stripe.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where the resource is created. name
specifies the name of the resource created. type
specifies the type of resource created. The passed resource type must be present in the application stripe at the time this script is invoked. diplayName
specifies the display name of the resource created. Optional. description
specifies the description of the resource created. Optional. Example of Use
The following invocation creates the resource myResource in the stripe myApplication:
The script deleteResource
deletes a resource and all its references from entitlements in an application stripe. The script performs a cascading deletion: if the entitlement refers to one resource only, it removes the entitlement; otherwise, it removes from the entitlement the resource actions for the passed type.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where the resource is deleted. name
specifies the name of the resource deleted. type
specifies the type of resource deleted. The passed resource type must be present in the application stripe at the time this script is invoked. Example of Use
The following invocation deletes the resource myResource in the stripe myApplication:
The script listResources
lists resources in a specified application stripe. If a resource type is specified, it lists all the resources of the specified resource type; otherwise, it lists all the resources of all types.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where the resources are listed. type
specifies the type of resources listed. The passed resource type must be present in the application stripe at the time this script is invoked. Examples of Use
The following invocation lists all resources of type myResType in the stripe myApplication:
The following invocation lists all resources in the stripe myApplication:
The script listResourceActions
lists the resources and actions in an entitlement within an application stripe.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where the entitlement resides. permSetName
specifies the name of the entitlement whose resources and actions to list. Example of Use
The following invocation lists the resources and actions of the entitlement myEntitlement in the stripe myApplication:
The script createEntitlement
creates a new entitlement with just one resource and a list of actions in a specified application stripe. Use addResourceToEntitlement
to add additional resources to an existing entitlement; use revokeResourceFromEntitlement
to delete resources from an existing entitlement.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where the entitlement is created. name
specifies the name of the entitlement created. resourceName
specifies the name of the one resource member of the entitlement created. actions
specifies a comma-separated the list of actions for the resource resourceName. diplayName
specifies the display name of the resource created. Optional. description
specifies the description of the entitlement created. Optional. Example of Use
The following invocation creates the entitlement myEntitlement with just the resource myResource in the stripe myApplication:
The script getEntitlement
returns the name, display name, and all the resources (with their actions) of an entitlement in an application stripe.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where the entitlement is located. name
specifies the name of the entitlement to access. Example of Use
The following invocation returns the information of the entitlement myEntitlement in the stripe myApplication:
The script deleteEntitlement
deletes an entitlement in a specified application stripe. The script performs a cascading deletion by removing all references to the specified entitlement in the application stripe.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where the entitlement is deleted. name
specifies the name of the entitlement to delete. Example of Use
The following invocation deletes the entitlement myEntitlement in the stripe myApplication:
The script addResourceToEntitlement
adds a resource with specified actions to an entitlement in a specified application stripe. The passed resource type must exist in the passed application stripe.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where the entitlement is located. name
specifies the name of the entitlement to modify. resourceName
specifies the resource to add. resourceType
specifies the type of the resource to add. The passed resource type must be present in the application stripe at the time this script is invoked. actions
specifies the comma-separated list of actions for the added resource. Example of Use
The following invocation adds the resource myResource to the entitlement myEntitlement in the application stripe myApplication:
The script revokeResourceFromEntitlement
removes a resource from an entitlement in a specified application stripe.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where the entitlement is located. name
specifies the name of the entitlement to modify. resourceName
specifies the type of resource to remove. resourceType
specifies the type of the resource to remove. actions
specifies the comma-separated list of actions to remove. Example of Use
The following invocation removes the resource myResource from the entitlement myEntitlement in the stripe myApplication:
The script listEntitlements
lists all the entitlements in an application stripe. If a resource name and a resource type are specified, it lists the entitlements that have a resource of the specified type matching the specified resource name; otherwise, it lists all the entitlements in the application stripe.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe from where to list entitlements. resourceTypeName
specifies the name of the type of the resources to list. Optional. resourceName
specifies the name of resource to match. Optional. Examples of Use
The following invocation lists all the entitlements in the stripe myApplication:
The following invocation lists all the entitlements in the stripe myApplication that contain a resource type myResType and a resource whose name match the resource name myResName:
The script grantEntitlement
creates a new entitlement with a specified principal in a specified application stripe.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where the entitlement is created. principalClass
specifies the class associated with the principal. principalName
specifies the name of the principal to which the entitlement is granted. permSetName
specifies the name of the entitlement created. Example of Use
The following invocation creates the entitlement myEntitlement in the stripe myApplication:
The script revokeEntitlement
deletes an entitlement and revokes the entitlement from the principal in a specified application stripe.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where the entitlement is deleted. principalClass
specifies the class associated with the principal. principalName
specifies the name of the principal to which the entitlement is revoked. permSetName
specifies the name of the entitlement deleted. Example of Use
The following invocation deletes the entitlement myEntitlement in the stripe myApplication:
The script listEntitlement
lists an entitlement in a specified application stripe. If a principal name and a class are specified, it lists the entitlements that match the specified principal; otherwise, it lists all the entitlements.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where the entitlement is located. principalName
specifies the name of the principal to match. Optional. principalClass
specifies the class of the principal to match. Optional. Example of Use
The following invocation lists all entitlements in the stripe myApplication:
The script listResourceTypes
lists all the resource types in a specified application stripe.
Script Mode Syntax
Interactive Mode Syntax
The meaning of the arguments is as follows:
appStripe
specifies the application stripe where the resource types are located. Example of Use
The following invocation lists all resource types in the stripe myApplication:
The script reassociateSecurityStore
migrates the OPSS security store from a source to a target LDAP- or DB-based store, and it resets the default policy and credential services to the target repository. It also allows specifying that the OPSS security store be shared with that in a different domain (see optional argument join
below). The OPSS binaries and the target policy store must have compatible versions; for details, see Section L.21, "Incompatible Versions of Binaries and Policy Store."
The source can be a file-, LDAP-, or DB-based store; the only type of LDAP target supported is Oracle Internet Directory; the only type of DB target supported is DB_ORACLE. This script uses and modifies the domain configuration file jps-config.xml
, and it is supported in only the interactive mode.
For recommendations involving reassociation, see Important Points. After reassociating to a DB-based store and before using any OPSS script in offline mode, some manual editing is necessary; for details, see Running an Offline Script after Reassociating to a DB-Based Store.
Interactive Mode Syntax
The script syntax varies slightly according to the type of the target store.
When the target is an LDAP-based store, use the following syntax:
When the target is a DB-based store, use the following syntax:
The meaning of the arguments (all required) is as follows:
domain
: on WebLogic, specifies the domain name where the reassociating takes place; on WebSphere, specifies the WebSphere cell name. admin
specifies, in case of an LDAP target, the administrator's user name on the target server, and the format is cn=usrName
.password
specifies the password associated with the user specified for the argument admin
. It is required in case of an LDAP target. In case of a DB target, it is required only when the DB has a protected data source; in this case, it specifies the password associated with the user specified for the argument admin
.
ldapurl
specifies the URI of the LDAP server. The format is ldap//:host:port
, if you are using the default port, or ldaps://host:port
, if you are using an anonymous SSL or one-way SSL transmission. The secure port must be configured to handle the desired SSL connection mode, and must be distinct from the default (non-secure) port. servertype
specifies the kind of the target LDAP server or DB server. The only valid types are OID
and DB_ORACLE
. jpsroot
specifies the root node in the target LDAP repository under which all data is migrated. The format is cn=nodeName
. join
specifies whether the domain is to share an OPSS security store in another domain. Optional. Set to true to share an existing store in another domain; set to false otherwise. If unspecified, it defaults to false. The use of this argument allows multiple WebLogic domains to point to the same logical OPSS security store. datasourcename
specifies the JNDI name of the JDBC data source; this should be identical to the value of the JNDI name data source entered when the data source was created; see Section 8.3.1.3, "Creating a Data Source Instance." keyFilePath
specifies the directory where the file ewallet.p12
is created; the content of this file is encrypted and secured by the value passed to keyFilePassword
. Optional. Use in conjucntion with argument keyFilePassword
. keyFilePassword
specifies the password to secure the file ewallet.p12
. Optional. Use in conjucntion with argument keyFilePath
. Examples of Use
Suppose that you want some other domain (distinct from myDomain
, say otherDomain
) to share the policy store in myDomain
. Then you would invoke the script as follows:
The jps configuration file produced by the reassociation to a DB-based stored cannot be passed, as is, to any offline OPSS script. Before running an OPSS script in offline mode after having reassociated to a DB-based store, the configuration file must be edited manually as described below.
The following examples illustrate fragments of jps configuration files before and after reassociating to a DB-based OPSS security store, and the changes required on the configuration file produced by the reassociation.
Before Reassociation
The following fragment illustrates the configuration of a file-based policy store before being reassociated to a DB-based store:
After Reassociation
The following fragment illustrates the property set props.db.1
in the file generated by the reassociation of the above store to a DB-based store:
Required Editing
The property set above must be replaced with the following:
The value of the property jdbc.url
must match the name of the JDBC data source entered when the data source was created; the values of the bootstrap credentials (map and key) must match those passed to the OPSS script addBootStrapCredential
when the bootstrap was created.
The edited file can then be passed to the offline script.
OPSS optimizes the authorization process by caching security artifacts.
When an application policy (or some other security artifact) is modified, the change becomes effective depending on where the application and the tool used to modified the artifact are running:
oracle.security.jps.ldap.policystore.refresh.interval
. The default value is 10 minutes. The following use case illustrates the authorization behavior in four scenarios when (from a different domain or host) Oracle Entitlements Server is used to modify security artifacts, and the property oracle.security.jps.policystore.refresh.interval
is set to 10 minutes.
The use case assumes that:
Under the above assumptions, we now examine the authorization result in the following four scenarios.
Scenario A
The reason for this outcome is that the policy cache has not yet been refreshed with the change introduced in step 3 above.
Scenario B
The reason for this outcome is that the policy cache has been refreshed with the change introduced in step 3 above.
Scenario C
The reason for this outcome is that the policy cache has not yet been refreshed with the change introduced in step 3 above.
Scenario D
The reason for this outcome is that the policy cache has been refreshed with the change introduced in step 3 above.
Several WLST scripts require the specification of the principal name and the principal class for a role involved in the operation.
For example, the following invocation adds a principal to the role with application stripe myApp
and name myAppRole
:
When in such scripts the principal refers to the authenticated role or the anonymous role, the principal names and principal classes are fixed and must be one of the following pairs:
authenticated-role
oracle.security.jps.internal.core.principals.JpsAuthenticatedRoleImpl
anonymous-role
oracle.security.jps.internal.core.principals.JpsAnonymousRoleImpl
The list of WLST scripts that required the above principal name and class specification are the following:
grantAppRole
revokeAppRole
grantPermission
revokePermission
listPermissions
Several WLST scripts require the specification of an application stripe. If the application is not versioned, the application stripe defaults to the application name. Otherwise, if the application is versioned, the application name and the application stripe are not identical.
For example, the name of a versioned application with name myApp
and version 1 is displayed myApp(v1.0)
in Fusion Middleware Control pages, but the application stripe of this application is myApp#v1.0
.
In general, an application with display name appName(vers)
has application stripe appName#vers
. It is this last string that should be passed as the application stripe in WLST scripts, as illustrated in the following invocation:
The list of WLST scripts that can use stripe specification are the following:
createAppRole
deleteAppRole
grantAppRole
revokeAppRole
listAppRoles
listAppRoleMembers
grantPermission
revokePermission
listPermissions
deleteAppPolicies
Oracle Entitlements Server allows managing and searching application policies and other security artifacts in a WebLogic domain that uses an Oracle Internet Directory LDAP policy store.
For details, see the following topics in Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server:
For details about OPSS properties tune up, see section Oracle Platform Security Services Tuning in Oracle Fusion Middleware Performance and Tuning Guide.
A credential can hold user names, passwords, and tickets; credentials can be encrypted. Credentials are used during authentication, when principals are populated in subjects, and, further, during authorization, when determining what actions the subject can perform.
Oracle Platform Security Services includes the Credential Store Framework (CSF), a set of APIs that applications can use to create, read, update, and manage credentials securely. A typical use of the credential store is to store user names and passwords to access some external system, such as a database or an LDAP-based repository.
This chapter is divided into the following sections:
OPSS supports the following types of credentials according to the data they contain:
In CSF, a credential is uniquely identified by a map name and a key name. Typically, the map name corresponds with the name of an application and all credentials with the same map name define a logical group of credentials, such as the credentials used by the application. The pair of map and key names must be unique for all entries in a credential store.
Oracle Wallet is the default file-based credential store, and it can store X.509 certificates; production environments typically use either an Oracle Internet Directory LDAP-based or an RDBMS DB-based credential store.
OPSS supports storing encrypted data in file- and LDAP-based credential stores. (In case of DB-based credential stores, data is always encrypted.) OPSS uses an encryption key to encrypt and decrypt data when it is read from or written to the credential store. To enable the encryption of credentials in a file- or LDAP-based store, set the following property in the credential store service instance of the file jps-config.xml
:
By default, credentials are kept in clear-text.
The Encryption Key
Assuming the above property set, OPSS automatically generates a random 256-bit AES key when the domain is restarted. Since the keys generated are practically distinct, a domain uses a unique encryption key. In addition to the first generated encryption key, there may be other keys (roll-over keys) automatically generated over time and used to encrypt and decrypt data. The only way to get a roll-over key is by restarting the domain.
When a new roll-over key is produced, data in the credential store is not immediately re-encrypted with the new key. Instead, data is re-encrypted (with the new key) only when it is written. This implies that to get all data to use the same encryption key, all credentials must be read and written.
Domains Sharing a Credential Store
If two or more domains share a credential store and encryption is enabled in that store, then each of those domains must use the same encryption key; this applies regardless of the type, LDAP or DB, of the credential store. To ensure this, OPSS provides offline scripts to export, import, and restore keys in the domain bootstrap wallet, so that an encryption key generated in one domain can be carried over to all other domains sharing the credential store. For details about these commands, see Managing Credentials with OPSS Scripts.
The following scenarios illustrate how to set credential encryption in a cluster of two domains, Domain1 and Domain2. (In case of more than two domains, treat each additional domain as Domain2 in the illustration below.)
Note: The following scenarios assume that the credential store is LDAP-based, but the use ofexportEncryptionKey and exportEncryptionKey to import and export keys across domains applies also to DB-based credential stores (in which data is always encrypted). |
First Scenario
Assume that Domain1 has reassociated to an LDAP-based credential store, and Domain2 has not yet joined to that store. Then, to enable credential encryption on that store, proceed as follows:
encrypt
to true in Domain1's jps-config.xml
file and restart the domain. exportEncryptionKey
to extract the key from Domain1's bootstrap wallet into the file ewallet.p12
; note that the value of the argument keyFilePassword
passed to the script must be used later when importing that key into another domain. encrypt
to true in Domain2's jps-config.xml
file. At this point you can complete the procedure in one of two ways; both of them use the OPSS script reassociateSecurityStore
, but with different syntaxes. For details about this script, see Section 9.3.29, "reassociateSecurityStore."
The first approach is as follows:
reassociateSecurityStore
to reassociate Domain2's credential store to that used by Domain1; use the argument join
and do not use the arguments keyFilePassword
and keyFilePath
. importEncryptionKey
to write the extracted ewallet.p12
into Domain2's bootstrap wallet; note that the value of the argument keyFilePassword
must be identical to the one used when the file ewallet.p12
was generated. The second approach is as follows:
reassociateSecurityStore
to reassociate Domain2's credential store to that used by Domain1; use the arguments join
, keyFilePassword
, and keyFilePath
. Second Scenario
Assume that Domain1 has reassociated to an LDAP-based credential store and Domain2 has already joined to that store. Then, to enable credential encryption on that store, proceed as follows:
encrypt
to true in Domain1's jps-config.xml
file and restart the domain. exportEncryptionKey
to extract the key from Domain1's bootstrap wallet into the file ewallet.p12
; note that the value of the argument keyFilePassword
passed to the script must be used later when importing that key into another domain. jps-config.xml
file. importEncryptionKey
to write the extracted ewallet.p12
into Domain2's bootstrap wallet; note that the value of the argument keyFilePassword
must be identical to the one used when the file ewallet.p12
was generated. Important Note: In case of multiple domains sharing a credential store in which encryption has been enabled, every time a roll-over key is generated in one of those domains, the administrator must import that key to each of the other domains in the cluster using the OPSS scriptsexportEncryptionKey and importEncryptionKey . |
Credentials can be provisioned, retrieved, modified, or deleted, but only by a user in the appropriate administration role. The following sections explain how an administrator can manage credentials using Fusion Middleware Control pages or OPSS scripts, and how code can access data in the CSF.
The following procedure explains how to use Fusion Middleware Control to manage credentials.
The area Credential Store Provider is read-only; when expanded, it displays the credential store provider currently in use in the domain or cell.
To create a credential map:
To add a key to a credential map:
If Password was selected, enter the required fields (Key, User Name, Password, Confirm Passwords).
If Generic was selected, enter the required field Key and the credential information either as text (select Enter as Text radio button), or as a list of key-value pairs (select Enter Map of Property Name and Value Pairs radio button); to add a key-value pair, click Add Row, and then enter the Property Name, Value, and Confirm Value in the added arrow.
Figure 10-1 illustrates th dialog used to create a password key.
To edit a key:
Figure 10-2 illustrates the dialog used to edit a generic key.
For specific considerations that apply to ADF applications only, see section How to Edit Credentials Deployed with the Application in Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework.
An OPSS script is either a WLST script, in the context of the Oracle WebLogic Server, or a WASAdmin script, in the context of the WebSphere Application Server. The scripts listed in this section apply to both platforms: WebLogic Application Server and WebSphere Application Server.
An online script is a script that requires a connection to a running server. Unless otherwise stated, scripts listed in this section are online scripts and operate on a policy store, regardless of whether it is file-, LDAP-, or DB-based. There are a few scripts that are offline, that is, they do not require a server to be running to operate.
Read-only scripts can be performed only by users in the following WebLogic groups: Monitor, Operator, Configurator, or Admin. Read-write scripts can be performed only by users in the following WebLogic groups: Admin or Configurator. All WLST scripts are available out-of-the-box with the installation of the Oracle WebLogic Server.
WLST scripts can be run in interactive mode or in script mode. In interactive mode, you enter the script at a command-line prompt and view the response immediately after. In script mode, you write scripts in a text file (with a py file name extension) and run it without requiring input, much like the directives in a shell script.
WASAdmin scripts can be run in interactive mode only. For details, see Oracle Fusion Middleware Third-Party Application Server Guide.
For platform-specific requirements to run an OPSS script, see Important Note.
OPSS provides the following scripts on all supported platforms to administer credentials (all scripts are online, unless otherwise stated):
The script listCred
returns the list of attribute values of a credential in the credential store with given map name and key name. This script lists the data encapsulated in credentials of type password only.
Script Mode Syntax
Interactive Mode Syntax
The meanings of the arguments (all required) are as follows:
map
specifies a map name (folder). key
specifies a key name. Example of Use
The following invocation returns all the information (such as user name, password, and description) in the credential with map name myMap
and key name myKey
:
The script updateCred
modifies the type, user name, and password of a credential in the credential store with given map name and key name. This script updates the data encapsulated in credentials of type password only. Only the interactive mode is supported.
Interactive Mode Syntax
The meanings of the arguments (optional arguments are enclosed by square brackets) are as follows:
map
specifies a map name (folder) in the credential store. key
specifies a key name. user
specifies the credential user name. password
specifies the credential password. desc
specifies a string describing the credential. Example of Use
The following invocation updates the user name, password, and description of the password credential with map name myMap
and key name myKey
:
The script createCred
creates a credential in the credential store with a given map name, key name, user name and password. This script can create a credential of type password only. Only the interactive mode is supported.
The meanings of the arguments (optional arguments are enclosed by square brackets) are as follows:
map
specifies the map name (folder) of the credential. key
specifies the key name of the credential. user
specifies the credential user name. password
specifies the credential password. desc
specifies a string describing the credential. Example of Use
The following invocation creates a password credential with the specified data:
The script deleteCred
removes a credential with given map name and key name from the credential store.
Script Mode Syntax
Interactive Mode Syntax
The meanings of the arguments (all required) are as follows:
map
specifies a map name (folder). key
specifies a key name. Example of Use
The following invocation removes the credential with map name myMap
and key name myKey
:
The offline script modifyBootStrapCredential
modifies the bootstrap credentials configured in the default jps context, and it is typically used in the following scenario: suppose that the policy and credential stores are LDAP-based, and the credentials to access the LDAP store (stored in the LDAP server) are changed. Then this script can be used to seed those changes into the bootstrap credential store.
This script is available in interactive mode only.
Interactive Mode Syntax
The meanings of the arguments (all required) are as follows:
jpsConfigFile
specifies the location of the file jps-config.xml
relative to the location where the script is run. username
specifies the distinguished name of the user in the LDAP store. password
specifies the password of the user. Example of Use
Suppose that in the LDAP store, the password of the user with distinguished name cn=orcladmin
has been changed to welcome1
, and that the configuration file jps-config.xml
is located in the current directory.Then the following invocation changes the password in the bootstrap credential store to welcome1
:
Any output regarding the audit service can be disregarded.
The offline script addBootStrapCredential
adds a password credential with given map, key, user name, and user password to the bootstrap credentials configured in the default jps context of a jps configuration file.
This script is available in interactive mode only.
Interactive Mode Syntax
The meanings of the arguments (all required) are as follows:
jpsConfigFile
specifies the location of the file jps-config.xml
relative to the location where the script is run. map
specifies the map of the credential to add. key
specifies the key of the credential to add. username
specifies the name of the user in the credential to add. password
specifies the password of the user in the credential to add. Example of Use
The following invocation adds a credential to the bootstrap credential store:
The offline script exportEncryptionKey
extracts the encryption key from a domain's bootstrap wallet to the file ewallet.p12
.
Interactive Mode Syntax
The meanings of the arguments (all required) are as follows:
jpsConfigFile
specifies the location of the file jps-config.xml
relative to the location where the script is run. keyFilePath
specifies the directory where the file ewallet.p12
is created; note that the content of this file is encrypted and secured by the value passed to keyFilePassword
. keyFilePassword
specifies the password to secure the file ewallet.p12
; note that this same password must be used when importing that file. The offline script importEncryptionKey
writes an encryption key from the file ewallet.p12
to a domain's bootstrap wallet.
Interactive Mode Syntax
The meanings of the arguments (all required) are as follows:
jpsConfigFile
specifies the location of the file jps-config.xml
relative to the location where the script is run. keyFilePath
specifies the directory where the ewallet.p12
is located. keyFilePassword
specifies the password used when the file ewallet.p12
was generated. The offline script restoreEncryptionKey
restores the last key to a bootstrap wallet.
Interactive Mode Syntax
The meaning of the argument (required) is as follows:
jpsConfigFile
specifies the location of the file jps-config.xml
relative to the location where the script is run. This chapter explains how to use the Keystore Service to administer keys and certificates.
The OPSS Keystore Service enables you to manage keys and certificates for SSL, message security, encryption, and related tasks. You use the Keystore Service to create and maintain keystores that contain keys, certificates, and other artifacts.
Each keystore created with the Keystore Service is uniquely referenced by an application stripe and keystore:
Keys and certificates created in the keystore reside in an application stripe or product, and each stripe in a domain is uniquely named.
The keystore name is unique within an application stripe. Each product or application is allowed to create more than one key store within its application stripe.
Thus (appstripe1, keystoreA)
is unique and distinct from (appstripe1, keystoreB)
, which is distinct from (appstripe2, keystoreA)
.
In turn, each keystore may contain the following entries, referenced by an alias that is unique within the keystore :
The Keystore Service lets you create two types of keystores:
These types of key stores are protected by authorization policies and any access to them by runtime code is protected by code source permissions. The key data in the backend is encrypted using an encryption key that is generated uniquely per domain.
These types of key stores are protected both by authorization policies and key store and/or key passwords. Any access to them by runtime code requires both code source permissions as well as access to the key store and key password (if different from the key store password). The key data in the backend is encrypted using the key store/key password through password based encryption (PBE).
It is recommended that you use permission-protected keystores for applications. If you require high security and are willing to manage passwords, however, consider using keystores that are both password- and permission-protected.
Note: The Keystore Service does not manage passwords for keystore or keys. The product or application is responsible for managing them in an appropriate repository. For example, you may choose to store the passwords for your applications in a credential store. |
Although each application may configure multiple keystores for its SSL usage, a domain-level trust store comes pre-configured for all products and applications to use for trust management.
This domain trust store contains the trusted certificates of most well-known third-party Certificate Authorities (CAs) as well as the trusted certificate of the demo CA that is configured with the Keystore Service. Each application can simply point to this domain trust store for its SSL needs, eliminating the need to create a dedicated trust store for this task.
One-Way SSL
For one-way SSL, applications can simply use the domain trust store and do not need to create any keystore or trust store.
Two-Way SSL
For two-way SSL, applications should create only the keystore containing their identity certificate, and use the domain trust store for trust.
Note: The domain trust store is a shared store for all products and applications in a domain. The decision to add or remove trust should not be taken lightly since it may affect all other products in the domain.Consider creating a custom trust store only if a product's trust management requirements are not met by the domain trust store. |
The Keystore Service uses a dedicated set of commands for keystore operations such as creating and managing keystores, exporting certificates, and generating keypairs. While their usage is similar, these commands are distinct from other OPSS commands.
The starting point for using the Keystore Service command set is getOpssService
, which gets an OPSS service command object that enables you to:
The general syntax is:
where
variable
stores the command object KeyStoreService
'. For example:
To obtain help for any Keystore Service command, start by obtaining a service command object as explained in Section 11.2. Use this object in conjunction with the help command and the command in question.
To obtain a list of all Keystore Service commands, enter:
To obtain help for a specific command, enter:
For example, the following returns help for the exportKeyStore
command:
This section provides a reference to the keystore service commands, which are listed in Table 11-1.
Table 11-1 Keystore Service Commands
Command | Description |
---|---|
Changes the password for a key. | |
Changes the password of a keystore. | |
Creates a new keystore. | |
Deletes the named keystore. | |
Deletes a keystore entry. | |
Exports a keystore to file. | |
Exports a certificate, trusted certificate, or certificate chain. | |
Generates and exports a certificate request. | |
Generates a key pair in a keystore. | |
Generates a symmetric key in a keystore. | |
Retrieves information about a certificate or trusted certificate. | |
Retrieves secret key properties. | |
Imports a keystore from a file. | |
Imports a certificate, trusted certificate or certificate chain. | |
Lists expiring certificates and optionally renews them. | |
Lists the aliases in a keystore. | |
Lists the keystores in a stripe. |
Description
Changes the password for a key.
Syntax
where:
Example
Description
Changes the password of a keystore.
Syntax
where:
Example
Description
Creates a new keystore.
Syntax
where:
Example
Description
Deletes the named keystore.
Syntax
where:
Example
Description
Deletes a keystore entry.
Syntax
where:
Example
Description
Exports a keystore to a file.
Syntax
where:
Example
Description
Exports a certificate, trusted certificate or certificate chain.
Syntax
where:
Example
Description
Generates and exports a certificate request.
Syntax
where:
Example
Description
Generates a key pair in a keystore and wraps it in a demo CA-signed certificate.
Syntax
where:
Example
Description
Generates a symmetric key in a keystore.
Syntax
where:
Example
Description
Retrieves information about a certificate or trusted certificate.
Syntax
where:
keypassword= the key password.
Example
Description
Retrieves secret key properties like the algorithm.
Syntax
where:
Example
Description
Imports a keystore from file.
Syntax
where:
Example
Description
Imports a certificate, trusted certificate or certificate chain.
Syntax
where:
Example
Description
Lists expiring certificates and optionally renews them.
Syntax
where:
true
for automatically renewing expiring certificates, false
for only listing them. Example
Description
Lists the aliases in a keystore for a given type of entry.
Syntax
where:
Examples
Description
Lists all the keystores in a stripe.
Syntax
where:
Examples
In Oracle Fusion Middleware 11g Release 1 (11.1.1), auditing provides a measure of accountability and answers the "who has done what and when" types of questions. This chapter introduces auditing in Oracle Fusion Middleware. It contains the following topics:
This section contains these topics:
With compliance becoming an integral part of any business requirement, audit support is also becoming a focus in enterprise deployments. Customers are looking for application vendors to provide out-of-the-box audit support. In addition, middleware customers who are deploying custom applications would like to centralize the auditing of their deployed applications wherever audit is appropriate.
IT organizations are looking for several key audit features driven by compliance, monitoring, and analytics requirements.
Compliance is obviously a major requirement in the enterprise. With regulations such as Sarbanes-Oxley (financial) and Health Insurance Portability and Accountability Act (healthcare), many customers must now be able to audit on identity information and user access on applications and devices. These include events like:
This allows compliance officers to perform periodic reviews of compliance policies.
The audit data naturally provides a rich set of data for monitoring purpose. In addition to any log data and component metrics that are exposed, audit data can be used to create dashboards and to build Key Performance Indicators (KPIs) for alerts to monitor the health of the various systems on an ongoing basis.
Analytics
Audit data can also be used in assessing the efficacy of controls through analysis on the audit data. The data can also be used for risk analysis. Based on historical data, a risk score can be calculated and assigned to any user. Any runtime evaluation of user access can include the various risk scores as additional criteria to protect access to the systems.
To satisfy the audit requirements, IT organizations often battle with the deficiencies in audit support for their deployed applications. There is no reliable standard for:
As a result, today's audit solutions suffer from a number of key drawbacks:
These factors are costing IT organization considerable amount of time and resources to build and maintain any reasonable audit solutions. With the data scattered among individual silos, and the lack of consistency and centralization, the audit solutions also tend to be fragile with idiosyncrasies among applications from different vendors with their current audit capabilities.
Oracle Fusion Middleware Audit Framework, introduced in11g Release 1 (11.1.1), is designed to provide a centralized audit framework for the middleware family of products. The framework provides audit service for the following:
See Also: Understanding Key Oracle Fusion Middleware Concepts in the Oracle Fusion Middleware Administrator's Guide. |
Key features of the Oracle Fusion Middleware Audit Framework include:
See Chapter 14, "Using Audit Analysis and Reporting" for details.
Audit data store (database) and files (bus-stop) are available. Maintaining a common location for all audit records simplifies maintenance.
Using an audit data store lets you generate reports with Oracle Business Intelligence Publisher.
Highlights of the audit trail include:
Oracle Fusion Middleware Audit Framework offers a unified method for configuring audit policies in the domain.
wlst
for command-line, script-based configuration This section introduces basic concepts of the Oracle Fusion Middleware Audit Framework:
The Oracle Fusion Middleware Audit Framework consists of the following key components:
These are APIs provided by the audit framework for any audit-aware components integrating with the Oracle Fusion Middleware Audit Framework. During runtime, applications may call these APIs where appropriate to audit the necessary information about a particular event happening in the application code. The interface allows applications to specify event details such as username and other attributes needed to provide the context of the event being audited.
The Oracle Fusion Middleware Audit Framework provides a set of generic events for convenient mapping to application audit events. Some of these include common events such as authentication. The framework also allows applications to define application-specific events.
These event definitions and configurations are implemented as part of the audit service in Oracle Platform Security Services. Configurations can be updated through Enterprise Manager (UI) and WLST (command-line tool)
Bus-stops are local files containing audit data records before they are pushed to the audit data store. In the event that no audit data store is configured, audit data remains in these bus-stop files. The bus-stop files are simple text files that can be queried easily to look up specific audit events. When an audit data store is in place, the bus-stop acts as an intermediary between the component and the audit data store. The local files are periodically uploaded to the audit data store based on a configurable time interval.
A key advantage of the audit data store is that audit data from multiple components can be correlated and combined in reports, for example, authentication failures in all middleware components, instances and so on.
As its name implies, the audit loader loads audit data from the audit bus-stop into the audit data store, if one is configured. For Java component auditing, the audit loader is is a startup class that is started as part of the container start-up. For system components, the audit loader is a periodically spawned process that is invoked by OPMN.
The audit data store is a database that contains a pre-defined Oracle Fusion Middleware Audit Framework schema, created by Repository Creation Utility (RCU). Once configured, all the audit loaders are aware of the audit data store and upload data to it periodically. The audit data in the store is expected to be cumulative and will grow overtime. Ideally, this should not be an operational database used by any other applications - rather, it should be a standalone RDBMS used for audit purposes only.
The audit database can store audit events generated by Oracle components as well as user applications integrated with the audit framework.
The audit metadata store contains audit event definitions for components and applications.
All audit configuration is managed through audit configuration MBeans. For Java components and applications, these MBeans are present in the domain administration server and the audit configuration is centrally managed. For system components, separate MBean instances are present for every component instance. Enterprise Manager UI and command-line tools manage Audit configuration using these MBeans.
The data in the audit data store is exposed through pre-defined reports in Oracle Business Intelligence Publisher. The reports allow users to drill down the audit data based on various criteria. For example:
You can also use Oracle Business Intelligence Publisher to create your own audit reports.
The process can be illustrated by looking at the actions taken in the framework when an auditable event (say, login) occurs within an application server instance:
Note: The architecture shown in Figure 12-1 contains an audit data store; if your site did not configure an audit data store, the audit records reside in the bus-stop files. |
Application Behavior in Case of Audit Failure
It is important to note that an application does not stop execution if it is unable to record an audit event for any reason.
This section introduces key concepts in the Oracle Fusion Middleware Audit Framework.
Audit-Aware Components
The term "audit-aware" refers to components that are integrated with the Oracle Fusion Middleware Audit Framework so that audit policies can be configured and events can be audited for those components. Oracle Internet Directory is an example of an audit-aware component.
Stand-alone applications can integrate with the Oracle Fusion Middleware Audit Framework through configuration with the jps-config.xml fi
le. For details, see see Chapter 28.
Audit Metadata Store
The audit metadata store contains audit event definitions for components as well as applications integrated with the audit framework.
Audit Data Store
The audit data store is the repository for audit event data.
Note: The metadata store is separate from the audit data store. |
Audit Loader
The Audit Loader is a module of the Oracle WebLogic Server instance and provides process control for that instance. The audit loader is responsible for collecting the audit records for all components running in that instance and loading them to the audit data store.
Audit Policy
An audit policy is a declaration of the type of events to be captured by the audit framework for a particular component. For Java components, the audit policy is defined at the domain level. For system components, the audit policy is managed at the component instance level.
Oracle Fusion Middleware Audit Framework provides several pre-defined policy types:
This refers to the component type to be audited; for example, Oracle Internet Directory is a source of auditable events during authentication.
For lists of the events that can be audited for each component, see Section C.1, "Audit Events".
Certain audit events implement filters to control when the event is logged. For example, a successful login event for the Oracle Internet Directory component may be filtered for specific users.
For details, see Section 13.3, "Managing Audit Policies".
Oracle Platform Security Services
Oracle Platform Security Services, a key component of the Oracle Fusion Middleware 11g, is the Oracle Fusion Middleware security implementation for Java features such as Java Authentication and Authorization Service (JAAS) and Java EE security.
For more information about OPSS, see Section 1.1, "What is Oracle Platform Security Services?".
Audit metadata refers to information about audit events, their attributes and categories.
For details, see Chapter 28.
As shown in Figure 12-1, audit data can reside in two types of storage:
Bus-stop files are the default out-of-the-box storage mechanism for audit records:
Bus-stop files are text-based and easy to query. For further details, see Section 12.3.1, "Audit Architecture"
If using a database, audit records generated by all components in all Oracle Fusion Middleware 11g instances in the domain are stored in the same store. You must use an audit data store to utilize Oracle Business Intelligence Publisher reports.
You can move from file-based storage to an audit data store. This requires a specific configuration procedure. See Section 13.2.3, "Configure a Database Audit Data Store for Java Components" for details.
Advantages of Using a Database Store
Having the audit records in the bus-stop files has some practical limitations:
Thus, there are certain advantages to using a database audit data store:
For these reasons, Oracle recommends that customers switch to a database store for enhanced auditing capabilities.
With Oracle Fusion Middleware 11g, you can utilize Oracle Business Intelligence as a full-featured tool for structured reporting.
A large number of pre-defined reports are available, such as:
With Oracle Business Intelligence:
Note that Oracle Business Intelligence works with the database audit store only, and is not usable with bus-stop files.
The pre-defined audit report types available with Oracle Business Intelligence include:
For further details, see Section C.2, "Pre-built Audit Reports." You can also use the audit schema details to create custom audit reports as needed.
This chapter explains how to perform day-to-day audit administration tasks.
See Also: Chapter 12, "Introduction to Oracle Fusion Middleware Audit Framework" for background information about auditing in Oracle Fusion Middleware. |
The audit administrator should plan the site's audit setup carefully by following the steps in these areas:
This includes planning the type of store to use for audit records, data store configuration details, and so on.
See Section 13.2, "Managing the Audit Data Store" for details.
The administrator must configure the appropriate audit policies to ensure that the required audit events are generated.
This is an ongoing activity since the audit policies must be able to reflect changes to the application environment, addition of components and users, and so on.
See Section 13.3, "Managing Audit Policies" for details.
This includes planning for and configuring audit reports and queries.
See Chapter 14, "Using Audit Analysis and Reporting" for details.
This includes planning/increasing the database size required to store the audit data generated, backing up the audit data and purging the audit data based on company policy.
See Section 13.5, "Advanced Management of Database Store" for details about audit data store administration.
Out of the box, the audit framework uses the file system to store audit records. In a production environment, however, Oracle recommends that you use a database audit data store to provide scalability and high-availability for the audit framework.
In addition, an audit data store residing in a database allows the audit data to be viewed through Oracle Business Intelligence Publisher with pre-packaged audit reports that are available with that product. Oracle Business Intelligence Publisher is available in the 11g Release 1 (11.1.1) CD pack.
This section explains these audit data store management tasks in detail:
To switch to a database as the permanent store for your audit records, you first use the Repository Creation Utility (RCU) to create a database store for audit data.
Note: The bus-stop files store audit records in the absence of database storage. |
This section explains how to create the audit schema. Once the database schema is created, you can:
Note: This discussion assumes that RCU and the database is already installed in your environment. See the Installation Guide for more information. |
Before You Begin
Before you begin, make sure to collect the details on which database to use, along with the DBA credentials to use.
Configuring the Database Schema
Take these steps to configure a schema for the audit data store:
$RCU_HOME/bin
and execute the RCU utility. IDM
. This process will take several minutes to complete.
As explained in Section 13.2.1, "Create the Audit Schema using RCU", after you create a database schema to store audit records in a database, you must set up an Oracle WebLogic Server audit data source that points to that schema.
Take these steps to set up an audit data source:
Note: This task is performed with the Oracle WebLogic Server administration console. |
host
:7001/consoleAudit Data Source-0
. If deploying to a managed cluster server, also check AdminServer; this ensures that the data source is listed in the audit data store when switching from file to database store.
Click Next.
SID
. IAU
for the audit schema. For example, if you gave the prefix as test
, then the schema name is test_iau
. Click Next.
For scalability and high availability, you can configure Oracle Real Application Clusters for your audit data.
For details, see:
After the schema is created, configuring a database-based audit data store involves:
This section describes the following tasks related to audit data store configuration:
Note: These steps configure the audit data store for Java components only. Separate steps are needed to configure the audit data store for system components. See Section 13.2.4, "Configure a Database Audit Data Store for System Components". By configuring the same database to store audit records for Java components and system components, you can ensure that reports for both types of components can be viewed together. |
Note: This task is performed with Oracle Enterprise Manager Fusion Middleware Control. |
To view the current audit data store configuration, navigate to Domain, then Security, then Audit Store.
This page shows:
See Section 13.2.2, "Set Up Audit Data Sources" for datasource examples.
You can change from storing audit records in a file to using a database audit data store.
Take these steps to configure the audit data store:
Note: You can also use the WLSTsetAuditRepository() command to change the audit data store settings. See Appendix D, Fusion Middleware Audit Framework Reference for details. |
Since a database is the recommended store for audit records, switching from database to file mode is discouraged. However, Section 13.3.4, "Manage Audit Policies Manually" discusses a property called the audit.repositoryType
whose value can be set to 'File
' to switch to file storage.
Note: You cannot use Fusion Middleware Control or WLST to switch from database to file mode; this requires manual configuration as explained in Section 13.3.4, "Manage Audit Policies Manually". |
When you switch from database to file, events that were collected in the database are not transferred back to the file system. If this switch is temporary, then the audit events collected in the file are automatically pushed to database when you switch to database store again.
Oracle Process Manager and Notification Server (OPMN) manages several system components running in Oracle WebLogic Server. For these components, the mechanism through which the audit events are pushed from local bus-stop files to the database audit data store is handled by OPMN.
Note: If your system component runs in a clustered deployment, you must configure the audit data store at each instance of the component so that all instances push out records to the store. |
You must execute the following steps in every instance of the component to configure an audit data store:
Note: These steps configure the audit data store for system components only. Separate steps are needed to configure the audit data store for Java components. See Section 13.2.3, "Configure a Database Audit Data Store for Java Components". By configuring the same database to store audit records for Java components and system components, you can ensure that reports for both types of components can be viewed together. |
opmn.xml
file, which resides in rmd-definitions
element, which looks like this: By default the interval value is set very high (31536000 seconds) so that the audit loader is effectively disabled. Change this to a reasonable interval such as 15 seconds.
Note: Insert these lines after the<ias-instance> tag is closed. |
ORACLE_HOME
, ORACLE_INSTANCE
, and COMMON_COMPONENTS_HOME
are defined. For example: Enter the appropriate values for jdbcString, username, password.
Note: The above syntax is relevant to Linux. For Windows, substitute ":" with ";" to separate the jars in the classpath. |
$ORACLE_INSTANCE/diagnostics/logs/OPMN/opmn/rmd.out
. The output will look like this Since a database is the recommended store for audit records, switching from database to file mode is discouraged. However, if needed, you can use the same steps that were shown in the preceding task for configuring the audit data store through the opmn.xml
file to update the RMD definition to deconfigure the audit data store. Locate the rmd-definitions
element and replace the existing RMD definition for audit loader:
Note: If your system component runs in a clustered deployment, you must deconfigure the audit data store at each instance of the component. |
jdbcString
- Change the database JDBC connection string back to the default string jdbc:oracle:thin:@host:port:sid
. interval
- Set this interval back to the default value of 31536000. Save and exit the file, and reload OPMN.
This section contains topics related to maintaining file-based storage of audit records, including:
Note: Manually purging audit files to free up space is not recommended. Instead, use file and directory sizing features to control space, as described below. |
Location of Bus-stop Files
Bus-stop files for Java components are located in:
Bus-stop files for system components are located in:
File Size
Java Components
The size of a file for the file storage mode can be managed using the max.fileSize
property described in the configuration file jps-config.xml
. This property controls the maximum size of a bus-stop file for Java components.
Specify the sizes in bytes as described in Section 13.3.4, "Manage Audit Policies Manually".
System Components
The size of a file for the file storage mode can be set in the auditconfig.xml file. SeeSection 13.3.4.4, "Manually Configuring Audit for System Components".
Note: If you switch from file to database store for audit data, all the events collected in the audit files are pushed into the database tables and the audit files are deleted. |
Directory Size
Java Components
The size of a directory for the file can be managed using the max.DirSize
property described in the configuration file jps-config.xml
. This property controls the maximum size of a bus-stop directory.
Specify the sizes in bytes as described in Section 13.3.4, "Manage Audit Policies Manually".
System Components
The size of a directory for the file storage mode can be set in the auditconfig.xml file. See Section 13.3.4.4, "Manually Configuring Audit for System Components".
As shown in Figure 12-1, Common Audit Framework's audit loader moves records from bus-stop files to the audit data store. The mechanism driving the audit loader depends on the application environment:
This section explains how to set up and execute the stand-alone audit loader:
Before you can run the stand-alone audit loader, you must a) configure certain properties, and b) ensure that the password for the database schema user exists in the secret store.
You must configure the following properties:
ORACLE_HOME
environment variable COMMON_COMPONENTS_HOME
environment variable ORACLE_INSTANCE
environment variable auditloader.jdbcString
system property auditloader.username
system property The password for the database schema user is kept in the secret store. Storing the password is a one-time operation for which you use the StandAloneAuditLoader
command with the -Dstore.password=true
option.
Issue the StandAloneAuditLoader
command to store the password as follows:
Issue the StandAloneAuditLoader
command to load audit records as follows:
You can schedule this command through a batch or kron job so that audit records are periodically uploaded to the audit data store.
What is an Audit Policy?
An audit policy is a declaration of the type of events to be captured by the audit framework for a particular component. For Java components, the audit policy is defined at the domain level. For system components, the audit policy is managed at the component instance level.
For example, an audit policy could specify that all authentication failures should be audited for an Oracle Internet Directory instance.
How Policies are Configured
Oracle Fusion Middleware Audit Framework lets you configure audit policies and provides highly granular controls over the types of events and data being audited. Policies can be configured through the Enterprise Manager UI tool and through the WLST command-line interface.
Policy changes do not require server or instance restart.
The remainder of this section explains how to view, and update audit policy:
See Also:
|
The domain Audit Policy Settings page manages audit events for all Java components such as Oracle Identity Federation, and system libraries like Oracle Platform Security Services.
Note:
|
Each component and its events are organized in a tree structure under the Name column. The tree can be expanded to reveal the details of the events available.
Use these steps to view and update the currently configured audit policies:
Domain
> Security
> Audit Policy Settings
. The Audit Policy Settings page appears Note: The table of events under the drop-down box cannot be edited for the pre-defined levels. It can only be edited in custom level. |
The table shows the applications running in the domain.
The table consists of these columns:
A pencil icon indicates that a filter is available for the corresponding event.
Click on the icon to bring up the Edit Filter dialog.
Note: Each filter attribute has a formal name and a display name. You may see either name in the filter edit dialog. Display names are shown in the drop-down, while names are shown in the edit dialog. For example, if you select 'Client Address IP' in the drop-down box, it is renamed to 'RemoteIP' after you add it to the filter expression. |
Notes:
|
Click Revert to discard any policy changes and revert to the existing policy.
About Component Events
Each component and application in the domain defines its own set of auditable events. Thus, when you expand the Names column of the table, each component displays a list of events that applies to instances of that component.
This section describes how to view and update audit policies for system components that are managed through OPMN.
Notes:
|
Audit policy for system components is managed in their home pages. The domain Audit Policy Settings page manages audit events for Java components running in the domain.
The events are organized in a tree structure under the Name column. The tree can be expanded to reveal the details of the events available.
Use these steps to view and update audit policies for OPMN-managed components:
Security
, then Audit Policy
. The Audit Policy Settings page appears Note: The table of events under the drop-down box cannot be edited for the pre-defined levels. It can only be edited in custom level. |
The table shows the events you can audit for the component instance. This example is for Oracle Internet Directory:
The table consists of these columns:
A pencil icon indicates that a filter is available for the corresponding event.
Click on the icon to bring up the Edit Filter dialog.
Note: Each filter attribute has a formal name and a display name. You may see either name in the filter edit dialog. Display names are shown in the drop-down, while names are shown in the edit dialog. For example, if you select 'Client Address IP' in the drop-down box, it is renamed to 'RemoteIP' after you add it to the filter expression. |
Notes:
|
Click Revert to discard any policy changes and revert to the existing policy.
This section explains how to view and update audit policies using the Oracle WebLogic Scripting Tool (WLST) command-line tool:
Note: When running auditWLST commands, you must invoke the WLST script from the Oracle Common home. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide for more information. |
Take these steps to view audit policies with WLST:
Note: This discussion assumes that you are invoking WLST interactively. For details about WLST and the different options for invoking the tool, see "Getting Started Using the Oracle WebLogic Scripting Tool (WLST)" in the Oracle Fusion Middleware Administrator's Guide. |
servername
', 'password
', 'localhost:portnum
')getAuditPolicy
command to view the audit policy configuration. For example: getNonJava EEAuditMBeanName
command. See Section C.4.1, "getNonJava EEAuditMBeanName" for details. getAuditPolicy
command and include the MBean name to view the audit policy configuration. For example: Take these steps to update audit policies with the Oracle WebLogic Scripting Tool (WLST) command-line tool:
Note: This discussion assumes that you are invoking WLST interactively. For details about WLST and the different options for invoking the tool, see "Getting Started Using the Oracle WebLogic Scripting Tool (WLST)" in the Oracle Fusion Middleware Administrator's Guide. |
servername
', 'password
', 'localhost:portnum
')mydomain
: setAuditPolicy
command to update the audit policy configuration. setAuditPolicy
command and include an MBean name to update the audit policy configuration. save
after issuing a setAuditPolicy
, or importAuditConfig
, command. If you do not invoke save, the new settings will not take effect.
For an example of this call, see Managing Auditing by Using WLST in the Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory, which demonstrates this call for Oracle Internet Directory auditing.
See Also: The WLST command reference for details about WLST commands for audit. |
In this scenario, the domain's current policy audits a user named user1. We would like to add two names, user2 and user3, to the list of users who are always audited, and remove user1 from the list.
The following invocation of setAuditPolicy
performs this task:
In this scenario, the domain's current policy audits user logout events. We would like to remove the logout events from the policy and instead, audit login events.
The following invocation of setAuditPolicy
performs this task:
Note: This example uses the component type OHS for Oracle HTTP Server. Substitute the relevant component type when using the command. |
Notice that we had to set the Custom
filter preset to add and remove events.
When auditing is configured at the custom audit level, and you subsequently use WLST to switch to a different (non-custom) audit level, the custom audit settings are retained unless you explicitly remove those custom settings.
Note: This behavior only occurs when using WLST; if you use Fusion Middleware Control to manage audit configuration, the custom audit settings are cleared when you switch from the custom audit level to a different audit level. |
An example illustrates this behavior:
setauditpolicy
command. However, the filter that was set up as part of the custom audit level persists in the audit configuration. This section explains how to configure auditing policies and other features by manually updating:
jps-config.xml
for Java components This section contains these topics:
The jps-config.xml
domain configuration file can be found at this location:
The Audit Service Configuration in jps-config.xml
consists of the properties shown in Table F-9. Taken together, the set of properties and their values are known as the audit policy.
Example jps-config.xml file
Here is a sample file illustrating an audit policy:
In rare instances, you may wish to revert from using a (database) data store to using a file for audit records. This requires manual configuration of the property audit.loader.repositoryType
described in Table F-9.
To switch from database to file, set the audit.loader.repositoryType
to File
.
When you switch from database to file, events that were collected in the database are not transferred back to the file system. If this switch is temporary, the audit events collected in the file are automatically pushed to the database when you switch to a database store again.
System components do not use the jps-config.xml
file to store the audit configuration. Instead:
auditconfig.xml
file which is located in: auditconfig.xml
file which is located in: jps-config-jse.xml
file which is located in: jps-config.-jse.xml
file which is located in: Format of the auditconfig.xml File
Here is the format of the auditconfig.xml file:
Fusion Middleware Audit Framework provides a set of log files to help with audit administration. You can use these logs to trace errors and for diagnostic purposes when the audit framework is not functioning properly.
This section contains the following topics:
For a listing of all audit log locations, how to configure the loggers, and how to use the logs to diagnose issues, see Section L.1.1.6, "Audit Loggers".
Time stamps in the audit logs are recorded in Coordinated Universal Time. This may differ from the machine time depending on the machine's time zone setting.
The audit schema is created through the Repository Creation Utility (RCU). This section explains the organization of the audit schema and contains the following topics related to maintaining the schema:
See Also: For more information on RCU, see Oracle Fusion Middleware Repository Creation Utility User's Guide. |
The Oracle Fusion Middleware Audit Framework schema consists of the following:
IAU_BASE
IAU_DISP_NAMES_TL
OVDCOMPONENT
, OIDCOMPONENT
, JPS
and so on When generated, audit records are stored in a file; if an audit database store is configured, the audit loader stores each audit record in one row of the base table and one row of a component table:
CodeSource
) is written into the component table Note: The attributeComponentType in the bus-stop file determines which component table stores the record. |
The audit loader assigns unique sequential numbers to all records during storage.
Here is a sample bus-stop file for Oracle Platform Security Services. By default, this file is maintained in the directory
WebLogic Domain Home
/servers
/server_name
/diagnostics/auditlogs/JPS/audit.log
Figure Figure 13-1 shows the data in the base table and how it relates to the component-specific tables.
The average record size in the base table IAU_BASE
is approximately 0.3 KB. When you plan for tablespace sizing:
The attributes of the base table and the component-specific tables respectively are derived from these files:
Table 13-1 lists a few important attributes defined in the base table IAU_BASE
. The first four attributes are common in that table and all component tables. The primary key is defined as IAU_ID + IAU_TSTZORIGINATING
.
Table 13-1 Attributes of Base Table IAU_BASE
Attribute | Description |
---|---|
IAU_ID | A unique sequential number for every audit record |
IAU_TstzOriginating | Date and time when the audit event was generated (data type |
IAU_EventType | The type (name) of the audit event |
IAU_EventCategory | The category of the audit event |
IAU_EventStatus | The outcome of the audit event - success or failure |
IAU_MessageText | Description of the audit event |
IAU_Initiator | UID of the user who was doing the operation |
Note: ASEQUENCE , an Oracle database object, is created to coordinate the assignment of sequential numbers (IAU_ID) for audit records. |
You can use the listAuditEvents
WLST command to get a list of all attribute names for individual component tables.
For efficient queries, an index is created by default on the Timestamp (IAU_TSTZORIGINATING) in the base table and on each of the component-specific tables.
The default index in IAU_BASE
is named EVENT_TIME_INDEX
, and in the component tables it is named tableName
_INDEX
(such as OVDCOMPONENT_INDEX
, OIDCOMPONENT_INDEX
, JPS_INDEX
and so on).
Compliance regulations require that audit data be stored for long periods. A backup and recovery plan is needed to protect the data.
A good backup plan takes account of these basic guidelines:
The number of audit events generated depends on your audit policy. The number of audit events generated daily determines, in turn, how often you want to perform backups to minimize the loss of your audit data.
Consult you organization's compliance regulations to determine the frequency of backups and number of years for which audit data storage is mandatory.
Consult you organization's compliance regulations to determine the frequency of backups and the portion of audit data that needs to be easily accessible.
Oracle Database uses Oracle Recovery Manager (RMAN) for backup and recovery. For details, see:
http://www.oracle.com/technology/deploy/availability/htdocs/BR_Overview.htm
http://www.oracle.com/technology/deploy/availability/htdocs/rman_overview.htm
Note: The translation table,IAU_DISP_NAMES_TL , needs to be backed up only once, since it should not change over time. |
You can import and export the audit schema to migrate data if you started with multiple audit databases and wish to combine them into a single audit data store, or if you wish to change the database to scale up.
Oracle Database sites can utilize the utilities of Oracle Data Pump to import and export data. For details, refer to:
http://www.oracle.com/technology/products/database/utilities/htdocs/data_pump_overview.html
Not all database systems support partitioning, all the tables in the audit schema are unpartitioned by default.
Since audit data is cumulative and older data is never removed, if you store a high volume of audit data you should consider partitioning the audit schema, as it will allow for easier archiving.
Benefits of partitioning include:
In addition, partitioning makes archival much easier. For example, you can compress a singlve partition rather than having to partition the entire table.
In this example, IAU_BASE
is used as an example to demonstrate how to convert the unpartitioned tables in the audit schema into partitioned tables.
It is recommended that partitioning is done before using this schema for an audit data store to minimize the application down time.
Note: Two sample SQL scripts are shipped with the product:
|
The partitioning steps are as follows:
Note: It is recommended that you deactivate the audit loader prior to partitioning. See Section 13.2.4.1, "Deconfigure the Audit Data Store" for details. |
Note: New partitions should be created periodically for new quarters. |
Backup and recovery were discussed in Section 13.5.4, "Backup and Recovery". Note that read-only tablespaces can be excluded from whole database backup, so long as a backup copy was created. Thus, you can avoid unnecessarily repeating backups for the partitions of archived data residing on those tablespaces, improving performance.
Import and export were discussed in Section 13.5.5, "Importing and Exporting Data". Keep in mind that with a range-partitioned table it is much more efficient to drop a partition when you want to remove old data, rather than deleting the rows individually.
It is also easy to load a partition of new data without having to modify the entire table. However, you have to remove the default partition of "values less than (MAXVALUE
)" first, and add it back once finished, using a command like the following:
Once partitions are created, you can purge/backup a particular partition. Refer to your database documentation for details.
In the database mode, the audit loader automatically manages bus-stop files.
Partitioning enables individual partitions (or groups of partitions) to be stored on different storage tiers. You can create tablespaces in high-performance or low-cost disks, and create partitions in different tablespaces based on the value of the data or other criteria. It is also easy to move data in partitions between the tablespaces (storage tiers).
Here is an example:
Note : Partitions can be moved only in Range, List, System, and Hash partitioning schemes. |
The Oracle Information Lifecycle Management (ILM) Assistant is a free tool that shows you how to partition tables and advise you when it is the time to move partitions. For details, refer to:
This chapter describes how to configure audit reporting and how to view audit reports. It contains these topics:
When your audit data resides in a database, you can run pre-defined Oracle Business Intelligence Publisher reports and create your own reports on the data. This section contains these topics about configuring your environment for audit reports:
See Also: Oracle Business Intelligence Publisher Enterprise documentation at: |
Reports help auditors determine whether there are any violations with respect to various industry regulations such as HIPPA, SOX, and other regulatory compliance demands. Oracle Fusion Middleware Audit Framework is integrated with Oracle Business Intelligence Publisher for out-of-the box reports.
Pre-defined reports are available as part of the Oracle Fusion Middleware Audit Framework. These reports are integrated with Oracle Business Intelligence Publisher to work in conjunction with the audit data in the audit store.
Oracle Fusion Middleware Audit Framework ships with over twenty pre-built reports in 11g Release 1 (11.1.1). For convenience, the reports are grouped in Oracle Business Intelligence Publisher according to functional areas and by component.
The functional areas consists of the following:
The component-specific reports, as the name implies, are grouped based on the components themselves, for example, Oracle HTTP Server reports and Oracle Identity Federation reports.
Other features of Oracle Business Intelligence Publisher include:
You can view reports online, change report parameters, change output types (pdf, html, rtf, excel and others), modify the appearance of reports, export to the desired format, and send to an E-mail address, fax or other destination.
You can filter audit records to be included in the report using a range of options including the ability to modify the SQL used to extract records from the audit repository.
You can schedule reports to be run based on a range of criteria such as filters, templates, formats, locale, viewing restrictions and so on.
See Also: For more information about scheduling features, see the Oracle Business Intelligence Publisher Enterprise documentation at: |
You can design your own reports and specify the data model, layout, parameters, bursting (for example, you can enable delivery based on delivery preference).
See Also:
|
All the auditing reports available in Oracle Business Intelligence Publisher provide these report filtering and formatting options:
If you already have Oracle Business Intelligence Publisher 10.1.3.4 or later installed at your site, you can skip this section and go to Section 14.1.3, "Set Up Oracle Reports in Oracle Business Intelligence Publisher".
If you need to install Oracle Business Intelligence Publisher, follow the instructions provided with the Oracle Business Intelligence Publisher Companion CD.
See Also: Oracle Business Intelligence Publisher Enterprise documentation at: |
In this section you configure Oracle Business Intelligence Publisher to work with the audit datasource.
Note: 11g Release 1 (11.1.1.4.0) PS3 reports can work only with an 11g Release 1 (11.1.1.4.0) PS3 schema; they cannot work with an earlier schema such as 11g Release 1 (11.1.1).Details about upgrading schemas with the Patch Set Assistant are available in the Oracle Fusion Middleware Patching Guide. |
Take these steps to set up Oracle Business Intelligence Publisher for use with audit reports:
%BIP_HOME%\XMLP\Report
s. AuditReportTemplates.jar
into your Reports
folder. You should see a new folder called Oracle_Fusion_Middleware_Audit. You can find AuditReportTemplates.jar
at: Name the Data Source Audit
.
Note: The reports refer to the audit data source, so the naming convention is important. |
JNDI Name - 'jdbc/AuditDB'
Name the Data Source Audit
.
Note: The reports refer to the audit data source, so the naming convention is important. |
Enter the details for the URL, username, and password for the audit schema. (Note: The username and password consist of the audit schema name including a prefix, for example, username: dev_iau or test_iau.)
You can use the standard audit reports in their default formats out-of-the-box. However, if you wish to customize the appearance and other related aspects of the reports, you do so by setting up audit report templates.
From a report's Edit dialog, you can click the Layout option in the left panel to control layouts and output formats. Using this feature, you can:
See Also: Oracle Business Intelligence Publisher User's Guide. |
You can use the standard audit reports in their default formats out-of-the-box. However, if you wish to customize the scope of data and other related aspects of the reports, you do so by setting up audit report filters.
Oracle Business Intelligence Publisher provides both basic and advanced filtering options for your audit reports.
See Also: Oracle Business Intelligence Publisher User's Guide. |
Basic Filters
Clicking on the report's Schedule button brings up a page which you can use to schedule and administer the report.
In the Report Parameters area you can provide high-level filters to restrict the report:
For example, the Authentication Failures report can be filtered by:
Advanced Filters
Clicking on the report's Edit button brings up a page at which you can specify more detailed report filters and properties. This page consists of two panels. The left panel lets you select what element of the report is to be modified through these options. For each element you select, the right panel displays the corresponding information.
Clicking on the report's Schedule button brings up a page which you can use to schedule and administer the report. Information you can specify on this page includes:
Note: This feature assumes that the Oracle Business Intelligence Publisher repository is already configured. |
Oracle Fusion Middleware Audit Framework ships with a set of pre-defined reports that are designed to work, out-of-the-box, with Oracle Fusion Middleware components. These reports are organized into two main categories:
These reports capture common events such as authentication success and failures, account-related status (lockout, disabled, and so on). Many components have implemented audit capability for these common events. The common reports are located under the Common Reports subfolder of the Audit Reports, and all audit-enabled events from across the components are captured in these reports.
For example, "Authentication History" displays authentication history across all the components where authentication events are being captured.
You can use these reports to examine audit records for a specific area across components or to examine the audit records of a single user across multiple components for that specific area.
These reports focus on individual components. They are needed because not all audit events may be relevant to each component. The Component Specific folder serves two purposes. First, it identifies the valid reports among the Common Reports that are relevant to the component and show only the audit records for that component. Secondly, for some components, component-specific reports have been defined to suit the specific needs of that component. While audit records themselves are generic for all the components, the representation of an audit record may have component-specific requirements. For example, an access policy may need to be shown in a format to be useful.
For example, you can locate the Authentication History report in the Common folder, where it displays authentication events for all components. You can also find the same report under a component-specific folder, where it displays authentication events for that component only.
This report can be used to query audit data.
This section explains how to view audit reports using Oracle Business Intelligence Publisher.
Take these steps to view an audit report:
http://
host.domain.com:port/
xmlpserver/
The report is displayed.
Use relevant filters to limit the report to the desired records.
Note: Initially, the report is displayed with default filter values that you can modify. |
HTML - This is the default display format.
PDF - Displays a printable PDF view.
Data - Displays an unformatted XML data set.
To change the template type while viewing a report, select the type from the drop-down list and click View.
Each column header also acts as a sort option.
This section uses a common scenario to demonstrate how Oracle Business Intelligence Publisher reports are used to view audit data generated by Oracle Platform Security Services events.
In this example, some activity is generated on the credential store for an Oracle WebLogic Server domain. We then use Oracle Business Intelligence Publisher to take a look at the relevant report to see the audit records. Subsequently, a few other reports are examined.
http://
host.domain.com:port/
xmlpserver/
The report shows activity in a default time range. Modify the time range to show only the day's events.
The activity performed on that day appears on the page.
Observe the different regions of the report and their functions: report filters, format control, scheduling, and the data display itself.
The Account Profile History report appears.
One row is returned showing an authorization check failure:
This section provides detailed reference information about the standard (pre-built) audit report.
The standard audit reports are grouped as follows:
This report contains all audit records generated in a pre-defined interval.
These are reports that contain audit records across multiple components.
Each report is dedicated to a specific component.
Common Reports
Common reports are organized as follows:
Important: Run the Event Details report only against an 11g Release 1 (11.1.1.4.0) PS3 (patch set 3) schema. |
Component-Specific Reports
For a list of reports, see Section C.2.2, "Component-Specific Audit Reports".
Table 14-1 provides a brief description of each audit report in Oracle Business Intelligence Publisher.
Note: The folder path shown in the column titled "Located in Folder" is relative to the Oracle Fusion Middleware Audit folder. To get to this folder, log in to Oracle Business Intelligence Publisher, and navigate to Shared Folders, then Oracle Fusion Middleware Audit. |
Table 14-1 List of Audit Reports
Report | Description | Located in Folder |
---|---|---|
Accounts Created | shows accounts created in various components | Common Reports, then Account Management. Also in Component Specific folders. |
Accounts Deleted | shows accounts deleted in various components | Common Reports, then Account Management. Also in Component Specific folders. |
Accounts Disabled | shows accounts disabled in various components | Common Reports, then Account Management. Also in Component Specific folders. |
Accounts Enabled | shows accounts enabled in various components | Common Reports, then Account Management. Also in Component Specific folders. |
Accounts Locked Out | shows accounts locked out due to excessive authentication failures | Common Reports, then Account Management. Also in Component Specific folders. |
Account Profile History | shows profile changes in accounts, such as change in address and password changes | Common Reports, then Account Management. Also in Component Specific folders. |
All Errors and Exceptions | captures all errors and exceptions across components | Common Reports, then Errors and Exceptions. Also in Component Specific folders. |
All Events | displays all audit events | Oracle Fusion Middleware Audit. Also in Component Specific folders. |
Application Policy Management | displays application level policy management | Component Specific, then Oracle Platform Security Services. |
Application Role Management | shows application role to enterprise role mappings | Component Specific, then Oracle Platform Security Services. |
Assertion Activity | Assertion Activity in Oracle Identity Federation | Component Specific, then Oracle Identity Federation. |
Assertion Template Management | lists assertion Template management operations in Oracle Web Services Manager | Component Specific, then Oracle Web Services Manager, then Policy Management |
Authentication Failures | authentication errors and exceptions; can be cross-component or specific to a component. | Common Reports, then Errors and Exceptions. Also in Component Specific folders. |
Authentication History | Authentications across all components | Common Reports, then User Activities. Also in Component Specific folders. |
Authorization Failures | captures authorization failures | Common Reports, then Errors and Exceptions. Also in Component Specific folders. |
Authorization History | Authorizations across all components | Common Reports, then User Activities. Also in Component Specific folders. |
Confidentiality Enforcements | lists enforcements related to confidentiality in Oracle Web Services Manager | Component Specific, then Oracle Web Services Manager, then Policy Enforcements |
Configuration Changes | configuration changes made in Fusion Middleware Audit Framework. | Component Specific, then Oracle Fusion Middleware Audit Framework |
Credential Access | displays credential accesses by users and applications in Oracle Platform Security Services | Component Specific, then Oracle Platform Security Services. |
Credential Management | displays credential management operations performed in Oracle Platform Security Services. | Component Specific, then Oracle Platform Security Services. |
Federation User Activity | lists federation user activities in Oracle Identity Federation | Component Specific, then Oracle Identity Federation. |
Message Integrity Enforcements | shows enforcements related to message integrity in Oracle Web Services Manager | Component Specific, then Oracle Web Services Manager, then Policy Enforcements |
Multiple Logins from Same IP | lists machines from where successful logins are made into different user accounts. | Common Reports, then User Activities. |
Password Changes | shows password changes done in various accounts. | Common Reports, then Account Management. Also in Component Specific folders. |
Policy Attachments | shows Policy to web service endpoint attachments | Component Specific, then Oracle Web Services Manager |
Policy Enforcements | general policy enforcements for Oracle Web Services Manager | Component Specific, then Oracle Web Services Manager, then Policy Enforcements |
Profile Management Events | shows changes to Directory Integration Platform's profiles. | Component Specific, then Directory Integration Platform. |
Request Response | shows requests sent and responses received from web services | Component Specific, then Oracle Web Services Manager |
System Policy Management | displays system level policy management operations | Component Specific, then Oracle Platform Security Services. |
Violations | Enforcement violations. | Component Specific, then Oracle Web Services Manager, then Policy Enforcements |
Web Services Policy Management | shows policy management operations. | Component Specific, then Oracle Web Services Manager, then Policy Management |
Table 14-2 lists the attributes that appear in the various audit reports. When viewing a report, you can use this table to learn more about the attributes that appear in the report.
Note the following:
Table 14-2 Attributes of Audit Reports
Attribute | Description |
---|---|
Activity | The type of action, either user- or system-initiated. |
Application Name | The complete application path and name. |
Application Server Instance | The instance of the application server in use. |
Attempted | The action that was attempted, for example, a single sign-on attempted by the user. |
Component Name | The name of the component instance. |
Component Type | The type of component, for example Oracle Identity Federation. |
Domain Name | Oracle WebLogic Server domain name. |
ECID | The execution context ID. |
Event Type | The type of event that occurred, for example, account creation. |
Initiator | The user who initiated the event. |
Internet Protocol Address, IP Address | The IP address of the user's machine from which the action was initiated. |
Message Text | The text of the message; a description of the event. |
Policy Name | The name of the policy involved in the action. |
Time Range | The time range which allows you to limit your data set to a specific time interval, for example, the last 24 hours. |
Timestamp | The date and time of the event. |
Transaction ID | The transaction identifier. |
This section discusses advanced report generation and creation options:
Clicking on the report's Edit button brings up a page at which you can specify more detailed report filters and properties. This page consists of two panels. The left panel lets you select what element of the report is to be modified through these options. For each element you select, the right panel displays the corresponding information.
Oracle Business Intelligence Publisher provides a complete set of capabilities for designing and creating custom reports.
Here is a simple example illustrating the basic steps to customize an existing audit report with Oracle Business Intelligence Publisher.
Enter a folder name.
Click Copy this report.
The report is now moved from the clipboard to the custom folder:
Two panels are displayed; on the main panel titled General Settings, you can control basic features like the report title and runtime controls. To the left of the main panel, a second panel displays two sets of information that you can use to create relevant content for your report:
The palette of choices on the left panel is context-sensitive and provides information to help you build the report.
ComponentName
from the list of values and click Query Builder. JPS
. A second table appears showing the component event fields: IAU_EVENTTYPE
. login
and click Save. This part describes how to configure single sign-on in Oracle Fusion Middleware in the following chapters:
The chapter outlines a set of recommended single sign-on solutions for Oracle Fusion Middleware. This chapter includes the following major sections:
Oracle Platform Security Services comprise Oracle WebLogic Server's internal security framework. A WebLogic domain uses a separate software component called an Authentication Provider to store, transport, and provide access to security data. Authentication Providers can use different types of systems to store security data. The Authentication Provider that WebLogic Server installs uses an embedded LDAP server.
Oracle Fusion Middleware 11g supports new single sign-on solutions that applications can use to establish and enforce perimeter authentication:
Customers must carefully choose the solution appropriate to their needs. Selecting the right SSO solution requires careful consideration and depends upon your requirements. This section outlines some general information and guidelines to help you choose the best solution for your needs.
Note: Oracle recommends that you consider upgrading to Oracle Access Manager 11g Single Sign on solution to take advantage of additional functionality and architecture. |
In such cases, a SAML-based solution that uses the Oracle WebLogic Server SAML Credential Mapping Provider is best. The embedded LDAP server is used as the default user repository. Alternatively, an LDAP Authenticator can be configured to leverage an external LDAP server as a user repository.
See Also: "Configuring Single Sign-On with Web Browsers and HTTP Clients" in Oracle Fusion Middleware Securing Oracle WebLogic Server |
Oracle Access Manager 11g (Release 1): Oracle recommends Oracle Access Manager 11g whether:
Oracle Access Manager 10g (10.1.4.3): You can continue using this when you have:
Selecting the right Oracle Access Manager solution (11g versus 10g (10.1.4.3)) as your enterprise-level Single-Sign-on solution depends upon your requirements. Refer to product documentation in this chapter and in the respective administration guides to evaluate the release that best meets your overall requirements.
If OSSO is already in place as the enterprise solution for your existing Oracle deployment, Oracle Fusion Middleware continues to support the existing OSSO as a solution. However, Oracle recommends that you consider upgrading to Oracle Access Manager 11g Single Sign on solution, which is a strategic Oracle SSO solution. For more information when planning your upgrade, check the Lifetime Support Middleware Policy for the OSSO end of support dates at: http://www.oracle.com/support/lifetime-support-policy.html
See Also:
|
See the Oracle Identity Management Guide to Delegated Administration in the Oracle Identity Management 10g (10.1.4.0.1) Online Documentation Library at:
See the Oracle Fusion Middleware Supported System Configurations page for more details:
See Also:
|
See Also:
|
Unless explicitly stated, information here applies equally to both Oracle Access Manager 11g and 10g deployments.
The Oracle Access Manager Authentication Provider is one of several Providers that operate with Oracle WebLogic Server. The Oracle Access Manager Authentication Provider does not require the entire Oracle WebLogic Suite nor Oracle Java Required Files (JRF) to operate with Oracle Access Manager 11g or 10g.
In a WebLogic Server domain where JRF is installed, the JRF template is present as part of the domain in an Oracle Fusion Middleware product. In this case, the OAM Identity Asserter and OAM Authentication Provider are automatically available for configuration. If JRF is not installed in your WebLogic domain, you must add the OAMAuthnProvider.jar to a specific location in your domain as described later.
Note: The JRF template is present as part of the domain in an Oracle Fusion Middleware product. |
You can use the OAM Authentication Provider for WebLogic Server when you have:
The Authentication Provider can be configured to provide either (or both) of the following functions for WebLogic users:
Identity Asserter for Single Sign-on Function
When the application is protected using a perimeter Webgate, the identity of the authenticated user that is communicated to the WebLogic Server is made available to container security layers using the Oracle Access Manager identity asserter. The Identity Asserter only asserts the incoming identity and then passes control to the configured Authentication Providers to continue with the rest of the authentication process (populating the subject with the right principals).
Note: A Web-only applications implementation handles nearly all SSO use cases. The exception is when you have Oracle Web Services Manager protected Web services. In this case, there is no trusted WebGate. Instead the AccessGate provided with the Identity Asserter is contacted and interacts with your OAM 10g Access Server or 11g OAM Server; all other processing is essentially the same. |
Oracle provides the following mechanisms, each with slightly different characteristics and requirements:
Table 15-1 lists the benefits and requirements for each.
Table 15-1 Summary: Identity Assertion Mechanisms for Oracle Access Manager
Mechanism | Benefits | Requirements |
---|---|---|
Trusted Header Assertion OAM_IDENTITY_ASSERTION | Maximum security Easy configuration | Oracle Access Manager 11.1.1.5.2 or later 10g or 11g Webgate |
Clear Text Header OAM_REMOTE_USER | Maximum performance Default Mechanism | Oracle Access Manager 11.1.1.5.0 10g or 11g Webgate |
Session Token (ObSSOCookie) To be deprecated | 10g Webgate with either OAM 10g or 11g Server | Oracle Access Manager 11.1.1.3.0 Oracle Access Manager 10.1.4.3 10g Webgate |
Authenticator Function
The Authenticator function does not provide single sign-on. The Authenticator requests credentials from the user based on the authentication method specified in the application configuration file, web.xml
, not according to the Oracle Access Manager authentication scheme. However, an Oracle Access Manager authentication scheme is required for the application domain.
Note: You can skip this topic if you are using the Identity Asserter function. |
For more information, see the following topics:
This topic describes and illustrates the use of the Identity Asserter function with Oracle Access Manager 11g and 10g WebGates. Processing is similar, with few exceptions, whether you have OAM 11g with 11g (or 10g) WebGates or OAM 10g with 10g WebGates). For instance, with Oracle Access Manager 11g, the Access Server is known as the OAM Server.
All requests are first routed to a reverse proxy Web server and requests are intercepted by WebGate. The user is challenged for credentials based on the authentication scheme that is configured within Oracle Access Manager. Oracle recommends Form (form-based login) as the authentication scheme.
The Identity Asserter function relies on perimeter authentication performed by WebGate on the Web Tier. Triggering the Identity Asserter function requires the appropriate chosen Active Type for your WebGate release.
After triggering the Identity Asserter function, configured Authentication Providers (Login Modules) for constructing the Subject and populating it with the appropriate Principals are invoked.
Note: The only difference between using the Identity Asserter function with 11g WebGates versus 10g WebGates is the provider's chosen Active Type. |
Chosen Active Types
The Identity Asserter function's Active Type configuration parameter lists supported values under the Available UI section. One of the following must be selected as the "Chosen" type to trigger the Identity Asserter function:
Identity Assertion
: Triggers Identity Assertion based on the trusted header OAM_IDENTITY_ASSERTION. OAM_REMOTE_USER
: Triggers Identity Assertion based on OAM_REMOTE_USER header. ObSSOCookie
: Triggers Identity Assertion based on the obSSOCookie. OAM_REMOTE_USER header includes the uid of the logged in user. Configuring OAM_REMOTE_USER as the chosen Active Type for the Identity Asserter requires Oracle Access Manager policies that set OAM_REMOTE_USER as part of the authorization success response headers.
Authentication Processing and the Identity Assertion Function
Unless explicitly stated, information here applies equally to Oracle Access Manager 11g and Oracle Access Manager 10g.
WebGate, using the configured authentication scheme, authenticates the user, and then:
11g WebGate sets the OAMAuthnCookie and triggers the token (either OAM_IDENTITY_ASSERTION or OAM_REMOTE_USER).
10g WebGate triggers assertion based on the obSSOCookie or OAM_REMOTE_USER or OAM_IDENTITY_ASSERTION are possible
Note: mod_weblogic is the generic name of the WebLogic Server plug-in for Apache. For Oracle HTTP Server 11g, the name of this plug-in is mod_wl_ohs; the actual binary name is mod_wl_ohs.so. |
Figure 15-1, and the overview that follows, describe processing between components when the Identity Asserter function is used with Web-only applications. This implementation handles nearly all SSO use cases. Exception: Oracle Web Services Manager protected Web services. In this case, there is no trusted WebGate. Instead the AccessGate provided with the Identity Asserter (dotted line in Figure 15-1) is contacted and interacts with the 11g OAM Server (or 10g OAM Access Server); all other processing is essentially the same.
For more information, see "Oracle Access Manager Authentication Provider Parameter List".
Figure 15-1 illustrates the processing overview using the Identity Asserter configuration with Oracle Access Manager 11g and
Assertion takes place based on which token type is configured in the authorization policy. Alone, the presence of token in the request is not sufficient to invoke the asserter. Simply configuring a particular active token type in WebLogic is not sufficient OAM_IDENTITY_ASSERTION will be set in the request if it is configured in the authorization policy.
Process overview: Identity Assertion with OAM 11g, 11g WebGate, and Web-only applications
11g WebGate: Sets and returns the OAMAuthn cookie and triggers the OAM_REMOTE_USER (or OAM_IDENTITY_ASSERTER) token when policies are configured for this.
10g WebGate: Sets and returns OAM_REMOTE_USER or OAM_IDENTITY_ASSERTION headers in the request when policies are configured for this.
The Web server forwards this request to the proxy, which in turn forwards the request to the Oracle WebLogic Server using the mod_weblogic plug-in.
mod_weblogic forwards requests as directed by its configuration.
Note: mod_weblogic is the generic name of the WebLogic Server plug-in for Apache For Oracle HTTP Server 11g, the name of this plug-in is mod_wl_ohs. |
CallbackHandler
with the header. In addition, the Identity Asserter sets up NameCallback
with the username for downstream LoginModules. This topic describes and illustrates use of the Authenticator configured to protect access to Web and non-Web resources with Oracle Access Manager.
Note: Unless explicitly stated, information applies equally to Oracle Access Manager 11g and Oracle Access Manager 10g. |
The Authenticator function relies on Oracle Access Manager services to authenticate users who access applications deployed in WebLogic Server. Users are authenticated based on their credentials, such as a user name and password.
When a user attempts to access a protected resource, the Oracle WebLogic Server challenges the user for credentials according to the authentication method specified in the application's web.xml file. Oracle WebLogic Server then invokes the Authentication Provider, which passes the credentials to Oracle Access Manager Access Server for validation through the enterprise directory server.
Figure 15-2 illustrates the distribution of components and flow of information for Oracle Access Manager authentication for Web and non-Web resources. Details follow the figure. In this case, the Authenticator communicates with the 11g OAM Server (or the OAM 10g Access Server) through a custom AccessGate.
Figure 15-2 Authenticator for Web and non-Web Resources
Process overview: Authenticator Function for Web and non-Web Resources
This section introduces choosing applications to use Oracle Access Manager and the Authentication Provider according to current application setup. Details are similar whether you plan to use Oracle Access Manager 11g or 10g with the Authentication Provider:
If your application is to use Oracle Access Manager Authentication Provider for the first time, proceed based on the functionality that you want to use:
Oracle Web Services Manager-Protected Web Services: This requires the AccessGate that is provided with the Identity Asserter to interact with the OAM Server. See "Configuring Identity Assertion for Oracle Web Services Manager and OAM 11g".
web.xml
. See "Configuring the Authenticator Function for Oracle Access Manager 11g". If your application has been deployed on the old Oracle Application Server (OC4J), you can perform a few steps to make the application use the Authentication provider with Oracle WebLogic Server, proceed as follows:
—OAM 11g: "Configuring Identity Assertion for SSO with Oracle Access Manager 11g"
—OAM 10g: "Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g"
—OAM 11g: "Configuring Identity Assertion for Oracle Web Services Manager and OAM 11g"
—OAM 10g: "Configuring Identity Assertion for Oracle Web Services Manager and OAM 10g"
web.xml
. See the appropriate topic for your environment: —OAM 11g:"Configuring the Authenticator Function for Oracle Access Manager 11g"
—OAM 10g: "Configuring the Authenticator for Oracle Access Manager 10g"
The Oracle Access Manager Security Provider for WebLogic SSPI provides authentication, authorization, and single sign-on across Java EE applications that are deployed in the WebLogic platform. The Security Provider for WebLogic SSPI enables WebLogic administrators to use Oracle Access Manager to control user access to business applications.
Note: Security Provider for WebLogic SSPI is also known as "Security Provider" in the 10g (10.1.4.3) Oracle Access Manager Integration Guide. |
The Oracle Access Manager Security Provider for WebLogic SSPI provides authentication to Oracle WebLogic Portal resources and supports single sign-on between Oracle Access Manager and Oracle WebLogic Portal Web applications. Apart from this, the Security Provider for WebLogic SSPI also offers user and group management functions.
The Oracle Access Manager Authentication Provider is more easily installed and configured than the Security Provider for WebLogic SSPI. The Authentication Provider offers authentication and single sign-on (SSO) services, and also works with all platforms supported by Oracle WebLogic Server.
If your application has been using the Oracle Access Manager Security Provider for WebLogic SSPI for only authentication and SSO, the deployment is a good candidate for the latest Authentication Provider. However, if your application relies on features other than those offered by the latest Oracle Access Manager Authentication Provider, you can continue to use the Oracle Access Manager 10g Security Provider for WebLogic SSPI.
Note: WebLogic SSPI connector can be used with Oracle Access Manager 10g but is not supported with Oracle Access Manager 11g |
With a very few differences, implementing solutions is similar whether you are using OAM 11g or OAM 10g to protect for applications in a WebLogic container.
Table 15-2 outlines the differences when deploying the Authentication Provider with OAM 11g versus OAM 10g. Topic headings are highlighted.
Table 15-2 Differences in Authentication Provider Implementation Tasks for OAM 11g versus OAM 10g
The required components and files for implementing the Authentication Provider are nearly identical whether you have OAM 11g or OAM 10g as the SSO solution. The few exceptions are noted in the following list:
Note: With a stand-alone Oracle WebLogic Server (no Fusion Middleware), you must obtain the Authentication Provider JAR and WAR files from Oracle Technology Network as described in Step 1 of procedures later in this chapter. |
When you deploy the extension, the WebLogic Administration Console creates an in-memory union of the files and directories in its WAR file with the files and directories in the extension WAR file. Once the extension is deployed, it is a full member of the WebLogic Administration Console: it is secured by the WebLogic Server security realm, it can navigate to other sections of the Administration Console, and when the extension modifies WebLogic Server resources, it participates in the change control process For more information, see the Oracle Fusion Middleware Extending the Administration Console for Oracle WebLogic Server.
OAM 11g: Deployed with initial configuration using the Oracle Fusion Middleware Configuration Wizard, as described in Oracle Fusion Middleware Installation Guide for Oracle Identity Management. See "Deploying the Oracle Access Manager 11g SSO Solution".
OAM 10g: Installed with initial setup as described in Oracle Access Manager Installation Guide. See "Deploying SSO Solutions with Oracle Access Manager 10g".
Identity Asserter for Single Sign-On: Requires a separate WebGate for each application to define perimeter authentication.
Authenticator (or Oracle Web Services Manager): Requires the custom 10g AccessGate that is available with the Authentication Provider.
The Authentication Providers use messages with verbose descriptions of low-level activity within the application when Debug mode issued. Ordinarily, you do not need this much information. However, if you must call Oracle Support, you might be advised to set up debugging. When set, Authentication Providers messages appear in the Oracle WebLogic Server default log location.
To set up debugging
SSOAssertionProvider
. For example: The chapter provides information on configuring single sign-on using Oracle Access Manager 11g. It includes the following major sections:
Oracle Access Manager 11g is part of Oracle's enterprise class suite of security products. Intended for use in new and existing SSO deployments, Oracle Access Manager 11g provides a full range of Web perimeter security functions that include Web single sign-on; authentication and authorization; policy administration, and more.
Oracle Access Manager 11g single sign-on (SSO) and single log-out (SLO) supports a variety of application platforms including:
Oracle Access Manager 11g supports integration with a variety of applications, as described in the Oracle Fusion Middleware Integration Guide for Oracle Access Manager.
As described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service, Oracle Access Manager 11g differs from Oracle Access Manager 10g in that identity administration features have been transferred to Oracle Identity Manager 11g. This includes user self-service and self registration, workflow functionality, dynamic group management, and delegated identity administration.
Console Protection for Oracle Identity Management Applications
Oracle Access Manager 11g and other Oracle Identity Management applications are deployed in a WebLogic container. Individual administration consoles include Oracle Access Manager, Oracle Adaptive Access Manager, Oracle Identity Navigator, Oracle Identity Manager, Oracle WebLogic Server, and Oracle Entitlements Server.
These are protected by default using pre-configured Authentication Providers in the WebLogic Administration Console and a pre-registered IAMSuiteAgent with Oracle Access Manager 11g. OAM 11g SSO policies are pre-seeded. No further configuration is needed for the consoles.
Preview of OAM 11g Deployments
You can configure Oracle Access Manager in a new WebLogic administration domain or in an existing WebLogic administration domain using the Oracle Fusion Middleware Configuration Wizard.
See "Requirements for the Provider with Oracle Access Manager"
Oracle Access Manager 11g provides new server-side components that maintain backward compatibility with new or existing policy-enforcement agents. Dynamic Server-initiated updates are performed for any policy or configuration changes.
Oracle Access Manager 11g provides single sign-on (SSO), authentication, authorization, and other services to registered Agents (in any combination) protecting resources:
You can integrate with Oracle Access Manager 11g, any Web applications currently using Oracle ADF Security and the OPSS SSO Framework.
Only users with sufficient privileges can log in to the Oracle Access Manager Administration Console or use OAM administrative command-line tools. Your enterprise might require independent sets of administrators: one set of users responsible for OAM administration and a different set for WebLogic administration. For more information, see "Defining a New OAM Administrator Role" in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.
Overview of OAM 11g
The following outlines some of the basic features of Oracle Access Manager 11g:
Provisioning/Remote Registration: A new remote registration tool enables administrators inside or outside the network to register agents and policies. A username and password must be set in the primary User Identity Store for OAM 11g.
Authentication: Oracle Access Manager 11g application domains aggregate resources and security policies (one policy per resource). Oracle Access Manager 11g authentication policies include a specific scheme. Supported authentication modules include LDAP, X.509, and Kerberos. Authentication user mapping is performed against the primary user-identity provider by the centralized credential collector.
Authorization: Oracle Access Manager 11g performs authorization based on security policies defined in the application domain and persisted in the database. Authorization policies define the resource and constraint evaluation.
Responses: Administrators can set session attributes using authentication and authorization Responses. Aside from session attributes, a Response can also obtain user-related data and request-related data. Responses, once set, are then sent as either HTTP Headers or Cookies to the agent that helps manifest them. For cookie values and header variables, Responses can retrieve session attributes previously set by another Response. For example, session attributes set by a Response upon authentication can be retrieved as a header value during authorization.
Session Management: Oracle Access Manager 11g session management services track active user sessions through a high performance distributed cache system based on technology from Oracle Coherence. Each Oracle Access Manager runtime instance is a node within the distributed cache system. Secure communication between the nodes is facilitated using a symmetric key. The Oracle Access Manager runtime instances move user session data in the local cache into the distributed cache for other nodes to pick up. Each Oracle Access Manager runtime instance can also configure the replication factor and determine how session data is distributed. Administrators can configure the session lifecycle, locate and remove specific active sessions, and set a limit on the number of concurrent sessions a user can have at any time. Out-of-band session termination prevents unauthorized access to systems when a user has been terminated.
Keys: The Oracle Access Manager 11g runtime is deployed as an application to a WebLogic Managed Server or Cluster. New Oracle Access Manager 11g WebGates support a shared secret per agent trust model. 11g WebGates use agent/host specific cookies, which offers superior security. Oracle Access Manager 11g WebGates are all trusted at the same level; a cookie specific for the WebGate is set and cannot be used to access any other WebGate-protected applications on a user's behalf. Cookie-replay types of attacks are prevented.
SSO and SLO: The Oracle Access Manager 11g Server Session Token forms the basis for SSO between Oracle Access Manager and OSSO Agents. Logout is driven through Oracle Access Manager 11g Server Global Logout, which terminates the central session and logs out the user from each agent that was visited.
Logging and Auditing: Oracle Access Manager 11g components use the same logging infrastructure and guidelines as any other component in Oracle Fusion Middleware 11g. Oracle Access Manager 11g provides agent and server monitoring functions. Oracle Access Manager 11g auditing functions are based on the Common Audit Framework; audit-report generation is supported using Oracle Business Intelligence Publisher.
Access Tester: The new Oracle Access Manager 11g Access Tester enables IT professionals and administrators to simulate interactions between registered Oracle Access Manager Agents and Servers. This is useful when testing security policy definitions or troubleshooting issues involving agent connections.
Transition from Test to Production: Oracle Access Manager 11g enables moving configuration or policy data from one Oracle Access Manager 11g deployment to another (from a small test deployment to a production deployment, for example). Support for the creation of new topologies is based on templates. You can also copy and move policy changes.
Co-existence and Upgrades for OSSO 10g: The Oracle-provided Upgrade Assistant scans the existing OracleAS 10g SSO server configuration, accepts as input the 10g OSSO policy properties file and schema information, and transfers configured partner applications into the destination Oracle Access Manager 11g SSO.
See Also:
|
This topic is required for only 10g custom AccessGates. Skip this topic if it does not apply to your environment.
The Application Authenticator
application domain is delivered with OAM 11g. It is pre-seeded with the policy objects that enables integration with applications deployed in WebLogic environments using the OAM Authentication Provider as the security provider. It is not associated with WebGate provisioning. When you provision a WebGate or AccessGate to use this (or another existing application domain), you will decline having policies created automatically.
The Application Authenticator
application domain comes into play with the custom 10g AccessGate used with the OAM Authenticator (and the Identity Asserter for Oracle Web Services Manager). In this case, the custom AccessGate (not WebGate) contacts the WebLogic Server directly with a token to authenticate the user before OAM 11g is contacted.
The Application Authenticator
application domain protects only resources of type wl_authen and is seeded with two authentication policies and one authorization policy. The following wl_authen resources are also seeded in this domain:
Note: Only resources of type wl_authen are allowed in this domain; no other resource types can be added. Policies and Responses for wl_authen resources can be added. However, ideally, you will not need to modify this domain. |
Figure 16-1 illustrates details of the seeded Application Authenticator
application domain in the OAM 11g Administration Console. The page shown describes the pre-seeded User ID Assertion authentication policy, which protects the /Authen/UsernameAssertion resource. The authentication scheme for this policy is also shown along with the resources that are protected by the policy.
Figure 16-2 illustrates pre-seeded Responses for the User ID Assertion authentication policy. For more information about Responses, see the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.
Figure 16-3 illustrates the pre-seeded Application SSO authentication policy, the resources protected by this policy, and the authentication scheme.
Figure 16-4 illustrates Pre-seeded Responses for the Application SSO authentication policy in the application domain.
Figure 16-5 illustrates the pre-seeded Application SSO authorization policy and Resources in the application domain.
Authorization Constraints: There are no pre-seeded Application SSO authorization policy Constraints in this application domain. However, you can add constraints as described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.
Authorization Responses: There are no pre-seeded Application SSO authorization policy Responses in the application domain. However, you can add responses as described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.
This section introduces how to implement OAM 11g with the Authentication Provider when you have applications that are (or will be) deployed in a WebLogic container.
This section provides the following topics to help you implement OAM 11g SSO when you have applications deployed in a WebLogic container. Aside from these uniquely OAM 11g methods, implementing OAM solutions are the same whether you have OAM 11g or OAM 10g:
See Also: Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service for details about the scenario for Identity Propagation with the OAM Token. |
The following overview outlines the tasks that must be completed to install the required components and files for the Oracle Access Manager 11g SSO solution using the Authentication Provider. While many of these tasks are nearly the same for Oracle Access Manager 11g and Oracle Access Manager 10g, there are a few differences.
See Also: Oracle Fusion Middleware Installation Guide for Oracle Identity Management for installation and initial configuration details for Oracle Access Manager 11g. |
Task overview: Installing components for use with the Authentication Provider and OAM 11g
See Also: Item 3 in this list, and the Oracle Fusion Middleware Getting Started With Installation for Oracle WebLogic Server |
Note: Without a Fusion Middleware application, you must acquire the required JAR and WAR files as described in later procedures. |
WebGate: For identity assertion with the OAM Identity Asserter, a perimeter Webgate is required (installed and configured) on the OHS Web Server.
http://support.oracle.com
. Oracle recommends that all Java components and applications use JKS as the keystore format. This topic provides steps to convert Oracle Access Manager X.509 certificates to Java Keystore (JKS) format. These steps, when followed properly, generate the JKS stores that can be used while the Java NAP client wants to communicate with an OAM Server in Simple or Cert (certificate) mode.
Note: This procedure is required regardless of the SSO mechanism you choose. |
When communicating in Simple or Cert mode, the OAM Server uses a key, server certificate, and CA chain files:
Here, aaa is the name you specify for the file (applicable only to Cert and chain files).
You can edit an existing certificate with a text editing utility to remove all data except that which is contained within the CERTIFICATE
blocks. You then convert the edited certificate to JKS format, and import it into the keystore. Java KeyTool does not allow you to import an existing Private Key for which you already have a certificate. You must convert the PEM format files to DER format files using the OpenSSL utility.
To convert an Oracle Access Manager certificate to JKS format and import it
CERTIFICATE
blocks, and save the file in a new location to retain the original. rootcerts
Here you are assigning an alias (short name) root_ca
to the key. The input file aaa_chain.pem is the one that you manually edited in step 3. The keystore name is rootcerts
.
You must give a password to access the keys stored in the newly created keystore.
Note: To ensure security, Oracle recommends that you allow the keytool to prompt you to enter the password. This prompt occurs automatically when the "-storepass" flag is omitted from the command line. |
Here the input file is aaa_key.pem and the output file is aaa_key.der. Additional options include:
Table 16-1 Options to Create DER Format Files from PEM
Option | Description |
---|---|
-topk8 | Reads a traditional format private key and writes a PKCS#8 format key. This reverses the default situation where a PKCS#8 private key is expected on input and a traditional format private key is written. |
-nocrypt | An unencrypted PrivateKeyInfo structure is expected for output. |
-inform | Specifies the input format. If a PKCS#8 format key is expected on input, then either a DER or PEM encoded version of a PKCS#8 key is expected. Otherwise the DER or PEM format of the traditional format private key is used. |
-outform | Specifies the output format. If a PKCS#8 format key is expected on output, then either a DER or PEM encoded version of a PKCS#8 key is expected. Otherwise the DER or PEM format of the traditional format private key is used. |
This task is required for only the session token mechanism (ObSSOCookie). If you are implementing either a trusted header assertion or clear text header mechanism, skip this topic.
Provisioning is the process of registering an agent and creating an application domain to use OAM 11g authentication and authorization services.You must provision a WebGate with OAM 11g whether you are preparing to install a fresh 11g or 10g instance or you have a legacy 10g WebGate installed.
The term WebGate is used for WebGates (and for the custom 10g AccessGates used with the Authenticator and the Identity Asserter for Oracle Web Services Manager). Unless explicitly stated, topics apply equally to both.
When you have multiple agents, each one can be provisioned independently or you can use a single OAM Agent registration for multiple agents.
Note: TheApplication Authenticator application domain is pre-seeded and delivered with OAM 11g. When you provision an OAM Agent to use this (or another existing) application domain, decline the option of having policies automatically created. |
The following topics are provided:
This task is required for only the session token mechanism (ObSSOCookie). If you are implementing either a trusted header or clear text header mechanism, skip this topic.
Table 16-2 outlines the methods and tools you can use to provision WebGates for use with OAM 11g. The remote registration tool enables you to specify a small amount or all WebGate parameters using templates.
Table 16-2 Provisioning Methods for OAM 11g
Method | Description |
---|---|
Oracle Access Manager Administration Console | Enables OAM Administrators to manually enter information and set parameters directly in Oracle Access Manager. This method is required if you are using the Authenticator, or if you have Oracle Web Services Manager policies protecting Web services. |
Remote Registration | Application administrators who are implementing the Identity Asserter for single sign-on, can register the WebGate using the command line. This also creates a new application domain with security policies for a fresh or existing Web Tier. Required parameters are provisioned using values for your environment specified in a template. Default values are accepted for non-required parameters. After registration, values can be modified in the Oracle Access Manager Console. |
During remote registration, you must provide the details discussed in Table 16-3.
See Also: Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service for a complete list of WebGate parameters |
Table 16-3 Required Registration Details for OAM Agents
OAM Agent Element | Description |
---|---|
<serverAddress> | Points to a running instance of the Oracle Access Manager Administration Console, including the host and port. |
<webDomain> OSSO requests only | Defines the Web server domain under which the Agent Base URL is stored internally. |
<agentName> | Defines a unique identifier for the agent on the OAM (Administration) Server. For every agent on the same server instance, this tag must be unique to avoid re-registering the same agent. Re-registering an agent on the same server instance is not supported. |
<hostIdentifier> | This identifier represents the Web server host. The field is filled in automatically when you specify a value for the OAM Agent Name. If the agent name or host identifier of the same name already exists, an error occurs during registration. |
<protectedResourcesList> | Specifies the resource URLs that you want the OAM Agent to protect with some authentication scheme. The resource URLs should be relative paths to the agentBaseUrl. |
<publicResourcesList> | Specifies the resource URLs that you want to keep public (not protected by the OAM Agent). The resource URLs should be relative paths to the agentBaseUrl. For instance, you might want to specify the Home page or the Welcome page of your application |
This task is required for only the session token mechanism (ObSSOCookie). If you are implementing either a trusted header or clear text header mechanism, skip this topic.
Provisioning a WebGate or AccessGate involves the same steps. You can provision a new instance for use with the Authentication Provider or you can refer to an existing registration when configuring the provider.
In this example, an OAM 10g WebGate is provisioned using the OAMRequest_short.xml template. The registered agent is named my-wl-agent1, protecting /.../*, and declaring a public resource, /public/index.html. Your values will be different.
Note: When provisioning an OAM 11g WebGate, use the OAM11gRequest_short.xml template. |
See Also: Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service |
To provision a WebGate with OAM 11g
Copy: OAMRequest_short.xml (or OAM 11gRequest.xml)
To: my-wl-agent1.xml
See Also: "Creating the Registration Request" in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service |
chmod +x oamreg.sh
Windows: rreg\bin\oamreg.bat
$./bin/oamreg.sh inband input/my-wl-agent1.xml
Agent Name—During WebGate installation, enter this as the WebGate ID. If you deploy the custom 10g AccessGate, enter this as the AccessGate Name when configuring the OAM Authentication Provider in the WebLogic Administration Console.
Access Client Password—During WebGate installation, enter this as the WebGate password. If no password was entered, you can leave the field blank.
Access Server Host Name—Enter the DNS host name for the primary OAM 11g Server with which this WebGate is registered.
11g WebGate: See Oracle Fusion Middleware Installation Guide for Oracle Identity Management.
10g WebGate: See Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.
This section describes the unique steps needed to configure Oracle Access Manager 11g Identity Assertion for Single Sign-On with your application.
Task overview: Deploying the Identity Asserter for SSO with OAM 11g includes
The following topics explain the tasks you must perform to set up the application for single sign-on with the Oracle Access Manager Identity Asserter.
Task overview: Establishing Trust with Oracle WebLogic Server
This topic describes how to create the application authentication method for Oracle Access Manager Identity Assertion.
When you use the Oracle Access Manager Identity Asserter, all web.xml
files in the application EAR file must specify CLIENT-CERT
in the element auth-method
for the appropriate realm.
You can add comma separated values here when you want applications accessed directly over the WebLogic Server host:port to be authenticated by the container. For instance: <auth-method>CLIENT-CERT,FORM</auth-method>
.
The auth-method can use BASIC, FORM, or CLIENT-CERT values. While these look like similar values in Oracle Access Manager, the auth-method specified in web.xml
files are used by Oracle WebLogic Server (not Oracle Access Manager).
To specify authentication in web.xml for the Identity Asserter
auth-method
in login-config
and enter CLIENT-CERT
. Oracle Oracle HTTP Server includes the mod_weblogic plug-in module (mod_wl_ohs.so in 11g) which is already enabled. You can perform the following procedure to confirm this or skip this procedure.
With Oracle HTTP Server 11g, the mod_weblogic configuration is present in mod_wl_ohs.conf by default, and the path of this file is included in httpd.conf. If the mod_weblogic configuration is not present then you must edit httpd.conf.
To configure mod_weblogic for the Oracle Access Manager Identity Asserter
The Oracle WebLogic Connection Filtering mechanism must be configured for creating access control lists and for accepting requests from only the hosts where Oracle HTTP Server and the front-end Web server are running.
Note: This filter is required for security when you use Identity Assertion with the Clear Text Header mechanism. This task is optional when you use one of the other mechanisms. |
A network connection filter is a component that controls the access to network level resources. It can be used to protect resources of individual servers, server clusters, or an entire internal network. For example, a filter can deny non-SSL connections originating outside of a corporate network. A network connection filter functions like a firewall since it can be configured to filter protocols, IP addresses, or DNS node names. It is typically used to establish trust between Oracle WebLogic Server and foreign entities.
To configure a connection filter to allow requests from only mod_weblogic
and the host where OHS 11g is running, perform the procedure here.
Note: This chapter uses the generic name of the WebLogic Server plug-in for Apache: mod_weblogic. For Oracle HTTP Server 11g, the name of this plug-in is mod_wl_ohs; the actual binary name is mod_wl_ohs.so. Examples show exact syntax for implementation. |
WebLogic Server provides a default connection filter: weblogic.security.net.ConnectionFilterImpl. This filter accepts all incoming connections and also provides static factory methods that allow the server to obtain the current connection filter. To configure this connection filter to deny access, simply enter the connection filters rules in the WebLogic Server Administration Console.
You can also use a custom connection filter by implementing the classes in the weblogic.security.net package. Like the default connection filter, custom connection filters are configured in the WebLogic Server Administration Console.
Connection Filter Rules: The format of filter rules differ depending on whether you are using a filter file to enter the filter rules or you enter the filter rules in the Administration Console. When entering the filter rules on the Administration Console, enter them in the following format:
Table 16-4 provides a description of each parameter in a connection filter.
Table 16-4 Connection Filter Rules
Parameter | Description |
---|---|
target | Specifies one or more systems to filter |
localAddress | Defines the host address of the WebLogic Server instance. (If you specify an asterisk (*), the match returns all local IP addresses.) |
localPort | Defines the port on which the WebLogic Server instance is listening. (If you specify an asterisk, the match returns all available ports on the server.) |
action | Specifies the action to perform. This value must be allow or deny |
protocols | Is the list of protocol names to match. The following protocols may be specified: http, https, t3, t3s, giop, giops, dcom, ftp, ldap. If no protocol is defined, all protocols match a rule. |
The Connection Logger Enabled attribute logs successful connections and connection data in the server. This information can be used to debug problems relating to server connections.
See Also: "Configuring Security in a WebLogic Domain" in Oracle Fusion Middleware Securing Oracle WebLogic Server |
To configure a connection filter to allow requests from Oracle HTTP Server host
The information here applies equally to OAM 11g and OAM 10g. This topic is divided as follows:
This topic introduces only a few types of Authentication Providers for a WebLogic security realm, if you are new to them.
Each WebLogic security realm must have one at least one Authentication Provider configured. The WebLogic Security Framework is designed to support multiple Authentication Providers (and thus multiple LoginModules) for multipart authentication. As a result, you can use multiple Authentication Providers as well as multiple types of Authentication Providers in a security realm. The Control Flag attribute determines how the LoginModule for each Authentication Provider is used in the authentication process.
Oracle WebLogic Server offers several types of Authentication and Identity Assertion providers including, among others:
Oracle WebLogic Server 10.3.1+ provides OracleInternetDirectoryAuthenticator.
When you configure multiple Authentication Providers, use the JAAS Control Flag for each provider to control how the Authentication Providers are used in the login sequence. You can choose the following the JAAS Control Flag settings, among others:
When additional Authentication Providers are added to an existing security realm, the Control Flag is set to OPTIONAL by default. You might need to change the setting of the Control Flag and the order of providers so that each Authentication Provider works properly in the authentication sequence.
See Also: "Configuring Authentication Providers" in Oracle Fusion Middleware Securing Oracle WebLogic Server for a complete list of Authentication Providers and details about configuring the Oracle Internet Directory provider to match the LDAP schema for user and group attributes |
This topic introduces WLST, if you are new to it.
You can add providers to a WebLogic domain using either the Oracle WebLogic Administration Console or Oracle WebLogic Scripting Tool (WLST) command-line tool.
WLST is a Jython-based command-line scripting environment that you can use to manage and monitor WebLogic Server domains. Generally, you can use this tool online or offline. You can use this tool interactively on the command line in batches supplied in a file (Script Mode, where scripts invoke a sequence of WLST commands without requiring your input), or embedded in Java code.
When adding Authentication Providers to a WebLogic domain, you can use WLST online to interact with an Authentication Provider and add, remove, or modify users, groups, and roles.
When you use WLST offline to create a domain template, WLST packages the Authentication Provider's data store along with the rest of the domain documents. If you create a domain from the domain template, the new domain has an exact copy of the Authentication Provider's data store from the domain template. However, you cannot use WLST offline to modify the data in an Authentication Provider's data store.
Note: You cannot use WLST offline to modify the data in an Authentication Provider's data store. |
On the Oracle WebLogic Server, you can run a Web application that uses Oracles Application Development Framework (Oracle ADF) security, integrates with Oracle Access Manager Single Sign On (SSO), and uses Oracle Platform Security Services (OPSS) SSO for user authentication. However before the Web application can be run, you must configure the domain-level jps-config.xml
file on the application's target Oracle WebLogic Server for the Oracle Access Manager security provider.
The domain-level jps-config.xml
file is in the following path and should not be confused with the deployed application's jps-config.xml file:
You can use an Oracle Access Manager-specific WLST script to configure the domain-level jps-config.xml file, either before or after the Web application is deployed. This Oracle JRF WLST script is named as follows:
Linux: wlst.sh
Windows: wlst.cmd
The Oracle JRF WLST script is available in the following path if you are running through JDev:
In a standalone JRF WebLogic installation, the path is:
Note: The Oracle JRF WLST script is required. When running WLST for Oracle Java Required Files (JRF), do not use the WLST script under $JDEV_HOME/wlserver_10.3/common/bin. |
Command Syntax
Table 16-5 defines the expected value for each argument in the addOAMSSOProvider command line.
Table 16-5 addOAMSSOProvider Command-line Arguments
Argument | Definition |
---|---|
loginuri | Specifies the URI of the login page |
autologinuri | Specifies the URI of the autologin page. |
logouturi | Specifies the URI of the logout page |
See Also:
|
Prerequisites
Configuring Providers in the WebLogic Domain
To modify domain-level jps-config.xml for a Fusion Web application with Oracle ADF Security enabled
For example, the Oracle WebLogic Administration Server host could be localhost
using port 7001
. However, your environment might be different.
This topic describes how to configure providers in the WebLogic security domain to perform single sign-on with the Oracle Access Manager Identity Asserter. Several Authentication Provider types must be configured and ordered:
The following procedure uses the WebLogic Administration Console.
Note: With an Oracle Fusion Middleware application installed, you have the required provider JAR file. Skip Step 1. |
To set up Providers for Oracle Access Manager single sign-on in a WebLogic domain
Name: OAM Identity Asserter
Type: OAMIdentityAsserter
OK
OAM_IDENTITY_ASSERTION
Name: OID Authenticator
Type: OracleInternetDirectoryAuthenticator
OK
Host: Your LDAP host. For example: localhost
Port: Your LDAP host listening port. For example: 6050
Principal: LDAP administrative user. For example: cn=orcladmin
Credential: LDAP administrative user password.
User Base DN: Same searchbase as in Oracle Access Manager.
All Users Filter: For example: (&(uid=*)(objectclass=person))
User Name Attribute: Set as the default attribute for username in the LDAP directory. For example: uid
Group Base DN: The group searchbase (same as User Base DN)
Do not set the All Groups filter as the default works fine as is.
Save.
OAM Identity Asserter (REQUIRED)
OID Authenticator (SUFFICIENT)
Default Authenticator (SUFFICIENT)
Trusted Header Assertion: Configuring Digital Signature Verification
Testing Oracle Access Manager Identity Assertion for Single Sign-on
oamAuthnProvider.jar
is in the correct location. As mentioned earlier, a login form shipped with 10g WebGate is used only with OAM 10g Access Server. For OAM 11g, neither the 10g WebGate nor 11g WebGate provide a login page.
Note: The OAM 11g Server displays a login page. No set up is needed. |
This is a manual task. The Oracle Access Manager certificate public key is required for digital signature verification. The certificate, which is consumed by the Identity Asserter, must be in the .oamkeystore.
For the SSO Sync Filter to consume the certificate, you need to provide the truststore to the filter. SSO Sync Filter behavior can be altered for application requirements by passing various over-riding system properties to WebLogic. To do this, you add a property in Oracle WebLogic startup script (setDomainEnv.sh) under EXTRA_JAVA_PROPERTIES. The truststore location can be provided as the system property. By default filter will look for keystore at ssofilter.jar location. If not found then it looks in system property.
The following procedure guides as you retrieve the .oamkeystore password required to perform export and import operations. After you export and import the required OAM certificate, you provision the keystore to enable the Identity Asserter to consume the certificate. Finally, you choose the OAM_IDENTITY_ASSERTION token type, provision the certificate in the SSO Sync Filter, and confirm that the authorization policy enables Identity Assertion.
To configure digital signature verification for trusted header assertion
Note: The keystore aliasoam.assertion.cert and the keystore name oamiap-keystore.jks are fixed. Use those names only. |
By default, the filter looks for the keystore in the ssofilter.jar location. If not found there, the system property is checked.
To use OAM_IDENTITY_ASSERTION as a token type for the assertion, the Identity Assertion option must be enabled within the authorization policy that protects the resources. Default policies are generated during agent registration. You can also create policies manually using the Oracle Access Manager Console.
Figure 16-6 provides an example of an authorization policy for the Trusted Header Assertion mechanism.
The following procedure provides the steps to enable Identity Assertion within the Oracle Access Manager 11g authorization policy that protects the resources.
To enable Identity Assertion for Trusted Header Assertion
The following procedure describes how to test your Oracle Access Manager Identity Assertion setup, regardless of the mechanism you are using.
Alternatively, you can run Access Tester in Oracle Access Manager to test your policy domain, as described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.
To validate Oracle Access Manager Identity Assertion for Single Sign-on
With the Authenticator function, the user is challenged for credentials based on the authentication method that is configured within the application web.xml. However, an Oracle Access Manager authentication scheme is required and available in the pre-seeded application domain that is delivered with Oracle Access Manager 11g. It protects the following resources (resource type wl_authen):
You can add Responses and Constraints to policies. However, no other configuration is needed.
For more information about the pre-seeded application domain, see "Previewing Pre-Seeded OAM 11g Policies for Use by the 10g AccessGate".
Prerequisites
Note: You can provision the custom 10g AccessGate for the Authenticator or simply refer to an existing OAM Agent registration when configuring providers for the Authenticator. |
Tasks to configure the Oracle Access Manager Authenticator are described in the following overview.
Task overview: Configuring the Authenticator function for OAM includes
This topic includes a procedure that you can use to add and configure the appropriate Authentication providers in a WebLogic domain.
The Oracle Access Manager Authenticator must be configured along with the Default Authentication Provider in a WebLogic domain.
The following procedure describes this task using the WebLogic Administration Console. You can also add these using the Oracle WebLogic Scripting Tool (WLST).
Note: When an Oracle Fusion Middleware application is installed, you have the required files and can skip Step 1. |
To configure providers for the Oracle Access Manager Authenticator in a WebLogic domain
Name OAMAuthN
Type: OAMAuthenticator
OK
Access Gate Name: The name of the AccessGate used by the Provider. This must match exactly the name of an OAM Agent registration in the Oracle Access Manager Console.
Note: You can have one or more 10g OAM Agents registered with OAM 11g. Be sure to choose the correct Agent registration name. |
Access Gate Password: The same password, if any, that is as defined for the Agent registration (see the Oracle Access Manager Console).
Primary Access Server: The host:port of the primary OAM Server that is associated with this AccessGate in the Oracle Access Manager Console.
Advanced Configuration: Following are several advanced configuration values.
Transport Security: The communication mode between OAM Server and AccessGate: open, simple, or cert.
If transport security is Simple or Cert, include the following parameters and values:
Trust Store: The absolute path of JKS trust store used for SSL communication between the provider and the OAM Server.
Key Store: The absolute path of JKS key store used for SSL communication between the provider and the OAM Server.
Key Store Pass Phrase: The password to access the key store.
Simple mode pass phrase: The password shared by AccessGate and OAM Server for simple communication modes.
Secondary OAM Server: The host:port of the secondary OAM Server that is associated with this AccessGate in the Oracle Access Manager Console.
Maximum OAM Server Connections in Pool: The maximum number of connections that the AccessGate opens to the OAM Server. The default value is 10.
Note: The Maximum OAM Server Connections in Pool (or Minimum OAM Server Connections in Pool) settings in the WebLogic Administration Console are different from the Maximum (or Minimum) Connections specified in the Oracle Access Manager Console. |
Minimum Access Server Connections in Pool: The minimum number of connections that the Authentication provider uses to send authentication requests to the OAM Server. The default value is 5.
See Also: "Oracle Access Manager Authentication Provider Parameter List" for descriptions and values of the common and provider-specific parameters |
Note: Do not set the parameter Control Flag to REQUIRED until you have verified that the Authentication Provided is operational and configured correctly. |
Note: If the Oracle Access Manager Authenticator flag is set to REQUIRED, or if Oracle Access Manager Authenticator is the only Authentication provider, perform the next step to ensure that the LDAP user who boots Oracle WebLogic Server is included in the administrator group that can perform this task. By default the Oracle WebLogic Server Admin Role includes the Administrators group. |
Note: To provide access to any other group, you must create that group in the directory server and add the user who boots WebLogic Server in that group. |
This topic describes how to create the application authentication method for Oracle Access Manager Authenticator.
When you use the Oracle Access Manager Authenticator, all web.xml
files in the application EAR file must specify BASIC
in the element auth-method
for the appropriate realm.
The auth-method can use BASIC or FORM values. While these look like similar values in Oracle Access Manager, the auth-method specified in web.xml
files are used by Oracle WebLogic Server (not Oracle Access Manager).
Note: For the Oracle Access Manager Authenticator, Oracle recommends auth-method BASIC in login-config within web.xml. |
To configure the application authentication method for the Authenticator
auth-method
in login-config
and enter BASIC
. For example: This topic describes how to map the authenticated user to a group in LDAP. To do this, you must edit the weblogic.xml file. For example, you might need to map your role-name auth-users to a group named managers in LDAP.
To map the authenticated user to a group in LDAP for the Oracle Access Manager Authenticator
After performing all tasks to implement the Authenticator, you can test it by attempting to log in to the application using valid credentials. If the configuration is incorrect, a valid user is denied access.
The following procedure describes how to test your Authenticator setup. Alternatively, you can run Access Tester in Oracle Access Manager to test your policy domain, as described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.
To validate the Oracle Access Manager Authenticator implementation
This section describes how to set up the Oracle Access Manager Identity Asserter to enable validation of the token when you have Oracle Web Services Manager protecting Web services.
As discussed earlier, the Oracle Access Manager Identity Asserter works in two modes. The default mode of operation simply asserts the header that is set by WebGate at the perimeter, which handles most SSO situations. The alternate mode uses the custom AccessGate in oamAuthnProvider.jar. In this case, and with the absence of the header, the Identity Asserter contacts the OAM Server to validate the token. For more information about the token, see "Installing the Authentication Provider with Oracle Access Manager 11g".
Note: The 10g custom AccessGate provided with the Authentication Provider is required for Identity Assertion for Oracle Web Services Manager. |
With OAM 10g, you would need to manually create the policy domain and policies for this configuration. However, with OAM 11g, a pre-seeded application domain is delivered with policies that protect the following resources (resource type wl_authen):
You can add policies, Responses, or Constraints for resources of type wl_authen only. Ideally, however, you can use this application domain with no further configuration. For more information, see "Previewing Pre-Seeded OAM 11g Policies for Use by the 10g AccessGate".
When the Oracle Access Manager Identity Asserter is configured for both header and token validation modes, preference is given to the presence of the header. If the header is not present, the Identity Asserter contacts the OAM Server to validate the token. For more information on the token, see "Oracle Access Manager Authentication Provider Parameter List".
Prerequisites
Installing the Authentication Provider with Oracle Access Manager 11g
Session Token: Provisioning an OAM Agent with Oracle Access Manager 11g
Task overview: Deploying the Identity Asserter with Oracle Web Services Manager includes
To use Oracle Access Manager Identity Asserter with Oracle Web Services Manager protected Web services, several Authentication providers must be configured and ordered in a WebLogic domain:
This procedure is nearly identical to the one for the Oracle Access Manager Identity Asserter with OAM 11g. The difference in this case is that Oracle Web Services Manager requires the custom 10g AccessGate and additional provider-specific values:
mnop:8888
AG1
You can add these using either the Oracle WebLogic Administration Console or Oracle WebLogic Scripting Tool (WLST) command-line tool.
Note: With a Oracle Fusion Middleware application installed, you have the required provider file. Skip Step 1. |
To set up providers in a WebLogic domain
Name: OAM Identity Asserter
Type: OAMIdentityAsserter
OK
Primary Access Server: Specify the primary OAM Server host and port. For example: abcd:7777
Access Gate Name: The name of the OAM Agent registration protecting the application. For example: AG1
Access Gate Password: The AccessGate password, if any, that was specified in during provisioning.
Save.
Name: OID Authenticator
Type: OracleInternetDirectoryAuthenticator
Click OK.
Host: Your LDAP host. For example: localhost
Port: Your LDAP host listening port. For example: 6050
Principal: LDAP administrative user. For example: cn=orcladmin
Credential: LDAP administrative user password.
User Base DN: Same searchbase as in Oracle Access Manager.
All Users Filter: For example: (&(uid=*)(objectclass=person))
User Name Attribute: Set as the default attribute for username in the LDAP directory. For example: uid
Group Base DN: The group searchbase (same as User Base DN)
Note: Do not set the All Groups filter as the default works fine as is. |
Click Save.
OAM Identity Asserter (REQUIRED)
OID Authenticator (SUFFICIENT)
Default Authenticator (SUFFICIENT)
oamAuthnProvider.jar
is in the correct location as described in "Installing the Authentication Provider with Oracle Access Manager 11g". To validate the use of the Oracle Access Manager Identity Asserter with Oracle Web Services Manager, you can access the Web service protected by the Identity Asserter and Oracle Web Services Manager policies. If access is granted, the implementation works. If not, see "Troubleshooting Tips".
This section introduces Centralized logout for Oracle Access Manager 11g.
With OAM 11g, centralized logout refers to the process of terminating an active user session. Guidelines include:
Note: Oracle strongly recommends that applications use the ADF Authentication servlet, which in turn interfaces with OPSS, where a domain wide configuration parameter can be used to specify the logout URL. This way applications need not be modified or redeployed to change logout configuration. |
For more information, see:
Several elements in the OAM 11g Agent registration page enable centralized logout for OAM 11g WebGates. After agent registration, the ObAccessClient.xml file is populated with the information.
11g WebGate logout options that you must have in the agent registration include the following:
For more information, see "Configuring Centralized Logout for 11g WebGate with OAM 11g Server" in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.
Logout is initiated when an application causes the invocation of the logout.html file configured for the OAM Agent (in this case, a 10g WebGate). The application might also pass end_url
as a query string to logout.html. The end_url parameter could either be a URI or a URL.
Task overview: Configuring centralized logout for 10g WebGates
For more information, see "Configuring Centralized Logout for 10g WebGate with OAM 11g Servers" in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.
In Fusion Middleware 11g, a new component that synchronizes the container user session and SSO session has been introduced. SSO Sync Filter is an Oracle WebLogic system filter implementation that intercepts all requests to the container, acts on protected resource requests, and attempts to synchronize the container's user session with the user identifying header in OSSO (Proxy-Remote-User) or the user data in the Oracle Access Manager SSO session cookie (ObSSOCookie).
SSO Synchronization Filter (SSO Sync Filter) is an implementation of the Servlet Filter based on Java Servlet Specification version 2.3. SSO sync filter relieves applications from tracking the SSO user session and synchronizing it with their respective sessions. Instead, applications would only need to synchronize with container's user session.
SSO Sync Filter intercepts each request to the container and determines whether to act on it based on certain HTTP headers that are attached to the request. Filter expects SSO agent to have set those headers in the Web Tier. When access is made to unprotected areas of the application, the filter acts as a pass through. Once a protected resource is accessed, SSO agents in the Web Tier, direct user to perform authentication with SSO system such as Oracle Access Manager. After the authentication, Oracle Access Manager Identity Asserter helps establish a user identity in form of JAAS Subject to the container and a user session is created. WebLogic maintains the user session data as part of HTTP Session Cookie (JSESSIONID).
Subsequent access to the application resources provides two pieces of information to the SSO Sync Filter:
The job of SSO Sync Filter is to make sure that the user identity in the container matches with that of the SSO session. If there is a mismatch, filter invalidates the container's user session. As a result, the downstream application would only have to track container user session and react in a consistent fashion regardless of SSO environment in use.
Notes:
If you have not configured the OSSO or Oracle Access Manager Assertion Providers in your domain, the filter disables automatically during WebLogic Server start-up.
Any application that use the OSSO or Oracle Access Manager Solutions is expected to invalidate its session before making a call to OSSO logout or Oracle Access Manager logout. For more information on OSSO logout, see Example 18-2, "SSO Logout with Dynamic Directives". For details about Oracle Access Manager logout, see "Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates".
The general recommendation for applications that are maintaining their own sessions when integrating with SSO systems is to configure their session time outs close to that of SSO session time outs so as to make user experience remains consistent across SSO and application session time outs.
You can alter the behavior of the SSO Sync Filter for application requirements by passing various over-riding system properties to WebLogic. To do this, you change the Oracle WebLogic startup script and check for EXTRA_JAVA_PROPERTIES in setDomainEnv.sh. The properties and Sync behavior is shown in Table 16-6.
Table 16-6 SSO Sync Filter Properties and Sync Behavior
Area | Overriding System Property | Default value of System property | Default Behavior of the Sync Filter |
---|---|---|---|
Status (Active or Inactive) | sso.filter.enable | Not configured | Enabled |
Case sensitive matches | sso.filter.name.exact.match | Not configured | Case Ignore Match |
Configured Tokens | sso.filter.ssotoken | Not configured |
|
URI Mappings | Not Applicable | Not Applicable | /* |
You cannot enable the filter for selected applications. The SSO Sync Filter is a system filter. As such, it is activated for all deployed applications (the URI mapping is /*).
Note: You cannot enable the filter for selected applications. |
The following procedure gives some tips about modifying the SSO Sync filter properties and behavior.
To modify the SSO Sync Filter properties and behavior
For example, pass to the WebLogic Server jvm in the WebLogic Server startup script -Dsso.filter.ssotoken=HEADERNAME, and restart the server.
When you contact Oracle Support you might be requested to set up debugging, as described in "Setting Up Debugging in the WebLogic Administration Console".
For more information, see "Troubleshooting" in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.
The chapter describes how to configure single sign-on using Oracle Access Manager 10g. It includes the following major sections:
This section provides the following topics:
This topic provides an overview of Oracle Access Manager installation and initial setup and additional information about installing components and files for use when you deploy the Oracle Access Manager Authentication Provider.
Unless explicitly stated, these topics describe requirements for both the Oracle Access Manager Identity Asserter and the Oracle Access Manager Authenticator:
This topic provides a brief installation and setup overview if you are new to Oracle Access Manager.
Access Servers: For the Oracle Access Manager Authentication Provider, you need two Access Servers for WebGates or AccessGates: one primary server and one secondary server. Currently, only one secondary Access Server is supported. Installing Access Servers includes:
WebGate/AccessGate: Whether you need a WebGate or an AccessGate depends on your use of the Oracle Access Manager Authentication Provider. For instance, the:
About OAM 10g WebGate/AccessGate Profiles and Policy Domains
This topic introduces the WebGate/AccessGate profiles, policy domains, and the methods you can use the create these.
While there are subtle differences between WebGates and AccessGates, these terms are often used interchangeably. In the Access System Console, the configuration profile for WebGates or AccessGates is known as an AccessGate profile. The Policy Manager is where an Oracle Access Manager policy domain is created.
Access System Console Method: Enables users with specific Oracle Access Manager administration rights to enter information and set parameters directly in Oracle Access Manager. This method is required if you are using the Authenticator, or if you have Oracle Web Services Manager policies protecting Web services.
OAMCfgTool Method: Application administrators who are implementing the Identity Asserter for single sign-on, can use OAMCfgTool to create a new WebGate profile for a fresh Web Tier. Required parameters are provisioned using values for your environment specified on the command line. Default values are accepted for non-required parameters; the Access Management Service is set to On. After creating a profile, values can be modified in the Access System Console.
Each AccessGate profile must include the following parameters; those marked with an asterisk, *, are provisioned with OAMCfgTool:
The Preferred Host function prevents security holes that can be inadvertently created if a host's identifier is not included in the Host Identifiers list. However, it cannot be used with virtual Web hosting. For virtual hosting, you must use the Host Identifiers feature.
See Also:
|
About Administrative Requirements for AccessGate Profiles and Policy Domains
This topic introduces the administrative rights needed for the methods you can use when creating new WebGate and AccessGate profiles and policy domains for Oracle Access Manager.
An Oracle Access Manager Master Access Administrator must create the first policy domain after the policy domain root is defined. He or she can then create policy domains for URLs beneath the first one and delegate administration of those policy domains to other administrators.
Access System Console Method: You must be a Master or Delegated Access Administrator can use the Access System Console to create a new AccessGate profile, associate it with an Access Server, and create an authentication scheme. Master or Delegated Access Administrators can also use the Policy Manager to create a policy domain. The following deployments require this method:
OAMCfgTool Method: You do not need specific Oracle Access Manager administration rights for OAMCfgTool, which automates creating and associating a WebGate profile and creating a new policy domain. However, this method can be used for only Identity Assertion. In a:
After creating the profile and policy domain with OAMCfgTool, these can be modified in the Access System Console.
See Also:
|
The following task overview outlines the components and files that must be installed and where to locate more information.
Note: If you already have components installed and set up, you do not need to install new ones. Skip any steps that do not apply to your deployment. |
Unless specifically stated, all details apply whether you intend to deploy the Identity Asserter for single sign-on, or the Authenticator, or if Oracle Web Services Manager policies are protecting Web services.
Task overview: Installing required components and files for Oracle Access Manager 10g Authentication Provider
See Also: The following Release 11g (11.1.1.1.0) manuals |
See Also: Item 3 in this list, and the Oracle Fusion Middleware Getting Started With Installation for Oracle WebLogic Server |
Note: Without a Fusion Middleware application, you must acquire the required JAR and WAR files as described in later procedures. |
Note: Only one secondary Access Server is supported |
In a fresh Web Tier, you must create a profile to define the WebGate for perimeter authentication, as follows:
Oracle recommends that all Java components and applications use JKS as the keystore format. This topic provides steps to convert Oracle Access Manager X.509 certificates to Java Keystore (JKS) format. These steps, when followed properly, generate the JKS stores that can be used while the Java NAP client wants to communicate with an Oracle Access Manager Access Server in Simple or Cert (certificate) mode.
When communicating in Simple or Cert mode, the Access Server uses a key, server certificate, and CA chain files:
Here, aaa is the name you specify for the file (applicable only to Cert and chain files).
You can edit an existing certificate with a text editing utility to remove all data except that which is contained within the CERTIFICATE
blocks. You then convert the edited certificate to JKS format, and import it into the keystore. Java KeyTool does not allow you to import an existing Private Key for which you already have a certificate. You must convert the PEM format files to DER format files using the OpenSSL utility.
To convert an Oracle Access Manager certificate to JKS format and import it
CERTIFICATE
blocks, and save the file in a new location to retain the original. rootcerts
Here you are assigning an alias (short name) root_ca
to the key. The input file aaa_chain.pem is the one that you manually edited in step 3. The keystore name is rootcerts
.
You must give a password to access the keys stored in the newly created keystore.
Note: To ensure security, Oracle recommends that you allow the keytool to prompt you to enter the password. This prompt occurs automatically when the “-storepass” flag is omitted from the command line. |
Here the input file is aaa_key.pem and the output file is aaa_key.der. Additional options include:
Table 17-1 Options to Create DER Format Files from PEM
Option | Description |
---|---|
-topk8 | Reads a traditional format private key and writes a PKCS#8 format key. This reverses the default situation where a PKCS#8 private key is expected on input and a traditional format private key is written. |
-nocrypt | An unencrypted PrivateKeyInfo structure is expected for output. |
-inform | Specifies the input format. If a PKCS#8 format key is expected on input, then either a DER or PEM encoded version of a PKCS#8 key is expected. Otherwise the DER or PEM format of the traditional format private key is used. |
-outform | Specifies the output format. If a PKCS#8 format key is expected on output, then either a DER or PEM encoded version of a PKCS#8 key is expected. Otherwise the DER or PEM format of the traditional format private key is used. |
This section describes how to create resource types in Oracle Access Manager to identify the types of resources that you want the policy domain to protect. This task is required if you use the Oracle Access Manager Authenticator or if you have Oracle Web Services Manager policies protecting Web services.
You use the Oracle Access Manager Access System Console to define resource types as described here.
Note: If you are using the Oracle Access Manager Identity Asserter for single sign-on, you can skip this task. In this case, only the default http resource type is used. |
Defining the wl_authen
resource type in Oracle Access Manager is required only when you are using:
To define resource types in Oracle Access Manager 10g
wl_authen
wl_authen
LOGIN
This section discusses configuring logout for applications protected by a 10g WebGate with Oracle Access Manager 10g. In Oracle Access Manager 10g, global logout (also known as single log out (SLO) can be handled in various ways. This section describes the recommended method.
Note: Oracle Access Manager SSO user session tracking is performed using DOMAIN cookies, specifically the ObSSOCookie. WebGates look for the ObSSOCookie. Global or SLO for Oracle Access Manager simply means killing the ObSSOCookie. Without the ObSSOCookie, WebGates enforce a re-authentication workflow. |
For more information on killing the ObSSOCookie, see:
There are two steps in the Oracle-recommended approach to configuring logout:
WebGate configuration consist of:
If the file is located elsewhere on the Web server, ensure that the logout link is correctly specified to load logout.html. See the logout.html in Example 17-1, which you can customize further depending on your needs.
Use Example 17-1 when you begin constructing a logout.html for logout configuration for an application protected by 10g WebGate in an OAM 10g deployment.
Example 17-1 logout.html Script
Application configuration for logout depends on whether it is an ADF application integrated with OPSS or if it is not integrated with OPSS.
Note: The logout configuration assumes that the applications are present in a single DNS domain. If you would like SLO (single log out) across applications deployed in different DNS domains, you must customize the logout script to ensure processing for each WebGate. If you have a multi DNS domain deployment, see the Oracle Access Manager Access Administration Guide. |
One of the following must be done to configure the application for logout:
Non-ADF Application
A non-ADF application must be coded to invoke the link for logout: "/oamsso/logout.html?end_url=<target uri>".
The application can pass a parameter (named end_url
) indicating the location where the user should eventually be redirected to after logout. The value that is part of end_url
could either be a URL or a URI. For example, the logout link for the application might be specified as
or
If the end_url querystring is a URI, then the logout.html must construct the URL by determining the host:port of the server where logout.html is hosted.
ADF-Coded Applications
If the Application is an ADF application that has been integrated with OPSS, then you can use the following procedure to configure logout.
To configure centralized logout for ADF-coded applications
The last parameter is optional if the server is running on localhost at the default port (7001).
Here, logouturival
is the URI of the logout script /oamsso/logout.html. The logouturl could either begin with "logout" (exceptions are logout.gif and logout.jpg) or could be any other value configured by the OAM Administrator.
Oracle does not recommend this method unless your application already has a custom logout page that you do not wish to change for any reason.
WebGate logs out of any request for a URL that has the string "logout." in it. Exception: Image files such as logout.gif and logout.jpg. This is the simplest way to integrate an application with OAM SLO. If your logout page begins with "logout." (for example, logout.jsp) then you do not need to do any thing.
Note: If your logout page begins with "logout." (for example, logout.jsp) then you do not need to do any thing. |
If your logout page does not begin with "logout.", then you must add your logout URL to the WebGate LogOutUrls parameter. For instance: LogOutUrls = "/myapplication /customscript.jsp".
This section enumerates the common and provider-specific parameters relevant to the Oracle Access Manager Authentication Provider. These are specified in the Oracle WebLogic Administration Console. For more information, see:
Table 17-2 Oracle Access Manager Authentication Provider Common Parameters
Parameter Name | Parameter Description |
---|---|
Name | The name of the provider. Read-only. |
Description | The description of the provider. Read-only. |
Version | The version of the provider. Read-only. |
Control Flag | The provider JAAS control flag. Set one of the following: REQUIRED, REQUISITE, OPTIONAL, or SUFFICIENT. When configuring multiple Authentication Providers, use this flag to control how they are use in the login sequence. See JAAS Control Flag. |
Active Types | This parameter is relevant to only Oracle Access Manager Identity Asserter. This parameter determines the token types that the Identity Asserter Provider processes. Set as follows for OAM 10g and 10g WebGate:
|
Base64 Decoding Required | False is Read-only (the default). |
The WebLogic Server Administration Console sets the JAAS Control Flag to OPTIONAL when you create a new security provider. The default value for out-of-the-box security providers is REQUIRED. For more details about the control flag, see the online help.
Table 17-3 lists the provider-specific parameters for Oracle Access Manager the Authenticator or the Identity Asserter for Oracle Web Services Manager.
Note: With OAM 11g, the Access Server is known as the OAM Server. |
Table 17-3 Provider-Specific Parameters
Parameter Name | Parameter Description |
---|---|
Transport Security | The mode of communication between AccessGate and Access Server. |
Minimum Access Server Connections In Pool | The minimum number of connections allowed. Default is 5. |
Access Gate Password | The password of the AccessGate used by the provider. |
Key Store Pass Phrase | The password to access the key store. |
Access Gate Name | The name of the AccessGate used by the provider. Required. |
Primary Access Server | The name of the primary access server. It must conform to the format host:port. Required. See "Installing and Setting Up Authentication Providers for OAM 10g". |
Maximum Access Server Connections In Pool | The maximum number of connections allowed. Default is 10. Set to 1. |
Simple Mode PassPhrase | The password shared by AccessGate and Access Server for Simple or Cert communication modes. |
Trust Store | The absolute path of JKS trust store used for SSL communication between the provider and the Oracle Access Manager Access Server. |
SSOHeader Name | OAM_REMOTE_USER |
Secondary Access Server | The name of the secondary access server. It must conform to the format host:port. See "Installing and Setting Up Authentication Providers for OAM 10g". |
Key Store | The absolute path of JKS key store used for SSL communication between the provider and the Oracle Access Manager Access Server. |
Table 17-4 lists provider-specific parameters for the Oracle Access Manager Authenticator.
Table 17-4 Provider-Specific Parameters: Oracle Access Manager Authenticator
Parameter Name | Parameter Description |
---|---|
Transport Security | The mode of communication between AccessGate and Access Server. |
Maximum Access Server Connections In Pool | The maximum number of connections allowed. Default is 10. Set to 1. |
Simple Mode Pass Phrase | The password shared by AccessGate and Access Server for simple or cert communication modes. |
Minimum Access Server Connections In Pool | The minimum number of connections allowed. Default is 5. |
Trust Store | The absolute path of JKS trust store used for SSL communication between the provider and the Oracle Access Manager Access Server. |
Use Retrieved username As Principal | Specifies whether to use the user name retrieved from Oracle Access Manager as the Principal in the Subject. |
Access Gate Password | The password of the AccessGate used by the provider. |
Key Store Pass Phrase | The password to access the key store. |
Access Gate Name | The name of the AccessGate used by the provider. Required. |
Secondary Access Server | The name of the secondary access server. It must conform to the format host:port. See: |
Key Store | The absolute path of JKS key store used for SSL communication between the provider and the Oracle Access Manager Access Server. |
Primary Access Server | The name of the primary access server. It must conform to the format host:port. Required. See: |
This topic introduces OAMCfgTool, which can be used only if you are deploying the Oracle Access Manager 10g Identity Asserter for single sign-on.
OAMCfgTool launches a series of scripts to request information and set up the required profiles and policies in Oracle Access Manager 10g. OAMCfgTool runs in the following modes:
Unless you specify an LDIF output file, configuration changes are written directly in the LDAP directory server that is configured with Oracle Access Manager. In addition, without an LDIF file, OAM Access Server's cache is updated with the configuration changes.
Note: When configuration changes are written to an LDIF file, it can be loaded into the directory server for Oracle Access Manager at a later time. |
You can also specify a log level and an output file for logging details. If errors occur when running OAMCfgTool, these are reported on the command line.
Passwords
OAMCfgTool expects four passwords: LDAP user, Application agent, OAM mode, and Test user.
Without the -noprompt
parameter, OAMCfgTool attempts to fetch passwords first from the command line. If no password is found, then OAMCfgTool pauses and prompts for a password to be entered on the command line.
However if you specify the -noprompt
parameter, OAMCfgTool checks for passwords passed from the command line:
Passwords can be passed from a shell using an echo command and a semi-colon as a separator. For instance:
$ (echo ldapUserPwd; echo appAgentPwd; echo OAMModePwd; echo TestUserPwd) | java -jar oamcfgtool.jar <args> -noprompt
$ (echo ldapUserPwd; echo appAgentPwd) | java -jar oamcfgtool.jar <args> -noprompt
$ (echo; echo appAgentPwd) | java -jar oamcfgtool.jar <args> -noprompt
For more information, see "OAMCfgTool Parameters and Values".
This topic describes the processing that occurs when you use OAMCfgTool with various parameters and values for your environment.
This topic focuses on using OAMCfgTool for OAM 10g. If you are using OAM 11g, skip this topic and instead refer to the chapter Chapter 16, "Configuring Single Sign-On with Oracle Access Manager 11g".
Process overview: OAMCfgTool creates the authentication scheme, policy domain, and WebGate profile
Note: See the uris_file parameter in Table 17-5 for details about specifying protected and public URIs in a file. |
Find the following topics here:
Table 17-5 provides both required and optional OAMCfgTool parameters and values for CREATE mode. You can specify multiple parameters at one time.
Table 17-5 OAMCfgTool CREATE Mode Parameters and Values
Parameters | CREATE Mode Values |
---|---|
Required Parameters | Required Parameter Values |
app_domain | Name of the Oracle Access Manager policy domain to protect the application. Within the Policy Manager this is known as the policy domain name. |
protected_uris | URIs for the protected application in a comma separated list (with or without spaces): /myapp/login, for example. See Also: The uris_file parameter in this table. |
uris_file | The full path to a file containing any number of protected or public URIs and eliminates the need to use the protected_uris or public_uris parameters. Ensure that the file uses the following syntax and format: --At least one protected URI is required. --Only one product family is allowed per file. --Comments begin with '#' --Keyword: public_uris. List public URIs on separate lines after this key word. --Key word: protected_uris. List URIs to be protected on separate lines after this key word. For example: ######################## #Finance ######################## . ######################## protected_uris ######################## /finance/protected/test1 /finance/protected/test2 ######################## public_uris ######################## /finance/public /finance/protected/test1/public |
app_agent_password | Password to be provisioned for the WebGate. In the AccessGate Profile within the 10g Access System Console, this parameter is known as the AccessGate Password. Your entry appears in clear text on the command line but is not captured in a log file. Note: This parameter is not required if you will not create a WebGate profile. See Also: |
ldap_host | DNS name of the computer hosting the LDAP directory server for Oracle Access Manager. This is the directory server containing the OAM policy data. Note: SSL-enabled communication with the directory server is not supported. |
ldap_port | Port of the LDAP directory server. |
ldap_userdn | The valid DN of the LDAP administrative user, entered as a quoted string. In Oracle Access Manager this is known as the Root DN or Bind DN. |
ldap_userpassword | Password of LDAP administrative user. Passwords appear in clear text but are not captured in a log file. See Also: -noprompt later in this table. See Also: |
oam_aaa_host | DNS name of the computer hosting an accessible Access Server. After making appropriate changes to the Directory Server, a Cache flush request would be sent to this Access Server so that Access Servers refresh their appropriate caches. If the 'primary_oam_servers' parameter is not specified, then the WebGate profile being created would be configured to use the Access Server, specified as part of oam_aaa_host, as the Primary Access Server. Number of connections would default to 1. See Also: primary_oam_servers and secondary_oam_servers, later in this table. |
oam_aaa_port | Listening port on the accessible Access Server |
Optional Parameters | Optional Parameter Values |
help | Provides a list of parameters and descriptions. |
version | Lists the version of the OAMCfgTool. |
web_domain | Primarily used to specify the host identifier. Note: OAMCfgTool either creates a host identifier and Webgate profile together or does not create either of them, as described in the following two scenarios: Creation of a Fresh Web Tier: If the host identifier specified by the parameter "web_domain" (or "app_domain" if "web_domain" is not specified) does not exist in OAM, then the following would be created in OAM:
See Also: The hostname_variations parameter in this table for configuring virtual hosts. Using an existing Web Tier (Join a web domain): If the host identifier specified as part of "web_domain" (or "app_domain", if "web_domain" is not specified) exists in OAM, then:
Note: The host identifier created in a fresh Web Tier is used in the policy domain being used. If virtual Web hosting is supported, supply a reserved name in the Preferred HTTP Host field instead of a host name variation. See Also: The hostname_variations parameter in this table and the Oracle Access Manager Access Administration Guide. |
cookie_domain | Name of the domain to use for the ObSSOCookie. Within the AccessGate Profile in the Access System Console, this is known as the Primary HTTP Cookie Domain. Use this parameter when you create a new WebGate profile in a fresh Web Tier. |
public_uris | URIs that must be unprotected using the Anonymous authentication scheme. You can identify public URIs by providing a comma separated list: "uri1,uri2,uri3", for example. See Also: The uris_file parameter in this table. |
ldap_base | Base from which all LDAP searches are performed. |
oam_aaa_mode | Transport security mode of the accessible Access Server: OPEN, SIMPLE, or CERT. Default presumes OPEN. |
oam_aaa_passphrase | Passphrase required for SIMPLE mode transport security mode only. The passphrase appears in clear text but is not captured in a log file. See Also: The discussion "Passwords". |
log_file | Name of the OAMCfgTool log file. Output to the screen is the default. |
log_level | Level for OAMCfgTool logging: ALL, SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, OFF. Default = WARNING |
output_ldif_file | Name of the LDIF file in which to store details from OAMCfgTool operations to load into the LDAP directory server later. If none is specified, changes are written immediately to the LDAP directory server and caches in Oracle Access Manager are flushed to make new information available. |
noprompt | Disables password prompts from OAMCfgTool and enables password checks as follows:
|
authenticating_wg_url | URI containing the host and port of the authenticating WebGate (when you have both an authenticating and a resource WebGate). For example:
This parameter configures the "Challenge Redirect Parameter" of both the following authentication schemes:
Note: The 'Challenge Redirect' parameter is added when the authentication scheme is created. The 'Challenge Redirect' parameter of an existing authentication scheme is not updated. |
configOIMPwdPolicy | Creates the Oracle Identity Manager (OIM) password policy to automate integration with Oracle Access Manager. Also, the corresponding authentication scheme used by the policy is enabled to check password policies. |
OimOhsHostPort | Required when integrating Oracle Identity Manager (OIM) with Oracle Access Manager and an authentication WebGate and resource WebGate. See Also: "OIM Integration-Related Parameters and Values". Not required without an authenticating WebGate. In this case, Oracle Identity Manager (OIM) password policy (OraOIMDefPasswdPolicy) automates integration with Oracle Access Manager and the corresponding authentication scheme used by the policy is enabled to check password policies. Default values are used for the password policy-related parameters with the value in OimOhsHostPort prepended to these. For example: -OimLostPwdRedirectUrl (Lost Password Redirect URL): <OimOHSHostPort>/admin/faces/pages/forgotpwd.jspx -OimPwdRedirectUrl (Password Change Redirect URL): <OimOHSHostPort>/admin/faces/pages/pwdmgmt.jspx?backUrl=%RESOURCE% -OimLockoutRedirectUrl (Account Lockout Redirect URL): <OimOHSHostPort>/ApplicationLockoutURI OimOhsHostPort parameter is applicable only if the -configOimPwdPolicy flag is present. |
logouturi | Facilitates configuration of LogoutRedirectUrl on the Resource WebGate by pointing to the URL location on the Authenticating WebGate where the perl script for logout is configured. The value of logouturi parameter must be a URI. The WebGate LogoutRedirectUrl parameter is configured using the authenticating_wg_url and logouturi parameters: http://<awghost>:<awgport>/cgi-bin/logout.pl LogoutRedirectUrl http://myhost.us.myco.com:7777/cgi-bin/logout.pl. Note: Do not configure the LogoutRedirectUrl parameter on the authenticating WebGate itself. Instead, leave the LogoutRedirectUrl blank on the authenticating WebGate. To configure the logout URI when you create an application domain and provision a fresh WebGate: $ (echo ldapUserPwd; echo appAgentPwd; echo OAMModePwd; echo TestUserPwd) java -jar oamcfgtool.jar app_domain=app_domain protected_uris="/protUri" ldap_host=<ldap-host> ldap_port=3899 ldap_userdn="cn=Directory Manager" oam_aaa_host=<aaa_host> oam_aaa_port=7054 oam_aaa_mode=simple ldap_ base="o=company,c=us" oam_aaa_passphrase=welcome1 authenticating_wg_ url=http://myhost.us.myco.com:7777 -logouturi=/cgi-bin/logout.pl -noprompt Note: To use an existing WebGate, use the webgate_id parameter as described next. |
webgate_id | Specifies the name of the existing WebGate for which "LogoutRedirectUrl" is not yet configured. Notes: The WebGate profile is created only if the corresponding host identifier does not already exist in Oracle Access Manager. Further:
Following is a sample command using webgate_id.: $ (echo ldapUserPwd; echo appAgentPwd; echo OAMModePwd; echo TestUserPwd) java -jar oamcfgtool.jar app_domain=myapp webgate_id=MyWebgate protected_uris="/protUri" ldap_host=<ldap-host> ldap_port=3899 ldap_userdn="cn=Directory Manager" oam_aaa_host=<aaa_host> oam_aaa_port=7054 oam_aaa_mode=simple ldap_ base="o=company,c=us" oam_aaa_passphrase=welcome1 authenticating_wg_ url=http://myhost.us.myco.com:7777 -logouturi=/cgi-bin/logout.pl -noprompt |
hostname_variations | Enables you to add values to the Hostname Variations section of the Host Identifier in Oracle Access Manager. To configure virtual hosts for Apache-based Web servers (including OHS), include this parameter as follows: java -jar oamcfgtool.jar app_domain=<app domain> web_domain=<hostid1> ... hostname_variations=vhost1,vhost2 Note:
To configure virtual hosts for non-Apache-based Web servers, include the parameter, preferred_http_host as described next. |
preferred_http_host | Makes configurable the Preferred Http Host field of the WebGate profile. To configure virtual hosts for non-Apache-based Web servers, include this parameter, with a value of HOST_HTTP_HEADER, as follows: java -jar oamcfgtool.jar app_domain=<app domain> web_domain=<hostid1> ... hostname_variations=vhost1,vhost2 preferred_http_host=HOST_HTTP_HEADER You can simply add multiple hostname variations to a host identifier using the java -jar oamcfgtool.jar app_domain=<app domain> web_domain=<hostid1> ... hostname_variations=hostname1,hostname2 preferred_http_host=SOME_ HOSTNAME_VARIATION_VALUE The virtual environment notes apply. Additionally, if the WebGate profile is being created, then you can set the preferred http host field of the profile to any value from the hostname variations Generally, you do not need additional hostname variations when creating a host identifier in a non-virtual host environment. OAMCfgTool adds a default value to the preferred http host field of the WebGate profile and to the hostname variation section of the host identifier being created. |
default_authn_scheme | Configures the default authentication scheme for a policy domain. You must pass the authentication scheme name as displayed in the Access System Console. OAMCfgTool always provisions the following authentication schemes:
The first time you run the tool in a new deployment, the schemes in the previous list are created. The authentication scheme specified as part of the "default_authn_scheme" parameter is used to configure the Default Authentication Rule section of the Policy Domain being configured. With the OAM URIs file, you can configure the authentication scheme for a protected policy (policies that are specified after the key word "protected_uris" for the Policy Domain. You must pass the Authentication Scheme name in the URIs file in the following format (the policy name and authentication scheme name must be separated by a tab character): <Policy Name> 'tab' <Authentication Scheme Name>. Following is an example of entries in a URIs file (for more information, see the uris_file parameter earlier in this table): #--- protected_uris protected policy1 Basic Over LDAP /protected1 public1/mystuff.html protected policy2 OraDefaultFormAuthNScheme /protected2/public2/prot2 /.../{*.js,*.png,*.gif} protected policy3 Client Certificate /protected2/public2/prot2/.../{*.js,*.png,*.gif} #-- The previous entries in a URIs file produce the following named policies:
|
max_oam_connections | Supports high availability and multiple Access Servers by specifying the maximum number of connections ('Maximum Connections') for the WebGate profile being created. |
primary_oam_servers | Supports high availability and multiple Access Servers by configuring the WebGate profile with more than one primary Access Server. The format of this parameter is:
Notes:
|
secondary_oam_servers | Supports high availability and multiple Access Servers by configuring the WebGate profile with more than one secondary Access Server. The format of this parameter is:
Notes:
|
Table 17-6 identifies OIM integration-related parameters and values for OAMCfgTool.
See Also: The section on integrating Oracle Access Manager 10g with Oracle Identity Manager 11g in the Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management |
Table 17-6 Additional OIM Integration-Related Parameters and Values
Parameter | Description |
---|---|
configOIMPwdPolicy | Creates the Oracle Identity Manager (OIM) password policy (OraOIMDefPasswdPolicy) to automate integration with Oracle Access Manager. Additionally, the corresponding authentication scheme used by the policy is enabled to check password policies. For example, if the policy is used with the default authentication scheme (OraDefaultFormAuthnScheme), then the scheme's "Validate_Password" plug-in is updated to include 'obReadPasswdMode="LDAP",obWritePasswdMode="LDAP"'. Note: Use default values for password-related parameters in Identity System Console, prepended with the value specified with OimOhsHostPort. When configOIMPwdPolicy is used, ensure that you do not have the default OIM password policy created using the tool previously and do not pass any of the following parameters: When configOIMPwdPolicy is used, ensure that you do not have the default OIM password policy created using the tool previously and do not pass any of the following parameters: |
OimOhsHostPort | Required when integrating Oracle Identity Manager (OIM) with Oracle Access Manager and an authentication WebGate and resource WebGate. Not required without an authenticating WebGate. In this case, Oracle Identity Manager (OIM) password policy (OraOIMDefPasswdPolicy) automates integration with Oracle Access Manager and the corresponding authentication scheme used by the policy is enabled to check password policies. Default values are used for the password policy-related parameters with the value in OimOhsHostPort prepended to these. For example: -OimLostPwdRedirectUrl (Lost Password Redirect URL): <OimOHSHostPort>/admin/faces/pages/forgotpwd.jspx -OimPwdRedirectUrl (Password Change Redirect URL): <OimOHSHostPort>/admin/faces/pages/pwdmgmt.jspx?backUrl=%RESOURCE% -OimLockoutRedirectUrl (Account Lockout Redirect URL): <OimOHSHostPort>/ApplicationLockoutURI OimOhsHostPort parameter is applicable only if the -configOimPwdPolicy flag is present. |
OimPwdRedirectUrl | Required for configOIMPwdPolicy. Configures the Password Change Redirect URL parameter in Oracle Access Manager. |
OimLockoutRedirectUrl | Required for configOIMPwdPolicy. Configures the Custom Account Lockout Redirect URL parameter in Oracle Access Manager. |
OimLostPwdRedirectUrl | Required for configOIMPwdPolicy. Configures the Lost Password Redirect URL parameter in Oracle Access Manager. |
Note: This is a one time setup requirement. If the OraOIMDefPasswdPolicy policy already exists, it is not created anew. You must restart the Identity and Access Servers after this operation. See Example 17-2. |
Example 17-2 OIM Integration-Related Parameter Usage
Master or Delegated Access Administrators can check Oracle Access Manager directly to validate policy domain and WebGate profile setup.
Note: You cannot use OAMCfgTool mode to validate AccessGate profile creation. |
Using OAMCfgTool in VALIDATE mode, you can ensure that the policy domain for single sign-on configuration is correct. In this case, a set of requests are sent automatically to protected resources.
Table 17-7 provides both required and optional OAMCfgTool parameters and values for VALIDATE mode.
Table 17-7 OAMCfgTool VALIDATE Mode Parameters and Values
VALIDATE Mode Parameters | VALIDATE Mode Values for Required Parameters |
---|---|
Required Parameters | Values |
app_domain | Name of the Oracle Access Manager policy domain that was created to protect the Application. |
ldap_host | DNS name of the computer hosting the LDAP directory server for Oracle Access Manager. |
ldap_port | Port of the LDAP directory server. |
ldap_userdn | The valid DN of the LDAP administrative user, entered as a quoted string. In Oracle Access Manager this is known as the Root DN or Bind DN. |
ldap_userpassword | Password of the LDAP administrative user. Passwords appear in clear text but are not captured in a log file. See Also: noprompt in this table. |
ldap_base | Base from which all LDAP searches are done. In Oracle Access Manager this is known as the search base or configuration base. For example: dc=company,c=us. |
oam_aaa_host | DNS name of the computer hosting the Access Server. |
oam_aaa_port | Listening port on the Access Server host. |
test_username | User name to be used for policy validation. |
test_userpassword | User password to be used for policy validation. Passwords appear in clear text but are not captured in a log file. See Also: noprompt in this table. |
noprompt | Enables OAMCfgTool to read passwords from System.in to ensure safe passage. Passwords can be passed from a shell using an echo command and a semi-colon as a separator. ConfigTool expects four passwords: Ldap user, App agent, OAM mode and Test user: See Also: noprompt in Table 17-5. |
Optional Parameters | Values |
web_domain | Host identifier |
ldap_base | Base from which all LDAP searches are done. In Oracle Access Manager this is known as the search base or configuration base. For example: dc=company,c=us. |
oam_aaa_mode | Transport security mode of the accessible Access Server: OPEN, SIMPLE, or CERT. Default presumes OPEN. |
oam_aaa_passphrase | Passphrase required for SIMPLE mode transport security mode only. Your entry appears in clear text. However, it is not captured in a log file. |
log_file | Name of the OAMCfgTool log file. Output to the screen is the default. |
log_level | Level for OAMCfgTool logging: ALL, SEVERE, WARNING, INFO, CONFIG, FINE, FINER, FINEST, OFF (the default). |
noprompt | Enables OAMCfgTool to read passwords from System.in to ensure safe passage. Passwords can be passed from a shell using an echo command and a semi-colon as a separator. OAMCfgTool expects four passwords: LDAP user, Application agent, OAM mode and Test user. See Also Table 17-5. |
Using OAMCfgTool in DELETE mode, you can remove the provisioned policies, the web domain, WebGate registration, and authentication scheme.
Table 17-8 provides both required and optional OAMCfgTool parameters and values for DELETE mode.
Table 17-8 OAMCfgTool DELETE Mode Parameters
DELETE Mode Parameters | DELETE Mode Values for Required Parameters |
---|---|
ldap_host | DNS name of the computer hosting the LDAP directory server for Oracle Access Manager. |
ldap_port | Port of the LDAP directory server. |
ldap_userdn | The valid DN of the LDAP administrative user, entered as a quoted string. In Oracle Access Manager this is known as the Root DN or Bind DN. |
ldap_userpassword | Password of the LDAP administrative user. Passwords appear in clear text but are not captured in a log file. See Also: -noprompt in Table 17-5. |
oam_aaa_host | DNS name of the computer hosting the Access Server. |
oam_aaa_port | Listening port on the Access Server host. |
Optional Parameters | Values |
app_domain | To delete the entire application domain, specify only app_domain with no URI-related parameters. |
web_domain | web_domain=existing_host_Identifier To delete the host identifier identified by this parameter and the WebGate registration. See Also: Table 17-5. |
protected_uris | URIs for the protected application in a comma separated list (with or without spaces): /myapp/login, for example. Deletes one or more protected URIs from an application domain. See Also: The uris_file parameter in this table. |
public_uris | Deletes one or more public URIs from an application domain. See Also: The uris_file parameter in this table. |
uris_file | The full path to a file containing any number of protected or public URIs and eliminates the need to use the protected_uris or public_uris parameters. Ensure that the file uses the following syntax and format. See Also: Table 17-5. |
authn_scheme | The name of the authentication scheme to delete: OraDefAuthSchemes, OraDefaultAWGFormAuthNScheme, OraDefaultI18NFormAuthNScheme. To delete all three, specify OraDefAuthSchemes: You can include the following options: -noconfirm With this parameter there is no prompt for confirmation before deleting. |
noprompt | Enables OAMCfgTool to read passwords from System.in to ensure safe passage. Passwords can be passed from a shell using an echo command and a semi-colon as a separator. OAMCfgTool expects four passwords: LDAP user, Application agent, OAM mode and Test user. See Also Table 17-5. |
This topic describes and illustrates the results of running OAMCfgTool when viewed in Oracle Access Manager:
My Policy Domains
Policy Domain, General Tab
Figure 17-1 illustrates the General tab in a sample policy domain created with OAMCfgTool. The Description is provided automatically.
Note: For descriptions only, the Java API retrieves the current user from the operative platform and the name of the computer host: user@hostname. |
Figure 17-1 Sample OAMCfgTool Policy Domain General Tab
Policy Domain, Resources Tab
Figure 17-2 illustrates the Resources tab in a sample policy domain created with OAMCfgTool. The http resource type is the default. The host identifier and URL prefixes are derived from OAMCfgTool parameters and the values you enter. The Description is provided automatically.
Figure 17-2 Sample OAMCfgTool Policy Domain Resources Tab
Policy Domain, Authorization Rules Tab
Figure 17-3 illustrates the Authorization Rules tab in a sample policy domain created with OAMCfgTool. Details found on sub tabs follow the figure. Authorization rules are automatically configured for the policy domain when you use OAMCfgTool.
Figure 17-3 Sample OAMCfgTool Policy Domain Authorization Rules Tab
Policy Domain, Default Rules Tab
Figure 17-4 illustrates the Default Rules tab in a sample policy domain created with OAMCfgTool. All values are configured automatically for the policy domain; details on sub tabs follow the figure.
Figure 17-4 Sample OAMCfgTool Policy Domain Default Rules Tab
Policy Domain, Policies Tab
Figure 17-5 illustrates the Policies tab, General sub tab, in a sample policy domain created using parameters and values that you specify with OAMCfgTool. The host identifiers are based on your app_domain value. Details on other sub tabs follow the figure.
Figure 17-5 Sample OAMCfgTool Policy Domain Policies Tab
Policy Domain, Delegated Access Admins Tab
Figure 17-6 illustrates the Delegated Access Admins tab in a sample policy domain created using OAMCfgTool. No parameters are specified with the tool to set up delegated rights for Master Web resource Admins.
Figure 17-6 OAMCfgTool Policy Domain Delegated Access Admins Tab
See Also: "Protecting Resources with Policy Domains" in the Oracle Access Manager Access Administration Guide. |
Host Identifiers
You can find the Host Identifiers created with OAMCfgTool in the Access System Console, under the Access System Configuration tab.
Figure 17-7 illustrates a sample host identifiers created using OAMCfgTool. As described here, required parameters are derived from the value entered with OAMCfgTool app_domain parameter. A Description is provided by OAMCfgTool.
Figure 17-7 Sample OAMCfgTool Host Identifiers
AccessGate Profile
Figure 17-8 illustrates a sample AccessGate profile created using OAMCfgTool when the web_domain parameter is omitted. The profile is in the Access System Console. As described here, required profile parameters are derived from values entered with OAMCfgTool. Other profile parameters use default values. A Description is provided by OAMCfgTool.
Figure 17-8 Sample OAMCfgTool AccessGate Profile
Table 17-9 identifies known issues with this release. For more information about the tool, parameters, and values, see "Introduction to OAMCfgTool".
Table 17-9 OAMCfgTool Known Issues
Bug Number | Description |
---|---|
n/a | The location where you obtain Oracle Access Manager Authentication Provider and OAMCfgTool JAR files when you do not have an Oracle Fusion Middleware application installed could change. If the location is different than the one stated in this chapter, see the Release Notes for the latest information. |
8362080 | OAMCfgTool provides Create, Validate, and Delete modes. It does not provide an Overwrite option. |
8362039 | OAMCfgTool does not provide explicit options to specify the Web Tier host and port. Instead, without web_domain specified the app_domain value specifies the WebGate name, host, and Preferred HTTP Host. For example:
|
n/a | With OAMCfgTool, if web_domain parameter is included in the command line, you must provide a WebGate password. Otherwise, the command can fail. The app_agent_password parameter accepts as the password whatever follows the equal sign, =. For instance, if you enter app_agent_password= and then enter a space character and web_domain=value, the app_agent_password is presumed to be a space character followed by web_domain. |
n/a | SSL-enabled communication with the directory server is not supported by OAMCfgTool. |
This section describes the unique steps needed to configure Oracle Access Manager Identity Assertion for Single Sign-On.
Prerequisites
Unless explicitly noted for the Authenticator or Oracle Web Services Manager, all tasks described in "Installing and Setting Up Authentication Providers for OAM 10g" should be performed, including:
Note: If you are implementing:
|
To configure Oracle Access Manager Identity Asserter for single sign-on with your application, perform the tasks as described in the following task overview.
Task overview: Deploying and configuring the Oracle Access Manager Identity Asserter for single sign-on includes
Configuring the Authentication Scheme for the Identity Asserter
The following topics explain the tasks you must perform to set up the application for single sign-on with the Oracle Access Manager Identity Asserter:
Note: This task is the same for both OAM 11g and OAM 10g. |
This topic describes how to create the application authentication method for Oracle Access Manager Identity Assertion.
When you use the Oracle Access Manager Identity Asserter, all web.xml
files in the application EAR file must specify CLIENT-CERT
in the element auth-method
for the appropriate realm.
The auth-method can use BASIC, FORM, or CLIENT-CERT values. While these look like similar values in Oracle Access Manager, the auth-method specified in web.xml
files are used by Oracle WebLogic Server (not Oracle Access Manager).
Note: You can specify CLIENT-CERT, FORM if you are also planning to access the applications directly over WebLogic and want the WebLogic authentication scheme to be invoked. |
To specify authentication in web.xml for the Identity Asserter and OAM 10g
auth-method
in login-config
and enter CLIENT-CERT
. Oracle HTTP Server includes the mod_weblogic plug-in module (mod_wl_ohs.so in 11g) which is already enabled. You can perform the following procedure to confirm this or skip this procedure.
With Oracle HTTP Server 11g, the mod_weblogic configuration is present in mod_wl_ohs.conf by default, and the path of this file is included in httpd.conf. If the mod_weblogic configuration is not present then you must edit httpd.conf.
To configure mod_weblogic for the Identity Asserter and OAM 10g
The Oracle WebLogic Connection Filtering mechanism must be configured for creating access control lists and for accepting requests from only the hosts where Oracle HTTP Server and the front-end Web server are running.
Note: This topic is the same whether you are using OSSO or Oracle Access Manager. |
A network connection filter is a component that controls the access to network level resources. It can be used to protect resources of individual servers, server clusters, or an entire internal network. For example, a filter can deny non-SSL connections originating outside of a corporate network. A network connection filter functions like a firewall since it can be configured to filter protocols, IP addresses, or DNS node names. It is typically used to establish trust between Oracle WebLogic Server and foreign entities.
To configure a connection filter to allow requests from only mod_weblogic
and the host where OHS 11g is running, perform the procedure here.
Note: This chapter uses the generic name of the WebLogic Server plug-in for Apache: mod_weblogic. For Oracle HTTP Server 11g, the name of this plug-in is mod_wl_ohs; the actual binary name is mod_wl_ohs.so. Examples show exact syntax for implementation. |
WebLogic Server provides a default connection filter: weblogic.security.net.ConnectionFilterImpl. This filter accepts all incoming connections and also provides static factory methods that allow the server to obtain the current connection filter. To configure this connection filter to deny access, simply enter the connection filters rules in the WebLogic Server Administration Console.
You can also use a custom connection filter by implementing the classes in the weblogic.security.net package. Like the default connection filter, custom connection filters are configured in the WebLogic Server Administration Console.
Connection Filter Rules: The format of filter rules differ depending on whether you are using a filter file to enter the filter rules or you enter the filter rules in the Administration Console. When entering the filter rules on the Administration Console, enter them in the following format:
Table 17-10 provides a description of each parameter in a connection filter.
Table 17-10 Connection Filter Rules
Parameter | Description |
---|---|
target | Specifies one or more systems to filter |
localAddress | Defines the host address of the WebLogic Server instance. (If you specify an asterisk (*), the match returns all local IP addresses.) |
localPort | Defines the port on which the WebLogic Server instance is listening. (If you specify an asterisk, the match returns all available ports on the server.) |
action | Specifies the action to perform. This value must be allow or deny |
protocols | Is the list of protocol names to match. The following protocols may be specified: http, https, t3, t3s, giop, giops, dcom, ftp, ldap. If no protocol is defined, all protocols match a rule. |
The Connection Logger Enabled attribute logs successful connections and connection data in the server. This information can be used to debug problems relating to server connections.
See Also: "Configuring Security in a WebLogic Domain" in Oracle Fusion Middleware Securing Oracle WebLogic Server |
To configure a connection filter to allow requests from the host of the 11g Oracle HTTP Server
This topic focuses on using OAMCfgTool for OAM 10g. If you are using OAM 11g, skip this topic and instead perform tasks in "Session Token: Provisioning an OAM Agent with Oracle Access Manager 11g".
After setting up your application, you must protect it with Oracle Access Manager. To help automate this task, Oracle provides the command-line tool: OAMCfgTool in the Fusion Middleware application-provided oamcfgtool.jar file for OAM 10g.
While you can perform steps manually in the Access System Console and Policy Manager, you can optionally use OAMCfgTool to setup and validate a form-based authentication scheme, a policy domain for the application, and Oracle Access Manager access policies required for Identity Assertion for single sign-on. Additionally, you can create a new WebGate profile in a fresh Web Tier or modify a WebGate profile in an existing Web Tier.
For more information, see "Creating an Authentication Scheme, Policy Domain, and a WebGate Profile".
This topic provides a procedure that you can use as a model when you run OAMCfgTool.
This example presumes a fresh Web Tier that requires a new WebGate profile. Therefore, the web_domain= parameter is omitted. A new profile is created and named with the app_domain value (appended with _AG).
The following procedure is only an example to illustrate how to use the tool. Values for your environment will be different.
Note: If you have an Oracle Fusion Middleware application installed you already have the OAMCfgTool. In this case, skip Step 1. |
To create a form authentication scheme, policy domain, and access polices with OAMCfgTool
Note:
|
WebGate_install_dir
\access\oblix\tools\configureWebGate
where WebGate_install_dir is the directory where WebGate is installed.
See Also: "Configuring AccessGates and WebGates" in the Oracle Access Manager Access Administration Guide |
hostname refers to computer that hosts the WebPass Web server; port refers to the HTTP port number of the WebPass Web server instance; /access/oblix connects to the Access System Console.
This topic is divided as follows:
This topic introduces only a few types of Authentication Providers for a WebLogic security realm, if you are new to them.
Each WebLogic security realm must have one at least one Authentication Provider configured. The WebLogic Security Framework is designed to support multiple Authentication Providers (and thus multiple LoginModules) for multipart authentication. As a result, you can use multiple Authentication Providers as well as multiple types of Authentication Providers in a security realm. The Control Flag attribute determines how the LoginModule for each Authentication Provider is used in the authentication process.
Oracle WebLogic Server offers several types of Authentication and Identity Assertion providers including, among others:
Oracle WebLogic Server 10.3.1+ provides the OracleInternetDirectoryAuthenticator.
When you configure multiple Authentication Providers, use the JAAS Control Flag for each provider to control how the Authentication Providers are used in the login sequence. You can choose the following the JAAS Control Flag settings, among others:
When additional Authentication Providers are added to an existing security realm, the Control Flag is set to OPTIONAL by default. You might need to change the setting of the Control Flag and the order of providers so that each Authentication Provider works properly in the authentication sequence.
See Also: "Configuring Authentication Providers" in Oracle Fusion Middleware Securing Oracle WebLogic Server for a complete list of Authentication Providers and details about configuring the Oracle Internet Directory provider to match the LDAP schema for user and group attributes |
This topic introduces WLST, if you are new to it.
You can add providers to a WebLogic domain using either the Oracle WebLogic Administration Console or Oracle WebLogic Scripting Tool (WLST) command-line tool.
WLST is a Jython-based command-line scripting environment that you can use to manage and monitor WebLogic Server domains. Generally, you can use this tool online or offline. You can use this tool interactively on the command line in batches supplied in a file (Script Mode, where scripts invoke a sequence of WLST commands without requiring your input), or embedded in Java code.
When adding Authentication Providers to a WebLogic domain, you can use WLST online to interact with an Authentication Provider and add, remove, or modify users, groups, and roles.
When you use WLST offline to create a domain template, WLST packages the Authentication Provider's data store along with the rest of the domain documents. If you create a domain from the domain template, the new domain has an exact copy of the Authentication Provider's data store from the domain template. However, you cannot use WLST offline to modify the data in an Authentication Provider's data store.
Note: You cannot use WLST offline to modify the data in an Authentication Provider's data store. |
On the Oracle WebLogic Server, you can run a Web application that uses Oracles Application Development Framework (Oracle ADF) security, integrates with Oracle Access Manager Single Sign On (SSO), and uses Oracle Platform Security Services (OPSS) SSO for user authentication. However before the Web application can be run, you must configure the domain-level jps-config.xml
file on the application's target Oracle WebLogic Server for the Oracle Access Manager security provider.
The domain-level jps-config.xml
file is in the following path and should not be confused with the deployed application's jps-config.xml file:
You can use an Oracle Access Manager-specific WLST script to configure the domain-level jps-config.xml file, either before or after the Web application is deployed. This Oracle JRF WLST script is named as follows:
Linux: wlst.sh
Windows: wlst.cmd
The Oracle JRF WLST script is available in the following path if you are running through JDev:
In a standalone JRF WebLogic installation, the path is:
Note: The Oracle JRF WLST script is required. When running WLST for Oracle Java Required Files (JRF), do not use the WLST script under $JDEV_HOME/wlserver_10.3/common/bin. |
Command Syntax
Table 17-11 defines the expected value for each argument in the addOAMSSOProvider command line.
Table 17-11 addOAMSSOProvider Command-line Arguments
Argument | Definition |
---|---|
loginuri | Specifies the URI of the login page |
logouturi | Specifies the URI of the logout page |
autologinuri | Specifies the URI of the autologin page |
See Also:
|
Prerequisites
Before starting this task, ensure that all previous tasks have been performed as described in:
To modify domain-level jps-config.xml for a Fusion Web application with Oracle ADF Security enabled
For example, the Oracle WebLogic Administration Server host could be localhost
using port 7001
. However, your environment might be different.
This topic describes how to configure providers in the WebLogic security domain to perform single sign-on with the Oracle Access Manager Identity Asserter. Several Authentication Provider types must be configured and ordered:
The following procedure uses the WebLogic Administration Console.
Note: With an Oracle Fusion Middleware application installed, you have the required provider JAR file. Skip Step 1. |
To set up Providers for Oracle Access Manager single sign-on in a WebLogic domain
Name: OAM Identity Asserter
Type: OAMIdentityAsserter
OK
Name: OID Authenticator
Type: OracleInternetDirectoryAuthenticator
OK
Host: Your LDAP host. For example: localhost
Port: Your LDAP host listening port. For example: 6050
Principal: LDAP administrative user. For example: cn=orcladmin
Credential: LDAP administrative user password.
User Base DN: Same searchbase as in Oracle Access Manager.
All Users Filter: For example: (&(uid=*)(objectclass=person))
User Name Attribute: Set as the default attribute for username in the LDAP directory. For example: uid
Group Base DN: The group searchbase (same as User Base DN)
Do not set the All Groups filter as the default works fine as is.
Save.
OAM Identity Asserter (REQUIRED)
OID Authenticator (SUFFICIENT)
Default Authenticator (SUFFICIENT)
oamAuthnProvider.jar
is in the correct location as described in "Installing Components and Files for Authentication Providers and OAM 10g". This topic introduces the login form provided for the Oracle Access Manager Identity Asserter for single sign-on and provides a procedure that you can use to deploy the form.
The form shown in Figure 17-9 is provided with the WebGate installation for Oracle HTTP Server 11g Web server. The form contains two fields (UserID and Password) and a Login button. The variables in this form are required by the Form Login authentication scheme that was generated by the OAMCfgTool and used in the policy domain protecting resources for Identity Assertion.
Figure 17-9 Default Login Form for Single Sign-On with 10g WebGates
Note: Do not alter any variables in this login form. Variables are required for use with Oracle Access Manager Identity Asserter. |
The following information is added to the Oracle HTTP Server 11g Web server httpd.conf file during WebGate installation and configuration. It ensures that WebGate for Oracle HTTP Server 11g can find the default login form.
Delete the following three lines if they exist:
The following procedure guides as you set up the login form for your environment.
Note: The Login form is for only 10g WebGates with OAM 10g. |
To set up the login form for Identity Assertion and OAM 10g
WebGate_install_dir/access/oamsso/login.html
http://WebGatehost:port/oamsso/login.html
The following procedure describes how to test your Oracle Access Manager Identity Assertion setup.
Alternatively, you can run Access Tester within Oracle Access Manager 10g to test your policy domain, as described in the 10g Oracle Access Manager Access Administration Guide.
To validate Identity Assertion for SSO with OAM 10g
To configure the Oracle Access Manager Authentication Provider as the Authenticator, you must perform the tasks in this section.
Prerequisites
Unless explicitly labeled Identity Assertion, all tasks described in "Installing and Setting Up Authentication Providers for OAM 10g" must be completed:
Remaining tasks to configure the Oracle Access Manager Authenticator are described in the following task overview.
Note: You must be either a Master or Delegated Access Administrator in Oracle Access Manager to perform tasks here. There is no tool available to automate tasks outside Oracle Access Manager. |
Task overview: Configuring the Oracle Access Manager Authenticator includes
This topic describes how to create an authentication scheme for the policy domain you will define for the Authenticator later. The Oracle Access Manager authentication scheme must be available before you create the policy domain.
With the Authenticator, the user is challenged for credentials based on the authentication method that is configured within the application web.xml. However, an Oracle Access Manager authentication scheme is required for the policy domain.
After creating an authentication scheme for the Authenticator, you must create a policy domain in Oracle Access Manager to user the scheme.
A policy domain in Oracle Access Manager includes several types of information. Individual tabs are provided where you can enter specific details, as shown in Figure 17-10.
Figure 17-10 Create Policy Domain Page in the Oracle Access Manager Policy Manager
For more information, see the following topics:
This topic describes the tabs in the Policy Manager that you use to enter details for your policy domain and access policies. While you might not use every tab in your policy domain, the following general information is provided:
Authentication Rule: A policy domain must have at least one authentication rule, which specifies one authentication scheme and authentication actions.
Authorization Expression: These include authorization rules and the operators used to combine them. The Authenticator function requires an Authorization rule that allows access by anyone.
Audit Rule: If there is no Master Audit Rule defined, you are instructed to contact your Access System Administrator.
See Also: "Creating a Policy Domain and Access Policies for the Authenticator" and the following topics in the Oracle Access Manager Access Administration Guide:
|
The Authenticator implementation requires several default and some unique values in the policy domain. You must be a Master or Delegated Access Administrator in Oracle Access Manager to create, view, or modify a policy domain.
In the following procedure, you create a policy domain for the Authenticator to:
/Authen/Basic
. wl_authen
, which was defined earlier. See also, "Creating Resource Types in Oracle Access Manager 10g" Note: The Authenticator requires the BASIC authentication method defined in the applicationweb.xml file, which you will set up later as described in "Configuring the Application Authentication Method for the Authenticator". |
Note: The Authenticator does not perform authorization. However, you must create the authorization rule to allow access by anyone (but no authorization expression is required). |
Examples in the following procedure are for illustration only. Be sure to enter appropriate values for your environment.
To create a policy domain for the Oracle Access Manager Authenticator
where Webserver refers to computer that hosts the Policy Manager Web server; port refers to the HTTP port number of the Web server instance; /access/oblix connects to the Access System.
Name: Default OAM Authenticator
Description: For Username Resolution
Note: Do not enable this policy domain until you finish all specifications. |
Resource Type: wl_authen
Host Identifier (optional): Select the Preferred HTTP host for the AccessGate.
URL prefix: /Authen/Basic
Description: OAM Authenticator validates user name, password
Click Add.
Resource Type: wl_authen
URL prefix: /Authen/UsernameAssertion
Description: Authenticator Resource to validate user name
Click Save.
Click Authentication Rule and fill in the General tab as follows.
Name: Basic Authentication Scheme
Description: User name and password based authentication
Authentication Scheme: Basic over LDAP
Click Save.
Note: For the Authenticator you need only an Authentication Success Return Action in the rule for the ObMyGroups attribute. This Access Server-specific attribute returns all the groups to which the user belongs. Two other implementations require this action, as described in Step C. |
Click the Actions tab, click Add.
Enter the following for Authentication Success:
Redirection URL: Leave blank
Return
Type: WL_REALM
Name: obmygroups
Return Attribute: obmygroups
This return attribute directs the Access Server to return all groups to which the user belongs.
Next, enter the name of the login parameter for user name to help in identifying the user uniquely in the LDAP directory server
Type: WL_REALM
Name: uid
Return Attribute: uid
This return attribute should be the name of the login parameter for the user name. This helps in identifying the user uniquely in the LDAP directory server used by Oracle Access Manager.
Name: Default rule for Authenticator
.
Description: Default rule enables Authenticator function for anyone
.
Fill in and save General details:
Name: Default Username Resolution Policy
Description: Default Username Policy for Authenticator
Resource Type: wl_authen
Resource operation(s): LOGIN
Resource: /Authen/UsernameAssertion
Leave other items as they are.
Click Save.
Click the Authentication Rule sub tab, click Add, and fill in General details (Name, optional Description, Authentication Scheme).
Name: Username Resolution Authentication Rule
Authentication Scheme: UsernameAssertion Authentication Scheme
See "Creating an Authentication Scheme for the Authenticator".
Click Save.
Click the Actions sub tab and add the following details for Authentication Success:
WL_REALM
uid
uid
Note: Be sure to enter Return Attribute.uid is the name of the login attribute in the LDAP ObjectClass that helps to identity the user uniquely in the directory server used by Oracle Access Manager. |
Click the Actions sub tab and add the following details for Authentication Success:
WL_REALM
obmygroups
obmygroups
Note: obmygroups returns all groups to which a member belongs. |
See Also: Oracle Access Manager Access Administration Guide, "Delegating Policy Domain Administration" |
This topic includes a procedure that you can use to add and configure the appropriate Authentication Providers in a WebLogic domain.
The Oracle Access Manager Authenticator must be configured along with the Default Authentication Provider in a WebLogic domain.
The following procedure describes this task using the WebLogic Administration Console. You can also add these using the Oracle WebLogic Scripting Tool (WLST).
Note: When a Oracle Fusion Middleware application is installed, you have the required files and can skip Step 1. |
To configure providers for the Oracle Access Manager Authenticator in a WebLogic domain
Name OAMAuthN
Type: OAMAuthenticator
OK
Access Gate Name: The name of the AccessGate profile used by the provider. This must match exactly the name in the AccessGate configuration profile in the Access System Console.
Note: You might have only one AccessGate configuration profile for the Authenticator. |
Access Gate Password: The same password, if any, that is as defined for the AccessGate configuration profile in the Access System Console.
Primary Access Server: The host:port of the primary Access Server that is associated with this AccessGate in the Access System Console.
Advanced Configuration: Following are several advanced configuration values.
Transport Security: The communication mode between Access Server and AccessGate: open, simple, or cert.
If transport security is Simple or Cert, include the following parameters and values:
Trust Store: The absolute path of JKS trust store used for SSL communication between the provider and the Oracle Access Server.
Key Store: The absolute path of JKS key store used for SSL communication between the provider and the Oracle Access Server.
Key Store Pass Phrase: The password to access the key store.
Simple mode pass phrase: The password shared by AccessGate and Access Server for simple communication modes.
Secondary Access Server: The host:port of the secondary Access Server that is associated with this AccessGate in the Access System Console.
Maximum Access Server Connections in Pool: The maximum number of connections that the AccessGate opens to the Access Server. The default value is 10.
Note: The Maximum Access Server Connections in Pool (or Minimum Access Server Connections in Pool) settings in the WebLogic Administration Console are different from the Maximum (or Minimum) Connections specified in profiles within the Access System Console. |
Minimum Access Server Connections in Pool: The minimum number of connections that the Authentication Provider uses to send authentication requests to the Access Server. The default value is 5.
See Also: "Oracle Access Manager Authentication Provider Parameter List" for descriptions and values of the common and provider-specific parameters |
Note: Do not set the parameter Control Flag to REQUIRED until you have verified that the Authentication Provided is operational and configured correctly. |
Note: If the Oracle Access Manager Authenticator flag is set to REQUIRED, or if Oracle Access Manager Authenticator is the only Authentication Provider, perform the next step to ensure that the LDAP user who boots Oracle WebLogic Server is included in the administrator group that can perform this task. By default the Oracle WebLogic Server Admin Role includes the Administrators group. |
Note: To provide access to any other group, you must create that group in the directory server and add the user who boots WebLogic Server in that group. |
This topic describes how to create the application authentication method for Oracle Access Manager Authenticator.
When you use the Oracle Access Manager Authenticator, all web.xml
files in the application EAR file must specify BASIC
in the element auth-method
for the appropriate realm.
The auth-method can use BASIC or FORM values. While these look like similar values in Oracle Access Manager, the auth-method specified in web.xml
files are used by Oracle WebLogic Server (not Oracle Access Manager).
Note: For the Oracle Access Manager Authenticator, Oracle recommends auth-method BASIC in login-config within web.xml. |
To configure the application authentication method for the Authenticator
auth-method
in login-config
and enter BASIC
. For example: This topic describes how to map the authenticated user to a group in LDAP. To do this, you must edit the weblogic.xml file. For example, you might need to map your role-name auth-users to a group named managers in LDAP.
To map the authenticated user to a group in LDAP for the Oracle Access Manager Authenticator
After performing all tasks to implement the Authenticator, you can test it by attempting to log in to the application using valid credentials. If the configuration is incorrect, a valid user is denied access.
The following procedure describes how to test your Authenticator setup. Alternatively, you can run Access Tester in Oracle Access Manager to test your policy domain, as described in the Oracle Access Manager Access Administration Guide.
To validate the Oracle Access Manager Authenticator implementation
This section describes how to set up the Oracle Access Manager Identity Asserter to enable validation of ObSSOCookie token when you have Oracle Web Services Manager protecting Web services.
When the Oracle Access Manager Identity Asserter is configured for both header and ObSSOCookie token validation modes, preference is given to the presence of the header. If the header is not present, the Identity Asserter contacts the Access Server to validate the ObSSOCookie token.
Oracle Access Manager Identity Asserter works in two modes:
Note: The AccessGate is required for Oracle Web Services Manager. |
Prerequisites
Task overview: Deploying the Identity Asserter with Oracle Web Services Manager includes
This topic describes how to set up a policy domain for use by the Oracle Access Manager Identity Asserter when you have Oracle Web Services Manager protecting Web services. You must be a Master or Delegated Access Administrator in Oracle Access Manager to create, view, or modify a policy domain.
The following unique values are required in this policy domain:
/Authen/SSOToken
. wl_authen
, which were defined in "Creating Resource Types in Oracle Access Manager 10g" The following procedure walks you through creating a policy domain for use with Oracle Web Services Manager and the Oracle Access Manager Identity Asserter.
To create a policy domain for the Identity Asserter with Oracle Web Services Manager
where Webserver refers to computer that hosts the Policy Manager Web server; port refers to the HTTP port number of the Web server instance; /access/oblix connects to the Access System Console.
Name: OAM IA OWSM
Description: Used by Identity Asserter with Oracle Web Services Manager
Note: Do not enable this policy domain until you finish all details. |
Resource Type: wl_authen
URL prefix: /Authen/SSOToken
Description: Used by IA OWS to validate SSO token
Save.
Click the Authorization Rules tab, then click the Add button
Name: Default_OAM_IA_OWS_AuthZ_Rule
Description: For use with OWS and Identity Asserter
.
Enabled: Yes
Allow takes precedence: No
Update Cache: Yes (updates all Access Server caches immediately)
Role: Any one
See Also: Chapter 6 in Oracle Access Manager Access Administration Guide for details about configuring authorization schemes and rules. |
Click Default Rules, and then click Add.
General tab: Fill in the as follows:
Name: Default AuthN Rule
Description: Default Rule for OAM IA OSW
Authentication Scheme: Basic over LDAP
Click Save.
Actions tab: No authentication actions are needed in the default rule for Oracle Web Services Manager.
Note: With Oracle Web Services Manager you need an Authorization rule. |
Click the Authorization Expression tab, and then click Add.
Expression tab: Select the authorization rule you created in Step 6:
Select Authorization Rule: Default_OAM_IA_OWS_AuthZ_Rule
Click Add.
Click Save.
Actions tab: In Step 6 you defined to whom the Allow Access part of a rule applies. Here, you specify actions for Authorization success for both rules and expressions.
Click Actions, click Add, and then create a return action on Authorization Success with the following to specify what actions should be invoked when authorization succeeds.
Authorization Success: Applies to Allow Access conditions.
Return Type: WL_REALM
Return Name: uid
Return Attribute: uid
Click Save.
Note: Return Attributeuid should match the value of the login parameter for the user name to help identify the user uniquely in the Oracle Access Manager LDAP repository. Here, uid is the canonical name of the login attribute. If your LDAP directory uses a different attribute as the login attribute, the Name should still be "uid ". However, the Return Attribute would be whatever your login attribute is configured as (mail, for example). Be careful to put these values under Return Attribute (not Return Value). |
See Also: Oracle Access Manager Access Administration Guide, "Delegating Policy Domain Administration" |
To use Oracle Access Manager Identity Asserter with Oracle Web Services Manager protected Web services, several Authentication Providers must be configured and ordered in a WebLogic domain:
This procedure is nearly identical to the one for the Oracle Access Manager Identity Asserter. The difference in this case is that Oracle Web Services Manager requires a custom AccessGate and additional provider-specific values are required:
abcd:7777
mmmm
You can add these using either the Oracle WebLogic Administration Console or Oracle WebLogic Scripting Tool (WLST) command-line tool.
Note: With a Oracle Fusion Middleware application installed, you have the required provider file. Skip Step 1. |
To set up providers in a WebLogic domain
Name: OAM Identity Asserter
Type: OAMIdentityAsserter
OK
Primary Access Server: Specify the host and part. For example: abcd:7777
Access Gate Name: The name of the AccessGate protecting the application. For example: mmmm
Access Gate Password: The AccessGate password as specified in the Access System Console.
Save
Name: OID Authenticator
Type: OracleInternetDirectoryAuthenticator
Click OK.
Host: Your LDAP host. For example: localhost
Port: Your LDAP host listening port. For example: 6050
Principal: LDAP administrative user. For example: cn=orcladmin
Credential: LDAP administrative user password.
User Base DN: Same searchbase as in Oracle Access Manager.
All Users Filter: For example: (&(uid=*)(objectclass=person))
User Name Attribute: Set as the default attribute for username in the LDAP directory. For example: uid
Group Base DN: The group searchbase (same as User Base DN)
Note: Do not set the All Groups filter as the default works fine as is. |
Click Save.
OAM Identity Asserter (REQUIRED)
OID Authenticator (SUFFICIENT)
Default Authenticator (SUFFICIENT)
oamAuthnProvider.jar
is in the correct location as described in "Installing Components and Files for Authentication Providers and OAM 10g". To validate the use of the Oracle Access Manager Identity Asserter with Oracle Web Services Manager, you can access the Web service protected by the Identity Asserter and Oracle Web Services Manager policies. If access is granted, the implementation works. If not, see "Troubleshooting Tips for OAM Provider Deployments".
In Fusion Middleware 11g, a new component that synchronizes the container user session and SSO session has been introduced. SSO Sync Filter is an Oracle WebLogic system filter implementation that intercepts all requests to the container, acts on protected resource requests, and attempts to synchronize the container's user session with the user identifying header in OSSO (Proxy-Remote-User) or the user data in the Oracle Access Manager SSO session cookie (ObSSOCookie).
SSO Synchronization Filter (SSO Sync Filter) is an implementation of the Servlet Filter based on Java Servlet Specification version 2.3. SSO sync filter relieves applications from tracking the SSO user session and synchronizing it with their respective sessions. Instead, applications would only need to synchronize with container's user session.
SSO Sync Filter intercepts each request to the container and determines whether to act on it based on certain HTTP headers that are attached to the request. Filter expects SSO agent to have set those headers in the Web Tier. When access is made to unprotected areas of the application, the filter acts as a pass through. Once a protected resource is accessed, SSO agents in the Web Tier, direct user to perform authentication with SSO system such as Oracle Access Manager. After the authentication, Oracle Access Manager Identity Asserter helps establish a user identity in form of JAAS Subject to the container and a user session is created. WebLogic maintains the user session data as part of HTTP Session Cookie (JSESSIONID).
Subsequent access to the application resources provides two pieces of information to the SSO Sync Filter:
The job of SSO Sync Filter is to make sure that the user identity in the container matches with that of the SSO session. If there is a mismatch, filter invalidates the container's user session. As a result, the downstream application would only have to track container user session and react in a consistent fashion regardless of SSO environment in use.
Notes:
If you have not configured the OSSO or Oracle Access Manager Assertion Providers in your domain, the filter disables automatically during WebLogic Server start-up.
Any application that use the OSSO or Oracle Access Manager Solutions is expected to invalidate its session before making a call to OSSO logout or Oracle Access Manager logout. For more information on OSSO logout, see Example 18-2, "SSO Logout with Dynamic Directives". For details about Oracle Access Manager logout, see "Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates".
The general recommendation for applications that are maintaining their own sessions when integrating with SSO systems is to configure their session time outs close to that of SSO session time outs so as to make user experience remains consistent across SSO and application session time outs.
You can alter the behavior of the SSO Sync Filter for application requirements by passing various over-riding system properties to WebLogic. To do this, you change the Oracle WebLogic startup script and check for EXTRA_JAVA_PROPERTIES in setDomainEnv.sh. The properties and Sync behavior is shown in Table 17-12.
Table 17-12 SSO Sync Filter Properties and Sync Behavior
Area | Overriding System Property | Default value of System property | Default Behavior of the Sync Filter |
---|---|---|---|
Status (Active or Inactive) | sso.filter.enable | Not configured | Enabled |
Case sensitive matches | sso.filter.name.exact.match | Not configured | Case Ignore Match |
Configured Tokens | sso.filter.ssotoken | Not configured |
|
URI Mappings | Not Applicable | Not Applicable | /* |
You cannot enable the filter for selected applications. The SSO Sync Filter is a system filter. As such, it is activated for all deployed applications (the URI mapping is /*).
Note: You cannot enable the filter for selected applications. |
The following procedure gives some tips about modifying the SSO Sync filter properties and behavior.
To modify the SSO Sync Filter properties and behavior
For example, pass to the WebLogic Server jvm in the WebLogic Server startup script -Dsso.filter.ssotoken=HEADERNAME, and restart the server.
When you contact Oracle Support you might be requested to set up debugging, as described in "Setting Up Debugging in the WebLogic Administration Console".
This section contains the following topics:
Oracle Fusion Middleware and Oracle Access Manager support Internet Protocol Version 4 (IPv4) and Internet Protocol Version 6 (IPv6.) Among other features, IPv6 supports a larger address space (128 bits) than IPv4 (32 bits), providing an exponential increase in the number of computers that can be addressable on the Web.
If you experience a failure of the Apache bridge, you might see a message stating that there is no back-end server available for connection. In this case, the connection times out.
The Oracle WebLogic Server might be down or there might be incorrect values set in mod_weblogic.
To recover from an Apache Bridge Failure
It is possible that an authenticated user does not have access rights to the requested resource.
If a user login is inconclusive or invalid, the user can be authenticated but not recognized as authorized for the requested resource. In this case, no explicit error message states the issue. Instead, the user is prompted to log in again.
After successful authentication, if you click the Back button in the browser window, you might get an error for access/oblix/apps/webgate/bin/webgate.so.
When form-based authentication is used, Oracle Access Manager creates a form login cookie that holds information about the requested resource. On successful authentication, the state of the cookie changes. When the user clicks the Back button, the login form appears. When re-posted, the form login cookie no longer holds redirection details.
The ObSSOCookie is also sent with the form login cookie.The ObSSOCookie is correctly checked. As the form login cookie state changes, the form-based authentication does not occur and the form action is considered as a request for the resource.
Solution
Retry the request using the original URL.
If the Oracle Access Manager Authenticator flag is set to REQUIRED, or if Oracle Access Manager Authenticator is the only Authentication Provider, perform the next step to ensure that the LDAP user who boots Oracle WebLogic Server is included in the administrator group that can perform this task. By default the Oracle WebLogic Server Admin Role includes the Administrators group.
To provide access to any other group, you must create that group in the directory server and add the user who boots WebLogic Server in that group.
To ensure you can restart the WebLogic Server
Out of the box, Oracle Access Manager does not support load balanced AccessGates; you must use a third-party load balancer.
Suppose you have two WebGates: WebGateA and WebGateB. You can use the OAMCfgTool to create the profile to be shared by the two WebGates.
If you have an Oracle Fusion Middleware Application installed you already have the OAMCfgTool. In this case, skip Step 1.
Solution:
Note:
|
WebGate_install_dir
\access\oblix\tools\configureWebGate
where WebGate_install_dir is the directory where WebGate is installed.
See Also: "Configuring AccessGates and WebGates" in the Oracle Access Manager Access Administration Guide |
hostname refers to computer that hosts the Web server; port refers to the HTTP port number of the Web server instance; /access/oblix connects to the Access System Console.
An error message like the following:
This typically means that the Oracle Access Manager Authentication Provider is incorrectly configured. For a listing of correct configurations, see "Oracle Access Manager Authentication Provider Parameter List".
An error message like the following:
This typically means that the post-authenticate actions are incorrectly configured in the policy domain. Under the policy domain's authentication success actions, ensure that you have set obmygroups
and uid
in the Return Attribute field (not in the Return Value field).
For more information, see "Configuring a Policy Domain for the Oracle Access Manager Authenticator".
Generally, this error indicates that the server has not found anything matching the Request-URI. This message informs that the Oracle WebLogic Server is not able to find a resource.
There is no indication of whether the condition is temporary or permanent:
To recover from Error 404
Confirm that the resource is deployed on the Oracle WebLogic Server. For example, if the pattern is /private1/Hello
, confirm that Hello
is accessible on the server with private1
as the root.
This issue occurs if Form Authentication scheme is not properly configured in Oracle Access Manager. However, this cannot occur if you use the OAMCfgTool to set up a policy domain. For example:
Symptoms include:
If the WebLogic Server user is not part of the administrator's group in Oracle Access Manager, Oracle WebLogic Server restart and Authentication Provider initialization can fail. In this case, one of the following messages might appear in the AdminServer.log in $DOMAIN_HOME/servers/AdminServer/logs/AdminServer.log:
Solution
If this flag is set to REQUIRED and any other parameter is set to an incorrect value, the server does not start.
To prevent this issue, ensure that the Oracle Access Manager Authentication Provider is properly configured while this parameter value is set to OPTIONAL. Only after you have validated proper behavior in this way, should you reset the control flag to REQUIRED.
For more information, see "Configuring Providers for the Authenticator in a WebLogic Domain".
This issue typically points to an incorrect user name or password. No error is shown.
Ensure that you are supplying the correct user name and password. The user login name must be the value of the attribute that is configured in the Form Login authentication scheme. For example, Challenge Parameter creds: userid
.
When a user logs out, or a user session times out, the user should be challenged for reauthentication. However, the following might occur instead:
The ObSSOCookie is still present. Some configuration must be done at the application level to kill the ObSSOCookie. For proper behavior, WebLogic application session time out values should be the same as WebGate session time out values.
If setting up an Identity Asserter in the WebLogic Application Console, the Web application using the Identity Asserter must have its auth-method
set to CLIENT-CERT
. For more information, see "Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g".
If you receive a message stating that the requested URL or resource was not found on this server, the reverse proxy Web server might not be forwarding requests to the Oracle WebLogic Server.
To ensure that the reverse proxy is forwarding requests to Oracle WebLogic Server
If the Oracle WebLogic Server fails to start, you can take the following actions.
Note: To provide access to any other group, you must create that group in the directory server and add the user who boots WebLogic Server in that group. |
Problem
WebGate configuration of cache directives might not be compatible with certain browser versions (specifically Internet Explorer v7) when accessing certain URLs that allow you to download Microsoft Office documents (.xls, .doc, and so on).
For example, suppose that you have an Excel workbook deployed along with an Oracle ADF application in an Oracle Access Manager Cert-based environment.
If the ADFDi component is trying to access two URLs, and trying the second URL first, a failure occurs regardless of the ADFDi client side code. It is not able to handle the redirect from Oracle Access Manager WebGate to the SSL enabled endpoint and fails with the following stack trace:
If you attempt to access the workbook, and the following message appears:
The cause could be any of the following:
However, if the message appears when the URL to workbook is explicitly pasted to Internet Explorer v7 address bar it might be due to WebGate default Cache Directives.
WebGates have default Cache Directives (Pragma=no-cache and CacheControl=no-cache) that might cause a problem with Internet Explorer v7 when a URL to an .xls workbook is directly pasted into the browser's address bar.
Solution
If the message appears when the URL to workbook is explicitly pasted to Internet Explorer v7 address bar, Oracle recommends removing the cache directives from respective WebGate configuration pages in the Access System Console.
To remove cache directives from respective WebGate configurations
OAM Policies are evaluated based on the URIs passed to it. With earlier releases, there was no policy for protecting *;jsessionid*. When an application resource URL was accessed and the JSESSIONID cookie was not found, WebLogic Server wrote the URL by including the JSESSIONID as part of the URL. If the URL in question was protected, Oracle Access Manager and OSSO Web agents could have issues matching the re-written URL.
In this release, a new policy is available that uses a pattern "*;jessionid=*" for all URIs under the context-root. Therefore, any URI under the context-root, with ";jsessionid=string" appended to it, is considered protected.
The /context-root itself must be listed as a resource. The URL pattern is *;jsessionid=*. The Default authentication rule is a protected authenticating scheme. The Default authorization expression is also used. When ordering policies, this policy must be first.
Suppose you have one protected resource named /test/protectedUri and a public resource named /test. When you create a public policy with the pattern *jessionid;* and apply this policy to both the above resources the public policy should have precedence over the public resource.
The chapter describes how to implement SSO using OracleAS SSO (OSSO) 10g. It includes the following major sections:
The OracleAS Single Sign-On solution provides single sign-on access to Web Applications. Oracle Internet Directory is the LDAP-based repository.
This solution is intended for applications that have been deployed on Oracle WebLogic Server but do not yet have single sign-on implemented. Requirements and steps to configure the OSSO solution are explained in "New Users of the OSSO Identity Asserter".
Note: Oracle recommends using Oracle Access Manager 11g, as described in "Introduction to Oracle Access Manager 11g SSO". |
Applications that are already using the OracleAS Single Sign-On solution with the JPS login module and dynamically re-directing requests to OSSO are unaffected by the new OSSO solution. In this case, there is no need to configure the new OSSO Authentication Provider described in this section.
This section is divided as follows:
This section describes the expected behavior when you implement the OracleAS Single Sign-On Identity Asserter. This section is divided as follows:
Figure 18-1 illustrates the location of components in the Oracle WebLogic Security Framework, including the OSSO Identity Asserter. Additional details follow.
Figure 18-1 Location of OSSO Components in the Oracle WebLogic Security Framework
At the top of the figure, Oracle HTTP Server is installed. This installation includes mod_weblogic and mod_osso, which are required to pass the identity token to the Providers and Oracle WebLogic Server. The Oracle WebLogic Server includes the partner application and the Identity Asserter (also known as the Identity Assertion Provider). The 10g OracleAS Single Sign-On server (OSSO Server), on the right side of the figure, communicates directly with the directory server and Oracle HTTP Server.
Note: For simplicity in text, this chapter uses the generic name of the WebLogic Server plug-in for Apache: mod_weblogic. For Oracle HTTP Server, the name of this plug-in differs from release 10g to 11g:
|
Figure 18-2 illustrates the processing that occurs when you have OSSO implemented with the Identity Asserter. Additional details follow the figure.
Figure 18-2 OSSO Identity Asserter Processing
The first time a request for a protected resource arrives at the mid-tier Web server, the request is redirected to the 10g OracleAS Single Sign-On server, which requires user credentials For a certificate-based authentication, no login page is displayed. After the user has been successfully authenticated, all further requests from that user require only that the user identity be asserted by the OSSO Identity Asserter before the population of a JAAS Subject takes place. The Subject is consumed by the downstream applications.
For example, suppose you have an application residing on an Oracle WebLogic Server that is front-ended with the Oracle HTTP Server. The application is protected using resource mappings in the mod_osso configuration. This case is described in the following process overview.
Process overview: OSSO Identity Asserter
This topic describes the headers sent by Oracle HTTP Server and the tokens set in the header and the headers consumed by the OSSO Identity Asserter. If the application needs to use the JAAS subject, configure OSSO Identity Asserter.
Table 18-1 provides the list of headers set by Oracle HTTP Server (mod_osso and mod_weblogic). An application whose logic consumes the JAAS subject for identifying user information, should be configured to use the OSSO Identity Asserter. which uses the OracleAS SSO token type set in bold in the table (Proxy-Remote-User). The OSSO Identity Asserter looks for the Proxy-Remote-User header and asserts the user's identity. The follow up OID Authenticator populates the JAAS subject.
Table 18-1 Headers Sent by Oracle HTTP Server
Attribute | Sample Value | Description |
---|---|---|
Cookie | OHS-Stads42.us.oracle.com:7777=....... | Cookies |
Osso-User-Guid | 4F4E3D2BF4BFE250E040548CE9816D7E | GUID of the authenticated user |
Osso-User-Dn | cn=orcladmin,cn=users, dc=us,dc=oracle,dc=com | DN of the authenticated user |
Osso-Subscriber | DEFAULT COMPANY | Subscriber name |
Osso-Subscriber-Dn | dc=us,dc=oracle,dc=com | Base DN of the subscriber |
Osso-Subscriber-Guid | 4F4E3D2BF410E250E040548CE9816D7E | GUID of the subscriber |
Proxy-Remote-User | ORCLADMIN | The authenticated user |
Proxy-Auth-Type | Basic SSO | Authentication type |
Applications that do not require the JAAS subject for identifying user information, can read the headers directly using the request.getHeader() API. Such applications are free to read any header they need. Headers with user info are Osso-User-Dn, Osso-User-Guid, and Proxy-Remote-User.
The new OracleAS Single Sign-On solution includes the OSSO Identity Asserter, one of the two new Authentication Providers for the Oracle WebLogic Server.
To have your application use the OSSO solution, you need the components described in the following task.
Note: If you already have components installed and set up, you do not need more. You can skip any steps that do not apply to your deployment. |
Task overview: Deploying and configuring the OSSO Identity Asserter
See Also: Oracle Application Server Installation Guide on Oracle Technology Network at:http://www.oracle.com/technology/documentation/oim1014.html |
See Also: The following manuals for Release 11g (11.1.1.1.0) |
See Also: The following manuals for Release 11g (11.1.1.1.0) |
You can either edit the Oracle HTTP Server httpd.conf file directly or add mod_weblogic configuration in a separate file and include that file in httpd.conf.
The following procedure includes steps for two different Web server releases. Perform steps as needed for your deployment:
Note: For Oracle HTTP Server, the name of this plug-in differs from release 10g to 11g:
|
To install and configure mod_weblogic
From: WL_HOME/wlserver_10.0/server/plugin/linux/i686
To: ORACLE_HOME/ohs/modules
Oracle HTTP Server 10.1.3:
Oracle HTTP Server 11g:
The mod_osso module is an Oracle HTTP Server module that provides authentication to OracleAS applications. This module resides on the Oracle HTTP Server that enables applications protected by OracleAS Single Sign-On to accept HTTP headers in lieu of a user name and password once the user has logged into the OracleAS Single Sign-On server. The values for these headers are stored in a mod_osso cookie.
The mod_osso module enables single sign-on for Oracle HTTP Server by examining incoming requests and determining whether the requested resource is protected. If it is, then it retrieves the Oracle HTTP Server cookie.
Under certain circumstances, you must register Oracle HTTP Server mod_osso using the 10.1.4 Oracle Identity Manager single sign-on registration tool (ssoreg.sh or ssoreg.bat). Table 18-2 provides a summary of parameters and values for this purpose. Running the tool updates the mod_osso registration record in osso.conf. The tool generates this file whenever it runs.
Table 18-2 ssoreg Parameters to Register Oracle HTTP Server mod_osso
Parameter | Description |
---|---|
-oracle_home_path | Path to the 10.1.4 SSO Oracle_Home |
-site_name | Any site name to be covered |
-config_mod_osso | TRUE. If set to TRUE, this parameter indicates that the application being registered is mod_osso. You must include config_mod_osso for osso.conf to be generated. |
-mod_osso_url | URL for front-ending Oracle HTTP Server Host:port. This is the URL that is used to access the partner application. The value should be specified in the URL format:http://oracle_http_host.domain:port |
-update_mode | Optional. CREATE, the default, generates a new record. |
-remote_midtier | Specifies that the mod_osso partner application to be registered is at a remote mid-tier. Use this option only when the mod_osso partner application to be configured is at a different ORACLE_HOME, and the OracleAS Single Sign-On server runs locally at the current ORACLE_HOME. |
-config_file | Path where osso.conf is to be generated |
[-admin_info | Optional. User name of the mod_osso administrator. If you omit this parameter, the Administer Information field on the Edit Partner Application page is left blank. |
admin_id | Optional. Any additional information, such as email address, about the administrator. If you omit this parameter, the Administrator E-mail field on the Edit Partner Application page is left blank. |
<VirtualHost ...> | Host name. Optional. Include this parameter only if you are registering an Oracle HTTP virtual host with the single sign-on server. Omit the parameter if you are not registering a virtual host. If you are creating an HTTP virtual host, use the httpd.conf file to fill in the directive for each protected URL. |
See Also: The following books on Oracle Technology Network at:http://www.oracle.com/technology/documentation/oim1014.html
|
The following procedure includes a sample command to register mod_osso. Values for your environment will be different.
To register mod_osso
mod_osso redirects the user to the single sign-on server only if the URL you request is configured to be protected. You can secure URLs in one of two ways: statically or dynamically. Static directives simply protect the application, ceding control over user interaction to mod_osso. Dynamic directives not only protect the application, they also enable it to regulate user access.
For more information, see:
You can statically protect URLs with mod_osso by applying directives to the mod_osso.conf file. You must configure mod_osso to ensure that requests are intercepted properly. In addition, you specify the location of protected URIs, time out interval, and the authentication method. Oracle recommends that you place in the httpd.conf file the include statement for mod_osso.conf before the one wherein the weblogic_module statement is loaded.
The following procedure describes how to configure mod_osso by editing the mod_osso.conf file. This procedure provides details for two different releases. Ensure that you follow instructions for your OHS deployment:
AuthType Osso
in Step 4. The path name in Step 5 differs for Oracle HTTP Server 11g. AuthType Basic
in Step 4. The path name in Step 5 differs for Oracle HTTP Server 10g. To configure mod_osso to protect Web resources
From: /tmp/osso.conf
To:
From:
To:
Oracle HTTP Server 10.1.3:
Oracle HTTP Server 11g:
Tip: If the interception of requests is not working properly, consider placing the include statement for mod_osso.conf before the LoadModule weblogic_module statement in the httpd.conf. |
Applications that use dynamic directives require no entry in mod_osso.conf because mod_osso protection is written directly into the application as one or more dynamic directives.
Dynamic directives are HTTP response headers that have special error codes that enable an application to request granular functionality from the single sign-on system without having to implement the intricacies of the single sign-on protocol. Upon receiving a directive as part of a simple HTTP response from the application, mod_osso creates the appropriate single sign-on protocol message and communicates it to the single sign-on server.
OracleAS supports dynamic directives for Java servlets and JSPs. The product does not currently support dynamic directives for PL/SQL applications. The JSPs that follow show how such directives are incorporated. Like their "static" counterparts, these sample "dynamic" applications generate user information:
Note: After adding dynamic directives, be sure to restart the Oracle HTTP Server, and the proceed to "Adding Providers to a WebLogic Domain for OSSO". |
Example 18-1 SSO Authentication with Dynamic Directives
The home.jsp includes ssodynauth.jsp that uses the request.getUserPrincipal().getName() method to check the user in the session. If the user is absent, it issues dynamic directive 499, a request for simple authentication. The key lines are in boldface.
See Also: Oracle Identity Management Application Developer's Guide 10g (10.1.4.0.1) Part Number B15997-01 on Oracle Technology network at:http://www.oracle.com/technology/software/products/ias/htdocs/101401.html |
Example 18-2 SSO Logout with Dynamic Directives
To achieve global logout (also known as single log-out), applications are expected to first invalidate sessions and then make a call to OSSO logout. The logout.jsp issues dynamic directive 470, a request for OSSO logout. The osso-return-logout is set by the application to specify the return URL after logout.
The key lines for SSO logout with dynamic directives appear in boldface in the following example. In 11g, the SSOFilter handles session synchronization.
See Also:
|
Note: After adding dynamic directives, be sure to restart the Oracle HTTP Server, and the proceed to "Adding Providers to a WebLogic Domain for OSSO". |
You must add the OSSO Identity Asserter to a WebLogic domain. In addition to the OSSO Identity Asserter, Oracle recommends the following Authentication Providers:
You can add providers using either the Oracle WebLogic Administration Console or Oracle WebLogic Scripting Tool (WLST) command-line tool.
The following procedure illustrates adding Authentication Providers using the Oracle WebLogic Administration Console. Before you begin, there is a condition to pay attention to:
Step 10: If your application requires the user in the same case as in Oracle Internet Directory (uppercase, lowercase, initial capitals), check Use Retrieved User Name as Principal. Otherwise, leave it unchecked.
To add providers to your WebLogic domain for OSSO Identity Assertion
Name: OSSO Identity Asserter
Ok
Name. OID Authenticator
Type: OracleInternetDirectoryAuthenticator
Click Save.
Note: If OID Authenticator is the only provider, ensure the WebLogic Server user account and its granted group memberships are created in Oracle Internet Directory. Otherwise the WebLogic domain does not start properly. |
Propagate Cause For Login Exception: Check
Principal: LDAP administrative user. For example: cn=orcladmin
Host: The Oracle Internet Directory hostname
Use Retrieved User Name as Principal: Check
Credential: LDAP administrative user password. For example: password
Confirm Credential: For example: password
Group Base DN: Oracle Internet Directory group search base
User Base DN: Oracle Internet Directory user search base.
Port: Oracle Internet Directory port
You should see usernames from the Oracle Internet Directory configuration, which implicitly verifies that the configuration is working.
--If the Oracle Internet Directory instance is configured successfully, you can change the Control Flag.
--If the Oracle Internet Directory authentication is sufficient for an application to identify the user, then choose the SUFFICIENT flag. SUFFICIENT means that if a user can be authenticated against Oracle Internet Directory, no further authentication is processed. REQUIRED means that the Authentication Provider must succeed even if another provider already authenticated the user.
The Oracle WebLogic Connection Filtering mechanism must be configured for creating access control lists and for accepting requests from only the hosts where Oracle HTTP Server and the front-end Web server are running.
Note: This topic is the same whether you are using OSSO or Oracle Access Manager. In the WebLogic Administration Console. |
A network connection filter is a component that controls the access to network level resources. It can be used to protect resources of individual servers, server clusters, or an entire internal network. For example, a filter can deny non-SSL connections originating outside of a corporate network. A network connection filter functions like a firewall since it can be configured to filter protocols, IP addresses, or DNS node names. It is typically used to establish trust between Oracle WebLogic Server and foreign entities.
Connection Filter Rules: The format of filter rules differ depending on whether you are using a filter file to enter the filter rules or you enter the filter rules in the Administration Console. When entering the filter rules on the Administration Console, enter them in the following format:
See Also: "Configuring Security in a WebLogic Domain" in Oracle Fusion Middleware Securing Oracle WebLogic Server |
Table 18-3 provides a description of each parameter in a connection filter.
Table 18-3 Connection Filter Rules
Parameter | Description |
---|---|
target | Specifies one or more systems to filter |
localAddress | Defines the host address of the WebLogic Server instance. (If you specify an asterisk (*), the match returns all local IP addresses.) |
localPort | Defines the port on which the WebLogic Server instance is listening. (If you specify an asterisk, the match returns all available ports on the server.) |
action | Specifies the action to perform. This value must be allow or deny. |
protocols | Is the list of protocol names to match. The following protocols may be specified: http, https, t3, t3s, giop, giops, dcom, ftp, ldap. If no protocol is defined, all protocols match a rule. |
The Connection Logger Enabled attribute logs successful connections and connection data in the server. This information can be used to debug problems relating to server connections.
To configure a connection filter to allow requests from the host of the 11g Oracle HTTP Server
This topic describes how to create the application authentication method for the OSSO Identity Asserter.
Oracle WebLogic Server supports adding multiple auth-methods. If you are setting up an OSSO Identity Asserter in the WebLogic Application Console, the Web application using the OSSO Identity Asserter must have its auth-method
set to CLIENT-CERT
.
After deploying the application on the Oracle WebLogic Server, all web.xml
files in the application EAR file must include CLIENT-CERT
in the element auth-method
for the appropriate realm, as described in the following procedure.
To edit web.xml for the OSSO Identity Asserter
auth-method
for the appropriate realm and enter CLIENT-CERT
. For example: In Fusion Middleware 11g, a new component that synchronizes the container user session and SSO session has been introduced. SSO Sync Filter is an Oracle WebLogic system filter implementation that intercepts all requests to the container, acts on protected resource requests, and attempts to synchronize the container's user session with the user identifying header in OSSO (Proxy-Remote-User) or the user data in the Oracle Access Manager SSO session cookie (ObSSOCookie).
SSO Synchronization Filter (SSO Sync Filter) is an implementation of the Servlet Filter based on Java Servlet Specification version 2.3. SSO sync filter relieves applications from tracking the SSO user session and synchronizing it with their respective sessions. Instead, applications would only need to synchronize with container's user session.
SSO Sync Filter intercepts each request to the container and determines whether to act on it based on certain HTTP headers that are attached to the request. Filter expects SSO agent to have set those headers in the Web Tier. When access is made to unprotected areas of the application, the filter acts as a pass through. Once a protected resource is accessed, SSO agents in the Web Tier, direct user to perform authentication with SSO system such as Oracle Access Manager. After the authentication, Oracle Access Manager Identity Asserter helps establish a user identity in form of JAAS Subject to the container and a user session is created. WebLogic maintains the user session data as part of HTTP Session Cookie (JSESSIONID).
Subsequent access to the application resources provides two pieces of information to the SSO Sync Filter:
The job of SSO Sync Filter is to make sure that the user identity in the container matches with that of the SSO session. If there is a mismatch, filter invalidates the container's user session. As a result, the downstream application would only have to track container user session and react in a consistent fashion regardless of SSO environment in use.
Notes:
If you have not configured the OSSO or Oracle Access Manager Assertion Providers in your domain, the filter disables automatically during WebLogic Server start-up.
Any application that use the OSSO or Oracle Access Manager Solutions is expected to invalidate its session before making a call to OSSO logout or Oracle Access Manager logout. For more information on OSSO logout, see "SSO Logout with Dynamic Directives". For details about Oracle Access Manager logout, see "Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates".
The general recommendation for applications that are maintaining their own sessions when integrating with SSO systems is to configure their session time outs close to that of SSO session time outs so as to make user experience remains consistent across SSO and application session time outs.
You can alter the behavior of the SSO Sync Filter for application requirements by passing various over-riding system properties to WebLogic. To do this, you change the Oracle WebLogic startup script and check for EXTRA_JAVA_PROPERTIES in setDomainEnv.sh. The properties and Sync behavior is shown in Table 18-4.
Table 18-4 SSO Sync Filter Properties and Sync Behavior
Area | Overriding System Property | Default value of System property | Default Behavior of the Sync Filter |
---|---|---|---|
Status (Active or Inactive) | sso.filter.enable | Not configured | Enabled |
Case sensitive matches | sso.filter.name.exact.match | Not configured | Case Ignore Match |
Configured Tokens | sso.filter.ssotoken | Not configured |
|
URI Mappings | Not Applicable | Not Applicable | /* |
You cannot enable the filter for selected applications. The SSO Sync Filter is a system filter. As such, it is activated for all deployed applications (the URI mapping is /*).
Note: You cannot enable the filter for selected applications. |
The following procedure gives some tips about modifying the SSO Sync filter properties and behavior.
To modify the SSO Sync Filter properties and behavior
For example, pass to the WebLogic Server jvm in the WebLogic Server startup script -Dsso.filter.ssotoken=HEADERNAME, and restart the server.
When you contact Oracle Support you might be requested to set up debugging, as described in "Setting Up Debugging in the WebLogic Administration Console".
The troubleshooting items described in this section are grouped into the following categories:
See Also:
|
This section addresses the following troubleshooting items:
OHS Is Not Redirecting to SSO - Internal Server Error 500
The most likely source of this problem is an incorrect configuration.
The following sample uses Oracle HTTP Server 11g. Path names are different if you have Oracle HTTP Server 10g.
To address it, proceed as follows:
mod_osso.conf
and ensure that the resource is protected. For example: osso.conf
is present and included in mod_osso.conf
. For example, using Oracle HTTP Server 11g (paths are different for 10g) Note: There is no set location for osso.conf. The value is determined at registration time; it can be any absolute path. |
httpd.conf
includes mod_osso.conf
. For example, using Oracle HTTP Server 11g (paths are different for 10g): To register SSO, proceed as follows using the appropriate ssoreg tool for your platform. For example:
ssoreg.sh
in 10.1.4 ORACLE_HOME/sso/bin to produce the file osso.conf
. The following is a sample usage of this utility that produces the file in /tmp/osso.conf
(the arguments are displayed in different lines only for illustration): osso.conf
to another file system directory. For example: ORACLE_INSTANCE/config/OHS/<ohs_name>/osso
. Is Attribute AuthName Required?
Log messages might suggest that the attribute AuthName is required, and certain versions of Apache do require this attribute.
This example uses Oracle HTTP Server 11g. Path names are different for Oracle HTTP Server 10g.
To include this attribute, edit the file mod_osso.conf and insert a fragment like the following:
URL Request not Redirected to SSO
Once a URL request is issued, if a basic pop-up is displayed instead of being redirected to SSO, then, most likely, the URL request has been intercepted by the Apache authorization module.
To address this problem, proceed as follows:
httpd.conf
and comment out the loading authorization modules as illustrated in the following fragment: Error 404 - Not Found is Issued (OHS Side)
Typically, this error has the following format:
Most likely, the WebLogic redirect is not happening, and the request is attempting to grab an OHS resource not available.
To address this problem, verify that mod_weblogic
is included in the file httpd.conf
and that the WebLogic handler is set for the request pattern, as illustrated in the following fragment:
Error 404 - Not Found is Issued (Oracle WebLogic Server Side)
Typically, this error has the following format:
Cause
This message informs that the Oracle WebLogic Server is not able to find a resource.
Solution
To address the problem, check that the resource is indeed deployed on the server. For example, if the pattern is /private1/Hello
, check that Hello
is accessible on the server with private1
as root.
Oracle SSO Failure - Unable to process request
Problem
You receive a message stating:
Solution
Modify the Oracle HTTP Server httpd.conf file to include a port number in the ServerName and restart the Web server. For example:
From: ServerName host.domain.com
To: ServerName host.domain.com:port
OSSO Solution for Applications Deployed on a Stand-alone WebLogic Server
This chapter describes how to configure single sign-on (SSO) for applications that are deployed on Oracle Fusion Middleware Oracle WebLogic Server. However, details for applications that are deployed on a stand-alone Oracle WebLogic Server (one without Fusion Middleware) are provided here:
Note: Oracle Fusion Middleware with OSSO enables you to use either the Oracle HTTP Server 10g or 11g Web server. |
Note: Without Fusion Middleware, OSSO requires Oracle HTTP Server 11g. |
Whether you use OSSO for Oracle Fusion Middleware applications or other applications, the Identity Asserter performs the same functions as those illustrated and described in "Using the OSSO Identity Asserter".
Included in the following are additional, optional, details that you can use to configure and test Single Logout for session invalidation and synchronization between the SSO cookie and the JSESSIONID cookie. Required files must be acquired from the Oracle Web Tier.
Task overview: Deploying and configuring the OSSO Identity Asserter for applications on a stand-alone WebLogic Server
Note: Test the secured application to ensure that it is working with the default authenticator using the Oracle WebLogic Server host and port. |
web.xml
files in the application EAR file must include CLIENT-CERT
in the element auth-method
), as explained in "Configuring the Application for the OSSO Identity Asserter". Note: Test the application with users authenticated by OSSO while accessing the application with the Oracle HTTP Server host and port. |
See Also: ""Synchronizing the User and SSO Sessions: SSO Synchronization Filter" for details on SSOFilter |
1. Acquire ssofilter.jar from the Oracle Web Tier at:
2. Copy it to an appropriate directory in Oracle Middleware home: WLS_INSTALL/Oracle/Middleware/modules directory, for example.
3. Add the absolute path of ssofilter.jar to the Oracle WebLogic Server classpath (by editing the setDomainEnv.sh script POST_CLASSPATH variable or CLASSPATH variable).
1. Acquire system-filters.war from the Oracle Web Tier at:
2. Copy system-filters.war to an appropriate directory in Oracle Middleware home: WLS_INSTALL/Oracle/Middleware/modules directory, for example.
3. Deploy system-filters.war as an application library: From the WebLogic Administration Console, click Deployment, select New, and choose the location of file.
4. Restart the Oracle WebLogic Server, if asked.
1. From the WebLogic Administration Console, click Domain, Environment, Servers, AdminServer.
2. Click the Logging tab.
3. From the Advanced drop-down, select "Minimum Severity to Log" as "Debug".
4. From the Advanced drop-down, "Message destinations", select LogFile: Severity Level as "Debug".
5. Save changes and restart the Oracle WebLogic Server.
1. Open the AdminServer.log file in DomainHome/Servers/AdminServer/log/AdminServer.log.
2. Search for "SSOFilter" and confirm that you can see <Debug> messages, which indicate SSOFilter initialization nd confirm a filter load
Note: You must have OSSO Identity Asserter configured in the WebLogic security domain, otherwise the filter will automatically disable during its initialization. |
SSO Users Specified in "Users to Always Audit" Must Be Uppercase
When you specify SSO users in the Oracle HTTP Server audit configuration "Users to Always Audit" section, the SSO username must be specified in uppercase characters.
A comma-separated list of users can be specified to force the audit framework to audit events initiated by these users. Auditing occurs regardless of the audit level or filters that have been specified. This is true for all authentication types.
For more information, see "Managing Audit Policies" in the chapter "Configuring and Managing Auditing" in the Oracle Fusion Middleware Application Security Guide.
This section addresses the following troubleshooting items:
Error 403 - Forbidden
This message informs that the user does not have the required permission to access a resource. This message is shown, for example, when the application has been configured to allow access to users belonging to WLS Group SSOUsers and the asserted user belongs to a different group.
If you have verified that this is not a permissions issue, then check whether the JAAS Control Flag for the Default Identity Authenticator is set to REQUIRED, and if so, change the setting to OPTIONAL or to SUFFICIENT, as appropriate.
Error 401 - Unauthorized
This message informs that the access to a resource requires the user to be first authenticated.
Solution
OSSO Identity Assertion Not Getting Invoked
Situations in which the OSSO Identity Asserter is not getting invoked for a protected source, typically, involve incorrect configuration. Make sure that your environment accurately includes a configuration as that described in "Configuring the Application for the OSSO Identity Asserter".
In some cases when an application resource (URL) is accessed and the JSESSIONID cookie is not found, WebLogic Server rewrites the URL by including the JSESSIONID as part of the URL. If the URL in question is protected, Oracle Access Manager and OSSO Web agents might have issues matching the re-written URL.
To avoid issues of a mismatch, you can append an asterisk, *, to the end of the protected resource specified in mod_osso.conf. For example, if the protected URL is:
The location in the mod_osso entry would be:
Mod_osso module provides communication between the SSO-enabled login server and the Oracle HTTP Server listener. The mod_osso module is controlled by editing the mod_osso.conf file:
See Also: The following topic and Release 1 (11.1.1) manuals |
This section provides the following information:
A new configuration directive has been added to mod_osso to configure setting the HTTPOnly flag on OSSO cookies. The new Directive is: OssoHTTPOnly. Values are On (to enable) and Off (to disable) the flag. By default, the HTTPOnly flag is set to On; the directive is not set in the configuration.
This directive appends the HttpOnly flag to the OSSO cookies set in the browser. This purpose of this flag is to prevent cross-site scripting. Cookies that have this flag set are not accessible by javascript code or applets running on the browser. Cookies that have this flag set is only sent to the server that set the cookie for the particular domain across over http or https.
This is a per VirtualHost directive. It can only be set at the global scope or inside a VirtualHost section. The following example shows the new directive:
In mod_osso 10g, the OssoSecureCookies directive is disabled by default. However, in mod_osso 11g, this behavior is enabled by default. In mod_osso 11g, to disable the OssoSecureCookies directive you must set OssoSecureCookies to Off in the corresponding configuration file. When mod_osso is enabled, the mod_osso.conf file is available at:
Set the OssoSecureCookies directive as follows:
Mod_osso does not encode the return URL in the query when redirecting to the Oracle SSO Server for logout.
To fix this issue, the encoded URL must be passed. For example: response.setHeader("Osso-Return-Url", encoded-url)
The following causes might result in a "Page Not Found" error when trying to display SSO page:
Solutions: Multiple Routing Relationships
Locate and remove the extra routing relationship that is not related to this oc4j_im. Leave the routing relationship that is related to this oc4j_im.
Solutions: No Routing Relationships
By default, the installer creates a routing relationship between each OHS and each oc4j_im. If there is no routing relationship between OHS and oc4j_im, you must create one.
Oracle Fusion Middleware supports Internet Protocol Version 4 (IPv4) and Internet Protocol Version 6 (IPv6.) Among other features, IPv6 supports a larger address space (128 bits) than IPv4 (32 bits), providing an exponential increase in the number of computers that can be addressable on the Web.
See Also: Oracle Fusion Middleware Administrator's Guide for details about using IPv6 with the Oracle Single Sign-on Server. |
This part explains how to develop custom security solutions in your applications using OPSS APIs, and it contains the following chapters:
This chapter describes a number of security-related use cases and the typical life cycle of an ADF application security. It also lists code and configuration samples presented elsewhere in this Guide.
This chapter contains the following sections:
The audience for the material presented in this chapter are developers, security architects, and security administrators. The presentation is not feature-driven, as in most topics in this Guide, but use case-driven: a number of use cases that solve typical application security challenges are introduced as a departing point to solve particular application security requirements. Some of the use cases describe a declarative approach (and do not require changes in application code); others provide a programmatic approach; and others require both approaches.
The top security issues that security architects and developers face include managing users, user passwords, and access to resources. OPSS is a suite of security services that provides solutions to these challenges by supporting:
Figure 19-1 illustrates how applications access the security stores and the tools to manage those stores.
Links to Related Documentation
Topics explained elsewhere include the following:
For the list of OPSS APIs, see Appendix H, "References."
This section introduces a number of use cases categorized according to a main security feature or security artifact, in the following sections:
Each use case contains a brief description of the problem it attempts to solve, the security artifacts required, the features involved, and links to details solving the stated problem. Unless otherwise stated, all the descriptions apply to the Oracle WebLogic Application Server and to the WebSphere Application Server.
The authentication use cases are the following:
In order to access a Java EE application, users must be authenticated against the identity store in cases where the identity store is any of the following:
This use case requires:
This use case features:
According to the repository used, the details of this use case are split into the following scenarios:
For details, see Section 3.1.2, "Oracle WebLogic Authenticators."
A Java EE application, not using deployment descriptors, must authenticate the user programmatically against the configured identity store(s); it applies only to Java EE applications deployed to the Oracle WebLogic Application Server.
This use case requires using the OPSS public API to authenticate a user, and it features:
For details about this use case, see Section 22.1, "Links to Authentication Topics for Java EE Applications."
A Java SE application must authenticate users against the LDAP identity store in use in a domain; the application code requesting authentication must be same regardless of the specifics of the domain's identity store.
This use case requires configuring the identity store(s) against which the authentication should take place and using the LoginService; note that a Java SE application can use only one id login module.
For details about this use case, see Section 22.2.4, "Using the OPSS API LoginService in Java SE Applications."
The identity use cases are the following:
An application, which runs in two different environments, needs to access user profile information, such as a user's email address, stored in an LDAP-based store; the LDAP server can be of any of the supported types and that type may differ with the environment. For details on supported types, see Section 4.1, "Supported LDAP-, DB-, and File-Based Services."
More specifically, this use case assumes that:
UserProfile.getEmail()
. In order for the application to retrieve the correct information without modifying the code and regardless of the environment (first or second) in which it runs, the identity store provider must be configured with the correct property in each of those two environments.
In the first environment (AD LDAP), the identity store provider is set to have the following property:
In the second one (OID LDAP), the identity store provider is set to have the following property:
For details about this use case, see Section 7.2, "Configuring the Identity Store Provider."
An application needs access to user profile information located in more than one LDAP-based stores.
This use case requires configuring the environment for multiple LDAP-based stores.
For details about:
The authorization use cases are the following:
A Java EE application needs to be accessible only by users that had been assigned specific roles in web descriptors; the group-to-role assignment must be configurable at deployment based on the customer's environment.
For details about this use case, see sections Using Declarative Security with Web Applications and Using Declarative Security with EJBs in Oracle Fusion Middleware Programming Security for Oracle WebLogic Server.
An ADF application in container requires fine-grained authorization at the level of individual controls on the pages in the web application; while the application initiates the authorization check, the policies need to be externalized and customizable per customer post application deployment.
For details on how to develop and secure Oracle ADF applications, see chapter 30, Enabling ADF Security in a Fusion Web Application, in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
For general information about ADF applications, see Section 1.5.2, "Scenario 2: Securing an Oracle ADF Application."
For details about the life cycle of an ADF application, see Appendix - Security Life Cycle of an ADF Application.
A web application requires securing web services with fine grained policies.
For details about web services security administration, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
A Java EE application requires codebase permissions to perform specific actions; typical examples are reading a credential from the credential store or looking up policies in the policy store.
For details about creating codebase policies with Fusion Middleware Control, see Section 9.2.3, "Managing System Policies."
A non-ADF application needs to be secured with fine-grained authorization checks.
This use case requires:
For details see Section 20.3, "The JAAS/OPSS Authorization Model."
The credential use case is the following:
An application requires a credential to connect to a back-end system, such as a database or an LDAP server. The application code should reference this credential in such a way that the specifics of the credential can be changed per customer post deployment without modifying the application code. Furthermore, this use case also requires specifying who can access the credential store and what operations an authorized user can perform on credential data.
This use case features:
For details about:
The audit use cases are the following:
An application needs to record security-related activity in several security areas; specifically, the application requires logging the following information:
The settings explained in this use case apply to all applications and components in a domain.
This use case requires that auditable applications:
This use case features:
For details about:
An application needs to record business-related activity in the context of a functional flow; specifically, the application requires logging the users and the business actions performed by them in a particular time interval.
The settings explained in this use case apply to all applications and components in a domain.
This use case requires that applications:
This use case features:
For details about:
component_events.xml
file, see Section 28.5, "Create Audit Definition Files." The identity propagation use cases are the following:
A client application in container needs to propagate the executing user identity to a web service over SOAP; the web service can be running on a different managed server, in the same domain, or in a different domain.
This use case requires that the current executing user identity be propagated to a web service over SOAP.
The features that facilitate this use case are primarily those of Oracle Web Services Manager (OWSM).
For details about OWSM, see chapter 4, Examining the Rearchitecture of Oracle Web Services Manager in Oracle Fusion Middleware, in Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
For details about propagating identities over SOAP, see chapter 11, Configuring Policies, in Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
A client application in container needs to propagate a user identity (which is not the executing user identity) to a web service over SOAP; the identity to be propagated is stored in the OPSS security store.
This use case requires that an identity of a user, distinct from the current executing user, be propagated to a web service over SOAP.
This use case features:
For details about this use case, see chapter 9, Creating and Managing Policies Sets, in Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
A client application in container in a WebLogic domain needs to propagate a user identity (stored in the OPSS security store) to a different WebLogic domain over RMI.
For details about this use case, see section Enabling Trust Between WebLogic Server Domains in shar.
A client application in container (in a WebLogic domain or a WAS cell) needs to propagate identities over HTTP.
For requirements and details about this use case, see Propagating Identities over HTTP.
The administration use cases are the following:
An application requires a central repository of policies, credentials, audit configuration, trusts, and keys, and a set of tools to manage that central repository, which is the OPSS security store.
This use case features:
For details about:
An application requires a custom tool to manage externalized security artifacts in a context that is meaningful to the application's business.
This use case requires building a custom graphical user interface with calls to OPSS APIs to display and manage security artifacts in the OPSS security store in a context that is meaningful to the application.
This use case features:
For details about:
Application running in a WebLogic domain where several server instances are distributed across multiple machines requires modifying security artifacts; changes must take effect in all components of the application regardless of where they are running.
This use case features:
For details about:
The integration use case is the following:
A product requires multiple WebLogic domains to run and those domains share a single central OPSS security store.
This use case features:
For details about:
reassociateSecurityStore
to join to an existing OPSS security store, see Section 9.3.29, "reassociateSecurityStore" This section describes the following use cases in some detail:
This section explains how an identity can be propagated across containers and domains using the OPSS trust service and the HTTP protocol.
The OPSS trust service allows the propagation of identities across HTTP-enabled applications by providing and validating tokens. The OPSS trust service uses an asserter that is available only on the following platforms:
Even though the scenarios in this section are illustrated with applications running on WebLogic domains, they also apply to applications running on WebSphere cells; except for the asserter configuration, all other configurations and samples are identical on both platforms. For configuration properties, see Section F.2.6, "Trust Service Properties."
There is one asserter per WebLogic domain or WebSphere cell; the keystore stores digital certificates, private keys, and trusted CA certificates; the storage service used by the keystore is JKS.
Identity propagation using HTTP calls typically runs as follows (see Figure 19-2):
The remainder of this section explains and illustrates the configuration required for the above scenario to work, in the following sections:
In this scenario, the client and the servlet applications use the same trust service instance to issue and validate tokens. The following code and configuration samples illustrate a sample client and a servlet applications running in the same domain.
Client Application Code Sample
The following sample illustrates a client application; note that the file jps-api.jar
must be included the class path for the code to compile.
Keystore Service Configuration
Assuming that the domain name is jrfServer_admin
, the following command illustrates the creation of the domain keystore, represented by the generated file default-keystore.jks
:
Make sure that the keystore service configured in the file jps-config.xml
points to the generated default-keystore.jks
; the following sample illustrates a keystore service configuration:
CSF Configuration
Create a map/key pair used to open the keystore and another map/key pair used to issue tokens. The following commands illustrate these operations using the OPSS script createCred
:
For details about the OPSS script createCred
, see Section 10.5, "Managing Credentials with OPSS Scripts."
Grant Configuration
Add a grant like the following to the policy store, which allows the client application to use the trust service API:
The Oracle WebLogic Server must be stopped and re-started for the above grant to take effect.
Servlet Code
The following sample illustrates how a servlet can obtain an asserted user name:
web.xml Configuration
Set the appropriate login method in the file web.xml
, as illustrated in the following snippet:
WebLogic Asserter and Trust Service Configuration
To configure the WebLogic asserter, proceed as follows:
jps-wls-trustprovider.jar
to the location ${domain.home}/lib/mbeantypes
, as illustrated by the following command, and then restart the WebLogic Server: TrustServiceIdentityAsserter
in the name box, and select TrustServiceIdentityAsserter
from the pull-down in the type box; then click OK. Any changes to the file jps-config.xml
) requires the server to be re-started before updates take effect.
WebSphere Trust Asserter Interceptor Configuration
For details on this topic, see section Configuring the Trust Association Interceptor in Oracle Fusion Middleware Third-Party Application Server Guide.
In this scenario there are two different domains: Domain1 and Domain2. The client application is running in Domain1; the servlet application is running in Domain2. It is assumed that each of these two domains have each a trust store service and keystore properly configured as explained under the heading WebLogic Asserter and Trust Store Configuration in the Single Domain Scenario. In this scenario, the client application uses Domain1's trust service for token generation, and the servlet application uses Domain2's trust service for token validation.
In Domain1, the client sample code and the following configurations are identical to those described in the Single Domain Scenario:
In Domain 2, the servlet sample code and web.xml
configuration are identical to those described in the Single Domain Scenario, but there is some extra setup required:
web.xml
is illustrated under the heading web.xml Configuration in the Single Domain Scenario. createCred
as follows: In this scenario, applications use either the HTTP protocol or the SOAP protocol, and not all applications in the domain use the same protocol. In such scenario, the keystore can be shared by the trust service used by the HTTP protocol and the SOAP service used by Oracle Web Services Manager. But in order for the trust service to work in this case, some special configurations in the file jps-config.xml
are required as explained in the following sections:
In this scenario, there is one keystore. The following snippet illustrates the configuration required for a certificate with alias orakey
:
In this scenario, there are two domains and two keystores. The following snippet illustrates the configuration required in the domain that is issuing tokens for a certificate with alias orakey
:
The following snippet illustrates the configuration required in the domain that is receiving tokens for a certificate with alias orakey
:
This use case illustrates some of the operations needed, for example, when implementing a custom graphic UI to manage policies. The samples presented use the OPSS APIs and demonstrate the following operations:
This use case assumes that:
Figure 19-3 illustrates the hierarchy of application roles, the users and groups, and the mapping of application roles to users and groups, as assumed in this use case.
Note that the above role hierarchy implies, for instance, that a user in the System Manager role is also in the System Developer role, and similarly with the other roles. Therefore the role membership for each of the four users is as follows:
The code samples are detailed in the following sections:
The sample codes in this use case assume the following import statements:
The following sample code illustrates two queries to users in the identity store:
The following sample code illustrates how to create an application role and how to make a role a member of another role:
The following code sample illustrates several ways to query application roles:
The following sample illustrates how to map application roles to users and groups:
The following code sample illustrates how to get all the roles that have a given user as a member:
The following sample code illustrates how to remove the mapping of an application role to a group:
This section explains the phases that the security of an application goes through. It is assumed that the application uses ADF and that it is developed in the Oracle JDeveloper environment.
The phases of the security life cycle of an application are the development phase, the deployment phase, and the management phase. The participants are the product manager or application architect, application developers, and application security administrators. For a summary of tasks, see Summary of Tasks per Participant per Phase.
In the development phase developers design the application to work with the full range of security options available in Oracle Fusion Middleware. Developers have access to a rich set of security services exposed by Oracle JDeveloper, the built-in ADF framework, and the Oracle WebLogic Server. All these components are based on OPSS, which ensures a consistent approach to security throughout the application's life span.
Typically, a developer uses the ADF Security Wizard (an authorization editor) and an expression language editor, all within Oracle JDeveloper; additionally and optionally, he may use OPSS APIs to implement more complex security tasks. Thus, some parts of the application use declarative security, others use programmatic security, and they both rely on security features available in the development and run-time environment.
Application developers also define a number of application entitlements and roles (policy seed data) required to secure the application. This policy seed data is kept in a source control system together with the application source code.
Once developed, the application is typically tested in a staging environment before being deployed to a production environment. In a production environment, both the application and the run-time services are integrated with other security components, such as user directories, single sign-on systems, user provisioning systems, and auditing. The security services usually change with the phase: for example, during development, a developer relies on a file or Oracle Wallet to store user credentials, but, in a production environment, credentials are stored in an LDAP directory (the OPSS security store).
In the deployment phase, typically, an administrator migrates the policy seed data to the production policy store (the OPSS security store), and maps application roles to enterprise groups to effect application security policies.
The management phase starts once an application has been deployed to a production environment. In this phase, application administrators or enterprise security administrators manage day-to-day security tasks, such as granting users access to application resources, reviewing audit logs, responding to security incidents, and applying security patches.
The following tables summarize the major responsibilities per participant in each of the security life cycle phases and Figure 19-4 illustrates the basic flow.
Table 19-1 Security Tasks for the Application Architect
Phase | Task |
---|---|
Development | Defines high-level application roles based on functional security and data security requirements. Populates the initial file-based application policy store (|
Deployment | Defines real-world customer scenarios to be tested by the QA team. |
Management | Understands and identifies the requirements to customize application policies. Considers defining templates for vertical industries. |
Table 19-2 Security Tasks for the Application Developer
Phase | Task |
---|---|
Development | Uses tools and processes, specifically Oracle JDeveloper, to build the application and to create security artifacts, such as application roles and permissions. Uses FND Grants to specify data-level security. Tests the application using a local policy store with sample users and roles. |
Deployment | Assists the QA team to troubleshoot and resolve runtime issues. |
Table 19-3 Security Tasks for the Application Security Administrator
Phase | Task |
---|---|
Deployment | Uses deployment services to migrate security seed data in Maps application roles to enterprise groups so that security policies can be enforced. |
Management | Applies patches and upgrades software, as necessary. Manages users and roles, as enterprise users and the application role hierarchy changes overtime. Manages policies packed with the application and creates new ones. Integrates with and manages the IAM infrastructure. |
This section lists most of the code and configuration samples found elsewhere in this Guide, and a fully-written code example.
The following list includes typical security-related programming tasks and links to sample code illustrating implementations:
isUserInRole
- See Section 20.2.2.2, "Programmatic Authorization." ResourcePermission
- See Section 20.3.4, "The Class ResourcePermission." The following list includes typical security-related configuration tasks and links to sample configuration:
migrateSecurityStore
- See Section 6.5.2.1, "Migrating Policies Manually," and Section 6.5.2.2, "Migrating Credentials Manually." ezshare
is a full example of a Java EE application whose security has been integrated with OPSS that uses permission-based grants and available at the Oracle Network. To locate the example, search for the keyword ezshare.
This chapter explains the OPSS policy and authorization models in the following sections:
For details about the OPSS policy model and the security artifacts used in it, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.
This section compares and contrasts the authorization available in the Java EE and the JAAS models, in the following sections:
A Java 2 policy specifies the permissions granted to signed code loaded from a given location. A JAAS policy extends Java 2 grants by allowing an optional list of principals; permissions are granted only to code from a given location, possibly signed, and run by a user represented by those principals.
The Policy Store is a repository of system and application-specific policies and roles. Application roles can be granted (mapped) to enterprise users and groups specific to the application (such as administrative roles). A policy can grant permissions to any of these roles, groups, or users as principals.
For more details about policy-related security artifacts, see Chapter 3, "Policy Store Basics."
An application can delegate the enforcement of authorization to the container, or it can implement its own enforcement of policy checking with calls to methods such as checkPermission
, checkBulkAuthorization
, or getGrantedResources
.
For details about policy checking with API calls, see Checking Policies.
The Java EE authorization model uses role membership to control access to EJB methods and web resources that are referenced by URLs; policies assign permissions to users and roles, and they are enforced by the container to protect resources.
In the Java EE model, authorization is implemented in either of the following ways:
Table 20-1 shows the advantages and disadvantages of each approach.
Table 20-1 Comparing Authorization in the Java EE Model
Authorization Type | Advantages | Disadvantages |
---|---|---|
Declarative | No coding needed; easy to update by modifying just deployment descriptors. | Authorization is coarse-grained and specified at the URL level or at the method level (for EJBs). |
Programmatic | Specified in application code; can protect code at a finer levels of granularity. | Not so easy to update, since it involves code changes and recompilation. |
A container can provide authorization to applications running in it in two ways: declaratively and programmatically; these topics and an example are explained in the following sections:
Declarative authorization allows to control access to URL-based resources (such as servlets and pages) and methods in EJBs.
The basic steps to configure declarative authorization are the following:
Alternatively, since Java EE 1.5 supports annotations, use code annotations instead of deployment descriptors.
web.xml
), map the logical role defined in step 1 to an enterprise group. For details, see the chapter Using Security Services in Oracle Fusion Middleware Enterprise JavaBeans Developer's Guide for Oracle Containers for Java EE.
Programmatic authorization provides a finer grained authorization than the declarative approach, and it requires that the application code invoke the method isUserInRole
(for servlets and JSPs) or the method isCallerInRole
(for EJBs), both available from standard Java APIs.
Although these methods still depend on role membership to determine authorization, they give finer control over authorization decisions since the controlling access is not limited at the resource level (EJB method or URL).
The following example illustrates a servlet calling the method isUserInRole
. It is assumed that the EAR file packing the servlet includes the configuration files web.xml
and weblogic-application.xml
, and that these files include the following configuration fragments:
web.xml
weblogic-application.xml
The following snippet shows the mapping between the user weblogic
and the security role sr_developer
:
Code Example Invoking isUserInRole
The JAAS authorization introduces permissions but can still use the notion of roles. An authorization policy binds permissions with a Subject (role, group, or user) and, optionally, with source code. Granting to a role is achieved through calls to addPrincipalsToAppRole
.
Permissions are evaluated by calls to the AccessController
, and the model allows fine-grained control to resources.
In this model, an authorization policy specifies the following information:
When programming with this model, sensitive lines of code are preceded with calls to check whether the current user or role is granted the appropriate permissions to access the code. If the user has the appropriate permissions, the code is run. Otherwise, the code throws and exception.
For details about JAAS standard permissions, see http://java.sun.com/Java SE/6/docs/technotes/guides/security/permissions.html
.
JAAS/OPSS authorization is based on controlling the operations that a class can perform when it is loaded and run in the environment.
This section is divided into the following sections:
OPSS supports the specification and runtime support of the resource catalog in file-, LDAP-, and DB-based policy stores.
Using the resource catalog provides the following benefits:
Resource catalog artifacts can be managed with the policy management API. Specifically, the following interfaces, all subinterfaces of the interface oracle.security.jps.service.policystore.EntityManager
, are directly relevant to the artifacts in the resource catalog:
GrantManager
- This interface includes methods to query grants using search criteria, to obtain list of grants that satisfy various combinations of resource catalog artifacts, and to grant or revoke permissions to principals. PermissionSetManager
- This interface includes methods to create, modify, and query permission sets (entitlements). ResourceManager
- This interface includes methods to create, delete, and modify resource (instances). ResourceTypeManager
- This interface includes methods to create, delete, modify, and query resource types. For details about these interfaces, see the Javadoc document Oracle Fusion Middleware Java API Reference for Oracle Platform Security Services.
The following code snippet illustrates the creation of a resource type, a resource instance, actions, and a permission set:
The following code snippet illustrates a complex query involving resource catalog elements:
The following code sample illustrates how to create a grant:
This section illustrates several ways to check policies programmatically, in the following sections:
Important Note 2: The OPSS policy provider must be explicitly set in Java SE applications, as illustrated in the following snippet:Not setting the policy provider explicitly in a Java SE application may cause runtime methods (such as |
Oracle Fusion Middleware supports the use of the method checkPermission
in the classes java.security.AccessController
and oracle.security.jps.util.JpsAuth
.
Oracle recommends the use of checkPermission
in the class JpsAuth
because it provides better debugging support, better performance, and audit support.
The static method AccessController.checkPermission
uses the default access control context (the context inherited when the thread was created). To check permissions on some other context, call the instance method checkPermission
on a particular AccessControlContext
instance.
The method checkPermission
behaves according to the value of the JAAS mode (see JAAS mode in Chapter 21, "Configuring the Servlet Filter and the EJB Interceptor"), as listed in the following table:
Table 20-2 Behavior of checkPermission According to JAAS Mode
JAAS Mode Setting | checkPermission |
---|---|
off or undefined | Enforces codebase security based on the security policy in effect, and there is no provision for subject-based security. |
doAs | Enforces a combination of codebase and subject-based security using the access control context created through the |
doAsPrivileged | Enforces subject-based security using a null access control context. |
subjectOnly | Takes into consideration grants involving principals only (and it disregards those involving codebase) when evaluating a permission. |
The following example illustrates a servlet checking a permission. It is assumed that the EAR file packing the servlet includes the configuration files jazn-data.xml
and web.xml
.
jazn-data.xml
The application file-based policy store is as follows:
web.xml
The filter JpsFilter
is configured as follows:
Code Example
In the following example, Subject.doAsPrivileged
may be replaced by JpsSubject.doAsPrivileged
:
Oracle Fusion Middleware supports the methods doAs
and doAsPrivileged
in the standard class javax.security.auth.Subject
.
Oracle recommends, however, the use of these methods in the class oracle.security.jps.util.JpsSubject
because they render better performance and provide auditing.
Note: IfcheckPermission is called inside a doAs block and the check permission call fails, to display the failed protection domain you must set the system property java.security.debug=access,failure . |
The method checkBulkAuthorization
determines whether a Subject has access to one or more resource actions. Specifically, the method returns the set of resource actions the passed Subject is authorized to access in the passed resources.
When invoking this method (in a Java SE application), make sure that:
java.security.policy
has been set to the location of the OPSS/Oracle WebLogic Server policy file. setPolicy
to explicitly set the policy provider, as illustrated in the following lines: checkBulkAuthorization
() after the call to setPolicy
. In any application, checkBulkAuthorization assumes that the caller can provide:
Grants using resource permissions must include the required resource type.
checkBulkAuthorization also assumes that the application has visibility into the policy store stripes configured in the domain where the application is running.
checkBulkAuthorization
does not require resources to be present in the policy store.
The method getGrantedResources
provides a runtime authorization query to fetch all granted resources on a given Subject by returning the resource actions that have been granted to the Subject; only permissions associated with resource types (directly or indirectly through permission sets) are returned by this method, and it is available only when the policy store is LDAP-based.
A permission class provides the means to control the actions that a grantee is allowed on a resource. Even though a custom permission class provides the application designer complete control over the actions, target matching, and the "implies" logic, to work as expected at runtime, a custom permission class must be specified in the system classpath of the server so that it is available and can be loaded when required. But modifying the system class path in environments is difficult and, in some environments, such modification might not be even possible.
OPSS includes the class oracle.security.jps.ResourcePermission
that can be used as the permission class within any application grant to protect application or system resources. Therefore, the application developer no longer needs to write custom permission classes, since the class ResourcePermission
is available out-of-the-box and can be readily used in permissions within application grants stored in any supported policy provider. This class is not designed to be used in system policies, but only in application policies.
Configuring Resource Permissions
A permission that uses the class ResourcePermission
is called a resource permission, and it specifies the resource type, the resource name, and an optional list of actions according to the format illustrated in the following XML sample:
The above specification requires that the resource type encoded in the type name be defined. Even though the resource type information is not used at runtime, its definition must be present for a resource permission to be migrated successfully; moreover, resource types help administrators model resources and manage their use.
The following fragments illustrate the specifications of resource permissions and the corresponding required resource types:
Note that a resource type associated with a resource permission can have an empty list of actions. The following important points apply to a resource permission:
The resource type of a resource permission must be defined and it is returned by the method ResourcePermission.getType()
.
ResourcePermission.getActions()
. The character used to separate the items of the list must equal to the character specified in the <actions-delimiter> of the associated resource type.
ResourcePermission.getResourceName()
. Managing and Checking Resource Permissions
The code snippet below illustrates the instantiation of a resource permission and how to check it programmatically; the following code snippet is based on one of the configuration examples described in Configuring Resource Permissions:
At runtime the permission check will succeed if the resource permission satisfies all the following four conditions:
ResourcePermision
. About the Matcher Class for a Resource Type
When creating a resource type, a matcher class can be optionally supplied. If unspecified, it defaults to oracle.security.jps.ResourcePermission
.
If, however, two or more resource types are to share the same resource matcher class, then that class must be one of the following:
oracle.security.jps.ResourcePermission
. oracle.security.jps.AbstractTypedPermission
, as illustrated by the class MyAbstractTypedPermission in the following sample: oracle.security.jps.TypePermission
and extending the class java.security.Permission
. This chapter describes the manual configuration and packaging recommended for Java EE applications that use OPSS but do not use Oracle ADF security. Note that, nevertheless, some topics apply also to Oracle ADF applications.
The information is directed to developers that want to configure and package a Java EE application outside Oracle JDeveloper environment.
This chapter is divided into the following sections:
The files relevant to application management during development, deployment, runtime, and post-deployment are the following:
DOMAIN_HOME/config/fmwconfig/jps-config.xml
DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml
jazn-data.xml
(in application EAR file) cwallet.sso
(in application EAR file) web.xml
(in application EAR file) weblogic-application.xml
(in application EAR file) OPSS provides a servlet filter, the JpsFilter
, and an EJB interceptor, the JpsInterceptor
. The first one is configured in the file web.xml
packed in a WAR file; the second one in the file ejb-jar.xml
packed in a JAR file. OPSS also provides a way to configure in the file web.xml
the stripe that application Mbeans should access; for details, see Configuring the Application Stripe for Application MBeans.
All of them are available on WebLogic and WebSphere. The configuration available differs slightly according to the server platform as follows:
On WebLogic, the JpsFilter is out-of-the-box automatically set with default parameter values and need not be explicitly configured in the deployment descriptor; it needs to be configured manually only if a value different from the default value is required. The JpsInterceptor must be manually configured.
On WebSphere, both the JpsFilter and the JpsInterceptor must be manually configured.
Note: Oracle JDeveloper automatically inserts the required servlet filter (JpsFilter) and EJB interceptor (JpsInterceptor) configurations for Oracle ADF applications. The manual configurations explained in this section are required only if you are packaging or configuring a Java EE application using the OPSS features detailed next outside the Oracle JDeveloper environment. |
OPSS allows the specification of the application stripe used by MBeans; for details, see Configuring the Application Stripe for Application MBeans.
The servlet filter and the EJB interceptor can be configured using the same set of parameters to customize the following features of a servlet or of an Enterprise Java Bean (EJB):
The application name, better referred to as the application stripe and optionally specified in the application web.xml
file, is used at runtime to determine which set of policies are applicable. If the application stripe is not specified, it defaults to the application id (which includes the application name).
An application stripe defines a subset of policies in the policy store. An application wanting to use that subset of policies would define its application stripe with a string identical to that application name. In this way, different applications can use the same subset of policies in the policy store.
The function of the anonymous and authenticated roles is explained in sections The Anonymous User and Role and The Authenticated Role.
A servlet specifies the use a filter with the element <filter-mapping>
. There must be one such element per filter per servlet.
An EJB specifies the use of an interceptor with the element <interceptor-binding>
. There must be one such element per interceptor per EJB. For more details, see Interceptor Configuration Syntax.
For a summary of the available parameters, see Summary of Filter and Interceptor Parameters.
This value is controlled by the following parameter:
The specification of this parameter is optional and case sensitive; if unspecified, it defaults to the name of the deployed application. Its value defines the subset of policies in the policy store that the application intents to use.
One way of specifying the application stripe is withing the filter element, as illustrated in the following sample:
Another way to specify it, is to specify it is within the context-param element as illustrated in the following sample:
This last configuration is required if the application contains MBeans accesssing the application policy store and the application name is different from the application stripe name. For details, see Configuring the Application Stripe for Application MBeans.
Configuration Examples
The following two samples illustrate the configuration of this parameter for a servlet and for an EJB.
The following fragment of a web.xml
file shows how to configure two different servlets, MyServlet1
and MyServlet2
, to be enabled with the filter so that subsequent authorization checks evaluate correctly. Note that servlets in the same WAR file always use the same policy stripe.
The following fragment of an ejb-jar.xml
file illustrates the setting of the application stripe of an interceptor to MyAppName
and the use of that interceptor by the EJB MyEjb
:
Note how the preceding example satisfies the interceptor configuration syntax requirements.
The addition of application roles to a subject is controlled by the following parameter, which can be set to true or false:
To add application roles to a subject, set the property to true; otherwise, set it to false. The default value is true.
The principal class for the application role is:
Anonymous User and Anonymous Role Support
The use of anonymous for a servlet is controlled by the following parameters, which can be set to true or false:
For an EJB, only the second parameter above is available, since the use of the anonymous user and role is always enabled for EJBs.
To enable the use of the anonymous user for a servlet, set the first property to true; to disable it, set it to false. The default value is true.
To remove the anonymous role from a subject, set the second property to true; to retain it, set it to false. The default value is false. Typically, one would want to remove the anonymous user and role after authentication, and only in special circumstances would want to retain them after authentication.
The default name and the principal class for the anonymous user are:
The default name and the principal class for the anonymous role are:
The following fragment of a web.xml
file illustrates a setting of these parameters and the use of the filter JpsFilter
by the servlet MyServlet
:
The following fragment of an ejb-jar.xml
file illustrates the setting of the second parameter to false and the use of the interceptor by the Enterprise Java Bean MyEjb
:
The following fragments illustrate how to access programmatically the anonymous subject, and the anonymous role and anonymous user from a subject:
The use of the authenticated role is controlled by the following parameter, which can be set to true or false:
To add the authenticated role to a subject, set the parameter to true; otherwise it, set it to false. The default value is true.
The default name and the principal class for the authenticated role are:
The following fragment of a web.xml
file illustrates a setting of this parameter and the use of the filter JpsFilter
by the servlet MyServlet
:
The use of JAAS mode is controlled by the following parameter:
This parameter can be set to:
The default value is doAsPrivileged
. For details on how these values control the behavior of the method checkPermission
, see Section 20.3.3.1, "Using the Method checkPermission."
The following two samples illustrate configurations of a servlet and an EJB that use this parameter.
The following fragment of a web.xml
file illustrates a setting of this parameter and the use of the filter JpsFilter
by the servlet MyServlet
:
The following fragment of an ejb-jar.xml
file illustrates a setting of this parameter to doAs
and the use of the interceptor JpsInterceptor
by the Enterprise Java Bean MyEjb
:
The following requirements and characteristics of the specifications apply to all parameters configured for the JpsInterceptor
:
<env-entry-type>
). <injection-target>
, which specifies the same class as that of the interceptor (in the element <injection-target-class>
), and the parameter name rewritten as a string where the dots are replaced by underscores (in the element <injection-target-name>
). The following table summarizes the description of the parameters used by the JpsFilter and the JpsInterceptor:
Table 21-1 Summary of JpsFilter and JpsInterceptor Parameters
Parameter Name | Values | Default | Function | Notes |
---|---|---|---|---|
application.name | Any valid string. The value is case sensitive. | The name of the deployed application. | To specify the subset of policies that the servlet or EJB is to use. | It should be specified if several servlets or EJBs are to share the same subset of policies in the policy store. |
add.application.roles | TRUE or FALSE | TRUE | To add application roles to a Subject. | Since it defaults to TRUE, it must be set (to FALSE) only if the application is not to add application roles to a Subject. |
enable.anonymous | TRUE or FALSE | TRUE | To enable or disable the anonymous user in a Subject. | If set to TRUE, it creates a Subject with the anonymous user and the anonymous role. |
remove.anonymous.role | TRUE or FALSE | FALSE | To keep or remove the anonymous role from a Subject after authentication. | Available for servlets only. For EJBs, the anonymous role is always removed from a Subject. If set to FALSE, the Subject retains the anonymous role after authentication; if set to TRUE, it is removed after authentication. |
add.authenticated.role | TRUE or FALSE | TRUE | To allow addition of the authenticated role in a Subject. | Since it defaults to TRUE, it needs be set (to FALSE) only if the authenticated role is not be included in a Subject. |
oracle.security.jps.jaas.mode | doAsPrivileged doAs off undefined subjectOnly | doAsPrivileged | To set the JAAS mode. |
If your application satisfies the following conditions:
then, for the MBean to access the application stripe in the domain security store, the stripe name must be specified by the global parameter (or context parameter) application.name
in the file web.xml
, as illustrated in the following sample:
Note: If you are using Oracle JDeveloper, the tool chooses the appropriate classes. Therefore, the configuration explained next is only necessary if policies are entered outside the Oracle JDeveloper environment. |
The classes specified in members of an application role must be either other application role class or one of the following:
The following fragment illustrates the use of these classes in the specification of enterprise groups (in bold face).
Important: Application role names are case insensitive; for example,app_operator in the following sample. Enterprise user and group names are case sensitive; for example, For related information about case, see Section L.4, "Failure to Grant or Revoke Permissions - Case Mismatch." |
This section explains the packaging requirements for a servlet or an EJB (using custom policies and credentials) that is to be deployed on WebLogic Application Server or WebSphere Application Server.
Application policies are defined in the file jazn-data.xml
. The only supported way to include this file with an application is to package it in the directory META-INF
of an EAR file.
Servlets are packaged in a WAR file that contains the configuration file web.xml
; EJBs are packaged in a WAR file that contains the configuration file ejb-jar.xml
. The WAR file must include the configuration of the filter JpsFilter
(for servlets) or of the interceptor JpsInterceptor
(for EJBs) in the corresponding configuration file.
The description that follows considers the packaging of a servlet and the configuration of the JpsFilter
in the file web.xml
, but it applies equally to the packaging of an EJB and the configuration of the JpsInterceptor
in the file ejb-jar.xml.
Important: Currently allJpsFilter configurations in all web.xml files in an EAR file must have the same configuration. Same constrains apply to the JpsInterceptor . |
For details about the JpsFilter and the JpsInterceptor, see Configuring the Servlet Filter and the EJB Interceptor.
The packaging requirements and assumptions for a Java EE application that wants to use custom policies and credentials are the following:
META-INF/jazn-data.xml
, where application policies and roles are specified; these apply equally to all components in the EAR file. web.xml
(or ejb-jar.xml
) where the JpsFilter
(or JpsInterceptor
) is configured, and such configurations in all EAR files must be identical. cwallet.sso
files can be packaged in the EAR file. These credentials can be migrated to the credential store when the application is deployed with Oracle Enterprise Manager Fusion Middleware Control. Note: If a component should require a filter configuration different from that of other components, then it must be packaged in a separate EAR file and deployed separately. |
Application policies are defined in the file jazn-data.xml
. The only supported way to include this file with an application is to package it in the directory META-INF
of an EAR file. The EAR file may contain zero or more WAR files, but the policies can be specified only in that XML file located in that EAR directory. To specify particular policies for a component in a WAR file, that component must be packaged in a separate EAR file with its own jazn-data.xml
file as specified above. No other policy package combination is supported in this release, and policy files other than the top jazn-data.xml
are disregarded.
Application credentials are defined in a file that must be named cwallet.sso
. The only supported way to include this file with an application is to package it in the directory META-INF
of an EAR file. The EAR file may contain zero or more WAR files, but credentials can be specified only in that cwallet.sso
file located in that EAR directory. To specify particular credentials for a component in a WAR file, that component must be packaged in a separate EAR file with its own cwallet.sso
file as specified above. No other credential package combination is supported in this release, and credential files other than the top cwallet.sso
are disregarded.
This section describes several configurations that a developer would perform manually for a Java EE application developed outside the Oracle JDeveloper environment, in the following sections:
The migration of application policies at deployment is controlled by several parameters configured in the file META-INF/weblogic-application.xml
.
For details about the specification of parameters on WebSphere, see Oracle Fusion Middleware Third-Party Application Server Guide.
The parameters that control migration of policies during application deployment or redeployment, and the removal of policies during undeployment are the following:
The configuration and function of each of the above is explained next.
Notes: Fusion Middleware Control allows setting of most of these parameters when the application is deployed, redeployed, or undeployed. For details, see Section 6.2.1, "Deploying Java EE and Oracle ADF Applications with Fusion Middleware Control."The configurations explained next need be entered manually only if you are not using Fusion Middleware Control to manage your application. When deploying an application that is using file-based stores to a managed server running in a computer different from that where the administration server is running, do not use the life cycle listener. Otherwise, the data maintained by the managed server and the administration server would not match, and security may not work as expected. Instead of employing the life cycle listener, use the OPSS script The above remark applies only when using file-based stores. |
This parameter specifies whether the migration should take place, and, when it does, whether it should merge with or overwrite matching policies present in the target store.
On WebLogic, it is configured as illustrated in the following fragment:
Option stands for one of the following value is MERGE, OVERWRITE, or OFF.
For details about the configuration of this parameter on WebSphere, see Oracle Fusion Middleware Third-Party Application Server Guide.
Set to OFF to prevent policy migration; otherwise, set to MERGE to migrate and merge with existing policies, or to OVERWRITE to migrate and overwrite existing policies. The default value (at deploy) is MERGE.
This parameter specifies the target stripe into which policies are migrated.
On WebLogic, it is configured as illustrated in the following fragment:
For details about the configuration of this parameter on WebSphere, see Oracle Fusion Middleware Third-Party Application Server Guide.
This parameter's value can be any valid string; if unspecified, Oracle WebLogic Server picks up a stripe name based on the application name and version, namely, application_name#version.
The value of this parameter must match the value of application.name
specified for the JpsServlet (in the file web.xml)
or for the JpsInterceptor (in the file ejb-jar.xml
). For details, see Application Name (Stripe).
The value picked from weblogic-application.xml
is used at deploy time; the value picked from web.xml
or ejb-jar.xml
is used at runtime.
JpsApplicationLifecycleListener
This parameter is supported on WebLogic only, and it must be set as illustrated in the following fragment:
jps.apppolicy.idstoreartifact.migration
This parameter is supported on WebLogic only, and it specifies whether the policy migration should exclude migrating references to enterprise users or groups, such as application roles grants to enterprise users or groups, and permission grants to enterprise users or groups; thus it allows the migration of just application policies and, when enabled, the migration ignores the mapping of application roles to enterprise groups or users.
It is configured as illustrated in the following fragment:
Option stands for one of the values TRUE or FALSE. Set to FALSE to exclude the migration of artifacts referencing enterprise users or groups; otherwise, set it to TRUE; if unspecified, it defaults to TRUE.
Important: When an application is deployed with this parameter set to FALSE (that is, to exclude the migration of non-application specific policies), before the application can be used in the domain, the administrator should perform the mapping of application roles to enterprise groups or users with Fusion Middleware Control or the WebLogic Administration Console.Note how this setting allows the administrator further control over application roles. |
The following examples show fragments of the same jazn-data.xml
files. This file, packaged in the application EAR file, describes the application authorization policy.
The file system-jazn-data.xml
represents the domain file-based policy store into which application policies are migrated (and used in the example for simplicity).
It is assumed that the parameter jps.apppolicy.idstoreartifact.migration
has been set to FALSE.
This parameter specifies whether the removal of policies at undeployment should not take place.
On WebLogic, it is configured as illustrated in the following fragment:
For details about the configuration of this parameter on WebSphere, see Oracle Fusion Middleware Third-Party Application Server Guide.
When set, the parameter's value must be OFF. By default, it is not set.
Set to OFF to prevent the removal of policies; if not set, policies are removed.
The above setting should be considered when multiple applications are sharing the same application stripe. The undeploying application would choose not to remove application policies because other applications may be using the common set of policies.
Note: Deciding to set this parameter to OFF for a given application requires knowing, at the time the application is deployed, whether the application stripe is shared by other applications. |
jps.policystore.migration.validate.principal
This parameter is supported on WebLogic only, and it specifies whether the check for principals in system and application policies at deployment or redeployment should take place.
It is configured as illustrated in the following fragment:
When set, the parameter's value must be TRUE or FALSE.
When set to TRUE the system checks the validity of enterprise users and groups: if a principal (in an application or system policy) refers to an enterprise user or group not found in the identity store, a warning is issued. When set to FALSE, the check is skipped.
If not set, the parameter value defaults to FALSE.
Validation errors are logged in the server log, and they do not terminate the operation.
This section describes the settings required to manage application policies with the following behaviors:
Any value settings other than the ones described in the following sections are not recommended and may lead to unexpected migration behavior. For more details, see Recommendations.
All behaviors can be specified with Fusion Middleware Control when the application is deployed, redeployed, or undeployed with that tool.
The following matrix shows the settings that prevent the migration from taking place:
Table 21-2 Settings to Skip Policy Migration
Valid at deploy or redeploy | |
---|---|
JpsApplicationLifecycleListener | Set |
jps.policystore.migration | OFF |
Typically, you would skip migrating policies when redeploying the application when you want to keep domain policies as they are, but you would migrate policies when deploying the application for the first time.
The following matrix shows the setting of required and optional parameters that migrates only policies that are not in the target store (optional parameters are enclosed in between brackets):
Table 21-3 Settings to Migrate Policies with Merging
Valid at deploy or redeploy | |
---|---|
JpsApplicationLifecycleListener | Set |
jps.policystore.migration | MERGE |
[jps.policystore.applicationid] | Set to the appropriate string. Defaults to servlet or EJB name. |
[jps.apppolicy.idstoreartifact.migration] | Set to FALSE to exclude migrating policies that reference enterprise artifacts; otherwise set to TRUE. Defaults to TRUE. |
[jps.policystore.migration.validate.principal] | Set to TRUE to validate enterprise users and roles in application and system policies. Set to FALSE, otherwise. If unspecified, it defaults to FALSE. |
Typically, you would choose migrating policies with merging at redeploy when the policies have changed and you want to add to the existing policies.
The following matrix shows the setting that migrates all policies overwriting matching target policies (optional parameters are enclosed in between brackets):
Table 21-4 Settings to Migrate Policies with Overwriting
Valid at deploy or redeploy | |
---|---|
JpsApplicationLifecycleListener | Set |
jps.policystore.migration | OVERWRITE |
[jps.policystore.migration.validate.principal] | Set to TRUE to validate enterprise users and roles in application and system policies. Set to FALSE, otherwise. If unspecified, it defaults to FALSE. |
Typically, you would choose migrating policies with overwriting at redeploy when a new set of policies should replace existing policies. Note that if the optional parameter jps.policy.migration.validate.principal
is needed, it must be set manually.
The removal of application policies at undeployment is limited since code source grants in the system policy are not removed. For details, see example in What Gets Removed and What Remains.
The following matrix shows the setting that removes policies at undeployment:
Table 21-5 Settings to Remove Policies
Valid at undeploy | |
---|---|
JpsApplicationLifecycleListener | Set |
jps.policystore.removal | Not set (default) |
Note: The policies removed at undeploy are determined by the stripe that the application specified at deploy or redeploy. If an application is redeployed with a stripe specification different than the original one, then policies in that stripe (the original) are not removed. |
The following matrix shows the setting that prevents the removal of application policies at undeployment:
Table 21-6 Settings to Prevent the Removal of Policies
Valid at undeploy | |
---|---|
JpsApplicationLifecycleListener | Set |
jps.policystore.removal | OFF |
Note: Deciding to set this parameter to OFF for a given application requires knowing, at the time the application has been deployed, whether the application stripe is shared by other applications. |
What Gets Removed and What Remains
Consider the application myApp
, which has been configured for automatic migration and removal of policies. The following fragment of the application's jazn-data.xml
file (packed in the application EAR file) illustrates the application policies that are migrated when the application is deployed with Fusion Middleware Control and those that are and are not removed when the application is undeployed with Fusion Middleware Control:
To summarize: in regards to what gets removed, the important points to remember are the following:
<application>
can be automatically removed at undeployment. In case of an LDAP-based policy store, the application scoped authorization policy data nodes get cleaned up. <jazn-policy>
cannot be automatically removed at undeployment. Table 21-7 shows the setting that migrates application policies when the application is statically deployed. The MERGE or OVERWRITE operation takes place only if the application policies do not already exist in the domain.
Table 21-7 Settings to Migrate Policies with Static Deployments
JpsApplicationLifecycleListener | Set |
jps.policystore.migration | MERGE or OVERWRITE |
Table 21-8 shows the setting that skip the migration of application policies when the application is statically deployed.
Keep in mind the following suggestions:
When a LDAP-based policy store is used and the application is to be deployed to multiple managed servers, then choose to migrate to one of the servers only. The rest of the deployments should choose not to migrate policies. This ensures that the policies are migrated only once from the application store to the policy store.All the deployments must use the same application id.
Attempting policy migration to the same node for the same application multiple times (for example, on different managed servers) can result in policy migration failures. An alternative is to migrate the policy data to the store outside of the deployment process using the OPSS script migrateSecurityStore
.
If, however, the application is deployed to several servers and the policy store is file-based, the deployment must include the administration server for the migration to update the policy file $DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml
.
The content of a wallet-based credential store is defined in a file that must be named cwallet.sso.
A wallet-based credential store is also referred to as a file-based credential store.
For instructions on how to create a wallet, see section Common Wallet Operations in Oracle Fusion Middleware Administrator's Guide.
The location of the file cwallet.sso
is specified in the configuration file jps-config.xml
with the element <serviceInstance>
, as illustrated in the following example:
For other types of credential storage, see chapter Managing Keystores, Wallets, and Certificates in Oracle Fusion Middleware Administrator's Guide.
The migration of application credentials at deployment is controlled by several parameters configured in the file META-INF/weblogic-application.xml
.
For details about the specification of these parameters on WebSphere, see Oracle Fusion Middleware Third-Party Application Server Guide.
The parameter that controls credential migration is jps.credstore.migration. The listener is JpsApplicationLifecycleListener - Credentials.
This parameter specifies whether the migration should take place, and, when it does, whether it should merge with or overwrite matching credentials present in the target store.
On WebLogic, it is configured as illustrated in the following fragment:
For details about the specification this parameter on WebSphere, see Oracle Fusion Middleware Third-Party Application Server Guide.
If set, this parameter's value must be one of the following: MERGE, OVERWRITE, or OFF. The OVERWRITE value is available on WebLogic only and when the server is running in development mode.
If not set, the migration of credentials takes place with the option MERGE.
JpsApplicationLifecycleListener - Credentials
This listener is supported only on WebLogic and it is configured as illustrated in the following fragment:
This section describes the manual settings required to migrate application credentials with the following behaviors:
Any value settings other than the ones described in the following sections are not recommended and may lead to unexpected migration behavior.
If the migration target is an LDAP-based credential store, it is recommended that the application be deployed to just one managed server or cluster. Otherwise, application credentials may not work as expected.
Note: Credentials are not deleted upon an application undeployment. A credential may have started its life as being packaged with an application, but when the application is undeployed credentials are not removed. |
The following matrix shows the setting that prevents the migration from taking place:
The following matrix shows the setting of required and optional parameters that migrates only credentials that are not present in the target store (optional parameters are enclosed in between brackets):
The components of a permission are illustrated in the following snippet from a system-jazn-data.xml
file:
This section describes the supported values for the elements <class>
, <name>
, and <actions>
within a <permission>
.
Class name:
When the permission applies to a particular application, use the following pattern for the corresponding element <name>
:
When the permission applies to all applications, use the following name pattern for the corresponding element <name>
:
When the permission applies to all applications and system policies, use the following name pattern for the corresponding element <name>
:
The list of values allowed in the corresponding element <actions>
are the following (* stands for any allowed action):
Class name:
When the permission applies to a particular map and a particular key in that map, use the following pattern for the corresponding element <name>
:
When the permission applies to a particular map and all keys in that map, use the following pattern for the corresponding element <name>
:
The list of values allowed in the corresponding element <actions>
are the following (* stands for any allowed action):
Class name:
When the permission applies to an assertion performed by a callback instance of oracle.security.jps.callback.IdentityCallback
, use the following pattern for the corresponding element <name>
:
The only value allowed in the corresponding element <actions>
is the following:
This topic is for an administrator who is not using Oracle Fusion Middleware Control to perform reassociation to an LDAP-based store.
The credentials needed for an administrator to connect to and access an LDAP directory must be specified in a separate file named cwallet.sso
(bootstrap credentials) and configured in the file jps-config.xml
. These credentials are stored after the LDAP reassociation process. Bootstrap credentials are always file-based.
Every instance of an LDAP-based policy or credential store must specify bootstrap credentials in a <jpsContex>
element that must be named bootstrap_credstore_context
, as illustrated in the following excerpt:
In the example above, the bootstrap credential cwallet.sso
is assumed located in the directory bootstrap
.
An LDAP-based policy or credential store instance references its credentials using the properties bootstrap.security.principal.key
and bootstrap.security.principal.map
, as illustrated in the following instance of an LDAP-based policy store:
If the property bootstrap.security.principal.map
is not specified in the service instance, its value defaults to BOOTSTRAP_JPS
.
To modify or add bootstrap credentials with OPSS scripts, see Section 10.5.5, "modifyBootStrapCredential," and Section 10.5.6, "addBootStrapCredential."
Identity data can be migrated manually from a source repository to a target LDAP repository using the OPSS script migrateSecurityStore
. The script produces an LDIF file that (after minor manual editing) can be imported into an LDAP-based identity store and can be used with any source 10g or 11g file-based identity store.
For example, this script can be used to convert user and role information in a 10.1.x jazn-data.xml file to user and role information in WebLogic LDIF format; the LDIF output file can then be imported into the WebLogic embedded LDAP identity store after changing the password for each user (see note at the end of this section).
This script is offline, that is, it does not require a connection to a running server to operate; therefore, the configuration file passed to the argument configFile
need not be an actual domain configuration file, but it can be assembled just to specify the source and destination repositories of the migration.
This script can be run in interactive mode or in script mode, on WebLogic Server, and in interactive mode only, on WebSphere. In interactive mode, you enter the script at a command-line prompt and view the response immediately after. In script mode, you write scripts in a text file (with a py file name extension) and run it without requiring input, much like the directives in a shell script.
For platform-specific requirements to run an OPSS script, see Important Note.
Script and Interactive Modes Syntaxes
To migrate identities on WebLogic, use the script (first) or interactive (second) syntaxes (arguments are written in separate lines for clarity):
For details about running OPSS scripts on WebSphere Application Server, see
The meaning of the arguments (all required except dstLdifFile
) is as follows:
configFile
specifies the location of a configuration file jps-config.xml
relative to the directory where the script is run. src
specifies the name of a jps-context in the configuration file passed to the argument configFile
, where the source store is specified. dst
specifies the name of another jps-context in the configuration file passed to the argument configFile
, where the destination store is specified.dstLdifFile
specifies the relative or absolute path to the LDIF file created. Applies only when the destination is an LDAP-based Oracle Internet Directory store, such as the embedded LDAP. Notice that the LDIF file is not imported into the LDAP server and, typically, requires manual editing. The contexts passed to src
and dst
must be defined in the passed configuration file and must have distinct names. From these two contexts, the script determines the locations of the source and the target repositories involved in the migration.
Important: The password of every user in the output LDIF file is not the real user password, but the fake string weblogic. In case the destination is an LDAP-based Oracle Internet Directory store, the fake string is change.Therefore, before importing the LDIF file into the target LDAP store, the security administrator would typically edit this file and change the fake passwords for real ones. |
The following sample shows a complete jps-config.xml
file that illustrates the configuration of several services and properties; they apply to both Java EE and Java SE applications.
The information in this chapter applies only to Java SE applications, and the audience are developers of Java SE applications. For details about authentication for Java EE applications, see any of the documents listed in Links to Authentication Topics for Java EE Applications.
This chapter includes in the following topics:
The following documents are a good source of information for developing authentication in Java EE applications:
This section explains the identity store support for Java SE applications, and it includes the following sections:
For details about authorization in Java SE applications, see Section 23.1, "Configuring Policy and Credential Stores in Java SE Applications."
Authentication is the mechanism by which callers prove that they are acting on behalf of specific users or system. Using data, such as name-password combinations, authentication answers the question Who are you? The term identity store refers to the storage where identity data is kept, and authentication providers are ways to access an identity store.
An application obtains information from an OPSS security store (identity, policy, or credential store) and manages its contents using the OPSS APIs, as illustrated in the following graphic:
A Java SE application can use an LDAP-based identity store configured in the file jps-config-jse.xml
with the elements <serviceProvider>
, <serviceInstance>
, and <jpsContext>
, as illustrated in the following snippet:
Note the following points:
<serviceInstance>
(idstore.ldap
in the example above) can have any value, but it must match the instance referenced in element <serviceInstanceRef>
. <serviceProvider>
(idstore.ldap.provider
in the example above) can have any value, but it must match the provider in element <serviceInstance>
. security.principal.key
and security.principal.alias
and stored in the bootstrap credential store. A login module is a component that authenticates users and populates a subject with principals. This process occurs in two distinct phases: during the first phase, the login module attempts to authenticate a user requesting, as necessary, a name and a password or some other credential data; only if this phase succeeds, the second phase is invoked. During the second phase, the login module assigns relevant principals to a subject, which is eventually used to perform some privileged action.
A Java SE application can use a stack of login modules to authenticate its users; each module in the stack performs its own computations independently from the others in the stack. These and other services are specified in the file jps-config-jse.xml
.
OPSS APIs includes the interface oracle.security.jps.service.login.LoginService
which allows a Java SE application to invoke not just all login modules in a stack, but a subset of them in a prescribed order.
The name of the jps context (defined in the configuration file jps-config-jse.xml)
passed to the method LoginContext
in the LoginService
interface (which is) determines the stack of login modules that an application uses.
The standard JAAS API LoginContext
can also be user to invoke the login modules defined in the default context.
The sequence in which a jps context lists the login modules in a stack is significant, since the authentication algorithm takes this order into account in addition to other data, such as the flag that identifies the module security level (required, sufficient, requisite, or optional).
Out-of-the-box, the identity store service is file-based, its contents being provisioned the file system-jazn-data.xml
, but it can be reconfigured to be an LDAP-based identity store.
OPSS supports the Identity Store login module in Java SE applications, which can be used for authentication or identity assertion.
Identity Store Login Module
The class associated with this login module is the following:
An instance of this module is configured in the file jps-config-jse.xml
as illustrated in the following fragment:
Properties specific to this login module include the following:
This section illustrates the use of the Identity Store login module for basic username and password authentication.
Invoke IdStoreLoginModule
The following code fragment illustrates how to set a callback handler and a context:
The callback handler must be able to handle NameCallback
and PasswordCallback
.
Configure jps-config-jse.xml
The following jps-config-jse.xml
fragment illustrates the configuration of the context appName
:
Write the Callback Handler
The following code snippet illustrates a callback handler able to handle name and password callback:
To use the Identity Store login module for assertion, a developer must:
setIdentity
. This requires granting the permission oracle.security.jps.JpsPermission
with the name IdentityAssertion
. oracle.security.jps.callback.IdentityCallback
as shown in the code sample below. The above two requirements are illustrated in the following configuration and code samples.
Provisioning the JpsPermission
The following configuration sample illustrates a grant allowing the code MyApp
the required JpsPermission
to execute protected methods in the assertion login module:
The following configuration sample illustrates a grant allowing the principal jdoe
the required JpsPermission
to execute the assertion login module:
Implementing the CallbackHandler
The following code fragment illustrates an implementation of the callback handler:
The following code fragment illustrates the implementation of a login module:
To invoke a login module programmatically in Java SE applications, use the method getLoginContex
t of the interface oracle.security.jps.service.login.LoginService
.
Similar to the method LoginContext
in the standard JAAS API, getLoginContext
returns an instance of a LoginContext object that can be used to authenticate a user, but, more generally, it also allows the use of any number of login modules in any order. Authentication is then performed on just those login modules and in the order they were passed.
The following code fragment illustrates user authentication against a subset of login modules in a prescribed order using getLoginContext
:
selectiveModules
is an array of (login module) names, and the authentication uses precisely those login modules named in the array in the order listed in the array. Each name in the array must be the name of a service instance listed in the default context of the file jps-config-jse.xml
.
The following fragment illustrates the configuration of a stack of two login modules:
This section illustrates the configuration of the following artifacts:
XML Policy and Credential Stores Configuration
The following snippets illustrate the configuration of XML-based policy and credential stores. The contents of an XML-based policy store is specified in the file system-jazn-data.xml
; the contents of an XML-based credential store is specified in the file cwallet.sso
.
XML Identity Store Configuration
The following snippets illustrate the configuration of an XML-based identity store. The contents of an XML-based identity store is specified in the file system-jazn-data.xml
.
LDAP Identity Store Configuration
The snippets below illustrate the configuration of an LDAP-based identity store, which includes the required configuration of the bootstrap credentials to access the LDAP server. The service instance property idstore.type
can have the following values, according to the LDAP used:
Table 22-1 Idstore Types
Supported LDAP | Idstore.type value |
---|---|
Oracle Internet Directory 10g and 11g | OID |
Oracle Virtual Directory 10g and 11g | OVD |
Sun Java System Directory Server 6.3 | IPLANET |
Active Directory 2003, 2008 | ACTIVE_DIRECTORY |
Novell eDirectory 8.8 | EDIRECTORY |
Oracle Directory Server Enterprise Edition 11gR1 (11.1.1.3+) | IPLANET |
IBM Tivoli DS 6.2 | OPEN_LDAP |
OpenLDAP 2.2. | OPEN_LDAP |
Login Module Principals
The following properties are set in the out-of-the-box jps-config-jse.xml
:
The above propeties must be used in any login module; this implies that the principals that represent users and groups in the identity store are the following:
This chapter explains how to develop and configure authorization in Java SE applications and lists some unsupported methods in the following sections:
For details about the policy model, see Section 20.3, "The JAAS/OPSS Authorization Model."
The configuration of policy and credential stores in Java SE applications is explained in the following sections:
For details about configuring authentication for Java SE applications, see Section 22.2, "Authentication for Java SE Applications."
System properties should be set, as appropriate, for authorization to work in Java SE applications. For a complete list of properties, see Section F.1, "OPSS System Properties."
A Java SE application can use file-, LDAP-, or DB-based store providers; these services are configured in the application file jps-config-jse.xml
.
A file-based policy store is specified in the file system-jazn-data.xml
; a file-based credential store is specified in the file cwallet.sso
(this wallet file should not be confused with the bootstrap file, also named cwallet.sso
, which contains the credentials to access LDAP stores, when the application security is LDAP-based).
For details about wallets, see Section 21.4.3, "Using a Wallet-Based Credential Store." For details about modifying or adding bootstrap credentials, see Section 10.5.5, "modifyBootStrapCredential," and Section 10.5.6, "addBootStrapCredential."
The following fragments illustrate the configuration of file-based policy and credential stores, and the jpsContext that reference them:
Note the required setting of the property oracle.security.jps.policy.principal.cache.key to false in the policy store instance.
This section assumes that an LDAP-based store has been set to be used as the policy and credential stores; for details about setting up nodes in an Oracle Internet Directory, see section Section 8.2.2, "Prerequisites to Using an LDAP-Based Security Store."
The following fragments illustrate the configurations of providers and instances for LDAP-based policy and credential stores for a Java SE application:
The following fragment illustrates the configuration of the bootstrap credentials file (cwallet.sso
), which allows the program access to the LDAP server:
The following fragment illustrates the configuration of the necessary jpsContexts that reference the instances above:
The following code fragment illustrates how to obtain programmatically a reference to the LDAP-based policy store configured above, and it assumes that the system property oracle.security.jps.config
has been set to the location of the file jps-config-jse.xml
:
This section assumes that a DB-based store has been set to be used as the OPSS security store. For details about setting up nodes in a DB, see section Section 8.3.1, "Prerequisites to Using a DB-Based Security Store."
Note the following important points regarding the sample configuration below:
jdbc.url
should be identical to the name of the JDBC data source entered when the data source was created. addBootStrapCredential
when the bootstrap credential was created. The following fragment illustrates configuration of DB-based policy, credential, and key stores in the file jps-config-jse.xml
:
This release does not support, for file-based policy stores, methods involving the following features:
Bulk authorization is encapsulated in the following method of the interface oracle.security.jps.service.policystore
:
Complex queries relates to any method that takes a query. When the policy store is file-based, the query must be simple; if such a method is passed a complex query and the policy store is file-based, the method will throw an exception.
A simple query is a query with just one search criterion; a complex query is a query with two or more search criteria; each call to addQuery
adds a criterion to the query.
The following code fragment that illustrates the building of a simple query that returns of all permissions with a display name matching the string MyDisplayName
:
The following example illustrates the building of a complex query that returns all permission sets with a given resource type and a given resource instance name:
Cascading deletions relates to any method that includes the Boolean argument cascadeDelete
. The only value allowed for this argument in case the policy store is file-based is FALSE. Here is an example of such a method in the interface ResourceTypeManager
:
This chapter describes how to work with the Credential Store Framework (CSF) APIs in the following sections:
A credential store is used for secure storage of credentials. The credential store framework (CSF) API is used to access and perform operations on the credential store.
The Credential Store Framework:
Critical (create, update, delete) functions provided by the CSF API include:
<mapname, key>
<mapname, key>
<mapname, key>
Operations on CredentialStore
are secured by CredentialAccessPermission
, which implements the fine-grained access control model utilized by CSF.
Knowledge of the following areas is helpful in getting your applications to work with the credential store framework:
Policy permissions are set in the policy store, which can be file-based (system-jazn-data.xml
) or LDAP-based. Setting appropriate permissions to enable application usage without compromising the security of your data requires careful consideration of permission settings.
jps-config.xml
. You will need to define the service instance in jps-config.xml
only if manually crafting the configuration file.
Note: The file-based provider is already configured by default, and can be changed to an LDAP-based provider. See Section 8.6, "Migrating the OPSS Security Store". |
The steps are different for stand-alone applications and those that operate in an Oracle WebLogic Server environment.
Subsequent sections provide details about each of these tasks.
The Oracle Platform Security Services policy provider is set when the server is started. When the provider is file-based, the policy data is stored in system-jazn-data.xml
.
CSF supports securing credentials:
<mapname, key>
Notes:
|
The Credential Store Framework relies on Java permissions to grant permissions to credential store objects.
It is highly recommended that only the requisite permissions be granted, and no more.
WARNING: It is risky and inadvisable to grant unnecessary permissions, particularly permissions to all maps and/or keys. |
Note: In the examples, the application jar file name isAppName.jar . |
The CredentialStore
maintains mappings between map names and credential maps. Each map name is mapped to a CredentialMap
, which is a secure map of keys to Credential
objects.
This example grants permissions for a specific map name and a specific key name of that map.
where:
MapName
is the name of the map (typically the name of the application) for which you want to grant these permissions (read, write, update, and delete permissions denoted by the wildcarded actions). KeyName
is the key name in use. In this example permissions are granted for a specific map name and all its key names.
When the domain-level credential store is used, name conflicts can arise with the various map names in the store for different applications. To avoid this, each application must have a unique map name in the store.
To achieve this, it is recommended that the map name you use uniquely identify the application.
Within a given map name, an application can store multiple credentials each of which is identifiable by a key. The map name and the key together constitute a primary key within a given credential store.
If there is a requirement that an application use more than one map name, then uniqueness continues to be maintained.
For example, consider three applications:
For RCU, a map name of RCU is chosen and the keys for three credentials are (say) Key1, Key2, and Key3:
Note: The map names and key names used here are arbitrary and chosen for illustration only. Your application can use altogether different map names and/or keynames. |
For Oracle WebCenter, the map name is Web and the key for a single credential is Key1:
For Fusion Middleware Control, the map name is denoted by EM and the keys for two credentials are Key1 and Key2 respectively:
Note that the map name and key name are just two arbitrary strings and can have any valid string values in practice. However, implementing this way makes map names easier to manage.
The administrator needs to define the credential store instance in a configuration file which contains information about the location of the credential store and the provider classes. Configuration files are located in:
and are named as follows:
jps-config.xml
for Oracle WebLogic Server jps-config-jse.xml
for Java SE For details, see Chapter 10, "Managing the Credential Store".
You can use the credential store framework within Oracle WebLogic Server or in a standalone environment.
The steps for using the API in a standalone environment are:
jps-manifest.jar
file is in your classpath. For details, see Required JAR in Classpath in Section 1.5.3, "Scenario 3: Securing a Java SE Application". Command-line options include:
The steps for using the API in an Oracle WebLogic Server environment are:
jps-config.xml
file is configured out-of-the-box in the following directory: If needed, reassociate to an LDAP credential store.
This section provides several examples of using the credential store framework APIs. It shows:
In each example, the test code is set up to show how the credential store operations are affected by the permissions. For each example the policy file, the test code, and the configuration file are provided to demonstrate how the provider information must be specified, and to enable you to compare the defined permissions on the map/key with the operation attempted in the code.
The section is structured as follows:
The following common "utility" program performs the CSF API operations. It is called by the example programs.
This example shows a sample Java SE application using wallet credentials, that is, a file-based provider.
The example illustrates:
jazn-data.xml File
For illustration, the example uses an xml-based policy store file which has the appropriate permissions needed to access the given credential from the store. The file defines the permissions for different combinations of map name (alias) and key. Other combinations, or attempts to access the store beyond the permissions defined here, will be disallowed.
Note: The default policy store to which this grant is added is$DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml . |
Here the system property projectsrc.home
is set to point to the directory containing the Java SE application, and clientApp.jar
is the application jar file which is present in sub-directory dist
.
The corresponding policy grant looks like this:
Note that no permission has been granted to mapName=pc_map2,keyName=pc_key2
, hence the setCredential
call for this map and key combination in Section 24.7.1, "Code for CSF Operations" is expected to fail.
jps-config-jse.xml File
Note: For the complete configuration file see the default file shipped with the distribution at$DOMAIN_HOME/config/fmwconfig/jps-config-jse.xml . |
The location property of the credential store service shows the directory containing the wallet file:
Note: The default value of location is "./", that is, the current directory relative to the location ofjps-config-jse.xml . To use a different path, be sure to specify the full path. |
The wallet name is always cwallet.sso
which is the default file-based Oracle wallet.
Java Code
Here is the Java SE code that calls the utility program.
Notes:
|
This example shows a sample Java EE application using wallet credentials. A simple servlet calls the CSF API.
The jazn-data.xml File
The jazn-data.xml
file for this example defines the appropriate permissions needed to access the given credential from the store. The file defines both the codesource permissions and the permissions for different combinations of map name (alias) and key. Other combinations, or attempts to access the store beyond the permissions defined here, will be disallowed.
A fragment of the policy file showing the corresponding policy grant looks like this:
Note that the first map and key permissions enable both read and write operations; the second enable write operations but not reads.
jps-config.xml File
A portion of the default configuration file jps-config.xml
showing the credential store configuration is as follows:
The location
property specifies the wallet location; this specification is essentially the same as in Example 1, except that in this example the wallet is located inside the configuration directory. The wallet name is always cwallet.sso
.
Java Code
The credential create operation is conducted using privileged code. The success of the operation can be verified by using the WLST
listCred
command:
Note About Java SE Environment
In the Java SE environment, the following calls are equivalent:
and:
The latter call is shown in Section 24.7.2, "Example 1: Java SE Application with Wallet Store".
This example uses the same Java EE application used earlier in Example 2. The only difference is that the credential store is LDAP-based and not file (wallet) based.
You need to configure the following properties in the domain-level jps-config.xml
file:
The configuration of the LDAP store in jps-config.xml
is as follows:
The highlighted lines define the LDAP parameters necessary to locate the credentials.
In a clustered environment, use the Credential Store Mbean API over the Credential Store Framework API to create, retrieve, update, and delete credentials for an application.
If you are simply reading credentials, however, either API can be used.
This chapter contains these topics:
Note: The User and Role API is deprecated and may be withdrawn in a future release. Your new applications should be developed on the Identity Governance Framework. Plan to migrate existing applications to the Identity Governance Framework in a future release.For details, see the Oracle Fusion Middleware Identity Governance Framework ArisID API Developer's Guide. |
The User and Role API framework allows applications to access identity information (users and roles) in a uniform and portable manner regardless of the particular underlying identity repository. The repository could be an LDAP directory server such as Oracle Internet Directory, Active Directory (from Microsoft), or Oracle Directory Server Enterprise Edition, or could be a database, flat file, or some other custom repository.
This API framework provides a convenient way to access repositories programmatically in a portable way, freeing the application developer from the potentially difficult task of accounting for the intricacies of particular identity sources. The framework allows an application to work against different repositories seamlessly. An application can switch between various identity repositories without any code changes being required.
Supported operations include creating, updating, or deleting users and roles, or searching users and roles for attributes or information of interest. For example, you may want to search for the e-mail addresses of all users in a certain role.
Note: These APIs are not meant for authentication or authorization functions, but for maintaining identity information. |
You can use a basic usage model (without container integration) or a usage model with container integration that allows your code to be portable.
When the application is intended to run in the context of an Oracle WebLogic Server container, the principal class should be cast to weblogic.security.principal.WLSUserImpl
.
Note: The following are required to invoke the User and Role API:
|
A Note about Using the User and Role API
As a general rule of thumb, authentication should only be performed by authentication providers, not through the User and Role API.
Additionally, it is recommended that authentication providers be configured with the connect DN of a user that does not have write privileges.
The User and Role API is automatically configured to use the first Oracle WebLogic Server authenticator and does not require any special configuration. F
Note, however, that configuration is required if the User and Role API is going against other authenticators.
The API can access data only from the first LDAP authenticator listed in an Oracle WebLogic Server domain. When more than one authenticator is present, the precedence is determined by their control flag priority. If both have the same priority, the first one is picked. Any LDAP authenticators below the first one on the list are not accessed.
About Concurrent Use of WebLogic APIs
Your application should not try to use both the User and Role API and the WebLogic LDAPAuthenticator API (such as EmbeddedLDAPAuthenticator, OracleInternetDirectoryAuthenticator, OracleVirturalDirectoryAuthenticator) to work on entries in the same LDAP server concurrently. To understand why, consider two LDAP clients, both with caching enabled, that access the same LDAP server; one is deleting entries, and the other tries to use the deleted entries.
The conflict caused by the two clients cannot be resolved unless caching capability is disabled, and the LDAP operations are coordinated among the clients.
Table 25-1 lists the classes and interfaces of the User and Role API.
Table 25-1 Classes and Interfaces in the User and Role API
Name | Type | Description |
---|---|---|
AuthenticationException | Class | This exception is thrown when an authentication error occurs while accessing the identity store. An authentication error can happen, for example, when the credentials supplied by the user program is invalid or otherwise fails to authenticate the user to the identity store. |
AuthenticationWarningException | Class | This class extends IMException (see below). |
ComplexSearchFilter | Interface | A complex search filter represents a complex logical expression that can be used to filter results from underlying identity repository. Complex search filter combines multiple SearchFilter instances together with a single logical operator (AND/OR). Each of these component SearchFilter can itself be a complex filter, enabling you to form a complex nested search filter. See the Javadoc (Section 25.9, "The User and Role API Reference") for an example of creating a complex search filter. |
ConfigurationException | Class | This exception is thrown when there is a configuration problem. This can arise when configuration information required to access the service provider is malformed or missing. |
Identity | Interface | This interface represents a basic identity in the identity repository. |
IdentityStore | Interface | IdentityStore represents a handle to actual identity repository. This handle can be used to search, create, drop, and modify identities in the repository. |
IdentityStoreFactory | Interface | IdentityStoreFactory is a programmatic representation of underlying identity repository. Actual handle to the identity repository can be obtained by calling |
IdentityStoreFactoryBuilder | Class | This class builds the identity store factory. |
IMException | Class | This exception is the superclass of all the exceptions thrown by ADF identity management APIs. The nature of failure is described by the name of the subclass. See the Javadoc (Section 25.9, "The User and Role API Reference") for a list of the direct known subclasses. |
ModProperty | Class | This class represents the modification of a property object. ModProperty is called with property name, modified value(s) and type of modification. Modification type can be one of |
NoPermissionException | Class | This exception is thrown when attempting to perform an operation for which the API caller has no permission. The access control/permission model is dictated by the underlying identity store. |
ObjectExistsException | Class | This exception is thrown when an identity with given name is already present in the underlying identity store. For example this exception is thrown when create user API call tries to create a user with the name of an existing user. |
ObjectNotFoundException | Class | This exception is thrown when a specified identity does not exist in the identity store. |
OperationFailureException | Class | This exception is thrown when an operation fails during execution in the underlying identity store. |
OperationNotSupportedException | Class | This exception is thrown by an service provider if it does not support an operation. For example this can be thrown by the service provider, in IdentityStore.getUserManager() call, if it does not provide support for UserManager. |
PasswordPolicyException | Class | This class extends IMException (see above). |
Property | Class | Property contains name-value information. |
PropertySet | Class | A collection of property name and value pairs. Property class is used to represent the property name and value(s) pair. PropertySet guarantees that no two properties have same name. |
Role | Interface | This interface represents a role in the identity store. |
RoleManager | Interface | This interface represents a role manager that manages execution of various operations, involving roles, in the identity repository. |
RoleProfile | Interface | This interface represents the detailed profile of a role. |
SearchFilter | Interface | This interface represents a search filter to be used in searching the identity repository. |
SearchParameters | Class | This class represents search parameters that need to be specified while performing searches on the identity store. These search parameters are:
|
SearchResponse | Interface | This interface represents search results obtained after searching the identity store. Its implementation is service provider-specific. |
SimpleSearchFilter | Interface | This interface represents a simple search filter to be used while searching the identity repository. Each simple search filter is a logical expression consisting of a search attribute/property, evaluation operator and value. This logical expression will be applied to the underlying identity repository while searching and matching results will be filtered out. See the Javadoc (Section 25.9, "The User and Role API Reference") for an example of a simple search filter. |
StoreConfiguration | Interface | StoreConfiguration holds the configuration properties for a given IdentityStore instance. The behavior of this IdentityStore instance can be controlled by changing the properties in this configuration object. The actual configuration properties and their values are specific to the service provider. Some service providers may not support any configuration property at all. |
SubjectParser | Interface | This interface provides utility methods for extracting out the user and role principals from the given Subject. Service provider needs to provide the implementation for this interface. |
User | Interface | This interface represents a user in the identity store. |
UserManager | Interface | This interface represents a user manager that manages execution of various operations, involving users, in the identity repository. |
UserProfile | Interface | This interface represents the detailed profile of a user. It allows for user properties to be accessed in a generic manner. You can read or modify any property of
|
In this section we describe basic provider concepts and life cycle, and explain how to set up, configure, and use the provider to work with user repositories in an Oracle Platform Security Services environment.
After ensuring the environment is properly set up, implementing the provider involves:
This section contains these topics:
Although the User and Role API is called for user and role management, the API does not directly interact with the underlying identity repository. Instead, security applications make use of providers which carry out the actual communication with the underlying repository. This offers flexibility since the same code can be used with various underlying repositories simply by modifying the provider/connection information.
Jar Configuration
Several jars must be present in your environment:
Ensure that your application classpath includes the relevant jars.
User Classes in jps-config.xml (Oracle Virtual Directory only)
Note: Make this change only for the Oracle Virtual Directory authenticator. |
For efficiency when fetching user attributes, add the following entry in jps-config.xml
to specify the user object classes for the search:
Oracle Platform Security Services support a range of user repositories, including the following LDAP directories:
The choice of identity repository dictates the provider class to use with the provider. The provider class must implement the interface specified by the User and Role API framework. Table 25-2 shows the available provider classes:
Table 25-2 LDAP Identity Provider Classes
Provider | Factory Name |
---|---|
Microsoft Active Directory | oracle.security.idm.providers.ad.ADIdentityStoreFactory |
Novell eDirectory | oracle.security.idm.providers.edir.EDIdentityStoreFactory |
Oracle Directory Server Enterprise Edition | oracle.security.idm.providers.iplanet.IPIdentityStoreFactory |
Oracle Internet Directory | oracle.security.idm.providers.oid.OIDIdentityStoreFactory |
OpenLDAP | oracle.security.idm.providers.openldap.OLdapIdentityStoreFactory |
Oracle WebLogic Server Embedded LDAP Directory | oracle.security.idm.providers.wlsldap.WLSLDAPIdentityStoreFactory |
Oracle Virtual Directory | oracle.security.idm.providers.ovd.OVDIdentityStoreFactory |
Microsoft ADAM | oracle.security.idm.providers.ad.ADIdentityStoreFactory |
IBM Tivoli | oracle.security.idm.providers.openldap.OLdapIdentityStoreFactory |
Once the provider's class name is identified, take these steps to create the provider:
getIdentityStoreFactory
method of the IdentityStoreFactoryBuilder class to build a factory instance. The builder class API accepts: getIdentityStoreInstance
method of the IdentityStoreFactory class to create a store instance The following example creates a factory instance for the Oracle Internet Directory store:
Now obtain the store reference, which is the actual handle to the identity store:
Note that two hash-table objects are supplied in these examples:
Configuration is dependent on the identity store provider being used.
You can fine-tune the behavior of all types of LDAP-based identity store providers by configuring a number of properties for the factory instance and the store instance. The following properties are relevant for LDAP-based providers only:
For a list of supported LDAP-based providers, see Section 25.3.3, "Selecting the Provider".
This section explains the following provider configuration topics:
The properties that can be configured fall into two categories:
Start-time Configuration Properties
Start-time configuration is performed only once, and once set, the configuration settings persist for the duration of the provider's lifetime.
With the exception of ST_SUBSCRIBER_NAME, the start-time properties are specified when creating the provider factory instance; ST_SUBSCRIBER_NAME is set when creating the store instance.
Table 25-3 lists the start-time configuration properties:
Table 25-3 Start-time Identity Provider Configuration Properties
Property Name | Description |
---|---|
ST_BINARY_ATTRIBUTES | An array of Array of String objects containing the names of binary attributes stored in the underlying LDAP server. The provider will treat these attributes as binary while sending data to and receiving it from the LDAP server. |
ST_CONNECTION_POOL | External connection pool, an instance of class oracle.idm.connection.ConnectionPool. If set, the provider uses this pool to acquire connections to the LDAP server, and the properties ST_SECURITY_PRINCIPAL, ST_SECURITY_CREDENTIALS, and ST_LDAP_URL are ignored. |
ST_USER_NAME_ATTR | The attribute used to determine the username of the user in the identity repository. |
ST_GROUP_NAME_ATTR | The attribute used to determine the role name in the identity repository. |
ST_USER_LOGIN_ATTR | The attribute used to determine the login ID of the user in the identity repository. |
ST_SECURITY_PRINCIPAL | The user (principal). |
ST_SECURITY_CREDENTIALS | The credentials necessary to log in to the identity repository. |
ST_LDAP_URL | The URL of the identity repository. |
ST_MAX_SEARCHFILTER_LENGTH | The maximum length of the search filter allowed by the LDAP server. |
ST_LOGGER | The logger object that is to be used by the API. |
ST_SUBSCRIBER_NAME | The base DN of operations in the LDAP server. This property is specified while creating the IdentityStore instance and is used to determine default values for remaining properties. This property must be specified while creating the IdentityStore instance; however, subsequent changes to its value have no effect on IdentityStore behavior. |
ST_CONNECTION_POOL_CLASS | The fully-qualified Connection Pool implementation class name. |
ST_INITIAL_CONTEXT_FACTORY | The fully-qualified class name of the initial context factory that will create the initial context. |
Run-time Configuration Properties
Properties set at runtime affect all subsequent operations executed by the provider and control the behavior of the IdentityStore instance of the provider.
Runtime properties are configured by specifying the appropriate parameters and values for the StoreConfiguration object obtained from the IdentityStore instance. All runtime properties have default values when the IdentityStore instance is created, and can be subsequently changed.
Table 25-3 lists the run-time configuration properties:
Table 25-4 Runtime Identity Provider Configuration Properties
Property Name | Description |
---|---|
RT_USER_OBJECT_CLASSES | array of object classes required to create a user in the LDAP server |
RT_USER_MANDATORY_ATTRS | attribute names that must be specified while creating a user |
RT_USER_CREATE_BASES | Base DNs in the LDAP server where a new user can be created |
RT_USER_SEARCH_BASES | |
RT_USER_SEARCH_BASES | the base DNs in the LDAP server that can be searched for users |
RT_USER_FILTER_OBJECT_CLASSES | array of object classes to use when searching for a user in the LDAP server |
RT_GROUP_OBJECT_CLASSES | array of object classes required to create a role in the LDAP server |
RT_GROUP_MANDATORY_ATTRS | attribute names that must be specified when creating a role |
RT_GROUP_CREATE_BASES | the base DNs in the LDAP server where a new role can be created |
RT_GROUP_SEARCH_BASES | the base DNs in the LDAP server that can be searched for a role |
RT_GROUP_MEMBER_ATTRS | An array of member attribute(s) in a role. All members of a role have value(s) for the attribute(s). |
RT_GROUP_FILTER_OBJECT_CLASSES | an array of object classes to use when searching for a role in the LDAP server |
RT_USER_SELECTED_CREATE_BASE | The currently selected user create base. The user will be created in this base DN upon execution of the createUser() call. If the selected create base is null and the ST_SUBSCRIBER_NAME is not specified, the first supplied value of the RT_USER_CREATE_BASE is used. If the ST_SUBSCRIBER_NAME is specified, the default value is relative to the subscriber name based on the identity store type. |
RT_GROUP_SELECTED_CREATE_BASE | The currently selected role create base. This role will be created in this base DN upon execution of the createRole() call. If the selected create base is null and the ST_SUBSCRIBER_NAME is not specified, the first supplied value of the RT_GROUP_CREATE_BASE is used. If the ST_SUBSCRIBER_NAME is specified, the default value is relative to the subscriber name based on the identity store type. |
RT_GROUP_GENERIC_SEARCH_BASE | A generic role search base to use in searching the roles related to a given identity. For example while searching all granted roles for a user, or all managed roles for a user, we need a search base under which all the required groups would reside; this helps in optimizing the searches. This search base is usually a common parent. By default, in all LDAP providers this value is set to the subscriber name if provider, else it uses the first group search base. |
RT_SEARCH_TYPE | determines whether a search on the LDAP server should be of type SIMPLE, PAGED, or VIRTUAL_LIST_VIEW |
By default, ECID support is disabled in the User and Role API.
When initializing the API, set the ST_ECID_ENABLED
property to true for ECID support, as illustrated in the following example:
Note: This action is necessary only if either Oracle Internet Directory or Oracle Virtual Directory is used as the back-end identity store. It is not necessary if using other repositories such as Microsoft Active Directory or Novell eDirectory. |
You can specify configuration data:
This section contains topics related to configuring the provider during factory instance creation.
Configuration at this stage affects the entire factory object as well as objects created using this specific factory instance. Many start-time properties are set at this time, including these common properties:
In this example, the provider is configured when setting up an Oracle Internet Directory (OID) factory:
<User password>
"); Note: The values in italics must be replaced with appropriate values prior to execution. |
You can supply named logger objects to the User and Role API. The API uses the specified logger to log messages. You must supply the external logger's name as an environment variable during the factory creation.
Here is an example:
This code directs that all the log messages should be redirected to the log file named userroleapi.log
.
You can overwrite constants or pre-supply values for missing constants by supplying the map in the ST_PROPERTY_ATTRIBUTE_MAPPING property during factory creation.
This example code sets the mapping of RoleProfile.OWNER to the "myowner" attribute. In this way, all operations related to the owner, such as getOwners(), getOwnedRoles(), and so on, are performed using this attribute.
You can configure the connection pool parameters for minimum/maximum connections using ST_CONNECTION_POOL_MIN_CONNECTIONS and ST_CONNECTION_POOL_MAX_CONNECTIONS respectively. By default, the values for these parameters are "0" and "10" respectively. There is an additional restriction that:
Here is an example:
To use a custom connection pool, you must provide the fully qualified class name of the custom connection pool class, as follows:
For related information, see Section L.6, "Failure to Connect to the Embedded LDAP Authenticator."
The IdentityStore configuration affects the store object and all objects that are created using this store instance. A configuration parameter commonly used with the store is ST_SUBSCRIBER_NAME, which is the only start-time property accepted here. (All the runtime properties can be supplied during identity store creation.)
Continuing with the earlier example in Section 25.3.6, "Configuring the Provider when Creating a Factory Instance" which created a factory instance, this code creates a handle instance to the store.
Note: Directories require that you supply a valid subscriber name. For Oracle Internet Directory, you can supply the STsubscriber name as either a proper DN or as the nickname of the realm. |
Earlier, in Section 25.3.6, "Configuring the Provider when Creating a Factory Instance" and Section 25.3.7, "Configuring the Provider when Creating a Store Instance", we demonstrated how to perform configuration when creating an instance. To facilitate adding and modifying properties at runtime, the User and Role APIs also provide a Configuration class.
The Configuration instance can be obtained from the store instance using the IdentityStore.getStoreConfiguration()
API call. Properties can be modified using the configuration object.
Only runtime properties can be modified using this approach, and the effect is visible only at runtime.
This example sets the RT_USER_SEARCH_BASES property:
This section contains tips for working with providers and provider artifacts.
To ensure that your application is portable when switching providers (say, from OpenLDAP provider to Oracle Internet Directory provider or the converse), follow these guidelines when working with the User and Role API:
oracle.security.idm.UserProfile
constants to refer to user properties. Avoid using native names which are not portable across identity repositories. For example, if the application needs to obtain a user's login name, fetch it using the UserProfile.USER_NAME
constant: UserProfile
constants are provided for most standard user properties but not for all possible properties. If the application needs to obtain all the properties of a user generically, use the following code: SimpleSearchFilter.getWildCardChar()
method. This will fetch the correct wild character based upon the underlying provider. For example, the API will return %
for say a database provider and return *
for the Oracle Internet Directory provider. The line in bold converts the user-supplied filter to the generic User and Role API filter format.
Keep the following considerations in mind when coding your applications.
Thread Safety
The current IdentityStore implementations are not thread-safe. The User and Role API assumes that the store instances are not generally shared among threads. If the store instance is shared among threads, the application code must take care to handle any required thread safety issues.
There are trade-offs between thread safety and performance. Use cases that need to implement thread safety must be willing to consider the performance implications of doing so.
One Store Instance per Session
In applications such as Delegated Administration Server, each session (corresponding to one logged-in user) can change its own create/search bases and various other runtime settings; these are defined as runtime properties in the User and Role API. The IdentityStore object encapsulates all these settings and changes its runtime behavior accordingly. For this reason, the rule of one IdentityStore instance per session is enforced.
A given provider exists for the lifetime of the factory instance created for that provider. The life of a factory instance ends whenever the close() API is called on that instance. When the provider instance ends, all the objects that were created using that instance become invalid, and subsequent API calls on those objects return unanticipated output.
Similar considerations apply to IdentityStore instances.
Note:
|
The User and Role API provides two types of query functions:
This section describes searches and related tasks you can accomplish with the API, and provides details on specifying search parameters:
You can query the identity store directly for a specific user or role using the searchUser
and searchRole
APIs:
where searchType
can be:
These functions facilitate simple queries where a particular user/role identity is known to exist in the store, and you simply need the object reference to that identity. The functions are minimal in that:
The functions raise an exception if multiple entities with the same value exist in the store.
The User and Role APIs contain several functions that can perform searches to return multiple identities:
Each function accepts a search object and returns a search response object.
The SearchParams Object
The SearchParams object contains the following information:
Roles
or Users
The SearchResponse Object
SearchResponse is a data structure used when retrieving multiple identities. Your code can iterate through the identities contained in this structure using these functions:
hasNext()
- returns true
if more elements are present, false
otherwise next()
– returns the next element if it is available, an exception otherwise The User and Role API includes different types of search filters to facilitate a variety of search operations. This section explains key facts about the use of search filters:
Observe these rules when using search filter operators.
Supported Operators
The standard LDAP store accepts only "=" (equals operator), "<" (less-than operator), ">" (greater-than operator), "&" (AND operator), "|" (OR operator) and "!" (NOT operator). IdentityStore provides two more operators to simplify usage, namely "<=" (less than or equal to) and ">=" (greater than or equal to).
The operators "=", "<",">", "<=" and ">=" are used to create simple search filters while the "&" and "|" operators are used to combine two or more search strings to make a complex search filter.
NOT Operator
You can use the NOT
operator in both the simple search filter and complex search filters. This operator is used to negate the state of the filter, that is, the state of the filter is changed to accept the entities which were earlier rejected by the filter, or to reject entities that were earlier accepted.
The NOT operator is accessible using the following SearchFilter
API:
According to RFC-2254 (String Representation of LDAP Search Filters), "*", "(", ")","\" and NULL characters are to be handled separately. The User and Role API handles "(", ")" and "\" operators but does not handle the "*" operator, which is also a wild-card character for LDAP stores. The API user is not required to separately handle these characters as the User and Role API framework handles these characters.
Applications commonly need to retrieve the identity of the logged-in user and the user's group name.
The Oracle WebLogic Server authenticator uses two attributes related to users: user.login.attr
and groupname.attr
. Upon login, the authenticator uses user.login.attr
to store the user and groupname.attr
for the group.
Your application should use UserProfile.getUserName()
(which maps to user.login.attr
) to obtain the identity of the logged-in user. To obtain the role (group) name, it should use RoleProfile.getProperty(RoleProfile.NAME
) (which maps to groupname.attr
).
Sample calls showing how to obtain the logged-in user and role are shown in Example 25-6 and Example 25-7, respectively.
Several usage examples are presented in this section.
Example 25-1 Simple Filter to Retrieve Users by Name
The implementation of the simple search filter depends on the underlying store; you can obtain an instance of the search filter through the store instance.
In this example, the filter allows all entries with a non-null value for the "name" field:
Example 25-2 Simple Filter to Find Users by Language Preference
This example retrieves users whose preferred language is not English:
Example 25-3 Complex Filter for Names by Starting Letter
This complex filter combines multiple search filters with operators "&" or "|". It searches for users whose name starts with a letter between "a" and "j":
Example 25-4 Complex Filter with Restrictions on Starting Letter
In this example, complex filters are nested to enable a search for users whose name starts with a letter between "a" and "j" but not with the letter "i":
Example 25-5 Complete Search with Output
This example filters names starting with the letter "a" and outputs the return values:
Example 25-6 Obtaining the Identity of the Logged-in User
This example shows how to retrieve the logged-in user:
Note: The name returned by((User)idy).getName is derived from the RDN, which might be different from the login name. |
Example 25-7 Obtaining the Role/Group Name
This example shows how to retrieve the role (group) name:
In this example, GUID values obtained from the User and Role API can be directly used in the search:
For verification purposes, you can use the User and Role API for password-based authentication of users. (As mentioned earlier, the API is not meant for authentication and authorization.)
The authenticateUser
API accepts a user login name and attempts to authenticate the user with the specified password. If authentication is successful, it returns the user object.
Here is an example of password-based authentication:
The User and Role API facilitates adding new identities to the identity store and modifying identities in the store. The UserManager and RoleManager classes address the user- and role-specific data creation, modification and deletion operations.
UserManager and RoleManager instances can be obtained from the store instance as follows:
Topics in this section include:
RFC-2253 defines the string representation of Distinguished Names for LDAP v3. This means that all the characters specified in the RFC are handled. The User and Role API user does not need to escape/de-escape those special characters; attempting to do so will cause erroneous results.
There could be a problem when creating identities with empty properties. In this case, the "RDN name" is used to fill in the values of various mandatory attributes. Some of these attributes could have stricter validation rules. In this case, the creation of the identity fails and an exception is raised.
Two functions in the UserManager class facilitate creating a user:
When the identity store designates that some attributes are mandatory, all such fields will be populated with the "name" value.
Likewise, RoleManager APIs are used to create roles.
Roles are organized into two categories:
When you invoke RoleManager
to create a role, by default the role is created in the enterprise scope unless you specify otherwise.
RoleManager APIs supporting role creation are:
The procedure for creating a role is similar to that for creating a user, and all mandatory attributes must be supplied with roleName
.
To modify an identity, you need a reference to the identity. The User, UserProfile, Role, and RoleProfile classes provide the following APIs to facilitate modifying identities:
prop
);props
);ModProperty structure consists of:
Valid operators are:
In this example, a display name is replaced:
modified display name
",Modifying a particular value in a multi-valued attribute is a two-step process; first remove the value, then add the new value.
You drop an identity with the dropUser
and dropRole
APIs.
You need both user and role references in your code when dropping an identity. Here is an example:
This section contains some examples illustrating practical applications of the User and Role API:
In this example the identity store is Oracle Internet Directory, and a simple search filter is set up to search for users:
Searching for Users and Searching for Groups
When searching for users, you invoke UserProfile
, as in the above example with SimpleSearchFilter
. When searching for groups, however, you use RoleProfile
instead.
In this example several user management tasks such as creating, modifying, and dropping an identity are performed in an Oracle Internet Directory store:
In this example several user management tasks such as creating, modifying, and dropping an identity are performed in a Microsoft Active Directory store:
This section describes SSL support for the User and Role API. It contains these topics:
LDAP-based providers for the User and Role API rely on the Sun Java Secure Sockets Extension (JSSE) to provide secure SSL communication with LDAP-based identity stores. JSSE is part of JDK 1.4 and higher.
These LDAP providers are:
To support SSL you must provide the following information in the form of system properties:
Refer to Sun Microsystems' documentation on JSSE for details.
You need to provide SSL configuration details during User and Role API configuration.
Provide your keystore location and password as system properties to the JVM:
Specify following properties in the environment when creating the IdentityStoreFactory
instance:
You can customize SSL support by providing a customized SSLSocketFactory
to the User and Role API provider.
Specify the following properties when creating the IdentityStoreFactory
instance:
The User and Role API reference (Javadoc) is available at:
Oracle Fusion Middleware User and Role Java API Reference for Oracle Platform Security Services
This section explains how to develop custom providers that security developers can use to manage identities (users and roles). It contains these topics:
The User and Role API is accompanied by a service provider interface (SPI) that makes it possible to develop custom user/role providers. You can use the service provider interface to develop a custom provider for any identity data repository.
The SPI is bundled as the oracle.security.idm.spi
package, which is a set of abstract classes. Custom User and Role providers are created by extending this SPI to fit your requirements.
The User and Role API offers functions for both search and Create/Read/Update/Delete (CRUD) operations. A User and Role provider based on read-only functions supports only search operations. A full-featured provider supports both search operations and CRUD operations. In other words, the full-featured provider is a superset of a read-only provider.
As a developer you have the choice of creating either read-only or full-functionality providers depending upon the requirements.
It is reasonable to develop a read-only provider in the following situations:
For example, it makes sense to develop a read-only provider for use with the SOA identity service.
This section describes the classes used to implement a provider. Topics include:
Table 25-5 shows that SPI classes that must be extended to implement a read-only provider:
Note: All abstract methods must be implemented. |
Table 25-5 SPI Classes to Extend for Custom Provider
Class | Usage Notes |
---|---|
oracle.security.idm.spi.AbstractIdentityStoreFactory | The extending class must include a default constructor and a constructor accepting a java.util.Hashtable object. |
oracle.security.idm.spi.AbstractIdentityStore | |
oracle.security.idm.spi.AbstractRoleManager | |
oracle.security.idm.spi.AbstractUserManager | |
oracle.security.idm.spi.AbstractRoleProfile | |
oracle.security.idm.spi.AbstractUserProfile | |
oracle.security.idm.spi.AbstractSimpleSearchFilter | The constructor of the extending class must call the constructor of the abstract (super) class. |
oracle.security.idm.spi.AbstractComplexSearchFilter | The constructor of the extending class must call the constructor of the abstract (super) class. |
oracle.security.idm.spi.AbstractSearchResponse |
Additional requirements and notes for each class are provided below.
The class extending this SPI class must have following constructors:
java.util.Hashtable
object as an argument. You can use the hash table to accept any configuration properties required by the provider. The configuration properties are passed to this constructor during the user and role configuration phase. The properties are key-value pairs passed in the Hashtable
argument:
java.lang.String
. java.lang.Object
. It is recommended that the value be of type String
. This guarantees that the property can be specified in jps-config.xml
, which is a text file.
See Also: "The User and Role SPI Reference" for details about the methods that need to be implemented in this class. All listed methods must be implemented. |
"The User and Role SPI Reference" provides details about the methods that need to be implemented in this class. Note that:
getStoreConfiguration()
is optional and can throw OperationNotSupportedException
. getSubjectParser()
can return null
. When there are no search results to be returned, all search APIs should throw:
Never return an empty SearchResponse
.
"The User and Role SPI Reference" provides details about the methods that need to be implemented in this class. Note that only the following methods need concrete/actual implementations:
getGrantedRoles()
getOwnedRoles()
getManagedRoles()
isGranted()
isManagedBy()
isOwnedBy()
isDropRoleSupported()
– should always return false
isCreateRoleSupported()
– should always return false
isModifyRoleSupported()
– should always return false
The remaining methods must throw the following in their respective implementations:
"The User and Role SPI Reference" provides details about the methods that need to be implemented in this class. Only the following methods need concrete/actual implementations:
authenticateUser(User, char[])
authenticateUser(String, char[])
isDropUserSupported()
– should always return false
isCreateUserSupported()
– should always return false
isModifyUserSupported()
– should always return false
The remaining methods must throw the following in their respective implementations:
oracle.security.idm.spi.AbstractRoleProfile is an abstract class that can be used to return a detailed role profile.
"The User and Role SPI Reference" provides details about the methods that need to be implemented in this class. Only the following methods need concrete/actual implementations:
getDisplayName()
getGUID()
getName()
getUniqueName()
getPrincipal()
getDescription()
getGrantees()
getManagers()
getOwners()
getProperty()
- If requested property is not set/valid for corresponding role then null should be returned as value. The remaining methods must throw the following in their respective implementations:
oracle.security.idm.spi.AbstractUserProfile
is an abstract class that can be used to return a detailed user profile.
"The User and Role SPI Reference" provides details about the methods that need to be implemented in this class. Only the following methods need concrete/actual implementations:
getDisplayName()
getGUID()
getName()
getUniqueName()
getPrincipal()
getProperty()
- If the requested property is not set/valid for corresponding role then a null value must be returned. getProperties()
– If the requested property is not set/valid for the corresponding user, then a null value must be returned. getAllUserProperties()
– Only the properties set for the corresponding user should be returned. getReportees()
getManagementChain()
These two methods:
setProperty()
setProperties()
must throw the following in their implementation:
oracle.security.idm.spi.AbstractSimpleSearchFilter
is an abstract class that can be extended to implement a simple search filter.
The implementing class must have a constructor that calls the constructor of the abstract class:
"The User and Role SPI Reference" provides details about the methods that need to be implemented in this class. Only the following methods need concrete/actual implementations:
getNativeRepresentation()
– convert filter into the native representation to be used with the underlying identity repository. getWildCardChar()
– wild card character, for example "*", to be used in searches. The specific character depends on the underlying identity repository. oracle.security.idm.spi.AbstractComplexSearchFilter
is an abstract class that can be extended to implement a search filter of any complexity.
The implementing class must have a constructor that calls the constructor of the abstract class:
"The User and Role SPI Reference" provides details about the methods that need to be implemented in this class. Only the following methods need concrete/actual implementations:
getNativeRepresentation()
– convert the filter into the native representation to be used with the underlying identity repository. The SearchResponse
object contains search results being returned from a repository. Each result entry corresponds to one user or role in the underlying identity repository, represented by the corresponding UserProfile/RoleProfile class implementation.
The SearchResponse
object must return one or more results. This means that the hasNext()
method must return TRUE
at least once.
Do not use if there are zero results to return. When no results are to be returned, the corresponding search API should throw the following exception:
oracle.security.idm.ObjectNotFoundException
The full-featured provider implements all the functionality supported by a read-only provider, and additionally supports CRUD operations. This requires that the CRUD APIs be implemented in the SPI implementation classes.
In the read-only provider, these APIs were implemented simply by throwing an OperationNotSupportedException
(see the class descriptions in Section 25.10.3, "Developing a Read-Only Provider").
For a full-featured provider, this needs to be replaced by concrete/actual implementation of the corresponding CRUD operations.
This section provides some guidelines for developing providers.
Mapping of Names
Be aware of the usage of naming constants such as UserProfile.NAME, UNIQUE_NAME, UserProfile.USER_NAME, UserProfile.USER_ID.
Depending on the identity repository, these constants might map to the same underlying identity repository attribute or they might map to different attributes. If the underlying repository is an LDAP v3 server, the mappings are as follows:
Thread Safety
The following objects are likely to be shared among multiple threads:
You should ensure that there are no thread safety-related issues in the corresponding implementation classes of your provider.
The User and Role API ships with a test suite to enable you to test the basic operations of providers that you develop.
The test suite can be used to test both read-only and full-featured providers.
Usage
where propertiesfile contains the provider class name and any configuration data for the provider. It also contains information about the tests to be run. You need to edit this file and update it with correct information before running the tests; the file contents are self-explanatory. One such file (ffprovider.properties
) is available with the sample provider discussed in Section 25.10.7.1, "About the Sample Provider".
Results
The test will produce the results on-screen. All providers that you develop must pass the "Lookup tests", "Role membership tests" and "Profile tests" in the test suite. Full-featured providers must pass all the tests in the suite including Create/Drop tests.
The log of test results will be output to the file results.out
in current working directory.
The distribution includes a sample identity provider that you can use to understand how custom providers are built.
This section describes how to access the sample provider, and explains the steps needed to implement a custom provider. The steps rely on the sample for illustration.
The sample provider is bundled in sampleprovider.zip
. Unzip the file. It should generate the following structure:
Run ant help
for instructions on building and testing this provider.
The provider relies on an ad-hoc identity repository for fetching identity information and has been tested with Oracle SOA Suite. It is not intended for production use without appropriate testing for your environment.
The sample identity provider used in this example is a custom Identity/Authentication provider that uses an RDBMS as the underlying store. It can be used as both an identity provider and an authentication provider.
Note: The sample provider is intended solely for demonstration purposes, and it is not advisable to use this provider in production without exhaustive testing. |
These steps are required to set up the sample provider:
ant help
for instructions. Configure jps-config.xml
as follows to enable the sample identity provider to be used as the identity store:
Note: custom_provider_identityStoreFactoryClassName for the sample provider is org.sample.providers.db.DBIdentityStoreFactory |
jpsContext
points to the identity store service instance added in Step 2 above: The final task is to configure Oracle WebLogic Server to use SQLAuthenticator
. The steps are as follows:
SUFFICIENT
. Click Save. This section contains the User and Role SPI reference (Javadoc), describing each abstract class in the SPI with package name oracle.security.idm.spi. The classes are:
This class represents a detailed user profile and enables you to set or obtain attributes of the user profile.
Constructors
Methods
This class represents a user manager and includes basic authentication methods.
Constructors
Methods
This class represents a user.
Constructors
Methods
None.
This abstract class provides a constructor for a subject parser.
Constructors
Methods
None
This abstract class provides a constructor for identity store configuration.
Constructors
Methods
None
This abstract class represents a simple search filter that can be used to search the identity store. Each simple filter consists of a search attribute, matching operator type, and value. Search results are filtered based on this condition. This class is abstract as its actual underlying representation (provided by method @link #getNativeRepresentation()
) is implementation-specific. A service provider can extend this class by setting up a specific implementation of that method.
Constructors
Methods
Table 25-6 lists the methods of AbstractSimpleSearchFilter
.
Table 25-6 Methods of AbstractSimpleSearchFilter
Method | Description |
---|---|
public void setAttribute(String name) | Set attribute name. . |
public void setType(int type) | Set filter type. |
public void setValue(Object value) | Set attribute value. |
public java.lang.String getAttributeName() | Retrieve attribute name. |
public java.lang.Object getValue() | Retrieve attribute value. |
public int getType() | Retrieve filter type. |
public void setNegate() | Negate the current NOT state of the search filter. Behaves like a toggle switch. |
public void negate() | Negate the current NOT state of the search filter. Behaves like a toggle switch. |
public boolean isNegated() | Return the current NOT state of the search filter. Returns |
This is an abstract class that represents search response results.
Constructors
Methods
None.
This class represents the detailed profile of a role.
Constructors
Methods
This class is an abstract representation of a role manager.
Constructors
Methods
This class provides a constructor for a role.
Constructors
Methods
None
This class represents an identity store factory.
Constructors
Methods
This abstract class represents an identity store.
Constructors
Methods
This class represents a complex search filter. This type of search filter is used to combine multiple SearchFilter instances with a single boolean AND or OR operator. Each of the component search filters can itself be a complex filter, enabling you to form nested search filters with a high degree of complexity.
This class is abstract in that its actual underlying representation, provided by the @link #getNativeRepresentation()
method, is implementation-specific.
A service provider can extend this class by creating a specific implementation of this method.
Constructors
Methods
Table 25-7 Methods of Complex Search Filter
Method | Description |
---|---|
public void addFilterComponent(SearchFilter filter) | Add the SearchFilter component to this complex filter's list. |
public void setNegate() | Negate the current NOT state of the search filter. Behaves like a toggle switch. |
public void negate() | Negate the current NOT state of the search filter. Behaves like a toggle switch. |
public boolean isNegated() | Return the current NOT state of the search filter. Returns |
public int getOperatorType() | Logical operator type which binds together the SearchFilter components. |
This chapter explains how to access and work with identity stores using the Identity Directory API.
This chapter contains these topics:
The Identity Directory API allows applications to access identity information (users and other entities) in a uniform and portable manner regardless of the particular underlying identity repository.
The Identity Directory API:
The Identity Directory API uses the Identity Governance framework, providing all the benefits of the framework to enable you to control how identity related information, including Personally Identifiable Information (PII), access entitlements, attributes, and other entities are used, stored, and propagated between organizations.
This section explains the features supported by the Identity Directory API.
Features for User Entities
The following features are supported for users:
Features for Group Entities
The following features are supported for groups:
Table 26-1 lists the classes in the Identity Directory API:
Table 26-1 Classes in the Identity Directory API
Class | Description |
---|---|
Capabilities | Contains an entity's capabilities. |
CreateOptions | Contains options for entity creation operations. |
DeleteOptions | Contains options for entity deletion operations. |
Entity | Generic entity class holding the list of attributes of the entity fetched using search or read methods. |
EntityAlreadyExistsException | Returned following an attempt to create an existing entity. |
EntityCapabilities | |
EntityManager | Handles operations like read, create and search of generic entity. |
EntityNotFoundException | Returned when requested entity is not found. |
EntityNotUniqueException | Returned when the entity is not uniquely defined. |
EntityRelationManager | Handles entity relationship operations like read, create, delete, search relationship. |
Group | A generic entity class holding the list of members of the group. It also provides methods to modify group membership. |
GroupManager | Handles operations like creating, deleting, and searching for groups. |
IDSException | Handles exceptions. |
IDSPrincipal | Contains the principal related to the exception. |
IdentityDirectory | Represents a handle to IdentityDirectory for creation of IdentityDirectory instance. The instance provides handles to User, Group, and generic Entity Manager so that operations on the corresponding entities can be performed. |
IdentityDirectoryFactory | A factory class for creating IdentityDirectoryService. |
IdentityDirectoryInfo | |
InvalidAttributesException | Used for exceptions related to invalid entity attributes. |
InvalidFilterException | Used for exceptions generated within Identity Beans |
ModAttribute | |
ModifyOptions | Extends OperationOptions containing options for entity modify operation |
OperationNotSupportedException | Used for exceptions generated within Identity Beans |
ReadOptions | Extends OperationOptions containing options for entity read operation. Read options include Locale and Requested Attributes settings. |
ResultSet | An interface for the object returned by search interaction with paged results. |
SearchFilter | Used to construct simple or complex nested search filters for searching the entities |
SearchOptions | Extends ReadOptions containing options for entity search operation. |
User | Generic class for User entities. |
UserCapabilities | Contains user capability attributes. |
UserManager | Contains methods for creating, deleting, and searching for users by various criteria. |
The identity directory configuration is a combination of the logical entity configuration and the physical identity store configuration.
The identity directory with logical entity configuration is stored in:
The physical identity store configuration for the default identity directory is located at:
The default identity directory uses the same identity store properties (namely host, port, credentials, search base, create base, name attribute, and so on) configured in OPSS (weblogic authenticator or in jps-config.xml
). For more information, see Section F.2.3, "LDAP Identity Store Properties".
This section explains how applications can use the Identity Directory API to view and manage identity store data. It contains these sections:
You can obtain the identity directory handle from the jps-context and get a directory instance as follows:
You can perform Create, Retrieve, Update, and Delete (CRUD) operations on users and groups.
Basic CRUD operations on users are as follows:
Create User
Get User
Search for User
Delete User
Update User
Retrieve List of Users
Basic CRUD operations on groups are as follows:
Create Group
Get Group
Search for Group
Delete Group
Modify Group Attributes
Retrieve List of Groups
This section contains the following examples of using the Identity Directory API:
This sample code initializes and obtains a handle to the identity directory:
This sample code creates a user in the identity store:
This sample code obtains a user from the identity store:
This sample code modifies an existing user by adding a new user attribute:
This sample code performs a basic user search:
This sample code uses a complex search filter to return matching users:
This sample code creates a group:
This sample code returns a specific group:
This sample code uses a search filter to return groups:
This sample code deletes a group from the store:
This sample code adds a member to a group:
This sample code deletes a member from a group:
For details about SSL configuration when using the Identity Directory API, see Section 7.5, "SSL for the Identity Store Service".
This chapter explains how to utilize the Keystore Service when developing applications.
A keystore is used for secure storage of and access to keys and certificates. The Keystore Service API is used to access and perform operations on the keystores.
The Keystore Service:
Critical (create, update, delete) functions provided by the Keystore Service API include:
Operations on a KeyStore
are secured by KeyStoreAccessPermission
, which implements the fine-grained access control model utilized by the Keystore Service.
Knowledge of the following areas is helpful in getting your applications to work with the Keystore Service:
Policy permissions are set in the policy store, which can be file-based (system-jazn-data.xml
) or LDAP-based. Setting appropriate permissions to enable application usage without compromising the security of your data requires careful consideration of permission settings.
jps-config.xml
. You will need to define the service instance in jps-config.xml
only if manually crafting the configuration file.
Note: The file-based provider is already configured by default, and can be changed to an LDAP-based provider. See Section 8.6, "Migrating the OPSS Security Store". |
The steps are different for stand-alone applications and those that operate in an Oracle WebLogic Server environment.
The Oracle Platform Security Services keystore provider is set when the server is started. When the provider is file-based, the data is stored in system-jazn-data.xml
.
Keystore Service supports securing keys:
<application stripe, keystore, key>
Notes:
|
This section provides guidelines for permission grants to keystore objects, along with several examples:
Note: In the examples, the application jar file name isAppName.jar . |
The Keystore Service relies on Java permissions to grant permissions to keystore or key objects. It is highly recommended that only the requisite permissions be granted, and no more.
WARNING: It is risky and inadvisable to grant unnecessary permissions, particularly permissions to all application stripes and/or keystores. |
The Keystore Service stores objects in a hierarchy:
application stripe -> keystore(s) -> key(s)/certificate(s)
This example grants permissions for a specific application stripe and a specific keystore name within that stripe.
where:
stripeName
is the name of the application stripe (typically the name of the application) for which you want to grant these permissions (read, write, update, and delete permissions denoted by the wildcarded actions). keystoreName
is the key store name in use. alias
indicates the key alias within the key store. Note: The wildcard indicates the application is granted permission for all aliases. |
In this example, permissions are granted for a specific application stripe name and all its keystores.
In this example, read permissions are granted for a specific key alias within an application stripe name and a keystore.
You need to define the Keystore Service instance in a configuration file which contains information about the location of the keystore and the provider classes. Configuration files are located in:
and are named as follows:
jps-config.xml
for Oracle WebLogic Server jps-config-jse.xml
for Java SE You can use the Keystore Service within Oracle WebLogic Server or in a standalone environment.
The steps for using the API in a standalone environment are:
jps-manifest.jar
file is in your classpath. For details, see Required JAR in Classpath in Section 1.5.3, "Scenario 3: Securing a Java SE Application". Command-line options include:
Take these steps to use the API in an Oracle WebLogic Server environment:
jps-config.xml
file is configured in the following directory: If needed, reassociate to an LDAP or database store.
This section provides an example of using the key store service APIs. It contains these topics:
The following Java code demonstrates common Keystore Service operations:
For illustration, the example uses an xml-based policy store file (system-jazn-data.xml
) which has the appropriate permissions needed to access the given key store from the store. The file defines the permissions for different combinations of application stripe and key store name. Other combinations, or attempts to access the store beyond the permissions defined here, will be disallowed.
Note: The default policy store to which this grant is added is$DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml . |
Here the system property projectsrc.home
is set to point to the directory containing the Java SE application, and clientApp.jar
is the application jar file which is present in sub-directory dist.
The corresponding policy grant looks like this:
Here is a sample configuration file (jps-config-jse.xml
). The keystore.file.path
property of the keystore service shows the directory containing the keystores.xml
file:
Note: For the complete configuration file see the default file shipped with the distribution at$DOMAIN_HOME/config/fmwconfig/jps-config-jse.xml . |
In the Java SE environment, the following calls are equivalent:
and:
In a clustered environment, use the Keystore Service Mbean API over the Keystore Service API to create, retrieve, update, and delete keys for an application.
If you are simply reading keys, however, either API can be used.
This chapter explains how applications (also known as audit clients) can use the Oracle Fusion Middleware Audit Framework to provide auditing capabilities. Release 5.1.2 Patch Set 5 introduces an audit service that enables you to integrate with the audit framework programmatically to log audit events and generate compliance reports using the same capabilities available to Oracle components.
Using the audit service, applications can:
This chapter contains these topics:
As Figure 28-1 shows, Java EE applications running on Oracle WebLogic Server can integrate with and leverage the audit framework seamlessly:
During application deployment or audit service start-up, a client such as a Java EE application or Oracle component registers with the audit service. The registration service updates the metadata store with the latest audit definitions contained in component_events.xml and related files.
The rest of this chapter explains the metadata model, and how you can integrate your applications with the audit flow to log audit events and create audit reports.
The audit framework supports a metadata model which enables applications to specify their audit artifacts in a flexible manner. Applications can dynamically define attribute groups, categories, and events.
Attribute groups provide broad classification of audit attributes and consist of three types:
The IAU_COMMON database table contains attributes in this group.
Table 28-1 shows the supported attribute data types and the corresponding Java object types:
The common attribute group is stored in the IAU_COMMON
database table.
A generic attribute group is defined with a namespace, a version number, and one or more attributes. This example defines an attribute group with namespace authorization
and version 1.0:
Your application can reference the CodeSource
attribute like this:
Each generic attribute group is stored in a dedicated database table. The naming conventions are:
IAU_
GENERIC_ATTRIBUTE_GROUP_NAME
for table names IAU_
ATTRIBUTE_NAME
for table columns For example, the attribute group authorization
is stored in database table IAU_AUTHORIZATION
with these columns:
IAU_CODESOURCE
as string IAU_PRINCIPALS
as string IAU_INITIATORGUID
as string A custom attribute group is defined with a namespace, a version number, and one or more attributes.
Attributes consist of:
This example defines attribute group Accounting
with namespace accounting
and version 1.0:
Custom attribute groups and attributes are stored in the IAU_CUSTOM table.
An audit event category contains related events in a functional area. For example, a session category could contain login and logout events that are significant in a user session's life cycle.
An event category does not itself define attributes. Instead, it references attributes in component and system attribute groups.
There are two types of event categories:
A system category references common and generic attribute groups and contains audit events. System categories are the base set of component event categories and events. Applications can reference them directly, log audit events, and set filter preset definitions.
The following example shows several elements of the metadata model:
identity
and authorization
UserSession
with an attribute referencing to a common attribute AuthenticationMethod A component or application can define extend system categories or define new component event categories. In this example, a transaction category references attributes AccountNumber, Date, and Amount from the accounting
attribute group, and includes events 'purchase' and 'deposit':
You extend system categories by creating category references in your application audit definitions. List the system events that the system category includes, and add new attribute references and events to it.
In this example, a new category references a system category ServiceManagement
with a new attribute reference ServiceTime
, and a new event restartService
:
The audit metadata store provides the repository for the metadata model and contains component audit definitions, NLS translation entries, runtime policies, and database mapping tables.
Note: The metadata store is separate from the audit data store. |
The audit metadata store supports several critical auditing functions:
The audit framework supports three types of metadata store:
When a new application registers to the audit service, the following audit artifacts are stored in the audit store:
Take these steps to integrate your application with the audit framework:
component_events.xml
. component_events.xml
file in the application EAR
file. The following sections provide more details on these tasks:
This task involves creating the following files:
component_events.xml File
The component_events.xml file includes these elements:
For details about run-time policies, see Section 13.3.
Here is an example component_events.xml file:
Translation Files
Create the translation files required for your application.
Translation files are used to display audit definition in different languages. Generate the files in XLIFF format; during registration, this information is stored in the audit metadata store along with the component audit event definition.
When creating your audit definition file, you must be aware of certain rules that the registration service uses to create the audit metadata for the application. This metadata is used to maintain different versions of the audit definition, and to load audit data and generate reports.
Each audit definition must have a major and a minor version number, which are integers, for example, major = 1 minor=3. Any change to an audit event definition requires that the version ID be modified by changing the minor and/or major number.
Version numbers are used by the audit registration service to determine the compatibility of event definitions and attribute mappings between versions.
Note: These version numbers have no relation to Oracle Fusion Middleware version numbers. |
Versioning for Oracle Components
When registering an Oracle component such as Oracle Virtual Directory, the audit registration service checks if this is a first-time registration or an upgrade.
For a new registration, the service:
For upgrades, the current major and minor numbers for the component in the metadata store are compared to the new major and minor numbers to determine whether to proceed with the upgrade.
Versioning for JavaEE Applications
When modifying your application's audit definition, it is recommended that you set the major and minor numbers as follows:
For example, suppose the current definition version is major=2 and minor=1. When adding a new event that does not affect the attribute database mapping table, you can change the minor version to 2 (minor=2), while the major version remains unchanged (major=2).
When registering a new component or application, the registration service creates an attribute-to-database column mapping table from the component's custom attributes, and then saves this table to the audit metadata store.
Attribute-database mapping tables are required to ensure unique mappings between your application's attribute definitions and database columns. The audit loader uses mapping tables to load data into the audit store; the tables are also used to generate audit reports from custom database table IAU_CUSTOM.
A custom attribute-database column mapping has properties of attribute name, database column name, and data type.
Each custom attribute must have a mapping order number in its definition. Attributes with the same data type are mapped to the database column in the sequence of attribute mapping order. For example, if the definition file looks like this:
then the mapping is as follows:
The version ID of the attribute-database column mapping table matches the version ID of the custom attribute group. This allows your application to maintain the backward compatibility of attribute mappings across audit definition versions. For more information about versioning, see Section 28.5.1.1.
Java EE applications can be registered by packaging component_events.xml
and component_events_xlf.jar
in the META-INF
folder of the application's EAR files. The audit registration service will process them automatically when the application is deployed.
Options include:
Registration parameters are set in the OPSS deployment descriptor opss-application.xml
, which is also packaged in the META-INF folder of the application EAR files. Table 28-2 shows the parameters with their options:
Table 28-2 Parameters for Audit Registration Service
Parameter | Option | Description |
---|---|---|
opss.audit.registration | OVERWRITE | Register component audit definition whether or not it is registered. |
UPGRADE | Register component audit definition according to versioning support. | |
DISABLE | Do not register component audit definition. | |
opss.audit.deregistration | DELETE (default option) | Delete component audit definition from audit store when undeploying applications. |
DISABLE | Keep component audit definition in audit store when undeploying applications. |
Applications can programmatically access the run-time audit service to generate their own audit events using the client API.
The audit client API is as follows:
Subsequent sections explain how to obtain permissions and a run-time auditor instance.
You must have system grants to get auditor instances from the audit service. In this example, the grant allows application MyApp
to call auditService.getAuditor("MyApp")
in AccessController.doPrivileged
block:
After your application registers to the audit service, it can get its runtime auditor instance programmatically from the OPSS audit service, as shown in the following sample code fragment:
You can leverage Oracle Business Intelligence Publisher to generate reports from your application's audit data, utilizing the same reporting capabilities available to Oracle components.
The basic steps are as follows:
As the application's audit requirements evolve, you can update the integration to reflect the changes. The steps are as follows:
This part contains the following appendices:
This appendix describes the element hierarchy and attributes in the file that configures OPSS services. By default, this file is named jps-config.xml
(for Java EE applications) or jps-config-jse.xml
(for Java SE applications) and is located in the directory $DOMAIN_HOME/config/fmwconfig
.
For Java SE applications, an alternative location can be specified using the system property oracle.security.jps.config
.
The configuration file is used to configure the policy, credential, and identity stores, the login modules, and the audit service. For a complete example of a configuration file see Section 21.4.9, "Example of Configuration File jps-config.xml."
To configure services programmatically, see Section E.2, "Configuring OPSS Services with MBeans."
This appendix includes the following sections:
The top element in the file jps-config.xml
is <jpsConfig>. It contains the following second-level elements:
<property>
<propertySets>
<extendedProperty>
<serviceProviders>
<serviceInstances>
<jpsContexts>
Table A-1 describes the function of these elements. The annotations between curly braces{
}
indicate the number of occurrences the element is allowed. For example, {0 or more}
indicates that the element can occur 0 or more times; {1}
indicates that the element must occur once.
These elements are not application-specific configurations: all items in the configuration file pertain to an entire domain and apply to all managed servers and applications deployed in the domain.
Table A-1 First- and Second-Level Elements in jps-config.xml
Elements | Description |
---|---|
Defines the top-level element in the configuration file. | |
Defines names and values of properties. It can also appear elsewhere in the hierarchy, such as under the elements | |
Groups one or more | |
Defines a property that has multiple values. It can also appear elsewhere in the hierarchy, such as under the elements extendedProperty and serviceInstance. | |
<extendedPropertySets> {0 or 1} <extendedPropertySet> {1 or more} <extendedProperty> {1 or more} <name> {1} <values> {1} <value> {1 or more} | Groups one or more |
<serviceProviders> {0 or 1} <serviceProvider> {1 or more} <description> {0 or 1} <property> {0 or more} | Groups one or more |
<serviceInstances> {0 or 1} <serviceInstance> {1 or more} <description> {0 or 1} <property> {0 or more} <propertySetRef> {0 or more} <extendedProperty> {0 or more} <name> {1} <values> {1} <value> {1 or more} <extendedPropertySetRef> {0 or more} | Groups one or more |
Groups one or more |
This section describes, in alphabetical order, the complete set of elements that can occur in under the second-level elements described in the Top- and Second-Level Element Hierarchy.
This element describes the corresponding entity (a service instance or service provider).
Parent Elements
<serviceInstance> or <serviceProvider>
Child Element
None.
Occurrence
<description>
can be a child of <serviceInstance> or <serviceProvider>.
Example
The following example sets a description for a service provider.
This element defines an extended property in the following scenarios:
Table A-2 Scenarios for <extendedProperty>
Location in jps-config.xml | Function |
---|---|
Directly under <jpsConfig> | Defines an extended property for general use. As a child of <jpsConfig>, an extended property can specify, for example, all the base DNs in an LDAP-based authenticators. |
Directly under <extendedPropertySet> | Defines an extended property for general use that is part of an extended property set. |
Directly under <serviceInstance> | Defines an extended property for a particular service instance. |
An extended property typically includes multiple values. Use a <value> element to specify each value. Several LDAP identity store properties are in this category, such as the specification of the following values:
Parent Elements
<extendedPropertySet>, <jpsConfig>, or <serviceInstance>
Child Elements
Occurrence
<extendedProperty>
can be a child of <extendedPropertySet>, <jpsConfig>, or <serviceInstance>.
Example
The following example sets a single value:
This element defines a set of extended properties. The extended property set can then be referenced by an <extendedPropertySetRef>
element to specify the given properties as part of the configuration of a service instance.
Attributes
Name | Description |
---|---|
name | Designates a name for the extended property set. No two <extendedPropertySet> elements may have the same name attribute setting within a configuration file. Values: string Default: n/a (required) |
Parent Element
Child Element
Occurrence
Required within <extendedPropertySets>, one or more:
This element configures a service instance by referring to an extended property set defined elsewhere in the file.
Attributes
Name | Description |
---|---|
ref | Refers to an extended property set whose extended properties are used for the service instance defined in the <serviceInstance> parent element. The ref value of <extendedPropertySetRef> must match the name value of an <extendedPropertySet> element. Values: string Default: n/a (required) |
Parent Element
Child Element
None.
Occurrence
Optional, zero or more.
This element specifies a set of properties.
Parent Element
Child Element
Occurrence
Optional, zero or one.
This is the root element of a configuration file.
Parent Element
None.
Child Elements
<extendedProperty>, <extendedPropertySets>, <jpsContexts>, <property>, <propertySets>, <serviceInstances>, or <serviceProviders>
Occurrence
Required, one only.
Example
This element declares an OPSS context, a collection of service instances common to a domain, either by referring to a set of service instances that comprise the context (typical usage), or by referring to another context. Each <jspContext>
in a configuration file must have a distinct name.
Attributes
Name | Description |
---|---|
name | Designates a name for the OPSS context. Each context must have a unique name. Values: string Default: n/a (required) |
Parent Element
Child Element
Occurrence
There must be at least one <jpsContext>
element under <jpsContexts>. A <jpsContext>
element contains the <serviceInstanceRef> element.
Example
The following example illustrates the definition of two contexts; the first one, named default
, is the default context (specified by the attribute default
in <jpsContexts>), and it references several service instances by name.
The second one, named anonymous
, is used for unauthenticated users, and it references the anonymous
and anonymous.loginmodule
service instances.
This element specifies a set of contexts.
Attributes
Name | Description |
---|---|
default | Specifies the context that is used by an application if none is specified. The default value of the <jpsContexts> element must match the name of a <jpsContext> child element. Values: string Default: n/a (required) Note: The default context must configure all mandatory services and login modules. |
Parent Element
Child Element
Occurrence
Required, one only.
Example
See <jpsContext> for an example.
This element specifies the name of an extended property.
Parent Element
Child Element
None
Occurrence
Required, one only.
Example
See <extendedProperty> for an example.
This element defines a property in the following scenarios:
Table A-3 Scenarios for <property>
Location in jps-config.xml | Function |
---|---|
Directly under <jpsConfig> | Defines a one-value property for general use. |
Directly under <propertySet> | Defines a multi-value property for general use that is part of a property set. |
Directly under <serviceInstance> | Defines a property for use by a particular service instance. |
Directly under <serviceProvider> | Defines a property for use by all service instances of a particular service provider. |
For a list of properties, see Appendix F, "OPSS System and Configuration Properties".
Attributes
Name | Description |
---|---|
name | Specifies the name of the property being set. Values: string Default: n/a (required) |
value | Specifies the value of the property being set. Values: string Default: n/a (required) |
Parent Elements
<jpsConfig>, <propertySet>, <serviceInstance>, or <serviceProvider>
Child Element
None.
Occurrence
Under a<propertySet>
, it is required, one or more; otherwise, it is optional, zero or more.
Example
The following example illustrates a property to disable JAAS mode for authorization:
For additional examples, see <propertySet> and <serviceInstance>.
This element defines a set of properties. Each property set has a name so that it can be referenced by a <propertySetRef> element to include the properties as part of the configuration of a service instance.
Attributes
Name | Description |
---|---|
name | Designates a name for the property set. No two <propertySet> elements may have the same name within a jps-config.xml file. Values: string Default: n/a (required) |
Parent Element
Child Element
Occurrence
Required within a<propertySets>
, one or more
Example
This element configures a service instance by referring to a property set defined elsewhere in the file.
Attributes
Name | Description |
---|---|
ref | Refers to a property set whose properties are used by the service instance defined in the <serviceInstance> parent element. The ref value of a <propertySetRef> element must match the name of a <propertySet> element. Values: string Default: n/a (required) |
Parent Element
Child Element
None.
Occurrence
Optional, zero or more.
Example
See <propertySet> for an example.
This element specifies a set of property sets.
Parent Element
Child Element
Occurrence
Optional. If present, there can be only one <propertySets>
element.
Example
See <propertySet> for an example.
This element defines an instance of a service provider, such as an identity store service instance, policy store service instance, or login module service instance.
Each provider instance specifies the name of the instance, used to refer to the provider within the configuration file; the name of the provider being instantiated; and, possibly, the properties of the instance. Properties include the location of the instance and can be specified directly, within the instance element itself, or indirectly, by referencing a property or a property set. To change the properties of a service instance, you can use the procedure explained in Section E.1, "Configuring OPSS Service Provider Instances with a WLST Script."
Set properties and extended properties of a service instance in the following ways:
Attributes
Name | Description |
---|---|
name | Designates a name for this service instance. Note that no two <serviceInstance> elements may have the same name attribute setting within a jps-config.xml file. Values: string Default: n/a (required) |
provider | Indicates which service provider this is an instance of. The Values: string Default: n/a (required) |
Parent Element
Child Elements
<description>, <extendedProperty>, <extendedPropertySetRef>, <property>, or <propertySetRef>
Occurrence
Required within <serviceInstances>
, one or more.
Examples
The following example illustrates the configuration of a file-based identity store service. For a file-based identity store, the subscriber name is the default realm. The example sets the lo cation using the location
property.
The following example illustrates the configuration a credential store service. It uses the location
property to set the location of the credential store.
The following example illustrates the configuration of an LDAP-based identity store using Oracle Internet Directory:
The following example illustrates the configuration of an audit provider:
See Also:
|
This element refers to service instances.
Attributes
Name | Description |
---|---|
ref | Refers to a service instance that are part of the context defined in the <jpsContext> parent element. The ref value of a <serviceInstanceRef> element must match the name of a <serviceInstance> element. Values: string Default: n/a (required) |
Parent Element
Child Element
None
Occurrence
Required within a <jpsContext>, one or more.
Example
See <jpsContext> for an example.
This element is the parent of a <serviceInstance> element.
Parent Element
Child Element
Occurrence
Optional, zero or one.
Example
See <serviceInstance> for an example.
This element defines a service provider. Each provider specifies the type of the provider, such as credential store, authenticators, policy store, or login module; the name of the provider, used to refer to the provider within the configuration file; and the Java class that implements the provider and that is instantiated when the provider is created. Furthermore, the element property
specifies settings used to instantiate the provider.
It specifies the following data:
type
attribute) <serviceInstance>
element that defines an instance of this service provider) Attributes
Name | Description |
---|---|
type | Specifies the type of service provider being declared; it must be either of the following:
The implementation class more specifically defines the type of provider, such as by implementing a file-based identity store or LDAP-based policy store, for example. Values: string (a value above) Default: n/a (required) |
name | Designates a name for this service provider. This name is referenced in the provider attribute of <serviceInstance> elements to create instances of this provider. No two <serviceProvider> elements may have the same name attribute setting within a configuration file. Values: string Default: n/a (required) |
class | Specifies the fully qualified name of the Java class that implements this service provider (and that is instantiated to create instances of the service provider). Values: string Default: n/a (required) |
Parent Element
Child Elements
Occurrence
Required within the <serviceProviders> element, one or more.
Examples
The following example illustrates the specification of a login module service provider:
The following example illustrates the definition of an audit service provider:
See <serviceInstance> for other examples.
This element specifies a set of service providers.
Parent Element
Child Element
Occurrence
Optional, one only.
Example
See <serviceProvider> for an example.
This element specifies a value of an extended property, which can have multiple values. Each <value>
element specifies one value.
Parent Element
Child Element
None.
Occurrence
Required within <values>, one or more.
Example
See <extendedProperty> for an example.
This element is the parent element of a <value> element.
Parent Element
Child Element
Occurrence
Required within <extendedProperty>
, one only.
Example
See <extendedProperty> for an example.
This appendix describes the elements and attributes in system-jazn-data.xml
, which is the default store for file-based identity and policy stores in Oracle Platform Security Services.
Note: The file-based identity store is supported for Java SE applications only. |
This appendix covers the following topics:
This section shows the element hierarchy of system-jazn-data.xml
, or an application-specific jazn-data.xml
file. The direct subelements of the <jazn-data>
root element are:
<jazn-realm>
<policy-store>
<jazn-policy>
Note: The<jazn-principal-classes> and <jazn-permission-classes> elements and their subelements may appear in the system-jazn-data.xml schema definition as subelements of <policy-store> , but are for backward compatibility only. |
Table B-1 Hierarchy of Elements in system-jazn-data.xml
Hierarchy | Description |
---|---|
| This is the top-level element in the |
<jazn-realm> {0 or 1} <realm> {0 or more} <name> {1} <users> {0 or 1} <user> {0 or more} <name> {1} <display-name> {0 or 1} <description> {0 or 1} <guid> {0 or 1} <credentials> {0 or 1} <roles> {0 or 1} <role> {0 or more} <name> {1} <display-name> {0 or 1} <description> {0 or 1} <guid> {0 or 1} <members> {0 or 1} <member> {0 or more} <type> {1} <name> {1} <owners> {0 or 1} <owner> {0 or more} <type> {1} <name> {1} | The |
<policy-store> {0 or 1} <applications> {0 or 1} <application> {1 or more} <name> {1} <description> {0 or 1} <app-roles> {0 or 1} | <app-role> {1 or more} | <name> {1} | <class> {1} | <display-name> {0 or 1} | <description> {0 or 1} | <guid> {0 or 1} | <uniquename> {0 or 1} | <extended-attributes> {0 or 1} | | <attribute> {1 or more} | | <name> {1} | | <values> {1} | | <value> {1 or more} | <members> {0 or 1} | <member> {1 or more} | <name> {1} | <class> {1} | <uniquename> {0 or 1} | <guid> {0 or 1} <role-categories> | <role-category> | <name> | <display-name> | <description> | <members> | <role-name-ref> <resource-types> | <resource-type> | <name> | <display-name> | <description> | <provider-name> | <matcher-class> | <actions-delimiter> | <actions> <resources> | <resource> | <name> | <display-name> | <description> | <type-name-ref> <permission-sets> | <permission-set> | <name> | <member-resources> | <member-resource> | <resource-name> | <type-name-ref> | <actions> <jazn-policy> {0 or 1} | <grant> {0 or more} | <description> {0 or 1} | <grantee> {0 or 1} | | <principals> {0 or 1} | | <principal> {0 or more} | | <name> {1} | | <class> {1} | | <uniquename> {0 or 1} | | <guid> {0 or 1} | | <codesource> {0 or 1} | | <url> {1} | <permissions> {0 or 1} | <permission> {1 or more} | <class> {1} | <name> {0 or 1} | <actions> {0 or 1} | The When
|
<jazn-policy> {0 or 1} <grant> {0 or more} <description> {0 or 1} <grantee> {0 or 1} | <principals> {0 or 1} | <principal> {0 or more} | <name> {1} | <class> {1} | <uniquename> {0 or 1} | <guid> {0 or 1} | <codesource> {0 or 1} | <url> {1} <permissions> {0 or 1} <permission> {1 or more} <class> {1} <name> {0 or 1} <actions> {0 or 1} <permission-sets> | <permission-set> | <name> | When the
|
This section describes the elements and attributes in the system-jazn-data.xml
file.
Notes:
|
This element specifies the operations permitted by the associated permission class. Values are case-sensitive and are specific to each permission implementation. Examples of actions are "invoke" and "read,write".
Parent Element
Child Elements
None
Occurrence
Optional, zero or one:
Examples
See <jazn-policy>
for examples.
This element specifies the character used to separate the actions of the associated resource type.
Parent Element
Child Elements
<name>
, <display-name>
, <description>
, <actions>
<roles>
, <users>
Occurrence
Optional, zero or more
Example
For an example, see <resource-type>.
This element specifies an application role.
Required subelements specify the following:
<name>
specifies the name of the application role. <class>
specifies the fully qualified name of the class implementing the application role. Optional subelements can specify the following:
<description>
provides more information about the application role. <display-name>
specifies a display name for the application role, such as for use by GUI interfaces. <guid>
specifies a globally unique identifier to reference the application role. This is for internal use only. <members>
specifies the users, roles, or other application roles that are members of this application role. <uniquename>
specifies a unique name to reference the application role. This is for internal use only. Parent Element
Child Elements
<class>
, <description>
, <display-name>
, <guid>
, <members>
, <name>
, <uniquename>
Occurrence
Required, one or more:
Examples
See <policy-store>
for examples.
This element specifies a set of application roles.
Parent Element
Child Elements
Occurrence
Optional, zero or one:
Example
See <policy-store>
for examples.
This element specifies roles and policies for an application.
Required subelements specify the following information for an application:
<name>
specifies the name of the application. Optional subelements can specify the following:
<description>
provides information about the application and its roles and policies. <app-roles>
specifies any application-level roles <jazn-policy>
specifies any application-level policies. Parent Element
Child Elements
<app-roles>
, <description>
,, <jazn-policy>
, <name>
, <permission-sets>
, <resource-types>
, <resources>
, <role-categories>
Occurrence
Required, one or more:
Example
See <policy-store>
for examples.
This element specifies a set of applictions.
Parent Element
Child Elements
Occurrence
Optional, zero or one
Example
See <policy-store>
for an example.
This element specifies an attribute of an application role.
Parent Element
Child Elements
Occurrence
Required, one or more:
This element specifies several values depending on its location in the configuration file:
<app-role>
element, <class>
specifies the fully qualified name of the class implementing the application role. <member>
element, <class>
specifies the fully qualified name of the class implementing the role member. <permission>
element (for granting permissions to a principal), <class>
specifies the fully qualified name of the class implementing the permission. Values are case-insensitive. <principal>
element (for granting permissions to a principal), it specifies the fully qualified name of the principal class, which is the class that is instantiated to represent a principal that is being granted a set of permissions. Parent Element
<app-role>
, <member>
, <principal>
, or <permission>
Child Elements
None
Occurrence
Required, one only
Example
See <jazn-policy>
and <policy-store>
for examples.
This element specifies the URL of the code to which permissions are granted.
The policy configuration can also include a <principals>
element, in addition to the <codesource>
element. Both elements are children of a <grantee>
element and they specify who or what the permissions in question are being granted to.
For variables that can be used in the specification of a <codesource>
URL, see <url>.
Parent Element
Child Elements
Occurrence
Optional, zero or one
Example
See <jazn-policy>
for examples.
This element specifies the authentication password for a user. The credentials are, by default, in obfuscated form.
Parent Element
Child Elements
None
Occurrence
Optional, zero or one
Example
See <jazn-realm>
for examples.
This element specifies a text string that provides textual information about an item. Depending on the parent element, the item can be an application role, application policy, permission grant, security role, or user.
Parent Element
<app-role>
, <application>
, <grant>
, <role>
, or <user>
Child Elements
None
Occurrence
Optional, zero or one
Example
The fmwadmin
user might have the following description:
See <jazn-realm>
for additional examples.
This element specifies the name of an item typically used by a GUI tool. Depending on the parent element, an item can be an application role, user, or enterprise group.
Parent Element
<app-role>
, <role>
, or <user>
Child Elements
None
Occurrence
Optional, zero or one
Example
The fmwadmin
user might have the following display name:
See <jazn-realm>
for additional examples.
This element specifies attributes of an application role.
Parent Element
Child Elements
Occurrence
Optional, zero or one
Example
This element specifies the recipient of the grant - a codesource, or a set of principals, or both- and the permissions assigned to it.
Parent Element
Child Elements
<description>
, <grantee>
, <permissions>
, <permission-sets>
Occurrence
Optional, zero or more
Example
See <jazn-policy>
for examples.
This element, in conjunction with a parallel <permissions>
element, specifies who or what the permissions are granted to: a set of principals, a codesource, or both.
Parent Element
Child Elements
Occurrence
Optional, zero or one
Example
See <jazn-policy>
for examples.
This element is for internal use only. It specifies a globally unique identifier (GUID) to reference the item.
Depending on the parent element, the item to be referenced may be an application role, application role member, principal, enterprise group, or user. It is typically used with an LDAP provider to uniquely identity the item (a user, for example). A GUID is sometimes generated and used internally by Oracle Platform Security Services, such as in migrating a user or role to a different security provider. It is not an item that you would set yourself.
Parent Element
<app-role>
, <member>
, <principal>
, <role>
, or <user>
Child Elements
None
Occurrence
Optional, zero or one
Example
See <jazn-realm>
for examples.
This element specifies the top-level element in the system-jazn-data.xml
file-based policy store.
Attributes
Name | Description |
---|---|
schema-major-version | Specifies the major version number of the system-jazn-data.xml XSD. The value of this attribute is fixed at 11 for use with Oracle Fusion Middleware 11g. |
schema-minor-version | Specifies the minor version number of the system-jazn-data.xml XSD. The value of this attribute is fixed at 0 for use with the Oracle Fusion Middleware 11.1.1 implementation. |
Parent Element
n/a
Child Elements
<jazn-policy>
, <jazn-realm>
, <policy-store>
Occurrence
Required, one only
Example
This element specifies policy grants that associate grantees (principals or codesources) with permissions.
This element can appear in two different locations in the system-jazn-data.xml
file:
<jazn-data>
element, it specifies global policies. <application>
element, it specifies application-level policies. Parent Element
Child Elements
Occurrence
Optional, zero or one
Example
Example B-1 <jazn-policy>
Example B-2 <jazn-policy>
This element specifies security realms and the users and enterprise groups (as opposed to application-level roles) they include, and is the top-level element for user and role information
Attribute
Name | Description |
---|---|
default | Specifies which of the realms defined under this element is the default realm. The value of this attribute must match a <name> value under one of the <realm> subelements. Values: string Default: n/a (required) |
Parent Element
Child Elements
Occurrence
Optional, zero or one
Example
This element specifies the fully qualified name of the class within a resource type; queries for resources of this type delegate to this matcher class. Values are case-sensitive.
Parent Element
Child Elements
None
Occurrence
Optional, zero or more
Example
For an example, see <resource-type>.
This element specifies the members of a set, such as a <role>
or an<app-role>
element:
<role>
element, it specifies a member of the enterprise group. A member can be a user or another enterprise group. The <name>
subelement specifies the name of the member, and the <type>
subelement specifies whether the member type (a user or an enterprise group). <app-role>
element, it specifies a member of the application role. A member can be a user, an enterprise group, or an application role. The <name>
subelement specifies the name of the member, and the <class>
subelement specifies the class that implements it. The member type is determined through the <class>
element. Optional subelements include <uniquename>
and <guid>
, which specify a unique name and unique global identifier; these optional subelements are for internal use only.
Parent Element
Child Elements
<role>
element, the <member>
element has the following child elements: <name>
, <type>
<app-role>
element, the <member>
element has the following child elements: <name>
, <class>
, <uniquename>
, <guid>
Occurrence
Optional, zero or more
Example
See <jazn-realm>
and <policy-store>
for examples.
This element specifies resources for a permission set.
Parent Element
Child Elements
<resource-name>
, <type-name-ref>,<actions>
Occurrence
Required within <member-resources>, one or more.
Example
For an example, see <permission-set>.
This element specifies a set of member resources.
Parent Element
Child Elements
Occurrence
Required within <permission-sets>; one or more.
Example
For an example, see <permission-set>.
This element specifies a set of members.
Parent Element
Child Elements
Occurrence
Optional, zero or one
Example
See <jazn-realm>
and <policy-store>
for examples.
This element has different uses, depending on its location in the file:
<app-role>
element, it specifies the name of an application-level role in the policy configuration. For example: Or a simpler example:
<application>
element, it specifies the policy context identifier. Typically, this is the name of the application during deployment. <attribute>
element, it specifies the name of an additional attribute for the application-level role. <member>
element, it specifies the name of a member of an enterprise group or application role (depending on where the <member>
element is located). For example, if the fmwadmin
user is to be a member of the role: <owner>
element, it specifies the name of an owner of an enterprise group. For example: <permission>
element, as applicable, it can specify the name of a permission that is meaningful to the permission class. Values are case-sensitive. For example: Or:
<principal>
element (for granting permissions to a principal), it specifies the name of a principal within the given realm. For example: <realm>
element, it specifies the name of a realm. For example: <role>
element, it specifies the name of an enterprise group in a realm. For example: <user>
element, it specifies the name of a user in a realm. For example: <resource-type>
element, it specifies the name of a resource type and is required. For example: Parent Element
<app-role>
, <application>
, <attribute>
, <member>
, <owner>
, <permission>
, <principal>
, <realm>
, <role>
, or <user>
Child Elements
None
Occurrence
Required within any parent element other than <permission>
, one only; optional within <permission>
, zero or one
Example
See <jazn-policy>
, <jazn-realm>
, and <policy-store>
for examples.
This element specifies the owner of the enterprise group, where an owner has administrative authority over the role.
An owner is a user or another enterprise group. The <type>
subelement specifies the owner's type. The concept of role (group) owners specifically relates to BPEL or Oracle Internet Directory functionality. For example, in BPEL, a role owner has the capability to create and update workflow rules for the role.
Note: To create a group owner in Oracle Internet Directory, use the Oracle Delegated Administration Services. For external (third-party) LDAP servers, set values for the group's owner attribute throughldapmodify or tools of the particular directory server. |
Parent Element
Child Elements
Occurrence
Optional, zero or more
This element specifies a set of owners.
Parent Element
Child Elements
Occurrence
Optional, zero or one
This element specifies the permission to grant to grantees, where a grantee is a set of principals, a codesource, or both, as part of a policy configuration.
Parent Element
Child Elements
Occurrence
Required within parent element, one or more
Example
See <jazn-policy>
for examples.
This element specifies a set of permissions.
The <permissions>
element (used in conjunction with a parallel <grantee>
element) specifies the permissions being granted, through a set of <permission>
subelements.
Note: Thesystem-jazn-data.xml schema definition does not specify this as a required element, but the Oracle Platform Security runtime implementation requires its use within any <grant> element. |
Parent Element
Child Elements
Occurrence
Optional, zero or one
Example
See <jazn-policy>
for examples.
A permission set or entitlement specifies a set of permissions.
Parent Element
Child Elements
Occurrence
Optional, zero or more
Example
The following fragment illustrates the configuration of a permission set (or entitlement):
Note the following points about a permission set:
In addition, the following strings in a permission set entry conform to the case sensitivity rules:
This element specifies a set of permission sets.
Parent Element
Child Elements
Occurrence
Optional, zero or more
Example
For an example, see <permission-set>.
This element configures application-level policies, through an <applications>
subelement. Under the <applications>
element is an <application>
subelement for each application that is to have application-level policies. The policies are specified through a <jazn-policy>
subelement of each <application>
element.
Note: The<jazn-principal-classes> and <jazn-permission-classes> elements and their subelements may appear in the system-jazn-data.xml schema definition as subelements of <policy-store> , but are for backward compatibility only. |
Parent Element
Child Elements
Occurrence
Optional, zero or one
Example
See <jazn-policy>
for examples of that element.
This element specifies a principal being granted the permissions specified in a <permissions> element as part of a policy configuration. Required under <principals>.
Subelements specify the name of the principal and the class that implements it, and optionally specify a unique name and unique global identifier (the latter two for internal use only).
For details about how principal names can be compared, see Section 2.7, "Principal Name Comparison Logic."
Parent Element
Child Elements
<class>
, <guid>
, <name>
, <uniquename>
Occurrence
Optional, zero or more
Example
See <jazn-policy>
for examples.
This element specifies a set of principals.
For policy configuration, a <principals>
element and/or a <codesource>
element are used under a <grantee>
element to specify who or what the permissions in question are being granted to. A <principals>
element specifies a set of principals being granted the permissions.
For a subject to be granted these permissions, the subject should include all the specified principals.
Parent Element
Child Elements
Occurrence
Optional, zero or one
Example
See <jazn-policy>
for examples.
This element specifies the name of a resource type provider. The resource resides in a location external to the OPSS policy store. Values are case-insensitive.
Parent Element
Child Elements
None
Occurrence
Optional, zero or more
Example
For an example, see <resource-type>.
This element specifies a security realm, and the users and roles that belong to the realm.
Parent Element
Child Elements
Occurrence
Optional, zero or more
Example
See <jazn-realm>
for an example.
This element specifies an application resource and contains information about the resource.
Parent Element
Child Elements
<name>
, <description>
, <display-name>
, <type-name-ref>.
Occurrence
Required under <resources>.
Example
The following fragment illustrates the configuration of a resource (instance):
Note the following points about case sensitivity of various strings in a resource entry:
This element specifies a collection of application resources.
Parent Element
Child Elements
Occurrence
Optional, zero or more
Example
For an example, see <resource>.
This element specifies a member resource in a permission set. Values are case-sensitive.
Parent Element
Child Elements
None
Occurrence
Optional, zero or more
Example
For an example, see <permission-set>.
This element specifies the type of a secured artifact, such as a flow, a job, or a web service. Values are case-insensitive.
Parent Element
Child Elements
<name>
, <display-name>
, <description>
, <actions>
, <actions-delimiter>
, <matcher-class>
, <provider-name>
.
Occurrence
Optional, zero or more
Example
The following fragment illustrates the configuration of a resource type:
The following points apply to the specification of a resource type:
When specified, the class in a <provider-name> element is used as a resource finder; queries for resources of this type (via the ResourceManager
search APIs) delegate to this matcher class instead of using the built-in resource finder against the OPSS domain policy store.
This element specifies a set of resource types.
Parent Element
Child Elements
Occurrence
Optional, zero or more
Example
For an example, see <resource-type>.
This element specifies an enterprise security role, as opposed to an application-level role, and the members (and optionally owners) of that role.
Parent Element
Child Elements
<description>
, <display-name>
, <guid>
, <members>
, <name>
, <owners>
Occurrence
Optional, zero or more
Example
See <jazn-realm>
for examples.
This element specifies the parent element of <role-category> elements.
Parent Element
Child Elements
Occurrence
Optional, zero or one
Example
See Section 20.3.3.1, "Using the Method checkPermission" for an example.
This element specifies a category, that is, a flat set of application roles.
Parent Element
Child Elements
<name>, <display-name>, <description>, <members>
Occurrence
Optional, zero or one
Example
See Section 20.3.3.1, "Using the Method checkPermission" for an example.
This element specifies an application role within a role category.
Parent Element
Child Elements
None
Occurrence
Optional, zero or one
This element specifies a set of enterprise security roles that belong to a security realm.
Parent Element
Child Elements
Occurrence
Optional, zero or one
Example
See <jazn-realm>
for an example.
This element specifies the type of an enterprise group member or role owner: specifically, whether the member or owner is a user or another role:
Or:
Parent Element
Child Elements
None
Occurrence
Required, one only
Example
See <jazn-realm>
for examples.
This element specifies the resource type of a resource.
Parent Element
Child Elements
None
Occurrence
Required within <resource> or <member-resource>.
Example
For an example, see <resource>.
This element, for internal use, takes a string value to specify a unique name to reference the item. (The JpsPrincipal
class can use a GUID and unique name, both computed by the underlying policy provisioning APIs, to uniquely identify a principal.) Depending on the parent element, the item could be an application role, application role member (not an enterprise group member), or principal. It is typically used with an LDAP provider to uniquely identity the item (an application role member, for example). A unique name is sometimes generated and used internally by Oracle Platform Security.
The unique name for an application role would be: "appid=application_name, name=actual_rolename
". For example:
Parent Element
<app-role>
, <member>
, or <principal>
Child Elements
None
Occurrence
Optional, zero or one
This element specifies the URL of the code that is granted permissions.
Note the following points:
oracle.deployed.app.dir
and oracle.deployed.app.ext
can be used to specify a URL independent of the platform. Parent Element
Child Elements
None
Occurrence
Required within parent element, one only
Example
The following example illustrates the use of the system variables oracle.deployed.app.dir
and oracle.deployed.app.ext
to specify URLs independent of the server platform.
Suppose an application grant requires a codesource URL that differs with the server platform:
Then, using the following system variable settings:
the following specification would work for both platforms, WebLogic and WebSphere:
This element specifies a user within a realm.
Attributes
Name | Description |
---|---|
deactivated | Specifies whether the user is valid or not. Set this attribute to Values: Default: |
Parent Element
Child Elements
<name>
, <display-name>
, <description>
, <guid>
, <credentials>
Occurrence
Optional, zero or more
Example
See <jazn-realm>
for examples.
This element specifies the set of users belonging to a realm.
Parent Element
Child Elements
Occurrence
Optional, zero or one
Example
See <jazn-realm>
for an example.
This element specifies a value for an attribute. You can specify additional attributes for application-level roles using the <extended-attributes>
element.
Parent Element
Child Elements
None
Occurrence
Required within the parent element, one only
Example
This element specifies a set of values, each of which specify the value of an attribute. An attribute can have more than one value.
Parent Element
Child Elements
Occurrence
Required within the parent element, one only
Example
This appendix provides reference information for the Oracle Fusion Middleware Audit Framework. It contains these topics:
This section describes the components that are audited and the types of events that can be audited.
In 11g Release 1 (11.1.1), specific Java components and system components can generate audit records; they are known as audit-aware components.
Java Components that can be Audited
The following components can be audited with Fusion Middleware Audit Framework:
System Components that can be Audited
The following components can be audited with Fusion Middleware Audit Framework:
The set of tables in this section shows, for each audit-aware system components and subcomponent, what event types can be audited:
Table C-1 Oracle Directory Integration Platform Events
Event Category | Event Type | Attributes used by Event |
---|---|---|
ServiceUtilize | ||
InvokeService | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles | |
TerminateService | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles | |
SynchronizationEvents | ||
Add | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, AssociateProfileName, ProfileName, EntryDN | |
Modify | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, AssociateProfileName, ProfileName, EntryDN | |
Delete | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, AssociateProfileName, ProfileName, EntryDN | |
ProvisioningEvents | UserAdd | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, ProfileName, ProvEvent |
UserModify | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, ProfileName, ProvEvent | |
UserDelete | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, ProfileName, ProvEvent | |
GroupAdd | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, ProfileName, ProvEvent | |
GroupModify | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, ProfileName, ProvEvent | |
GroupDelete | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, ProfileName, ProvEven | |
IdentityAdd | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, ProfileName, ProvEvent | |
IdentityModify | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, ProfileName, ProvEvent | |
IdentityDelete | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, ProfileName, ProvEvent | |
SubscriptionAdd | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, ProfileName, ProvEvent | |
SubscriptionModify | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, ProfileName, ProvEvent | |
SubscriptionDelete | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, ProfileName, ProvEvent | |
ProfileManagementEvents | DeleteProvProfile | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode |
UpdateProvProfile | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode | |
ActivateProvProfile | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode | |
DeactivateProvProfile | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode | |
CreateSyncProfile | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode | |
DeleteSyncProfile | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode | |
UpdateSyncProfile | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode | |
ActivateSyncProfile | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode | |
DeactivateSyncProfile | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode | |
SyncProfileUpdateChgNum | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode | |
ExpressSyncSetup | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode | |
SyncProfileBootstrap | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode | |
SyncProfileExtAuthPlugins | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode | |
ProvProfileBulkProv | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode | |
SchedulerEvents | ||
AddJob | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, JobName, JobType | |
RemoveJob | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, JobName, JobType |
Table C-2 Oracle Platform Security Services Events
Event Category | Event Type | Attributes used by Event |
---|---|---|
Authorization | ||
CheckPermission | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, CodeSource, Principals, InitiatorGUID, Subject, PermissionAction, PermissionTarget, PermissionClass | |
CheckSubject | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, CodeSource, Principals, InitiatorGUID, Subject | |
CredentialManagement | CreateCredential | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, mapName, key, CodeSource, Principals, InitiatorGUID |
DeleteCredential | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, mapName, key, CodeSource, Principals, InitiatorGUID | |
AccessCredential | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, mapName, key, CodeSource, Principals, InitiatorGUID | |
ModifyCredential | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, mapName, key, CodeSource, Principals, InitiatorGUID | |
PolicyManagement | PolicyGrant | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, CodeSource, Principals, InitiatorGUID, PermissionAction, PermissionTarget, PermissionClass, PermissionScope |
PolicyRevoke | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, CodeSource, Principals, InitiatorGUID, PermissionAction, PermissionTarget, PermissionClass, PermissionScope | |
RoleManagement | RoleMembershipAdd | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, CodeSource, Principals, InitiatorGUID, ApplicationRole, EnterpriseRoles, PermissionScope |
RoleMembershipRemove | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, CodeSource, Principals, InitiatorGUID, ApplicationRole, EnterpriseRoles, PermissionScope |
Table C-3 Oracle HTTP Server Events
Event Category | Event Type | Attributes used by Event |
---|---|---|
UserSession | UserLogin | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Resource, AuthenticationMethod, Reason |
UserLogout | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Resource, AuthenticationMethod, Reason | |
Authentication | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Resource, AuthenticationMethod, Reason, SSLConnection | |
Authorization | CheckAuthorization | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Resource, Reason, AuthorizationType |
Table C-4 Oracle Directory Integration Platform Events
Event Category | Event Type | Attributes used by Event |
---|---|---|
UserSession | UserLogin | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Roles, custEventStatusDetail, custEventOp, AuthenticationMethod |
UserLogout | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Roles, custEventStatusDetail, custEventOp | |
Authorization | CheckAuthorization | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, custEventStatusDetail, custEventOp |
DataAccess | ModifyDataItemAttributes | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Resource, custEventStatusDetail, custEventOp |
CompareDataItemAttributes | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Resource, custEventStatusDetail, custEventOp | |
AccountManagement | ChangePassword | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, custEventStatusDetail, custEventOp |
CreateAccount | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, custEventStatusDetail, custEventOp | |
DeleteAccount | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, custEventStatusDetail, custEventOp | |
DisableAccount | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, custEventStatusDetail, custEventOp | |
EnableAccount | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, custEventStatusDetail, custEventOp | |
ModifyAccount | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, custEventStatusDetail, custEventOp | |
LockAccount | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, custEventStatusDetail, custEventOp | |
LDAPEntryAccess | custInternalOperation | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, custEventStatusDetail, custEventOp |
Table C-5 Oracle Identity Federation Events
Event Category | Event Type | Attributes used by Event |
---|---|---|
UserSession | LocalAuthentication | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, SessionID, AuthenticationMethod, UserID, AuthenticationMechanism, AuthenticationEngineID |
LocalLogout | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, SessionID, AuthenticationMethod, UserID | |
CreateUserSession | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, SessionID, AuthenticationMethod, UserID, AuthenticationMechanism | |
DeleteUserSession | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, SessionID, AuthenticationMethod, UserID | |
CreateUserFederation | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, NameIDQualifier, NameIDValue, NameIDFormat, FederationID, UserID, FederationType | |
DeleteUserFederation | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, NameIDQualifier, NameIDValue, NameIDFormat, FederationID, UserID, FederationType | |
CreateActiveUserFederation | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, SessionID, FederationID, AuthenticationMethod, UserID, FederationType | |
DeleteActiveUserFederation | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, SessionID, FederationID, AuthenticationMethod, UserID, FederationType | |
UpdateUserFederation | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, NameIDQualifier, NameIDValue, NameIDFormat, FederationID, UserID, FederationType, OldNameIDQualifier, OldNameIDValue | |
ProtocolFlow | IncomingMessage | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, Binding, Role, UserID, MessageType, IncomingMessageString, IncomingMessageStringCLOB |
OutgoingMessage | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, Binding, Role, UserID, MessageType, OutgoingMessageString, OutgoingMessageStringCLOB | |
AssertionCreation | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, UserID, AssertionVersion, IssueInstant, Issuer, AssertionID | |
AssertionConsumption | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, UserID, AssertionVersion, IssueInstant, Issuer, AssertionID | |
Security | CreateSignature | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, Type |
VerifySignature | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, Type | |
EncryptData | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, Type | |
DecryptData | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, Type | |
ServerConfiguration | ChangeCOT | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, COTBefore, COTAfter |
ChangeServerProperty | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, ServerConfigBefore, ServerConfigAfter | |
ChangeDataStore | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, DataStoreBefore, DataStoreAfter | |
CreateConfigProperty | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, PropertyName, PropertyType, PeerProviderID, PropertyContext, NewValue | |
ChangeConfigProperty | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, PropertyName, PropertyType, PeerProviderID, PropertyContext, OldValue, NewValue | |
DeleteConfigProperty | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, PropertyName, PropertyType, PeerProviderID, PropertyContext, Description, OldValue | |
CreatePeerProvider | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, PeerProviderID, Description, ProviderType | |
UpdatePeerProvider | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, PeerProviderID, Description, ProviderType | |
DeletePeerProvider | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, ProtocolVersion, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, PeerProviderID, Description, ProviderType | |
LoadMetadata | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, Description, Metadata | |
SetDataStoreType | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, RemoteProviderID, NameIDQualifier, NameIDValue, NameIDFormat, SessionID, FederationID, OldValue, NewDataStoreType, DataStoreName |
Table C-6 Oracle Virtual Directory Events
Event Category | Event Type | Attributes used by Event |
---|---|---|
UserSession | UserLogin | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, AuthenticationMethod |
UserLogout | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles | |
Authorization | CheckAuthorization | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles |
DataAccess | QueryDataItemAttributes | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles |
ModifyDataItemAttributes | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles | |
CompareDataItemAttributes | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles | |
ServiceManagement | RemoveService | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, ServiceOperation |
ModifyServiceConfig | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, ServiceOperation | |
AddService | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, ServiceOperation | |
LDAPEntryAccess | Add | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles |
Delete | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles | |
Modify | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles | |
Rename | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles | |
Compare | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles |
Table C-7 OWSM-Agent Events
Event Category | Event Type | Attributes used by Event |
---|---|---|
UserSession | Authentication | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Resource, AssertionName, CompositeName, Endpoint, AgentMode, ModelObjectName, Operation, ProcessingStage, Version, Protocol |
Authorization | CheckAuthorization | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Resource, AssertionName, CompositeName, Endpoint, AgentMode, ModelObjectName, Operation, ProcessingStage, Version, Protocol |
PolicyEnforcement | EnforceConfidentiality | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Resource, AssertionName, CompositeName, Endpoint, AgentMode, ModelObjectName, Operation, ProcessingStage, Version, Protocol |
EnforceIntegrity | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Resource, AssertionName, CompositeName, Endpoint, AgentMode, ModelObjectName, Operation, ProcessingStage, Version, Protocol | |
EnforcePolicy | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Resource, AssertionName, CompositeName, Endpoint, AgentMode, ModelObjectName, Operation, ProcessingStage, Version, Protocol |
Table C-8 OWSM-PM-EJB Events
Event Category | Event Type | Attributes used by Event |
---|---|---|
AssertionTemplateAuthoring | CreateAssertionTemplate | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, Resource, Version |
DeleteAssertionTemplate | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, Resource, Version, ToVersion | |
ModifyAssertionTemplate | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, Resource, Version | |
PolicyAuthoring | CreatePolicy | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, Resource, Version |
DeletePolicy | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, Resource, Version, ToVersion, | |
ModifyPolicy | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, Resource, Version |
Table C-9 Reports Server Events
Event Category | Event Type | Attributes used by Event |
---|---|---|
UserSession | UserLogin | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles |
Authorization | CheckAuthorization | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles |
Table C-10 WS-Policy Attachment Events
Event Category | Event Type | Attributes used by Event |
---|---|---|
PolicyAttachment | PolicyAttachmentEvent | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, PolicyChangeType, PolicyURI, PolicyCategory, PolicyStatus, ServiceEndPoint, PolicySubjRescPattern |
Table C-11 Oracle Web Cache Events
Event Category | Event Type | Attributes used by Event |
---|---|---|
UserSession | UserLogin | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, AuthenticationMethod |
UserLogout | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles, AuthenticationMethod | |
Authorization | CheckAuthorization | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles |
DataAccess | FilterRequest | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles |
ServiceManagement | ModifyServiceConfig | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles |
ConfigServicePermissions | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles | |
ServiceUtilize | InvokeService | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles |
TerminateService | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles | |
PeerAssocManagement | CreatePeerAssoc | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles |
TerminatePeerAssoc | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles | |
ChallengePeerAssoc | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles | |
Authentication | ClientAuthentication | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles |
ServerAuthentication | ComponentType, InstanceId, HostId, HostNwaddr, ModuleId, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Roles |
Table C-12 Oracle Web Services Manager Events
Event Category | Event Type | Attributes used by Event |
---|---|---|
WS-Processing | RequestReceived | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Protocol, Endpoint, Operation, FaultUrl |
ResponseSent | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, Protocol, Endpoint, Operation, FaultUri | |
WS-Fault | SoapFaultEvent | ComponentType, InstanceId, HostId, HostNwaddr, ProcessId, OracleHome, HomeInstance, ECID, RID, ContextFields, SessionId, TargetComponentType, ApplicationName, EventType, EventCategory, EventStatus, TstzOriginating, ThreadId, ComponentName, Initiator, MessageText, FailureCode, RemoteIP, Target, Resource, URI, Source, Protocol, Endpoint, Operation |
lists all attributes for all audited events. Use this table to learn about the attributes used in the event of interest.
Table C-13 Attributes of Audited Events
Attribute Name | Description |
---|---|
AgentMode | Mode in which agent performed policy enforcement. |
ApplicationName | The Java EE application name |
ApplicationRole | This attribute used for application roles audit for role membership management |
AssertionID | The value of the "AssertionID" attribute of the assertion |
AssertionName | Name of the assertion that failed enforcement. |
AssertionVersion | The version number of the assertion corresponding to this event (ex. 2.0) |
AssociateProfileName | This attribute is used to audit the Associate Profile Name |
AuthenticationEngineID | The identifier of the authentication engine used during local authentication |
AuthenticationMechanism | The authentication mechanism used during local authentication |
AuthenticationMethod | The Authentication method - password / SSL / Kerberos and so on. |
AuthorizationType | Access/authorization configuration directive: Regular = 'Require' directive, SSL = 'SSLRequire' directive |
Binding | The binding used to send the message (SOAP, POST, GET, Aritifact,...) |
COTAfter | The contents of the federations configuration file after the change |
COTBefore | The contents of the federations configuration file before the change |
CodeSource | This attribute used for code source audit for rolemembershipmanagement |
ComponentName | ComponentName |
ComponentType | Type of the component. |
CompositeName | Name of the composite (apply to SOA application only) against which the policy is being enforced. |
ContextFields | This attribute contains the context fields extracted from dms context. |
custEventOp | This attribute specifies the LDAP operation name associated with this event, e.g. ldapbind, ldapadd, ldapsearch and so on. |
custEventStatusDetail | This attribute conveys event status detail info, e.g. error code and other details in case of failure of the associated LDAP operation. |
DataStoreAfter | The data stores configuration after the change |
DataStoreBefore | The data stores configuration before the change |
DataStoreName | The name of the data store being modified (examples: user data store, federation datastore) |
Description | Description of the trusted provider |
ECID | Identifies the thread of execution that the originating component participates in. |
Endpoint | The URI which identifies the endpoint for which the event was triggered. For example, an HTTP require will record the URL. |
EnterpriseRoles | This attribute used for enterprise roles audit for rolemembershipmanagement |
EntryDN | This attribute is used to audit the entry Distinguished Name |
EventCategory | The category of the audit event. |
EventStatus | The outcome of the audit event - success or failure |
EventType | The type of the audit event. Use wlst listAuditEvents to list out all the events. |
FailureCode | The error code in case EventStatus = failure |
FaultUri | If processing yielded a fault, the URI of the fault that will be sent. |
FederationID | The ID of the federation |
FederationType | The type of the federation that is being created or deleted (SP/IdP) |
HomeInstance | The ORACLE_INSTANCE directory of the component |
HostId | DNS hostname of originating host |
HostNwaddr | IP or other network address of originating host |
IncomingMessageString | null |
IncomingMessageStringCLOB | null |
Initiator | Identifies the UID of the user who is doing the operation |
InitiatorGUID | This attribute used for initiator guid audit for authorization |
InstanceId | Name of the Oracle Instance to which this component belongs. |
IssueInstant | The value of the "IssueInstant" attribute of the assertion |
Issuer | The value of the "Issuer" attribute of the assertion |
JobName | This attribute is used to audit the Scheduler Job Name |
JobType | This attribute is used to audit the Scheduler Job Name |
key | This is the credential key for the Credential Store |
mapName | This is the map name (alias name) for the Credential Store |
MessageText | Description of the audit event |
MessageType | The type of the message (ex. SSOLoginRequest/SSOLoginResponse/SSOLogoutRequest/...) |
Metadata | The provider metadata loaded |
ModelObjectName | Name of the Web service or client name against which the policy is being enforced. |
ModuleId | ID of the module that originated the message. Interpretation is specific to the Component ID. |
NameIDFormat | The format of the NameID of the subject |
NameIDQualifier | The qualifier of the nameID of the subject |
NameIDValue | The value of the nameID of the subject |
NewDataStoreType | The new type of the data store |
NewValue | The value of the property after the configuration change |
OldNameIDQualifier | The nameID qualifier before the update took place |
OldNameIDValue | The nameID value before the update took place |
OldValue | The value of the property before the configuration change |
Operation | For SOAP requests, the operation for which the event was triggered. |
OracleHome | The ORACLE_HOME directory of the component |
OutgoingMessageString | null |
OutgoingMessageStringCLOB | null |
PeerProviderID | The ID of the trusted provider associated with the modified property (If the modified property does not correspond to a trusted provider, this attribute is empty.) |
PermissionAction | This attribute used for permission action audit for authorization |
PermissionClass | This attribute used for permission class audit for policy store |
PermissionScope | This attribute used for permission scope audit for role membership management |
PermissionTarget | This attribute used for permission target audit for policy store |
PolicyCategory | The category of the policy for which the event was triggered.(comma-separated list) |
PolicyChangeType | The type of change that occurred. |
PolicyStatus | The status of the policy for which the event was triggered.(comma-separated list) |
PolicySubjRescPattern | The policy subject resource pattern which identifies the policy subject for which the event was triggered. |
PolicyURI | The URI which identifies the policy for which the event was triggered.(comma-separated list) |
Principals | This attribute used for principals audit for role membership management |
ProcessId | ID of the process that originated the message |
ProcessingStage | Processing stage during which the policy enforcement occurred. |
ProfileName | This attribute is used to audit the Sync Profile Name |
PropertyContext | The location of the property in the configuration |
PropertyName | The name of the configuration property |
PropertyType | The type of the property (examples: PropertiesList, PropertiesMap, String, Boolean) |
Protocol | The protocol of the request. |
ProtocolVersion | The version of the protocol being used (examples: SAML2.0, Libv11) |
ProvEvent | This attribute is used to audit the Prov Event |
ProviderType | The type of the provider (examples: sp, idp, sp idp) |
RID | This is the relationship identifier, it is used to provide the full and correct calling relationships between threads and processes. |
Reason | The reason this event occurred |
RemoteIP | IP address of the client initiating this event |
RemoteProviderID | The provider ID of the remote server |
Resource | Identifies a resource that is being accessed. A resource can be many things - web page, file, directory share, web service, XML document, a portlet. The resource can be named as a combination of a host name, and an URI. |
Role | The role of Oracle Identity Federation during the protocol step performed (for example Service Provider/ Identity Provider/Attribute Authority/..) |
Roles | The roles that the user was granted at the time of login. |
SSLConnection | Was SSL connection used by client to transmit request? |
ServerConfigAfter | The server configuration after the change |
ServerConfigBefore | The server configuration before the change |
ServiceEndPoint | The URI which identifies the service for which the event was triggered. |
ServiceOperation | Name of the operation performed that changes the service configuration |
SessionID | The ID of the current session |
SessionId | ID of the login session. |
Source | The source of the fault. |
Subject | This attribute used for subject audit for authorization |
Target | Identifies the UID of the user on whom the operation is being done. E.g. is Alice changes Bob's password, then Alice is the initiator and Bob is the target |
TargetComponentType | This is the target component type. |
ThreadId | ID of the thread that generated this event |
ToVersion | Upper end when deleting a range of policy versions. |
TstzOriginating | Date and time when the audit event was generated |
Type | The type of cryptographic data being processed (XML, String) |
URI | The URI of the fault. |
UserID | The identifier of the user in this protocol step |
Version | Version of policy that was modified. |
Oracle Fusion Middleware Audit Framework provides a range of out-of-the-box reports that are accessible through Oracle Business Intelligence Publisher. The reports are grouped according to the type of audit data they contain:
A list of common reports appears in Section 14.5, "Audit Report Details".
Component-Specific reports are organized as follows:
If you have additional audit reporting requirements beyond the pre-built reports described in Section C.2, "Pre-built Audit Reports", you can create custom reports using your choice of reporting tools. For example, while the pre-built reports use a subset of the event attributes, you can make use of the entire audit attribute set for an event in creating custom reports.
Table C-14 and Table C-15 describe the audit schema, which is useful when building custom reports.
Table C-14 The Audit Schema
Table Name | Column Name | Data Type | Nullable | Column ID |
---|---|---|---|---|
BASE TABLE | IAU_ID | NUMBER | Yes | 1 |
IAU_ORGID | VARCHAR2(255 Bytes) | Yes | 2 | |
IAU_COMPONENTID | VARCHAR2(255 Bytes) | Yes | 3 | |
IAU_COMPONENTTYPE | VARCHAR2(255 Bytes) | Yes | 4 | |
IAU_INSTANCEID | VARCHAR2(255 Bytes) | Yes | 5 | |
IAU_HOSTINGCLIENTID | VARCHAR2(255 Bytes) | Yes | 6 | |
IAU_HOSTID | VARCHAR2(255 Bytes) | Yes | 7 | |
IAU_HOSTNWADDR | VARCHAR2(255 Bytes) | Yes | 8 | |
IAU_MODULEID | VARCHAR2(255 Bytes) | Yes | 9 | |
IAU_PROCESSID | VARCHAR2(255 Bytes) | Yes | 10 | |
IAU_ORACLEHOME | VARCHAR2(255 Bytes) | Yes | 11 | |
IAU_HOMEINSTANCE | VARCHAR2(255 Bytes) | Yes | 12 | |
IAU_UPSTREAMCOMPONENTID | VARCHAR2(255 Bytes) | Yes | 13 | |
IAU_DOWNSTREAMCOMPONENTID | VARCHAR2(255 Bytes) | Yes | 14 | |
IAU_ECID | VARCHAR2(255 Bytes) | Yes | 15 | |
IAU_RID | VARCHAR2(255 Bytes) | Yes | 16 | |
IAU_CONTEXTFIELDS | VARCHAR2(2000 Bytes) | Yes | 17 | |
IAU_SESSIONID | VARCHAR2(255 Bytes) | Yes | 18 | |
IAU_SECONDARYSESSIONID | VARCHAR2(255 Bytes) | Yes | 19 | |
IAU_APPLICATIONNAME | VARCHAR2(255 Bytes) | Yes | 20 | |
IAU_TARGETCOMPONENTTYPE | VARCHAR2(255 Bytes) | Yes | 21 | |
IAU_EVENTTYPE | VARCHAR2(255 Bytes) | Yes | 22 | |
IAU_EVENTCATEGORY | VARCHAR2(255 Bytes) | Yes | 23 | |
IAU_EVENTSTATUS | NUMBER | Yes | 24 | |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 25 | |
IAU_THREADID | VARCHAR2(255 Bytes) | Yes | 26 | |
IAU_COMPONENTNAME | VARCHAR2(255 Bytes) | Yes | 27 | |
IAU_INITIATOR | VARCHAR2(255 Bytes) | Yes | 28 | |
IAU_MESSAGETEXT | VARCHAR2(255 Bytes) | Yes | 29 | |
IAU_FAILURECODE | VARCHAR2(255 Bytes) | Yes | 30 | |
IAU_REMOTEIP | VARCHAR2(255 Bytes) | Yes | 31 | |
IAU_TARGET | VARCHAR2(255 Bytes) | Yes | 32 | |
IAU_RESOURCE | VARCHAR2(255 Bytes) | Yes | 33 | |
IAU_ROLES | VARCHAR2(255 Bytes) | Yes | 34 | |
IAU_AUTHENTICATIONMETHOD | VARCHAR2(255 Bytes) | Yes | 35 | |
IAU_TRANSACTIONID | VARCHAR2(255 Bytes) | Yes | 36 | |
IAU_DOMAINNAME | VARCHAR2(255 Bytes) | Yes | 37 | |
IAU_COMPONENTDATA | clob | yes | 38 | |
DIP | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255 Bytes) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255 Bytes) | Yes | 4 | |
IAU_ASSOCIATEPROFILENAME | VARCHAR2(512 Bytes) | Yes | 5 | |
IAU_PROFILENAME | VARCHAR2(512 Bytes) | Yes | 6 | |
IAU_ENTRYDN | VARCHAR2(1024 Bytes) | Yes | 7 | |
IAU_PROVEVENT | VARCHAR2(2048 Bytes) | Yes | 8 | |
IAU_JOBNAME | VARCHAR2(128 Bytes) | Yes | 9 | |
IAU_JOBTYPE | VARCHAR2(128 Bytes) | Yes | 10 | |
IAU_DISP_NAME_TL | IAU_LOCALE_STR | VARCHAR2(7 Bytes) | 1 | |
IAU_DISP_NAME_KEY | VARCHAR2(255 Bytes) | 2 | ||
IAU_COMPONENT_TYPE | VARCHAR2(255 Bytes) | 3 | ||
IAU_DISP_NAME_KEY_TYPE | VARCHAR2(255 Bytes) | 4 | ||
IAU_DISP_NAME_TRANS | VARCHAR2(4000 Bytes) | Yes | 5 | |
IAU_LOCALE_MAP_TL | IAU_LOC_LANG | VARCHAR2(2 Bytes) | Yes | 1 |
IAU_LOC_CNTRY | VARCHAR2(3 Bytes) | Yes | 2 | |
IAU_LOC_STR | VARCHAR2(7 Bytes) | Yes | 3 | |
OPSS | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255 Bytes) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255 Bytes) | Yes | 4 | |
IAU_CODESOURCE | VARCHAR2(1024 Bytes) | Yes | 5 | |
IAU_PRINCIPALS | VARCHAR2(1024 Bytes) | Yes | 6 | |
IAU_INITIATORGUID | VARCHAR2(1024 Bytes) | Yes | 7 | |
IAU_SUBJECT | VARCHAR2(1024 Bytes) | Yes | 8 | |
IAU_PERMISSIONACTION | VARCHAR2(1024 Bytes) | Yes | 9 | |
IAU_PERMISSIONTARGET | VARCHAR2(1024 Bytes) | Yes | 10 | |
IAU_PERMISSIONCLASS | VARCHAR2(1024 Bytes) | Yes | 11 | |
IAU_MAPNAME | VARCHAR2(1024 Bytes) | Yes | 12 | |
IAU_KEY | VARCHAR2(1024 Bytes) | Yes | 13 | |
IAU_PERMISSIONSCOPE | VARCHAR2(1024 Bytes) | Yes | 14 | |
IAU_APPLICATIONROLE | VARCHAR2(1024 Bytes) | Yes | 15 | |
IAU_ENTERPRISEROLES | VARCHAR2(1024 Bytes) | Yes | 16 | |
IAU_INITIATORDN | VARCHAR2(1024 Bytes) | Yes | 17 | |
IAU_GUID | VARCHAR2(1024 Bytes) | Yes | 18 | |
IAU_PERMISSION | VARCHAR2(1024 Bytes) | Yes | 19 | |
IAU_MODIFIEDATTRIBUTENAME | VARCHAR2(1024 Bytes) | Yes | 20 | |
IAU_MODIFIEDATTRIBUTEVALUE | VARCHAR2(2048 Bytes) | Yes | 21 | |
IAU_PERMISSIONSETNAME | VARCHAR2(1024 Bytes) | Yes | 22 | |
IAU_RESOURCEACTIONS | VARCHAR2(1024 Bytes) | Yes | 23 | |
IAU_RESOURCETYPE | VARCHAR2(1024 Bytes) | Yes | 24 | |
OHS/OHS Component | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255 Bytes) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255 Bytes) | Yes | 4 | |
IAU_REASON | CLOB | Yes | 5 | |
IAU_SSLCONNECTION | VARCHAR2(255 Bytes) | Yes | 6 | |
IAU_AUTHORIZATIONTYPE | VARCHAR2(255 Bytes) | Yes | 7 | |
OID/OID Component | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255 Bytes) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255 Bytes) | Yes | 4 | |
IAU_CUSTEVENTSTATUSDETAIL | VARCHAR2(255 Bytes) | Yes | 5 | |
IAU_CUSTEVENTOP | VARCHAR2(255 Bytes) | Yes | 6 | |
OIF | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255 Bytes) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255 Bytes) | Yes | 4 | |
IAU_REMOTEPROVIDERID | VARCHAR2(255 Bytes) | Yes | 5 | |
IAU_PROTOCOLVERSION | VARCHAR2(255 Bytes) | Yes | 6 | |
IAU_NAMEIDQUALIFIER | VARCHAR2(255 Bytes) | Yes | 7 | |
IAU_NAMEIDVALUE | VARCHAR2(255 Bytes) | Yes | 8 | |
IAU_NAMEIDFORMAT | VARCHAR2(255 Bytes) | Yes | 9 | |
IAU_SESSIONID | VARCHAR2(255 Bytes) | Yes | 10 | |
IAU_FEDERATIONID | VARCHAR2(255 Bytes) | Yes | 11 | |
IAU_USERID | VARCHAR2(255 Bytes) | Yes | 12 | |
IAU_FEDERATIONTYPE | VARCHAR2(255 Bytes) | Yes | 13 | |
IAU_AUTHENTICATIONMECHANISM | VARCHAR2(255 Bytes) | Yes | 14 | |
IAU_AUTHENTICATIONENGINEID | VARCHAR2(255 Bytes) | Yes | 15 | |
IAU_OLDNAMEIDQUALIFIER | VARCHAR2(255 Bytes) | Yes | 16 | |
IAU_OLDNAMEIDVALUE | VARCHAR2(255 Bytes) | Yes | 17 | |
IAU_BINDING | VARCHAR2(255 Bytes) | Yes | 18 | |
IAU_ROLE | VARCHAR2(255 Bytes) | Yes | 19 | |
IAU_MESSAGETYPE | VARCHAR2(255 Bytes) | Yes | 20 | |
IAU_ASSERTIONVERSION | VARCHAR2(255 Bytes) | Yes | 21 | |
IAU_ISSUEINSTANT | VARCHAR2(255 Bytes) | Yes | 22 | |
IAU_ISSUER | VARCHAR2(255 Bytes) | Yes | 23 | |
IAU_ASSERTIONID | VARCHAR2(255 Bytes) | Yes | 24 | |
IAU_INCOMINGMESSAGESTRING | VARCHAR2(3999 Bytes) | Yes | 25 | |
IAU_INCOMINGMESSAGESTRINGCLOB | CLOB | Yes | 26 | |
IAU_OUTGOINGMESSAGESTRING | VARCHAR2(3999 Bytes) | Yes | 27 | |
IAU_OUTGOINGMESSAGESTRINGCLOB | CLOB | Yes | 28 | |
IAU_TYPE | VARCHAR2(255 Bytes) | Yes | 29 | |
IAU_PROPERTYNAME | VARCHAR2(255 Bytes) | Yes | 30 | |
IAU_PROPERTYTYPE | VARCHAR2(255 Bytes) | Yes | 31 | |
IAU_PEERPROVIDERID | VARCHAR2(255 Bytes) | Yes | 32 | |
IAU_PROPERTYCONTEXT | VARCHAR2(255 Bytes) | Yes | 33 | |
IAU_DESCRIPTION | VARCHAR2(255 Bytes) | Yes | 34 | |
IAU_OLDVALUE | VARCHAR2(255 Bytes) | Yes | 35 | |
IAU_NEWVALUE | VARCHAR2(255 Bytes) | Yes | 36 | |
IAU_PROVIDERTYPE | VARCHAR2(255 Bytes) | Yes | 37 | |
IAU_COTBEFORE | CLOB | Yes | 38 | |
IAU_COTAFTER | CLOB | Yes | 39 | |
IAU_SERVERCONFIGBEFORE | CLOB | Yes | 40 | |
IAU_SERVERCONFIGAFTER | CLOB | Yes | 41 | |
IAU_DATASTOREBEFORE | CLOB | Yes | 42 | |
IAU_DATASTOREAFTER | CLOB | Yes | 43 | |
IAU_METADATA | VARCHAR2(255 Bytes) | Yes | 44 | |
IAU_NEWDATASTORETYPE | VARCHAR2(255 Bytes) | Yes | 45 | |
IAU_DATASTORENAME | VARCHAR2(255 Bytes) | Yes | 46 | |
OVD/OVD Component | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255 Bytes) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255 Bytes) | Yes | 4 | |
IAU_SERVICEOPERATION | VARCHAR2(255 Bytes) | Yes | 5 | |
OWSM Agent | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255 Bytes) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255 Bytes) | Yes | 4 | |
IAU_APPNAME | VARCHAR2(255 Bytes) | Yes | 5 | |
IAU_ASSERTIONNAME | VARCHAR2(255 Bytes) | Yes | 6 | |
IAU_COMPOSITENAME | VARCHAR2(255 Bytes) | Yes | 7 | |
IAU_ENDPOINT | VARCHAR2(4000 Bytes) | Yes | 8 | |
IAU_AGENTMODE | VARCHAR2(255 Bytes) | Yes | 9 | |
IAU_MODELOBJECTNAME | VARCHAR2(255 Bytes) | Yes | 10 | |
IAU_OPERATION | VARCHAR2(255 Bytes) | Yes | 11 | |
IAU_PROCESSINGSTAGE | VARCHAR2(255 Bytes) | Yes | 12 | |
IAU_VERSION | NUMBER | Yes | 13 | |
IAU_PROTOCOL | VARCHAR2(255 Bytes) | Yes | 14 | |
OWSM_PM_EJB | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255 Bytes) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255 Bytes) | Yes | 4 | |
IAU_VERSION | NUMBER | Yes | 5 | |
IAU_TOVERSION | NUMBER | Yes | 6 | |
ReportsServer/ReportsServer | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255 Bytes) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255 Bytes) | Yes | 4 | |
WebCache/ WebCache | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255 Bytes) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255 Bytes) | Yes | 4 | |
WebServices | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255 Bytes) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255 Bytes) | Yes | 4 | |
IAU_PROTOCOL | VARCHAR2(255 Bytes) | Yes | 5 | |
IAU_ENDPOINT | VARCHAR2(4000 Bytes) | Yes | 6 | |
IAU_OPERATION | VARCHAR2(255 Bytes) | Yes | 7 | |
IAU_FAULTURI | VARCHAR2(4000 Bytes) | Yes | 8 | |
IAU_URI | VARCHAR2(4000 Bytes) | Yes | 9 | |
IAU_SOURCE | VARCHAR2(255 Bytes) | Yes | 10 | |
WS_Policy | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255 Bytes) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255 Bytes) | Yes | 4 | |
IAU_PROTOCOL | VARCHAR2(255 Bytes) | Yes | 5 | |
IAU_ENDPOINT | VARCHAR2(4000 Bytes) | Yes | 6 | |
IAU_OPERATION | VARCHAR2(255 Bytes) | Yes | 7 | |
IAU_FAULTURI | VARCHAR2(4000 Bytes) | Yes | 8 | |
IAU_URI | VARCHAR2(4000 Bytes) | Yes | 9 | |
IAU_SOURCE | VARCHAR2(255 Bytes) | Yes | 10 | |
OAM (Oracle Access Manager) | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255) | Yes | 4 | |
IAU_APPLICATIONDOMAINNAME | VARCHAR2(40) | Yes | 5 | |
IAU_AUTHENTICATIONSCHEMEID | VARCHAR2(40) | Yes | 6 | |
IAU_AGENTID | VARCHAR2(40) | Yes | 7 | |
IAU_SSOSESSIONID | VARCHAR2(100) | Yes | 8 | |
IAU_ADDITIONALINFO | VARCHAR2(1000) | Yes | 9 | |
IAU_AUTHORIZATIONSCHEME | VARCHAR2(40) | Yes | 10 | |
IAU_USERDN | VARCHAR2(255) | Yes | 11 | |
IAU_RESOURCEID | VARCHAR2(40) | Yes | 12 | |
IAU_AUTHORIZATIONPOLICYID | VARCHAR2(40) | Yes | 13 | |
IAU_AUTHENTICATIONPOLICYID | VARCHAR2(255) | Yes | 14 | |
IAU_USERID | VARCHAR2(40) | Yes | 15 | |
IAU_RESOURCEHOST | VARCHAR2(255) | Yes | 16 | |
IAU_REQUESTID | VARCHAR2(255) | Yes | 17 | |
IAU_POLICYNAME | VARCHAR2(40) | Yes | 18 | |
IAU_SCHEMENAME | VARCHAR2(40) | Yes | 19 | |
IAU_RESOURCEHOSTNAME | VARCHAR2(100) | Yes | 20 | |
IAU_OLDATTRIBUTES | VARCHAR2(1000) | Yes | 21 | |
IAU_NEWATTRIBUTES | VARCHAR2(1000) | Yes | 22 | |
IAU_SCHMETYPE | VARCHAR2(40) | Yes | 23 | |
IAU_RESPONSETYPE | VARCHAR2(40) | Yes | 24 | |
IAU_AGENTTYPE | VARCHAR2(40) | Yes | 25 | |
IAU_CONSTRAINTTYPE | VARCHAR2(40) | Yes | 26 | |
IAU_INSTANCENAME | VARCHAR2(40) | Yes | 27 | |
IAU_DATASOURCENAME | VARCHAR2(100) | Yes | 28 | |
IAU_DATASOURCETYPE | VARCHAR2(100) | Yes | 29 | |
IAU_HOSTIDENTIFIERNAME | VARCHAR2(100) | Yes | 30 | |
IAU_RESOURCEURI | VARCHAR2(255) | Yes | 31 | |
IAU_RESOURCETEMPLATENAME | VARCHAR2(100) | Yes | 32 | |
OAAM (Oracle Adaptive Access Manager) | IAU_ID | NUMBER | Yes | 1 |
IAU_TSTZORIGINATING | TIMESTAMP(6) | Yes | 2 | |
IAU_EVENTTYPE | VARCHAR2(255) | Yes | 3 | |
IAU_EVENTCATEGORY | VARCHAR2(255) | Yes | 4 | |
IAU_ACTIONNOTES | VARCHAR2(4000) | Yes | 5 | |
IAU_CASEACTIONENUM | NUMBER(38) | Yes | 6 | |
IAU_CASEACTIONRESULT | NUMBER | Yes | 7 | |
IAU_CASECHALLENGEQUESTION | VARCHAR2(4000) | Yes | 8 | |
IAU_CASECHALLENGERESULT | NUMBER(38) | Yes | 9 | |
IAU_CASEDISPOSITION | NUMBER(38) | Yes | 10 | |
IAU_CASEEXPRDURATIONINHRS | NUMBER(38) | Yes | 11 | |
IAU_CASEID | NUMBER | Yes | 12 | |
IAU_CASEIDS | VARCHAR2(4000) | Yes | 13 | |
IAU_CASESEVERITY | NUMBER(38) | Yes | 14 | |
IAU_CASESTATUS | NUMBER(38) | Yes | 15 | |
IAU_CASESUBACTIONENUM | NUMBER(38) | Yes | 16 | |
IAU_DESCRIPTION | VARCHAR2(4000) | Yes | 17 | |
IAU_GROUPID | NUMBER | Yes | 18 | |
IAU_GROUPIDS | VARCHAR2(4000) | Yes | 19 | |
IAU_GROUPNAME | VARCHAR2(4000) | Yes | 20 | |
IAU_GROUPDETAILS | VARCHAR2(4000) | Yes | 21 | |
IAU_GROUPELEMENTID | NUMBER | Yes | 22 | |
IAU_GROUPELEMENTIDS | NUMBER | Yes | 23 | |
IAU_GROUPELEMENTVALUE | VARCHAR2(4000) | Yes | 24 | |
IAU_GROUPELEMENTSDETAILS | VARCHAR2(4000) | Yes | 25 | |
IAU_KBACATEGORYID | NUMBER | Yes | 26 | |
IAU_KBACATEGORYIDS | VARCHAR2(4000) | Yes | 27 | |
IAU_KBACATEGORYNAME | VARCHAR2(4000) | Yes | 28 | |
IAU_KBACATEGORYDETAILS | VARCHAR2(4000) | Yes | 29 | |
IAU_KBAQUESTIONID | NUMBER | Yes | 30 | |
IAU_KBAQUESTIONIDS | VARCHAR2(4000) | Yes | 31 | |
IAU_KBAQUESTION | VARCHAR2(4000) | Yes | 32 | |
IAU_KBAQUESTIONTYPE | NUMBER(38) | Yes | 33 | |
IAU_KBAQUESTIONDETAILS | VARCHAR2(4000) | Yes | 34 | |
IAU_KBAVALIDATIONID | NUMBER | Yes | 35 | |
IAU_KBAVALIDATIONIDS | VARCHAR2(4000) | Yes | 36 | |
IAU_KBAVALIDATIONNAME | VARCHAR2(4000) | Yes | 37 | |
IAU_KBAVALIDATIONDETAILS | VARCHAR2(4000) | Yes | 38 | |
IAU_KBAREGLOGICDETAILS | VARCHAR2(4000) | Yes | 39 | |
IAU_KBAANSWERLOGICDETAILS | VARCHAR2(4000) | Yes | 40 | |
IAU_LOGINID | VARCHAR2(255) | Yes | 41 | |
IAU_POLICYDETAILS | VARCHAR2(4000) | Yes | 42 | |
IAU_POLICYID | NUMBER | Yes | 43 | |
IAU_POLICYIDS | VARCHAR2(4000) | Yes | 44 | |
IAU_POLICYNAME | NUMBER | Yes | 45 | |
IAU_POLICYOVERRIDEDETAILS | VARCHAR2(4000) | Yes | 46 | |
IAU_POLICYOVERRIDEID | NUMBER | Yes | 47 | |
IAU_POLICYOVERRIDEIDS | VARCHAR2(4000) | Yes | 48 | |
IAU_POLICYOVERRIDEROWID | NUMBER | Yes | 49 | |
IAU_POLICYRULEMAPID | NUMBER | Yes | 50 | |
IAU_POLICYRULEMAPIDS | VARCHAR2(4000) | Yes | 51 | |
IAU_POLICYRULEMAPDETAILS | VARCHAR2(4000) | Yes | 52 | |
IAU_RULEID | NUMBER | Yes | 53 | |
IAU_RULECONDITIONID | NUMBER | Yes | 54 | |
IAU_RULECONDITIONIDS | VARCHAR2(4000) | Yes | 55 | |
IAU_RULENAME | VARCHAR2(4000) | Yes | 56 | |
IAU_RULEDETAILS | VARCHAR2(4000) | Yes | 57 | |
IAU_RULECONDITIONMAPID | NUMBER | Yes | 58 | |
IAU_RULECONDITIONMAPIDS | VARCHAR2(4000) | Yes | 59 | |
IAU_RULEPARAMVALUEDETAILS | VARCHAR2(4000) | Yes | 60 | |
IAU_SOURCEPOLICYID | NUMBER | Yes | 61 | |
IAU_USERGROUPNAME | VARCHAR2(255) | Yes | 62 | |
IAU_USERID | NUMBER | Yes | 63 | |
IAU_USERIDS | VARCHAR2(4000) | Yes | 64 |
Table C-15 shows additional tables in the audit schema; these tables support the dynamic metadata model.
Table C-15 Additional Audit Schema Tables
Table Name | Column Name | Data Type |
---|---|---|
IAU_COMMON | IAU_ID | NUMBER |
IAU_OrgId | VARCHAR(255) | |
IAU_ComponentId | VARCHAR(255) | |
IAU_ComponentType | VARCHAR(255) | |
IAU_MajorVersion | VARCHAR(255) | |
IAU_MinorVersion | VARCHAR(255) | |
IAU_InstanceId | VARCHAR(255) | |
IAU_HostingClientId | VARCHAR(255) | |
IAU_HostId | VARCHAR(255) | |
IAU_HostNwaddr | VARCHAR(255) | |
IAU_ModuleId | VARCHAR(255) | |
IAU_ProcessId | VARCHAR(255) | |
IAU_OracleHome | VARCHAR(255) | |
IAU_HomeInstance | VARCHAR(255) | |
IAU_UpstreamComponentId | VARCHAR(255) | |
IAU_DownstreamComponentId | VARCHAR(255) | |
IAU_ECID | VARCHAR(255) | |
IAU_RID | VARCHAR(255 | |
IAU_ContextFields | VARCHAR(2000) | |
IAU_SessionId | VARCHAR(255) | |
IAU_SecondarySessionId | VARCHAR(255) | |
IAU_ApplicationName | VARCHAR(255) | |
IAU_TargetComponentType | VARCHAR(255) | |
IAU_EventType | VARCHAR(255) | |
IAU_EventCategory | VARCHAR(255) | |
IAU_EventStatus | NUMBER | |
IAU_TstzOriginating | TIMESTAMP | |
IAU_ThreadId | VARCHAR(255) | |
IAU_ComponentName | VARCHAR(255) | |
IAU_Initiator | VARCHAR(255) | |
IAU_MessageText | VARCHAR(2000) | |
IAU_FailureCode | VARCHAR(255) | |
IAU_RemoteIP | VARCHAR(255) | |
IAU_Target | VARCHAR(255) | |
IAU_Resource | VARCHAR(255) | |
IAU_Roles | VARCHAR(255) | |
IAU_AuthenticationMethod | VARCHAR(255) | |
IAU_TransactionId | VARCHAR(255) | |
IAU_DomainName | VARCHAR(255) | |
IAU_ComponentVersion | VARCHAR(255) | |
IAU_ComponentData | CLOB | |
IAU_CUSTOM | IAU_ID | NUMBER |
IAU_BOOLEAN_001 | NUMBER | |
IAU_INT_001 | NUMBER | |
IAU_LONG_001 | NUMBER | |
IAU_FLOAT_001 | NUMBER | |
IAU_DOUBLE_001 | NUMBER | |
IAU_STRING_001 | VARCHAR(2048) | |
IAU_DATETIME_001 | TIMESTAMP | |
IAU_LONGSTRING_001 | CLOB | |
IAU_BINARY_001 | BLOB | |
IAU_AuditService | IAU_ID | NUMBER |
IAU_TransactionId | VARCHAR(255) | |
IAU_USERSESSION | IAU_ID | NUMBER |
IAU_AuthenticationMethod | VARCHAR(255) |
WLST
is the command-line utility for administration of Oracle Fusion Middleware components and applications. It provides another option for administration in addition to Oracle Enterprise Manager Fusion Middleware Control.
Use the WLST
commands listed in Table C-16 to view and manage audit policies and the audit store configuration.
Note: When running auditWLST commands, you must invoke the WLST script from the Oracle Common home. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide for more information. |
See Also: Oracle Fusion Middleware Third-Party Application Server Guide for details about executing audit commands on third-party application servers. |
Table C-16 WLST Audit Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Display the mBean name for a system component. | Online |
| Display audit policy settings. | Online |
| Update audit policy settings. | Online |
| Display audit store settings. | Online |
| Update audit store settings. | Online |
| List audit events for one or all components. | Online |
| Export a component's audit configuration. | Online |
| Import a component's audit configuration. | Online |
Online command that displays the mbean name for system components.
The MBean name must be provided when using WLST commands for system components; since the MBean name can have a complex composition, use this command to get the name.
This command displays the mbean name for system components given the instance name, component name, component type, and the name of the Oracle WebLogic Server on which the component's audit mbean is running. The mbean name is a required parameter to other audit WLST commands when managing a system component.
Argument | Definition |
---|---|
instName | Specifies the name of the application server instance. |
compName | Specifies the name of the component instance. |
compType | Specifies the type of component. Valid values are ohs, oid, ovd, and WebCache. |
Online command that displays the audit policy settings.
Online command that displays audit policy settings including the audit level, special users, custom events, maximum log file size, and maximum log directory size. The component mbean name is an optional parameter. If no parameter is provided, the domain audit policy is displayed.
Argument | Definition |
---|---|
mbeanName | Specifies the name of the component audit MBean for system components. |
componentType | Requests the audit policy for a specific component type registered in the audit store. If not specified, the audit policy in jps-config.xml is returned. |
The following command displays the audit settings for all Java EE components configured in the WebLogic Server domain:
The following command displays the audit settings for MBean CSAuditProxyMBean
:
Online command that updates an audit policy.
Online command that configures the audit policy settings. You can set the audit level, add or remove special users, and add or remove custom events. The component mbean name is required for system components like Oracle Internet Directory and Oracle Virtual Directory.
Remember to call save
after issuing setAuditPolicy
for system components. Otherwise, the new settings will not take effect.
Argument | Definition |
---|---|
mbeanName | Specifies the name of the component audit MBean for system components. |
filterPreset | Specifies the audit level to be changed. |
addSpecialUsers | Specifies the special users to be added. |
removeSpecialUsers | Specifies the special users to be removed. |
addCustomEvents | Specifies the custom events to be added. |
removeCustomEvents | Specifies the custom events to be removed. |
componentType | Specifies the component definition type to be updated. If not specified, the audit configuration defined in jps-config.xml is modified. |
maxDirSize | Specifies the maximum size of the log directory. |
maxFileSize | Specifies the maximum size of the log file. |
andCriteria | Specifies the and criteria in a custom filter preset definition. |
orCriteria | Specifies the or criteria in a custom filter preset definition. |
componentEventsFile | Specifies a component definition file under the 11g Release 1 (11.1.1) PS5 metadata model. This parameter is required if you wish to create/update an audit policy in the audit store for an 11g Release 1 (11.1.1) PS5 metadata model component, and the filter preset level is set to “Custom”. |
The following interactive command a) sets the audit level to Low
, and b) adds users user2
and user3
while removing user user1
from the policy:
The following interactive command adds login events while removing logout events from the policy:
Online command that displays audit store settings.
Online command that updates audit store settings.
Online command that sets the audit store settings for Java components and applications (for system components like Oracle Internet Directory, the store is configured by editing opmn.xml
).
Argument | Definition |
---|---|
switchToDB | If true , switches the store from file to database. |
dataSourceName | Specifies the name of the data source. |
interval | Specifies intervals at which the audit loader moves file records to the database. |
The following interactive command changes audit store to a database defined by the data source jdbcAuditDB
and sets the audit loader interval to 14 seconds:
Note: The data source is created using the Oracle WebLogic Server administration console. |
Online command that displays the definition of a component's audit events, including its attributes.
This command displays a component's audit events and attributes. For system components, pass the component mbean name as a parameter. Java applications and services like Oracle Platform Security Services (OPSS) do not need the mbean parameter. Without a component type, all generic attributes applicable to all components are displayed.
Argument | Definition |
---|---|
mbeanName | Specifies the name of the component MBean. |
componentType | Specifies the component type to limit the list to all events of the component type. |
The following command displays audit events for an Oracle Internet Directory instance:
The following command displays audit events for Oracle Identity Federation:
Online command that exports a component's audit configuration.
See Also: This command is useful in migrating to production environments. For details, see Section 6.5.3, "Migrating Audit Policies". |
This command exports the audit configuration to a file. For system components, pass the component mbean name as a parameter. Java applications and services like Oracle Platform Security Services (OPSS) do not need the mbean parameter.
Argument | Definition |
---|---|
mbeanName | Specifies the name of the system component MBean. |
fileName | Specifies the path and file name to which the audit configuration should be exported. |
componentType | Specifies that only events of the given component be exported to the file. If not specified, the audit configuration in jps-config.xml is exported. |
The following interactive command exports the audit configuration for a component:
The following interactive command exports the audit configuration for a component; no mBean is specified:
Online command that imports a component's audit configuration.
See Also: This command is useful in migrating to production environments. For details, see Section 6.5.3, "Migrating Audit Policies". |
This command imports the audit configuration from an external file. For system components, pass the component mbean name as a parameter. Java applications and services like Oracle Platform Security Services (OPSS) do not need the mbean parameter.
Remember to call save after issuing importAuditConfig
for system components. Otherwise, the new settings will not take effect.
Argument | Definition |
---|---|
mbeanName | Specifies the name of the system component MBean. |
fileName | Specifies the path and file name from which the audit configuration should be imported. |
componentType | Specifies that only events of the given component be imported from the file. If not specified, the audit configuration in jps-config.xml is imported. |
The following interactive command imports the audit configuration for a component:
The following interactive command imports the audit configuration for a Java EE application (no mBean is specified):
When you select a custom audit policy, you have the option of specifying a filter expression along with an event.
For example, you can use the following expression:
to enable the audit event for a particular host only.
You enter this expression either through the Fusion Middleware Control Edit Filter Dialog or through the setAuditPolicy
WLST command.
There are some syntax rules you should follow when creating a filter expression.
The expression can either be a Boolean expression or a literal.
A boolean expression can use combinations of RelationalExpression with –and, -or , -not and parenthesis. For example, (Host Id -eq "stadl17" -or "
).
A relational expression compares an attribute name (on the left hand side) with a literal (on the right-hand side). The literal and the operator must be of the correct data type for the attribute.
Relational operators are particular to data types:
Rules for literals are as follows:
This section explains the rules that are used to maintain audit files.
For Java components (both Java EE and Java SE), the file containing audit records is named "audit.log".
When that file is full (it reaches the configured maximum audit file size which is 100MB), it is renamed to "audit1.log" and a new "audit.log" is created. If this file too gets full, the audit.log file is renamed to "audit2.log" and a new audit.log is created.
This continues until the configured maximum audit directory size is reached (default is 0, which means unlimited size). When the max directory size is reached, the oldest auditn.log file is deleted.
If you have configured a database audit store, then the audit loader reads these files and transfers the records to the database in batches. After reading a complete audit<n>.log file, it deletes the file.
Note: The audit loader never deletes the "current" file, that is, audit.log; it only deletes archive files audit<n>.log. |
OPMN-managed components follow the same model, except the file name is slightly different. It has the process ID embedded in the file name; thus, if the process id is 11925 the current file is called "audit-pid11925.log", and after rotation it will be called audit-pid11925-1.log.
For applications with audit definitions in the dynamic model, the file name format is audit_major version number_minor version number.log; for example, audit_1_2.log
.
Here is a sample audit.log file:
This file follows the W3C extended logging format, which is a very common log format that is used by many Web Servers e.g. Apache and IIS:
This appendix contains reference information that you will need when developing applications for LDAP directories based on the User and Role APIs. It contains these sections:
Note: IBM Tivoli directory parameters are the same as those specified for openLDAP.Microsoft ADAM parameters are the same as those specified for Microsoft Active Directory. |
Table D-1 lists each user attribute in UserProfile.property and its corresponding attribute in the different directory servers.
Table D-1 User Attributes in UserProfile.Property
Attribute | Oracle Internet Directory | Oracle WebLogic Server Embedded LDAP | Microsoft Active Directory | Oracle Directory Server Enterprise Edition | Novell eDirectory | OpenLDAP |
---|---|---|---|---|---|---|
GUID | orclguid | uid | objectguid | nsuniqueid | guid | entryuuid |
USER_ID | username (see Note below) | uid | uid | uid | uid | uid |
DISPLAY_NAME | displayname | displayname | displayname | displayname | displayname | displayname |
BUSINESS_EMAIL | | | | | | |
DESCRIPTION | description | description | description | description | description | description |
EMPLOYEE_TYPE | employeeType | employeeType | employeeType | employeeType | employeeType | employeeType |
DEPARTMENT | departmentnumber | departmentnumber | departmentnumber | departmentnumber | departmentnumber | departmentnumber |
DATE_OF_BIRTH | orcldateofbirth | - | - | - | - | - |
BUSINESS_FAX | facsimiletelephonenumber | facsimiletelephonenumber | facsimiletelephonenumber | facsimiletelephonenumber | facsimiletelephonenumber | facsimiletelephonenumber |
BUSINESS_CITY | l | l | l | l | l | l |
BUSINESS_COUNTRY | c | c | c | c | c | c |
DATE_OF_HIRE | orclhiredate | - | - | - | - | - |
NAME | cn | uid | cn | uid | cn | cn |
PREFERRED_LANGUAGE | Preferredlanguage | preferredlanguage | preferredlanguage | preferredlanguage | preferredlanguage | preferredlanguage |
BUSINESS_POSTAL_ADDR | postaladdress | postaladdress | postaladdress | postaladdress | postaladdress | postaladdress |
MIDDLE_NAME | orclmiddlename | - | - | - | - | - |
ORGANIZATIONAL_UNIT | ou | ou | ou | ou | ou | ou |
WIRELESS_ACCT_NUMBER | orclwirelessaccountnumber | - | - | - | - | - |
BUSINESS_PO_BOX | postofficebox | postofficebox | postofficebox | postofficebox | postofficebox | postofficebox |
BUSINESS_STATE | St | st | st | st | st | st |
HOME_ADDRESS | Homepostaladdress | homepostaladdress | homepostaladdress | homepostaladdress | homepostaladdress | homepostaladdress |
NAME_SUFFIX | Generationqualifier | generationqualifier | generationqualifier | generationqualifier | generationqualifier | generationqualifier |
BUSINESS_STREET | street | street | street | street | street | street |
INITIALS | initials | initials | initials | initials | initials | initials |
USER_NAME | username (see Note below) | uid | samaccountname | uid | uid | uid |
BUSINESS_POSTAL_CODE | postalcode | postalcode | postalcode | postalcode | postalcode | postalcode |
BUSINESS_PAGER | pager | pager | pager | pager | pager | pager |
LAST_NAME | sn | sn | sn | sn | sn | sn |
BUSINESS_PHONE | telephonenumber | telephonenumber | telephonenumber | telephonenumber | telephonenumber | telephonenumber |
FIRST_NAME | givenname | givenname | givenname | givenname | givenname | givenname |
TIME_ZONE | orcltimezone | - | - | - | - | - |
MAIDEN_NAME | orclmaidenname | - | - | - | - | - |
PASSWORD | userpasssword | userpasssword | userpasssword | userpasssword | userpasssword | userpasssword |
DEFAULT_GROUP | orcldefaultprofilegroup | - | - | - | - | - |
ORGANIZATION | o | o | o | o | o | o |
HOME_PHONE | homephone | homephone | homephone | homephone | homephone | homephone |
BUSINESS_MOBILE | mobile | mobile | mobile | mobile | mobile | mobile |
UI_ACCESS_MODE | orcluiaccessibilitymode | - | - | - | - | - |
JPEG_PHOTO | jpegphoto | jpegphoto | jpegphoto | jpegphoto | jpegphoto | jpegphoto |
MANAGER | manager | manager | manager | manager | manager | manager |
TITLE | title | title | title | title | title | title |
EMPLOYEE_NUMBER | employeenumber | employeenumber | employeenumber | employeenumber | employeenumber | employeenumber |
LDUser.PASSWORD | userpassword | userpassword | userpassword | userpassword | userpassword | userpassword |
Note: username* : typically uid, but technically, the attribute designated by the orclCommonNicknameAttribute in the subscriber's oraclecontext products common entry. |
Table D-2 lists each role attribute in UserProfile.property and its corresponding attribute in different directory servers.
Table D-2 Role Attribute Values in LDAP Directories
Role Attribute | Oracle Internet Directory | Oracle WebLogic Server Embedded LDAP | Microsoft Active Directory | Oracle Directory Server Enterprise Edition | Novell eDirectory | OpenLDAP |
---|---|---|---|---|---|---|
DISPLAY_NAME | displayname | - | displayname | displayname | displayname | displayname |
MANAGER | - | - | - | - | - | - |
NAME | cn | cn | cn | cn | cn | cn |
OWNER | owner | owner | - | Owner | - | owner |
GUID | orclguid | cn | objectguid | NSuniqueid | guid | entryuuid |
This section lists parameters for which the APIs can use default configuration values, and the source of the value in different directory servers.
Table D-3 lists the source for Oracle Internet Directory and Microsoft Active Directory.
Table D-3 Default Values - Oracle Internet Directory and Microsoft Active Directory
Parameter | Oracle Internet Directory | Active Directory |
---|---|---|
RT_USER_OBJECT_CLASSES | #config | {"user" } |
RT_USER_MANDATORY_ATTRS | #schema | #schema |
RT_USER_CREATE_BASES | #config | cn=users,<subscriberDN> |
RT_USER_SEARCH_BASES | #config | <subscriberDN> |
RT_USER_FILTER_OBJECT_CLASSES | #config | {"user"} |
RT_USER_SELECTED_CREATE_BASE | #config | cn=users,<subscriberDN> |
RT_GROUP_OBJECT_CLASSES | #config | {"group" } |
RT_GROUP_MANDATORY_ATTRS | #schema | #schema |
RT_GROUP_CREATE_BASES | #config | <subscriberDN> |
RT_GROUP_SEARCH_BASES | #config | <subscriberDN> |
RT_GROUP_FILTER_OBJECT_CLASSES | #config | {"group"} |
RT_GROUP_MEMBER_ATTRS | "uniquemember", "member" | "member" |
RT_GROUP_SELECTED_CREATE_BASE | #config | <subscriberDN> |
RT_GROUP_GENERIC_SEARCH_BASE | <subscriber-DN> | <subscriberDN> |
RT_SEARCH_TYPE | #config | #config |
ST_SUBSCRIBER_NAME | #config | NULL |
ST_USER_NAME_ATTR | #config | cn |
ST_USER_LOGIN_ATTR | #config | samaccountname |
ST_GROUP_NAME_ATTR | #config | cn |
ST_MAX_SEARCHFILTER_LENGTH | 500 | 500 |
ST_BINARY_ATTRIBUTES | Choose a Binary Basic Attribute (BBA) See note below about BBAs. | Binary Basic See note below about BBAs. |
ST_LOGGER_NAME | oracle.idm.userrole | oracle.idm.userrole |
Notes:
|
Table D-4 lists the source for Oracle Directory Server Enterprise Edition and Novell eDirectory.
Table D-4 Default Values - Oracle Directory Server Enterprise Edition and Novell eDirectory
Parameter | Oracle Directory Server Enterprise Edition | Novell eDirectory |
---|---|---|
RT_USER_OBJECT_CLASSES | {"inetorgperson", "person", "organizationalperson" } | { "person", "inetorgperson", "organizationalPerson", "ndsloginproperties" } |
RT_USER_MANDATORY_ATTRS | #schema | #schema |
RT_USER_CREATE_BASES | ou=people,<subscriberDN> | ou=users,<subscriberDN> |
RT_USER_SEARCH_BASES | <subscriberDN> | <subscriberDN> |
RT_USER_FILTER_OBJECT_CLASSES | {"inetorgperson", "person", "organizationalperson" } | { "person", "inetorgperson", "organizationalPerson", "ndsloginproperties" } |
RT_USER_SELECTED_CREATE_BASE | ou=people,<subscriberDN> | ou=users,<subscriberDN> |
RT_GROUP_OBJECT_CLASSES | "groupofuniquenames" | {"group" } |
RT_GROUP_MANDATORY_ATTRS | #schema | #schema |
RT_GROUP_CREATE_BASES | ou=groups,<subscriberDN> | ou=groups,<subscriberDN> |
RT_GROUP_SEARCH_BASES | <subscriberDN> | <subscriberDN> |
RT_GROUP_FILTER_OBJECT_CLASSES | {"groupofuniquenames"} | {"group"} |
RT_GROUP_MEMBER_ATTRS | "uniquemember" | "member" |
RT_GROUP_SELECTED_CREATE_BASE | ou=groups,<subscriberDN> | ou=groups,<subscriberDN> |
RT_GROUP_GENERIC_SEARCH_BASE | <subscriber-DN> | <subscriberDN> |
RT_SEARCH_TYPE | #config | #config |
ST_SUBSCRIBER_NAME | NULL | NULL |
ST_USER_NAME_ATTR | uid | cn |
ST_USER_LOGIN_ATTR | uid | cn |
ST_GROUP_NAME_ATTR | cn | cn |
ST_MAX_SEARCHFILTER_LENGTH | 500 | 500 |
ST_BINARY_ATTRIBUTES | Choose a Binary Basic Attribute (BBA) See note below about BBAs. | Binary Basic See note below about BBAs. |
ST_LOGGER_NAME | oracle.idm.userrole | oracle.idm.userrole |
Notes:
|
Table Table D-5 lists the parameters for OpenLDAP and Oracle Virtual Directory.
Table D-5 Default Values - OpenLDAP and Oracle Virtual Directory
Parameter | OpenLDAP | Oracle Virtual Directory |
---|---|---|
RT_USER_OBJECT_CLASSES | {"inetorgperson", "person", "organizationalperson" } | {"inetorgperson"} |
RT_USER_MANDATORY_ATTRS | #schema | #schema |
RT_USER_CREATE_BASES | ou=people,<subscriberDN> | <subscriberDN> |
RT_USER_SEARCH_BASES | <subscriberDN> | <subscriberDN> |
RT_USER_FILTER_OBJECT_CLASSES | {"inetorgperson", "person", "organizationalperson" } | {"inetorgperson"} |
RT_USER_SELECTED_CREATE_BASE | ou=people,<subscriberDN> | <subscriberDN> |
RT_GROUP_OBJECT_CLASSES | "groupofuniquenames" | {"groupofuniquenames"} |
RT_GROUP_MANDATORY_ATTRS | #schema | #schema |
RT_GROUP_CREATE_BASES | ou=groups,<subscriberDN> | <subscriberDN> |
RT_GROUP_SEARCH_BASES | <subscriberDN> | <subscriberDN> |
RT_GROUP_FILTER_OBJECT_CLASSES | "groupofuniquenames" | {"groupofuniquenames"} |
RT_GROUP_MEMBER_ATTRS | "uniquemember" | "uniquemember" |
RT_GROUP_SELECTED_CREATE_BASE | ou=groups,<subscriberDN> | <subscriberDN> |
RT_GROUP_GENERIC_SEARCH_BASE | <subscriber-DN> | <subscriberDN> |
RT_SEARCH_TYPE | #config | #config |
ST_SUBSCRIBER_NAME | NULL | #config (namingcontexts) |
ST_USER_NAME_ATTR | uid | cn |
ST_USER_LOGIN_ATTR | uid | cn |
ST_GROUP_NAME_ATTR | cn | cn |
ST_MAX_SEARCHFILTER_LENGTH | 500 | 500 |
ST_BINARY_ATTRIBUTES | Choose a Binary Basic Attribute (BBA) See note below about BBAs. | Binary Basic See note below about BBAs. |
ST_LOGGER_NAME | oracle.idm.userrole | oracle.idm.userrole |
Notes:
|
Table D-6 lists the parameters for Oracle WebLogic Server LDAP.
Table D-6 Default Values - Oracle WebLogic Server LDAP
Parameter | Oracle WebLogic Server Embedded LDAP |
---|---|
RT_USER_OBJECT_CLASSES | {"inetorgperson", "person", "organizationalperson", "wlsUser"} |
RT_USER_MANDATORY_ATTRS | #schema |
RT_USER_CREATE_BASES | {"ou=people,<subscriberDN>"} |
RT_USER_SEARCH_BASES | {"ou=people,<subscriberDN>"} |
RT_USER_FILTER_OBJECT_CLASSES | {"inetorgperson", "wlsUser"} |
RT_USER_SELECTED_CREATE_BASE | ou=people,<subscriberDN> |
RT_GROUP_OBJECT_CLASSES | {"top","groupofuniquenames","groupOfURLs"} |
RT_GROUP_MANDATORY_ATTRS | #schema |
RT_GROUP_CREATE_BASES | {"ou=groups,<subscriberDN>"} |
RT_GROUP_SEARCH_BASES | {"ou=groups,<subscriberDN>"} |
RT_GROUP_FILTER_OBJECT_CLASSES | {"top","groupofuniquenames","groupOfURLs"} |
RT_GROUP_MEMBER_ATTRS | "uniquemember" |
RT_GROUP_SELECTED_CREATE_BASE | ou=groups,<subscriberDN> |
RT_GROUP_GENERIC_SEARCH_BASE | <subscriberDN> |
RT_SEARCH_TYPE | #config |
ST_SUBSCRIBER_NAME | #config (namingcontexts) |
ST_USER_NAME_ATTR | uid |
ST_USER_LOGIN_ATTR | uid |
ST_GROUP_NAME_ATTR | cn |
ST_MAX_SEARCHFILTER_LENGTH | 500 |
ST_BINARY_ATTRIBUTES | *(BBA) See note below about BBAs. |
ST_LOGGER_NAME | oracle.idm.userrole |
Active Directory requires connections to be SSL-enabled when setting sensitive information like passwords. Therefore, operations like creating a user (which set the password) will not succeed if the connection is not SSL-enabled.
This appendix describes advanced administrative tasks carried out with WLST scripts and MBean programming, in the following sections:
If your application uses the User and Role API and must access an authenticator user attribute different from the default attribute (which is cn), then using the WebLogic Administration Console, you would configure the authenticator to use the desired user attribute. But for the User and Role API to use an attribute different from the default, the authenticator must be, in addition, properly initialized.
The procedure below explains how to use a WLST script to change the authenticator initialization, so that the User and Role API uses the configured user attribute to access data in the configured authenticator.
For details about WebLogic scripting, see Oracle Fusion Middleware Oracle WebLogic Scripting Tool.
To add or update custom properties of a service instance, proceed as follows:
connect
requires that the server to which you want to connect be up and running when the script is invoked. Let's assume that the script is saved in the file /tmp/updateServiceInstanceProperty.py
.
$ORACLE_HOME/common/bin
, which should contain the file wlst.sh
: Where:
Any argument containing a space character must be enclosed with double quotes.
Each invocation of the above command modifies the domain configuration file $DOMAIN_HOME/config/fmwconfig/jps-config.xml
by adding or updating a property to the passed instance provider. If the passed key matches the name of an existing property, then that property is updated with the passed value.
Example of Use
Assume that the domain configuration file contains an authenticator named idstore.ldap
. Then the following invocation:
adds (or updates) the specified property of that instance provider as illustrated in the following snippet:
When the authenticator is initialized with the above configuration, the User and Role API can use the user attribute mail
to access user information in this authenticator.
Oracle Platform Security Services provides a set of JMX-compliant Java EE Beans that are used by Oracle Enterprise Manager Fusion Middleware Control and OPSS security scripts to manage, configure, and monitor Oracle Platform Security Services.
The use of MBeans is recommended in Java EE applications only.
Links to OPSS API javadocs, including the OPSS MBeans API javadoc, are available in Section H.1, "OPSS API References."
This section addresses the following topics:
Table E-1 lists the supported MBeans, their basic function, and the object name to use in custom WLST scripts or Java SE programs to perform a task:
Table E-1 List of OPSS MBeans
MBean | Function | MBeanServer Connection Name |
---|---|---|
Manages domain configuration data, that is in the file Update or write operations require server restart to effect changes. |
| |
Manages credential data, that is, the store service configured in the default context. Update or write operations do not require server restart to effect changes. All changes are effected immediately. Access is restricted to administrators only. |
| |
Manages global policies in the policy store configured in the default context. Update or write operations do not require server restart to effect changes. All changes are effected immediately. |
| |
Manages application policies in the policy store configured in the default context. Update or write operations do not require server restart to effect changes. All changes are effected immediately. |
| |
Validates whether a user logged into the current JMX context belongs to a particular role. It does not facilitate any configuration modifications. |
|
There are two basic ways to invoke an OPSS MBean:
Note: An alternative way to invoke an MBean is using the MBean browser in Fusion Middleware Control. This approach, however, allows only a limited number of operations and it involves composite data creation.To access this browser, login to Fusion Middleware Control and then proceed as follows:
For example, the Jps Configuration MBean is found at the following location in this hierarchy: Application Defined MBeans/com.oracle.jps/Domain:myDomain/JpsConfig/JpsConfig For complete details about this browser, see the Fusion Middleware Control online help system. |
The following code sample illustrates how to invoke the Jps Configuration MBean over the WebLogic Server t3 protocol; in this sample, note the following important points:
$ORACLE_HOME/oracle_common/modules/oracle.jps_11.1.1/jps-api.jar
$ORACLE_HOME/oracle_common/modules/oracle.jps_11.1.1/jps-mbeans.jar
$ORACLE_HOME/oracle_common/modules/oracle.jmx_11.1.1/jmxframework.jar
$ORACLE_HOME/oracle_common/modules/oracle.idm_11.1.1/identitystore.jar
$WEBLOGIC_HOME/server/lib/wljmxclient.jar
init
. For further details about programmatic configuration of services, see part Part V, "Developing with Oracle Platform Security Services APIs"
The information in this section is not restricted to OPPS MBeans but applies, more generally, to Oracle Fusion Middleware MBeans.
The security access to MBeans is based on logical roles rather than on security permissions. MBeans are annotated using role-based constraints that are enforced at run time by the JMX Framework.
This section illustrates the use of some annotations, describes what they mean, lists the particular access restrictions, and explains the mapping of logical roles to Oracle WebLogic Server enterprise groups.
The following code snippet illustrates the use of some enterprise group annotations (in bold text) in an MBean interface:
In the above code sample, the annotation:
@AtrributeGetterRequiredGlobalSecurityRole
specifies that a user must belong to the role Operator to access the get method isActive
. @AtrributeSetterRequiredGlobalSecurityRole
specifies that a user must belong to the role Admin to access the set method setActive
. @OperationRequiredGlobalSecurityRole
specifies that a user must belong to the role Admin to access the MBean method setActiveVirtualScreenId
. Note that all three annotations above apply just to a specific item in the interface.
The following code snippet illustrates the use of another annotation (in bold text) with a different scope:
In the above code sample, the annotation @MbeanRequiredGlobalSecurityRole
specifies that a user must belong to the role Admin to access any operation or attribute of the MBean, that is, its scope is the entire MBean. Annotations with method or attribute scope override annotations that apply to the entire MBean.
The enumeration GlobalSecurityRole
defines the set of global, logical roles that are mapped to actual roles in the environment before performing security checks. This enumeration includes the value NONE
to indicate that any user has read and write access to the annotated operation or attribute.
For details, see the oracle.jmx.framework Javadoc documentation.
Table E-2 shows the mapping of logical roles to enterprise groups.
Table E-2 Mapping of Logical Roles to WebLogic Groups
Logical Role | Default Privileges | WebLogic Group |
---|---|---|
Admin | Read and write access to all MBeans | Admin |
Configurator | Read and write access to configuration MBeans | Admin |
Operator | Read access to configuration MBeans; read and write access to all run time MBeans | Operator |
Monitor | Read access to all MBeans | Monitor |
ApplicationAdmin | Read and write access to all application MBeans | Admin |
ApplicationConfigurator | Read and write access to all application MBeans | Admin |
ApplicationOperator | Read access to application configuration MBeans; read and write access to application runtime MBeans | Operator |
ApplicationMonitor | Read access to all application runtime and configuration MBeans | Monitor |
For details about WebLogic roles, see sections Users, Groups, And Security Roles and in Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.
By default, all write and update operations require that the user be a member of the Admin or Configurator roles. In addition, operations annotated with the tag @Impact(value=1)
require the user to be a member of the Admin role, and operations annotated with the tag @Impact(value=0)
require the user to be a member of the Admin or Operator roles.
Table E-3 describes the roles required to access attributes and operations of Fusion Middleware Control MBeans:
Table E-3 Roles Required per Operation
Operations with impact value | MBean type | Require any of the roles |
---|---|---|
INFO or attribute getter | System configuration MBean | Monitor, Operator, Configurator, Admin |
INFO or attribute getter | Application configuration MBean | Monitor, Operator, Configurator, Admin, ApplicationMonitor, ApplicationOperator, ApplicationConfigurator, ApplicationAdmin |
ACTION, ACTION_INFO, UNKNOWN, or attribute setter | System configuration MBean | Admin, Configurator |
ACTION, ACTION_INFO, UNKNOWN, or attribute setter | Application configuration MBean | Admin, Configurator, ApplicationAdmin, ApplicationConfigurator |
INFO or attribute getter | System runtime MBean | Monitor, Operator, Configurator, Admin |
INFO or attribute getter | Application runtime MBean | Monitor, Operator, Configurator, Admin, ApplicationMonitor, ApplicationOperator, ApplicationAdmin |
ACTION, ACTION_INFO, UNKNOWN, or attribute setter | System runtime MBean | Admin, Operator |
ACTION, ACTION_INFO, UNKNOWN, or attribute setter | Application runtime MBean | Admin, Operator, ApplicationAdmin, ApplicationOperator |
This appendix documents OPSS system properties (set through the switch -D
at server start) and configuration properties (set with elements <property>
and <extendedProperty>
in the configuration file jps-config.xml
) in the following sections:
To manage server properties programmatically, use OPSS MBeans. For details and example, see Section E.2.3, "Programming with OPSS MBeans."
A system property that has been introduced or modified is not in effect until the server is restarted. In order to set a system property the administrator must edit the setDomainEnv.sh
shell script and add the property to the environment variable EXTRA_JAVA_PROPERTIES
in that script.
Table F-1 lists the Java system properties available with OPSS.
Table F-1 Java System Properties Used by OPSS
Name | Description |
---|---|
| Notifies about a permission failure when the method JpsAuth.checkPermission is called inside a Subject.doAs block and the permission check fails. Note that setting jps.auth.debug or jps.auth.debug.verbose is not enough to get a failure notification in this case. Optional. |
Specifies the location of the Java security policy file. | |
| Enables or disables the delegation of calls to JDK API AccessController.checkPermission, which reduces runtime and debugging overhead. Optional. Valid values: No default value. |
| Controls server logging output. Default value: FALSE. For details, see Section L.1.2.1, "jps.auth.debug." See also java.security.debug. Optional. |
| Controls server logging output. Default value: FALSE. For details, see Section L.1.2.2, "jps.auth.debug.verbose." See also java.security.debug. Optional. |
| Enables or disables the caching of a subject's protection domain. Optional. Valid values: Default value: |
| Enables or disables the evaluation of a subject's protection domain when a check permission is triggered. Optional. Valid values: Default value: |
| Enables or disables the migration of policies and credentials for applications deployed in a WebLogic Server. Valid only for the WebLogic Server. Set to TRUE to disable the migration of application policies and credentials for all applications deployed in the server regardless of the particular application settings in the application file weblogic-application.xml. Optional. Valid values: Default value: |
Enables or disables the hybrid mode. The hybrid mode is used to facilitate the transition from the Sun java.security.Policy to the OPSS Java PolicyProvider. When the hybrid mode is enabled, the OPSS Java Policy Provider reads from both files, java.policy and system-jazn-data.xml. Optional. Valid values: Default value: | |
Specifies the number of seconds after which group membership changes are in effect. This value must be kept in sych with the value of the WebLogic authenticator Optional. Valid values: Default value: | |
| Specifies the path to the domain configuration files Required. No default value. |
| Specifies the path to the directory of a code source URL. Optional. No default value. For an example of use, see <url>. |
| Specifies the extension of code source URL. Optional. No default value. For an example of use, see <url>. |
| Logs the name of an application role that contains a specified substring; if the substring to match is unspecified, it logs all application role names. Optional. No default value. For an example of use and further details, see Section L.1.2.3, "Debugging the Authorization Process." |
oracle.security.jps.log.for.permeffect | Logs a grant that was granted or denied according to a specified value; if the value is unspecified, it logs all grants (regardless whether they were granted or denied). Optional. No default value. For an example of use and further details, see Section L.1.2.3, "Debugging the Authorization Process." |
oracle.security.jps.log.for.permclassname | Logs the name of the permission class that matches exactly a specified name; if the name to match is unspecified, it logs all permission class names. Optional. No default value. For an example of use and further details, see Section L.1.2.3, "Debugging the Authorization Process." |
oracle.security.jps.log.for.permtarget.substring | Logs the name of a permission target that contains a specified substring; if the substring to match is unspecified, it logs all permission targets. Optional. No default value. For an example of use and further details, see Section L.1.2.3, "Debugging the Authorization Process." |
oracle.security.jps.log.for.enterprise.principalname | Logs the name of the principal (enterprise user or enterprise role) that matches exactly a specified name; if the name to match is unspecified, it logs all principal names. Optional. No default value. For an example of use and further details, see Section L.1.2.3, "Debugging the Authorization Process." |
This section describes the properties of various instances in the following sections:
The policy store properties are described in the following sections:
The policy store provider class that can be used with LDAP- or DB-based instances is the following:
Table F-2 describes the properties of policy store instances. The properties are listed in three blocks according to the kind of application they can be used in.
Table F-2 Policy Store Properties
Name | Description |
---|---|
The following properties are valid in both Java EE and Java SE applications | |
| The key for the password credentials to access the LDAP policy store, stored in the CSF store. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Required. No default value. The out-of-the-box value is |
| The map for the password credentials to access the LDAP policy store, stored in the CSF store. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Required. Default value: |
| The RDN format of the domain node in the LDAP policy store. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Required. No default value. |
| The RDN format of the root node in the LDAP policy store. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Required. No default value. |
| The URL of the LDAP policy store, with the format Valid in Java EE and Java SE applications. Applies only to LDAP stores. Required. No default value. |
| The type of the LDAP policy store. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Required. No default value. Value examples: |
Controls the throwing of exceptions if any of the following checks fail:
If set to If set to Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Default value: Valid values: | |
| Indicates the frequency, in milliseconds, at which the system checks the domain files In production environments, it is recommended a frequency of about 10 min. (600000 milliseconds). In development environments, it is recommended a frequency of about 3 min. (180000 milliseconds). Default value: 1000 |
The following properties are valid in Java EE applications only | |
| The JNDI name of the JDBC data source instance. Valid in only Java EE applications. Applies to only DB stores. Required. No default value. |
| The number of retry attempts. Valid in only Java EE applications. Applies to only DB stores. Optional. Default value: 3 |
| The number of seconds between retry attempts. Valid in only Java EE applications. Applies to only DB stores. Optional. Default value: 15 |
The following properties are valid in Java SE applications only | |
| The clear text name of the principal to use instead of the user name specified in the bootstrap. Not recommended. Valid in only Java SE applications. Applies to LDAP and DB stores. Optional. No default value. |
| The clear text password for the security principal to use instead of the password specified in the bootstrap. Not recommended. Valid in only Java SE applications. Applies to LDAP and DB stores. Optional. No default value. |
| The JDBC driver. Valid in only Java SE applications. Applies to only DB stores. Required. No default value. Value example: |
| The URL of the JBDC. Valid in only Java SE applications. Applies to only DB stores. Required. No default value. Value example: |
| The minimum number of connections allowed in the JDBC read connection pool. Valid in only Java SE applications. Applies to only DB stores. Optional. Default value: 5 |
| The maximum number of connections allowed in the JDBC read connection pool. Valid in only Java SE applications. Applies to only DB stores. Optional. Default value: 20 |
Example 1
The following fragment illustrates the configuration of an LDAP-based policy store instance for a Java EE application:
Example 2
The following fragment illustrates the configuration of an LDAP-based policy store instance for a Java SE application:
For additional configurations samples for Java SE applications, see Section 23.1.2, "Configuring LDAP-Based Policy and Credential Stores."
Example 3
The following fragment illustrates the configuration of DB-based stores (including an instance of a runtime service provider) for a Java EE application:
Example 4
The following fragment illustrates the configuration of a DB-based policy store instance for a Java SE application:
For additional configurations samples for Java SE applications, see Section 23.1.3, "Configuring DB-Based OPSS Security Stores."
The runtime policy store provider class that can be used with LDAP- or DB-based instances is the following:
Table F-3 lists the runtime properties of policy store instances.
Table F-3 Runtime Policy Store Properties
Name | Description |
---|---|
| The type of the role member cache. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Valid values:
Default value: |
| The type of strategy used in the role member cache. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Valid values:
Default value: |
| The number of the roles kept in the member cache. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Default value: 1000. |
| Enables or disables the policy lazy load. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Valid values: Default value: |
| The type of strategy used in the permission cache. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Valid values:
Default value: |
| The number of permissions kept in the permission cache. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Default value: 1000. |
| Enables or disables the policy store refresh. If this property is set, then Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Valid values: Default value: |
| Enables or disables the refresh of the cache. If this property is set, then Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Valid values: Default value: |
| The time, in milliseconds, after which the policy store cache is purged. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Default value: 43200000 (12 hours). |
| The interval, in milliseconds, at which the policy store is polled for changes. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Default value: 600000 (10 minutes). |
| The number of user's permissions after which the permission cache is invalidated. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Default value: 50. |
| Controls the way the ApplicationRole membership cache is created. If set to TRUE, the cache is created at server startup; otherwise, it is created on demand (lazy loading). Set to TRUE when the number of users and groups is significantly higher than the number of application roles; set to FALSE otherwise, that is, when the number of application roles is very high. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Valid values: Default value: |
| The folder for temporary storage. Valid in Java EE and Java SE applications. Applies to XML, LDAP, and DB stores. Optional. Default value: the system temporary folder. |
| Specifies whether the authorization cache should be enabled. Valid in Java EE and Java SE applications. Applies to XML, LDAP, and DB stores. Optional. Valid values: Default value: |
| The percentage of sessions to drop when the eviction capacity is reached. Valid in Java EE and Java SE applications. Applies to XML, LDAP, and DB stores. Optional. Default value: 10 |
| The maximum number of authorization and role mapping sessions to maintain. When the maximum is reached, old sessions are dropped and reestablished when needed. Valid in Java EE and Java SE applications. Applies to XML, LDAP, and DB stores. Optional. Default value: 500 |
| The number of seconds during which session data is cached. Valid in Java EE and Java SE applications. Applies to XML, LDAP, and DB stores. Optional. Default value: 60 |
Controls the throwing of exceptions if any of the following checks fail:
If set to If set to Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Optional. Default value: Valid values: |
Table F-4 lists the properties of credential store instances. The properties are listed in two blocks according to the kind of application they can be used in.
Table F-4 Credential Store Properties
Name | Description |
---|---|
The following properties are valid in Java EE applications only | |
| The key for the password credentials to access the LDAP credential store, stored in the CSF store. Valid only in Java EE applications. Applies to LDAP and DB stores. Required. No default value. The out-of-the-box value is |
| The map for the password credentials to access the LDAP credential store, stored in the CSF store. Valid only in Java EE applications. Applies to LDAP and DB stores. Required. Default value: |
The following properties are valid in both Java EE and Java SE applications | |
| The RDN format of the domain node in the LDAP credential store. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Required. No default value. |
| The RDN format of the root node in the LDAP policy store. Valid in Java EE and Java SE applications. Applies to LDAP and DB stores. Required. No default value. |
| Specifies the URL of the LDAP credential store using the format Valid in Java EE and Java SE applications. Applies only to LDAP stores. Required. No default value. |
| Specifies whether to encrypt credentials. Valid in Java EE and Java SE applications. Applies only to file and LDAP stores. Valid values: Optional. Default value: |
The following fragment illustrates the configuration of a credential store in a Java EE application:
Table F-5 lists the properties of LDAP-based identity store instances. Extended properties are explicitly stated. User and Role API properties corresponding to a property are also stated.
Table F-5 LDAP-Based Identity Store Properties
Note: If the authenticator attributeusername is changed (because, for example, of post-provisioning or migrating from a test to a production environment), then the identity store service parameter username.attr in the identity store service must also be changed accordingly. Those two values should be kept equal. |
The following fragment illustrates the configuration of an LDAP-based identity store for a Java SE application:
Table F-6 lists generic properties of LDAP-based stores that can be specified in any service instance.
In the case of an LDAP-based identity store service instance, to ensure that the User and Role API picks up the connection pool properties when it is using the JNDI connection factory, the identity store service instance must include the following property:
Table F-6 Generic LDAP Properties
Name | Description |
---|---|
| Specifies the type of LDAP connection that the JNDI connection pool uses. Valid in Java EE and Java SE applications. Optional. Values: Default value: |
| Specifies the maximum number of connections in the LDAP connection pool. Valid in Java EE and Java SE applications. Optional. Value example: 30 |
| Specifies the minimum number of connections in the LDAP connection pool. Valid in Java EE and Java SE applications. Optional. Value example: 5 |
| Specifies the protocol to use for the LDAP connection. Valid in Java EE and Java SE applications. Optional. Values: Default value: |
| Specifies the connection pool to use. Valid in Java EE and Java SE applications. Optional. Values: Default value: |
| Specifies the number of milliseconds that an idle connection can remain in the pool; after timeout, the connection is closed and removed from the pool. Valid in Java EE and Java SE applications. Optional. Default value: 300000 (5 minutes) |
| Specifies the maximum number of retry attempts if there are problems with the LDAP connection. Valid in Java EE and Java SE applications. Optional. Value example: 5 |
The following fragment illustrates a configuration of several properties:
Table F-7 lists the properties that can be used to configure file-, LDAP-, or DB-based anonymous users, anonymous roles, and authenticated roles.
Table F-7 Anonymous and Authenticated Roles Properties
Name | Description |
---|---|
| Specifies a description of the anonymous role. Valid in Java EE and Java SE applications. Optional. No default value. |
| Specifies the name of the principal in the anonymous role. Valid in Java EE and Java SE applications. Optional. Default value: |
| Specifies the name of the anonymous role. Valid in Java EE and Java SE applications. Optional. Default value: |
| Specifies the name of the principal in the anonymous user. Valid in Java EE and Java SE applications. Optional. Default value: |
| Specifies a description of the authenticated role. Valid in Java EE and Java SE applications. Optional. No default value. |
| Specifies the name of the principal in authenticated user roles. Valid in Java EE and Java SE applications. Optional. Default value: |
| Specifies the name of the authenticated role. Valid in Java EE and Java SE applications. Optional. Default value: |
| Specifies whether the anonymous role should be removed from the subject after a user is authenticated. Valid in Java EE and Java SE applications. Optional. Valid values: Default value: |
Table F-8 lists the properties that can be used to configure the trust service.
Table F-8 Trust Service Properties
Name | Description |
---|---|
| Specifies the alias to use to get an X.509 certificate and private key from the keystore. Valid in Java EE and Java SE applications. Optional. Default: the name of the WLS domain of the WAS cell. |
| Specifies the name to be included in the token. It is used by the destination trust service to pick up and validate the token. Valid in Java EE and Java SE applications. Optional. Default: the name of the WLS domain of the WAS cell. |
| Specifies the map of the credential to access the keystore. Valid in Java EE and Java SE applications. Optional. Default: the value of the keystore instance property |
| Specifies the key of the credential to access the private key (the map is set by Valid in Java EE and Java SE applications. Optional. Default: the value of the keystore instance property |
| Specifies the key of the credential to acces the keystore (the map is set by Valid in Java EE and Java SE applications. Optional. Default: the value of the keystore instance property |
The following sample illustrates the configuration of a trust service:
Table F-9 lists the properties used to configure the audit service:
Table F-9 Audit Service Properties
Property | Description | Required? | Values | Default Value |
---|---|---|---|---|
auditstore.type | The audit metadata store type | yes | file, ldap, or db | file |
audit.filterPreset | The level of auditing - None, Low, Medium, and Custom | no | None, Low, Medium, or All | None |
audit.customEvents | For Custom, a list of audit events that should be audited. The events must be qualified using the component type. Commas separate events and a semicolon separates component types. Example: JPS:CheckAuthorization, CreateCredential; OIF:UserLogin | no | ||
audit.specialUsers | list of one or more users whose activity is always audited, even if filterPreset is None. Usernames that contain commas must be escaped properly. For example, when using Fusion Middleware Control, specify three users like this - "admin, fmwadmin, cn=test\,cn=user\,ou:ST\,L=RS\,c=is\," In setAuditPolicy(addSpecialUsers="cn=orcladmin\\\,cn=com") For more information, see Section C.4.3, "setAuditPolicy". | no | ||
audit.maxDirSize | Controls the size of the directory where the audit files will be written. Integer is in Bytes. | no | 102400000 | |
audit.maxFileSize | Controls the size of a bus stop file where audit events are written. Integer is in Bytes | no | 104857600 | |
audit.loader.interval | Controls the frequency with which audit loader uploads to database. Integer is in Seconds. | no | 15 seconds | |
audit.loader | Store type for the audit events. If type is Database (Db), also define audit.loader.jndi or JDBC property. | yes | File, DB | File |
audit.loader.jndi | JNDI name of the data source in application servers for uploading audit events into database. | no | jdbc/AuditDB | |
audit.db.principal.map / audit.db.principal.key | The map and key for the JDBC user name and password credential in bootstrap credential store,when running in JavaSE, and repositoryType is DB. | no | ||
audit.loader.jdbc.string | The JDBC string for JDBC connection when running in JavaSE, and repositoryType is DB. | no | ||
audit.logDirectory | The base directory for bus-stop files. | required for JavaSE | jse |
The following is an example of audit service configuration:
Table F-10 lists the properties used to configure the Keystore Service:
Table F-10 Keystore Service Properties
Property | Description | Required? | Values | Default |
---|---|---|---|---|
keystore.provider.type | Keystore repository type | Yes | file, ldap, db | file |
keystore.file.path | Location of the file keystores.xml when file provider is configured | Yes, if a file-based keystore provider is configured. | - | ./ |
ca.key.alias | Key alias within "system/castore" of the third party CA used for Keystore service instance | No | - | - |
location | Location of the keystore; can be absolute or relative path. | Yes, if keystore.type is JKS.No, if keystore.type is PKCS11 or HSM (LunaSA) | Path to keystore | ./default-keystore.jks |
keystore.type | Type of keystore | Yes | JKS, PKCS11, Luna | JKS |
keystore.csf.map | Credential store map name used by Oracle Web Services Manager. | Yes | Credential store map name | oracle.wsm.security |
keystore.pass.csf.key | Credential store key that points to Keystore password. | Yes, for JKS and PKCS11. No, for HSM | Credential store csf key name | keystore-csf-key |
keystore.sig.csf.key | Credential store key name that points to alias and password of signing key in keystore.For HSM, it is the direct key alias name rather than the credential store key name. | Yes | Credential store csf key name or, for HSM, the direct alias | sign-csf-key |
keystore.enc.csf.key | Credential store key name that points to alias and password of encryption key in keystore.For HSM, it is the direct key alias name rather than the credential store key name. | Yes | Credential store csf key name or, for HSM, the direct alias | enc-csf-key |
The following is an example of Keystore Service configuration for a file-based provider :
The following is an example of Keystore Service configuration for an LDAP-based provider :
The following is an example of Keystore Service configuration for an RDBMS-based provider :
This appendix describes several procedures to update security data. Specifically, it describes how to upgrade security data from a major release (10.1.3.x) to a major release (11.1.1), and how to upgrade data from a minor release (11g OPSS PS1, PS2, PS3 or PS4) to 11g OPSS PS5, in the following sections:
If upgrading from 11gR1 to 11gR1 PS1: For details about this upgrade combination, see section Special Instructions for Oracle Fusion Middleware 11g Release 1 (11.1.1.1.0) in Oracle Fusion Middleware Installation Planning Guide. |
For an overview and details about Identity Management upgrade, see Oracle Fusion Middleware Upgrade Guide for Oracle Identity Management.
The OPSS script upgradeSecurityStore
is used only to upgrade application security data from a previous major release (such as 10.1.1.3) to more recent one (such as 11.1.1.1). To upgrade between minor 11g releases, use upgradeOpss
as described in section Upgrading Policies with upgradeOpss.
If the target of the upgrading is an LDAP-based repository, then some setting up before running the script is required, as described in Section 8.2.2, "Prerequisites to Using an LDAP-Based Security Store."
The script is offline, that is, it does not require a connection to a running server to operate, and can be run in interactive mode or in script mode, on WebLogic, and in interactive mode only, on WebSphere. In interactive mode, you enter the script at a command-line prompt and view the response immediately after. In script mode, you write scripts in a text file and run it without requiring input, much like the directives in a shell script.
For platform-specific requirements to run an OPSS script, see Important Note.
Script and Interactive Modes Syntaxes
The script syntax varies depending on the type of store being upgraded. Optional arguments are enclosed in square brackets; arguments in script mode syntax are written in separate lines for clarity of exposition.
To upgrade 10.1.3.x XML identity data to 11g Release 1 (11.1.1) XML identity data, use either of the following syntaxes:
To upgrade a 10.1.3.x XML policy data to 11g Release 1 (11.1.1) XML policy data, use either of the following syntaxes:
To upgrade a 10.1.3.x Oracle Internet DirectoryLDAP-based policy data to 11g Release 1 (11.1.1) XML policy data, use either of the following syntaxes:
To upgrade file-based application policies from release 11.1.1.1.0 to release 11.1.1.2.0, use either of the following syntaxes:
To upgrade 11.1.1.1.0 application policies to 11.1.1.2.0 format, use either of the following syntaxes:
This upgrade works in-place and involves the creation of specified resource types and resources corresponding to permissions in the grants.
Once the run completes, the policy store pointed to by the context passed in dst
in the configuration file passed in jpsConfigFile
has new resource types and new resources defined for application passed in srcApp
. The resource types are read from the file specified in resourceTypeFile
and resources are created corresponding to permissions in the application grants.
The meaning of the arguments is as follows:
type
specifies the kind of security data being upgraded. The only valid values are xmlIdStore, xmlPolicyStore, oidPolicyStore, xmlCredStore, xmlAppPolicies, and appPolicies. jpsConfigFile
specifies the location of a configuration file jps-config.xml
relative to the directory where the script is run. The target store of the upgrading is read from the context specified with the argument dst
. In case the type is xmlAppPolicies, the configuration file is not used to point to neither source nor destination, but to configure the audit service only. Note that the location must be passed even when the audit service is not specified in the jps-config.xml
file.
srcJaznDataFile
specifies the location of a 10.1.3.x jazn-data.xml file relative to the directory where the script is run. This argument is required if the specified type
is xmlIdStore, xmlPolicyStore, or xmlCredStore. In case the specified type
is xmlAppPolicies, it specifies the location of the application 11.1.1.1.0 jazn-data.xml file, a file that does not include resource type specifications.
srcJaznConfigFile
specifies the location of a 10.1.3.x jazn configuration file relative to the directory where the script is run. This argument is required if the specified type
is oidPolicyStore. users
specifies a comma-delimited list of users each formatted as realmName/userName. This argument is required if the specified type
is xmlCredStore. srcRealm
specifies the name of a realm in the file passed to the argument srcJaznDataFile
that identifies the identities to be migrated. This argument is required if the specified type
is xmlIdStore. dst
specifies the name of a jpsContext in the file passed to the argument jpsConfigFile
where the destination store is configured. Optional. If unspecified, it defaults to the default jpsContext. srcApp
specifies the application stripe. It should match the application name present in the files srcJaznDataFile
and resourceTypeFile
. A stripe with this name is created in the file dstJaznDataFile
. dstJaznDataFile
specifies the location of the application 11.1.1.2.0 jazn-data.xml file. This file includes resource type and resource instance specifications and is the replacement for the original jazn-data.xml specified in srcJaznDataFile
. resourceTypeFile
specifies the location of the 11.1.1.2.0 jazn-data.xml file which includes resource type specifications. dst
specifies the destination context that points to the policy store to update. The following sections contain examples that illustrate the use of the script upgradeSecurityStore
in different scenarios:
The following invocation illustrates the migration of 10.1.3 file-based identities to an 11g Release 1 (11.1.1) file-based identity store:
This use of the script assumes that: (a) the files jps-config-idstore.xml
and jazn-data.xml
are located in the directory where the script is run; (b) the default jpsContext in the file jps-config-idstore.xml
references the target identity store; and (c) the file jazn-data.xml
contains a realm named jazn.com.
Here are the relevant excerpts of the two files involved in the use sample above:
Thus, the sample invocation above migrates every user in the element <users>
, to the XML identity store R11idStore
.
The following invocation illustrates the migration of a 10.1.3 file-based policy store to an 11g Release 1 (11.1.1) policy store:
This use of the script assumes that: the files jps-config.xml
and jazn-data.xml
are located in the directory where the script is run; and the file jps-config.xml
contains a jpsContext named destContext
.
Here are the relevant excerpts of the two files involved in the use sample above:
Thus, the sample invocation above migrates every role in the element <roles>
and every policy in the element <jazn-policy>
to the XML policy store R11PolStore
.
The following invocation illustrates the upgrading of a 10.1.4 Oracle Internet Directory LDAP-based policy store to an 11g Release 1 (11.1.1) Oracle Internet Directory LDAP-based policy store:
The assumptions about the location of the two XML files involved in this example are similar to those in Example 2. In addition, it is assumed that (a) the file jps-config.xml
contains the jpsContext destContext
that points to the target Oracle Internet Directory LDAP-based policy store; and (b) the file jazn.xml
describes the location of the Oracle Internet Directory LDAP server from where the policies are migrated.
Here is the relevant excerpt from the file jazn.xml
:
The following invocation upgrades an application 11.1.1.1.0 file-based policy store to an application 11.1.1.2.0 file-based policy store.
The point of this upgrade is that the original 11.1.1.1.0 file does not use resource catalog elements, but the resulting 11.1.1.2.0 file does use resource type and resource instance elements.
The script basically takes the original application configuration file, along with another file specifying resource type elements, and it produces a new application configuration file that contains policies as in the original file, but modified to use resource catalog specifications.
The original and the new application configuration files provide identical behavior to the application.
The above invocation assumes that:
./11.1.1.1.0/jazn-data.xml
contains policies for the application PolicyServlet1
. ./resCat/res-jazn-data.xml
contains resource type specifications for the application PolicyServlet1
. ./folder/jps-config.xml
is any valid configuration file that may or may not use an audit service instance. In any case, it must be specified. The following samples illustrate the relevant portions of three data files: the input source jazn-data.xml
and resource res-jazn-data.xml
, and the output final-jazn-data.xml
.
Input Source File jazn-data.xml
Input Resource File res-jazn-data.xml
Output Data File final-jazn-data.xml
upgradeOpss
is an offline script that updates PS1, PS2, PS3 or PS4 configurations and stores to a PS5 configuration and store.
The store to be upgraded can be file-, LDAP-, or DB-based and possibly be shared by several WebLogic domains, and the script upgrades system policies, application policies, and the file jps-config.xml
.
The OPSS binaries and the target policy store must have compatible versions; for details, see Section L.21, "Incompatible Versions of Binaries and Policy Store."
Important Notes: upgradeOpss must be run on the system that hosts the administration server instance so that when the server comes up, the upgraded data is pushed to all managed servers in the cluster. Before using it, make sure that you backup the store to be upgraded. In case of a LDAP store, backup all data under the root node of the store (which is specified as a property of the store in the configuration file). In case of an upgrade failure, restore that node entirely. For details about backing up, see the documentation for your specific LDAP store. |
To upgrade from PS1, PS2, PS3 or PS4 to PS5, proceed as follows:
upgradeOpss
as described in section Command Syntax. Note the following points:
upgradeOpss
: jps-config.xml
or, alternatively, passed as arguments to the script. To upgrade a file-, LDAP-, or DB-based store, use the syntax below; note that the connection arguments are not required in case of a file-based store; are optional in case of an LDAP-based store; and are required in case of a DB-based store:
The meaning of the arguments is as follows:
jpsConfig
specifies the full path to the location of the PS1, PS2, PS3 or PS4 jps-config.xml
configuration file, which the scripts backs up in the same directory as a file with the suffix .bak
appended to the its name; required. jaznData
specifies the full path to the location of the PS5 out-of-the-box system-jazn-data.xml
file; required. auditStore
specifies the full path to the location of the PS5 out-of-the-box audit-store.xml
file; optional; if unspecified, defaults to the file audit_store.xml
. jdbcDriver
specifies the JDBC driver to the store; optional in case of LDAP-based store; required in case of DB-based store. url
specifies the JDBC URL or LDAP URL in the format driverType:host:port:sid
; required in both DB- or LDAP-based store; if not passed, it is read from the configuration file. user
specifies the JDBC user name or LDAP bind name; optional in case of LDAP-based store; required in case of DB-based store; if not passed, it is read from the configuration file. In case of LDAP-based store, the user performing the upgrade must have read and write privileges to the schema, the root node, and all nodes under cn=OPSS,cn=OracleSchemaVersion
; in case of a DB-based store, perform the upgrade as the OPSS DB schema user. password
specifies the password of the passed user
; that is, the JDBC password, in case of a DB-based store, or the JDBC bind password, in case of a LDAP-based store; optional in case of LDAP-based store; required in case of DB-based store; if not passed, it is read from the configuration file. This appendix contains references documentation useful to developes.
The following Javadoc documents describe the various APIs that OPSS exposes:
Oracle Fusion Middleware Java API Reference for Oracle Platform Security Services
Oracle Fusion Middleware MBeans Java API Reference for Oracle Platform Security Services
Oracle Fusion Middleware User and Role Java API Reference for Oracle Platform Security Services
Oracle Security Developer Tools APIs
Oracle Fusion Middleware PKI SDK CMP Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware CMS Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware Crypto Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware PKI SDK LDAP Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware Liberty 1.1 Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware Liberty 1.2 Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware S/MIME Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware PKI SDK OCSP Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware Security Engine Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware SAML 1.0/1.1 Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware SAML 2.0 Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware PKI SDK TSP Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware XKMS Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware XML Security Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware Crypto FIPS Java API Reference for Oracle Security Developer Tools
Oracle Fusion Middleware JCE Java API Reference for Oracle Security Developer Tools
An OPSS script is either a WLST script, in the context of the Oracle WebLogic Server, or a WASAdmin script, in the context of the WebSphere Application Server. The scripts listed in this chapter apply to both platforms: WebLogic Application Server and WebSphere Application Server.
For OPSS scripts details specific to WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.
The OPSS security-related scripts are described in the following sections:
For details on the following scripts, see Section 9.3, "Managing Application Policies with OPSS Scripts."
For details on the following scripts, see Section 10.5, "Managing Credentials with OPSS Scripts."
For details, see Section 8.6.2, "Migrating with the Script migrateSecurityStore."
For details, see Section 9.3.29, "reassociateSecurityStore."
For details, see Section G.1, "Upgrading with upgradeSecurityStore."
For details, see Section G.2, "Upgrading Policies with upgradeOpss."
For the description of audit-related scripts, see Section C.4, "WLST Commands for Auditing."
This appendix describes the special set up required in case the identity store uses OpenLDAP 2.2.
To use OpenLDAP 2.2 as an identity store, proceed as follows:
slapd.conf
for edit. The above settings make possible adding the object class inetorgperson
to every new external role you create in the OpenLDAP; this object class is required to map the external role to an application role.
The identity virtualization feature, described in Section 7.3, "Configuring the Identity Store Service", requires some additional configuration to support a split profile.
This appendix describes how to create and manage the adapters used for split profiles.
The Identity Virtualization feature enables you to query multiple LDAP directories through OPSS. For example, you can fetch data from both Oracle Internet Directory and Microsoft Active Directory in a single query.
The feature supports a "split profile," where an application makes use of attributes for a single identity that are stored on two different sources; for example, where the username, password, and employeeID for a single person are stored on Microsoft Active Directory, and that person's employeeID and business role are stored in Oracle Internet Directory.
For example, when a WebCenter application needs to obtain attributes for a single identity from more than one source directory, it uses the split profile to leverage the join functionality of Identity Virtualization. These joins use a standard join adapter. For details, see:
The adapter configuration is stored in adapters.os_xml
, but connection details such as host, port and credentials of a back-end directory come from OPSS.
The same user occurs in both identity stores with some attributes in one store and other attributes in the other store. A query on the user record requires data from both stores. The configuration tasks are:
virtualize
property to enable queries against multiple LDAP stores. For details, see Section 7.3, "Configuring the Identity Store Service."
For details about how to bring up the WLST prompt, see "Getting Started Using Command-Line Tools" in the Oracle Fusion Middleware Administrator's Guide.
Note: If there is more than one secondary identity store, run theaddJoinRule command for each secondary store. |
modifyLDAPAdapter
command: Note: If there is more than one secondary identity store, run themodifyLDAPAdapter command for each secondary ID store. |
Example
In this example the same user occurs in two stores; the first store is Microsoft Active Directory and the second store is Oracle Internet Directory. In the example, we assume that Microsoft Active Directory is the primary store and Oracle Internet Directory is the secondary store.
Note: When configuring the LDAP connection parameters, theuser.create.bases and group.create.bases must correspond to the primary adapter's namespace. For details about the parameters, see Section 7.3.1, "What is Configured?." |
cn=users,dc=acme,dc=com
cn=users,dc=oid,dc=com
The steps to implement the split profile are as follows:
The adapter name shown here is an example; use an appropriate name in actual usage.
"uid=cn
" is the join condition in the above example which indicates that if uid
value of a user in Oracle Internet Directory (secondary) matches with cn
value of the Microsoft Active Directory user (primary), then the attributes are combined.
The attribute on the left side of the condition is the attribute in the secondary adapter and the attribute on the right side is the attribute in the primary adapter.
The adapter names used here are the actual name of the authenticators. The adapter names in all the primary and secondary parameters also refer to the authenticator name. The join adapter name can be any name you choose.
You use the removeJoinRule
command to remove a join rule from a join adapter.
Syntax
Example
You use the deleteAdapter
command to delete a join adapter.
Syntax
Example
You use the modifyLDAPAdapter
command to change the visibility of the adapters. For example:
This appendix describes common problems that you may encounter when configuring and using Oracle Enterprise Manager Fusion Middleware security, and explains how to solve them. It contains the following sections:
This section the tools available to diagnose and solve a variety of security errors. It contains the following sections:
The logging support with Fusion Middleware Control is explicitly stated whenever the tool can help managing, isolating, or interpreting faults when they occur.
This section describes the various log files and OPSS loggers supported by Oracle WebLogic Server and how to configure, set logger levels, and locate and view log files with Fusion Middleware Control, in the following sections:
Each server instance in a domain writes all OPSS-based exceptions raised by its subsystems and applications to a server log file in the file system of the local host computer.
By default, this log file is located in the logs
directory below the server instance root directory. The names of these log files have the following format: ServerName-diagnostic.logxxxxx
, where xxxxx denotes an integer between 1 and 99999.
Here are some examples of diagnostic file full names: DomainName/servers/AdminServer/logs/AdminServer-diagnostic.log00001
(administration server log), DomainName/servers/soa/logs/soa-diagnostic.log00013
(managed server log).
All server instances output security-related errors to diagnostic files. Server-related security errors, such as exceptions raised by issues with a subject or principal, and errors that may occur while migrating or reassociating domain security data, get written in the administration server diagnostic log. Application-related security errors, such as exceptions raised by application-specific policies or credentials, get written in the corresponding managed server diagnostic log.
In addition to diagnostic log files, Oracle WebLogic Server supports other log files for each server in a domain and for each domain in a topology.
By default and similar to diagnostic log files, server log files are located in the logs
directory below the server instance root directory. Domain log files are located in the logs
directory below the administration server root directory. The names of these log files have the format ServerName.logxxxxx
and domain.logxxxxx
, where xxxxx denotes an integer between 1 and 99999.
Here are some examples of server and domain log files full names: DomainName/servers/AdminServer/logs/AdminServer.log00001
, DomainName/servers/AdminServer/logs/domain1.log00033
.
Server and domain logs are files where one should look for generic errors, such as exception raised by authenticators or other domain service providers.
The domain logs duplicate some messages written to server logs (for servers in the domain), and they help determine the server where a fault has occurred in a domain that contains a large number of servers.
Note: The generation of a new log file is determined by its rotation policy; typically, the rotation is determined by file size, so when a log file exceeds a specified size, the system generates a new one with a name whose integer suffix is increased by 1. |
For details about particular loggers, see Authorization Loggers and Audit Loggers.
Related Documentation
For information about server log files and domain log files, see section Server Log Files and Domain Log Files in Oracle Fusion Middleware Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server.
For information about the Oracle WebLogic Framework, see Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.
For additional information about logging services, see Oracle Fusion Middleware Using Logging Services for Application Logging for Oracle WebLogic Server.
For complete details about logging in Oracle Fusion Middleware, see chapter Managing Log Files and Diagnostic Data in Oracle Fusion Middleware Administrator's Guide.
OPSS provides two loggers that help troubleshooting runtime authorization failures:
These two loggers, as any other OPSS logger, can be enabled and disabled dynamically, that is, without having to stop and restart the Oracle WebLogic Application Server; for details about setting the properties of a logger, see Managing Loggers with Fusion Middleware Control. The level of the above two loggers must be set to TRACE:32
.
For information about additional loggers, see Other OPSS Loggers.
The logger oracle.security.jps.util.JpsAuth
logs the start and return of the method checkPermission
; the following snippets of a log file illustrate the entry and exit demarcations to this method in the log file:
The following snippet illustrates a successful authorization log:
The following snippet illustrates an unsuccessful authorization log:
The logger oracle.security.jps.trace.logger
logs information about application roles, permissions, targets, principals, and granted and denied policies. Since enabling this logger can lead to a large output, it is recommended that it be used to debug a single use case only. Specifically, this logger records:
getPermissions
. When using offline OPSS scripts, such as migrateSecurityStore
, OPSS loggers can be enabled by starting the JVM with the following system property:
where logging.properties
is a text file with the required logger properties enabled; the format of this file is described in the documentation of the class java.util.logging.LogManager
. A sample logging.properties
file enabling OPSS loggers at appropriate levels is the following:
In addition to authorization loggers, OPSS provides the following loggers:
oracle.jps.common
enables diagnosing issues with the OPSS JpsFilter and the OPSS JpsInterceptor.
oracle.jps.deployment
enables diagnosing issues with OPSS artifacts packed with the application, when the application is deployed; keyword:"migration".
oracle.jps.openaz
enables diagnosing issues with PEP API calls. Setting oracle.jps.openaz.level
to FINEST
, logs information about submitted requests - identity, resource, action, context - and authorization results.
There are several run-time components in the Fusion Middleware Audit Framework. This section helps you navigate the diagnostic log files for these components and explains how to interpret diagnostic messages.
The log files are located at:
Table L-1 lists the various diagnostic log files.
Table L-1 Log Files for Audit Diagnostics
Component | Log Location | Configuring Loggers |
---|---|---|
Java EE Components using Audit APIs | DomainName/servers/$SERVER_NAME/logs/$SERVER_NAME-diagnostic.log | oracle.security.audit.logger (See instructions below) |
OPMN Component Using Audit APIs | See the Administration Guide for the component to locate its log files. | Loggers are based on the OPMN Components's Location. Please see the corresponding component guide. |
Startup Class Audit Loader | DomainName/servers/$SERVER_NAME/logs/$SERVER_NAME-diagnostic.log | oracle.security.audit.logger (See instructions following this table) |
OPMN Audit Loader | $ORACLE_INSTANCE/diagnostics/logs/OPMN/opmn/rmd.out | java.util.logging.config.file system property can be set to the file that contains the log level for OPMN Audit Loader |
Config/Proxy Mbeans | DomainName/servers/$SERVER_NAME/logs/$SERVER_NAME-diagnostic.log | oracle.security.audit.logger (See instructions below) |
Audit Schema Support | RCU log location (Default is $ORACLE_HOME/rcu/log/)RCU_LOG_LOCATION can be set to change this location | RCU log level (Default is ERROR) RCU_LOG_LEVEL - [SEVERE; ERROR; NOTIFICATION; TRACE |
You can configure oracle.security.audit.logger using Fusion Middleware Control.
oracle.security.audit.logger can take any log level from ERROR to TRACE allowing control over the amount of information that gets logged.
You can also view these diagnostic files with Fusion Middleware Control.
See Also: For more information about the following topics, see chapter 10, Managing Log Files and Diagnostic Data, in Oracle Fusion Middleware Administrator's Guide:
|
The Audit diagnostic messages can be categorized into two types - errors and trace messages.
All error messages are numbered IAU-XXX. These messages are found in the Error Message Guide with a proper cause and an action that can be taken to rectify the error.
The trace messages, however, are meant to provide more information about the running components. Depending on its nature, a message may require some action on your part.
Fusion Middleware Control provides several pages to manage log information. Using this tool you can:
This section explains briefly how to configure a log file. The other three functions above are explained, also briefly, in section Section L.1.3, "Solving Security Errors."
For full details about these topics, see section Managing Log Files and Diagnostic Data, in the Oracle Fusion Middleware Administrator's Guide.
To configure a log file with Fusion Middleware Control, proceed as follows:
To increase the debug output, set one the following system properties to the script that starts your Oracle WebLogic Server and restart the server:
To get debug output during the authorization process, set any of the system properties described in section Debugging the Authorization Process.
Two other system properties that can be passed at server start and that can help debugging security issues are the following:
-DDebugOPSSPolicyLoading
, a flag that monitors the progress and setting of the OPSS policy provider. -Djava.security.debug=policy
, the standard Java security debug flag that produces print information about policy files as they are parsed, including their location in the file system, the permissions they grant, and the certificates they use for signed code. Assume that just this system property is set to true:
Then, a permission check that fails generates an output with details illustrated in the following sample:
A permission check that succeeds generates no output. To disable permission check messages, set this property to false; by default, it is set to true. Disabling persmission check messages is not recommended in production environments.
Assume that jps.auth.debug
and jps.auth.debug.verbose
are both set to true:
Then, a permission check that succeeds generates an output with details illustrated in the following sample:
A permission check that fails generates an output with details illustrated in the following sample:
To disable permission check messages, set both jps.auth.debug
and jps.auth.debug.verbose
to false; by default, jps.auth.debug.vebose
is set to false.
This section describes the use of several other system properties that help debugging the authorization process based on several criteria. Specifically, the following system properties:
generate logging messages during the following authorization phases:
Each of the above properties and the phases they apply are described next.
oracle.security.jps.log.for.approle.substring
- During phases 1, 2, and 3, it logs the name of an application role that contains a specified substring; if the substring to match is unspecified, it logs all application role names.
oracle.security.jps.log.for.permeffect
- During phase 3 and according to a specified value, it logs a grant that was granted or denied; if the value is unspecified, it logs all grants (regardless whether they were granted or denied).
oracle.security.jps.log.for.permclassname
- During phases 2 and 3, it logs the name of the permission class that matches exactly a specified name; if the name to match is unspecified, it logs all permission class names.
oracle.security.jps.log.for.permtarget.substring
- During phases 2 and 3, it logs the name of a permission target that contains a specified substring; if the substring to match is unspecified, it logs all permission targets.
oracle.security.jps.log.for.enterprise.principalname
- During phases 1, 2, and 3, it logs the name of the principal (enterprise user or enterprise role) that matches exactly a specified name; if the name to match is unspecified, it logs all principal names.
The following characteristics apply to all of the above system properties:
To enable the logging of any of the above system properties, proceed as follows:
oracle.security.jps.dbg.logger
to TRACE:32
. For details on how to set a logger, see Managing Loggers with Fusion Middleware Control. The following examples illustrate typical settings of the above system properties.
myAppRole
, include the following setting: oracle.security.jps.log.for.permeffect
. java.util.PropertyPermission
, include the following setting: p.mon
, include the following setting: manager
, include the following setting: oracle.security.jps.log.for.approle.substring
and oracle.security.jps.log.for.enterprise.principalname
as indicated above. oracle.security.jps.log.for.approle.substring
nor oracle.security.jps.log.for.enterprise.principalname
. There is no generic way to resolve errors when they occur. One must search for hints and frequently follow multiple hypotheses until, hopefully, the source of the error is isolated and understood. To this end, this section describes how to search and interpret log information to resolve most common security errors. These topics are addressed in the following sections:
Understanding log error output is crucial to isolate and solve an error. Let's take a closer look at a diagnostic log file to describe the information you find for an error logged in such a file. This description is best illustrated with a real-life example.
The following is an excerpt of an error in the file AdminServer-diagnostic.log
:
The meaning of the fields in the preceding message is as follows:
Identifies the date and time when the error was logged.
Identifies the name of the server where the error occurred.
Identifies the error code and hints to the kind of error that occurred. For a complete list of JPS error codes, see chapter 41 in Oracle Fusion Middleware Error Messages Reference.
Identifies the category of the logger. The subcategories of oracle.jps
(such as admin
above) hint to the kind of error that occurred. For the complete list of categories under oracle.jps, see Subcategories of oracle.jps.
Identifies the thread where the error occurred.
Identifies the user that performed the operation that generated the error.
Identifies the execution context id. Typically used to correlate and trace sequence of events. Ecids provide information about the flow across processes, such as, from a request, to the WebLogic server, to an Oracle Internet Directory server.
Identifies the reason why the error was logged.
Identifies the exception that was raised and the reason for it.
Subcategories of oracle.jps
Here is the list of subcategories under oracle.jps
and the kind of errors logged in the category:
To initiate a search in the contents of all log files in a domain, select Domain > Logs > View Log Messages, to display the Log Messages page.
In this page you have several parameters that you can choose from to specify your search query; specifically, you can:
Once these parameters are set, click Search and the result of the query is displayed in the page. The result of a query can be further redisplayed by message type, message ID, or simple list of messages, by selecting an item from the menu Show. Moreover, the result can be automatically refreshed by choosing an item from the menu at the top right of the page (by default set to Manual Refresh).
To broaden a search to log files beyond a domain, use the button Broaden Target Scope at the top right of the page.
In some situations, it is necessary to know the context in which a message has occurred. For example, it may be useful to know messages that have preceded or followed a given error message by, say, 2 minutes.
The tab View Related Messages provides this functionality, and you can use it as follows:
In some situations, you may want to download the list of errors displayed into a separate file to forward it, for example, to a support center, or just to keep it for your records.
Whenever available, the tab Export Messages allows you to generate a file containing just the displayed results by choosing an item from the menu. The format of the generated file can be plain text, XML, or CSV.
The following sample, showing only the first of 29 messages, is an excerpt of a text file generated this way:
Policy and credential reassociation from an file-based store to an LDAP-based store may fail for several reasons. This section explains three reasons why this operation may fail.
Symptom 1- Error Code 32
Reassociation fails and an error like the following is logged in the administration server diagnostic file serverName.diagnostic.log
:
Diagnosis 1
The error above identifies a problem with the target node in the LDAP server, namely, that the node specified does not exist.
It is required that the root node specified in the text box JPS Root DN (of the page Set Security Provider) be present in the LDAP directory before invoking the reassociation.
Solution 1
Verify that the data you enter in the box JPS Root DN matches the name of a node in the target LDAP directory, and then rerun the reassociation.
Symptom 2- Error Code 68
Reassociation fails and an error like the following is logged in the administration server diagnostic file serverName.diagnostic.log
:
Diagnosis 2
The error above indicates that the name specified in the box WebLogic Domain Name is a descendant (more precisely, a grandchild) of the JPS Root DN node in the target LDAP directory.
It is required that the domain specified do not be a descendant of the root node.
Solution 2
Verify that the name you enter in the box WebLogic Domain Name does not match the name of a grandchild of the specified JPS Root DN node, and rerun the reassociation.
Symptom 3
Reassociation, carried out with Fusion Middleware Control, fails and an error like the following is logged in the administration server diagnostic file serverName.diagnostic.log
:
Diagnosis 3
The error above points to some problem with the application role test-role
, which is, in this case, the root of the problem.
Ensure that when entering data to perform reassociation with Fusion Middleware Control, you use the button Test LDAP Authentication immediately after you have completed entering all required values to connect to the target LDAP server. This test catches any problems with those values before reassociation begins.
Solution 3
In our example, a quick inspection of the file system-jazn-data.xml reveals that the application test-role is used by an application policy, but it was not defined. Here is an excerpt of that file illustrating where the required data is missing:
To solve this particular error, (a) fix system-jazn-data.xml
by inserting the definition of the application test-role; (b) revert to file-based domain stores with the fixed file; and (c) rerun the reassociation.
Symptom
When an file-based policy store is reassociated to use an LDAP-based Oracle Internet Directory policy store, the reassociation may report that it completed successfully.
At runtime, however, the system does not behave as expected. Codebase policies, that are supposed to be present in the system policy after migration, are missing.
Diagnosis
At runtime, the server reports a stack trace that resembles the following:
Here the permission:
is granted to a code base, and the authorization is not allowed since it evaluates to false
.
Solution
Check the AdminServer diagnostic logs for messages like these:
A message of this type suggests that the schema was never seeded during the re-association. If the correct schema is not seeded in the Oracle Internet Directory server, the system will not work as expected.
To ensure that the schema is seeded during re-association, proceed as follows:
cn=OPSS
container under the cn=OracleSchemaVersion
container in the Oracle Internet Directory server. Check the AdminServer diagnostic logs to confirm that the OPSS LDAP schema was seeded in the LDAP server by looking for this message:
If re-associating to a Release 11g Oracle Internet Directory server, the schema version should read: 11.1.1.1.0
If re-associating to a Release 10.1.4.3 Oracle Internet Directory server, the schema version should read: 11.1.1.0.0
The Policy Store schema version is set in the Oracle Internet Directory server under this container:
Similarly, the Credential Store schema version is set in the Oracle Internet Directory server under this container:
This section explains a reason why reassociation to an LDAP server may fail.
Symptom
Reassociating the security store to an LDAP repository fails and the AdminServer log reports an error like the following:
Diagnosis
The error LDAP: error code 32
indicates that the schema of the reassociation target LDAP repository is not supported, that is, the version of the target LDAP repository is not one of the OPSS supported LDAP stores.
Solution
Update the target LDAP repository to one of the supported LDAP stores and then try reassociating again. The version of an LDAP OID store must be 10.1.4.3 or later. For a list of supported versions, see Section 8.2, "Using an LDAP-Based OPSS Security Store."
This section explains several reasons why the Oracle WebLogic Server may fail to start in the following sections:
This section explains a reason why the Oracle WebLogic Server may fail to start after modifying the list of authenticators in a domain.
Symptom
After modifying the list of authenticator providers in a domain, the Oracle WebLogic Server fails to start, and the error messages output include the following:
Diagnosis
One cause of this problem is that the list of authenticators in your domain does not include an LDAP authenticator.
Important: An LDAP authenticator is required in this list for any domain using OPSS. |
Solution
Since the server cannot start, you must add one LDAP authenticator manually, as follows:
DOMAIN_NAME/config/config.xml
. config.xml
and include, within the element <realm>
, an LDAP authenticator, such as the default authenticator illustrated in the following sample: Once the server is back up and running, you can modify the list of providers to include the provider of your choice using the WebLogic Administration Console, but ensure that at least one of them is an LDAP authenticator provider.
To this end, use the WebLogic Administration Console as follows:
This section explains a reason why the Oracle WebLogic Server may fail to start.
Symptom
After removing the out-of-box default authenticator and adding, say an Oracle Internet Directory authenticator, the server fails to start.
Diagnosis
Most likely, you have forgotten to enter an account member of the Administrators group in your added authenticator. The server requires that such an account be present in one domain authenticator. This account is always present in the default authenticator.
Solution
Since the server cannot start, you must add the deleted one LDAP authenticator manually, as follows:
DOMAIN_NAME/config/config.xml
. config.xml
and include, within the element <realm>
, the default authenticator, as illustrated in the following sample: Once the server is back up and running, proceed as follows:
This section explains a reason why the Oracle WebLogic Server may fail to start.
Symptom
The server fails to start when it started with security manager is enabled (with the system property -Djava.security.manager
).
Diagnosis
One reason why you may run into this issue is the lack of permission grants to PKI APIs in oraclepki.jar
when the security manager is enabled at server startup.
Solution
Ensure that a grant like the following is present in the file weblogic.policy
, or add it if it is not:
The above grant is provided by default. Note that when security manager is enabled, the access to all system resources requires codebase permission grants.
For complete details about using the Java Security Manager to protect WebLogic resources, see Oracle Fusion Middleware Programming Security for Oracle WebLogic Server.
Note: Printing Security Manager is a WebLogic server enhancement to the Java Security Manager. Use Printing Security Manager to identify all of the required permissions for a Java application running under Java Security Manager. Unlike the Java Security Manager, which identifies needed permissions one at a time, the Printing Security Manager identifies all the needed permissions without intervention. |
This section explains a reason why the Oracle WebLogic Server will fail to start.
Symptom
The domain directory ${domain.home}/config/fmwconfig
is on an NFS-mounted partition, and when the server is started an error message like the following is logged:
Furthermore, when orapki
debugging is turned on and the server is started once again, the following message is logged:
Note: To enableorapki debugging, start the server with the following property set: -Doracle.pki.debug=true . |
Diagnosis
The real cause for the server's failure to come up is reported in the second error message above, once orapki
has been enabled. Since OPSS requires file locking when managing security artifacts in file-based stores, that error message indicates that the file system on which the domain directory is NFS-mounted does not support file locking.
Solution
Perform either of the following:
nolock
option enabled. ${domain.home}/config/fmwconfig
to a local storage This section explains several reasons why the Oracle WebLogic Server may fail to start.
Symptom
When attempting to load and set the policy provider, the Oracle WebLogic Server fails to start and logs an exception similar to the one illustrated in the following snippet:
Diagnosis
The server startup includes loading and setting the policy provider as defined in the configuration file jps-config.xml
; if this task is not completed successfully, the Oracle WebLogic Server fails to start. As illustrated in the sample above, this type of failure is identified in the server's log by the string
To determine the root cause of a particular failure server startup, check the server's log file and inspect the logged stack trace. For details about identifying errors, see Diagnosing Security Errors.
Here are some reasons why the server fails to start:
Solution
A solution for each of the above cases above is explained next.
Note that special characters (such as backlashes or white space characters) in the full path specification must be properly escaped. One way to verify correctness is to test using the specified full path in a command line.
For details about the syntax of URL specifications in a code source (including the use of system variables), see <url>.
This section explains the likely reasons why an enterprise user or role (group) may fail to be granted or revoked permissions.
Symptom
An enterprise user or group, properly entered in a domain authenticator, is not granted or revoked the permissions defined by a grant.
Diagnosis
This problem is likely to occur when there is a case mismatch between the stored name (in a domain authenticator) and the supplied name (either actively entered by a user or obtained programmatically). For example, this mismatch would occur when the stored user name is JdOE and the supplied user name is jdoe.
Solution
There are two ways to resolve this issue.
The first solution involves setting the appropriate property in the authenticator being used in your domain. As long as both strings (the supplied and the stored) contain identical sequence of characters (irrespective of case), this setting guarantees that the user name populated in the Subject matches the user name present in a domain authenticator, even when the corresponding characters differ in case. Thus, when this setting is in place, the user names JdOE and jdoe match.
To set your domain authenticator property, proceed as follows:
The second solution considers the case where the supplied name is obtained programmatically, that is, where one must produce a principal from a user name.
To obtained the correct user or group name, either pass the name exactly as it is stored in the authenticator or use the sequence of calls illustrated in the following code snippet:
Important: When creating a user or role principal, you must use the calls:Principal userPrincipal = new WLSUserImpl(user.getUserProfile()getName()); Principal rolePrincipal = new WLSGroupImpl(role.getRoleProfile().getName()); Instead of the calls: Principal userPrincipal = new WLSUserImpl(user.getName()); Principal rolePrincipal = new WLSGroupImpl(role.getName()); |
This section explains the likely reasons why a connection to an Oracle Internet Directory LDAP server can fail. This failure can also happen during reassociation.
Symptom
The migration of data from a source repository to a target LDAP server repository fails.
Diagnosis
Typically, this kind of problem is due to an incorrect set up of parameters in the target LDAP server.
For further probing into Oracle WebLogic Server log files, search any of the log files in the directories DomainName/servers/AdminServer
or DomainName/servers/ManagedServers
for the following strings: <Error>, <Critical>, and <Warning>.
For more information about identifying and solving errors, see Section L.1, "Diagnosing Security Errors."
Solution
Verify that all the target server data provided for the migration is valid. You may require the assistance of your LDAP server administrator to perform this validation.
Note: If you are using Fusion Middleware Control to reassociate to an LDAP server, ensure that you use the button Test LDAP Authorization before initiating the operation. Typically, this test catches incorrect supplied parameters. |
This section explains the likely reasons why a connection to the embedded LDAP authenticator can fail.
Symptom
The connections that client applications use to request queries to the embedded LDAP authenticator, via the User and Role API, are stored and maintained in a connection pool. By default, and out-of-the-box, this pool is the JNDI pool, as specified in the file jps-config.xml
.
If the number of current connections in the pool exceeds the maximum allowed by the LDAP service, client applications will not be able to connect to the service or, even when they are already connected, receive a “socket closed” exception. The server log would indicate, in this case, that the number of concurrent connections allowed has been exceeded.
Diagnosis
To avoid going over the limit, one needs to adjust the maximum number of concurrent connections allowed by the LDAP service as appropriate to the application's needs. This threshold needs to be finely tuned up: a too small maximum may not be sufficient (and cause the exception mentioned above); a too large maximum may risk a denial of service (DOS) attack. The correct maximum depends on your application and the particular LDAP service the application uses.
Solution
There are two alternative ways that resolve this issue:
vde.quota.max.conpersubject
from the default 100 to, for example, 200, or any other value. CONNECTION_POOL_CLASS
from the authenticator server instance (by default, this property has the value oracle.security.idm.providers.stdldap.JNDIPool
. Note that (a) these settings do not exclude each other, that is, you can carry out both of them; and (b) in any case, you must restart the server for the changes to take effect.
This section explains some reasons why you may fail to access data in a domain authenticator with the User and Role API.
Symptom
The User and Role API fails to access data in a configured authenticator.
Diagnosis 1
The OPSS User and Role API can access data only in the first LDAP authenticator configured in a domain. At least one such authenticator must be present in a domain. The API access to that first LDAP authenticator fails if the target user is not present in that authenticator, even though that user is present in some other domain authenticator.
Solution 1
Enter the missing user in the first LDAP authenticator, or reorder the list of LDAP authenticators in your domain.
Diagnosis 2
Let's assume that the target user on which the API that fails is present in the first LDAP authenticator configured in your domain.
By default, the User and Role API uses the attribute uid
to perform user search in an LDAP authenticator. If for some reason, a user entered in the LDAP is lacking this attribute, then the User and Role API fails.
Solution 2
Ensure that all users in the first LDAP authenticator have the attribute uid
set.
Note: If you are developing a Java SE application (and only in this case) and want the User and Role API to employ an attribute other than the default one (uid) to search users, say mail for example, then the properties username.attr and user.login.attr must be configured in the LDAP provider instance of the identity store (in the file jps-config-jse.xml) as illustrated in the following code snippet: <serviceInstance provider="idstore.ldap.provider" name="idstore.ldap"> ... <property name="username.attr" value="mail"/> <property name="user.login.attr" value="mail"/> ... </serviceInstance> To add properties to a provider instance with a prescribed script, see Section E.1, "Configuring OPSS Service Provider Instances with a WLST Script." |
This section explains a likely reason why an application fails to access data in the domain's credential store.
Symptom
An application fails to retrieve credential data from the domain's credential store, and an error message (containing lines like the one illustrated below) is logged (text in between brackets should describe information specific to the particular failure):
Diagnosis
If an application is to access the credential store to perform an operation (such as retrieving a user password, for example), then its code must be granted the appropriate permission to perform the secured operation; otherwise, the application runs into an error like the one described above.
Solution
To grant the permission that an application requires to access the credential store, include the appropriate CredentialAccessPermission
in the application's jazn-data.xml
; this grant takes effect when the application is deployed or redeployed.
To include a permission using Fusion Middleware Control, see Section 9.2, "Managing Policies with Fusion Middleware Control."
To include a permission using an OPSS script, see Section 9.3, "Managing Application Policies with OPSS Scripts."
The following fragment of the file jazn-data.xml
illustrates how to grant all code in the application myApp
permission to read all credentials in the folder myAlias
:
This section explains the likely reasons why you are not able to establish an anonymous SSL connection while reassociating policies and credentials.
Symptom
A step in the reassociation of file-based policies and credentials to an LDAP-base storage using an Oracle Internet Directory server with Fusion Middleware Control involves testing the anonymous SSL connection to the LDAP server (specifically with the button Test LDAP). This test fails.
Diagnosis
Your target LDAP server must be trusted by the Oracle WebLogic Server and the port number you are using to the LDAP server must be an SSL port.
Solution
Establishing a connection to an LDAP server requires some previous configuration on the LDAP server. For details, see Section 8.2.2, "Prerequisites to Using an LDAP-Based Security Store."
In addition, to use an anonymous SSL connection, you must enter a port that has been set for receiving secure data. If your LDAP server has not been configured with such a port, the connection fails.
Ensure that the supplied LDAP server port is an SSL port configured to listen in anonymous SSL mode, and that the supplied server name reachable. Typically, the setting of this port involves an LDAP server administrator.
This section explains a reason why an authorization check has failed.
Symptom
An attempt to authorize a user by your application fails, and the system logs an error containing a line like the following:
Diagnosis
One reason that can lead to such an authorization failure is a mismatch between the run-time policy context and the policy store stripe that you application is using.
On the one hand, the application stripe (or subset of policies in the policy store) that an application uses is specified in the file web.xml
with the parameter application.name
within the filter configuring the JpsFilter
(for a servlet) or the interceptor configuring the JpsInterceptor
(for an EJB). For details and samples, see Application Name (Stripe). If the application stripe is not specified (or left blank), then the system picks up an application stripe based on the application name.
On the other hand, the run-time policies that your application uses are specified in the file system-jazn-data.xml
with the element <application.name>
.
If those two names do not match or if you have not explicitly specified the stripe to use, then, most likely, your application is accessing the wrong policy stripe and, therefore, not able to authorized your application users as expected.
Solution
Ensure that you specify explicitly your application stripe, and that stripe is the one that your application is supposed to use. In most cases, the two names specified in those two different files (as explained above) match; however, in cases where several applications share the same policy stripe, they may differ.
This section explains the likely reasons why a user gets permissions other than those anticipated.
Symptom
A new user or a modified user gets unexpected permissions.
Diagnosis
This issue is likely to come up in cases where a user is added with the name of previously removed user, or an old user gets its name or uid changed. The common reason why the user may get more or less permissions than expected is that the policy store has not been properly updated before a user is removed or a user data is changed.
Solution
Before deleting a user, revoke all permissions, application roles, and enterprise groups that had been granted to the user. If you fail to remove all security artifacts referencing a user to be deleted, they are left dangling and, potentially, inherited if another user with the same name or uid is created at a later time.
Similar considerations apply to when a user name or uid is changed: all policies (grants, permissions, roles) referring to the old data must be updated so that they work as expected with the new data.
This section explains a reason why your code may run into a security access control exception.
Symptom
At run time, your application outputs an error like the following one (only the first few lines are shown):
Diagnosis
The above error means that a call in your code does not have sufficient permissions to execute a secured operation.
Solution
Your code must be granted the appropriate permissions to execute the secured operation. Depending on the scope of the permission you would like to set, you have two alternatives.
The first one is to grant permission to all application code in the application's EAR or WAR files; in this case, the call to the secured operation can be inserted anywhere in the application code.
The second one is to grant permission to just a JAR file; in this case, the call to the secured operation must be inside a privileged block.
Each of these solutions is next illustrated by an application attempting to access the credential store.
The following fragment of an applicationjazn-data.xml
illustrates how to set permission to read any key within the map MY_MAP in the credential store to any code within the directory BasicAuth
:
If the permission is to be granted to the code in a particular EAR or WAR file, the url
specification above would have to be changed to one like the following:
In both above cases, the call to read the credential store can be placed anywhere in the application code.
If, however, the permission is to be granted to just the code in a particular JAR file, the url
specification above would have to be changed to one like the following:
In this last case, the code in the file Foo.jar
that calls a read operation on the credential store must be placed in an AccessController.doPrivileged block, as illustrated in the following code snippet:
Note that since our sample grant above allows only read permission, none of the set or reset operations work, even inside a privileged block.
This section explains a reason why a permission may fail to pass a permission check.
Symptom
At run time, your application outputs an error like the following one (only the first few lines are shown):
Diagnosis
When two or more applications share a permission class, that permission class must be set in the system class path so the class is loaded just once. Otherwise, only the first application loading the class passes the permission check; other ones loading the same class thereafter may fail the permission check and output an error like the one illustrated above.
Note that even though the permission class is in the permission collection (see bold text in sample output above), the check fails and the access is denied. This is because, at that point, the environment contains several instances of a permission class with the same name.
Solution
Ensure that if two or more applications to be run in the same domain share a permission class, then include that class in the system class path.
This section describes a reason why a permission check may fail before the server has completed its starting phase.
Symptom
An authorization check fails before the server has started. The server has completed its starpup when it outputs the a line like the following:
Diagnosis
A permission check error before the server has changed status to STARTING
usually indicates that the authorization service required to check that permission was not fully initialized at the time of the request.
Solution
To workaround this issue, proceed as follows:
weblogic.policy
to add the appropriate grant(s). java.security.policy
set to the location of the weblogic.policy
file. jps.policystore.hybrid.mode
set to true. This section describes a reason why the automatic migration of policies at application deployment may fail. Note that the deployment of an application may succeed even though the migration of policies failed.
Note: The reason why the automatic migration can fail, as explained in this section, can also lead to similar failures when reassociating domain stores. |
For a failure also related to migration, see Incompatible Versions of Policy Stores.
Symptom
The application is configured to migrate policies automatically at deployment. The application deployment succeeds, but the diagnostic file corresponding to the server where it has been deployed outputs a message like the following:
The above excerpt was extracted from the file server_soa-diagnostic.log
, and the application JpsJdev
was deployed to the managed server server_soa
. Note that the key phrase to look for to locate such error is highlighted in the sample above. In addition, the error describes the artifact that raised the exception, the application role test_role
.
Diagnosis
Something is wrong with the definition of this role in the application file jazn-data.xml
. In fact, a quick look at this file reveals that the role test_role
is referenced in a grantee, as illustrated in the following excerpt:
But the name of what is supposed to be the application role named test_role
, however, was inadvertently misspelled to test_rolle
:
Solution
Ensure that all application roles referenced in application policies have been properly defined in the jazn-data.xml
file. If a referenced role name cannot be matched, as in the samples above, the migration fails.
This section explains several issues related to characters used in policies, in the following sections:
When the policy store is an LDAP-based Oracle Internet Directory 10.1.4.3 repository, then using the characters '*', '(', ')', or '\' in the RFC 2252/2253 filter results in error 53 (DSA unwilling to perform). To resolve this error, apply the patch for bug number 7711351 to Oracle Internet Directory 10.1.4.3.
The issue explained in this section is relevant to XML Policy Stores only, that is, it does not apply to LDAP-based Policy Stores.
The following characters:
are not recommended as part of an Application Role name when using an file-based policy store.
If it becomes necessary to use one of those characters to create a role, for example, then ensure that such characters are escaped in the input to API Policy Store methods like ApplicationPolicy.searchAppRoles()
, so they return correct results.
For example, if you have an application role named "appRole^$" it will need to be input as ApplicationPolicy.searchAppRoles("appRole\\^\\$")
to find the match in the policy store.
Alternatively, you could use a wild card in the search expression without including these escaped special characters, and it will also match that application role:
ApplicationPolicy.searchAppRoles("appRole*")
An application role name is a string of printable characters other than white space, that is, it can contain alpha-numeric characters (ASCII or Unicode) and other printable characters (such as underscore or square brackets) except for white space. This rule applies to all three kinds of supported storage: XML, LDAP, and DB.
In an file-based policy store, a new-line character is required between the closing of a <permission>
or <principal>
tag and the opening of the following one.
Following are examples of strings illustrating incorrect and correct formats.
Incorrect example fragment of policy store:
Correct example fragment of policy store:
This section describes the correct way to code a grant in Java SE applications. Even though the problem described is not an issue in Java EE applications, for maximum portability, it is recommended that this solution be used in Java EE applications too.
Symptom
The application code includes a fragment like the following, by an application creates a grant:
At runtime, however, the grant is not taking effect as expected.
Diagnosis
A bit of inspection indicates that the policy store repository includes the following attribute:
Solution
The lines of code above should be replaced by the following:
The solution uses the array PrincipalEntry
instead of the array Principal
and the array PermissionEntry
instead of the array Permission
.
Note: This same issue applies to the methodrevoke , which also has overloaded variants that accept Principal[] or PrincipalEntry[] |
This section describes common problems and solutions for Oracle Business Intelligence when used as a reporting tool for Oracle Fusion Middleware security. It contains the following topics:
To view Oracle Fusion Middleware Audit Framework reports in Oracle Business Intelligence, you must use the appropriate audit templates.
For details, see Section 14.1.3, "Set Up Oracle Reports in Oracle Business Intelligence Publisher".
You may see problems with Oracle Fusion Middleware Audit Framework reports if Oracle Business Intelligence Publisher and the database are installed in sites with different time zones.
To avoid this issue, ensure that Oracle Business Intelligence Publisher and the database are installed in the same time zone.
This section describes a reason why cataloging of an attribute is needed.
Symptom
While searching the policy store, an exception similar to the following is encountered:
Diagnosis
The error above indicates that the attribute orcljpsresourcetypename
must be cataloged before it is used in a filter to search the policy store.
Solution
An Oracle Internet Directory attribute used in a search filter must be indexed and cataloged. Indexing and cataloging are optional operations, in general, but required for OPSS-related attributes. Attribute indexing and cataloging is automatically performed by the OPSS script reassociateSecurityStore
.
For details about managing attribute catalogs and identifying whether an attribute is indexed, see the following sections in Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory:
To catalog attributes manually use the command ldapmodify
, as illustrated bellow:
To catalog, for example, the attributes createtimestamp
and modifytimestamp
use an LDIF file like the following:
The list of Oracle Internet Directory attributes that must be indexed follows:
When searching for information in an Active Directory environment that is configured for LDAP referrals, the referrals fail if the host being referred to is in a different domain than the Active Directory server.
Symptom
When a user requests a resource, at times verification of the user's identity can fail due to an inability to validate the user's identity in the directory. This error can occur in an Active Directory environment when the user's browser runs on a non-Windows computer, or if the user's browser runs on a Windows computer that is not in the Active Directory server domain.
Diagnosis
This problem can arise due to LDAP referral chasing. An LDAP referral occurs when a domain controller does not have the section of the directory tree where a requested object resides. The domain controller refers the client to another destination so that the client can conduct a DNS search for another domain controller. If the client is configured to chase referrals, the search can continue.
For the scenario where the user has a Windows-based computer, an issue can occur with LDAP referrals if the client's domain controller does not have a trust relationship with the Active Directory domain controller.
Solution
If you encounter this issue, add the entry for the Active Directory host's address in the following list:
WINDOWS_HOME_DIRECTORY
\system32\drivers\etc\hosts
On Windows XP, the list is located here:
C:\WINDOWS\system32\drivers\etc\host
On a Unix-based system, add this entry to the /etc/hosts
file, using the format:
IP_address_of_AD_host AD_host_name
where AD_host_name
is the host name specified in the referral, for example:
123.123.123.123 my2003ad.com
This section describes the reason why the server would throw the exception PolicyStoreIncompatibleVersionException
. See also Incompatible Versions of Policy Stores.
Symptom
An error similar to the following is logged or issued by the server:
Diagnosis
The above exception indicates that the domain OPSS binaries version (11.1.1.4.0) and the policy store version (11.1.1.5.0) used by that domain have incompatible versions. The version of the policy store is established during reassociation and that version is used until the policy store is upgraded to a newer version.
OPSS domain binary versions are backward compatible with policy store versions used by that domain, but they are not forward compatible. Thus, the error above indicates that the policy store has version newer that the version of the OPSS binaries. PS3 OPSS binaries cannot use a newer version of the policy store.
Here are three scenarios where OPSS binaries ends up running into this incompatibility.
upgradeOPSS
). Migration is supported only when the versions of the OPSS binaries and the policy store are same.
reassociateSecurityStore
with the join argument. Reassociation is supported only when the versions of the OPSS binaries and the policy store are same.
Solution
The solution, common to all three scenarios above, is either one of the following:
This section describes the reason why, while migrating the OPSS security store, the exception PolicyStoreIncompatibleVersionException
is encountered. See also Incompatible Versions of Binaries and Policy Store.
The above exception indicates that the version of the source store is higher than the version of the target store, an invalid combination of versions. Migration proceeds only if the version of the source is not higher than the version of the target.
The workaround is to upgrade the taget store to a version compatible with the version of the source store.
You can find more solutions on My Oracle Support (formerly MetaLink) at http://myoraclesupport.oracle.com
. If you do not find a solution to your problem, log a service request.
 Copyright © 2003, 2011, Oracle and/or its affiliates. All rights reserved. |