Developer's Guide for Oracle SOA Suite
11g Release 1 (11.1.1.6.1)
E10224-12
March 2012
Documentation for developers that describes how to design, secure, test, and deploy Oracle Service-Oriented Architecture (SOA) composite applications consisting of service and reference binding components and Oracle BPEL process, human task, business rule, Oracle Mediator, and spring service components. Includes additional information on designing transformations and business events, integrating Oracle Business Activity Monitoring and Oracle User Messaging Service into composites, and acting upon human tasks during runtime in Oracle BPM Worklist.
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite, 11g Release 1 (11.1.1.6.1)
E10224-12
Copyright © 2005, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Author: Anirban Ghosh, Solveig Haugland, Mark Kennedy, Richard Smith, Carol Thom, and Savija Vijayaraghavan
Contributor: Oracle SOA Suite development, product management, and quality assurance teams
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This manual describes how to use Oracle SOA Suite.
This preface contains the following topics:
This manual is intended for anyone who is interested in developing applications with Oracle SOA Suite.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following Oracle resources:
Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/
To download free release notes, installation documentation, white papers, or other collateral, visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at
http://www.oracle.com/technology/
To download Oracle BPEL Process Manager documentation, technical notes, or other collateral, visit the Oracle BPEL Process Manager site at Oracle Technology Network (OTN):
http://www.oracle.com/technology/bpel/
If you have a username and password for OTN, then you can go directly to the documentation section of the OTN web site at
http://www.oracle.com/technology/documentation/
See the Business Process Execution Language for Web Services Specification, available at the following URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbizspec/html/bpel1-1.asp
See the XML Path Language (XPath) Specification, available at the following URL:
http://www.w3.org/TR/1999/REC-xpath-19991116
See the Web Services Description Language (WSDL) 1.1 Specification, available at the following URL:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
For Release 11.1.1.6.x, this guide has been updated in several ways. The following table lists the sections that have been added or changed. If a feature was not available in the first release of 11.1.1.6.x, the last columns denote which documentation release contains the update.	
For a list of known issues (release notes), see the "Known Issues for Oracle SOA Products and Oracle AIA Foundation Pack" at http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html	
.	
Sections	Changes Made
---	---
Chapter 4 Getting Started with Oracle BPEL Process Manager	
Section 4.1.1, "How to Add a BPEL Process Service Component"	Section revised to describe how to specify the
Chapter 8 Invoking an Asynchronous Web Service from a BPEL Process	
Section 8.3, "Creating a Dynamic Partner Link at Design Time for Use at Runtime"	Section revised to describe how to dynamically assign an endpoint reference to a partner link for use at runtime in BPEL version 2.0.
Chapter 9 Using Correlation Sets and Message Aggregation	
Section 9.2, "Routing Messages to the Same Instance"	Section added to describe the new message aggregation feature. When multiple messages are routed to the same process/partner link/operation name, the first message is routed to create an instance and subsequent messages can be routed to continue the created instance using a midprocess receive activity.
Chapter 11 Using Conditional Branching in a BPEL Process	
Section 11.5, "Specifying XPath Expressions to Bypass Activity Execution"	Section revised to describe how to specify an XPath expression in an activity in BPEL version 2.0 that, when evaluated to true, causes that activity to be skipped.
Chapter 12 Using Fault Handling in a BPEL Process	
Section 12.14, "Throwing Faults with Assertion Conditions"	Section revised to describe how to specify an assertion condition in BPEL version 2.0 that is executed upon receipt of a callback message in request-response invoke activities, receive activities, reply activities, and onMessage branches of pick and scope activities.
Chapter 15 Using Events and Timeouts in BPEL Processes	
Section 15.3, "Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities"	Section revised to describe how to specify a timeout setting for request-reply (synchronous) operations and in-only receive (asynchronous) operations in BPEL version 2.0.
Chapter 20 Creating Oracle Mediator Routing Rules	
Section 20.3.2.5, "How to Handle Premature Callbacks"	Section added to describe the
Section 20.3.2.14, "How to Override Pass Through Settings for Attachments"	Section added to describe the
Chapter 42 Automating Testing of SOA Composite Applications	
Section 44.5, "Testing BPEL Process Service Components"	Section added to describe how to automate the testing of an individual BPEL process service component included in a new or existing SOA composite application test suite.
Chapter 44 Managing Large Documents and Large Numbers of Instances	
Section 45.1.1.2.1, "SOAP with Attachments"	
X	
Section 45.1.3.4, "Using XSLT Transformations on Large Payloads (For Oracle BPEL Process Manager)"	Section revised to remove a note that recommended Mediator not be used for XSLT transformations with large payloads.
Section 45.1.3.5, "Using XSLT Transformations on Large Payloads (For Oracle Mediator)"	Section added to describe the new
Chapter 48 Working with Cross References	
Section 49.3, "Oracle Data Integrator Support for Cross Referencing"	Section added to outline how to use Oracle Data Integrator to create cross reference tables for SOA composites.
Section 49.5.2, "About the xref:populateLookupXRefRow Function"	Section added to document the new
Chapter 54 Creating Oracle BAM Enterprise Message Sources	
Section 56.2.4, "How to Configure EMS Error Handling"	Section revised to add information on the certification of EMS error handling.
Chapter 58 Creating Oracle BAM Alerts	
Section 60.1, "Introduction to Creating Alerts", Section 60.2.2, "How to Activate Alerts", Section 60.2.3, "How to Modify Alert Rules", and Section 60.2.4, "How to Delete an Alert"	Sections revised to note that all alerts should be visible to administrators.
Section 60.2.5, "What You May Need to Know About Modifying Alerts"	Sections added to provide information about the options admin users have when modifying alerts.
Appendix A BPEL Processes Activities and Services	
Section A.2.2, "Copying and Pasting Activities in BPEL Projects"	Section added to document how to copy and paste activities in the same BPEL project or between BPEL projects.
Appendix B XPath Extension Functions	
Section B.3.12, "readBinaryFromFile"	Section added to describe the usage of the
This part provides an introduction to Oracle SOA Suite and developing SOA composite applications.	
This part contains the following chapters:	
This chapter describes service-oriented architecture (SOA) and Oracle SOA Suite, standards used by Oracle SOA Suite to enable SOA, SOA composite application architecture and runtime behavior, approaches to designing SOA composite applications, and where to go to learn more about Oracle SOA Suite.	
This chapter includes the following sections:	
Changing markets, increasing competitive pressures, and evolving customer needs are placing greater pressure on IT to deliver greater flexibility and speed. Today, every organization is faced with predicting change in a global business environment, to rapidly respond to competitors, and to best exploit organizational assets for growth. In response to these challenges, leading companies are adopting service-oriented architecture (SOA) to deliver on these requirements by overcoming the complexity of their application and IT environments.	
SOA provides an enterprise architecture that supports building connected enterprise applications to provide solutions to business problems. SOA facilitates the development of enterprise applications as modular business web services that can be easily integrated and reused, creating a truly flexible, adaptable IT infrastructure.	
SOA separates business functions into distinct units, or services. A SOA application reuses services to automate a business process.	
A standard interface and message structure define services. The most widely used mechanism are web services standards. These standards include the Web Service Description Language (WSDL) file for service interface definition and XML Schema Documents (XSD) for message structure definition. These XML standards are easily exchanged using standard protocols. Because standards for web services use a standard document structure, they enable existing systems to interoperate regardless of the choice of operating system and computer language used for service implementation.	
When designing a SOA approach, you create a service portfolio plan to identify common functionality to use as a service within the business process. By creating and maintaining a plan, you ensure that existing services and applications are reused or repurposed whenever possible. This plan also reduces the time spent in creating needed functionality for the application.	
Oracle SOA Suite provides a complete set of service infrastructure components for designing, deploying, and managing composite applications. Oracle SOA Suite enables services to be created, managed, and orchestrated into composite applications and business processes. Composites enable you to easily assemble multiple technology components into one SOA composite application. Oracle SOA Suite plugs into heterogeneous IT infrastructures and enables enterprises to incrementally adopt SOA.	
The components of Oracle SOA Suite benefit from common capabilities, including a single deployment, management, and tooling model, end-to-end security, and unified metadata management. Oracle SOA Suite is unique in that it provides the following set of integrated capabilities:	
Oracle SOA Suite puts a strong emphasis on standards and interoperability. Among the standards it leverages are:	
Provides the service details and their interdependencies to form composite applications. SCA enables you to represent business logic as reusable service components that can be easily integrated into any SCA-compliant application. The resulting application is known as a SOA composite application. The specification for the SCA standard is maintained by the Organization for the Advancement of Structured Information Standards (OASIS) through the Open Composite Services Architecture (CSA) Member Section:	
Specifies a standard data method and can modify business data regardless of how it is physically accessed. Knowledge is not required about how to access a particular back-end data source to use SDO in a SOA composite application. Consequently, you can use static or dynamic programming styles and obtain connected and disconnected access.	
Provides enterprises with an industry standard for business-process orchestration and execution. Using BPEL, you design a business process that integrates a series of discrete services into an end-to-end process flow. This integration reduces process cost and complexity. BPEL versions 1.1 and 2.0 are supported.	
Processes XML documents and transforms document data from one XML schema to another.	
Provides a Java technology solution to the problem of connectivity between the many application servers in Enterprise Information Systems (EIS).	
Provides a messaging standard that allows application components based on the Java 2 Platform, Enterprise Edition (Java EE) to access business logic distributed among heterogeneous systems.	
Provides the entry points into a SOA composite application. The WSDL file provides a standard contract language and is central for understanding the capabilities of a service.	
Provides the default network protocol for message delivery.	
Oracle SOA Suite uses the SCA standard as a way to assemble service components into a SOA composite application. SCA provides a programming model for the following:	
SCA provides a model for assembling distributed groups of service components into an application, enabling you to describe the details of a service and how services and service components interact. Composites are used to group service components and wires are used to connect service components. SCA helps to remove middleware concerns from the programming code by applying infrastructure declaratively to composites, including security and transactions.	
The key benefits of SCA include the following:	
Service components integrate with other service components without needing to know how other service components are implemented.	
Service components can easily be replaced by other service components.	
Services can be invoked either synchronously or asynchronously.	
Service components are easily integrated to create a SOA composite application.	
Service components can be easily maintained and debugged when an issue is encountered.	
A SOA composite is an assembly of services, service components, and references designed and deployed in a single application. Wiring between the services, service components, and references enables message communication. The details for a composite are stored in the composite.xml	
file.	
Figure 1-1 provides an example of a composite that includes an inbound service binding component, a BPEL process service component (named Account	
), a business rules service component (named AccountRule	
), and two outbound reference binding components.	
Figure 1-1 Simple SOA Composite Architecture	
Service components are the building blocks that you use to construct a SOA composite application.	
The following service components are available. There is a corresponding service engine of the same name for each service component. All service engines can interact in a single composite.	
Binding components establish a connection between a SOA composite and the external world. There are two types of binding components:	
Table 1-1 lists and describes the binding components provided by Oracle SOA Suite.	
Table 1-1 Binding Components Provided by Oracle SOA Suite	
Binding Components	Description
---	---
Use for connecting to standards-based services using SOAP over HTTP.	
Use for integrating services and references with technologies (for example, databases, file systems, FTP servers, messaging: JMS, IBM WebSphere MQ, and so on) and applications (Oracle E-Business Suite, PeopleSoft, and so on). This includes the AQ adapter, database adapter, file adapter, FTP adapter, JMS adapter, MQ adapter, and Socket adapter.	
Use for browsing B2B metadata in the MDS repository and selecting document definitions.	
Use for connecting Oracle Application Development Framework (ADF) applications using SDO with the SOA platform.	
Oracle Applications	Use for integrating the Oracle Applications adapter with Oracle applications.
Use for integrating Java EE applications with Oracle BAM Server to send data, and also use as a reference binding component in a SOA composite application.	
Use for integrating SDO parameters or Java interfaces with Enterprise JavaBeans.	
Use to invoke a SOA composite application and exchange messages over a remote method invocation (RMI) in the inbound direction and to invoke an Oracle Service Bus (OSB) flow or another SOA composite application in the outbound direction.	
HTTP binding	Use to integrate SOA composite applications with HTTP binding.
Figure 1-2 shows the operability of a SOA composite application using SCA technology. In this example, an external application (a .NET payment calculator) initiates contact with the SOA composite application.	
For more information about descriptions of the tasks that services, references, service components, and wires perform in an application, see Section 1.5, "Service Component Architecture within SOA Composite Applications."	
Figure 1-2 Runtime Behavior of SOA Composite Application	
The .NET payment calculator is an external application that sends a SOAP message to the SOA application to initiate contact. The Service Infrastructure picks up the SOAP message from the binding component and determines the intended component target. The BPEL process service engine receives the message from the Service Infrastructure for processing by the BPEL Loan Process application and posts the message back to the Service Infrastructure after completing the processing.	
Table 1-2 describes the operability of the SOA composite application shown in Figure 1-1.	
Table 1-2 Introduction to a SOA Composite Application Using SCA Technologies	
Part	Description
---	---
Binding components	Establishes the connectivity between a SOA composite and the external world. There are two types:
The SOAP binding component service:	
An example of a binding component reference in Figure 1-2 is the Loan Process application.	Section 1.5.1, "Service Components"
Service Infrastructure	The Service Infrastructure:
Section 1.6.1, "Service Infrastructure"	
Service engines (containers hosting service components)	Host the business logic or processing rules of the service components. Each service component has its own service engine.
Section 1.6.2, "Service Engines"	
UDDI and MDS	The MDS (Metadata Service) repository stores descriptions of available services. The UDDI advertises these services, and enables discovery and dynamic binding at runtime.
SOA Archive: Composite (deployment unit)	The deployment unit that describes the composite application.
The Service Infrastructure provides the following internal message routing infrastructure capabilities for connecting components and enabling data flow:	
Service engines are containers that host the business logic or processing rules of these service components. Service engines process the message information received from the Service Infrastructure.	
There is a corresponding service engine of the same name for each service component. All service engines can interact in a single composite.	
For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
The SAR is a SOA archive deployment unit. A SAR file is a special JAR file that requires a prefix of sca_	
. (for example, sca_OrderBookingComposite_rev1.0.jar	
). The SAR file is deployed to the Service Infrastructure. The SAR packages service components, such as BPEL processes, business rules, human tasks, and mediator routing services into a single application. The SAR file is analogous to the BPEL suitcase archive of previous releases, but at the higher composite level and with any additional service components that your application includes (for example, human tasks, business rules, and mediator routing services).	
For more information, see Chapter 43, "Deploying SOA Composite Applications."	
When creating a SOA composite application, you have a choice of approaches for building it:	
In addition to this developer's guide, Oracle also offers the following resources to help you learn how you can best use Oracle SOA Suite in your applications:	
Note: While this guide primarily describes how to use Oracle SOA Suite with Oracle WebLogic Server, most of the information is also applicable to using Oracle SOA Suite with other third-party application servers. However, there may be some differences with using third-party application servers. For information about these differences, see Oracle Fusion Middleware Third-Party Application Server Guide.	
This chapter describes how to use Oracle JDeveloper to create a SOA composite application. It guides you through the basic steps of composite, service and reference binding component, and service component creation, security, test, and deployment, along with describing key issues to be aware of when designing a SOA composite application.	
This chapter includes the following sections:	
The first steps in building a new application are to assign it a name and to specify the directory where to save source files. By creating an application using application templates provided by Oracle JDeveloper, you automatically get the organization of the workspace into projects, along with many of the configuration files required by the type of application you are creating.	
You first create an application for the SOA project.	
Note: In order to create and deploy SOA composite applications and projects, you must install the Oracle SOA Suite extension. For instructions on installing this extension for Oracle JDeveloper, see the Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.	
To create an application:	
Table 2-1 SOA Composite Application Creation	
If Oracle JDeveloper...	Then...
---	---
Has no applications For example, you are opening Oracle JDeveloper for the first time.	In the Application Navigator in the upper left, click New Application.
Has existing applications	From the File main menu or the Application menu:
The Create SOA Application wizard starts.	
Note: Composite and component names cannot exceed 500 characters.	
A project deployed to the same infrastructure must have a unique name across SOA composite applications. The uniqueness of a composite is determined by its project name. For example, do not perform the actions described in Table 2-2. During deployment, the second deployed project (composite) overwrites the first deployed project (composite).	
Table 2-2 Restrictions on Naming a SOA Project	
Create an Application Named...	With a SOA Project Named...
---	---
The Project SOA Settings page of the Create SOA Application wizard appears.	
When you create a SOA application, Oracle JDeveloper creates a project that contains all the source files related to your application. Oracle JDeveloper automatically adds the following libraries needed for your SOA project:	
You can then use Oracle JDeveloper to create additional projects needed for your application.	
Figure 2-1 shows the SOA Composite Editor for the OrderBookingComposite project contained within the WebLogicFusionOrderDemo application of the Fusion Order Demo.	
Figure 2-1 New Workspace for a SOA Composite Application	
Table 2-3 describes the SOA Composite Editor.	
Table 2-3 SOA Composite Editor	
Element	Description
---	---
Application Navigator	Displays the key files for the specific service components included in the SOA project:
Designer	You drag service components, services, and references from the Component Palette into the composite in the designer. When you drag and drop a service component into the designer window, a corresponding property editor is invoked for performing configuration tasks related to that service component. For example, when you drag and drop the Oracle Mediator service component into the designer, the Mediator Editor is displayed that enables you to configure the Oracle Mediator service component. For all subsequent editing sessions, you double-click these service components to re-open their editors.
Left Swimlane (Exposed Services)	The left swimlane is for services, such as a web services or JCA adapters, providing an entry point to the SOA composite application.
Right Swimlane (External References)	The right swimlane is for references that send messages to external services in the outside world, such as web services and JCA adapters.
The component palette provides the various resources that you can use in a SOA composite. It contains the following service components and adapters:	
If the Component Palette does not display, select Component Palette from the View main menu.	
The Resource Palette provides a single dialog from which you can browse both local and remote resources. For example, you can access the following resources:	
If the Resource Palette does not display, then select Resource Palette from the View main menu. You select these resources for the SOA composite application through the SOA Resource Browser dialog. This dialog is accessible through a variety of methods. For example, when you select the WSDL file to use with a service binding component or an Oracle Mediator service component or select the schema file to use in a BPEL process, the SOA Resource Browser dialog appears. Click Resource Palette at the top of this dialog to access available resources.	
Log Window	The Log window displays messages about application compilation, validation, and deployment.
Property Inspector	The Property Inspector displays properties for the selected service component, service, or reference. You can also define deployment descriptor properties for a BPEL process service component. For more information, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector." If the Property Inspector does not display, select Property Inspector from the View main menu.
Application View	The Application View shows the artifacts for the SOA composite application.
The composite.xml file displays as a tab in the designer and as a file in the Application Navigator. This file is automatically created when you create a new SOA project. This file describes the entire composite assembly of services, service components, and references. There is one composite.xml file for each SOA project.	
When you work with the composite.xml file, you mostly use the designer, the Structure window, and the Property Inspector, as shown in Figure 2-1. The designer enables you to view many of your files in a WYSIWYG environment, or you can view a file in an overview editor where you can declaratively make changes, or you can view the source code for the file. The Structure window shows the structure of the currently selected file. You can select objects in this window, and then edit the properties for the selection in the Property Inspector.	
Once you create your application, often the next step is to add service components that implement the business logic or processing rules of your application. You can use the Component Palette from the SOA Composite Editor to drag and drop service components into the composite.	
To add a service component:	
Figure 2-2 shows a BPEL process being added to the designer.	
Figure 2-2 Adding BPEL Process to Composite	
A specific dialog for the selected service component is displayed. Table 2-4 describes the available editors.	
Table 2-4 Starting Service Component Editors	
Dragging This Service Component...	Invokes The...
---	---
Create BPEL Process dialog to create a BPEL process that integrates a series of business activities and services into an end-to-end process flow.	
Create Business Rules dialog to create a business decision based on rules.	
Create Human Task dialog to create a workflow that describes the tasks for users or groups to perform as part of an end-to-end business process flow.	
Create Mediator dialog to define services that perform message and event routing, filtering, and transformations.	
Create Spring dialog to create a spring context file for integrating Java interfaces into SOA composite applications.	
Figure 2-3 shows the BPEL Process dialog with data entered to create the OrderProcessor BPEL process for the WebLogicFusionOrderDemo application of the Fusion Order Demo. The process is selected to be asynchronous. The Expose as a SOAP Service option directs Oracle JDeveloper to create this service component automatically connected to an inbound web service.	
The service component displays in the designer. Figure 2-4 shows the OrderProcessor BPEL process added to the composite.xml file. A SOAP service binding component called orderprocessor_client_ep in the left swimlane provides the outside world with an entry point into the SOA composite application. If the Expose as a SOAP Service option was not selected in the Create BPEL Process dialog, the orderprocessor_client_ep service would not display. Section 2.3.1, "How to Add a Service Binding Component," describes how you later add a service.	
You can more fully define the content of the service component now or at a later time. For this top-down example, the content is defined now.	
Note the following details about adding service components:	
Note the following details about deleting service components:	
.componentType	
file and removes the wire to the task. You modify a service component to define specific details about the service component.	
To edit a service component:	
Table 2-5 Starting SOA Service Component Wizards and Dialogs	
Double-Clicking This Service Component...	Displays The...
---	---
BPEL Process	Oracle BPEL Designer for further designing.
Business Rule	Business Rules Designer for further designing.
Human Task	Human Task Editor for further designing.
Mediator	Oracle Mediator Editor for further designing.
Spring Context	Spring Editor for further designing.
To return to the SOA Composite Editor from within any service component, double-click composite.xml in the Application Navigator or single-click composite.xml above the designer.	
For help with a service component editor, click Help or press F1.	
This action returns you to the SOA Composite Editor.	
You add a service binding component to act as the entry point to the SOA composite application from the outside world.	
You can use the Component Palette from the SOA Composite Editor to drag and drop service binding components to the composite.	
To add a service binding component:	
Figure 2-5 shows a web service being added to the designer.	
Figure 2-5 Adding a Web Service to a Composite	
A specific dialog for the selected service displays. Table 2-6 describes the available editors.	
Dragging This Service...	Invokes The...
---	---
Create Web Service dialog to create a web invocation service.	
Adapter Configuration Wizard to guide you through integration of the service with database tables, database queues, file systems, FTP servers, Java Message Services (JMS), IBM WebSphere MQ, BAM servers, sockets, or Oracle E-Business Suite applications.	
Create ADF-BC Service dialog to create a service data object (SDO) invocation service.	
B2B Wizard to guide you through selection of a document definition.	
Create EJB Service to create an Enterprise JavaBeans service for using SDO parameters or Java interfaces with Enterprise JavaBeans.	
Create HTTP Binding Wizard to create HTTP binding. This wizard enables you to invoke SOA composite applications through HTTP POST and GET operations.	
Create Direct Binding Service dialog to invoke a SOA composite application and exchange messages over a remote method invocation (RMI) in the inbound direction.	
Figure 2-6 shows the Web Service dialog with data entered to create the orderprocessor_client_ep service for the OrderProcessor BPEL process.	
The service binding component displays in the left swimlane. Figure 2-7 shows the orderprocessor_client_ep service binding component added to the composite.xml file.	
As described in Section 2.3.1, "How to Add a Service Binding Component," a web service is a type of binding component that you can add to a SOA composite application. You must define the interface (WSDL) file for the web service.	
To add a WSDL for a web service:	
This invokes the Create Web Service dialog shown in Figure 2-6.	
Table 2-7 Create Web Service Dialog Fields and Values	
Define a new WSDL using an existing schema or by defining a new schema.	
Select a WSDL created when defining a component interface. The WSDL can be selected from the project / application browser.	
Figure 2-9 Use of Existing WSDL files from Other Applications	
Automatically define a service interface WSDL from a component	
You can modify the default values.	
Figure 2-10 Automatic Generation of WSDL File	
For more information, click Help.	
You can view all schemas used by the interface's WSDL file and, if you want, choose a new message schema for a selected message part in the Update Interface dialog.	
To view schemas:	
Figure 2-11 Selection of Inbound Interface Handle	
The Update Interface dialog shown in Figure 2-12 displays all schemas currently used by the WSDL file.	
After initially creating a service, you can edit its contents at a later time. Double-click the component icon to display its appropriate editor or wizard. Table 2-9 provides an overview.	
Table 2-9 Starting Service Wizards and Dialogs	
Double-Click This Service...	To...
---	---
Web service	Display the Update Service dialog.
Adapters	Reenter the Adapter Configuration Wizard.
ADF-BC Service	Display the Update Service dialog.
B2B	Reenter the B2B wizard.
EJB Service	Display the Update Service dialog.
HTTP Binding	Reenter the HTTP Binding Wizard.
Direct Binding	Reenter the Update Service dialog.
Note the following detail about adding services:	
Note the following detail about deleting services:	
Having two different WSDL files with the same fully-qualified namespace in the same SOA composite application is ambiguous and not supported. This causes the application to fail during compilation with duplicate definition errors. Ensure that you use unique namespaces for every WSDL file.	
When the SOA Infrastructure is configured in the Server URL field of the SOA Infrastructure Common Properties page in Oracle Enterprise Manager Fusion Middleware Control to use both internal and external Oracle HTTP servers, you cannot browse for WSDL URLs using the Resource Palette. However, you can paste the correct WSDL URL in the WSDL URL field of the Update Service dialog for the web service binding component. Figure 2-13 provides details.	
You add reference binding components that enable the SOA composite application to send messages to external services in the outside world.	
You can use the Component Palette from the SOA Composite Editor to drag and drop reference binding components to the composite.	
To add a reference binding component:	
Figure 2-14 shows a web service being added to the designer.	
Figure 2-14 Adding Web Service to Composite	
A specific dialog or wizard for the selected reference displays. Table 2-10 describes the available editors.	
Table 2-10 Reference Editors	
Dragging This Service...	Invokes The...
---	---
Create Web Service dialog to create a web invocation service.	
Adapter Configuration Wizard to guide you through integration of the service with database tables, database queues, file systems, FTP servers, Java Message Services (JMS), IBM WebSphere MQ, BAM servers, sockets, or Oracle E-Business Suite applications.	
Create ADF-BC Service dialog to create a service data object (SDO) invocation service.	
B2B Wizard to guide you through selection of a document definition.	
Create EJB Service dialog to create an Enterprise JavaBeans service for using SDO parameters with Enterprise JavaBeans.	
Create HTTP Binding Wizard to create HTTP binding. This wizard enables you to invoke SOA composite applications through HTTP POST and GET operations, and invoke HTTP endpoints through HTTP POST and GET operations.	
Create Direct Binding Service Dialog to invoke an Oracle Service Bus (OSB) flow or another SOA composite application.	
Figure 2-15 shows the Create Web Service dialog with data entered to create a reference.	
The reference binding component displays in the right swimlane. Figure 2-16 shows the StoreFrontService reference added to the SOA composite application.	
Note the following detail about adding references:	
Note the following details about deleting references:	
A WSDL file is added to the SOA composite application whenever you create a new component that has a WSDL (for example, a service binding component, service component (for example, Oracle Mediator, BPEL process, and so on), or reference binding component). When you delete a component, any WSDL imports used by that component are removed only if not used by another component. The WSDL import is always removed when the last component that uses it is deleted.	
When a service or reference binding component is updated to use a new WSDL, it is handled as if the interface was deleted and a new one was added. Therefore, the old WSDL import is only removed if it is not used by another component.	
If a service or reference binding component is updated to use the same WSDL (porttype	
qname	
), but from a new location, the WSDL import and any other WSDL reference (for example, the BPEL process WSDL that imports an external reference WSDL) are automatically updated to reference the new location.	
Simply changing the WSDL location in the source view of the composite.xml file's import is not sufficient. Other WSDL references in the metadata are required by the user interface (see the ui:wsdlLocation	
attribute on composite and componentType services and references). There can also be other WSDL references required by runtime (for example, a WSDL that imports another WSDL, such as the BPEL process WSDL). Ensure that you change the following places in this file where a WSDL URL is referenced:	
Always modify the WSDL location though the dialogs of the SOA Composite Editor in which a WSDL location is specified (for example, a web service, BPEL partner link, and so on). Changing the URL's host address is the exact case in which the SOA Composite Editor automatically updates all WSDL references.	
If a BPEL process has multiple WSDL messages declared in its WSDL file and one or more messages have their parts defined to be of some type, whereas other messages have their parts defined to be of some element, runtime behavior can become unpredictable. This is because these WSDLs are considered to have mixed type messages. For example, assume there are multiple copy actions within an assign activity. These copy actions attempt to populate an output variable that has multiple parts:	
xsd:string	
type. xsd:int	
type. This behavior is not supported.	
A WSDL URL that does not contain a revision number is processed by the default composite application. This action enables you to always call the default revision of the called service without having to make other changes in the calling composite.	
Select the default WSDL to use in the Resource Palette in Oracle JDeveloper.	
You wire (connect) services, service components, and references. For this example, you wire the web service and service component. Note the following:	
Figure 2-17 Limitations on Wiring Services and Composites with Different Interfaces	
The service and reference must match, meaning the interface and the callback must be the same. If you have two services that have different interfaces, you can place an Oracle Mediator between the two services and perform a transformation between the interfaces.	
You can wire a service binding component to a service component from the SOA Composite Editor.	
To wire a service and a service component:	
Figure 2-19 Display of the Service as a Partner Link in the BPEL Process	
You can wire a service component to a reference binding component from the SOA Composite Editor.	
To wire a service component and a reference:	
Figure 2-20 Wiring of a Service Component and Reference	
Figure 2-21 Display of the Reference as a Partner Link in the BPEL Process	
The orderprocessor_client_ep	
service binding component shown in Example 2-1 provides the entry point to the composite.	
The OrderProcessor	
BPEL process service component is shown in Example 2-2:	
Example 2-2 Service Component	
A reference binding component named StoreFrontService	
is shown in Example 2-3. The reference provides access to the external service in the outside world.	
Example 2-3 Reference	
In Example 2-4, the communication (or wiring) between service components is described:	
orderprocessor_client_ep	
service binding component is wired to the target OrderProcessor	
BPEL process service component. Wiring enables web service message communication with this specific BPEL process. OrderProcessor	
BPEL process is wired to the target StoreFrontService	
reference binding component. This is the reference to the external service in the outside world. Note the following details about adding wires:	
If you remove the wire between the two Oracle Mediators, then for every message, the second Oracle Mediator can publish the event and the first Oracle Mediator can subscribe to it.	
Note the following details about deleting wires:	
If you want to change the service WSDL interface, there are several workarounds:	
See Section 2.3.3, "How to View Schemas" for details about the Update Interface dialog.	
As you create your SOA composite application, you can secure web services by attaching policies to service binding components, service components, and reference binding components. For more information about implementing policies, see Chapter 42, "Enabling Security with Policies."	
Deploying the SOA composite application involves creating a connection to an Oracle WebLogic Server and deploying an archive of the SOA composite application to an Oracle WebLogic Server managed server. For more information about deploying SOA composite applications, see Chapter 43, "Deploying SOA Composite Applications."	
You can invoke other deployed SOA composite applications from your SOA composite application. The other applications must be deployed.	
To invoke other composites:	
Figure 2-22 Browse for a SOA Composite Application	
For information about creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."	
As you build and deploy a SOA composite application, you manage and test it using a combination of Oracle JDeveloper and Oracle Enterprise Manager Fusion Middleware Control.	
You can manage deployed SOA composite applications from the Application Server Navigator in Oracle JDeveloper. Management tasks consist of undeploying, activating, retiring, turning on, and turning off SOA composite application revisions.	
Note: These instructions assume you have created an application server connection to an Oracle WebLogic Administration Server on which the SOA Infrastructure is deployed. Creating a connection to an Oracle WebLogic Administration Server enables you to browse for managed Oracle WebLogic Servers or clustered Oracle WebLogic Servers in the same domain. From the File main menu, select New > Connections > Application Server Connection to create a connection.	
The SOA folder appears, as shown in Figure 2-23. The SOA folder displays all deployed SOA composite application revisions and services. You can browse all applications deployed on all Oracle WebLogic Administration Servers, managed Oracle WebLogic Servers, and clustered Oracle WebLogic Servers in the same domain. Figure 2-23 provides details.	
Deployed SOA composite applications and services appear, as shown in Figure 2-24.	
Figure 2-24 Deployed SOA Composite Applications	
Table 2-11 SOA Composite Application Options	
You are prompted to select the following:	
Figure 2-25 provides details.	
For more information, see the following documentation:	
After you deploy a SOA composite application, you can initiate a test instance of it from the Test Web Service page in Oracle Enterprise Manager Fusion Middleware Control to verify the XML payload data. For more information about initiating a test instance, see the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
In addition to creating a test instance, you can also simulate the interaction between a SOA composite application and its web service partners before deployment in a production environment. This helps to ensure that a process interacts with web service partners as expected by the time it is ready for deployment to a production environment. For more information about creating a unit test, see Chapter 44, "Automating Testing of SOA Composite Applications."	
This chapter describes how to set up, deploy, and run the SOA sample application that can be used with this guide. The WebLogic Fusion Order Demo application of the Fusion Order Demo demonstrates various capabilities of Oracle SOA Suite and is used as an example throughout this guide.	
This chapter includes the following sections:	
The WebLogic Fusion Order Demo application is part of a larger sample application called Fusion Order Demo. In this larger sample application, Global Company sells electronic devices through many channels, including a web-based client application. Electronic devices are sold through a storefront-type web application. Customers can visit the web site, register, and place orders for the products.	
There are two parts to the Fusion Order Demo, the Store Front module and the WebLogic Fusion Order Demo application.	
The Store Front module provides a rich user interface built with Oracle Application Development Framework to show how to combine an easily built AJAX user interface with a sophisticated SOA composite application. It is based on Oracle ADF business components, ADF model data bindings, and ADF faces.	
The Store Front module sells electronic devices through a storefront-type web application.	
The Store Front module contains the following projects:	
Figure 3-1 shows the Home page of the Store Front module user interface. It shows the featured products that the site wants to promote and provides access to the full catalog of items. Products are presented as images along with the name of the product. Page regions divide the product catalog area from other features that the site offers.	
From the home page, you can browse the web site as an anonymous user, then log in as a registered customer to place an order.	
The Fusion Order Demo application ships with predefined customer data. Because the Fusion Order Demo application implements Oracle ADF security to manage access to Oracle ADF resources, only the authenticated user can view orders in their cart.	
For more information about the Store Front module, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
The WebLogic Fusion Order Demo application processes orders placed in the Store Front module. It uses the following Oracle SOA Suite components:	
Once an order has been placed by using the Store Front module, the WebLogic Fusion Order Demo application processes the order. When processing an order, it uses various internal and external applications, including a customer service application, a credit validation system, and both an internal vendor and external vendor. For example, the internal vendor (InternalWarehouseService) and external vendor (ExternalPartnerSupplier), are sent information for every order. As part of the order process, they each return a price for which they would supply the items in the order. A condition in the process determines which supplier is assigned the order.	
For information about SOA composite applications, see Chapter 1, "Introduction to Building Applications with Oracle SOA Suite."	
This section describes how to prepare the environment to run the WebLogic Fusion Order Demo application.	
Install Oracle JDeveloper 11g Studio Edition to create the WebLogic Fusion Order Demo application. You can download Oracle JDeveloper from:	
Ensure that you download and install 11g and that it is the Studio Edition, not the Java Edition. You can verify these details in Oracle JDeveloper from the Help > About menu option.	
In order to create and deploy SOA composite applications and projects, you must install the Oracle SOA Suite extension. For instructions on installing this extension for Oracle JDeveloper, see the Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.	
Throughout this tutorial, you must view or use content from Fusion Order Demo in your Oracle JDeveloper environment. The Fusion Order Demo is contained within a ZIP file.	
To access the ZIP file:	
To successfully deploy and run the Fusion Order Demo applications, you must complete an installation for Oracle SOA Suite. Specifically, the domain contains an Administration Server and a Managed Server.	
Installing Oracle SOA Suite requires the following	
After the domain is created, it contains an Administration Server to host Oracle Enterprise Manager Fusion Middleware Control for performing administrative tasks, a Managed Server to host deployed applications, and, if you configured Oracle BAM, a second Managed Server for the Oracle BAM Server.	
For instructions on installing and configuring Oracle SOA Suite, see the Oracle Fusion Middleware Installation Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
After successfully completing the installation process, perform the following additional configuration steps:	
JAVA_PROPERTIES	
(UNIX) or the SET JAVA_PROPERTIES	
(Windows) line: For more information about setting this property, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
On UNIX, as the root user, change directories to directory MW_HOME	
/user_projects/domains/	
domain_name	
/bin	
and enter the following command:	
On Windows, from the Windows Start menu, select All Programs > Oracle WebLogic > User Projects > domain_name > Stop Admin Server.	
On UNIX, from directory MW_HOME	
/user_projects/domains/	
domain_name	
/bin	
, enter the following command:	
On Windows, from the Windows Start menu, select All Programs > Oracle WebLogic > User Projects > domain_name > Start Admin Server.	
When prompted on UNIX, enter your Oracle WebLogic Server user name and password. The password is not visible as you type.	
The Administration Server is started when the command window displays the following messages:	
Leave the command window open, although you may minimize it. The Administration Server is now running and ready for use.	
RUNNING	
mode, start the Managed Servers, if they are not running. In a command window, enter the following command all on one line: On UNIX, from directory MW_HOME	
/user_projects/domains/	
domain_name	
/bin	
, enter the following command:	
On Windows, from directory MW_HOME	
\user_projects\domains\	
domain_name	
\bin	
, enter the following command:	
Substitute the following values in Table 3-1.	
Table 3-1 startManagedWebLogic Values	
Value	Description
---	---
The name of the Managed Server. For example:	
The URL of the Managed Server. For example:	
The port of the Managed Server for hosting SOA applications is typically	
The Oracle WebLogic Server administrator. For example:	
The password of the Oracle WebLogic Server administrator. For example:	
JAVA_HOME	
and PATH	
environment variables on the computer with the Oracle SOA Suite installation. Oracle JDeveloper requires changes to these variables for running the scripts that deploy the composite services. You set the JAVA_HOME	
variable to include the path to the Oracle WebLogic Server JDK, and set the PATH	
variable to include the path to the Oracle WebLogic Server bin	
directory for ant	
.	
On UNIX, use the export	
command. For example:	
On Windows, perform the following steps to modify the variables:	
JAVA_HOME	
system variable and ensure that it is set to the location of the Oracle WebLogic Server JDK. If there is no JAVA_HOME	
variable defined, click New and in the New System Variable dialog, enter a variable name of JAVA_HOME	
and a variable value pointing to the Oracle WebLogic Server JDK, such as C:\weblogic\jdk160_11	
. Click OK to set the new system variable.	
Path	
system variable and ensure that it includes the path to the Oracle WebLogic Server ant\bin	
directory. If it does not, add the path to the end of the variable value. For example: Click OK to set the new system variable.	
After you have set up the WebLogic Fusion Order Demo application, spend time viewing the WebLogic Fusion Order Demo artifacts in Oracle JDeveloper.	
To open the WebLogic Fusion Order Demo in Oracle JDeveloper:	
DEMO_DOWNLOAD_HOME	
/CompositeServices	
and select WebLogic Fusion Order Demo.jws. Click Open. Figure 3-2 shows the Application Navigator after you open the file for the application workspace. It displays the project applications of the WebLogic Fusion Order Demo.	
Figure 3-2 Projects of WebLogic Fusion Order Demo Application	
Table 3-2 lists and describes the projects in the WebLogicFusionOrderDemo	
application workspace.	
Table 3-2 Projects in the WebLogic Fusion Order Demo Application	
To understand how a composite is designed, examine the main project, OrderBookingComposite, in Oracle JDeveloper.	
To view the composite.xml file:	
The composite then appears in the SOA Composite Editor in Oracle JDeveloper, as shown in Figure 3-3.	
OrderBookingComposite is the main project of the WebLogic Fusion Order Demo application, containing a composite application for processing orders from Global Company. This composite demonstrates how services, both internal to an enterprise, and external at other sites, can be integrated using the SOA architecture paradigm to create one cohesive ordering system.	
At the center of OrderBookingComposite composite is the OrderProcessor BPEL process. It orchestrates all the existing services in the enterprise for order fulfillment with the right warehouse, based on the business rules in the process.	
Figure 3-4 shows an overview of the OrderBookingComposite composite for the WebLogic Fusion Order Demo application, followed by a step-by-step description of the composite flow for how the application processes an order.	
When a new customer registers in Global Company's storefront user interface, the web client sends the customer's information to the internal customer service application called StoreFrontService. StoreFrontService then stores the customer information in a database. The customer can then browse products, add them to their online shopping cart, and place the order. User ngreenbe is the only user not required to register before placing an order.	
When a registered customer uses Global Company's storefront user interface, the user interface invokes the StoreFrontService and provides authentication. A registered user fills their shopping cart, and places an order. When the order is submitted, the following events take place:	
After an order is placed, the following sequence occurs to complete the order:	
Some of the information about the order used later in the process is:	
If the credit card is not valid, the BPEL process cancels the order.	
If the credit card is valid, the BPEL process sends the order to the RequiresApprovalRule business rule to determine if the order requires approval by management.	
ExternalPartnerSupplier	
BPEL process or SpringPartnerSupplierMediator	
spring component, located in another composite called PartnerSupplierComposite	
complete	
. While not depicted in Figure 3-4, the OrderBookingComposite composite provides the following processing flow for approved orders:	
To aid with the tracking of an order, the OrderBookingComposite composite contains sensors to provide a method for implementing trackable fields on messages. For example, the CreditCardAuthorization service has a composite sensor that indicates if the credit card was authorized. In addition, the OrderProcessor BPEL process also uses sensors for various activities. For example, the Scope_AuthorizeCreditCard scope in the OrderProcessor BPEL process, which verifies that the customer has acceptable credit using the CreditCardAuthorizationService service, uses a sensor for tracking. When you monitor instances of a composite through Oracle Enterprise Manager Fusion Middleware Control, you can monitor the sensors for both the composite and the BPEL process.	
In the remaining sections of this chapter, deploy and run the Fusion Order Demo. As a part of it running it, use Oracle Enterprise Manager Fusion Middleware Control to monitor orders processed by the OrderBookingComposite composite. When you monitor an order, you can also view the composite sensors and activity sensors.	
This section describes how to deploy the Fusion Order Demo applications in the partition.	
To create a connection to an Oracle WebLogic Server:	
The Create Application Server Connection Type page displays.	
Figure 3-6 Create Application Server Connection	
The Authentication page is displayed.	
weblogic	
for the User Name and the password for that administrator in the Password field. Table 3-3 Configuration Page Fields and Values	
Application	Description
---	---
Weblogic Hostname (Administration Server)	Name of the DNS name or IP address of the Administration Server of the Oracle WebLogic Server
Port	The address of the port on which the Administration Server is listening for requests (7001 by default)
Weblogic Domain	The domain name for Oracle WebLogic Server
The Test page displays.	
The following message should appear:	
If the test is unsuccessful, ensure that Oracle WebLogic Server is running, and retry the test.	
If you configured an Oracle BAM Server during installation, create a connection to it.	
To create a connection to an Oracle BAM Server:	
The BAM Connection Wizard displays.	
weblogic	
for the User Name and the password for that administrator in the Password field. Table 3-4 Oracle BAM Server Connection Information	
Field	Description
---	---
BAM Web Host	Enter the name of the host on which the Oracle BAM Report Server and web applications are installed. In most cases, the Oracle BAM web applications host, Oracle BAM Server host, and the Oracle WebLogic Server are the same.
BAM Server Host	Enter the name of the host on which the Oracle BAM Server is installed.
User Name	Enter the Oracle BAM Server user name. For example:
Password	Enter the password of the user name.
HTTP Port	Enter the port number or accept the default value of
JNDI Port	Enter the port number or accept the default value of
Use HTTPS	Select this checkbox to use secure HTTP (HTTPS) to connect to the Oracle BAM Server during design time. Otherwise, HTTP is used.
The Test page displays.	
The following message should appear:	
To install the schema for the sample application:	
DEMO_DOWNLOAD_HOME	
/Infrastructure	
and select Infrastructure.jws. Table 3-5 Properties Required to Install the Fusion Order Demo Application	
Field	Description
---	---
The root directory where you have Oracle JDeveloper 11g installed. For example:	
The base JDBC URL for your database in the format	
The port for your database. For example:	
The SID of your database. For example:	
The administrative user for your database. For example:	
The tablespace name for the Fusion Order Demo users. For example:	
The buildAll command then creates the FOD	
user and populates the tables in the FOD	
schema. In the Apache Ant - Log, a series of SQL scripts display, followed by:	
buildAll:	
Total time: nn minutes nn seconds	
For more information on the demo schema and scripts, see the README.txt	
file in the MasterBuildScript project.	
You can deploy the Store Front module as a simple web application or as part of a SOA environment. There is a property defined in the service portion of the Store Front module that is used within one of its pages to determine whether the Submit Order button fires an event that launches a BPEL process. When using the Store Front module within a SOA environment, you must change the default value for this property.	
DEMO_DOWNLOAD_HOME	
/StoreFrontModule	
and select StoreFrontModule.jws. Click Open. Figure 3-8 shows the Application Navigator after you open the file for the application workspace.	
Figure 3-8 Application Navigator with StoreFrontModule	
true	
, and then click OK. Figure 3-10 provides details. Edit the database connection details to point to the correct host name and database SID.	
Figure 3-12 Host Name and SID Fields Modifications	
To deploy the Store Front module, you first deploy services and then to deploy the application itself.	
During deployment, Oracle JDeveloper creates the .jar	
and .war	
files and then assembles the .ear	
file, as specified in the deployment profiles. After the file is assembled, Oracle JDeveloper deploys the .ear	
file and unpacks it in a directory on the application server. The directory that is used is dependent on the target environment.	
To deploy the Store Front module:	
Figure 3-13 StoreFrontService_SDOServices	
In this task, you deploy the WebLogic Fusion Order Demo application to an Oracle SOA Suite installation, containing an Oracle WebLogic Server domain with an Administration Server and a Managed Server.	
To deploy the WebLogic Fusion Order Demo application:	
Figure 3-14 Navigating to sca-build.properties	
Table 3-6 Properties Required for Oracle BAM	
Field	Description
---	---
Set to	
Set to After deployment is done, set this value back to	
The DNS name or IP address of the Managed Server for Oracle BAM. For example:	
The port of the Managed Server for Oracle BAM. For example:	
The Oracle WebLogic Server administrator. For example:	
The password of the Oracle WebLogic Server administrator. For example:	
seed.bam.do	
parameter to false	
after deployment. Figure 3-15 Navigating to build.properties	
Table 3-7 Properties Required for the WebLogic Fusion Order Demo Application	
ant	
targets in the specified sequential order shown in Table 3-8. Table 3-8 ant Targets to Deploy the WebLogic Fusion Order Demo Application	
In the Apache Ant - Log, you should see the following message when the target successfully completes:	
BUILD SUCCESSFUL	
Total time: nn minutes nn seconds	
If you set up Oracle BAM after you run target server-setup-seed-deploy-test	
, you can still configure Oracle BAM for Fusion Order Demo by running one of these targets:	
seed.bam.do	
parameter to false	
. You begin the ordering process in the storefront user interface, where you submit an orders.	
When an order is submitted, the Application Development Framework Business Component writes the order to the database and raises an NewOrderSubmitted business event using the Events Delivery Network (EDN). The OrderPendingEvent mediator subscribes this event, and initiates the main BPEL process, OrderProcessor, to process the order.	
After you submit an order, you use Oracle Enterprise Manager Fusion Middleware Control for the Oracle SOA Suite installation to monitor how the OrderProcessor BPEL process orchestrated the orders. If you submit an order for more than $2,000, you can monitor how it requires human approval.	
The instructions for placing orders and monitoring them in detail with Fusion Middleware Control are available from Oracle Technology Network:	
If you configured an Oracle BAM server and a Managed Server for it, you can use the Oracle BAM Architect to view data sent to the server. For more information about using Oracle BAM applications, including Oracle BAM Architect, see Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.	
To undeploy the WebLogic Fusion Order Demo composite applications:	
Table 3-9 Options to Access Undeploy SOA Composite Wizard	
From the SOA Infrastructure Menu...	From the SOA Folder in the Navigator...
---	---
Select SOA Deployment > Undeploy.	
The Confirmation page appears.	
Processing messages display.	
This part describes the BPEL process service component.	
This part contains the following chapters:	
This chapter describes how to get started with Oracle BPEL Process Manager. BPEL process creation is described, along with key BPEL design features such as activities, partner links, adapters, and monitors.	
This chapter includes the following sections:	
This section provides an introduction to the BPEL process service component in the design environment.	
You add BPEL process service components in the SOA Composite Editor.	
To add a BPEL process service component:	
As a service component in an existing SOA composite application:	
In a new application:	
This starts the Create SOA Application wizard.	
Each method causes the Create BPEL Process dialog shown in Figure 4-1 to appear.	
Table 4-2 Create BPEL Process Dialog	
Field	Description
---	---
BPEL Specification	Select the type of BPEL process to create.
Name	Enter a name for the BPEL process or accept the default name. The name you enter here becomes the file name for the BPEL, Web Services Description Language (WSDL), and Always use completely unique names when creating BPEL processes. Do not create
Namespace	Use the default namespace path or enter a custom path.
Template	Select a template based on the type of BPEL process service component you want to design. A template provides a basic set of default files in the Application Navigator (
Service Name	Accept the default value or enter the name of the service this process is exposing. When you open an invoke, receive, OnMessage, or reply activity, the service name appears by default in the Partner Link field. This name is the same name as the partner link.
Expose as a SOAP Service	Select this checkbox to create a BPEL process service component that is automatically connected (wired) to an inbound simple object access protocol (SOAP) web service binding component. If you do not select this checkbox, the BPEL process service component is created as a standalone component in the SOA Composite Editor. You can explicitly associate the BPEL process service component with a service at a later time. This checkbox is selected by default.
Delivery	Set the persistence policy of the process in the delivery layer. This list enables you to specify a value for the
For information about transaction and fault propagation semantics for this property, see Chapter 13, "Transaction and Fault Propagation Semantics in BPEL Processes." For information about changing the value of this property in the Property Inspector, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector."	
Transaction	Set the transaction behavior of the BPEL instance for initiating calls. This list enables you to specify a value for the
Note: This property does not apply for midprocess receive activities. In those cases, another thread in another transaction is used to process the message. This is because a correlation is needed and it is always done asynchronously. For information about transaction and fault propagation semantics for this property, see Chapter 13, "Transaction and Fault Propagation Semantics in BPEL Processes." For information about changing the value of this property in the Property Inspector, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector."	
Input	Accept the default input XSD schema or click the Search icon to select a different XSD. If you click the Search icon, the Type Chooser dialog appears. Browse the imported schemas and select the input element (for example, a purchase order). You can also import an existing schema or WSDL in the Type Chooser dialog
Output	Accept the default output XSD schema or click the Search icon to select a different XSD. If you click the Search icon, the Type Chooser dialog appears. Browse the imported schemas and select the output element (for example, a purchase order).
Oracle BPEL Designer displays the sections shown in Figure 4-2.	
Each section of this view enables you to perform specific design and deployment tasks. Table 4-3 identifies the sections listed in Figure 4-2.	
Table 4-3 Oracle JDeveloper Sections	
Element	Description
---	---
Displays the process files of a SOA project. Key files include the following:	
Provides a visual view of the BPEL process service component that you design. This view displays when you perform one of the following actions:	
As you design the BPEL process service component by dragging activities, creating partner links, and so on, the Design window changes.	
Displays the available activities to add to the BPEL process service component. Activities are the building blocks. The BPEL Constructs and Oracle Extensions selections of the Component Palette display a set of activities that you drag into the designer of the BPEL process service component. The Component Palette displays only those pages relevant to the state of the designer. BPEL Constructs or Oracle Extensions are nearly always visible. However, if you are designing a transformation in a transform activity, the Component Palette only displays selections relevant to that activity, such as String Functions, Mathematical Functions, and Node-set Functions.	
Provides a structural view of the data in the BPEL process service component currently selected in the designer. You can perform a variety of tasks from this section, including:	
Displays messages about the status of validation and compilation. To ensure that a BPEL process service component validates correctly, you must ensure that the following information is correct:	
If deployment is unsuccessful, messages appear that describe the type and location of the error.	
View the syntax inside the BPEL process service component files. As you drag activities and partner links, and perform other tasks, the syntax in these source files is immediately updated to reflect these changes.	
Displays the revision history of a file and read-only and editable versions of a file side-by-side.	
Displays details about an activity. Single-click an activity in the Design window to display details.	
Note: To learn more about these sections, you can also place the cursor in the appropriate section and press F1 to display online Help.	
Activities are the building blocks of a BPEL process service component. Oracle BPEL Designer includes a set of activities that you drag into a BPEL process service component. You then double-click an activity to define its attributes (property values). Activities enable you to perform specific tasks within a BPEL process service component. For example, here are several key activities:	
Figure 4-7 shows an example of a property window (for this example, an invoke activity). In this example, you invoke a partner link named StoreFrontService and define its attributes.	
The invoke activity enables you to specify an operation you want to invoke for the service (identified by its partner link). The operation can be one-way or request-response on a port provided by the service. You can also automatically create variables in an invoke activity. An invoke activity invokes a synchronous service or initiates an asynchronous web service.	
The invoke activity opens a port in the process to send and receive data. It uses this port to submit required data and receive a response. For synchronous callbacks, only one port is needed for both the send and the receive functions.	
For more information about activities, see Appendix A, "BPEL Process Activities and Services."	
For information about copying and pasting activities in the same project or between projects, see Section A.2.2, "Copying and Pasting Activities in BPEL Projects."	
A partner link enables you to define the external services with which the BPEL process service component is to interact. You can define partner links as services or references (for example, through a JCA adapter) in the SOA Composite Editor or within a BPEL process service component in Oracle BPEL Designer. Figure 4-8 shows the partner link icon (in this example, named CreditCardAuthorizationService).	
A partner link type characterizes the conversational relationship between two services by defining the roles played by each service in the conversation and specifying the port type provided by each service to receive messages within the conversation.	
Figure 4-9 shows an example of the attributes of a partner link for a service.	
Table 4-4 describes the fields of this dialog.	
Table 4-4 Create Partner Link Dialog Fields	
Field	Description
---	---
A unique and recognizable name you provide for the partner link.	
Process	Displays the BPEL process service component name.
WSDL URL	The name and location of the WSDL file or Java interface that you select for the partner link. Click the SOA Service Explorer icon (second icon from the left above the WSDL URL field) to access a window for selecting the WSDL file or Java interface to use. Java interfaces display for selection under the References folder with a name of javaEJB. If the component with which you are wiring this partner link uses WSDL files and you select a Java interface and click OK, a message displays indicating that this component requires a WSDL interface. If you click Yes, a compatible WSDL file is created based on the Java interface. For more information about integrating components that use Java interfaces into SOA composite applications, see Chapter 52, "Integrating the Spring Framework in SOA Composite Applications."
Partner Link Type	The partner link defined in the WSDL file.
Partner Role	The role performed by the partner link.
My Role	The role performed by the BPEL process service component. In this case, the BPEL process service component does not have a role because it is a synchronous process.
Note: The Partner Link Type, Partner Role, and My Role fields in the Create Partner Link dialog are defined and required by the BPEL standard.	
The method by which you create partner links within the BPEL process in Oracle BPEL Designer impacts how the partner link displays above in the SOA Composite Editor. This section describes this impact. The WSDL file can be on the local operating system or hosted remotely (in which case you need a URL for the WSDL).	
Likewise, creating and wiring a service or reference binding component to a BPEL process service component in the SOA Composite Editor causes a partner link to display in Oracle BPEL Designer.	
To create a partner link:	
Oracle BPEL Designer is displayed.	
Figure 4-10 Partner Link Creation in Oracle BPEL Designer	
The Create Partner Link dialog appears.	
The following sections describe the impact of partner link creation on the SOA Composite Editor.	
Table 4-5 describes the impact on the SOA Composite Editor.	
Table 4-5 Impact of Partner Link Creation on the SOA Composite Editor	
Creating the Following for a BPEL Process in Oracle BPEL Designer...	Displays the Following in the SOA Composite Editor...
---	---
A partner link for an outbound adapter	
Figure 4-11 shows how this method of creation appears in the SOA Composite Editor.	
Table 4-6 describes the impact on the SOA Composite Editor.	
Table 4-6 Impact of Partner Link Creation on the SOA Composite Editor	
Creating the Following for a BPEL Process in Oracle BPEL Designer...	Displays the Following in the SOA Composite Editor...
---	---
A partner link for an inbound adapter	
Figure 4-12 shows how this method of creation appears in the SOA Composite Editor.	
Table 4-7 describes the impact on the SOA Composite Editor.	
Table 4-7 Impact of Partner Link Creation on the SOA Composite Editor	
Creating the Following for a BPEL Process in Oracle BPEL Designer...	Displays the Following in the SOA Composite Editor...
---	---
A partner link from an abstract WSDL to call a service	A reference handle with an interface and callback interface defined for the BPEL service component
Table 4-8 describes the impact on the SOA Composite Editor.	
Table 4-8 Impact of Partner Link Creation on the SOA Composite Editor	
Creating the Following for a BPEL Process in Oracle BPEL Designer...	Displays the Following in the SOA Composite Editor...
---	---
A partner link is created from an abstract WSDL to implement a service	A service with an interface and callback interface for the BPEL service component is created. Note: If an external Simple Object Access Protocol (SOAP) reference with the specified interface and callback interface exists in the SOA Composite Editor, you can either create a new external SOAP reference and wire to it or wire to the existing external SOAP reference.
Figure 4-13 shows how this method of creation appears in the SOA Composite Editor.	
Table 4-9 describes the impact on the SOA Composite Editor.	
Table 4-9 Impact of Partner Link Creation on the SOA Composite Editor	
Creating the Following for a BPEL Process in Oracle BPEL Designer...	Displays the Following in the SOA Composite Editor...
---	---
A human task or business rule is created	
Figure 4-14 shows how this method of creation appears in the SOA Composite Editor.	
Table 4-10 describes the impact on the SOA Composite Editor.	
Table 4-10 Impact of Partner Link Creation on the SOA Composite Editor	
Creating the Following for a BPEL Process in Oracle BPEL Designer...	Displays the Following in the SOA Composite Editor...
---	---
A partner link by dragging an existing human task, business rule, or mediator service component into the BPEL process	
Figure 4-15 shows how this method of creation appears in the SOA Composite Editor.
The Partner Link dialog shown in Figure 4-9 also enables you to take advantage of another key feature that Oracle BPEL Process Manager and Oracle JDeveloper provide. Click the Service Wizard icon shown in Figure 4-16 to access the Adapter Configuration wizard.
Adapters enable you to integrate the BPEL process service component (and, therefore, the SOA composite application as a whole) with access to file systems, FTP servers, database tables, database queues, sockets, Java Message Services (JMS), and MQ. You can also integrate with services such as HTTP binding, direct binding, EJB, and others. This wizard enables you to configure the types of services and adapters shown in Figure 4-17 for use with the BPEL process service component:
For information about the service and adapter types, see Chapter 37, "Getting Started with Binding Components."
When you select an adapter type, the Service Name window shown in Figure 4-18 prompts you to enter a name. For this example, File Adapter was selected in Figure 4-17. When the wizard completes, a WSDL file by this service name appears in the Application Navigator for the BPEL process service component (for this example, named USPSShipment.wsdl). The service name must be unique within the project. This file includes the adapter configuration settings you specify with this wizard. Other configuration files (such as header files and files specific to the adapter) are also created and display in the Application Navigator.
The Adapter Configuration wizard windows that appear after the Service Name window are based on the adapter type you selected.
You can also add adapters to your SOA composite application as services or references in the SOA Composite Editor.
For more information about technology adapters, see Oracle Fusion Middleware User's Guide for Technology Adapters.
You can configure BPEL process monitors in Oracle BPEL Designer by selecting Monitor at the top of Oracle BPEL Designer. Figure 4-19 provides details. BPEL process monitors can send data to Oracle BAM for analysis and graphical display through the Oracle BAM adapter.
For more information, see Section 53.3, "Using Oracle BAM Monitor Express With BPEL Processes."
This chapter describes common interaction patterns between a BPEL process service component and an external service, including one-way messages, synchronous and asynchronous interactions, one request - multiple and single responses, one request - mandatory and optional responses, partial processing, and multiple application interactions. It also describes the best use practices for each.
This chapter includes the following sections:
In a one-way message, or fire and forget, the client sends a message to the service (d1 in Figure 5-1), and the service is not required to reply. The client sending the message does not wait for a response, but continues executing immediately. Example 5-1 shows the portType
and operation
part of the BPEL process WSDL file for this environment.
Example 5-1 One-Way WSDL File
Figure 5-1 provides an overview.
BPEL Process Service Component as the Client
As the client, the BPEL process service component needs a valid partner link and an invoke activity with the target service and the message. As with all partner activities, the Web Services Description Language (WSDL) file defines the interaction.
BPEL Process Service Component as the Service
To accept a message from the client, the BPEL process service component needs a receive activity.
In a synchronous interaction, a client sends a request to a service (d1 in Figure 5-2), and receives an immediate reply (d2 in Figure 5-2). A BPEL process service component can be at either end of this interaction, and must be coded based on its role as either the client or the service. For example, a user requests a subscription to an online newspaper and immediately receives email confirmation that their request has been accepted. Example 5-2 shows the portType
and operation
part of the BPEL process WSDL file for this environment.
Example 5-2 Synchronous WSDL File
Figure 5-2 provides an overview.
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of a synchronous transaction, it needs an invoke activity. The port on the client side both sends the request and receives the reply. As with all partner activities, the WSDL file defines the interaction.
BPEL Process Service Component as the Service
When the BPEL process service component is on the service side of a synchronous transaction, it needs a receive activity to accept the incoming request, and a reply activity to return either the requested information or an error message (a fault; f1 in Figure 5-2) defined in the WSDL.
For more information about synchronous interactions, see Chapter 7, "Invoking a Synchronous Web Service from a BPEL Process."
In an asynchronous interaction, a client sends a request to a service and waits until the service replies. Example 5-3 shows the portType
and operation
part of the BPEL process WSDL file for this environment.
Example 5-3 Asynchronous WSDL File
Figure 5-3 provides an overview.
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous transaction, it needs an invoke activity to send the request and a receive activity to receive the reply. As with all partner activities, the WSDL file defines the interaction.
BPEL Process Service Component as the Service
As with a synchronous transaction, when the BPEL process service component is on the service side of an asynchronous transaction, it needs a receive activity to accept the incoming request and an invoke activity to return either the requested information or a fault. Note the difference between this and responding from a synchronous BPEL process: a synchronous BPEL process uses a reply activity to respond to the client and an asynchronous service uses an invoke activity.
For more information about asynchronous interactions, see Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process."
In an asynchronous interaction with a timeout (which you perform in BPEL with a pick activity), a client sends a request to a service and waits until it receives a reply, or until a certain time limit is reached, whichever comes first. For example, a client requests a loan offer. If the client does not receive a loan offer reply within a specified amount of time, the request is canceled. Figure 5-4 provides an overview.
Figure 5-4 Asynchronous Interaction with Timeout
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous transaction with a timeout, it needs an invoke activity to send the request and a pick activity with two branches: an onMessage branch and an onAlarm branch. If the reply comes after the time limit has expired, the message goes to the dead letter queue. As with all partner activities, the WSDL file defines the interaction.
For more information about asynchronous interactions with a timeout, see Section 15.2, "Creating a Pick Activity to Select Between Continuing a Process or Waiting."
BPEL Process Service Component as the Service
The behavior of the BPEL process service component as a service matches the behavior with the asynchronous interaction with the BPEL process service component as the service.
In an asynchronous interaction with a notification time, a client sends a request to a service and waits for a reply, although a notification is sent after a timer expires. The client continues to wait for the reply from the service even after the timer has expired. Figure 5-5 provides an overview.
Figure 5-5 Asynchronous Interaction with a Notification Time
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs a scope activity containing an invoke activity to send the request, and a receive activity to accept the reply. The onAlarm handler of the scope activity has a time limit and instructions on what to do when the timer expires. For example, wait 30 minutes, then send a warning indicating that the process is taking longer than expected. As with all partner activities, the WSDL file defines the interaction.
BPEL Process Service Component as the Service
The behavior for the BPEL process service component as the service matches the behavior with the asynchronous interaction with the BPEL process service component as the service.
In this interaction type, the client sends a single request to a service and receives multiple responses in return. For example, the request can be to order a product online, and the first response can be the estimated delivery time, the second response a payment confirmation, and the third response a notification that the product has shipped. In this example, the number and types of responses are expected. Figure 5-6 provides an overview.
Figure 5-6 One Request, Multiple Responses
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs an invoke activity to send the request, and a sequence activity with three receive activities, one for each reply. As with all partner activities, the WSDL file defines the interaction.
BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and a sequence attribute with three invoke activities, one for each reply.
In an interaction using one request and one of two possible responses, the client sends a single request to a service and receives one of two possible responses. For example, the request can be to order a product online, and the first response can be either an in-stock message or an out-of-stock message. Figure 5-7 provides an overview.
Figure 5-7 One Request, One of Two Possible Responses
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs the following:
As with all partner activities, the WSDL file defines the interaction.
For more information about interactions using one request and one of two possible responses, see Section 15.2, "Creating a Pick Activity to Select Between Continuing a Process or Waiting."
BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and a switch activity with two branches, one with an invoke activity sending the in-stock message if the item is available, and a second branch with an invoke activity sending the out-of-stock message if the item is not available.
In this type of interaction, the client sends a single request to a service and receives one or two responses. Here, the request is to order a product online. If the product is delayed, the service sends a message letting the customer know. In any case, the service always sends a notification when the item ships. Figure 5-8 provides an overview.
Figure 5-8 One Request, a Mandatory Response, and an Optional Response
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs a scope activity containing the invoke activity to send the request, and a receive activity to accept the mandatory reply. The onMessage handler of the scope activity is set to accept the optional message and instructions on what to do if the optional message is received (for example, notify you that the product has been delayed). The client BPEL process service component waits to receive the mandatory reply. If the mandatory reply is received first, the BPEL process service component continues without waiting for the optional reply. As with all partner activities, the WSDL file defines the interaction.
BPEL Process Service Component as the Service
The BPEL service needs a scope activity containing the receive activity and an invoke activity to send the mandatory shipping message, and the scope's onAlarm handler to send the optional delayed message if a timer expires (for example, send the delayed message if the item is not shipped in 24 hours).
In partial processing, the client sends a request to a service and receives an immediate response, but processing continues on the service side. For example, the client sends a request to purchase a vacation package, and the service sends an immediate reply confirming the purchase, then continues on to book the hotel, the flight, the rental car, and so on. This pattern can also include multiple shot callbacks, followed by longer-term processing. Figure 5-9 provides an overview.
BPEL Process Service Component as the Client
In this case, the BPEL client is simple; it needs an invoke activity for each request and a receive activity for each reply for asynchronous transactions, or just an invoke activity for each synchronous transaction. Once those transactions are complete, the remaining work is handled by the service. As with all partner activities, the WSDL file defines the interaction.
BPEL Process Service Component as the Service
The BPEL service needs a receive activity for each request from the client, and an invoke activity for each response. Once the responses are finished, the BPEL process service component as the service can continue with its processing, using the information gathered in the interaction to perform the necessary tasks without any further input from the client.
In some cases, there are more than two applications involved in a transaction, for example, a buyer, seller, and shipper. In this case, the buyer sends a request to the seller, the seller sends a request to the shipper, and the shipper sends a notification to the buyer. This A-to-B-to-C-to-A transaction pattern can handle many transactions at the same time. Therefore, a mechanism is required for keeping track of which message goes where. Figure 5-10 provides an overview.
As with all partner activities, the WSDL file defines the interaction.
This kind of coordination can be managed using WS-Addressing or correlation sets. For more information about both, see Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process."
This chapter describes how to manipulate XML data in a BPEL process service component. This chapter provides a variety of examples. Topics include how to work with variables, sequences, and arrays; use XPath expressions; and perform tasks such as mathematical calculations. Supported specifications are also referenced.
This chapter includes the following sections:
Note: Most of the examples in this chapter assume that the WSDL file defining the associated message types is document-literal style rather than the RPC style. There is a difference in how XPath query strings are formed for RPC-style WSDL definitions. If you are working with a type defined in an RPC WSDL file, see Section 6.21, "Understanding Document-Style and RPC-Style WSDL Differences." |
For Oracle BPEL Process Manager samples, see the Oracle SOA Suite samples.
This section provides an introduction to using XML data in BPEL processes.
In a BPEL process service component, most pieces of data are in XML format. This includes the messages passed to and from the BPEL process service component, the messages exchanged with external services, and the local variables used by the process. You define the types for these messages and variables with the XML schema, usually in one of the following:
Therefore, most variables in BPEL are XML data, and any BPEL process service component uses much of its code to manipulate these XML variables. This typically includes performing data transformation between representations required for different services, and local manipulation of data (for example, to combine the results from several service invocations).
BPEL also supports service data object (SDO) variables, which are not in an XML format, but rather in a memory structure format.
The starting point for data manipulation in BPEL is the assign activity, which builds on the XPath standard. XPath queries, expressions, and functions play a large part in this type of manipulation.
In addition, more advanced methods are available that involve using XQuery, XSLT, or Java, usually to do more complex data transformation or manipulation.
This section provides a general overview of how to manipulate XML data in BPEL. It summarizes the key building blocks used in various combinations and provides examples. The remaining sections in this chapter discuss and illustrate how to apply these building blocks to perform specific tasks.
You use the assign activity to copy data from one XML variable to another, or to calculate the value of an expression and store it in a variable. A copy element within the activity specifies the source and target of the assignment (what to copy from and to), which must be of compatible types.
Example 6-1 shows the formal syntax for BPEL version 1.1, as described in the Business Process Execution Language for Web Services Specification:
Example 6-1 Assign Activity for BPEL 1.1
Example 6-2 shows the formal syntax for BPEL version 2.0, as described in the Web Services Business Process Execution Language Specification Version 2.0. The keepSrcElementName
attribute specifies whether the element name of the destination (as selected by the to-spec
) is replaced by the element name of the source (as selected by the from-spec
) during the copy operation. When keepSrcElementName
is set to no
(the default value), the name (that is, the namespace name and local name properties) of the original destination element is used as the name of the resulting element. When keepSrcElementName
is set to yes
, the source element name is used as the name of the resulting destination element.
Example 6-2 Assign Activity for BPEL 2.0
This syntax is described in detail in both specifications. The from-spec
and to-spec
typically specify a variable or variable part, as shown in Example 6-3:
Example 6-3 from-spec and to-spec Attributes
When you use Oracle JDeveloper, you supply assign activity details in a Copy Rules dialog that includes a From section and a To section. This reflects the preceding BPEL source code syntax.
XPath standards play a key role in the assign activity. Brief examples are shown here as an introduction; examples with more context and explanation are provided in the sections that follow.
An XPath query selects a field within a source or target variable part. The from
or to
clause can include a query attribute whose value is an XPath query string. Example 6-4 provides an example:
Example 6-4 query Attribute
The value of the query attribute must be a location path that selects exactly one node. You can find further details about the query
attribute and XPath standards syntax in the Business Process Execution Language for Web Services Specification (section 14.3) or Web Services Business Process Execution Language Specification Version 2.0 (section 8.4), and the XML Path Language (XPath) Specification, respectively.
You use an XPath expression (specified in an expression
attribute in the from
clause) to indicate a value to be stored in a variable. For example:
The expression can be any general expression (that is, an XPath expression that evaluates to any XPath value type). Similarly, the value of an expression attribute must return exactly one node or one object only when it is used in the from
clause within a copy operation. For more information about XPath expressions, see section 9.1.4 of the XML Path Language (XPath) Specification.
Within XPath expressions, you can call the following types of functions:
XPath supports a large number of built-in functions, including functions for string manipulation (such as concat
), numeric functions (like sum
), and others.
For a complete list of the functions built into XPath standards, see section 4 of the XML Path Language (XPath) Specification.
BPEL adds several extension functions to the core XPath core functions, enabling XPath expressions to access information from a process.
http://schemas.xmlsoap.org/ws/2003/03/business-process/
and indicated by the prefix bpws
: For more information, see sections 9.1 and 14.1 of the Business Process Execution Language for Web Services Specification. For more information about getVariableData
, see Section B.2.57.2, "getVariableData."
http://schemas.xmlsoap.org/ws/2003/03/business-process/
. However, the prefix is bpel
: For more information, see section 8.3 of the Web Services Business Process Execution Language Specification Version 2.0. For more information about getVariableProperty
, see Section B.2.57.4, "getVariableProperty (For BPEL 2.0)."
Oracle provides some additional XPath functions that use the capabilities built into BPEL and XPath standards for adding new functions.
These functions are defined in the namespace http://schemas.oracle.com/xpath/extension
and indicated by the prefix ora:
.
Oracle BPEL Process Manager functions are defined in the bpel-xpath-functions-config.xml
and placed inside the orabpel.jar
file. For more information, see Section B.7, "Creating User-Defined XPath Extension Functions" and Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Sophisticated data manipulation can be difficult to perform with the BPEL assign activity and the core XPath functions. However, you can perform complex data manipulation and transformation by using XSLT, Java, or a bpelx
operation under an assign activity (See Section 6.14, "Manipulating XML Data with bpelx Extensions") or as a web service. For XSLT, Oracle BPEL Process Manager includes XPath functions that execute these transformations.
For more information about XPath and XQuery transformation code examples, see Chapter 40, "Creating Transformations with the XSLT Mapper."
Note: Passing large schemas through an assign activity can cause Oracle JDeveloper to freeze up and run low on memory if you right-click the target or source payload node in the Edit Assign dialog and select Expand All Child Nodes. As a workaround, manually expand the payload elements. |
You can specify BPEL data operations to be performed by an underlying data provider service through use of the entity variable. The data provider service performs the data operations in a data store behind the scenes and without use of other data store-related features provided by Oracle SOA Suite (for example, the database adapter). This action enhances Oracle SOA Suite runtime performance and incorporates native features of the underlying data provider service during compilation and runtime.
The entity variable can be used with an Oracle Application Development Framework (ADF) Business Component data provider service using SDO-based data.
In releases before 11g, variables and messages exchanged within a BPEL business process were a disconnected payload (a snapshot of data returned by a web service) placed into an XML structure. In some cases, the user required this type of fit. In other cases, this fit presented challenges.
The entity variable addresses the following challenges of previous releases:
If the underlying data was not in XML form, data conversion (for example, translating delimited text to XML) was required. If the underlying size of the data was large, the processing potentially impacted performance.
Variables (including WSDL messages) in BPEL processes were disconnected payload. In some cases, this was required. In other cases, you wanted a variable to represent the most recent data being modified by other applications outside Oracle BPEL Process Manager. This meant the disconnected data model provided a stale data set that did not fit all needs. The snapshot also duplicated data, which impacted performance when the data size was large.
Some data conversion implementation required data structure enforcement or business data logic beyond the XML schema. For example, the start date needed to be smaller than the end date. When the variable was a disconnected payload, validation occurred only during related web service invocation. Optionally performing the extra business data logic after certain operations, but before web service invocation, was sometimes preferred.
To address these challenges with Release 11g, you create an entity variable during variable declaration. An entity variable acts as a data handle to access and plug in different data provider service technologies behind the scenes. During compilation and runtime, Oracle BPEL Process Manager delegates data operations to the underlying data provider service.
Table 6-1 provides an example of how data conversion was performed in previous releases (using the database adapter as an example) and in release 11g with the entity variable.
Table 6-1 Data Manipulation Capabilities in Previous and Current Releases
10.1.x Releases | 11g Release When Using the Entity Variable |
---|---|
Data operations such as explicitly loading and saving data were performed by the database adapter in Oracle BPEL Process Manager. All data (for example, of a purchase order) was saved in the database dehydration store. | Data operations such as loading and saving data are performed automatically by the data provider service (the Oracle ADF Business Component application), without asking you to code any service invocation. Oracle BPEL Process Manager stores a key (for example, purchase order ID (POID)) that points to this data. Oracle BPEL Process Manager fetches the key when access to data is requested (the bind entity activity does this). You must explicitly request the data to be bound using the key. Any data changes are persisted by the data provider service in a database that can be different from the dehydration store database. This prevents data duplication. |
Data in variables was in document object model (DOM) form | Data in variables is in SDO form, which provides for a simpler conversion process than DOM, especially when the data provider service understands SDO forms. |
Note: Only BPEL process service components currently allow the use of SDO-formed variables. If your composite application has an Oracle Mediator service component wired with an SDO-based Java binding component reference, the data form of the variable defaults to DOM. In addition, the features described for 10.1.x releases in Table 6-1 are still supported in release 11g. |
The WebLogic Fusion Order Demo application describes use of the entity variable.
This section describes how to create an entity variable and a binding key in Oracle JDeveloper.
In 10.1.x releases of Oracle BPEL Process Manager, all variable data was in DOM form. With release 11g, variable data in SDO form is also supported. DOM and SDO variables in BPEL process service components are implicitly converted to the required forms. For example, an Oracle BPEL process service component using DOM-based variables can automatically convert these variables as required to SDO-based variables in an assign activity, and vice versa. Both form types are defined in the XSD schema file. No user intervention is required.
Entity variables also support SDO-formed data. However, unlike the DOM and SDO variables, the entity variable with SDO-based data enables you to bind a unique key value to data (for example, a purchase order). Only the key is stored in the dehydration store; the data requiring conversion is stored with the service of the Oracle ADF Business Component application. The key points to the data stored in the service. When the data is required, it is fetched from the data provider service and placed into memory. The process occurs in two places: the bind entity activity and the dehydration store. For example, when Oracle BPEL Process Manager rehydrates, it stores only the key for the entity variable; when it wakes up, it does an implicit bind to get the current data.
The SDO binding component service provides the outside world with an entry point to the composite application, as shown in Figure 6-1.
You use the SOA Composite Editor and Oracle BPEL Designer to perform the following tasks:
For more information about using the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."
The SDO binding component reference enables messages to be sent from the composite application to Oracle ADF Business Component application external partners in the outside world, as shown in Figure 6-2.
When the Oracle ADF Business Component application is the external partner link to the outside world, there is no SDO binding component reference in the SOA Composite Editor that you drag into the composite application to create outbound communication. Instead, communication between the composite application and the Oracle ADF Business Component application occurs as follows:
composite.xml
file is automatically updated with reference details (the binding.adf
property) when the Oracle ADF Business Component application service is discovered. You now create an entity variable and select a partner link for the Oracle ADF Business Component application. The following example describes how the OrderProcessor BPEL process service component receives an ID for an order by using a bind entity activity to point to order data in an Oracle ADF Business Component data provider service in the WebLogic Fusion Order Demo application.
To create an entity variable and choose a partner link:
The Create Variable dialog appears.
The Partner Link Chooser dialog appears with a list of available services, including the SDO service called ADF-BC Service.
The dialog looks as shown in Figure 6-3.
You now create a key to point to the order data in the Oracle ADF Business Component data provider service.
To create a binding key:
The Bind Entity dialog appears.
The Variable Chooser dialog appears.
The Specify Key dialog appears. You use this dialog to create a key for retrieving the order ID from the Oracle ADF Business Component data provider service.
Table 6-2 Specify Key Dialog Fields and Values
Field | Value |
---|---|
Key Local Part | Enter the local part of the key. |
Key Namespace URI | Enter the namespace URI for the key. |
Key Value | Enter the key value expression. This expression must match the type of a key. The following examples show expression value keys for a POID key:
The POID key for an entity variable typically comes from another message. If the type of POID key is an integer and the expression result is a string of |
Figure 6-4 shows the Specify Key dialog after completion.
A name-pair value appears in the Unique Keys table, as shown in Figure 6-5. Design is now complete.
After the Bind Entity activity is executed at runtime, the entity variable is ready to be used.
For more information about using SDOs, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. This guide describes how to expose application modules as web services and publish rows of view data objects as SDOs. The application module is the ADF framework component that encapsulates business logic as a set of related business functions.
Standalone SDO-based variables are similar to ordinary BPEL XML-DOM-based variables. The major difference is that the underlying data form is SDO-based, instead of DOM-based. Therefore, SDO-based variables can use some SDO features such as Java API access, an easier-to-use update API, and the change summary. However, SDO usage is also subject to some restrictions that do not exist with XML-DOM-based variables. The most noticeable restriction is that SDO only supports a small subset of XPath expressions.
The syntax for declaring an SDO-based variable is similar to that for declaring BPEL variables. Example 6-5 provides details.
Example 6-5 SDO-based Variable Declaration
If you want to override the automatic detection, use the bpelx:sdoCapable="true|false"
switch. For example, variable deptVar_v
described in Example 6-5 is a regular DOM-based variable. Example 6-6 provides an example of the schema.
Example 6-6 XSD Sample
Oracle BPEL Process Manager supports dual data forms: DOM and SDO. You can interchange the usage of DOM-based and SDO-based variables within the same business process, even within the same expression. The Oracle BPEL Process Manager data framework automatically converts back and forth between DOM and SDO forms.
By using the entity variable XPath rewrite capabilities, Oracle BPEL Process Manager enables some XPath features (for example, variable reference and function calls) that the basic SDO specification does not support. However, there are other limitations on the XPath used with SDO-based variables (for example, there is no support for and
, or
, and not
).
Example 6-7 provides a simple example of converting from XML to SDO.
Example 6-7 XML-to-SDO Conversion
Example 6-8 provides an example of copying from an XPath expression of an SDO variable to a DOM variable.
Example 6-8 Copy from an XPath Expression of an SDO Variable to a DOM Variable
Example 6-9 provides an example of removing a portion of SDO data.
Example 6-9 SDO Data Removal
It is often useful to assign literal XML to a variable in BPEL, for example, to initialize a variable before copying dynamic data into a specific field within the XML data content for the variable. This is also useful for testing purposes when you want to hard code XML data values into the process.
Example 6-10 assigns a literal result
element to the payload
part of the output
variable:
Example 6-10 Literal Element Assignment
When you copy between variables, you copy directly from one variable (or part) to another variable of a compatible type, without needing to specify a particular field within either variable. In other words, you do not need to specify an XPath query.
Example 6-11 shows two assignments being performed, first copying between two variables of the same type and then copying a variable part to another variable with the same type as that part.
Example 6-11 Copying Between Variables
The BPEL file defines the variables shown in Example 6-12:
Example 6-12 Variable Definition
The WSDL file defines the person
message type shown in Example 6-13:
Example 6-13 Message Type Definition
For more information about this code example, see Section 9.3.2 of the Business Process Execution Language for Web Services Specification. For BPEL 2.0, see Section 8.4.4 of Web Services Business Process Execution Language Specification Version 2.0 for a similar example.
For more information, see Section A.2.3, "Assign Activity."
A variable can optionally be initialized by using an inline from-spec
. Click the Initialize tab in the Create Variable dialog in a BPEL 2.0 project to create this type of variable.
Inline variable initializations are conceptually designed as a virtual sequence activity that includes a series of virtual assign activities, one for each variable being initialized, in the order in which they appear in the variable declarations. Each virtual assign activity contains a single virtual copy operation whose from-spec
is as given in the variable initialization. The to-spec
points to the variable being created. Example 6-14 provides details.
Example 6-14 Variable Initialization with an Inline from-spec
For more information, see section 8.1 of Web Services Business Process Execution Language Specification Version 2.0.
Given the types of definitions present in most WSDL and XSD files, you must go down to the level of copying from or to a field within part of a variable based on the element and message type. This in turn uses XML schema complex types. To perform this action, you specify an XPath query in the from
or to
clause of the assign activity.
In Example 6-15, the ssn
field is copied from the CreditFlow
process's input message into the ssn
field of the credit rating service's input message.
Example 6-15 Field Copying Levels
Example 6-16 shows how the BPEL file defines message type-based variables involved in this assignment:
Example 6-16 BPEL File Definition - Message Type-Based Variables in BPEL 1.1
The crInput
variable is used as an input message to a credit rating service. Its message type, CreditFlowRequestMessage
, is defined in the CreditFlowService.wsdl
file, as shown in Example 6-17:
Example 6-17 CreditFlowRequestMessage Definition
CreditFlowRequest
is defined with a field named ssn
. The message type CreditRatingServiceRequestMessage
is defined in the CreditRatingService.wsdl
file, as shown in Example 6-18:
Example 6-18 CreditRatingServiceRequestMessage Definition
Example 6-19 shows the BPEL 2.0 syntax for how the BPEL file defines message type-based variables involved in the assignment in Example 6-15. Note that /tns:CreditFlowRequest
is not required.
Example 6-19 BPEL File Definition - Message Type-Based Variables in BPEL 2.0
A BPEL process can also use element-based variables. Example 6-20 shows how to use element-based variables in BPEL 1.1. The autoloan
field is copied from the loan application process's input message into the customer
field of a web service's input message.
Example 6-20 Field Copying Levels in BPEL 1.1
Example 6-21 shows how to use element-based variables in BPEL 2.0.
Example 6-21 Field Copying Levels in BPEL 2.0
Example 6-22 shows how the BPEL file defines element-based variables involved in an assignment:
You can assign numeric values in XPath expressions.
Example 6-23 shows how to assign an XPath expression with the integer value of 100
.
You can use simple mathematical expressions like the one in Section 6.8.1, "How To Use Mathematical Calculations with XPath Standards," which increment a numeric value.
In Example 6-24, the BPEL XPath function getVariableData
retrieves the value being incremented. The arguments to getVariableData
are equivalent to the variable, part, and query attributes of the from
clause (including the last two arguments, which are optional).
Example 6-24 XPath Function getVariableData Retrieval of a Value
You can also use $variable
syntax in BPEL 1.1, as shown in Example 6-25:
Example 6-25 $variable Syntax Use in BPEL 1.1
Example 6-26 shows how to use $variable
syntax in BPEL 2.0.
You can assign string literals to a variable in BPEL.
The code in Example 6-27 copies a BPEL 1.1 expression evaluating from the string literal 'GE'
to the symbol field within the indicated variable part. (Note the use of the double and single quotes.)
Example 6-27 Expression Copy in BPEL 1.1
Example 6-28 shows how to perform this expression in BPEL 2.0.
Rather than copying the value of one string variable (or variable part or field) to another, you can first perform string manipulation, such as concatenating several strings.
The concatenation is accomplished with the core XPath function named concat
; in addition, the variable value involved in the concatenation is retrieved with the BPEL XPath function getVariableData
. In Example 6-29, getVariableData
fetches the value of the name
field from the input
variable's payload
part. The string literal 'Hello '
is then concatenated to the beginning of this value.
Example 6-29 XPath Function getVariableData Fetch of Data
Other string manipulation functions available in XPath are listed in section 4.2 of the XML Path Language (XPath) Specification.
You can assign boolean values with the XPath boolean function.
Example 6-30 provides an example of assigning boolean values in BPEL 1.1. The XPath expression in the from
clause is a call to XPath's boolean function true
, and the specified approved field is set to true
. The function false
is also available.
Example 6-30 Boolean Value Assignment in BPEL 1.1
Example 6-31 provides an example of assigning boolean values in BPEL 2.0.
Example 6-31 Boolean Value Assignment in BPEL 2.0
The XPath specification recommends that you use the "true()"
and "false()"
functions as a method for returning boolean constant values.
If you instead use "boolean(true)"
or "boolean(false)"
, the true
or false
inside the boolean function is interpreted as a relative element step, and not as any true
or false
constant. It attempts to select a child node named true
under the current XPath context node. In most cases, the true
node does not exist. Therefore, an empty result node set is returned and the boolean()
function in XPath 1.0 converts an empty node set into a false result. This result can be potentially confusing.
You can assign the current value of a date or time field by using the Oracle BPEL XPath function getCurrentDate
, getCurrentTime
, or getCurrentDateTime
, respectively. In addition, if you have a date-time value in the standard XSD format, you can convert it to characters more suitable for output by calling the Oracle BPEL XPath function formatDate
.
For related information, see section 9.1.2 of the Business Process Execution Language for Web Services Specification and section 8.3.2 of the Web Services Business Process Execution Language Specification Version 2.0.
Example 6-32 shows an example that uses the function getCurrentDate
in BPEL 1.1.
Example 6-32 Date or Time Assignment in BPEL 1.1
Example 6-33 shows an example that uses the function getCurrentDate
in BPEL 2.0.
Example 6-33 Date or Time Assignment in BPEL 2.0
In Example 6-34, the formatDate
function converts the date-time value provided in XSD format to the string 'Jun 10, 2005'
(and assigns it to the string field formattedDate
).
Example 6-34 formatDate Function in BPEL 1.1
Example 6-35 shows how the formatDate
function works in BPEL 2.0.
You can copy to or from something defined as an XML attribute. An at sign (@
) in XPath query syntax refers to an attribute instead of a child element.
The code in Example 6-36 fetches and copies the custId
attribute from this XML data:
Example 6-36 custId Attribute Fetch and Copy Operations
The BPEL 1.1 code in Example 6-37 selects the custId
attribute of the customer field and assigns it to the variable custId
:
Example 6-37 custId Attribute Select and Assign Operations in BPEL 1.1
Example 6-38 shows the equivalent syntax in BPEL 2.0 for selecting the custId
attribute of the customer field and assigning it to the variable custId
:
Example 6-38 custId Attribute Select and Assign Operations in BPEL 2.0
The namespace prefixes in this example are not integral to the example.The WSDL file defines a customer to have a type in which custId
is defined as an attribute, as shown in Example 6-39:
You can perform various operations on XML data in assign activities. The bpelx
extension types described in this section provide this functionality. In Oracle BPEL Designer, you can add bpelx
extension types at the bottom of the Copy Rules tab of an Assign dialog. After creating a copy rule, you select it and then choose a bpelx
extension type from the dropdown list in BPEL 1.1 or the context menu in BPEL 2.0. This changes the copy rule to the selected extension type.
In BPEL 1.1, you select an extension type from the dropdown list, as shown in Figure 6-6.
Figure 6-6 Copy Rule Converted to bpelx Extension in BPEL 1.1
In BPEL 2.0, you select an extension type by right-clicking the copy rule, selecting Change rule type, and then selecting the extension type, as shown in Figure 6-7.
Figure 6-7 Copy Rule Converted to bpelx Extension in BPEL 2.0
For more information, see the online Help for this dialog and Section A.2.3, "Assign Activity."
The bpelx:append
extension in an assign activity enables a BPEL process service component to append the contents of one variable, expression, or XML fragment to another variable's contents. To use this extension, you select a copy rule at the bottom of the Copy Rules tab, then select Append from the dropdown list, as shown in Figure 6-6.
Note: The |
Example 6-40 provides an example of bpelx:append
in a BPEL project that supports BPEL version 1.1.
Example 6-40 bpelx:append Extension in BPEL 1.1
The from-spec
query within bpelx:append
yields zero or more nodes. The node list is appended as child nodes to the target node specified by the to-spec
query.
The to-spec
query must yield one single L-Value element node. Otherwise, a bpel:selectionFailure
fault is generated. The to-spec
query cannot refer to a partner link.
Example 6-41 consolidates multiple bills of material into one single bill of material (BOM) by appending multiple b:part
s for one BOM to b:
part
s of the consolidated BOM.
Example 6-42 provides an example of bpelx:append
syntax in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in Section 6.14.1.1, "bpelx:append in BPEL 1.1," but the syntax is slightly different.
Note: The |
The bpelx:insertBefore
extension in an assign activity enables a BPEL process service component to insert the contents of one variable, expression, or XML fragment before another variable's contents. To use this extension, you select a copy rule at the bottom of the Copy Rules tab, then select InsertBefore from the dropdown list, as shown in Figure 6-6.
Example 6-43 provides an example of bpelx:insertBefore
in a BPEL project that supports BPEL version 1.1.
Example 6-43 bpelx:insertBefore Extension in BPEL 1.1
The from-spec
query within bpelx:insertBefore
yields zero or more nodes. The node list is appended as child nodes to the target node specified by the to-spec
query.
The to-spec
query of the insertBefore
operation points to one or more single L-Value nodes. If multiple nodes are returned, the first node is used as the reference node. The reference node must be an element node. The parent of the reference node must also be an element node. Otherwise, a bpel:selectionFailure
fault is generated. The node list generated by the from-spec
query selection is inserted before the reference node. The to-spec
query cannot refer to a partner link.
Example 6-44 shows the syntax before the execution of <insertBefore>
. The value of addrVar
is:
Example 6-44 Presyntax Execution
Example 6-45 shows the syntax after the execution:
Example 6-45 Postsyntax Execution
Example 6-46 shows the value of addrVar
:
Example 6-47 provides an example of bpelx:insertBefore
syntax in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in Section 6.14.2.1, "bpelx:insertBefore in BPEL 1.1," but the syntax is slightly different. An extensionAssignOperation
element wraps the bpelx:insertBefore
extension.
Note: The |
The bpelx:insertAfter
extension in an assign activity enables a BPEL process service component to insert the contents of one variable, expression, or XML fragment after another variable's contents. To use this extension, you select a copy rule at the bottom of the Copy Rules tab, then select InsertAfter from the dropdown list, as shown in Figure 6-6.
Example 6-48 provides an example of bpelx:insertAfter
in a BPEL project that supports BPEL version 1.1.
Example 6-48 bpelx:insertAfter Extension in BPEL 1.1
This operation is similar to the functionality described for Section 6.14.2, "How to Use bpelx:insertBefore," except for the following:
to-spec
query, the last node is used as the reference node. This operation can also be considered a macro of conditional-switch
+
(append
or insertBefore
).
Example 6-49 shows the syntax before the execution of <insertAfter>
. The value of addrVar
is:
Example 6-49 Presyntax Execution
Example 6-50 shows the syntax after the execution:
Example 6-50 Postsyntax Execution
Example 6-51 shows the value of addrVar
:
Example 6-51 addrVar Value
The from-spec
query within bpelx:insertAfter
yields zero or more nodes. The node list is appended as child nodes to the target node specified by the to-spec
query.
Example 6-52 provides an example of bpelx:insertAfter
syntax in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in Section 6.14.3.1, "bpelx:insertAfter in BPEL 1.1," but the syntax is slightly different. An extensionAssignOperation
element wraps the bpelx:insertAfter
extension.
Example 6-52 bpelx:insertAfter Extension in BPEL 2.0
The bpelx:remove
extension in an assign activity enables a BPEL process service component to remove a variable. In Oracle BPEL Designer, you add the bpelx:remove
extension by dragging the remove icon in the upper right corner of the Copy Rules tab to the target variable you want to remove, and releasing the cursor. Figure 6-8 provides details.
Figure 6-8 Remove Icon in Copy Rules Tab of an Assign Activity
After releasing the cursor, the bpelx:remove
extension is applied to the target variable. Figure 6-9 provides details.
Figure 6-9 bpelx:remove Extension Applied to a Target Variable
Example 6-53 provides an example of bpelx:remove
in a BPEL project that supports BPEL version 1.1.
Example 6-53 bpelx:remove Extension in BPEL 1.1
Node removal specified by the XPath expression is supported. Nodes specified by the XPath expression can be multiple, but must be L-Values. Nodes being removed from this parent can be text nodes, attribute nodes, and element nodes.
The XPath expression can return one or more nodes. If the XPath expression returns zero nodes, then a bpel:selectionFailure
fault is generated.
The syntax of bpelx:target
is similar to and a subset of to-spec
for the copy
operation.
Example 6-54 shows addrVar
with the following value:
Example 6-54 addrVar
After executing the syntax shown in Example 6-55 in the BPEL process service component file, the second address line of Mailstop
is removed:
Example 6-55 Removal of Second Address Line
After executing the syntax shown in Example 6-56 in the BPEL process service component file, both address lines are removed:
Example 6-57 provides an example of bpelx:remove
syntax in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in Section 6.14.4.1, "bpelx:remove in BPEL 1.1," but the syntax is slightly different. An extensionAssignOperation
element wraps the bpelx:remove
.
The bpelx:rename
extension in an assign activity enables a BPEL process service component to rename an element through use of XSD type casting. In Oracle BPEL Designer, you add the bpelx:rename
extension by dragging the rename icon in the upper right corner of the Copy Rules tab to the target variable you want to remove, and releasing the cursor. The rename icon displays to the right of the remove icon shown in Figure 6-8. After releasing the cursor, the Rename dialog is displayed for renaming the target variable.
Example 6-58 provides an example of bpelx:rename
in a BPEL project that supports BPEL version 1.1.
Example 6-58 bpelx:rename Extension in BPEL 1.1
The syntax of bpelx:target
is similar to and a subset of to-spec
for the copy
operation. The target must return a list of one more element nodes. Otherwise, a bpel:selectionFailure
fault is generated. The element nodes specified in the from-spec
are renamed to the QName
specified by the elementTo
attribute. The xsi:type
attribute is added to those element nodes to cast those elements to the QName
type specified by the typeCastTo
attribute.
Assume you have the employee list shown in Example 6-59:
Example 6-59 xsi:type Attribute
Promotion changes are now applied to Peter Smith
in the employee list in Example 6-60:
Example 6-60 Application of Promotion Changes
After executing the above casting (renaming), the data looks as shown in Example 6-61 with xsi:type
info added to Peter Smith
:
Example 6-61 Data Output
The employee data of Peter Smith
is now invalid, because <approvalLimit>
and <managing>
are missing. Therefore, <append>
is used to add that information. Example 6-62 provides an example.
Example 6-62 Use of append Extension to Add Information
With the execution of both rename
and append
, the corresponding data looks as shown in Example 6-63:
Example 6-64 provides an example of bpelx:rename
syntax in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in Section 6.14.5.1, "bpelx:rename in BPEL 1.1," but the syntax is slightly different. An extensionAssignOperation
element wraps the bpelx:rename
.
The bpelx:copyList
extension in an assign activity enables a BPEL process service component to perform a copyList
operation of the contents of one variable, expression, or XML fragment to another variable.
To use this extension in BPEL 1.1, you select a copy rule at the bottom of the Copy Rules tab, then select copyList from the dropdown list, as shown in Figure 6-6. To use this extension in BPEL 2.0, you right-click a copy rule, select Change rule type, and select CopyList, as shown in Figure 6-7.
Example 6-65 provides an example of bpelx:copyList
in a BPEL project that supports BPEL version 1.1.
Example 6-65 bpelx:copyList Extension in BPEL 1.1
The from-spec
query can yield a list of either all attribute nodes or all element nodes. The to-spec
query can yield a list of L-value nodes: either all attribute nodes or all element nodes.
All the element nodes returned by the to-spec
query must have the same parent element. If the to-spec
query returns a list of element nodes, all element nodes must be contiguous.
If the from-spec
query returns attribute nodes, then the to-spec
query must return attribute nodes. Likewise, if the from-spec
query returns element nodes, then the to-spec
query must return element nodes. Otherwise, a bpws:mismatchedAssignmentFailure
fault is thrown.
The from-spec
query can return zero nodes, while the to-spec
query must return at least one node. If the from-spec
query returns zero nodes, the effect of the copyList
operation is similar to the remove
operation.
The copylist
operation provides the following features:
to-spec
query. to-spec
query returns a list of element nodes and there are leftover child nodes after removal of those nodes, the nodes returned by the from-spec
query are inserted before the next sibling of the last element specified by the to-spec
query. If there are no leftover child nodes, an append
operation is performed. to-spec
query returns a list of attribute nodes, those attributes are removed from the parent element. The attributes returned by the from-spec
query are then appended to the parent element. For example, assume a schema is defined as shown in Example 6-66.
Example 6-66 Schema
The from
variable contains the content shown in Example 6-67.
Example 6-67 Variable Content
The to
variable contains the content shown in Example 6-68.
Example 6-68 Variable Content
The bpelx:copyList
operation looks as shown in Example 6-69.
Example 6-69 bpelx:copyList
This makes the to
variable as shown in Example 6-70.
Example 6-71 provides an example of bpelx:copyList
syntax in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in Section 6.14.6.1, "bpelx:copyList in BPEL 1.1," but the syntax is slightly different. An extensionAssignOperation
element wraps the bpelx:copyList
extension.
You can assign the following attributes to copy rules in an assign activity.
At the bottom of the Copy Rules tab of an assign activity, you right-click a selected copy rule to display a menu for choosing the appropriate attribute. Figure 6-10 provides details.
The ignoreMissingFromData
attribute suppresses any bpel:selectionFailure
standard faults. Table 6-3 describes the syntax differences between BPEL versions 1.1 and 2.0.
The insertMissingToData
attribute instructs runtime to complete the (XPath) L-value specified by the to-spec
, if no items were selected. Table 6-4 describes the syntax differences between BPEL versions 1.1 and 2.0.
The keepSrcElementName
attribute enables you to replace the element name of the destination (as selected by the to-spec
) with the element name of the source. This attribute was not implemented in BPEL 1.1. Table 6-5 describes the syntax supported in BPEL version 2.0.
You can verify code and identify invalid XML data in a BPEL project.
You can specify variables in the following message exchange activities:
inputVariable
attribute) and Output field (for an outputVariable
attribute) of an invoke dialog variable
attribute) of a receive activity variable
attribute) of a reply activity The variables referenced by these fields typically must be message type variables in which the QName matches the QName of the input and output message types used in the operation, respectively.
The one exception is if the WSDL operation in the activity uses a message containing exactly one part that is defined using an element. In this case, a variable of the same element type used to define the part can be referenced by the inputVariable
and outputVariable
attributes, respectively, in the invoke activity or the variable
attribute of the receive or reply activity.
Using a variable in this situation must be the same as declaring an anonymous, temporary WSDL message variable based on the associated WSDL message type.
Copying element data between the anonymous, temporary WSDL message variable and the element variable acts as a single virtual assign with one copy operation whose keepSrcElementName
attribute is set to yes
. The virtual assign must follow the same rules and use the same faults as a real assign activity. Table 6-6 provides details.
Table 6-6 Mapping WSDL Message Parts
For The...	The...
Value of the variable referenced by the attribute sets the value of the part in the anonymous temporary WSDL message variable.	
Value of the received part in the temporary WSDL message variable sets the value of the variable referenced by the attribute.	
Receive activity	Incoming part's value sets the value of the variable referenced by the variable attribute.
Reply activity	Value of the variable referenced by the variable attribute sets the value of the part in the anonymous, temporary WSDL message variable that is sent out. For a reply activity sending a fault, the same scenario applies.
For more information about the keepSrcElementName	
attribute, see Section 6.14.7.3, "keepSrcElementName Attribute."	
The toParts	
element in invoke and reply activities provides an alternative to explicitly creating multipart WSDL messages from the contents of BPEL variables.	
When you use the toParts	
element, as shown in Example 6-72, an anonymous, temporary WSDL variable is defined based on the type specified by the input message of the appropriate WSDL operation.	
The toParts	
element acts as a single, virtual assign activity. Each toPart	
acts as a copy operation. One toPart	
at most exists for each part in the WSDL message definition. Each copy operation copies data from the variable specified in the fromVariable	
attribute into the part of the anonymous, temporary WSDL variable referenced in the part	
attribute of the toParts	
element.	
The fromParts	
element in receive activities, invoke activities, the onEvent branch of scope activities, and the onMessage branch of pick activities is similar to the toParts	
element. The fromParts	
element, as shown in Example 6-73, retrieves data from an incoming multipart WSDL message and places the data into individual variables.	
Example 6-73 fromParts Element	
When a WSDL message is received on an invoke activity that uses fromParts	
elements, the message is placed in an anonymous, temporary WSDL variable of the type specified by the output message of the appropriate WSDL operation.	
As with the toParts	
element, the fromParts	
element acts as a single virtual assign activity. Each fromPart	
acts as a copy operation. Each copy operation copies the data at the part of the anonymous, temporary WSDL variable referenced in the part attribute of the fromPart	
into the variable indicated in the toVariable	
attribute.	
For both the toParts	
and fromParts	
elements, the virtual assign activity must follow the same semantics and generate the same faults as a real assign activity.	
The presence of a fromParts	
element in an invoke activity does not require it to have a fromPart	
for every part in the WSDL message definition. Parts not explicitly represented by fromParts	
elements are not copied from the anonymous WSDL variable to the variable.	
For more information about mapping WSDL message parts with the toParts	
and fromParts	
elements, see the Web Services Business Process Execution Language Version 2.0 Specification located at the following URL:	
This section provides an overview of a simple BPEL process in which a reply activity uses the toParts	
elements to copy variable contents. The WSDL and BPEL files used in this example are shown later in Example 6-74 and Example 6-75 of Section 6.17.2, "What Happens When You Map WSDL Message Parts."	
How to map WSDL message parts in BPEL 2.0	
Figure 6-13 To Parts Section Defined at Bottom of Reply Activity	
Example 6-74 shows a .bpel	
file for a synchronous request with toPart	
elements defined in a reply activity. This maps to the operation defined in the WSDL file shown in Example 6-75. The copy operation copies data from the variable indicated in the fromVariable	
attribute into the part of the anonymous, temporary WSDL variable, Var1	
.	
Example 6-74 BPEL File with ToParts Elements	
Example 6-75 WSDL File that Defines the Operation	
Example 6-76 shows a .bpel	
file with toPart	
elements defined in invoke and reply activities. This maps to the operation defined in the WSDL file shown in Example 6-77. The copy operation in the invoke activity copies data from the variable indicated in the fromVariable	
attribute into the part of the anonymous, temporary WSDL variable, request	
. The copy operation in the reply activity copies data from the variable indicated in the fromVariable	
attribute into the part of the anonymous, temporary WSDL variable, output	
.	
Example 6-76 BPEL File with ToParts Elements	
Example 6-77 WSDL File that Defines the Operation	
Example 6-78 shows a .bpel	
file with fromParts	
elements defined in pick and invoke activities. This maps to the operation defined in the WSDL file shown in Example 6-79. The copy operation in the pick activity retrieves data from the variable indicated in the toVariable	
attribute into the part of the anonymous, temporary WSDL variable, request	
. The copy operation in the invoke activities retrieves data from the variable indicated in the toVariable	
attribute into the part of the anonymous, temporary WSDL variable, response	
.	
Example 6-78 BPEL File with FromParts Elements	
Example 6-79 WSDL File that Defines the Operation	
You can use the import	
element to specify the definitions on which your BPEL process is dependent. When you create a version 2.0 BPEL process, an import	
element is added to the .bpel	
file, as shown in Example 6-80.	
Example 6-80 Import Element	
You can also use the import	
element to import a schema without a namespace, as shown in Example 6-81.	
Example 6-81 Schema Import Without Namespace	
You can also use the import	
element to import a schema with a namespace, as shown in Example 6-82.	
Example 6-82 Schema Import With Namespace	
The import	
element is provided to declare a dependency on external XML schema or WSDL definitions. Any number of import	
elements can appear as children of the process	
element. Each import	
element can contain the following attributes.	
namespace	
: Identifies an absolute URI that specifies the imported definitions. This is an optional attribute. If a namespace is specified, then the imported definitions must be in that namespace. If a namespace is not specified, this indicates that external definitions are in use that are not namespace-qualified. The imported definitions must not contain a targetNamespace	
specification. location	
: Identifies a URI that specifies the location of a document containing important definitions. This is an optional attribute. This can be a relative URI. If no location	
attribute is specified, the process uses external definitions. However, there is no statement provided indicating where to locate these definitions. importType	
: Identifies the document type to import. This must be an absolute URI that specifies the encoding language used in the document. This is a required attribute. "http://www.w3.org/2001/XMLSchema"	
. "http://schemas.xmlsoap.org/wsdl/"	
. You can also specify other values for this attribute. For more information, see section 5.4 of the Web Services Business Process Execution Language Specification Version 2.0.	
Data sequences are one of the most basic data models used in XML. However, manipulating them can be nontrivial. One of the most common data sequence patterns used in BPEL process service components are arrays. Based on the XML schema, the way you can identify a data sequence definition is by its attribute maxOccurs	
being set to a value greater than one or marked as unbounded. See the XML Schema Specification at http://www.w3.org/TR	
for more information.	
The examples in this section illustrate several basic ways of manipulating data sequences in BPEL. However, there are other associated requirements, such as performing looping or dynamic referencing of endpoints. The following sections describe a particular requirement for data sequence manipulation.	
The following two examples illustrate how to use XPath functionality to select a data sequence element when the index of the element you want is known at design time. In these cases, it is the first element.	
In Example 6-83, addresses[1]	
selects the first element of the addresses data sequence:	
Example 6-83 Data Sequence Element Selection	
In this query, addresses[1]	
is equivalent to addresses[position()=1]	
, where position	
is one of the core XPath functions (see sections 2.4 and 4.1 of the XML Path Language (XPath) Specification). The query in Example 6-84 calls the position	
function explicitly to select the first element of the addresses data sequence. It then selects that address's street	
element (which the activity assigns to the variable street1	
).	
Example 6-84 position Function Use	
If you review the definition of the input variable and its payload part in the WSDL file, you go several levels down before coming to the definition of the addresses field. There you see the maxOccurs="unbounded"	
attribute. The two XPath indexing methods are functionally identical; you can use whichever method you prefer.	
Oracle SOA Suite provides support for SOAP RPC-encoded arrays. This support enables Oracle BPEL Process Manager to operate as a client calling a SOAP web service (RPC-encoded) that uses a SOAP 1.1 array.	
Example 6-85 provides an example of a SOAP array payload named myFavoriteNumbers	
.	
Example 6-85 SOAP Array Payload	
In addition, ensure that the schema element attributes attributeFormDefault	
and elementFormDefault	
are set to "unqualified"	
in your schema. Example 6-86 provides details:	
Example 6-86 Schema Element Attributes	
The following features are not supported:	
To use a SOAP-encoded array:	
Example 6-87 shows how to prepare SOAP arrays with the bpelx:append	
tag in a BPEL project.	
bpelx:append	
in Example 6-87 is used to add items into the SOAP array. Example 6-87 SOAP Array	
SOAP-ENC	
tag if the import statement is missing in the WSDL schema element. SOAP-encoded arrays are supported in BPEL projects that use version 2.0 of the BPEL specification. Example 6-88 shows a sample assign activity with a SOAP-encoded array in a BPEL 2.0 project.	
Example 6-88 SOAP-Encoded Array in an Assign Activity in BPEL 2.0	
Example 6-89 shows a sample invoke activity with a SOAP-encoded array in a BPEL 2.0 project.	
A SOAP-encoded array WSDL can declare a SOAP array using a wsdl:arrayType	
attribute inside a schema. Example 6-90 provides details.	
Example 6-90 SOAP Array Declaration Using a wsdl:arrayType Attribute	
Example 6-91 shows how to create and access a SOAP-encoded array in BPEL 1.1.	
Example 6-91 SOAP-encoded Array Access in BPEL 1.1	
If you must know the runtime size of a data sequence (that is, the number of nodes or data items in the sequence), you can get it by using the combination of the XPath built-in count()	
function and the BPEL built-in getVariableData()	
function.	
The code in Example 6-92 calculates the number of elements in the item	
sequence and assigns it to the integer variable lineItemSize	
.	
Often a dynamic value is needed to index into a data sequence; that is, you must get the nth	
node out of a sequence, where the value of n	
is defined at runtime. This section covers the methods for dynamically indexing by applying a trailing XPath into expressions.	
The dynamic indexing method shown in Example 6-93 applies a trailing XPath to the result of bwps:getVariableData()	
, instead of using an XPath as the last argument of bpws:getVariableData()	
. The trailing XPath references to an integer-based index variable within the position predicate (that is, [...]	
).	
Example 6-93 Dynamic Indexing	
Assume at runtime that the idx	
integer variable holds 2	
as its value. The preceding expression within the from	
is equivalent to that shown in Example 6-94.	
Example 6-94 Equivalent Format	
There are some subtle XPath usage differences, when an XPath used trailing behind the bwps:getVariableData()	
function is compared with the one used inside the function.Using the same example (where payload	
is the message part of element "p:invoice"	
), if the XPath is used within the getVariableData()	
function, the root element name ("/p:invoice"	
) must be specified at the beginning of the XPath.	
Example 6-95 provides details.	
Example 6-95 Root Element Name Specification	
If the XPath is used trailing behind the bwps:getVariableData()	
function, the root element name does not need to be specified in the XPath.	
For example:	
This is because the node returned by the getVariableData()	
function is the root element. Specifying the root element name again in the XPath is redundant and is incorrect according to standard XPath semantics.	
The bpelx:append	
extension in an assign	
activity enables BPEL process service components to append new elements to an existing parent element. Example 6-96 provides an example.	
Example 6-96 bpelx:append Extension	
The bpelx:append	
logic in this example appends the payload element of the partInfoResultVar	
variable as a child to the payload element of the output	
variable. In other words, the payload element of the output	
variable is used as the parent element.	
You can merge two sequences into a single data sequence. This pattern is common when the data sequences are in an array (that is, the sequence of data items of compatible types).The two append	
operations shown in Example 6-97 under assign	
demonstrate how to merge data sequences:	
Example 6-97 Data Sequences Merges with append Operations	
The genEmptyElem	
function generates functionality equivalent to an array of an empty element to an XML structure. This function takes the following arguments:	
Note the following issues:	
QName	
of the empty elements. 1	
. QName	
, which is the xsi:type	
of the generated empty name. This xsi:type	
pattern matches the SOAPENC:Array	
. If it is missing or is an empty string, the xsi:type	
attribute is not generated. XSI - nil	
, provided the element is XSD-nillable. The default value is false	
. If missing or false	
, xsi:nil	
is not generated. Example 6-98 shows an append	
statement initializing a purchase order (PO) document with 10	
empty <lineItem>	
elements under po	
:	
Example 6-98 append Statement	
The genEmptyElem	
function in Example 6-98 can be replaced with an embedded XQuery expression, as shown in Example 6-99.	
Example 6-99 Embedded XQuery Expression	
The empty elements generated by this function are typically invalid XML data. You perform further data initialization after the empty elements are created. Using the same example above, you can perform the following:	
lineItem	
elements. copy	
operations to replace the empty elements. For example, copy from a web service result to an individual entry in this equivalent array under a flowN activity. For processing in Native Format Builder array identifier environments, information is required about the parent node of a node. Because the reportSAXEvents	
API is used, this information is typically not available for outbound message scenarios. Setting nxsd:useArrayIdentifiers	
to true	
in the native schema enables DOM-parsing to be used for outbound message scenarios. Use this setting cautiously, as it can lead to slower performance for very large payloads. Example 6-100 provides details.	
Example 6-100 Array Identifier	
Sometimes a service is defined to return a string, but the content of the string is actually XML data. The problem is that, although BPEL provides support for manipulating XML data (using XPath queries, expressions, and so on), this functionality is not available if the variable or field is a string type. With Java, you use DOM functions to convert the string to a structured XML object type. You can use the BPEL XPath function parseEscapedXML	
to do the same thing.	
For information about parseEscapedXML	
, see Section B.2.49, "parseEscapedXML."	
The parseEscapedXML	
function takes XML data, parses it through DOM, and returns structured XML data that can be assigned to a typed BPEL variable. Example 6-101 provides an example:	
Example 6-101 String to XML Element Conversion	
The examples shown up to this point have been for document-style WSDL files in which a message is defined with an XML schema element	
, as shown in Example 6-102:	
Example 6-102 XML Schema element Definition	
This is in contrast to RPC-style WSDL files, in which the message is defined with an XML schema type	
, as shown in Example 6-103:	
Example 6-103 RPC-Style type Definition	
This impacts the material in this chapter because there is a difference in how XPath queries are constructed for the two WSDL message styles. For an RPC-style message, the top-level element (and therefore the first node in an XPath query string) is the part name (payload	
in Example 6-103). In document-style, the top-level node is the element name (for example, loanApplication	
).	
Example 6-104 and Example 6-105 show what an XPath query string looks like if an application named LoanServices	
were in RPC style.	
Example 6-104 RPC-Style WSDL File	
BPEL's communication activities (invoke, receive, reply, and onMessage) receive and send messages through specified message variables. These default activities permit one variable to operate in each direction. For example, the invoke activity has inputVariable	
and outputVariable	
attributes. You can specify one variable for each of the two attributes. This is enough if the particular operation involved uses only one payload message in each direction.	
However, WSDL supports multiple messages in an operation. In the case of SOAP, multiple messages can be sent along the main payload message as SOAP headers. However, BPEL's default communication activities cannot accommodate the additional header messages.	
Oracle BPEL Process Manager solves this problem by extending the default BPEL communication activities with the bpelx:headerVariable	
extension. The extension syntax is as shown in Example 6-106:	
Example 6-106 bpelx:headerVariable Extension	
This section provides an example of how to create BPEL and WSDL files to receive SOAP headers.	
To receive SOAP headers in BPEL:	
Example 6-107 WSDL File Contents	
bpelx:headerVariable	
to receive the headers, as shown in Example 6-108. Example 6-108 bpelx:headerVariable Use	
This section provides an example of how to send SOAP headers.	
To send SOAP headers in BPEL:	
composite.xml	
to refer to the HeaderService	
. bpelx:inputHeaderVariable	
, as shown in Example 6-109. Example 6-109 bpelx:inputHeaderVariable Use	
You can extend a version 2.0 BPEL process to add custom extension namespace declarations. With the mustUnderstand	
attribute, you can indicate whether the custom namespaces carry semantics that must be understood by the BPEL process.	
If a BPEL process does not support one or more of the extensions with mustUnderstand	
set to yes	
, the process definition is rejected.	
Extensions are defined in the extensions	
element. Example 6-110 provides details.	
Example 6-110 Extension Namespace Declaration Syntax	
The contents of an extension	
element must be a single element qualified with a namespace different from the standard BPEL namespace.	
For more information about extension declarations, see the Web Services Business Process Execution Language Version 2.0 Specification located at the following URL:	
To declare extension namespaces:	
The Extensions dialog is displayed.	
The Extension dialog is displayed.	
After you complete your design, the .bpel	
process looks as shown in Example 6-111.	
This chapter describes how to invoke a synchronous web service from a BPEL process. It demonstrates how to set up the components necessary to perform a synchronous invocation and how these components are coded. It also describes how to specify a timeout value and call a one-way Oracle Mediator with a synchronous BPEL process.	
This chapter includes the following sections:	
For a simple Hello World sample (bpel-101-HelloWorld	
) that takes an input string, adds a prefix of "Hello "	
to the string, and returns it, see the Oracle SOA Suite samples.	
Synchronous web services provide an immediate response to an invocation. BPEL can connect to synchronous web services through a partner link, send data, and then receive the reply in the same synchronous invocation.	
A synchronous invocation requires the following components:	
Defines the location and the role of the web services with which the BPEL process service component connects to perform tasks, and the variables used to carry information between the web service and the BPEL process service component. A partner link is required for each web service that the BPEL process service component calls. You can create partner links in several ways, including the following:	
Opens a port in the BPEL process service component to send and receive data. For example, this port is used to retrieve information verifying that a customer has acceptable credit using a credit card authorization service. For synchronous callbacks, only one port is needed for both the send and receive functions.	
This section examines a synchronous invocation operation using the OrderProcessor.bpel	
file in the WebLogic Fusion Order Demo application as an example.	
To invoke a synchronous web service:	
Figure 7-1 shows the diagram for the Scope_AuthorizeCreditCard scope activity of the OrderProcessor.bpel file in the Fusion Order Demo, which defines a simple set of actions.	
Figure 7-1 Diagram of OrderProcessor.bpel	
The following actions take place:	
Figure 7-2 CreditCardAuthorizationService Partner Link	
Figure 7-3 shows the InvokeCheckCreditCard invoke activity.	
Figure 7-3 InvokeCheckCreditCard Invoke Activity	
When you create a partner link and invoke activity, the necessary BPEL code for invoking a synchronous web service is added to the appropriate BPEL and Web Services Description Language (WSDL) files.	
In the OrderProcessor.bpel	
code, the partner link defines the link name and type, and the role of the BPEL process service component in interacting with the partner service.	
From the BPEL source code, the CreditCardAuthorizationService	
partner link definition is shown in Example 7-1:	
Example 7-1 Partner Link Definition	
Variable definitions that are accessible locally in the Scope_AuthorizeCreditCard	
scope are shown in Example 7-2. The types for these variables are defined in the WSDL for the process itself.	
Example 7-2 Variable Definition	
The WSDL file defines the interface to your BPEL process service component: the messages that it accepts and returns, the operations that are supported, and other parameters.	
The web service's CreditCardAuthorizationService	
.wsdl	
file contains two sections that enable the web service to work with BPEL process service components:	
partnerLinkType	
: Defines the following characteristics of the conversion between a BPEL process service component and the credit card authorization web service:	
portType	
provided by each for receiving messages within the conversation portType	
: A collection of related operations implemented by a participant in a conversation. A port type defines which information is passed back and forth, the form of that information, and so on. A synchronous invocation requires only one port type that both initiates the synchronous process and calls back the client with the response. An asynchronous callback (one in which the reply is not immediate) requires two port types, one to send the request, and another to receive the reply when it arrives.	
In this example, the portType	
CreditAuthorizationPort	
receives the credit card type, credit card number, and purchase amount, and returns the status results.	
Example 7-3 provides an example of partnerLinkType	
and portType	
.	
The invoke activity includes the lCreditCardInput	
local input variable. The credit card authorization web service uses the lCreditCardInput	
input variable. This variable contains the customer's credit card type, credit card number, and purchase amount. The lCreditCardOutput	
variable returns status results from the CreditAuthorizationService	
service. Example 7-4 provides an example.	
The BPEL code shown in Example 7-5 performs the synchronous invocation:	
Example 7-5 Synchronous Invocation	
You can specify transaction timeout values with the property SyncMaxWaitTime in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control. This property defines the maximum time a request and response operation takes before timing out. If the BPEL process service component does not receive a reply within the specified time, then the activity fails.	
To specify transaction timeout values:	
The SyncMaxWaitTime property applies to durable processes that are called in an asynchronous manner.	
Assume you have a BPEL process with the definition shown in Example 7-6. The process is not durable because there are no breakpoint activities.	
Example 7-6 Process with No Breakpoint Activities	
If a Java client or another BPEL process calls this process, the assign activity is performed and the reply activity sets the output message into a HashMap for the client (actually the delivery service) to retrieve. Since the reply is the last activity, the thread returns to the client side and tries to pick up the reply message. Since the reply message was previously inserted, the client does not wait and returns with the reply.	
Assume you have a BPEL process with a breakpoint activity, as shown in Example 7-7.	
Example 7-7 Process with Breakpoint Activities	
While it is not recommended to have asynchronous activities inside a synchronous process, BPEL does not prevent this type of design.	
When the client (or another BPEL process) calls the process, the wait (breakpoint) activity is executed. However, since the wait is processed after some time by an asynchronous thread in the background, the executing thread returns to the client side. The client (actually the delivery service) tries to pick up the reply message, but it is not there since the reply activity in the process has not yet executed. Therefore, the client thread waits for the SyncMaxWaitTime seconds value. If this time is exceeded, then the client thread returns to the caller with a timeout exception.If the wait is less than the SyncMaxWaitTime value, the asynchronous background thread then resumes at the wait and executes the reply. The reply is placed in the HashMap and the waiter (the client thread) is notified. The client thread picks up the reply message and returns.	
Therefore, SyncMaxWaitTime only applies to synchronous process invocations when the process has a breakpoint in the middle. If there is no breakpoint, the entire process is executed by the client thread and returns the reply message.	
You can expose a synchronous interface in the front end while using an asynchronous callback in the back end to simulate a synchronous reply. This is the default behavior in BPEL processes with the automatic setting of the configuration.transaction	
property to requiresNew	
in the composite.xml	
file. Example 7-8 provides details.	
Example 7-8 configuration.transaction Property	
RequiresNew	
is the recommended value. If you want to participate in the client's transaction, you must set the configuration.transaction	
property to Required	
.	
This chapter describes how to invoke an asynchronous web service from a BPEL process. It demonstrates how to set up the components necessary to perform an asynchronous invocation and how these components are coded. It also describes how to create a dynamic partner link at runtime and use WS-Addressing.	
This chapter includes the following sections:	
Asynchronous messaging styles are useful for environments in which a service, such as a loan processor, can take a long time to process a client request. Asynchronous services also provide a more reliable fault-tolerant and scalable architecture than synchronous services.	
This section introduces asynchronous web service invocation with a company called United Loan. United Loan publishes an asynchronous web service that processes a client's loan application request and then returns a loan offer. This use case discusses how to integrate a BPEL process service component with this asynchronous loan application approver web service.	
This use case illustrates the key design concepts for requesting information from an asynchronous service, and then receiving the response. The asynchronous United Loan service in this example is another BPEL process service component. However, the same BPEL call can interact with any properly designed web service. The target web service WSDL file contains the information necessary to request and receive the necessary information.	
For the asynchronous web service, the following actions take place (in order of priority):	
When the loan request is initiated, a correlation ID unique to the client and partner link initiating the request is also sent to the loan processor web service. The correlation ID ensures that the correct loan offer response is returned to the corresponding loan application requester.	
The remaining sections in this chapter provide specific details about the asynchronous functionality.	
This section provides an overview of the tasks for adding asynchronous functionality to a BPEL process service component.	
You perform the following steps to asynchronously invoke a web service:	
These instructions describe how to create a partner link in a BPEL process (for this example, named LoanService) for the loan application approver web service.	
To add a partner link for an asynchronous service:	
The Create BPEL Process dialog appears.	
The Oracle BPEL Designer appears.	
The Create Partner Link dialog appears.	
Enter a name for the partner link (for this example, LoanService	
is entered).	
Displays the BPEL process service component name (for this example, LoanBroker	
appears).	
Enter the name of the Web Services Description Language (WSDL) file to use. Click the SOA Resource Lookup icon above this field to locate the correct WSDL.	
Refers to the external service with which the BPEL process service component is to interface. Select from the list (for this example, LoanService	
is selected).	
Refers to the role of the external source, for example, provider. Select from the list (for this example, LoanServiceProvider	
is selected).	
Refers to the role of the BPEL process service component in this interaction. Select from the list (for this example, LoanServiceRequester	
is selected).	
A new partner link for the loan application approver web service (United Loan) appears in the swimlane of the designer.	
Follow these instructions to create an invoke activity and a global input variable named request	
. This activity initiates the asynchronous BPEL process service component activity with the loan application approver web service (United Loan). The loan application approver web service uses the request	
input variable to receive the loan request from the client.	
To add an invoke activity:	
Go to the Structure window. While this example describes variable creation from the Structure window, you can also create variables by clicking the Add icons to the right of the Input and Output fields of the Invoke dialog.	
The Create Variable dialog appears.	
Enter the variable name and select Message Type from the options provided:	
This option lets you select an XML schema simple type (for example, string, boolean, and so on).	
This option enables you to select a WSDL message file definition of a partner link or of the project WSDL file of the current BPEL process service component (for example, a response message or a request message). You can specify variables associated with message types as input or output variables for invoke, receive, or reply activities.	
To display the message type, select the Message Type option, and then select its Browse icon to display the Type Chooser dialog. From here, expand the Message Types tree to make your selection. For this example, Message Types > Partner Links > Loan Service > LoanService.wsdl > Message Types > LoanServiceRequestMessage is selected.	
This option lets you select an XML schema element of the project schema file or project WSDL file of the current BPEL process service component, or of a partner link.	
Figure 8-1 shows the Create Variable dialog.	
Click OK.	
The Variable Chooser dialog appears, where you can select the variable.	
There is no output variable specified because the output variable is returned in the receive operation. The invoke activity is created.	
For more information about the invoke activity, see Section 8.2.2.5, "Invoke and Receive Activities."	
Follow these steps to create a receive activity and a global output variable named response	
. This activity waits for the loan application approver web service's callback operation. The loan application approver web service uses this output variable to send the loan offer result to the client.	
To add a receive activity:	
Create a variable to hold the receive information by invoking the Create Variable dialog, as you did in Step 3 through Step 7 of Section 8.2.1.2, "Adding an Invoke Activity."	
Figure 8-2 shows the Create Variable dialog in BPEL 1.1.	
Not : In BPEL projects that support version 2.0 of the BPEL specification, the Create Variable dialog includes an Initialize tab that enables you to initialize the variable type inline (for example, as a variable, expression, literal, partner link, or property). For more information, see Section 6.5.2, "Initializing Variables with an Inline from-spec in BPEL 2.0."	
receive_invoke	
. The receive activity and the output variable are created. Because the initial receive activity in the BPEL file (for this example, LoanBroker.bpel) created the initial BPEL process service component instance, a second instance does not need to be created.	
In addition to the asynchronous-specific tasks, you must perform the following tasks.	
This section describes what happens when you invoke an asynchronous web service.	
The portType	
section of the WSDL file (in this example, for LoanService	
) defines the ports to be used for the asynchronous service.	
Asynchronous services have two port types. Each port type performs a one-way operation. In this example, one port type responds to the asynchronous process and the other calls back the client with the asynchronous response. In the example shown in Example 8-1, the portType	
LoanServiceCallback	
receives the client's loan application request and the portType	
LoanService	
asynchronously calls back the client with the loan offer response.	
Example 8-1 portType Definition	
The partnerLinkType	
section of the WSDL file (in this example, for LoanService	
) defines the following characteristics of the BPEL process service component:	
portType	
provided for receiving messages within the conversation Partner link types in asynchronous services have two roles: one for the web service provider and one for the client requester.	
In the conversation shown in Example 8-2, the LoanServiceProvider	
role and LoanService	
portType	
are used for client request messages and the LoanServiceRequester	
role and LoanServiceCallback	
portType	
are used for asynchronously returning (calling back) response messages to the client.	
Example 8-2 partnerLinkType Definition	
Two port types are combined into this single asynchronous BPEL process service component: portType="services:LoanService"	
of the invoke	
activity and portType="services:LoanServiceCallback"	
of the receive	
activity. Port types are essentially a collection of operations to be performed. For this BPEL process service component, there are two operations to perform: initiate	
in the invoke	
activity and onResult	
in the receive	
activity.	
To call the service from BPEL, you use the BPEL file to define how the process interfaces with the web service. View the partnerLinks	
section. The services with which a process interacts are designed as partner links. Each partner link is characterized by a partnerLinkType	
.	
Each partner link is named. This name is used for all service interactions through that partner link. This is critical in correlating responses to different partner links for simultaneous requests of the same type.	
Asynchronous processes use a second partner link for the callback to the client. In this example, the second partner link, LoanService	
, is used by the loan application approver web service. Example 8-3 provides an example.	
Example 8-3 partnerLink Definition	
The attribute myRole	
indicates the role of the client. The attribute partnerRole	
role indicates the role of the partner in this conversation. Each partnerLinkType	
has a myRole	
and partnerRole	
attribute in asynchronous processes.	
In the composite.xml	
file, the loan application approver web service appears, as shown in Example 8-4.	
Example 8-4 Loan Application Approver Web Service	
For more information, see Section 8.2.1.1, "Adding a Partner Link for an Asynchronous Service" for instructions on creating a partner link.	
View the variables	
and sequence	
sections. Two areas of particular interest concern the invoke	
and receive	
activities:	
invoke	
activity invokes a synchronous web service (as discussed in Chapter 7, "Invoking a Synchronous Web Service from a BPEL Process") or initiates an asynchronous service. The invoke	
activity includes the request	
global input variable defined in the variables	
section. The request	
global input variable is used by the loan application approver web service. This variable contains the contents of the initial loan application request document.	
receive	
activity that waits for the asynchronous callback from the loan application approver web service. The receive	
activity includes the response	
global output variable defined in the variables	
section. This variable contains the loan offer response. The receive	
activity asynchronously waits for a callback message from a service. While the BPEL process service component is waiting, it is dehydrated, or compressed and stored, until the callback message arrives. Example 8-5 provides an example.	
Example 8-5 Invoke and Receive Activities	
When an asynchronous service is initiated with the invoke	
activity, a correlation ID unique to the client request is also sent, using Web Services Addressing (WS-Addressing) (described in Section 8.4, "Using WS-Addressing in an Asynchronous Service"). Because multiple processes may be waiting for service callbacks, the server must know which BPEL process service component instance is waiting for a callback message from the loan application approver web service. The correlation ID enables the server to correlate the response with the appropriate requesting instance.	
You may notice a createInstance	
attribute in the initial receive	
activity. In this initial receive	
activity, the createInstance	
element is set to yes	
. This starts a new instance of the BPEL process service component. At least one instance startup is required for a conversation. For this reason, you set the createInstance	
variable to no	
in the second receive	
activity.	
Example 8-6 shows the source code for the createInstance	
attribute:	
To automatically maintain long-running asynchronous processes and their current state information in a database while they wait for asynchronous callbacks, you use a database as a dehydration store. Storing the process in a database preserves the process and prevents any loss of state or reliability if a system shuts down or a network problem occurs. This feature increases both BPEL process service component reliability and scalability. You can also use it to support clustering and failover.	
You insert this point between the invoke activity and receive activity. You can also explicitly specify a dehydration point with a dehydrate activity. For more information, see Section A.2.9, "Dehydrate Activity."	
Oracle SOA Suite provides support for specifying multiple partner link endpoint locations. This capability is useful for failover purposes if the first endpoint is down. To provide an alternate partner link endpoint location, add the location	
attribute to the composite.xml	
file. Example 8-7 provides an example.	
Example 8-7 Alternate Runtime Endpoint Location	
If multiple client components invoke a SOA composite application by using its remote WSDL file, the callback response can only be retrieved by the original client calling the remote composite if it has a receive activity. When the original client does not have a receive activity and any of the subsequent clients calling the composite has a receive activity, the response message is lost. It goes into the recovery state of the original client process.	
This is the expected behavior. This is because the composite being invoked cannot tell which client has a receive activity or if the client is indeed a BPEL process service component.	
Receive activities are a type of inbound message activity (IMA). Other examples of IMAs are as follows:	
The BPEL 2.0 specification allows multiple IMAs to work with each other or with other IMAs derived from extension activities. To provide for consistent runtime behavior, the BPEL 2.0 specification allows for correlation sets with the initiate	
attribute set to join	
.However, Oracle BPEL Process Manager's implementation of the BPEL 2.0 specification does not support this behavior. The only way to support multiple IMAs is by coding them as onMessage branches for a pick activity (that is, setting createInstance	
to yes	
).Oracle BPEL Process Manager also does not support other forms of multiple IMAs, such as a flow activity with two branches, each with a receive activity and with createInstance	
set to yes	
and correlation sets with initiate	
set to join	
.	
As a workaround, you must design two different BPEL processes with the two receive activities in alternating order, as follows:	
createInstance	
set to yes	
createInstance	
set to yes	
. The same also applies for any other combination of IMAs, such as a receive activity and pick activity, or two pick activities.	
You can also enter an optional conversation ID value in the Conversation ID field of an invoke activity (and other activities such as a receive activity and the onMessage branch of a pick or scope activity).	
The conversation ID identifies a process instance during an asynchronous conversation. By default, the BPEL process service engine generates a unique ID for each conversation (which can span multiple invoke and receive activities), as specified by WSA addressing. If you want, you can specify your own value for the service engine to use. Conversation IDs are implemented with the bpelx:conversationId	
extension.	
Example 8-8 provides an example of the bpelx:conversationId	
extension in a BPEL project that supports BPEL version 1.1. The bpelx:conversationId	
extension takes an XPath expression.	
Example 8-9 provides an example of the bpelx:conversationId	
extension in a BPEL project that supports BPEL version 2.0. The bpelx:conversationId	
extension takes a BPEL 2.0 XPath expression.	
When you design a SOA composite application, you can face the following challenges:	
The dynamic partner link feature enables you to dynamically assign an endpoint reference to a partner link for use at runtime in BPEL versions 1.1 and 2.0. The dynamic partner link provides conditions, similar to a switch activity, that are evaluated at runtime.	
To create a dynamic partner link at design time for use at runtime:	
portType	
. The Create Web Service dialog appears.	
When complete, the reference binding component entry in the composite.xml	
file that uses the WSDL looks as follows:	
Notes:	
The XML Fragment dialog for BPEL 1.1 appears. If you are using BPEL 2.0, the Literal dialog appears.	
Figure 8-4 XML Fragment Dialog in BPEL 1.1	
When complete, the BPEL file contains one of the services defined in the WSDL.	
Because there can be many active instances at any time, the server must be able to direct web service responses to the correct BPEL process service component instance. You can use WS-Addressing to identify asynchronous messages to ensure that asynchronous callbacks locate the appropriate client.	
Figure 8-5 provides an overview of WS-Addressing. WS-Addressing uses Simple Object Access Protocol (SOAP) headers for asynchronous message correlation. Messages are independent of the transport or application used.	
Figure 8-5 Callback with WS-Addressing Headers	
Figure 8-5 shows how messages are passed along with WS headers so that the response can be sent to the correct destination.	
The example in this chapter uses WS-Addressing for correlation. To view the messages, you can use TCP tunneling, which is described in Section 8.4.1.1, "Using TCP Tunneling to See Messages Exchanged Between Programs."	
WS-Addressing defines the following information typically provided by transport protocols and messaging systems. This information is processed independently of the transport or application:	
The reply-to address specifies the location at which a BPEL client is listening for a callback message.	
Use TCP tunneling to view SOAP messages exchanged between the BPEL process service component flow and the web service (including those containing the correlation ID). You can see the exact SOAP messages that are sent to, or received from, services with which a BPEL process service component flow communicates.	
You insert a software listener between your BPEL process service component flow and the web service. Your BPEL process service component flow communicates with the listener (called a TCP tunnel). The listener forwards your messages to the web service, and also displays them. Responses from the web service are returned to the tunnel, which displays and forwards them back to the BPEL process service component.	
WS-Addressing is a public specification and is the default correlation method supported by Oracle BPEL Process Manager. You do not need to edit the .bpel	
and .wsdl	
files to use WS-Addressing.	
The messages that are exchanged between programs and services can be seen through TCP tunneling. This is particularly useful when you want to see the exact SOAP messages exchanged between the BPEL process service component flow and web services.	
To monitor the SOAP messages, insert a software listener between your flow and the service. Your flow communicates with the listener (called a TCP tunnel) and the listener forwards your messages to the service, and displays them. Likewise, responses from the service are returned to the tunnel, which displays them and then forwards them back to the flow.	
To see all the messages exchanged between the server and a web service, you need only a single TCP tunnel for synchronous services because all the pertinent messages are communicated in a single request and reply interaction with the service. For asynchronous services, you must set up two tunnels, one for the invocation of the service and another for the callback port of the flow.	
Follow these steps to set up a TCP listener for synchronous services initiated by an Oracle BPEL Process Manager process:	
tcpmon	
) tcpmon	
: axis.jar	
in your class path. tcpmon	
: composite.xml	
file, add the endpointURI	
property under binding.ws	
for your flow to override the endpoint of the service. ant	
. The same technique can see SOAP messages passed to invoke a BPEL process service component as a web service from another tool kit such as Axis or .NET.	
Follow these steps to set up a TCP listener to display the SOAP messages for callbacks from asynchronous services:	
where soa_server is the specific server instance name (for example, AdminServer).	
All the SOA composite applications deployed on the server appear.	
Follow these steps to set this property on a composite application. This action enables it to apply to all bindings in the composite application.	
Ensure the Attributes tab is selected.	
where number is the next sequential number beyond the last property. For example, if the property list contains twelve elements, adding a new property causes Element_13 to be displayed.	
oracle.webservices.local.optimization	
. false	
. false	
. In the Name column on the Operations tab, click save.	
Click Return or click a node in the System MBean Browser pane.	
Note: After adding, deleting, or updating a property, you can click the Refresh cached tree data icon in the upper right corner of the System MBean Browser page to see the new data.	
Follow these steps to set this property on a specific binding.	
The callbacks from the asynchronous services are shown in the TCP listener.	
If you are an Oracle JDeveloper user, you can also use the built-in Packet Monitor to see SOAP messages for both synchronous and asynchronous services.	
This chapter describes how to use correlation sets to ensure that asynchronous callbacks locate the appropriate client. It also describes how to use aggregation patterns to route messages to the same instance.	
This chapter includes the following sections:	
Correlation sets provide another method for directing web service responses to the correct BPEL process service component instance. You can use correlation sets to identify asynchronous messages to ensure that asynchronous callbacks locate the appropriate client.	
Correlation sets are a BPEL mechanism that provides for the correlation of asynchronous messages based on message body contents. To use this method, define the correlation sets in your .bpel	
file. This method is designed for services that do not support WS-Addressing or for certain sophisticated conversation patterns, for example, when the conversation is in the form A > B > C > A	
instead of A > B > A	
.	
This section describes how to use correlation sets in an asynchronous service with Oracle JDeveloper. Correlation sets enable you to correlate asynchronous messages based on message body contents. You define correlation sets when interactions are not simple invoke-receive activities. This example illustrates how to use correlation sets for a process having three receive activities with no associated invoke activities.	
This section describes the steps to perform to use correlation sets in an asynchronous service.	
To create a project:	
The Create SOA Application Wizard appears.	
MyCorrelationSetApp	
. MyCorrelationSetComposite	
. The Create BPEL Process dialog appears.	
Table 9-1 Create BPEL Process Dialog Fields and Values	
Field	Value
---	---
Name	Enter
Template	Select Asynchronous BPEL Process.
Expose as a SOAP Service	Select the checkbox. After process creation, note the SOAP service that appears in the Exposed Services swimlane. This service provides the entry point to the composite application from the outside world.
You now create three partner links that use the SOAP service.	
This section contains these topics:	
To create an initial partner link and file adapter service:	
Figure 9-1 Adapter Configuration Wizard Startup	
In the Service Name field of the Service Name dialog, enter FirstReceive	
and click Next.	
The URL field (Book1_4.xsd for this example) and the Schema Element field (LoanAppl for this example) are filled in.	
You are returned to the Partner Link dialog. All other fields are automatically completed. The dialog looks as shown in Table 9-2:	
To create a second partner link and file adapter service:	
In the Service Name field of the Service Name dialog, enter SecondFileRead	
and click Next. This name must be unique from the one you entered in Step 7 of Section 9.1.1.2.1, "Creating an Initial Partner Link and File Adapter Service."	
Read1	
. The URL field (Book1_5.xsd for this example) and the Schema Element field (LoanAppResponse for this example) are filled in.	
You are returned to the Partner Link dialog. All other fields are automatically completed. The dialog looks as shown in Table 9-3:	
To create a third partner link and file adapter service:	
ThirdFileRead	
and click Next. This name must be unique from the one you entered in Step 7 of Section 9.1.1.2.1, "Creating an Initial Partner Link and File Adapter Service" and Step 6 of Section 9.1.1.2.2, "Creating a Second Partner Link and File Adapter Service." Read2	
. This name must be unique. The URL field (Book1_6.xsd for this example) and the Schema Element field (CustResponse for this example) are filled in.	
You are returned to the Partner Link dialog. All other fields are automatically completed. The dialog looks as shown in Table 9-4:	
You now create three receive activities; one for each partner link. The receive activities specify the partner link from which to receive information.	
To create an initial receive activity:	
Enter the details described in Table 9-5 to associate the first partner link (FirstReceive) with the first receive activity:	
Table 9-5 Receive Dialog Fields and Values	
Field	Value
---	---
Name	
Partner Link	FirstReceive
Create Instance	Select this checkbox.
The Operation (Read) field is automatically filled in.	
A variable named receiveFirst_Read_InputVariable is automatically created in the Variable field.	
To create a second receive activity:	
Table 9-6 Receive Dialog Fields and Values	
Field	Value
---	---
Name	
Partner Link	SecondFileRead
Create Instance	Do not select this checkbox.
The Operation (Read1) field is automatically filled in.	
A variable named receiveSecond_Read1_InputVariable is automatically created in the Variable field.	
To create a third receive activity:	
Table 9-7 Receive Dialog Fields and Values	
Field	Value
---	---
Name	
Partner Link	ThirdFileRead
Create Instance	Do not select this checkbox.
The Operation (Read2) field is automatically filled in.	
A variable named receiveThird_Read2_InputVariable is automatically created in the Variable field.	
Each receive activity is now associated with a specific partner link.	
You now create correlation sets. A set of correlation tokens is a set of properties shared by all messages in the correlated group.	
To create an initial correlation set:	
CorrelationSet1	
. NameCorr	
. To create a second correlation set:	
CorrelationSet2	
. IDCorr	
. You now associate the correlation sets with the receive activities. You perform the following correlation set tasks:	
To associate the first correlation set with a receive activity:	
To associate the second correlation set with a receive activity:	
This groups the first and second receive activities into a correlated group.	
Property aliases enable you to map a global property to a field in a specific message part. This action enables the property name to become an alias for the message part and location. The alias can be used in XPath expressions.	
You create the following two property aliases for the NameCorr correlation set:	
To create property aliases for NameCorr:	
In the Structure window of Oracle JDeveloper, right-click Property Aliases.	
From the Property list, select NameCorr.	
You create the following two property aliases for the IDCorr correlation set:	
To create property aliases for IDCorr:	
In the Structure window, right-click Property Aliases.	
In the Property list, select IDCorr.	
Design is now complete.	
To review WSDL file content:	
The NameCorr	
and IDCorr	
correlation set properties are defined in the MyCorrelationSet_Properties.wsd	
l	
file in the Application Navigator. Example 9-1 provides an example.	
Example 9-1 Correlation Set Properties	
The property aliases are defined in the MyCorrelationSet.wsdl	
file, as shown in Example 9-2:	
Example 9-2 Property Aliases	
Because the BPEL process service component is not created as a web services provider in this example, the MyCorrelationSet.wsdl	
file is not referenced in the BPEL process service component. Therefore, you must import the MyCorrelationSet.wsdl	
file inside the FirstReceive.wsdl	
file to reference the correlation sets defined in the former WSDL. Example 9-3 provides an example.	
Do not use the same conversion ID for different revisions of a SOA composite application. When correlation sets are used in a BPEL process, you have explicit control over the conversation ID value. Oracle SOA Suite does not interfere or add restrictions on conversation ID value generation. This situation means that even though it appears that Oracle SOA Suite is generating the same conversation ID for different revisions, you actually control this behavior. Oracle SOA Suite suite does not restrict you from using the same conversation ID for different instances of different revisions.	
If you do not use correlation sets, the conversation ID generated is unique and this is not a problem because Oracle SOA Suite decides which conversation ID to generate, and not you.	
Oracle SOA Suite does not execute a revision check for callback routing. Routing of callback messages is only based on the following:	
The concept of a revision number is applicable to Oracle SOA composite applications, and is not part of the BPEL specification. This is why it is not used as part of the routing decision.	
There is another complication in which adding a revision as part of callback routing causes problems. When sending a callback, you also specify the endpoint URL. If the endpoint URL does not contain the composite revision (which is extremely likely), the message is assumed to be routed to the default revision. If Oracle SOA Suite runtime adds a revision check as part of callback routing, the callback for the nondefault revision instance is never possible.	
For example, assume you have the following BPEL process:	
Assume you perform the following steps:	
123	
, which generates conv_id = "123"	
. This process now invokes a web service through a one-way invoke activity and then waits on the receive_2 activity for a callback to arrive.	
A web service sends a callback for the instance for revision 1.0. However, as a part of its URL, it does not specify the revision number. You typically create a callback so that the URL does not use the revision number. This is because web services are external and you cannot change web service settings to continue using a revision tag because it is internal to Oracle SOA Suite and is a concept that the external world does not understand.	
Since a revision number is not specified, the SOA server assumes that the revision number must be 2.0 and, if the routing of the callback takes the revision number into account, it cannot forward this callback intended for 1.0 to the correct revision 1.0. Instead, it attempts to route it to the default revision 2.0, which does not have any instance waiting for the callback.	
You cannot route callback messages based on revisions. You only receive the option to route callback messages based on the conversion ID (If the correlation set is not used, then even this is not under your control), operation name, and component name.	
For these reasons, different instances must use different conversation IDs (which means different input is used for creating a conversion ID) to avoid confusion, and routing should be solely based on a conversation ID.	
Assume you have the following scenario:	
For a process that has an inbound message activity (IMA) (for example, a receive activity, onMessage branch of a scope or pick activity, or onEvent branch of a scope activity in BPEL 2.0) that uses the fromParts	
element with fromPart	
defined for each part, correlations cannot be defined because the runtime environment cannot determine the part to which to apply the property alias.	
For more information about mapping WSDL message parts with the toParts	
and fromParts	
elements, see Section 6.17, "Mapping WSDL Message Parts in BPEL 2.0."	
Oracle BPEL Process Manager supports a message aggregation feature. When multiple messages are routed to the same process/partner link/operation name, the first message is routed to create a new instance and subsequent messages can be routed to continue the created instance using a midprocess receive activity.	
Message aggregation enables you to use the same operation (or event name) in an entry receive activity and a midprocess receive activity.	
Notes:	
You can control the number of instances to create and use to route messages with the reenableAggregationOnComplete	
property.	
To configure BPEL process instance creation:	
Figure 9-2 Selected BPEL Process Service Component	
The Create Property dialog is displayed.	
bpel.config.reenableAggregationOnComplete	
deployment descriptor property. The prefix of bpel.config	
is required for this type of deployment descriptor. true	
, as described in Table 9-8. Table 9-8 reenableAggregationOnComplete Property Settings	
Value	Description
---	---
Creates a new instance to handle messages. However, there is a window between messages coming in and instance completion. This can result in messages remaining in the	You invoke messages 1 through 4 for a client using the
This is the default behavior. This setting causes the aggregation feature to be disabled. Only one instance is created. Messages that are not handled by the instance remain in the	You invoke messages 1 through 4 for a client using the You should not attempt to route multiple messages using the same correlation set to one BPEL instance.
Figure 9-4 shows the completed Create Property dialog.	
Example 9-4 shows the reenableAggregationOnComplete	
property with the bpel.config	
prefix in the composite.xml	
file.	
Example 9-4 reenableAggregationOnComplete Property in composite.xml File	
You create a correlation set as shown in Example 9-5. All messages to Oracle BPEL Process Manager are routed to the same operation name. The messages have the same correlation ID. The interface WSDL does not differentiate between the entry activity (receiveInput	
) and the midprocess receive activity (Continue_Receive	
). All messages are processed using the initiate	
operation. A single instance is created to which to route all messages.	
This differs from releases before 11g Release 1 11.1.1.6, in which you needed to define different operation names on the same partner link. The process had to expose two operations and the caller had to choose the correct operation name.	
Example 9-5 Correlation with Same Operation in Entry and Midprocess Receive Activities	
For event delivery network (EDN) business events, you substitute the operation	
attribute with bpelx:eventName	
in both the entry and midprocess receive activities.	
Information is maintained in the DLV_AGGREGATION	
table:	
This information can be deleted from this table with the purge scripts or from the Delete With Options dialog in Oracle Enterprise Manager Fusion Middleware Control. For more information about both of these options, see the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
For a BPEL process using correlation sets, the correct routing is performed. The message can be either of the following:	
Figure 9-5 shows entry and midprocess receive activities using the same operation (process	
).	
Figure 9-5 Routing a New Message to a New or Existing Instance	
Example 9-6 provides an example the entry and midprocess receive activities using the same operation (process	
).	
Example 9-6 Routing a New Message to a New or Existing Instance	
In the initial scenario in Example 9-6, the following actions occur in BPEL process P1:	
101	
). Continue_Receive	
activity. These messages are marked as callback messages. while	
loop are expected. Assume now that additional messages are routed, which can potentially cause race conditions to occur. Table 9-9 provides details.	
Table 9-9 Message Delivery Scenarios	
Scenario	Description
---	---
1	Assume the partner now provides message 5 for the same correlation ID (
2	If messages 4 and 5 are received within a small time window, it is possible that message 4 is closing the instance BPEL process P1 and message 5 is routed as a callback to that instance. This scenario can cause a race condition. For example:
3	This is similar to scenario 2. However, in this case, messages 7, 8, and 9 are not received. For example:
There are several options for message recovery.	
This chapter describes how to use parallel flow in a BPEL process service component. Parallel flows enable a BPEL process service component to perform multiple tasks at the same time. Parallel flow is especially useful when you must perform several time-consuming and independent tasks. This chapter also describes how to customize the number of parallel branches.	
This chapter includes the following sections:	
For additional information on creating parallel flows in a SOA composite application, see the Fusion Order Demo application, which is described in Chapter 3, "Introduction to the SOA Sample Application."	
A BPEL process service component must sometimes gather information from multiple asynchronous sources. Because each callback can take an undefined amount of time (hours or days), it may take too long to call each service one at a time. By breaking the calls into a parallel flow, a BPEL process service component can invoke multiple web services at the same time, and receive the responses as they come in. This method is much more time efficient.	
Figure 10-1 shows the Retrieve_QuotesFromSuppliers flow activity of the Fusion Order Demo application. The Retrieve_QuotesFromSuppliers flow activity sends order information to two suppliers in parallel:	
The two warehouses return their bids for the order to the flow activity. Here, two asynchronous callbacks execute in parallel. One callback does not have to wait for the other to complete first. Each response is stored in a different global variable.	
Branches in flow, flowN, and forEach activities are executed serially in a single thread (that is, the Nth branch is executed only after N-1 execution has completed). Execution is not completely parallel. This is because the branches do not execute in concurrent threads in this mode. Instead, one thread starts executing a flow branch until it reaches a blocking activity (for example, an synchronous invoke). At this point, a new thread is created that starts executing the other branch, and the process continues. This creates the impression that the flow branches are executing in parallel. In this mode, however, if the flow branches do not define a blocking activity, the branches still execute serially.	
This design is intended for several reasons:	
To achieve pseudo-parallelism, you can configure invoke activities to be nonblocking with the nonBlockingInvoke	
deployment descriptor property. When this property is set to true	
, the process manager creates a new thread to perform each branch's invoke activity in parallel.	
For more information about the nonBlockingInvoke	
property, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector" and Section "nonBlockingInvoke" of Oracle Fusion Middleware Performance and Tuning Guide.	
You can create a parallel flow in a BPEL process service component with the flow activity. The flow activity enables you to specify one or more activities to be performed concurrently. The flow activity also provides synchronization. The flow activity completes when all activities in the flow have finished processing. Completion of this activity includes the possibility that it can be skipped if its enabling condition is false.	
Note: Branches in a flow activity are executed serially in a single thread. For more information, see Section 10.1.1, "What You May Need to Know About the Execution of Parallel Flow Branches in a Single Thread."	
To create a parallel flow:	
The flow activity initially includes two branches, each with a box for functional elements. Populate these boxes as you do a scope activity, either by building a function or dragging activities into the boxes. You can add additional branches by highlighting the flow activity and clicking the Add Sequence icon.	
When complete, flow activity design can look as shown in Figure 10-4. This example shows the Retrieve_QuotesFromSuppliers flow activity of the Fusion Order Demo application. Two branches are defined for receiving bids: one for InternalWarehouseService and the other for PartnerSupplierMediator.	
Figure 10-4 Flow Activity After Design Completion	
A flow activity typically contains many sequence activities. Each sequence is performed in parallel. Example 10-1 shows the syntax for two sequences of the Retrieve_QuotesFromSuppliers	
flow activity in the OrderProcessor.bpel	
file after design completion. However, a flow activity can have many sequences. A flow activity can also contain other activities. In Example 10-1, each sequence in the flow contains assign, invoke, and receive activities.	
Example 10-1 Flow Activity	
You can synchronize the execution of activities within a flow activity to ensure that certain activities only execute after other activities have completed. For example, assume you have an invoke activity, verifyFlight	
, that is executed in parallel with other invoke activities (verifyHotel	
, verifyCarRental	
, and scheduleFlight	
) when the flow activity begins. However, scheduling a flight is necessary only after verifying that a flight is available. Therefore, you can add a link between the verifyFlight	
and scheduleFlight	
invoke activities. Links provide a level of dependency indicating that the activity that is the target of the link (scheduleFlight	
) is only executed if the activity that is the source of the link (verifyFlight	
) has completed.	
Example 10-2 provides details. The link name verifyFlight-To-scheduleFlight	
is assigned to the source verifyFlight	
and target scheduleFlight	
invoke activities. If the source verifyFlight	
completes execution, the target scheduleFlight	
is then executed.	
Example 10-2 Link Between Source and Target Activities	
Example 10-2 provides an example of link syntax in BPEL version 2.0. The link syntax between BPEL version 1.1 and BPEL version 2.0 is slightly different.	
<target>	
and <source>	
. <targets>	
and <sources>	
. Table 10-1 provides details.	
Table 10-1 Links Syntax in BPEL Version 1.1 and BPEL Version 2.0	
BPEL Version 1.1 Example	BPEL Version 2.0 Example
---	---
<flow> <links> <link name="XtoY"/> <link name="CtoD"/> </links> <sequence name="X"> <source linkName="XtoY"/> <invoke name="A" .../> <invoke name="B" .../> </sequence> <sequence name"Y"> <target linkName="XtoY"/> <receive name="C" ...> <source linkName="CtoD"/> </receive> <invoke name="E" .../> </sequence> <invoke partnerLink="D" ...> <target linkName="CtoD"/> </invoke> </flow>	<flow> <links> <link name="AtoB"/> </links> <assign name="B"> <targets> <target linkName="AtoB"/> </targets> <copy> <from>concat($output.payload, 'B')</from> <to>$output.payload</to> </copy> </assign> <assign name="A"> <sources> <source linkName="AtoB"/> </sources> <copy> <from>concat($output.payload, 'A')</from> <to>$output.payload</to> </copy> </assign> </flow>
To create synchronization between activities within a flow activity:	
Enter a name for the link, as shown in Figure 10-5.	
A	
is defined as the source in Figure 10-6. Each source activity can specify an optional Transition Condition as a safe guard for following the specified link. Click the row in this column to invoke the Browser icon for accessing the Expression Builder dialog for creating a condition. If the Transition Condition column is left blank, it is assumed to evaluate to true.	
B	
is defined as the target in Figure 10-7. When complete, design can appear similar to that shown in Figure 10-8.	
Figure 10-8 Three Flow Activities Synchronized with Links	
Example 10-3 shows the .bpel	
file after design is complete for three flow activities with links for synchronizing activity execution.	
Flow_1	
shows a link between simple activities. Flow_1	
includes a link named AtoB	
. The activity that is the target of the link, assign activity B	
, is only executed if the activity that is the source of the link, assign activity A	
, has completed.	
Flow_2	
shows a link between simple activity and composite activity. Flow_2	
also includes the link named AtoB	
. The activity that is the target of the link, assign activity B	
, is only executed if the activity that is the source of the link, scope activity scope1	
, has completed.	
Flow_3	
shows a link between composite activities. Flow_3	
also includes the link named AtoB	
. The activity that is the target of the link, sequence activity Sequence_1	
, is only executed if the activity that is the source of the link, scope activity scope2	
, has completed.	
Example 10-3 Flow Activities with Links	
You can specify an optional join condition in target activities. The value of the join condition is a boolean expression. If a join condition is not specified, the join condition is the disjunction (that is, a logical OR operation) of the link status of all incoming links of this activity.	
Oracle BPEL Designer does not provide design support for adding join conditions. To add a join condition, you must manually add the condition to the .bpel	
file in Source view in Oracle BPEL Designer.	
Example 10-4 provides an example of a join condition.	
Example 10-4 Join Condition in Target Activity	
This section describes how to customize the number of parallel branches with the following activities:	
Note: Branches in flowN and forEach activities are executed serially in a single thread. For more information, see Section 10.1.1, "What You May Need to Know About the Execution of Parallel Flow Branches in a Single Thread."	
In the flow activity, the BPEL code determines the number of parallel branches. However, often the number of branches required is different depending on the available information. The flowN activity creates multiple flows equal to the value of N	
, which is defined at runtime based on the data available and logic within the process. An index variable increments each time a new branch is created, until the index variable reaches the value of N	
.	
The flowN activity performs activities on an arbitrary number of data elements. As the number of elements changes, the BPEL process service component adjusts accordingly.	
The branches created by flowN perform the same activities, but use different data. Each branch uses the index variable to look up input variables. The index variable can be used in the XPath expression to acquire the data specific for that branch.	
For example, suppose there is an array of data. The BPEL process service component uses a count	
function to determine the number of elements in the array. The process then sets N	
to be the number of elements. The index variable starts at a preset value (zero is the default), and flowN creates branches to retrieve each element of the array and perform activities using data contained in that element. These branches are generated and performed in parallel, using all the values between the initial index value and N	
. flowN terminates when the index variable reaches the value of N	
. For example, if the array contains 3	
elements, N	
is set to 3	
. Assuming the index variable begins at 1, the flowN activity creates three parallel branches with indexes 1, 2, and 3.	
The flowN activity can use data from other sources as well, including data obtained from web services.	
Figure 10-9 shows the runtime flow of a flowN activity in Oracle Enterprise Manager Fusion Middleware Control that looks up three hotels. This is different from the view, because instead of showing the BPEL process service component, it shows how the process has actually executed. In this case, there are three hotels, but the number of branches changes to match the number of hotels available.	
Figure 10-9 Oracle Enterprise Manager Fusion Middleware Control View of the Execution of a flowN activity	
To create a flowN activity:	
Figure 10-10 shows the flowN dialog.	
The flowN dialog enables you to:	
N	
(the number of branches to create) Figure 10-11 shows how a FlowN activity appears with additional activities.	
Figure 10-11 FlowN Activity with Additional Activities	
The following code shows the .bpel	
file that uses the flowN activity to look up information on an arbitrary number of hotels. The following actions take place.	
Example 10-5 shows the sequence name.	
Example 10-5 Sequence Name	
A receive	
activity calls the client partner link to get the information that the flowN	
activity must define N	
times and look up the hotel information. Example 10-6 provides an example.	
Example 10-6 Receive Activity	
The flowN	
activity begins next. After defining a name for the activity of flowN	
, N	
is defined as a value from the inputVariable	
, which is the number of hotel entries. The activity also assigns index	
as the index variable. Example 10-7 provides an example.	
Example 10-7 FlowN Activity	
bpelx:flowN	
name="FlowN" N="bpws:getVariableData('NbParallelFlow')The copy rule shown in Example 10-8 then uses the index variable to concatenate the hotel entries into a list:	
Example 10-8 Assign Activity	
Using the hotel information, an invoke	
activity looks up detailed information for each hotel through a web service. Example 10-9 provides an example.	
Example 10-9 Invoke Activity	
Finally, the BPEL process sends detailed information on each hotel to the client partner link. Example 10-10 provides an example.	
You can use a forEach activity to process multiple sets of activities sequentially or in parallel. The forEach activity executes a contained (child) scope activity exactly N+1 times, where N equals a final counter value minus a starting counter value that you specify in the Counter Values tab of the For Each dialog. While other structured activities such as a flow activity can have any type of activity as its contained activity, the forEach activity can only include a scope activity.	
When the forEach activity is started, the expressions you specify for the starting counter and final counter values are evaluated. Once the two values are returned, they remain constant for the lifecycle of the activity. Both expressions must return a value containing at least one character. If these expressions do not return valid values, a fault is thrown. If the starting counter value is greater than the final counter value, the contained scope activity is not performed and the forEach activity is considered complete.	
During each iteration, the variable specified in the Counter Name field on the General tab is implicitly declared in the forEach activity's contained scope. During the first iteration of the scope, the counter variable is initialized with the starting counter value. The next iteration causes the counter variable to be initialized with the starting counter value, plus one. Each subsequent iteration increments the previously initialized counter variable value by one until the final iteration, where the counter is set to the final counter value. The counter variable is local to the enclosed scope activity. Although its value can be changed during an iteration, that value is lost after each iteration. Therefore, the counter variable value does not impact the value of the next iteration's counter.	
The forEach activity supports the following looping iterations:	
The forEach activity performs looping iterations sequentially N times over a given set of activities defined within a scope activity. As an example, the forEach activity iterates over an incoming purchase order message where the purchase order message consists of N order items. The enclosed scope activity must be executed N+1 times, with each instance starting only after the previous iteration has completed.	
All looping iterations are started at the same time and processed in parallel. Parallel iterations are useful in environments in which sets of independent data are processed or independent interaction with different partners is performed in parallel. To enable parallel looping, you select the Parallel Execution checkbox on the General tab. In these scenarios, execution of the N+1 instances of the contained scope activity occurs in parallel. Each copy of the scope activity has the same counter variable that you specify in the Counter Name field of the General tab declared in the same way as specified for a sequential forEach activity. Each instance's counter variable must be uniquely initialized in parallel with one of the integer values beginning with the starting counter value and proceeding up to and including the final counter value.	
Unlike a flow activity, the number of parallel branches is not known at design time with the forEach activity. The specified counter variable iterates through the number of parallel branches, controlled by the starting counter value and final counter value.	
You can also specify a completion condition on the Completion tab. This condition enables the forEach activity to execute the condition and complete without executing or finishing all the branches specified. As an example, you send out parallel requests and a sufficient subset of the recipients have responded. A completion condition is optionally specified to prevent the following:	
If you do not specify a completion condition, the forEach activity completes when the contained scope has completed.	
If a premature termination occurs (due to a fault or the completion condition evaluating to true	
), then the N+1 requirement does not apply.	
Example 10-11 shows the forEach	
activity syntax.	
Example 10-11 forEach Activity	
To create a forEach activity:	
Note the contained scope activity in the forEach activity.	
Figure 10-12 Contained Scope Activity in a forEach Activity	
Note the Parallel Execution checkbox. If this checkbox is selected, all looping iterations are started at the same time and processed in parallel. The next branch starts even if the previous branch has not completed. If not selected, the next branch does not start until the previous branch has completed.	
Figure 10-13 General Tab of the forEach Activity	
Figure 10-14 Counter Values Tab of the forEach Activity	
Figure 10-15 Completion Tab of the forEach Activity	
When complete, the forEach and contained scope activity can appear similar in structure to that shown in Figure 10-16.	
Figure 10-16 forEach Activity with Contained and Expanded Scope Activity	
Example 10-12 shows the .bpel	
file after design is complete for a sequential forEach	
activity.	
Example 10-12 forEach Activity - Sequential	
Example 10-13 shows the .bpel	
file after design is complete for a parallel forEach	
activity.	
Example 10-13 forEach Activity - Parallel	
This chapter describes how to use conditional branching in a BPEL process service component. Conditional branching introduces decision points to control the flow of execution of a BPEL process service component. This chapter also describes how to use while and repeatUntil activities to define conditional branching and specify XPath expressions that enable you to bypass execution of activities.	
This chapter includes the following sections:	
For additional information on creating conditional branching in a SOA composite application, see the Fusion Order Demo application.	
BPEL applies logic to make choices through conditional branching. You can use the following activities to design your code to select different actions based on conditional branching:	
Enables you to set up two or more branches, with each branch in the form of an XPath expression. If the expression is true, then the branch is executed. If the expression is false, then the BPEL process service component moves to the next branch condition, until it either finds a valid branch condition, encounters an otherwise branch, or runs out of branches. If multiple branch conditions are true, then BPEL executes the first true branch. For information about how to create switch activities, see Section 11.2.1, "Defining Conditional Branching with the Switch Activity in BPEL 1.1."	
Enables you to use an if activity when conditional behavior is required for specific activities to decide between two or more branches. The if activity replaces the switch activity that appeared in BPEL 1.1 processes. For information about how to create if activities, see Section 11.2.2, "Defining Conditional Branching with the If Activity in BPEL 2.0."	
Enables you to create a while loop to select between two actions. Section 11.3, "Creating a While Activity to Define Conditional Branching" describes while activities.	
Many branches are set up, and each branch has a condition in the form of an XPath expression.	
You can program a conditional branch to have a timeout. That is, if a response cannot be generated in a specified period, the BPEL flow can stop waiting and resume its activities. Chapter 15, "Using Events and Timeouts in BPEL Processes" explains this feature in detail.	
Note: You can also define conditional branching logic with business rules. See Oracle Fusion Middleware User's Guide for Oracle Business Rules and the WebLogic Fusion Order Demo application for details.	
This section describes how to define conditional branching with the following activities:	
Assume you designed a flow activity in the BPEL process service component that gathered loan offers from two companies at the same time, but did not compare either of the offers. Each offer was stored in its own global variable. To compare the two bids and make decisions based on that comparison, you can use a switch activity.	
Figure 11-1 provides an overview of a BPEL conditional branching process that has been defined in a switch activity.	
To create a switch activity:	
The Switch activity has two switch case branches by default, each with a box for functional elements. If you want to add more branches, select the entire switch activity, right-click, and select Add Switch Case from the menu.	
A dialog for entering a condition is displayed, as shown in Figure 11-3.	
In this example, two loan offers from completing loan companies are stored in the global variables loanOffer1	
and loanOffer2	
. Each loan offer variable contains the loan offer's APR. The BPEL flow must choose the loan with the lower APR. One of the following switch activities takes place:	
The expression is displayed. The value you entered in the Label field of the dialog becomes the name of the condition branch. Figure 11-4 provides details.	
A switch activity, like a flow activity, has multiple branches. In Example 11-1, there are only two branches shown in the .bpel	
file after design completion. The first branch, which selects a loan offer from a company named United Loan, is executed if a case condition containing an XPath boolean expression is met. Otherwise, the second branch, which selects the offer from a company named Star Loan, is executed. By default, the switch activity provides two switch cases, but you can add more if you want.	
Example 11-1 Switch Activity	
You can use an if activity when conditional behavior is required for specific activities to decide between two or more branches. Only one activity is selected for execution from a set of branches. The if activity consists of a list of one or more conditional branches that are considered for execution in the following order:	
The first branch whose condition evaluates to true is taken, and its contained activity is performed. If no branch with a condition is taken, then the else branch is taken (if present). The if activity is complete when the contained activity of the selected branch completes, or immediately when no condition evaluates to true and no else branch is specified.	
The if activity is a BPEL version 2.0 feature that replaces the switch activity that was included in BPEL version 1.1.	
Example 11-2 shows the if activity syntax.	
Example 11-2 If Activity	
To create an If activity:	
The if and else conditions are displayed, as shown in Figure 11-6.	
Figure 11-8 elseif Branch of the If Activity	
Figure 11-9 shows a completed if activity in which each branch includes contained activities.	
Example 11-3 provides an example of the .bpel	
file after design completion. The if activity has if, elseif, and else branches defined. The first branch to evaluate to true is executed.	
Example 11-3 If Activity	
Another way to design your BPEL code to select between multiple actions is to use a while activity to create a while loop. The while loop repeats an activity until a specified success criteria is met. For example, if a critical web service is returning a service busy message in response to requests, you can use the while activity to keep polling the service until it becomes available. The condition for the while activity is that the latest message received from the service is busy, and the operation within the while activity is to check the service again. Once the web service returns a message other than service busy, the while activity terminates and the BPEL process service component continues, ideally with a valid response from the web service.	
To create a while activity:	
The while activity has icons to allow you to build condition expressions and to validate the while definition. It also provides an area for you to drag an activity to define the while loop.	
The activities can be existing or new activities.	
5	
. Figure 11-10 While Activity with an Expression	
Example 11-4 provides an example of the .bpel	
file after design completion. The while activity includes a scope activity. The scope activity includes sequence and fault handlers at the top level. The sequence includes invoke and assign activities and fault handlers that define a catchAll	
containing assign and wait activities wrapped in a sequence.	
The code in Example 11-4 calls an external service. If the external service throws a fault, the fault handler catches the fault and increments the dbStatus	
variable value.	
Therefore, the exit condition of the while loop is either of the following:	
dbStatus	
value is set to a value of 10	
, which results in the while condition evaluating to false. dbStatus	
value is 5	
, and the while condition returns false. Example 11-4 While Activity	
Note: The while activity code fragment in Example 11-4 uses a BPEL 1.1 construct of <while name="While1"> <condition>$inputVariable.payload/client:counter > 0 </condition>	
If the body of an activity must be performed at least once, use a repeatUntil activity instead of a while activity. The XPath expression condition in the repeatUntil activity is evaluated after the body of the activity completes. The condition is evaluated repeatedly (and the body of the activity processed) until the provided boolean condition is true.	
Note: This activity is supported in BPEL version 2.0 projects.	
To create a repeatUntil activity:	
The Expression Builder dialog is displayed.	
The condition you entered is displayed in the Repeat Until dialog, as shown in Figure 11-11.	
Figure 11-11 Completed Repeat Until Dialog	
Figure 11-12 repeatUntil Activity Being Expanded	
Example 11-5 provides an example of the .bpel	
file after design completion. In this scenario, purchase order validation must be performed at least once, then repeatedly, based on evaluating the completion status until the status is updated to 5	
.	
Example 11-5 repeatUntil Activity	
Oracle provides an extension that enables you to specify an XPath expression in an activity in BPEL versions 1.1 and 2.0 that, when evaluated to true, causes that activity to be skipped. This functionality provides an alternative to using a switch activity for conditionally executing activities. The skip condition for activities is specified as follows:	
The bpelx:skipCondition	
attribute causes an XPath expression to be evaluated immediately upon creation of the activity instance. If the skip expression returns a false boolean value, the activity is executed. If the skip expression returns a true boolean value, the activity is completed immediately and execution moves to the activity immediately following that one.	
This construct is equivalent to a switch/case structured activity with a single case element with a condition that is the opposite of the skip condition.	
Example 11-6 provides an example of bpelx:skipCondition	
attribute use in BPEL 1.1. If myvalue	
is 0	
, the expression evaluates to true, and the assign activity is skipped. If myvalue	
is 10	
, the expression evaluates to false, and the copy operation of the assign activity is executed.	
Example 11-6 Use of bpelx:skipCondition Attribute in BPEL 1.1	
The equivalent functionality used with a switch activity is shown in Example 11-7.	
Example 11-7 Equivalent Functionality with a Switch Activity	
In BPEL 2.0, the bpelx:skipCondition	
syntax appears as a child element of an activity. Example 11-8 provides an example of an assign activity with this convention.	
Example 11-8 Use of bpelx:skipCondition Attribute in BPEL 2.0	
You can also use built-in and custom XPath functions within the skip condition expression. Example 11-9 provides several examples.	
Example 11-9 Built-in and Custom XPath Functions	
If an error is thrown by the XPath expression evaluation, the error is wrapped with a BPEL fault and thrown from the activity.	
An event is added to the BPEL instance audit trail for activities that are bypassed due to the skip condition expression evaluating to true. Even if the skip condition evaluates to false (meaning the activity is performed), the fact that a skip condition expression was evaluated is still logged to the audit trail for debugging purposes.	
If the XPath engine fails to evaluate the boolean value, bpws:subLanguageFault	
is thrown. This is the same fault thrown when a switch/case condition does not evaluate to a boolean value. This is also logged to the audit trail for debugging purposes.	
To specify XPath expressions to bypass activity execution:	
Figure 11-13 Skip Condition XPath Expression	
The code segment in the .bpel	
file defines the specific operation after design completion.	
For example, the XPath expression shown in Example 11-10, when evaluated to true (for example, input	
is 20	
), causes the assign activity to be skipped.	
Example 11-10 skipCondition Attribute For Bypassing Activity Execution	
This chapter describes how to use fault handling in a BPEL process. Fault handling allows a BPEL process service component to handle error messages or other exceptions returned by outside web services, and to generate error messages in response to business or runtime faults. This chapter also describes how to use the fault management framework to catch faults and perform user-specified actions defined in a fault policy file.	
This chapter includes the following sections:	
For additional information on creating fault handling in a SOA composite application, see the Fusion Order Demo application.	
Fault handlers define how the BPEL process service component responds when web services return data other than what is normally expected (for example, returning an error message instead of a number). An example of a fault handler is where the web service normally returns a credit rating number, but instead returns a negative credit message.	
Figure 12-1 provides an example of how a fault handler sets a credit rating variable to -1000	
.	
The code segment in Example 12-1 defines the fault handler for this operation in the BPEL file:	
Example 12-1 Fault Handler Definition	
The faultHandlers	
tag contains the fault handling code. Within the fault handler is a catch	
activity, which defines the fault name and variable, and the copy instruction that sets the creditRating	
variable to -1000	
.	
When you select web services for the BPEL process service component, determine the possible faults that may be returned and set up a fault handler for each one.	
This section identifies the standard faults for BPEL 1.1 and BPEL 2.0.	
This section identifies the standard faults for BPEL 1.1. Unless otherwise noted below, the Business Process Execution Language for Web Services Specification defines the following standard faults in the namespace of http://schemas.xmlsoap.org/ws/2003/03/business-process/	
:	
bindingFault	
(BPEL extension fault defined in http://schemas.oracle.com/bpel/extension	
) conflictingReceive	
conflictingRequest	
correlationViolation	
forcedTermination	
invalidReply	
joinFailure	
mismatchedAssignmentFailure	
remoteFault	
(BPEL extension fault defined in http://schemas.oracle.com/bpel/extension	
) repeatedCompensation	
selectionFailure	
uninitializedVariable	
Standard faults are defined as follows:	
messageTypes	
The following list specifies the standard faults defined within the WS-BPEL specification. All standard fault names are qualified with the standard WS-BPEL namespace.	
ambiguousReceive	
completionConditionFailure	
conflictingReceive	
conflictingRequest	
correlationViolation	
invalidBranchCondition	
invalidExpressionValue	
invalidVariables	
joinFailure	
mismatchedAssignmentFailure	
missingReply	
missingRequest	
scopeInitializationFailure	
selectionFailure	
subLanguageExecutionFault	
uninitializedPartnerRole	
uninitializedVariable	
unsupportedReference	
xsltInvalidSource	
xsltStylesheetNotFound	
In BPEL 2.0, the order of precedence for catching faults thrown without associated data is as follows:	
faultName	
value that does not specify a faultVariable	
attribute, the fault is sent to the identified catch activity. In BPEL 2.0, the order of precedence for catching faults thrown with associated data is as follows:	
faultName	
value that does not specify a faultVariable	
attribute, the fault is sent to the identified catch activity. faultName	
value that has a faultVariable	
whose associated faultElement	
QName matches the QName of the runtime element data of the single WSDL message part. Then, the fault is sent to the identified catch activity with the faultVariable	
initialized to the value in the single part's element.	
faultName	
value that does not specify a faultVariable	
attribute, the fault is sent to the identified catch activity. In this case, the fault value is not available from within the fault handler, but is available to the rethrow activity. faultName	
attribute that has a faultVariable	
whose type matches the type of the runtime fault data, then the fault is sent to the identified catch activity. faultName	
attribute that has a faultVariable	
whose associated faultElement's QName matches the QName of the runtime element data of the single WSDL message part, the fault is sent to the identified catch activity with the faultVariable	
initialized to the value in the single part's element. A BPEL fault has a fault name called a Qname	
(name qualified with a namespace) and a possible messageType	
. There are two categories of BPEL faults:	
Business faults are application-specific faults that are generated when there is a problem with the information being processed (for example, when a social security number is not found in the database). A business fault occurs when an application executes a throw activity or when an invoke activity receives a fault as a response. The fault name of a business fault is specified by the BPEL process service component. The messageType	
, if applicable, is defined in the WSDL. A business fault can be caught with a faultHandler	
using the faultName	
and a faultVariable	
.	
Runtime faults are the result of problems within the running of the BPEL process service component or web service (for example, data cannot be copied properly because the variable name is incorrect). These faults are not user-defined, and are thrown by the system. They are generated if the process tries to use a value incorrectly, a logic error occurs (such as an endless loop), a Simple Object Access Protocol (SOAP) fault occurs in a SOAP call, an exception is thrown by the server, and so on.	
Several runtime faults are automatically provided. These faults are included in the http://schemas.oracle.com/bpel/extension	
namespace. These faults are associated with the messageType	
RuntimeFaultMessage	
. The WSDL file shown in Example 12-2 defines the messageType	
:	
Example 12-2 messageType Definition	
If a faultVariable	
(of messageType	
RuntimeFaultMessage	
) is used when catching the fault, the fault code can be queried from the faultVariable	
, along with the fault summary and detail.	
A bindingFault	
is thrown inside an activity if the preparation of the invocation fails. For example, the WSDL of the process fails to load. A bindingFault	
is not retryable. This type of fault usually must be fixed by human intervention.	
Oracle SOA Suite provides a generic fault management framework for handling faults in BPEL processes. If a fault occurs during runtime in an invoke activity in a process, the framework catches the fault and performs a user-specified action defined in a fault policy file associated with the activity. If a fault results in a condition in which human intervention is the prescribed action, you perform recovery actions from Oracle Enterprise Manager Fusion Middleware Control. The fault management framework provides an alternative to designing a BPEL process with catch activities in scope activities.	
This section provides an overview of the components that comprise the fault management framework.	
The framework looks for fault policy bindings in the same directory as the composite.xml	
file of the SOA composite application or in a remote location identified by two properties that you set.	
Note: A fault policy configured with the fault management framework overrides any fault handling defined in catch activities of scope activities in the BPEL process. The fault management framework can be configured to rethrow the fault handling back to the catch activities.	
fault-policies.xml	
) and fault policy bindings file (fault-bindings.xml	
) are placed in either of the following locations: composite.xml	
file of the SOA composite application. composite.xml	
file. This option is useful if a fault policy must be used by multiple SOA composite applications. This option overrides any fault policy files that are included in the same directory as the composite.xml	
file. Example 12-3 provides details about these two properties. In this example, the fault policy files are placed into the SOA Metadata Service (MDS) shared area. See Chapter 22, "Using Oracle Mediator Error Handling" for details about Oracle Mediator fault handling capabilities.	
This section describes how to design a fault policy.	
Note: The Facades API enables you to programmatically perform the abort, retry (with a success action), continue, rethrow, and replay recovery options. For information, see Oracle Fusion Middleware Infrastructure Management Java API Reference for Oracle SOA Suite.	
A fault policy bindings file associates the policies defined in a fault policy file with the SOA composite application or the component (service component or reference binding component). The framework attempts to identify a fault policy binding in the following order:	
composite.xml	
file. composite.xml	
file. composite.xml	
file. During the resolution process, if no action is found that matches the condition, the framework assumes that resolution failed and moves to the next resolution level.	
For example, assume an invoke activity faults with faultname="abc"	
. There is a policy binding specified in the fault-binding.xml	
file:	
policy-id-1	
policy-id-2	
In the fault-bindings.xml	
file, the following bindings are also specified:	
policy-id-3	
policy-id-4	
The fault management framework behaves as follows:	
policy-id-2	
). policy-id-4	
). policy-id-3	
). policy-id-1	
). fault-policies.xml	
). This file includes condition	
and action	
sections for performing specific tasks. Place the file in the same directory as the composite.xml	
file or place it in a different location and define the oracle.composite.faultPolicyFile	
property. Example 12-4 provides details.	
condition	
section of the fault policy file. condition	
section: faultName	
. faultName	
. test	
section (an XPath expression) and one action	
section. test	
section (XPath expression) is evaluated for the fault variable available in the fault. action	
section has a reference to the action defined in the same file. Table 12-1 provides examples of condition	
section use in the fault policy file. All actions defined in the condition	
section must be associated with an action in the action	
section.	
Table 12-1 Use of the condition Section in the Fault Policy File	
Condition Example	Fault Policy File Syntax
---	---
This condition is checking a fault variable for An	<condition> <test>$fault.code="WSDLReading Error" </test> <action ref="ora-terminate"/> </condition>
No	<condition> <action ref="ora-rethrow"/> </condition>
If the	<faultName > . . . </faultName>
action	
section of the fault policy file. Validation of fault policy files is done during deployment. If you change the fault policy, you must redeploy the SOA composite application that includes the fault policy. Table 12-2 provides several examples of action	
section use in the fault policy file. You can provide automated recovery actions for some faults. In all recovery actions except retry and human intervention, the framework performs the actions synchronously.	
Table 12-2 Use of action Section in the Fault Policy File	
Recovery Actions	Fault Policy File Syntax
---	---
Retry: Provides the following actions for retrying the activity.	
Note: Exponential back off indicates the next retry attempt is scheduled at	<Action id="ora-retry"> <Retry> <retryCount>3</retryCount> <retryInterval>2</retryInterval> <exponentialBackoff/> <retryFailureAction ref="ora-java"/> <retrySuccessAction ref="ora-java"/> </Retry> </Action> Note the following details:
Human Intervention: Causes the current activity to stop processing. You can now go to Oracle Enterprise Manager Fusion Middleware Control and perform manual recovery actions on this instance.	<Action id="ora-human-intervention"> <humanIntervention/></Action>
Terminate Process: Terminates the process	<Action id="ora-terminate"><abort/></Action>
Java Code: Enables you to execute an external Java class.	
For additional information, see Section 12.4.3, "How to Use a Java Action Fault Policy."	<Action id="ora-java"> <!-- this is user provided custom java class--> <javaAction className="mypackage.myClass" defaultAction="ora-terminate"> <returnValue value="REPLAY" ref="ora-terminate"/> <returnValue value="RETRHOW" ref="ora-rethrow-fault"/> <returnValue value="ABORT" ref="ora-terminate"/> <returnValue value="RETRY" ref="ora-retry"/> <returnValue value="MANUAL" ref="ora-human-intervention"/> </javaAction> </Action>
Rethrow Fault: The framework sends the fault to the BPEL fault handlers (catch activities in scope activities). If none are available, the fault is sent up.	<Action id="ora-rethrow-fault"><rethrowFault/></Action>
Replay Scope: Raises a replay fault.	<Action id="ora-replay-scope"><replayScope/></Action>
Note: The preseeded recovery action tag names (
Example 12-5 shows a fault policy file with fully-defined condition	
and action	
sections.	
Notes:	
Example 12-5 Fault Policy File	
Note: The fault policy file binding file must be named	
fault-bindings.xml	
) that associates the policies defined in the fault policy file with the level of fault policy binding you are using (either a SOA composite application or a component (reference binding component or BPEL process or Oracle Mediator service component). composite.xml	
file or place it in a remote location and define the oracle.composite.faultBindingFile	
property as shown in Step 2 of Section 12.4.1.2, "Creating a Fault Policy File for Automated Fault Recovery." Example 12-6 shows a fault policy bindings file that associates the fault policies defined in the fault-policies.xml	
file with the FusionMidFaults	
SOA composite application.	
Example 12-6 fault-buildings.xml File	
This section provides additional samples of fault policy and fault policy binding files. Example 12-7 shows the fault-policies.xml	
file contents.	
Example 12-7 fault-policies.xml File	
Example 12-8 shows the fault-buildings.xml	
file that associates the fault policies defined in fault-policies.xml	
.	
Example 12-8 Fault Policy Bindings File	
If you design a fault policy that uses the action handler for rejected messages, note that only one write action can be performed. Multiple write actions cannot be performed, even if you define multiple rejection handlers, as shown in Example 12-9. In this case, only the first rejection handler defined (for this example, ora-queue	
) is executed.	
Example 12-9 Fault Policy with Multiple Rejection Handlers	
You deploy a fault policy as part of a SOA composite application. After deployment, you can perform the following fault recovery actions from Oracle Enterprise Manager Fusion Middleware Control:	
For additional information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for the following:	
Note the following details when using the Java action fault policy:	
ReturnValue	
is specified, the default fault policy is executed, as shown in Example 12-10. Example 12-10 Java Action Fault Policy	
Table 12-3 provides an example of ReturnValue	
use.	
Table 12-3 System Interpretation of Java Action Fault Policy	
Code	Description
---	---
<ReturnValue value="RETRY" ref="ora-retry"/>	Execute the
<ReturnValue value="” ref=”ora-rethrow”/>	Fails in validation.
<javaAction className="mypackage.myclass" defaultAction="ora-human-intervention">	Execute
<ReturnValue value="RETRY" ref="ora-retry"/> <ReturnValue value="” ref=””/>	Fails in validation.
<javaAction className="mypackage.myclass" defaultAction=" ora-human-intervention"> <ReturnValue></ReturnValue>	Fails in validation.
To invoke a Java class, you can provide a class that implements the IFaultRecoveryJavaClass	
interface. IFaultRecoveryJavaClass	
is included in the fabric-runtime.jar	
file. The package name is oracle.integration.platform.faultpolicy	
.	
The IFaultRecoveryJavaClass	
interface has two methods, as shown in Example 12-11.	
Example 12-11 implementation of IFaultRecoveryJavaClass	
Note the following details:	
handleRetrySuccess	
is invoked upon a successful retry attempt. The retry policy chains to a Java action on retrySuccessAction	
. handleFault	
is invoked to execute a policy of type javaAction	
. Example 12-12 shows the data available with IFaultRecoveryContext	
:	
Example 12-12 Data Available with IFaultRecoveryContext	
The service engine implementation of this interface provides more information (for example, Oracle BPEL Process Manager). Example 12-13 provides details.	
Example 12-13 Service Engine Implementation of IFaultRecoveryContext	
Oracle BPEL Process Manager-specific data is available with IBPELFaultRecoveryContext	
, as shown in Example 12-14.	
Example 12-14 Oracle BPEL Process Manager-Specific Data	
Example 12-15 provides an example of javaAction	
implementation.	
Example 12-15 Implementation of a javaAction	
When you configure a fault policy to recover instances with the ora-retry	
action and the number of specified instance retries is exceeded, the instance is marked as open.faulted	
(in-flight state). The instance remains active.	
Marking instances as open.faulted	
ensures that no instances are lost. You can then configure another fault handling action following the ora-retry	
action in the fault policy file, such as the following:	
ora-human-intervention	
action to manually perform instance recovery from Oracle Enterprise Manager Fusion Middleware Control. ora-terminate	
action to close the instance (mark it as closed.faulted	
) and never retry again. However, if you do not set an action to be performed after an ora-retry	
action in the fault policy file and the number of instance retries is exceeded, the instance remains marked as open.faulted	
, and recovery attempts to handle the instance.	
For example, if no action is defined in the fault policy file shown in Example 12-16 after ora-retry	
:	
Example 12-16 No Action Defined	
The following actions are performed:	
open.faulted	
(in-flight state). The fault policy retry action may not execute with multiple faults in the same flow. This may be because the retry count has already been reached for any of the previous faults.	
For example, assume you define a fault policy with two fault conditions: fault1	
and fault2	
. For both fault conditions, the retry action is specified with a retry count of three. Assume fault1	
occurs and the retry action executes three times. You correct the problem for fault1	
by modifying the payload, but ensure that fault2	
is to be raised when the instance is resubmitted. You then resubmit the faulted instance using Oracle Enterprise Manager Fusion Middleware Control. You expect the second fault condition, fault2	
, to retry three times according to the fault policy specification. However, this does not occur because the maximum number of retries was already executed for the previous fault1	
fault condition.	
If you are testing retry actions on adapters with both JCA-level retries for the outbound direction and a retry action in the fault policy file for outbound failures, the JCA-level (or binding level) retries are executed within the fault policy retries. For example, assume you have designed the application shown in Figure 12-2:	
You specify the retry parameters shown in Example 12-17 in the composite.xml	
file:	
Example 12-17 Retry Parameters	
In the fault policy file for the EQ reference binding component for the outbound direction, you specify the actions shown in Example 12-18.	
If an outbound failure occurs, the expected behavior is for the JCA retries to occur within the fault policy retries. When the first retry of the fault policy is executed, the JCA retry is called. In this example, a JCA retry of 2	
with an interval of 2	
seconds and exponential back off of 2	
is executed for every retry of the fault policy:	
2	
seconds interval) 4	
seconds interval) 2	
seconds interval) 4	
seconds interval) 2	
seconds interval) 4	
seconds interval) Assume you invoke a SOA composite application with a fault policy/binding defined and see a recoverable fault in Oracle Enterprise Manager Fusion Middleware Control. After you perform a successful fault recovery retry, there is no ora-java option available for selection by default in the After Successful Retry list of the Faults tab of the Instance of process_name page.	
This is the expected behavior. For the ora-java option to display, you must explicitly define it in the fault-policies.xml	
file during design-time. For example, perform the following steps.	
fault-policies.xml	
file in which you explicitly add retrySuccessAction ref="ora-java"/>	
to the fault-policies.xml	
file. If fault recovery is successful, the After Successful Retry list is displayed.	
For more information about recovering from faults in Oracle Enterprise Manager Fusion Middleware Control, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
BPEL runtime faults can be caught as a named BPEL fault. The bindingFault	
and remoteFault	
can be associated with a message. This action enables the faultHandler	
to get details about the faults.	
The following procedure shows how to use the provided examples to generate a fault and define a fault handler to catch it. In this case, you modify a WSDL file to generate a fault, and create a catch attribute to catch it.	
To catch BPEL runtime faults:	
RuntimeFault.wsdl	
into your process WSDL. RuntimeFault.wsdl	
is seeded into the MDS from soa.mar	
inside soa-infra-wls.ear	
during its deployment. You may see a copy of soa.mar	
in the deployed SOA Infrastructure in the Oracle WebLogic Server domain, which is a JAR/ZIP file containing RuntimeFault.wsdl	
.	
messageType bpelx:RuntimeFaultMessage	
. The catchAll activity is provided to catch possible faults. However, BPEL does not provide a method for obtaining additional information about the captured fault. Use the getFaultAsString()	
XPath extension function to obtain additional information.	
Example 12-19 shows how to use this function.	
A BPEL application can generate and receive fault messages. The throw activity has three elements: its name, the name of the fault, and the fault variable. The fault thrown by a throw activity is internal to BPEL. You cannot use a throw activity on an asynchronous process to communicate with a client. Throw activity syntax includes the throw name, fault name, and fault variable:	
To create a throw activity:	
The namespace URI for the selected fault displays in the Namespace URI field. Your fault selection also automatically displays in the Local Part field.	
Figure 12-3 provides an example of a completed Throw dialog. This example shows the Throw_Fault_CC_Denied throw activity of the Scope_AuthorizeCreditCard scope activity in the Fusion Order Demo application. This activity throws a fault for orders that are not approved.	
Example 12-20 shows the throw activity in the .bpel	
file after design completion. The OrderProcessor	
process terminates after executing this throw activity.	
The rethrow activity rethrows faults originally captured by the immediately enclosing fault handler. Only use the rethrow activity within a fault handler (for example, within catch and catchAll activities). The rethrow activity is used in fault handlers to rethrow the captured fault (that is, the fault name and the fault data (if present) of the original fault). The rethrow activity must ignore modifications to fault data. For example:	
Note: This activity is supported in BPEL version 2.0 projects.	
To create a rethrow activity:	
When complete, design can look similar to that shown in Figure 12-5.	
Figure 12-5 Throw Activity in BPEL Process	
Example 12-21 shows the .bpel	
file after design is complete for a rethrow activity. The rethrow activity is inside a fault handler (catch activity).	
Example 12-21 Rethrow Activity	
A BPEL process service component can send a fault to another application to indicate a problem, as opposed to throwing an internal fault. In a synchronous operation, the reply activity can return the fault. In an asynchronous operation, the invoke activity performs this function.	
The syntax of a reply activity that returns a fault in a synchronous interaction is shown in Example 12-22:	
Example 12-22 Reply Activity	
partner-link-name	
"port-type-name	
"operation-name	
"variable-name	
" (optional)fault-name	
">Always returning a fault in response to a synchronous request is not very useful. It is better to make the activity part of a conditional branch, in which the first branch is executed if the data requested is available. If the requested data is not available, then the BPEL process service component returns a fault with this information.	
For more information, see the following chapters:	
In an asynchronous interaction, the client does not wait for a reply. The reply activity is not used to return a fault. Instead, the BPEL process service component returns a fault using a callback operation on the same port type that normally receives the requested information, with an invoke activity.	
For more information about asynchronous interactions, see Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process."	
A scope activity provides a container and a context for other activities. A scope provides handlers for faults, events, compensation, data variables, and correlation sets. Using a scope activity simplifies a BPEL flow by grouping functional structures. This grouping enables you to collapse them into what appears to be a single element in Oracle BPEL Designer.	
Example 12-23 shows a scope named Scope_FulfillOrder	
from the WebLogic Fusion Order Demo application. This scope invokes the FulfillOrder	
Oracle Mediator component, which determines the shipping method for the order.	
Example 12-23 Scope Activity	
To create a scope activity:	
When complete, scope activity design can look as shown in Figure 12-7. This example shows the Scope_AuthorizeCreditCard scope activity of the Fusion Order Demo application.	
Figure 12-7 Scope Activity After Design Completion	
You can add descriptive notes to scope activities that provide simple descriptions of the functionality of the scope. You can also change the graphical image of scopes. The notes and images display in Oracle BPEL Designer. This helps to make a scope easier to understand.	
To add descriptive notes and images to a scope activity:	
The Documentation dialog appears.	
Your changes display in Oracle BPEL Designer, as shown in Figure 12-8.	
Figure 12-8 Scope with Descriptive Note and Modified Image	
Example 12-24 shows the scope activity in the .bpel	
file after design completion. The Scope_AuthorizeCreditCard	
scope activity consists of activities that perform the following actions:	
CreditCardAuthorizationService	
service. CreditCardAuthorizationService	
service to retrieve customer information. Example 12-24 Scope Activity	
Scopes can use a significant amount of CPU and memory and should not be overused. Sequence activities use less CPU and memory and can make large BPEL flows more readable.	
If a fault is not handled, it creates a faulted state that migrates up through the application and can throw the entire process into a faulted state. To prevent this from occurring, place the parts of the process that have the potential to receive faults within a scope. The scope activity includes the following fault handling capabilities:	
Example 12-25 shows the syntax for catch and catchAll activities. Assume that a fault named x:foo	
is thrown. The first catch is selected if the fault carries no fault data. If there is fault data associated with the fault, the third catch is selected if the type of the fault's data matches the type of variable bar	
. Otherwise, the default catchAll handler is selected. Finally, a fault with a fault variable whose type matches the type of bar	
and whose name is not x:foo	
is processed by the second catch. All other faults are processed by the default catchAll handler.	
To create a catch activity in a scope:	
This creates a catch activity in the right side of the scope activity.	
The namespace URI for the selected fault displays in the Namespace URI field. Your fault selection also automatically displays in the Local Part field.	
Figure 12-10 provides an example of a Catch dialog. This example shows the selectionFailure catch activity of the Scope_AuthorizeCreditCard scope activity in the Fusion Order Demo application. This catch activity catches orders in which the credit card number is not provided.	
Figure 12-11 provides an example of two catch activities for the Scope_AuthorizeCreditCard scope activity. The second catch activity catches credit types that are not valid.	
Figure 12-11 Catch Activities in the Designer	
Example 12-26 shows the catch	
activity in the .bpel	
file after design completion. The selectionFailure	
catch activity catches orders in which the credit card number is not provided and the InvalidCredit	
catch activity catches credit types that are not valid.	
Example 12-26 Catch Branch	
There is often a need to use an activity that does nothing. An example is when a fault must be caught and suppressed. In this case, you can use the empty activity to insert a no-op instruction into a business process.	
To create an empty activity:	
The Empty dialog appears, as shown in Figure 12-12.	
The syntax for an empty	
activity is shown in Example 12-27.	
If no catch	
or catchAll	
is selected, the fault is not caught by the current scope and is rethrown to the immediately enclosing scope. If the fault occurs in (or is rethrown to) the global process scope, and there is no matching fault handler for the fault at the global level, the process terminates abnormally. This is as though a terminate activity (described in Section 12.13.1, "Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1") had been performed.	
You can create a replay activity inside a scope activity to re-execute all of the activities inside the scope.	
To create a replay activity:	
When complete, design of the scope activity can look similar to that shown in Figure 12-14.	
Figure 12-14 Replay Activity in a Scope Activity	
Example 12-28 shows the .bpel	
file after design is complete for a replay activity in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the replay activity is wrapped in an extensionActivity	
element.	
Example 12-28 Replay Activity	
In BPEL 1.1, the replay activity is coded as a bpelx	
extension.	
Compensation occurs when the BPEL process service component cannot complete a series of operations after some have completed, and the BPEL process service component must backtrack and undo the previously completed transactions. For example, if a BPEL process service component is designed to book a rental car, a hotel, and a flight, it may book the car and the hotel and then be unable to book a flight for the right day. In this case, the BPEL flow performs compensation by going back and unbooking the car and the hotel.	
In a scope activity, the compensation handler can reverse previously completed process steps. The compensation handler can be invoked after successful completion of its associated scope with either of the following activities.	
This activity causes the compensation handler of all successfully completed and not yet compensated child scopes to be executed in default order.	
This activity causes the compensation handler of one specific successfully completed scope to be executed.	
You can invoke a compensation handler by using the compensate activity, which names the scope for which the compensation is to be performed (that is, the scope whose compensation handler is to be invoked). A compensation handler for a scope is available for invocation only when the scope completes normally. Invoking a compensation handler that has not been installed is equivalent to using the empty activity (it is a no-op). This ensures that fault handlers do not have to rely on state to determine which nested scopes have completed successfully. The semantics of a process in which an installed compensation handler is invoked multiple times are undefined.	
The ability to explicitly invoke the compensate activity is the underpinning of the application-controlled error-handling framework of Business Process Execution Language for Web Services Specification. You can use this activity only in the following parts of a business process:	
For example:	
If a scope being compensated by name was nested in a loop, the BPEL process service component invokes the instances of the compensation handlers in the successive iterations in reverse order.	
If the compensation handler for a scope is absent, the default compensation handler invokes the compensation handlers for the immediately enclosed scopes in the reverse order of the completion of those scopes.	
The compensate form, in which the scope name is omitted in a compensate activity, explicitly invokes this default behavior. This is useful when an enclosing fault or compensation handler must perform additional work, such as updating variables or sending external notifications, in addition to performing default compensation for inner scopes. The compensate activity in a fault or compensation handler attached to the outer scope invokes the default order of compensation handlers for completed scopes directly nested within the outer scope. You can mix this activity with any other user-specified behavior except for the explicit invocation of the nested scope within the outer scope. Explicitly invoking compensation for such a scope nested within the outer scope disables the availability of default-order compensation.	
To create a compensate activity:	
If an invoke activity has a compensation handler defined inline, then the name of the activity is the name of the scope to be used in the compensate activity. The syntax is shown in Example 12-29:	
The compensateScope activity is used to start compensation on a specified inner scope that has already completed successfully. This activity must only be used from within a fault handler, another compensation handler, or a termination handler.	
When you create a compensateScope activity, you select a target that must refer to the immediately-enclosed scope. The scope must include a fault handler or compensation handler.	
Note: This activity is supported in BPEL 2.0 projects.	
To create a compensateScope activity:	
Example 12-30 shows the .bpel	
file after design is complete for a compensateScope activity. The compensateScope activity is defined in a catchall fault handler. The scope in which to invoke the compensation handler is defined.	
Example 12-30 compensateScope Activity	
You can stop a business process instance with either of the following activities:	
The terminate activity immediately terminates the behavior of a business process instance within which the terminate activity is performed. All currently running activities must be terminated as soon as possible without any fault handling or compensation behavior. The terminate activity does not send any notifications of the status of a BPEL process service component. If you are going to use the terminate activity, first program notifications to the interested parties.	
To create a terminate activity:	
The syntax for the terminate	
activity is shown in Example 12-31. This stops the business process instance.	
You can use the exit activity to immediately end all currently running activities on all parallel branches without involving any termination handling, fault handling, or compensation handling mechanisms. This activity is useful for environments in which there may not be a reasonable way for dealing with unexpected, severe failures.	
Note: Any open conversations are also impacted by the exit activity. For example, other partners interacting with the process may wait for a response that never arrives.	
To create an exit activity:	
When complete, the exit activity in a BPEL process appears similar to that shown in Figure 12-19.	
Figure 12-19 Exit Activity in a BPEL Process	
Example 12-32 shows the .bpel	
file after design is complete for an exit activity.	
Example 12-32 Exit Activity	
You can specify an assertion condition in BPEL versions 1.1 and 2.0 that is executed upon receipt of a callback message in request-response invoke activities, receive activities, reply activities, and onMessage branches of pick and scope activities. The assertion specifies an XPath expression that, when evaluated to false, causes a BPEL fault to be thrown from the activity. This condition provides an alternative to creating a potentially large number of switch, assign, and throw activities after a partner callback.	
You can select when to execute a condition:	
The assertion condition is specified as a nested extension element. Example 12-33 shows the postassertion condition schema definition in BPEL 1.1.	
Example 12-33 Postassertion Condition Schema Definition in BPEL 1.1	
Example 12-34 shows the postassertion condition syntax in BPEL 1.1.	
Example 12-34 Postassertion Condition Syntax in BPEL 1.1	
Example 12-35 shows the postassertion condition schema definition in BPEL 2.0. Note the differences between BPEL 1.1 and BPEL 2.0.	
Example 12-35 Postassertion Condition Schema Definition in BPEL 2.0	
Example 12-36 shows the postassertion condition syntax in BPEL 2.0.	
Example 12-36 Postassertion Condition Syntax in BPEL 2.0	
Example 12-37 shows the preassertion condition schema definition in BPEL 1.1.	
Example 12-37 Preassertion Condition Schema Definition in BPEL 1.1	
Example 12-38 shows the preassertion condition syntax in BPEL 1.1.	
Example 12-38 Preassertion Condition Syntax in BPEL 1.1	
Example 12-39 shows the preassertion condition schema definition in BPEL 2.0. Note the differences between BPEL 1.1 and BPEL 2.0.	
Example 12-39 Preassertion Condition Schema Definition in BPEL 2.0	
Example 12-40 shows the preassertion condition syntax in BPEL 2.0.	
Example 12-40 Preassertion Condition Syntax in BPEL 2.0	
The bpelx:postAssert	
extension specifies the XPath expression to evaluate upon receipt of a callback message from a partner. If the assertion expression returns a false boolean value, the specified fault is thrown from the activity. If the assertion expression returns a true boolean value, no fault is thrown and the activities following the invoke activity, receive activity, or the onMessage branch of pick and scope activities are executed as in a normal BPEL process flow.	
The bpelx:preAssert	
or bpelx:postAssert	
extension is similar to the Java assert	
statement. In Java, if the assert	
expression does not evaluate to true, an error is reported by the JVM. Similarly, the expression in the bpelx:preAssert	
or bpelx:postAssert	
extension must evaluate to true; otherwise, the specified fault is thrown.	
For example, with the BPEL 1.1 invoke activity shown in Example 12-41, if the XPath expression specified in the assertion condition returns false, the NegativeCredit	
fault is thrown.	
Example 12-41 Invoke Activity in BPEL 1.1	
The optional name	
attribute for bpelx:preAssert	
or bpelx:postAssert	
is used while creating the audit trail event message. The name in this instance enables you to identify the assertion element in case multiple assertions are specified. If no name	
attribute is specified, the line number of the assertion element in the BPEL file may be used.	
This section describes key assertion condition concepts.	
Depending upon the activity, you can specify when to execute a condition by clicking the Add icon in the Assertions tab of invoke, receive, reply, and onMessage branches of pick and scope activities, and selecting either Pre Assert or Post Assert. Based on your selection, the following bpelx	
extensions are used:	
bpelx:preAssert	
: If you select Pre Assert, the condition is executed before the invoke or reply activity send out the outbound message. bpelx:postAssert	
: If you select Post Assert, the condition is executed after an invoke activity, receive activity, or onMessage branch receives the inbound message. Example 12-42 shows multiple bpelx:postAssert	
extensions in a receive activity in BPEL 1.1:	
Example 12-42 bpelx:postAssert Extension in a Receive Activity in BPEL 1.1	
Example 12-43 shows multiple bpelx:preAssert	
extensions in an invoke activity in BPEL 1.1:	
Example 12-43 bpelx:preAssert Extension in a Invoke Activity in BPEL 1.1	
For information on using the Assertions tab, see Section 12.14.2, "How to Create Assertion Conditions."	
You can specify the faultName	
and message	
attributes of the bpelx:postAssert	
element, as shown in the schema definition in Example 12-44 for BPEL 1.1	
Example 12-44 faultName and message Attributes Schema Definition in BPEL 1.1	
Example 12-45 shows the syntax for the faultname	
and message	
attributes.	
Example 12-45 faultName and message Attributes Syntax in BPEL 1.1	
If you do not specify the faultName	
attribute, the fault defaults to bpelx:postAssertFailure	
. If the message	
attribute is not specified, the message value defaults to the name of the activity.	
The specified fault is thrown whenever the assertion condition evaluates to false. Analysis is performed on the faultName	
QName	
to ensure that it properly resolves to a fault that has been defined in the partner WSDL portType	
. The message expression is a general expression that can evaluate to any XPath value type (string, number, or boolean). If a nonstring value is returned, the string equivalent of the value is used.	
You can nest multiple assertions in receive activities, invoke activities, and the onMessage branch of pick and scope activities, with evaluation of the assertions continuing in the order in which they were declared until an expression evaluates to false. Example 12-46 provides details.	
Example 12-46 Nesting Multiple Assertions in BPEL 1.1	
In Example 12-46, the assertion with the expression that checks that the response credit rating is greater than zero is evaluated first. Table 12-4 describes the assertion behavior.	
Table 12-4 Assertion Behavior	
If The Credit Rating For The Returned Response Is...	Then...
---	---
Less than zero	The
Greater than or equal to zero	The assertion is correct and the second assertion is evaluated.
Less than 600	The
Greater than or equal to 600	The assertion is correct and no fault is thrown from the invoke activity.
Any number of assertions can be nested. For no fault to be thrown from the activity, all assertions specified must evaluate to true.	
This construct enables you to apply multiple levels of validation on an incoming payload, similar to if...else	
if...else	
statements in Java.	
To enable a fault to always be thrown regardless of validation logic, the assertion expression can be specified as false()	
. This is similar to the else	
construct in Java.	
You can also use built-in and custom XPath functions and $variable	
references within the assertion condition. Example 12-47 provides several examples.	
Example 12-47 Built-in and Custom XPath Functions in BPEL 1.1	
If an error is thrown by the XPath expression evaluation, the error is wrapped with a BPEL fault and thrown from the activity.	
Faults that are thrown from a request-response invoke activity, receive activity, or onMessage branch of a pick or scope activity because of a failed assertion evaluation can be caught and handled by BPEL's fault management framework. For information, see Section 12.4, "Using the Fault Management Framework."	
Faults that are not caught and handled within a BPEL process flow are thrown from a BPEL component if the component WSDL declares the fault on the operation. If the fault is not declared on the operation, the fault is converted into a FabricInvocationException	
, which is a runtime fault. This fault can be caught by any caller components (including BPEL components), but the fault type is no longer the one originally thrown (however, the fault message string still retains traces of the original fault message).	
For more information about runtime faults, see Section 12.3, "Introduction to Categories of BPEL Faults."	
For more information about fault policies, see Section 12.4, "Using the Fault Management Framework."	
Each assertion condition that is evaluated causes an event to be logged to the instance audit trail. The event indicates whether the assertion passed or failed (for failure, the fault name and message are printed). The event also includes the name	
attribute specified in the assertion element; if no name	
attribute is provided, the line number of the assertion element in the BPEL process flow is used. The assertion condition printed in the audit event helps identify the assertion and better enables debugging of the flow.	
If the assertion condition XPath expression does not evaluate to an XML schema boolean type, a bpelx:postAssertFailure	
fault is thrown from the activity. An event in the instance audit trail is also logged indicating the error. Example 12-48 provides details.	
Example 12-48 Throwing a bpelx:assertFailure Fault in BPEL 1.1	
Analysis of the assertion expression is performed by the BPEL compiler and errors are reported if an expression does not evaluate to an XML schema boolean type. For custom XPath functions, this type of analysis is not performed.	
You can also create assertion conditions in a standalone assert activity in a BPEL process service component. The assertion specifies an XPath expression that, when evaluated to false, causes a BPEL fault to be thrown from the activity.	
The bpelx:assert	
extension implements assertions in the standalone assert activity:	
For information on using the standalone assert activity, see Section 12.14.2, "How to Create Assertion Conditions."	
You can create assertion conditions in the following activities:	
To create assertion conditions in invoke activities, receive activities, reply activities, and OnMessage branches:	
Figure 12-20 Add Icon of Assertions Tab in BPEL 1.1	
Table 12-5 Condition Execution Options	
Element	Description
---	---
Pre Assert	If selected, the condition is executed before the invoke or reply activity send out the outbound message.
Post Assert	If selected, the condition is executed after an invoke activity, receive activity, or onMessage branch receives the inbound message.
Based on your selection, the Pre Assert or Post Assert dialog is displayed.	
If you are creating an assertion for a BPEL 2.0 project, perform the following tasks.	
Figure 12-21 Add Icon of Assertions Tab in BPEL 2.0	
The Assert dialog is displayed.	
bpelx:assertFailure	
fault is thrown. To create an assertion condition in standalone assert activities:	
Figure 12-24 Assert Activity in Component Palette	
The Assert dialog looks as shown in Figure 12-25.	
You can disable assertions in either of two ways:	
bpel.config.disableAsserts	
to true	
in the composite.xml	
file of the SOA composite application, as shown in Example 12-49. For more information about setting System MBean Browser properties, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
The code segment in the .bpel	
file defines the specific operation after design completion.	
For Example 12-50, the bpelx:assert	
condition in the invoke activity, when evaluated to false (for example, a credit rating of 0	
is submitted), returns a Negative	
Credit	
message. If the condition evaluates to true, no fault is thrown from the invoke activity and the remaining activities in the BPEL process flow are executed normally.	
Example 12-50 Assertion Condition in an Invoke Activity in BPEL 1.1	
In Example 12-51, the bpelx:assert	
condition in the standalone assert activity, when evaluated to false, returns a got assertion failure on true expression	
message. If the condition evaluates to true, no fault is thrown from the assert activity and the remaining activities in the BPEL process flow are executed normally.	
This chapter describes transaction and fault propagation semantics in Oracle BPEL Process Manager. It describes how to configure the transaction behavior for BPEL instances with initiating calls and the execution of one-way invocations.	
This chapter includes the following sections:	
Transaction semantics in release 11g enable you to use the underlying Java Transaction API (JTA) infrastructure used in the execution of components. This section describes transaction semantics for Oracle BPEL Process Manager	
As with previous releases, Oracle BPEL Process Manager by default creates a new transaction on a request basis. That is, if a transaction exists, it is suspended, and a new transaction is created. Upon completion of the child (new) transaction, the master (suspended) transaction resumes.	
However, if the request is asynchronous (that is, one-way), the transaction is either:	
dlv_message	
). There is no message loss. Either the invocation message is inserted into the dehydration store for processing or the consumer is notified through a fault.	
In release 10.1.3.x, there were several properties to set on the consuming process (that is, on the partner link) and the providing process. This enabled you to chain an execution into a single global transaction. On the consuming side, you set transaction=participate	
on the partner link binding in the bpel.xml	
file. On the providing side, you set transaction=participate	
in the <configurations>	
section of bpel.xml	
.	
In release 11g, you only must set a new transaction	
property on the BPEL component being called (known as the callee process). You add bpel.config.transaction	
into a BPEL process service component section in the composite.xml	
file (note the required prefix of bpel.config.	
). This property configures the transaction behavior for BPEL instances with initiating calls.	
Example 13-1 provides details.	
Example 13-1 Setting a New Transaction	
There are two possible values: required	
and requiresNew	
. Table 13-1 describes these values and summarizes the behavior of the BPEL instance based on the settings.	
Table 13-1 bpel.config.transaction Property Behavior	
For...	With bpel.config.transaction Set to required...
---	---
Request/response (initiating) invocations	The caller's transaction is joined (if there is one) or a new transaction is created (if there is not one).
One-way initiating invocations in which	Invoked messages are processed using the same thread in the same transaction.
Note: The	
For additional information about setting the bpel.config.transaction	
property, see Section 4.1.1, "How to Add a BPEL Process Service Component" and Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector."	
The following sections describe the transaction and fault behavior of setting bpel.config.transaction	
to either required	
or requiresNew	
.	
In Table 13-2, the BPELCaller process calls the BPELCallee process. The BPELCallee process has the property bpel.config.transaction	
set to requiresNew	
. Table 13-2 describes fault propagation and transaction behavior when bpel.config.transaction	
is set to this value.	
Table 13-2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to requiresNew	
If The BPELCallee...	Then The BPELCallee Transaction...
---	---
Replies with a fault (that is, it uses	Is saved.
Throws a fault that is not handled (that is, it uses	Is rolled back.
Replies back with a fault (FaultOne), and then throws a fault (FaultTwo).	Is rolled back.
Is rolled back.	Gets a remote fault.
In Table 13-3, the BPELCaller process calls the BPELCallee process. The BPELCallee process has the property bpel.config.transaction	
set to required	
. Table 13-3 describes fault propagation and transaction behavior when bpel.config.transaction	
is set to this value.	
Table 13-3 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to required	
If The BPELCallee...	Then The BPELCaller...
---	---
Replies with a fault (that is, it uses	Gets the fault and can catch it. The BPELCaller owns the transaction. Therefore, if it catches it, the transaction is committed. If the BPELCaller does not handle it, a global rollback occurs.
Throws a fault (that is, it uses	Gets the fault and can catch it.
Replies back with a fault (FaultOne), and then throws a fault (FaultTwo).	Gets FaultTwo.
Throws (that is, it uses	Gets its transaction rolled back; there is no way to catch it. This fault cannot be handled.
As an example, assume you create two synchronous processes (BPELMaster and BPELChild) that each use the same database adapter reference to insert the same record (and therefore, causes a permission key (PK) violation). The xADatasourceName	
is set for both.	
Without bpel.config.transaction	
set, after the fault occurs, and it is not handled, BPELChild is rolled back. If BPELMaster has a catch block, its transaction is committed. Therefore, you end up with the record from BPELMaster in the database.	
If you do not catch the fault in BPELMaster as well, you get a second rollback (however, in two different transactions).	
If bpel.config.transaction	
is set to required	
for the same test case and no fault handlers are in place, the entire transaction is rolled back based on BPELMaster's unhandled fault.	
If you add a fault handler in BPELMaster to catch the fault from BPELChild and throw a rollback fault, the transaction is globally rolled back.	
This feature enables you to control transaction boundaries and model end-to-end transactional flows (if your sources and targets are also transactional).	
A one-way invocation (with a possible callback) is typically exposed in a WSDL as shown in Example 13-2.	
Example 13-2 WSDL Exposure	
This causes the BPEL process service engine to split the execution into two parts:	
dlv_message	
table of the dehydration store occurs (in release 10.1.3.x, it was inserted into the inv_message	
table). This has several advantages in terms of scalability, because the service engine's thread pool (invoker threads) executes when a thread is available. However, the disadvantage is that there is no guarantee that it executes immediately.	
If you require a synchronous-type call based on a one-way operation, then you can use the onewayDeliveryPolicy	
property, which is similar to the deliveryPersistPolicy	
property of release 10.1.3.x.	
Specify bpel.config.oneWayDeliveryPolicy	
in the BPEL process service component section of the composite.xml	
file. If this value is not set in composite.xml	
, the value for oneWayDeliveryPolicy	
in the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control is used. The following values are possible.	
async.persist	
: Messages are persisted in the database hash map. sync.cache	
: Messages are stored in memory. sync	
: Direct invocation occurs on the same thread. For more information about setting the bpel.config.oneWayDeliveryPolicy	
property, see Section 4.1.1, "How to Add a BPEL Process Service Component" and Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector."	
Table 13-4 describes the behavior when the main process calls the subprocess asynchronously. Table 13-4 is based on the use cases described in Section 13.1.1.1, "BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to requiresNew" and Section 13.1.1.2, "BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to required."	
Table 13-4 Main Process Calls the Subprocess Asynchronously	
If...	If The Subprocess Throws Any Fault...
---	---
(The BPELCallee process runs in a separate thread/transaction.)	The BPELCaller does not get a response because the message is saved in the delivery service. The BPELCallee transaction is rolled back if the fault is not handled.
and	
(The BPELCallee runs in the same thread, but a different transaction.)	The BPELCaller receives a
and	
(The BPELCallee runs in the same thread and the same transaction.)	The BPELCallee faulted. The BPELCaller receives a
This chapter describes how to incorporate sections of Java code into BPEL process service components in SOA composite applications. It describes how to add custom classes and JAR files, use the Java embedding activity, embed service data objects (SDOs) with bpelx:exec	
, and implement a custom Connection Manager class with a BPEL process.	
This chapter includes the following sections:	
This chapter explains how to incorporate sections of Java code into a BPEL process. This is particularly useful when there is Enterprise JavaBeans Java code that can perform the necessary function, and you want to use the existing code rather than start over with BPEL.	
There are several methods for incorporating Java and Java EE code in BPEL processes:	
bpelx:exec	
tag bpelx:exec	
built-in methods You can wrap the Java code as a SOAP service. This method requires that the Java application have a BPEL-compatible interface. A Java application wrapped as a SOAP service appears as any other web service, which can be used by many different kinds of applications. There are also tools available for writing SOAP wrappers.	
A Java application wrapped as a SOAP service has the following drawbacks:	
You can embed Java code snippets directly into the BPEL process using the Java BPEL exec	
extension bpelx:exec	
. The benefits of this approach are speed and transactionality. It is recommended that you incorporate only small segments of code. BPEL is about separation of business logic from implementation. If you remove a lot of Java code in your process, you lose that separation. Java embedding is recommended for short utility-like operations, rather than business code. Place the business logic elsewhere and call it from BPEL.	
The server executes any snippet of Java code contained within a bpelx:exec	
activity, within its Java Transaction API (JTA) transaction context.The BPEL tag bpelx:exec	
converts Java exceptions into BPEL faults and then adds them into the BPEL process.The Java snippet can propagate its JTA transaction to session and entity beans that it calls.	
For example, a SessionBeanSample.bpel	
file uses the bpelx:exec	
tag shown in Example 14-1 to embed the invokeSessionBean	
Java bean:	
Example 14-1 bpelx:exec Extension	
The examples in this chapter focus primarily on how to embed Java code snippets with the bpelx:exec	
extension. For BPEL projects that support version 2.0 of the BPEL specification, the syntax is slightly different. The bpelx:exec	
extension and Java code are wrapped in an <extensionActivity>	
element. Example 14-2 provides details.	
Example 14-2 bpelx:exec Extension in BPEL 2.0	
When you drag a Java Embedding activity into a BPEL process in Oracle BPEL Designer, the <extensionActivity>	
element and bpelx:exec	
tag are automatically added.	
Example 14-3 shows the import syntax for BPEL 2.0:	
Example 14-3 Import Syntax in BPEL 2.0	
Note: The BPEL 2.0 import syntax differs from BPEL 1.1, which uses the following syntax: <bpelx:exec import="class/package name"	
Example 14-4 shows a BPEL file with two Java embedding activities for a project that supports BPEL version 2.0.	
Example 14-4 Java Embedding Activities in a BPEL File for Version 2.0	
For information on using this activity, see Section 14.4, "Using Java Embedding in a BPEL Process in Oracle JDeveloper."	
You can use an XML facade to simplify DOM manipulation. Oracle BPEL Process Manager provides a lightweight Java Architecture for XML Binding (JAXB)-like Java object model on top of XML (called a facade). An XML facade provides a Java bean-like front end for an XML document or element that has a schema. Facade classes can provide easy manipulation of the XML document and element in Java programs.	
You add the XML facade by using a createFacade	
method within the bpelx:exec	
statement in the .bpel	
file. Example 14-5 provides an example:	
Table 14-1 lists a set of bpelx:exec	
built-in methods that you can use to read and update scope variables, instance metadata, and audit trails.	
Table 14-1 Built in Methods for bpelx:exec	
Method Name	Description
---	---
JNDI access	
Unique ID associated with each instance	
Title of this instance	
Status of this instance	
Set the composite instance title	
Six indexes can be used for a search	
Who initiated this instance	
Second primary key	
Metadata for generating lists	
Access preference	
Add an entry to the audit trail	
Access file stored in the suitcase	
Access and update variables stored in the scope	
Access and update variables	
Access and update variables	
Set variable data	
Set variable data	
Set variable data	
Not all applications expose a service interface. You may have a scenario in which a business process must use custom Java code. For this scenario, you can:	
For example, assume you create a BPEL process service component in a SOA composite application that invokes a service interface through a SOAP reference binding component. For this example, the service interface used is an Oracle Application Development Framework (ADF) Business Component.	
The high-level instructions for this scenario are as follows.	
To use Java code wrapped in a service interface:	
This action generates a WSDL file and XSD file for the service.	
Design a BPEL process in which you perform the following tasks:	
Create a partner link for the Oracle ADF Business Component service portType	
.	
For more information on creating Oracle ADF Business Components, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
For more information on invoking a SOA composite application, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
You can add custom classes and JAR files to a SOA composite application. A SOA extension library for adding extension classes and JARs to a SOA composite application is available in the $ORACLE_HOME/soa/modules/oracle.soa.ext_11.1.1	
directory. For Oracle JDeveloper, custom classes and JARs are added to the application_name	
/project/sca-inf/lib	
directory.	
If the classes are used in bpelx:exec	
, you must also add the JARs with the BpelcClasspath property in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control.	
To add JARs to BpelcClasspath:	
In addition, ensure that the JARs are loaded by the SOA composite application.	
To add custom classes:	
classes	
directory. To add custom JARs:	
ant	
. In Oracle JDeveloper, you can add the bpelx:exec	
activity and copy the code snippet into a dialog.	
Note: For custom classes, you must include any JAR files required for embedded Java code in the BpelcClasspath property in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control. See Section 14.3.1, "How to Add Custom Classes and JAR Files" for instructions. The JAR files are then added to the class path of the BPEL loader. If multiple JAR files are included, they must be separated by a colon (
To use Java embedding in a BPEL process in Oracle JDeveloper:	
Note: As an alternative to writing Java code in the Java Embedding activity, you can place your Java code in a JAR file, put it in the class path, and call your methods from within the Java Embedding activity.	
If you create and deploy a BPEL process that uses thread.sleep()	
in a Java Embedding activity, the executing thread is blocked and the transaction associated with that thread is prevented from committing. This causes BPEL instances to appear only after the wait is over, which is the expected behavior.	
Instead, use a wait activity, which releases the resource upon entering the activity and enables the ongoing transaction to commit and the BPEL instance data to hydrate into the data store.	
You can embed SDO code in the .bpel	
file with the bpelx:exec	
tag. In the syntax provided in Example 14-6, mytest.apps.SDOHelper	
is a Java class that modifies SDOs.	
Example 14-6 Embedding SDO Objects with the bpelx:exec tag	
Example 14-7 provides an example of the Java classes modifySDO(o)	
and print(o)	
that are embedded in the BPEL file.	
Example 14-7 Java Classes	
When you implement a custom Connection Manager class with the same name as a class used by Oracle BPEL Process Manager, you must ensure that the custom class does not override the class used by Oracle BPEL Process Manager.	
For example, assume the following is occurring:	
java.lang.NoClassDefFoundError	
is occurring at runtime. To configure the BPEL Connection Manager class to take precedence:	
This adds the custom Connection Manager JAR file to the classpath.	
This chapter describes how to use events and timeouts. It describes how to create a pick activity to select to continue a process or wait, set timeouts for request-response operations on receive activities, create wait activities to set an expiration time, create OnEvent branches in BPEL 2.0 to wait for message arrival, and set timeouts on synchronous processes.	
This chapter includes the following sections:	
Because web services can take a long time to return a response, a BPEL process service component must be able to time out and continue with the rest of the flow after a period of time.	
This chapter provides an example of how to program a BPEL process service component to wait one minute for a response from a web service named Star Loan that provides loan offers. If Star Loan does not respond in one minute, then the BPEL process service component automatically selects an offer from another web service named United Loan. In the real world, the time limit is more like 48 hours. However, for this example, you do not want to wait that long to see if your BPEL process service component is working properly.	
Because asynchronous web services can take a long time to return a response, a BPEL process service component must be able to time out, or give up waiting, and continue with the rest of the flow after a certain amount of time.	
You can use a pick activity to configure a BPEL flow to either wait a specified amount of time or to continue performing its duties. To set an expiration period for the time, you can use the wait activity.	
The pick activity provides two branches, each one with a condition. The branch that has its condition satisfied first is executed. In the following example, one branch's condition is to receive a loan offer, and the other branch's condition is to wait a specified amount of time.	
Figure 15-1 provides an overview. The following activities take place (in order of priority):	
This condition has code for receiving a reply in the form of a loan offer from the Star Loan web service. The onMessage code matches the code for receiving a response from the Star Loan web service before a timeout was added.	
This condition has code for a timeout of one minute. This time is defined as PT1M	
, which means to wait one minute before timing out. In this timeout setting:	
S	
stands for seconds M	
for one minute H	
for hour D	
for day Y	
for year In the unlikely event that you want a time limit of 1	
year, 3	
days, and 15	
seconds, you enter it as PT1Y3D15S	
. The remainder of the code sets the loan variables selected and approved to false	
, sets the annual percentage rate (APR) at 0.0	
, and copies this information into the loanOffer	
variable.	
The time duration format is specified by the BPEL standard. For more detailed information on the time duration format, see the duration section of the most current XML Schema Part 2: Datatypes document at:	
Figure 15-1 Overview of the Pick Activity	
An onMessage branch is similar to a receive activity in that it receives operations. However, you can define a pick activity with multiple onMessage branches that can wait for similar partner links and port types, but have different operations. Therefore, separate threads and parallel processes can be invoked for each operation. This differs from the receive activity in which there is only one operation. Another difference is that you can create a new instance of a business process with a receive activity (by selecting the Create Instance checkbox), but you cannot do this with a pick activity.	
To create a pick activity:	
The Pick activity includes an onMessage branch. Figure 15-2 provides an example.	
Icons for adding additional onMessage branches and an OnAlarm branch are displayed.	
An OnAlarm branch is displayed.	
1	
minute. Figure 15-5 provides an example. The code segment in Example 15-1 defines the pick	
activity for this operation after design completion:	
Example 15-1 Pick Activity	
Oracle BPEL Process Manager's implementation of BPEL 2.0 does not support simultaneous onMessage branches of a pick activity.	
When a process has a pick activity with two onMessage branches as its starting activity (both with initiate	
set to join	
in their correlation definitions) and an invoking process that posts the invocations one after the other, it is assumed that both invocations reach the same instance of the invoked process. However, in Oracle BPEL Process Manager's implementation of BPEL 2.0, two instances of the invoked process are created for each invocation.	
This is the expected behavior, but it differs from what is described in the BPEL 2.0 specification.	
For example, assume you have synchronous BPEL process A, which has a flow activity with two parallel branches:	
The idea is to create one instance of the invoked process and ensure that the second invocation happens after the first instance is already active and running.	
BPEL process B has a pick activity with createInstance	
set to yes	
. The pick activity has two onMessage branches within it:	
Both operations have the same input message type and correlation is defined with initiate	
set to join	
.The expectation is that the processMessage1 invocation is invoked immediately and the BPEL process B instance is created, which should sleep for ten seconds. After five seconds, the invoking process should then post the processMessage2 invocation to BPEL process B and this invocation should go to the already existing instance instead of creating a new one (since the correlation ID is the same and initiate	
is set to join	
).	
However, for each invocation, a new instance of BPEL process B is created and the result cannot be predicted.	
In Oracle BPEL Process Manager's implementation, either one of the two operations (processMessage1 or processMessage2) creates a new instance. This is implemented so that database queries do not need to be made to see if there are already instances created.	
The workaround is to create two processes that are initiated by the two different operations.	
You can provide a timeout setting for the following types of operations in BPEL versions 1.1 and 2.0:	
This provides an alternative to using the onMessage and onAlarm branches of a pick activity to specify a timeout duration for partner callbacks.	
Figure 15-6 shows the Timeout tab of a midprocess receive activity in which you set a timeout.	
Figure 15-6 Timeout Tab of a Receive Activity	
For information about key concepts to understand before setting timeouts for request-reply and in-only operations in receive activities, see Section 15.3.1, "Introducing Timeouts for Request-Reply and In-Only Operations."	
For information about how to set a timeout in a receive activity in Oracle JDeveloper, see Section 15.3.2, "How to Set Timeouts in Receive Activities."	
The following sections describe request-reply and in-only timeout operations functionality:	
bpelx:timeout	
fault thrown during an activity timeout You can specify a timeout setting relative from when the activity is invoked. This setting is specified as a relative duration using the syntax shown in Example 15-2 for BPEL 1.1.	
Example 15-2 Timeout Settings Relative from When the Activity is Invoked in BPEL 1.1	
For BPEL 2.0, the syntax is as shown in Example 15-3.	
Example 15-3 Timeout Settings Relative from When the Activity is Invoked in BPEL 2.0	
This type uses the bpelx:for	
attribute to specify a static value or an XPath expression that must evaluate to an XML schema type duration. Only one of the bpelx:for	
or bpelx:until	
attributes is permitted for an activity.	
If the XPath expression evaluates to a negative duration, the timeout is ignored and an event is logged to the instance audit trail indicating that the duration value is invalid.	
Once a valid duration value is retrieved, the expiration date for the activity is set to the current node time (or cluster time after this is available), plus the duration value. For example, the duration value bpelx:for="'PT5M'"	
specifies that the activity expects an inbound message to arrive no later than five minutes after the activity has started execution.	
Note: The timeout setting attribute does not apply to the onMessage branch of a pick activity because the same functionality currently exists with the onMessage and onAlarm branches of that activity.	
Timeout durations can only be specified on the following:	
createInstance="true"	
A receive activity can only time out after it has been instantiated, which is not the case with entry receive activities.	
You can specify a timeout setting as an absolute deadline for request-response receive activities. This type uses the syntax shown in Example 15-4 for BPEL 1.1.	
Example 15-4 Timeout Settings as an Absolute Date Time in BPEL 1.1	
For BPEL 2.0, the syntax is as shown in Example 15-5.	
Example 15-5 Timeout Settings as an Absolute Date Time in BPEL 2.0	
The expected expiration time for the bpelx:until	
attribute must be at least two seconds ahead of the current time. Otherwise, the timer scheduling is ignored and skipped, just as if the timer was never specified.	
The bpelx:until	
attribute specifies a static value or an XPath expression that must evaluate to an XML schema type datetime	
or date	
. Only one of the bpelx:for	
or bpelx:until	
attributes is permitted for an activity.	
XPath version 1.0 is not XML schema-aware. Therefore, none of the built-in functions of XPath version 1.0 can create or manipulate dateTime	
or date	
values. However, it is possible to perform one of the following:	
XPath version 1.0 treats that literal as a string literal, but the result can be interpreted as a lexical representation of a dateTime	
or date	
value.	
Once a valid datetime	
or date	
value has been retrieved, the expiration date for the activity is set to the specified date. For example, the datetime	
value bpelx:until="'2009-12-24T18:00+01:00'"	
specifies that the activity expects an inbound message to arrive no later than Dec 24, 2009 6:00 pm UTC+1 after the activity has started execution.	
Note: The timeout setting attribute does not apply to the onMessage branch of a pick activity because the same functionality currently exists with the onMessage and onAlarm branches of the pick activity.	
Timeout dates can only be specified on the following activities:	
createInstance="true"	
A receive activity can only time out after it has been instantiated, which is not the case with entry receive activities.	
The timeout setting for request-response receives, in-only receives (callback), and onMessage branches of pick activities can be set using an XPath expression instead of entering a static duration or datetime	
value. In this case, the value of the expression must return either:	
datetime	
value datetime	
type Example 15-6 shows the syntax for using XPath expressions in BPEL 1.1.	
Example 15-6 Timeout Settings Computed Dynamically with an XPath Expression in BPEL 1.1	
If the returned expression value cannot be interpreted as an XML schema duration or datetime	
type, an event is logged in the instance audit trail indicating that an invalid duration and datetime	
value was specified, and no activity expiration time can be set.	
If a valid XML schema duration or datetime	
value is returned from the bpelx:for	
or bpelx:until	
attribute, a bpelx:timeout	
fault is thrown from the timed-out activity. This fault can be caught by any catch or catchAll block and handled like a regular BPEL fault. The message of the fault is the name of the activity. In addition, an event is logged to the instance audit trail indicating that the activity has timed out because the expected callback message failed to be received before the timeout duration.	
If the activity receives a callback from the partner before the timeout period, no fault is thrown. If a callback is received while the activity is being timed out, the callback message is not delivered to the activity and it is marked as canceled in the delivery message table. If a timeout action is attempted at the same time that a callback message is handled, the timeout action is ignored. As of 11g Release 1, instances are locked optimistically (as opposed to pessimistic locking in Release 10g). Therefore, the second action in line is still performed.	
The bpelx:timeout	
fault can be thrown from a BPEL component if the component WSDL declares the fault on the operation. If the fault is not declared on the operation, the fault is converted into a FabricInvocationException	
, which is a runtime fault. This fault can be caught by any caller components (including BPEL components), but the fault type is no longer bpelx:timeout	
(however, the fault message string still indicates that the fault was originally a timeout fault).	
Once a bpelx:timeout	
fault is thrown from a timed-out activity, an event is logged to the instance audit trail indicating that the activity has timed out, as opposed to having received the expected callback message from its partner.	
Activities that specify a valid timeout duration or datetime	
are likely implemented in a similar manner to wait and onAlarm activities with an expiration date for the underlying work item object. If the node that scheduled these activities with the scheduler goes down (either through graceful shutdown or abrupt termination), all these activities must be rescheduled with the scheduler upon server restart.	
It is not possible to have a single node (the master node) in the cluster be responsible for rescheduling these activities upon node shutdown.	
To set timeouts in receive activities:	
This tab enables you to set a timeout for request-response operations, as shown in Figure 15-7.	
The code segment in the .bpel	
file defines the specific operation after design completion.	
For example, if you specified that the activity expects an inbound message to arrive no later than five minutes after the activity has started execution, the syntax displays as shown in Example 15-7.	
For example, if you specified that the activity expects an inbound message to arrive no later than January 24, 2010 11:00 AM UTC+1 after the activity has started execution, the syntax displays as shown in Example 15-8.	
For example, if you specified an XPath expression to obtain a value for a timeout relative from when the activity is invoked, syntax similar to that shown in Example 15-9 can display.	
The wait activity allows a process to wait for a given time period or until a time limit has been reached. Exactly one of the expiration criteria must be specified. A typical use of this activity is to invoke an operation at a certain time. You typically enter an expression that is dependent on the state of a process.	
When specifying a time period for waiting, note the following:	
2	
seconds for wait times is specified with the MinBPELWait property in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control. You can set this property to any value and the wait delay is bypassed for any waits less than MinBPELWait. Note: Quartz version 1.6 is supported for scheduling expiration events on wait activities.	
You can specify the minimum time duration for a BPEL process to perform a wait that involves a dehydration. If the wait duration is less than or equal to the value, BPEL continues executing activities in the same thread and transaction.	
To create a wait activity:	
Exactly one of the expiration criteria must be specified, as shown in Example 15-10 for BPEL 1.1.	
Example 15-10 Wait Activity in BPEL 1.1	
Example 15-11 shows the BPEL 2.0 syntax.	
You can create an onEvent branch in a scope activity that causes a specified event to wait for a message to arrive. For example, assume you have a credit request process that is initiated by a customer's credit request message. The request may be completely processed without the need for further interaction, and the results submitted to the customer. In some cases, however, the customer may want to inquire about the status of the credit request, modify the request content, or cancel the request entirely while it is being processed. You cannot expect these interactions to occur only at specific points in the business order processing. An event handler such as an onEvent branch enables the business process to accept requests (such as status request, modification request, or cancellation request) to arrive in parallel to the primary business logic flow.	
The onEvent event handlers are associated with an enclosed scope. The onEvent event handlers are enabled when their scope is initialized and disabled when their scope ends. When enabled, any number of events can occur. They are processed in parallel to the scope's primary activity and in parallel to each other. Message events also represent services operations exposed by a process and modeled as onEvent elements. Event handlers cannot create new process instances. Therefore, message events are always received by a process instance that is already active.	
To create an onEvent branch in a scope activity:	
This creates an OnEvent branch and an enclosed scope activity.	
The OnEvent dialog is displayed, as shown in Figure 15-10.	
The Port Type and Operation fields define the port type and operation invoked by the partner to cause the event.	
Example 15-12 provides an overview of onEvent	
branches in the .bpel	
file after design completion. The onEvent branches inquire about the status of the credit request, modify the request content, or cancel the request entirely while it is being processed	
Example 15-12 onEvent Branch	
For synchronous processes that connect to a remote database, you must increase the SyncMaxWaitTime timeout property in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control.	
For information on setting this property, see Section 7.3, "Specifying Transaction Timeout Values in Synchronous Processes."	
This chapter describes how to coordinate master and detail processes in a BPEL process. This coordination enables you to specify the tasks performed by a master BPEL process and its related detail BPEL processes. This is sometimes referred to as a parent and child relationship.	
This chapter includes the following sections:	
Master and detail coordinations consist of a one-to-many relationship between a single master process and multiple detail processes.	
For example, assume a business process imports sales orders into an application. Each sales order consists of a header (customer information, ship-to address, and so on) and multiple lines (item name, item number, item quantity, price, and so on).	
The following tasks are performed to execute the order:	
To perform these tasks, create a master process to check and validate each header and multiple BPEL processes to check and validate each line item.	
Potential coordination points are as follows:	
Figure 16-1 provides an overview of the header and line item validation coordination points between one master process and two detail processes.	
Figure 16-1 Master and Detail Coordination Overview (One BPEL Process to Two Detail Processes)	
The following BPEL process activities coordinate actions between the master and detail processes:	
Both activities are coordinated with label attributes defined in the BPEL process files. Labels are declared per master process definition.	
Figure 16-2 provides an overview of the BPEL process flow coordination.	
Figure 16-2 Master and Detail Syntax Overview (One BPEL Process to One Detail Process)	
As shown in Figure 16-2, each master and detail process includes a signal and receive signal activity. Table 16-1 describes activity responsibilities based on the type of process in which they are defined.	
Table 16-1 Master and Detail Process Coordination Responsibilities	
If A...	Contains A...
---	---
Master process	Signal activity
Detail process	Receive signal activity
Detail process	Signal activity
Master process	Receive signal activity
If the signal activity executes before the receive signal activity, the state set by the signal activity is persisted and still effective for a later receive signal activity to read.	
The BPEL file for the master process defines coordination with the detail processes. The BPEL file shows that the master process interacts with the partner links of several detail processes. Example 16-1 provides an example.	
Example 16-1 BPEL File Definition for the Master Process	
A signal activity shows the label value and the detail process coordinated with this master process. The label value (startDetailProcess	
) matches with the label value in the receive signal activity of all detail processes. This ensures that the signal is delivered to the correct process. There is one signal process per receive signal process. The master process signals all detail processes at runtime. This syntax shows a signal activity in a BPEL process that supports BPEL version 1.1.	
Note: In BPEL 2.0, the signal activity syntax is slightly different. The signal activity is wrapped in an <extensionActivity> <bpelx:signal name="notifyDetailProcess" label="startDetailProcess" to="details"/> </extensionActivity>	
Assign, invoke, and receive activities describe the interaction between the master and detail processes. This example shows interaction between the master process and one of the detail processes (DetailProcess	
). Similar interaction is defined in this BPEL file for all detail processes.	
In the invoke activity, ensure that the Invoke As Detail checkbox is selected. Figure 16-3 provides details.	
This selection creates the partner process instance (DetailProcess	
) as a detail instance. You must select this checkbox in the invoke activity of the master process for each detail process with which to interact. Example 16-2 provides an example of the BPEL file contents after you select the Invoke As Detail checkbox.	
Example 16-2 bpelx:invokeAsDetail Attribute	
The master BPEL process includes a receive signal activity. This activity indicates that the master process waits until it receives a signal from all of its detail processes. The label value (detailProcessComplete	
) matches with the label value in the signal activity of each detail process. This ensures that the signal is delivered to the correct process. Example 16-3 provides an example. This syntax shows a receive signal activity in a BPEL process that supports BPEL version 1.1.	
Example 16-3 Receive Signal Activity	
For environments in which you have one master and multiple detail processes, use the bpelx:detailLabel	
attribute for signal correlation. Example 16-4 shows how to use this attribute.	
The first invoke activity invokes the DetailsProcess	
detail process and associates it with a label of detailProcessComplete0	
.	
Example 16-4 First Invoke Activity	
The second invoke activity invokes the DetailsProcess1	
detail process and associates it with a label of detailProcessComplete1	
. Example 16-5 provides an example.	
Example 16-5 Second Invoke Activity	
The third invoke activity invokes the DetailsProcess2	
detail process again through a different port and with a different input variable. It associates the DetailsProcess2	
detail process with a label of detailProcessComplete1-2	
, as shown in Example 16-6.	
Example 16-6 Third Invoke Activity	
The receive signal activity of the master process shown in Example 16-7 waits for a return signal from detail process DetailProcess0	
.	
Example 16-7 Receive Signal Activity	
The second receive signal activity of the master process shown in Example 16-8 also waits for a return signal from DetailProcess1	
and DetailProcess2	
.	
Example 16-8 Second Receive Signal Activity	
Note: If there is only one receive signal activity in the BPEL process, do not specify the	
The BPEL process file of each detail process defines coordination with the master process.	
A receive signal activity indicates that the detail process shown in Example 16-9 waits until it receives a signal executed by its master process. The label value (startDetailProcess	
) matches with the label value in the signal activity of the master process.	
Example 16-9 startDetailProcess Label Value	
A signal activity indicates that the detail process shown in Example 16-10 signals its associated master process at runtime that processing is complete. The label value (detailProcessComplete	
) matches with the label value in the receive signal activity of each master process.	
This section provides an overview of how to define master and detail process coordination in Oracle BPEL Designer. In this example, one master process and one detail process are defined.	
Note: This section only describes the tasks specific to master and detail process coordination. It does not describe the standard activities that you define in a BPEL process, such as creating variables, creating assign activities, and so on.	
To create a master process:	
Double-click the Signal activity.	
This activity signals the detail process to perform processing at runtime.	
Enter the details described in Table 16-2:	
Table 16-2 Signal Dialog Fields and Values	
Field	Value
---	---
Name	Enter a name (for this example,
Label	Enter a label name (for this example,
To	Select details as the type of process to receive this signal.
Figure 16-4 shows the Signal dialog.	
This activity enables the master process to wait until it receives the signal executed by all of its detail processes.	
Enter the details shown in Table 16-3:	
Table 16-3 Receive Signal Dialog Fields and Values	
Field	Value
---	---
Name	Enter a name (for this example,
Label	Enter a label name (for this example,
To	Select details as the type of process from which to receive the signal.
Figure 16-5 shows the Receive Signal dialog.	
The master process has now been designed to:	
To create a detail process:	
In the SOA Composite Editor, create a second BPEL process service component. For this example, the process is named DetailProcess.	
This activity enables the detail process to wait until it receives the signal executed by its master process.	
Enter the details shown in Table 16-4:	
Table 16-4 Receive Signal Dialog Fields and Values	
Field	Value
---	---
Name	Enter a name (for this example,
Label	Enter a label name (for this example,
To	Select master as the type of process from which to receive the signal.
Figure 16-6 shows the Receive Signal dialog.	
This activity enables the detail process to signal its associated master process at runtime that processing is complete.	
Enter the details described in Table 16-5:	
Table 16-5 Signal Dialog Fields and Values	
Field	Value
---	---
Name	Enter a name (for this example,
Label	Enter a label name (for this example,
To	Select master as the destination.
Figure 16-7 shows the Signal dialog.	
The detail process has now been designed to:	
To create an invoke activity:	
Example 16-11 bpelx:invokeAsdetail Attribute	
This attribute creates the partner process (DetailProcess	
) as a detail instance.	
bpelx:detailLabel	
attribute for correlating with the receive signal activity, as shown in Example 16-12. detailProcessComplete0	
in the receive signal activity of the master process, as shown in Example 16-13. Master and detail coordination design is now complete.	
This chapter describes how to send notifications from a BPEL process using a variety of channels. A BPEL process can be designed to send email, voice message, instant messaging (IM), or short message service (SMS) notifications. A BPEL process can also be designed to consider an end user's channel preference at runtime for selecting the notification channel.	
This chapter includes the following sections:	
Note: The fax and pager notification channels are not supported in 11g Release 1 (11.1.1).	
Various scenarios may require sending email messages or other types of notifications to users as part of the process flow. For example, certain types of exceptions that cannot be handled automatically may require manual intervention. In this case, a BPEL process can use the notification service to alert users by voice, IM, SMS, or email.	
The contact information (email address, phone number, and so on) of the recipient is either static (such as admin@yourcompany.com	
) or obtained dynamically during runtime. To obtain the contact information dynamically, XPath expressions can retrieve it from the identity store (LDAP) or extract it from the BPEL payload.	
This chapter uses the following terms:	
An asynchronous message sent to a user by a specific channel. The message can be sent as an email, voice, IM, or SMS message.	
A notification to which the user can respond. For example, workflow sends an email to a manager to approve or reject a purchase order. The manager approves or rejects the request by replying to the email with appropriate content.	
Sends email notifications directly from a BPEL process or implicitly from the human task part of a BPEL process. Implicit notifications are modeled from the Human Task Editor.	
For sending email notifications directly from a BPEL process, you must explicitly specify the user information in the BPEL process and can be inside or outside of a human task scope.	
For sending email notifications implicitly from the human task part of a BPEL process, you only specify the recipient based on the relationship of the user with regards to the task (that is, the creator, assignee, and so on).	
Note: Implicit notifications are processed through more layers of code than explicit notifications. If explicit notifications are functioning correctly, it does not mean that implicit notifications also function correctly.	
Oracle User Messaging Service is a new feature for release 11g. The BPEL notification service uses the underlying infrastructure provided by Oracle User Messaging Service to send notifications.	
Oracle User Messaging Service also provides the user preference infrastructure for getting the end user's preferred channel during runtime.	
For more information on the Oracle User Messaging Service, see Appendix 62, "Oracle User Messaging Service."	
Figure 17-1 shows the Oracle User Messaging Service interfaces and supported service types.	
Figure 17-1 Service Interfaces and Supported Service Types	
For more information about notifications, see the following section:	
Notification setup is a multiple-step process that involves three user interface tools. Table 17-1 provides an overview of this process, including the task to perform, the tool to use, and the documentation to which to refer for more specific details.	
Table 17-1 Notification Tasks	
Task	Description
---	---
Select a channel for sending notifications in a SOA composite application.	Select a method for sending notifications:
Selected and configured by the BPEL process designer in Oracle BPEL Designer	Section 17.3, "Selecting Notification Channels During BPEL Process Design" or Section 17.4, "Allowing the End User to Select Notification Channels"
Configure the driver for the notification channel	You configure drivers on the same Oracle WebLogic Server on which you deploy the SOA composite application. This action enables participants to receive and forward notifications. Driver support is provided for email, IM, SMS, and voice channels.
Configure the notification mode and actionable accounts for human workflows	If you are using notifications with human workflow, you configure the notification mode and actionable account for email.
Register the devices used to access messages by specifying user preferences	This action enables workflow participants to receive notification messages. For example, the end user registers email clients and specifies the message content to receive and the channel to use for receiving messages. If no channel is specified, email is used by default. The preferences set in this application are applicable only to that specific end user, and not to other users.
Oracle JDeveloper includes the email, IM, SMS, and voice channel notification channels in the Component Palette. You can set the exact notification channels to use during design time. For example, a BPEL process can be designed to use the following notification channels:	
To select the notification channel during BPEL process design:	
Table 17-2 Notification Channels	
If You Selected...	See...
---	---
Section 17.3.1, "How To Configure the Email Notification Channel" to configure email notification	
IM	Section 17.3.2, "How to Configure the IM Notification Channel" to configure IM notification
SMS	Section 17.3.3, "How to Configure the SMS Notification Channel" to configure SMS notification
Voice	Section 17.3.4, "How to Configure the Voice Notification Channel" to configure voice message notification
Note: If you delete an email, voice, SMS, or IM activity, any partner link with which it is integrated is not automatically deleted.	
When you select Email from the Component Palette, the Email dialog appears. Figure 17-2 shows the required email notification parameters.	
To configure the email notification channel:	
Note: For the To, CC, and Bcc fields, separate multiple addresses with a semicolon (
Table 17-3 Email Notification Parameters	
Name	Description
---	---
From Account	The name of the account used to send this message. The default account is named Default and is editable from the Workflow Notification Properties page in Oracle Enterprise Manager Fusion Middleware Control. To add additional accounts, you must use the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control. For information on editing this property in Oracle Enterprise Manager Fusion Middleware Control, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
To	The email address to which the message is to be delivered. This can be one of the following:
The XPath Expression Builder can get the dynamic email address from the input. See Section 17.3.5, "How to Select Email Addresses and Telephone Numbers Dynamically."	
CC and Bcc	The email addresses to which the message is copied and blind copied. This can be a static or dynamic address, as described for the To address.
Reply To	The email address to use for replies. This can be a static or dynamic address, as described for the To address.
Subject	The subject of the email message. This can be plain text or dynamic text. The XPath Expression Builder can set dynamic text based on data from process variables that you specify.
Body	The message body of the email message. This can be plain text, HTML, or dynamic text, as described for the Subject parameter.
Multipart message with n attachments	Select to specify email attachments. See Section 17.3.1.1, "Setting Email Attachments." The number of attachments if Multipart message is selected. The number does not include the body. For example, if you have a body and one attachment, specify
The BPEL fragment that invokes the notification service to send the email message is created.	
The WebLogic Fusion Order Demo application uses an email activity in the Scope_NotifyCustomerofCompletion scope. The Oracle User Messaging Service sends the email to a customer when an order is fulfilled. The following details are specified in the Email dialog:	
Figure 17-3 provides details.	
You can send attachments with an email activity. Each attachment has three elements: name, MIME type, and value. All three elements must be set for each attachment.	
To add an attachment to an email message:	
Attachment	
number	
. The BPEL fragment with an assign activity with multiple copy	
rules is generated. One of the copy	
rules copies the attachment.	
An assign activity named EmailParamsAssign appears.	
Note the settings in EmailParamsAssign, as shown in Figure 17-4.	
Figure 17-4 EmailParamsAssign Assign Activity	
For more information about sending attachments using email, see the following documentation:	
notification-101	
sample, which is available with the Oracle SOA Suite samples. You can format the body of an email message as HTML rather than as straight text. To perform this action, apply an XSLT transform	
to generate the email body. Add in the XSLT tag you want to use. Tools such as XMLSpy can provide assistance in writing and testing the XSLT. The MIME type should be string('text/html;charset=UTF-8')	
.	
The email notification assignment looks as shown in Example 17-1:	
If the HTML for the message content of an email activity is generated dynamically, (as with XSLT, file read, and so on), it must be wrapped in a CDATA	
function. This prevents conflicts between the XML/HTML content of the message body and BPEL's internal XML data structures.	
For example, assume you use the append	
operation shown in Example 17-2 for the message content inside the email activity:	
Example 17-2 Message Content Inside an Email Activity	
For this to work correctly, you must pass the output of the processXSLT()	
function to the CDATA()	
function, as shown in Example 17-3.	
When you drag IM from the Component Palette, the IM dialog appears. Figure 17-5 shows the required IM notification parameters.	
To configure the IM notification channel:	
Table 17-4 IM Notification Parameters	
Name	Description
---	---
To	The IM address to which the message is to be delivered. Enter the address manually or click the XPath Expression Builder icon to display the Expression Builder dialog to dynamically enter an account.
Body	The IM message body. This can be plain text or dynamic text. The XPath Expression Builder can set dynamic text based on data from process variables that you specify.
The BPEL fragment that invokes the notification service for IM notification is created.	
When you select SMS from the Component Palette, the SMS dialog appears. Figure 17-6 shows the required SMS notification parameters.	
To configure the SMS notification channel:	
Table 17-5 SMS Notification Parameters	
Name	Description
---	---
From Number	The telephone number from which to send the SMS notification. This can be a static telephone number entered at the time the message is created or a dynamic telephone number from the payload. The XPath Expression Builder can get the dynamic telephone number from the input. See Section 17.3.5, "How to Select Email Addresses and Telephone Numbers Dynamically."
Telephone Number	Select a method for specifying the telephone number to which to deliver the message:
Subject	The subject of the SMS message. This can be plain text or dynamic text. The XPath Expression Builder can set dynamic text based on data from process variables that you specify.
Body	The SMS message body. This must be plain text. This can be plain text or dynamic text as described for the Subject parameter.
The BPEL fragment that invokes the notification service for SMS notification is created.	
When you select Voice from the Component Palette, the Voice dialog appears. Figure 17-7 shows the required voice notification parameters.	
To configure the voice notification channel:	
Table 17-6 Voice Notification Parameters	
Name	Description
---	---
Telephone Number	The telephone number to which the message is to be delivered. Specify the number through one of the following methods:
The XPath Expression Builder can retrieve the dynamic telephone number from the input.	
Body	The message body. This can be plain text, XML, or dynamic text. The XPath Expression Builder can set dynamic text based on data from process variables that you specify.
The BPEL fragment that invokes the notification service for voice notification is created.	
You may need to set email addresses or telephone numbers dynamically based on certain process variables. You can also look up contact information for a specific user using the built-in XPath functions for the identity service:	
For example, to get the email address from variable inputVariable	
and part payload	
based on XPath /client/BPELProcessRequest/client/mail	
:	
You can use the XPath Expression Builder to select the function and enter the XPath expression to get an address from the input variable.	
The first argument evaluates to the user ID. The second argument is the property name. The third argument is the realm name. Table 17-7 lists the property names that can be used in this XPath function.	
Table 17-7 Properties for the Dynamic User XPath Function	
Property Name	Description
---	---
Look up a user's email address.	
Look up a user's telephone number.	
Look up a user's mobile telephone number.	
Look up a user's home telephone number.	
The following example gets the email address of the user identified by the variable inputVariable	
, part payload	
, and queries /client:BPELProcessRequest/client:userID	
:	
If realmName	
is not specified, then the default realm name is used. For example, if the default realm name is jazn.com	
, the following XPath expression searches for the user in the jazn.com	
realm:	
The following XPath expression provides the same functionality as the one above. In this case, however, the realm name of jazn.com	
is explicitly specified:	
You can select users or groups in Oracle JDeveloper to whom you want to send notifications by browsing the user directory (for example, Oracle Internet Directory) that is configured for use with Oracle BPEL Process Manager. Click the Search icon to the right of the following fields to open the Identity Lookup dialog:	
For more information about using the Identity Lookup dialog, see Chapter 34, "Introduction to Human Workflow Services"	
You can design a BPEL process in which you do not explicitly select a notification channel during design time, but simply indicate that a notification must be sent. The channel to use for sending notifications is resolved at runtime based on preferences defined by the end user in the User Messaging Preferences user interface of the Oracle User Messaging Service. This moves the responsibility of notification channel selection from the BPEL process designer in Oracle BPEL Designer to the end user. If the end user does not select a preferred channel or rule, email is used by default for sending notifications to that user. Regardless of who selects the channel to use, channel use is still based on the driver installation and configuration performed in the Oracle User Messaging Service section of Oracle Enterprise Manager Fusion Middleware Control by the administrator.	
For example, an end user may set their preferences as follows:	
Note: You can also set user preferences for sending notifications in human workflows in the Human Task Editor. Set these preferences in the Notification Filters part of the Notification Settings section. These preferences are used to evaluate rules in the task. For more information, see Section 29.8.8, "How to Send Task Attachments with Email Notifications."	
For more information about the User Messaging Preferences user interface, see Chapter 67, "User Messaging Preferences."	
To allow the end user to select notification channels:	
Table 17-8 User Notification Parameters	
Name	Description
---	---
To	Enter a valid user for the recipient of this notification message through one of the following methods:
Note: You must specify a user name (for example,	
Subject	Enter a message name or click the XPath Expression Builder icon to display the Expression Builder dialog to dynamically enter a subject. If notification is sent through email, this field is used during runtime. This field is ignored if notifications are sent through the voice, SMS, or IM channels.
Notification Message	Enter the notification message or click the XPath Expression Builder icon to display the Expression Builder dialog to dynamically enter a message to send.
The Advanced tab of the User Notification dialog enables you to create and send header and name information that may be useful to an end user in creating their own preference rules for receiving notifications. For example:	
jcooper	
and jstein	
in the General tab. Amount	
=	
payload->salary	
Application	
=	
HR-Application	
jcooper	
creates the following preference rules in the User Messaging Preferences user interface: jstein	
creates the following preference rule in the User Messaging Preferences user interface: Figure 17-9 shows the Advanced tab of the User Notification dialog.	
Figure 17-9 User Notification Advanced Parameters	
This chapter describes how to use sensors to select BPEL activities, variables, and faults to monitor during runtime in a BPEL process. It also describes how to create sensor actions to publish the values of sensors to an endpoint.	
This chapter includes the following sections:	
For more information about sensors, see the following sections:	
Sensors are used to declare interest in specific events throughout the life cycle of a BPEL process instance. In a business process, that can be the activation and completion of a specific activity or the modification of a variable value in the business process.	
When a sensor is triggered, a specific sensor value is created. For example, if a sensor declares interest in the completion of a BPEL scope, the sensor value consists of the name of the BPEL scope and a time stamp value of when the activity was completed. If a sensor value declares interest in a BPEL process variable, then the sensor value consists of the value of the variable at the moment it was modified, a time stamp when the variable was modified, and the activity name and type that modified the BPEL variable.	
The data format for sensor values is normalized and well-defined using XML schema.	
A sensor action is an instruction on how to process sensor values. When a sensor is triggered by Oracle BPEL Process Manager, a new sensor value for that sensor is created. After that, all the sensor actions associated with that sensor are performed. A sensor action typically persists the sensor value in a database or sends the normalized sensor value data to a JMS queue or topic. For integration with Oracle Business Activity Monitoring, the sensor value can be sent to the BAM adapter.	
You can define the following types of sensors, either through Oracle JDeveloper or manually by providing sensor configuration files.	
Activity sensors are used to monitor the execution of activities within a BPEL process. For example, they can monitor the execution time of an invoke activity or how long it takes to complete a scope. Along with the activity sensor, you can also monitor variables of the activity.	
Variable sensors are used to monitor variables (or parts of a variable) of a BPEL process. For example, variable sensors can monitor the input and output data of a BPEL process.	
Fault sensors are used to monitor BPEL faults.	
You typically add or edit sensors as part of the BPEL modeling of activities, faults, and variables.	
These sensors are exposed through the following public SQL views:	
BPEL_ACTIVITY_SENSOR_VALUES	
BPEL_FAULT_SENSOR_VALUES	
BPEL_VARIABLE_SENSOR_VALUES	
These views can be joined with the BPEL_PROCESS_INSTANCES	
view to associate the sensor value with the BPEL process instance that created the sensor values. For more information, see Appendix D, "Understanding Sensor Public Views and the Sensor Actions XSD."	
When you model sensors in Oracle JDeveloper, two new files are created as part of the BPEL process archive:	
bpel_process_name	
_	
sensor.xml	
Contains the sensor definitions of a BPEL process	
bpel_process_name	
_	
sensorAction.xml	
Contains the sensor action definitions of a BPEL process	
See Section 18.2.2, "How to Configure Sensors" and Section 18.2.3, "How to Configure Sensor Actions" for how these files are created.	
After you define sensors for a BPEL process, you must configure sensor actions to publish the sensor data to a specified destination. If no sensor action is defined for a sensor, then nothing happens at runtime.	
The following information is required for a sensor action:	
The publish type specifies the destination in which the sensor data must be presented. You can publish sensor data to the following destination types.	
Publishes the sensor data to the reports schema in the database. The sensor data can then be queried using SQL.	
Publishes the sensor data to a JMS queue. The XML data is posted in accordance with the Sensor.xsd	
file. This file is included with Oracle JDeveloper in the JDEV_HOME	
\jdeveloper\integration\seed\soa\shared\bpel	
directory.	
Publishes the sensor data to a JMS topic. The XML data is posted in accordance with the same Sensor.xsd	
file used with JMS queues.	
Publishes the data to a custom Java class.	
Uses the JMS adapter to publish to remote queues or topics and a variety of different JMS providers. The JMS queue and JMS topic publish types only publish to local JMS destinations.	
The sensors for a sensor action.	
Oracle BAM sensors publish information and events from Oracle BPEL Process Manager to Oracle BAM. Oracle BAM can display the data in rich real-time dashboards for end-to-end monitoring of an application. For more information, see Section 53.7, "Integrating BPEL Sensors Using Oracle BAM Sensor Action."	
In Oracle JDeveloper, sensor actions and sensors are displayed as part of Monitor view.	
To access sensors and sensor actions:	
Figure 18-2 shows the sensor actions and sensors in the Structure window.	
Figure 18-2 Sensors and Sensor Actions Displayed in Oracle JDeveloper	
You typically add or edit sensors as part of the BPEL modeling of activities, faults, and variables.	
The following sections describe how to configure sensors and sensor actions.	
This section describes how to configure activity, variable, and fault sensors.	
To configure an activity sensor:	
Assume you are monitoring a loan flow application, and want to know the following:	
The solution is to create an activity sensor for the GetCreditRating scope in Oracle BPEL Designer, as shown in Figure 18-4.	
Activities that have sensors associated with them are identified with a magnifying glass in Oracle BPEL Designer.	
The Evaluation Time list shown in Figure 18-4 controls the point at which the sensor is fired.	
The sensor monitors during the activation, completion, fault, compensation, and retry phases.	
The sensor is fired just before the activity is executed.	
The sensor is fired just after the activity is executed.	
The sensor is fired if a fault occurs during the execution of the activity. Select this value only for sensors that monitor simple activities.	
The sensor is fired when the associated scope activity is compensated. Select this value only for sensors that monitor scopes.	
The sensor is fired when the associated invoke activity is retried.	
A new entry is created in the bpel_process_name	
_sensor.xml	
file, as shown in Example 18-1:	
Example 18-1 bpel_process_name_sensor.xml file	
To configure a variable sensor:	
If you want to record all the incoming loan requests, you can create a variable sensor.	
Based on your selection for the Target field, the Output Namespace and Output Datatype fields are automatically filled in.	
A new entry is created in the bpel_process_name	
_	
sensor.xml	
file, as shown in Example 18-2:	
Example 18-2 bpel_process_name_sensor.xml file	
To configure a fault sensor:	
If you want to monitor faults (for this example, from the identity service), you can create a fault sensor.	
Based on your selection, the Namespace and Local Parts fields are automatically filled in.	
A new entry is created in the bpel_process_name	
_sensor.xml	
file, as shown in Example 18-3:	
When you create sensors, you identify the activities, variables, and faults you want to monitor during runtime. If you want to publish the values of the sensors to an endpoint (for example, you want to publish the data of the LoanApplicationSensor variable sensor created in Figure 18-5 to a JMS queue), then create a sensor action, as shown in Figure 18-7, and associate it with the LoanApplicationSensor variable.	
To configure a sensor action:	
Table 18-1 Sensor Actions Dialog	
Field	Description
---	---
Name	Enter a name or accept the default name.
Publish Type	Select the destination to which to publish sensor data. For more information, see section Section 18.1, "Introduction to Sensors."
JMS Connection Factory	If your publish type is JMS Queue, JMS Topic, or JMS Adapter, specify the connection factory.
Publish Target	If your publish type is JMS Queue, JMS Topic, Custom, or JMS Adapter, specify the publish target. The publish target represents different things depending on the publish type specified:
Filter	Enter filter logic as a boolean expression. A filter enables you to monitor sensor data within a specific range. For an example of a configured filter, see Figure 18-9 and Example 18-6.
Enable	Deselect this checkbox to disable a sensor action. By default, sensor actions are enabled. If you disable a sensor action by deselecting this checkbox, the action does not publish data.
A new entry is created in the bpel_process_name	
_sensorAction.xml	
file, as shown in Example 18-4:	
Example 18-4 bpel_process_name_sensorAction.xml file	
Note: You cannot specify a	
If you want to publish the values of LoanApplicationSensor and CreditRatingSensor to the reports schema in the database, create an additional sensor action, as shown in Figure 18-8, and associate it with both CreditRatingSensor and LoanApplicationSensor.	
Figure 18-8 Creating an Additional Sensor Action	
A new entry is created in the bpel_process_name	
_sensorAction.xml	
file, as shown in Example 18-5:	
Example 18-5 bpel_process_name_sensorAction.xml file	
The data of one sensor can be published to multiple endpoints. In the two preceding code samples, the data of LoanApplicationSensor was published to a JMS queue and to the reports schema in the database.	
If you want to monitor loan requests for which the loan amount is greater than $100,000, you can create a sensor action with a filter, as shown in Figure 18-9. There is no design-time validation of the filter query. You must ensure the query is correct.	
Figure 18-9 Creating a Sensor Action with a Filter	
A new entry is created in the bpel_process_name	
_sensorAction.xml	
file, as shown in Example 18-6:	
Example 18-6 bpel_process_name_sensorAction.xml file	
Notes:	
If you have special requirements for a sensor action that cannot be accomplished by using the built-in publish types (database, JMS queue, JMS topic, and JMS Adapter), then you can create a sensor action with the custom publish type, as shown in Figure 18-10. The name in the Publish Target field denotes a fully qualified Java class name that must be implemented. For more information, see Section 18.2.5, "How to Create a Custom Data Publisher."	
Figure 18-10 Using the Custom Publish Type	
The JMS queue and JMS topic publish types only publish to local JMS destinations. If you want to publish sensor data to remote topics and queues, use the JMS adapter publish type, as shown in Figure 18-11.	
Figure 18-11 Using the JMS Adapter Publish Type	
In addition to enabling you to publish sensor data to remote topics and queues, the JMS adapter supports a variety of different JMS providers, including:	
If you select the JMS Adapter publish type, you must create an entry in the weblogic-ra.xml	
file, which is updated through editing in the Oracle WebLogic Server Administration Console. Each JMS connection factory (pool) entry created in this console corresponds to one JNDI entry in weblogic-ra.xml	
. Update the Sensor Actions dialog with the chosen JNDI name selected during the creation of the JMS connection factory (pool).	
For more information about the JMS adapter, see Oracle Fusion Middleware User's Guide for Technology Adapters.	
To create a custom data publisher, perform the following steps:	
To create a custom data publisher:	
The Project Properties dialog appears.	
Figure 18-12 provides details.	
The package and class name must match the publish target name of the sensor action.	
com.oracle.bpel.sensor.DataPublisher	
interface. This updates the source file and fills in the methods and import statements of the DataPublisher interface.	
The next time that you deploy the BPEL process, the Java class is added to the SOA archive (SAR) and deployed.	
Note: Ensure that additional Java libraries needed to implement the data publisher are in the class path. Oracle BPEL Process Manager can execute multiple process instances simultaneously, so ensure that the code in your data publisher is thread safe, or add appropriate synchronization blocks. To guarantee high throughput, do not use shared data objects that require synchronization.	
Oracle JDeveloper automatically updates the composite.xml	
file to include appropriate properties for sensors and sensor actions, as shown in Example 18-7:	
Example 18-7 composite.xml File	
You can specify additional properties with <property name= ...>	
, as shown in Example 18-7.	
The Oracle Enterprise Manager Fusion Middleware Control provides support for viewing the metadata of sensors, sensor actions, and the sensor data created as part of the process execution.	
For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
Notes:	
This part describes the components that comprise the Oracle Mediator service component.	
This part contains the following chapters:	
This chapter describes Oracle Mediator, which provides transformation, validation, and routing logic to Oracle SOA Suite applications. This chapter also describes how to create a Mediator component and the associated WSDL documents in Oracle JDeveloper.	
This chapter includes the following sections:	
Oracle Mediator is a service component of the Oracle SOA Suite that provides mediation capabilities such as selective routing, transformation, and validation capabilities, along with various message exchange patterns, such as synchronous, asynchronous, and event publishing or subscriptions.	
Mediator provides a lightweight framework to mediate between various components within a composite application, such as business processes, human workflows, and so on, using a Web Services Description Language (WSDL) document as the interface. Mediator converts data to facilitate communication between different interfaces exposed by different components that are wired to build a SOA composite application. For example, Mediator can accept data contained in a text file from an application or service, transform it into a format appropriate for updating a database that serves as a customer repository, and then route and deliver the data to that database.	
Mediator facilitates integration between events and services, where service invocations and events can be mixed and matched. You can use a Mediator service component to consume a business event or receive a service invocation. A Mediator service component can evaluate routing rules, perform transformations, validate, and either invoke another service or raise another business event. You can use a Mediator service component to handle returned responses, callbacks, faults, and timeouts.	
The following sections describe the primary functions that Oracle Mediator supplies to an Oracle SOA Suite application.	
Mediator enables you to define rules based on the message payload or message headers. You can select elements or attributes from the message payload or the message header and, based on the values in those elements or attributes, you can specify an action. For example, Mediator receives a file from an application or service containing data about new customers. Based on the country mentioned in the customer's address, you can route and deliver data to the database storing data for that particular country. Similarly, you can route a message based on the message header.	
For more information about header-based routing, see Section 20.3.2.12, "How to Access Headers for Filters and Assignments."	
Mediator supports both synchronous and asynchronous request and response interactions. In a synchronous interaction, the client requests a service and then waits for a response to the request. In an asynchronous interaction, the client invokes the service, but does not wait for the response. You can specify a timeout period for an asynchronous interaction and you can specify an action to perform after the timeout period, such as to raise an event or start a process.	
For more information about synchronous and asynchronous interactions, see Section 20.3.2.4, "How to Configure Response Messages" and Chapter 24, "Understanding Message Exchange Patterns of an Oracle Mediator."	
Mediator lets you specify that a routing rule be executed either in parallel or in sequence. You can configure the execution type from the Routing Rules section of the Mediator Editor.	
For more information about sequential and parallel routing of messages, see Section 20.3.2.3, "How to Specify Sequential or Parallel Execution."	
When you use the Mediator resequencer, it rearranges streams of related but out-of-sequence messages into their sequential order based on the type of resequencer used and the rules you define. When incoming messages arrive in a random order, the resequencer orders the messages based on sequential or chronological information, and then sends the messages to the target services in the correct order based on the resequencing configuration.	
For more information about resequencing messages, see Chapter 23, "Resequencing in Oracle Mediator."	
Mediator lets you define data transformation from one XML schema to another. This feature enables data interchange among applications using different schemas. For example, you can transform a comma-delimited file to a database table structure.	
For more information about transformations, see Section 20.3.2.9, "How to Create Transformations."	
You can configure Mediators to validate the incoming message payload using a Schematron or an XSD file. You can specify Schematron files for each inbound message part and Mediator executes Schematron file validations for those parts.	
For more information about validations, see Section 20.3.2.13, "How to Use Semantic Validation" and http://www.schematron.com/	
.	
Mediator lets you add Java callouts to the routing rules. Java callouts are a way of using of Java code with regular expressions.	
For more information about Java callouts, see Section 20.3.2.15, "How to Use Java Callouts."	
An event is a message sent because an activity occurred in a business environment. Mediator can both subscribe to and raise business events. You can subscribe to a business event that is generated when a situation of interest occurs. For example, you can subscribe to an event that is generated when a new customer is created and then use this event to start a business process, such as sending a confirmation email. Similarly, you can generate business events when a situation of interest occurs. For example, after a new customer profile is created, you can generate a customer-created event.	
For more information about event handling, see Chapter 41, "Using Business Events and the Event Delivery Network."	
Dynamic routing separates the control logic of a process from the execution of the process. The control logic determines the path taken by the process. You can create dynamic routing rules using the Mediator Editor.	
For more information about dynamic routing, see Section 20.3.3, "How to Create Dynamic Routing Rules."	
Mediator supports both manual error handling and error handling based on fault policies. A fault policy consists of conditions and actions, where the conditions specify the action to be carried out for a particular error condition.	
For more information about error handling, see Chapter 22, "Using Oracle Mediator Error Handling."	
Mediator can echo source messages back to the initial caller after any transformations, validations, assignments, or sequencing operations are performed.	
For more information about Mediator echo support, see "To echo a service:" of Section 20.3.2.1, "How to Specify Mediator Services or Events."	
Mediator can process messages that consist of multiple parts. Some Remote Procedure Call (RPC) web services contain multiple parts in the SOAP message.	
For more information about multiple part message support, see Chapter 21, "Working with Multiple Part Messages in Oracle Mediator."	
You can create a Mediator service component in a SOA composite application of Oracle JDeveloper and then configure it using the Mediator Editor. To display the Mediator Editor, double-click the Mediator service component in the SOA Composite Editor. For information about the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."	
Figure 19-1 shows the Mediator Editor along with the Application Navigator, Structure, and Messages windows.	
Note: Oracle recommends using a Unicode database with	
Each section of the view shown in Figure 19-1 lets you perform specific design and deployment tasks. The sections in this view include the following:	
The Application Navigator, shown in the upper left section of Figure 19-1, displays the Mediator file structure. These files appear under the SOA Content folder of the project where you created a Mediator. For more information about the Application Navigator and the composite files, see Table 2-3, "SOA Composite Editor".	
The Mediator Editor, shown in the middle of Figure 19-1, provides a visual view of the Mediator. This view appears when you perform one of the following actions:	
.mplan	
file for the Mediator in the Application Navigator. The Source view displays the source code of a Mediator. Click Source at the bottom of the Mediator Editor to view the source code. The code in Source view is immediately updated to reflect any changes to an a Mediator.	
Example 19-1 shows sample Mediator source code:	
The History window displays history information about the Mediator file, including a revision history and side-by-side comparisons of read-only and editable versions of a file. Click History at the bottom of the Design window shown in Figure 19-1 to open the History window. Figure 19-2 shows the History view for a Mediator file.	
The Property Inspector, shown at the bottom of Figure 19-1, displays details about Mediator properties.	
The Structure Window, shown in the lower left section of Figure 19-1, displays a structural view of the data of a Mediator.	
The Log Window displays messages about the validation and compilation status.	
You can create a Mediator in multiple ways, depending on where you are in your application development process. Follow the appropriate instructions in the following sections to create the component.	
You can create a Mediator in a SOA composite application in Oracle JDeveloper at any of the following points in the development cycle:	
When you create a Mediator, the Create Mediator dialog appears so you can name the Mediator and select a template for the interface.	
To create a composite application with a Mediator:	
Figure 19-3 Composite with Mediator Selection in Create SOA Project Wizard	
The Create Mediator dialog appears.	
To create a Mediator in an existing composite application:	
Tip: The Component Palette is to the right of the SOA Composite Editor.	
Figure 19-4 Component Palette with a Mediator Service Component	
The Create Mediator dialog appears.	
To create a new project with a Mediator:	
The New Gallery wizard appears.	
Figure 19-5 Create SOA Project Wizard with Composite With Mediator Template Shown	
The Create Mediator dialog appears.	
To create a Mediator in an existing project:	
Figure 19-6 New Gallery Dialog with Mediator Service Component	
The Create Mediator dialog appears.	
When you create a new Mediator, you can specify an interface template that generates a basic set of default files in the Mediator project. These files provide a framework from which you can design and configure the Mediator. You can create a Mediator with the following interface options:	
This creates an empty Mediator and does not create a WSDL file. This method provides you with the flexibility to create the SOA components in the order you want. After you create a Mediator without an interface definition, you must create a service or an event that starts the component.	
This bases the interface definition on a WSDL file, which describes the interfaces of a Mediator, such as port types, operations, services, and schemas. The WSDL file can already exist or you can generate one from a schema file.	
This defines an interface with a one-way interaction, where the client sends a message to a service and the service does not need to reply.	
This creates an interface with synchronous request-response interactions. In a synchronous interaction, a client sends a request to a service and receives an immediate response. The client does not proceed further until the response arrives.	
This creates an interface with asynchronous request-response interactions. In an asynchronous interaction, a client sends a request to a service, but does not block and wait for a reply.	
This creates a Mediator that subscribes to a business event generated when a situation of interest occurs. A business event consists of message data sent as the result of an occurrence in a business environment. For information about business events, see Chapter 41, "Using Business Events and the Event Delivery Network."	
To subscribe to events, the events must be defined in an Event Definition (EDL) file.	
You configure the interface definition for a Mediator on the Create Mediator dialog.	
To configure the Mediator interface definition:	
The Create Mediator dialog appears.	
Figure 19-7 and Figure 19-8 illustrate how the properties change on the Create Mediator dialog for different interface types.	
Figure 19-7 Synchronous Interface Template Selection on the Create Mediator Dialog	
Figure 19-8 Interface Definition from WSDL Template Selection on the Create Mediator Dialog	
If you selected Subscribe to Events, do the following:	
Figure 19-9 Subscribe to Events Template Selection in Create Mediator Dialog	
The Event Chooser dialog appears.	
To the right of the Event Definition field, click Search.	
The SOA Resource Browser dialog appears.	
Select an event definition file (.edl	
) and click OK.	
The Event field is populated with the events described in the.edl	
file that you selected. For more information about creating.edl	
files, see Chapter 41, "Using Business Events and the Event Delivery Network."	
one and only one: A global (JTA) transaction is used for event delivery. If the event call fails, the transaction is rolled back and the call is retried a configurable number of times.	
guaranteed: A local transaction is used to guarantee delivery. There are no retries upon failure.	
immediate: Events are delivered on the same thread and on the same transaction as the caller.	
By default, event subscriptions run under the security of the event publisher.	
The Expression Builder dialog appears.	
Figure 19-11 shows a sample Expression Builder dialog.	
The expression you created appears in the Filter column of the Create Mediator dialog.	
The following table lists and describes the properties you can configure to define an interface. The available properties change depending on the interface type you select, so not all of the listed properties apply to all interface types.	
Table 19-1 Mediator Interface Properties	
Property	Description
---	---
Create Composite Service with SOAP Bindings	Select this option to create an exposed service with SOAP bindings that is automatically connected to your Mediator when the interface is generated.
WSDL URL	Enter the location of the WSDL file to use when creating the interface from a WSDL file. Do one of the following:
For more information about these options, see Section 19.7, "Generating a WSDL File."	
Port Type	Enter the port type name from the WSDL file. The available port types are parsed from the WSDL file that you specify in the WSDL URL field.
Callback Port Type	Enter the port type name to which the response message is sent in an asynchronous communication. The available port types are parsed from the WSDL file that you specify in the WSDL URL field.
Input	Enter the schema element for the input message. Click Search to the right of the field to select the element. By default, the singleString schema element is selected for the input message. For a sample schema, see Example 19-2.
Output	Enter the schema element for the output message. Click Search to the right of the field to select the element. By default, the singleString schema element is selected for the input message.
Example 19-2 One-Way Interface Sample Scheme	
You can use any XSD schema to specify the format of the input document that Mediator processes. Here is a sample schema:	
The Mediator files are generated under the specified application and project in the Application Navigator, and the new Mediator appears in the Mediator Editor in Design view. If you created the Mediator with an interface definition and the WSDL file did not already exist, the new WSDL file is also generated with the same name as the Mediator. If the WSDL file you specified is located in a different directory than the project files, the file and its associated schema files are copied to the Mediator project.	
This Mediator has no associated WSDL file, port types, or operations. You must define these separately as described in Section 19.6, "Defining an Interface for a Mediator." Figure 19-12 shows how a Mediator created with no interface definition appears in the Mediator Editor.	
Figure 19-12 Mediator with no Interface Definition in the Mediator Editor	
The appearance and source code of this Mediator varies depending on the name of the WSDL file and the port types and operations defined by the WSDL file. Figure 19-13 shows a sample Mediator created from a WSDL file.	
Figure 19-13 Mediator from WSDL in the Mediator Editor	
Figure 19-14 shows how a Mediator created with a one-way interface appears in the Mediator Editor. The arrow to the left of the execute operation represents a one-way operation.	
Figure 19-14 One-Way Interface Oracle Mediator in the Mediator Editor	
In a synchronous interaction, only one port is defined because the response is sent to the same port as the request. Figure 19-15 shows how a Mediator created with a synchronous interface appears in the Mediator Editor. The arrows to the left of the execute operation in Figure 19-15 represent a synchronous operation.	
Figure 19-15 Synchronous Mediator in the Mediator Editor	
Figure 19-16 shows how a Mediator created with an asynchronous interface appears in the Mediator Editor. The Port Type field displays the port on which the request message is sent. The Callback Port Type field displays the port to which the response is sent. The arrows to the left of the execute operation in Figure 19-16 represent an asynchronous operation.	
Figure 19-16 Asynchronous Mediator in the Mediator Editor	
When you view the Mediator in the SOA Composite Editor, the icon on the left side of the Mediator indicates that this Mediator is configured for an event subscription, as shown in Figure 19-17.	
Figure 19-17 Mediator Created with the Subscribe to Events Template	
When you double-click the Mediator, the Mediator Editor appears, as shown in Figure 19-18.	
Figure 19-18 Event Subscription Mediator in the Mediator Editor	
After you create a Mediator without an interface definition, you must define the interface by subscribing to events or by defining services. You can define services in the following two ways:	
The following procedures describe how to define an interface for an existing Mediator by subscribing to events, by defining services creating a wire in the composite, and by defining services using the Mediator Editor.	
To subscribe to events:	
To subscribe to events, the events must be defined in an Event Definition (EDL) file.	
The Subscribed Events dialog appears.	
The Event Chooser dialog appears.	
To define services for a Mediator using a wire:	
For more information about wires and how to wire a service component to a service, see Section 2.5.1, "How to Wire a Service and a Service Component."	
Note: You can also connect a Mediator with a defined interface and defined reference to a service through a wire. However, to connect a Mediator to a service, the interface of the Mediator and of the service must match.	
When you define a service using a wire, the service for the Mediator is automatically defined using the WSDL file from the wire source. For example, if you connect the ReadFile service shown in Figure 19-19 to the CustomerDataRouter Mediator, the CustomerDataRouter Mediator automatically inherits the service definition of the ReadFile service.	
Figure 19-19 Connecting Mediator to a Service	
For information about how wiring two Mediator service components can cause an infinite loop, see Section 2.5.3, "What You May Need to Know About Adding and Deleting Wires."	
To define services for a Mediator in the Mediator Editor:	
The Define Service dialog appears, as shown in Figure 19-20.	
For information about how to generate a WSDL file, see Section 19.7, "Generating a WSDL File."	
You can generate the WSDL file for a message using an XML schema definition (XSD) file or using a sample file. When working with Mediator, you can generate a WSDL file at either of the following times:	
The Create WSDL dialog populates standard fields, such as the file name, directory, and namespace; and the dialog changes depending on the interface type you select. You can specify the same or different schema files for the message inputs.	
The way you configure a WSDL file depends on the type of interface being defined by the WSDL file. You can define a one-way interface, a synchronous interface, or an asynchronous interface.	
To generate a WSDL file for a one-way interface from an XSD file:	
Perform these steps after the Create WSDL dialog appears when you are creating a Mediator or when you are defining a service for a Mediator.	
Table 19-2 WSDL Properties	
Property	Description
---	---
File Name	A unique name for the WSDL file.
Directory	The directory where you want to store the WSDL file. By default, it is stored in the same location as the Mediator file. This must be the current project directory or one of its subdirectories. If the specified directory does not exist, Oracle JDeveloper creates it.
Namespace	A namespace address for the WSDL file; for example, The namespace that you specify is defined as the
Port Type	The name of the port type in the WSDL file that contains the operation to use.
Operation	The name of the action to perform; for example,
Note: Spaces and special characters are not allowed in an operation name or port type. Only alphabetic and numeric characters are supported, and the first character cannot be a number.	
The Input field appears, as shown in Figure 19-21.	
Figure 19-21 Create WSDL Dialog for a One-Way Interface	
The Add Message Part dialog appears, as shown in Figure 19-22.	
The Type Chooser dialog appears and contains a list of the schema files (XSD files), as shown in Figure 19-23.	
If the schema you want to use is not located in the project in which you are working, you can import a schema XSD file or WSDL file into the project using the Import Schema File or Import WSDL icon in the upper right corner of the dialog.	
Note: If you want to use a schema XSD file that resides on your local file system, ensure that the XSD file and any XSD files that it imports all reside in the Oracle JDeveloper project directory. This ensures that the schema is deployed with the project and is made available at runtime.	
After you specify a file, Oracle JDeveloper parses it to determine the defined schema elements and displays them in a list from which you select.	
The Add Message Part dialog reappears with the URL and Schema Element fields populated from the Type Chooser dialog. If you selected an XSD simple type, these fields are replaced by a Simple Type field.	
The input information appears in the Input field of the Create WSDL dialog.	
Note: Partner link types are generally used in BPEL, so you do not need to select Generate partnerlinkType extension for Mediator.	
To generate a WSDL file for a synchronous interface from an XSD file:	
Perform these steps after the Create WSDL dialog appears when you are creating a Mediator or when you are defining a service for a Mediator.	
The Input, Output, and Fault fields appear, as shown in Figure 19-24.	
Figure 19-24 Create WSDL Dialog for a Synchronous Interface	
The Add Message Part dialog appears, as shown in Figure 19-25.	
The Type Chooser dialog appears and contains a list of the schema files (XSD files), as shown in Figure 19-26.	
If the schema you want to use is not located in the project in which you are working, you can import a schema XSD file or WSDL file into the project using the Import Schema File or Import WSDL icon in the upper right corner of the dialog.	
Note: If you want to use a schema XSD file that resides on your local file system, ensure that the XSD file and any XSD files that it imports all reside in the Oracle JDeveloper project directory. This ensures that the schema is deployed with the project and is made available at runtime.	
After you specify a file, Oracle JDeveloper parses it to determine the defined schema elements and displays them in a list from which you can make a selection.	
The Add Message Part dialog reappears with the URL and Schema Element fields populated from the Type Chooser dialog. If you selected an XSD simple type, these fields are replaced by a Simple Type element.	
The input information appears in the Input field of the Create WSDL dialog.	
The output represents the response message and is required in synchronous transactions. Faults are optional.	
Note: Partner link types are generally used in BPEL, so you do not need to select Generate partnerlinkType extension for Mediator.	
To generate a WSDL file for an asynchronous interface from an XSD file:	
Perform these steps after the Create WSDL dialog appears when you are creating a Mediator or when you are defining a service for a Mediator.	
The Input field and Callback section appear, as shown in Figure 19-27.	
Figure 19-27 Create WSDL Dialog for an Asynchronous Interface	
The Add Message Part dialog appears, as shown in Figure 19-28.	
The Type Chooser dialog appears and contains a list of the schema files (XSD files), as shown in Figure 19-29.	
If the schema you want to use is not located in the project in which you are working, you can import a schema XSD file or WSDL file into the project using the Import Schema File or Import WSDL icon in the upper right corner of the dialog.	
Note: If you want to use a schema XSD file that resides on your local file system, ensure that the XSD file and any XSD files that it imports all reside in the Oracle JDeveloper project directory. This ensures that the schema is deployed with the project and is made available at runtime.	
After you specify a file, Oracle JDeveloper parses it to determine the defined schema elements and displays them in a list from which you can make a selection.	
The Add Message Part dialog reappears with the URL and Schema Element fields populated from the Type Chooser dialog. If you selected an XSD simple type, these fields are replaced by a Simple Type element.	
The input information appears in the Input field of the Create WSDL dialog.	
Note: The callback input represents the response message and is required in asynchronous transactions.	
executeResponse	
. Note: Spaces and special characters are not allowed in an operation name or port type. Only alphabetic and numeric characters are supported, and the first character cannot be a number. Both of these fields are required.	
Note: Partner link types are generally used in BPEL, so you do not need to select Generate partnerlinkType extension for Mediator.	
To generate the WSDL file based on a sample file:	
You can generate a WSDL file from a file in a native format such as a comma-separated value (CSV) file, a fixed-length file, a document type definition (DTD) file, or a COBOL copybook file. Use the Native Format Builder wizard to generate a WSDL file based on a sample file. The Native Format Builder wizard appears when you click Define Schema for Native Format in the Request, Response, Fault, and Callback tabs of the Create WSDL dialog. A WSDL file is generated after you complete the wizard.	
For information about the Native Format Builder wizard, see the Oracle Fusion Middleware User's Guide for Technology Adapters.	
After creating a Mediator, you can configure properties for the operation or event subscription specified for the component. On the Mediator Editor, you can specify whether to validate the schemas of inbound messages and you can specify a priority for the operation or event subscription.	
To validate inbound message schemas, select the Validate Syntax (XSD) check box for an operation or event subscription in the Routing Rules section of the Mediator Editor.	
To specify a priority for an Oracle Mediator component, select a value from zero to nine in the Priority field in the Mediator Editor's Routing Rules section. This determines the order in which messages are retrieved for all Oracle Mediator service components. This property is only valid for parallel routing rules and not sequential. For more information about priorities, see "Basic Principles of Parallel Routing Rules".	
You can modify the operations or event subscriptions of a Mediator using the Mediator Editor.	
You can modify an Oracle Mediator WSDL file by adding or deleting operations. After modifying the WSDL file, use the Refresh WSDL dialog to synchronize the changes.	
To modify operations:	
The Refresh WSDL dialog appears. If you have made any modifications to the WSDL file, the Refresh WSDL dialog lists all the operations to delete or add. The Refresh will delete Mediator operation field lists all the operations that have been removed from the WSDL file. The Refresh will add Mediator operation field lists all the new operations that have been added in the WSDL file. Figure 19-30 shows the Refresh WSDL dialog.	
The Refresh WSDL dialog is updated based on the operations defined in the specified WSDL file.	
You can subscribe to new events, modify existing event subscriptions, and unsubscribe from subscribed events using the Manage Event Subscriptions option in the Mediator Editor.	
To modify event subscriptions:	
The Subscribed Events dialog appears, as shown in Figure 19-31.	
Figure 19-31 The Subscribed Events Dialog	
For more information about the Consistency, Run as Roles, and Filter fields of an event, see Section 19.5.1, "How to Configure the Mediator Interface Definition."	
The script content on this page is for navigation purposes only and does not alter the content in any way.	
This chapter describes Oracle Mediator routing rules and how to specify routing rules for a Mediator service component. Routing rules include transformation, filtering, validation, mapping, and routing logic.	
This chapter includes the following sections:	
The following chapter provide additional information about defining routing rules for specific scenarios:	
Routing rules are mediation logic or execution logic that you define to achieve the requisite mediation. Mediator lets you route data between service consumers and service providers. As the data flows from service to service, it must be transformed. These two tasks, routing and transformation, are the core responsibilities of Mediator. You can use routing rules to specify how a message processed by a Mediator reaches its next destination. Routing rules specify where a Mediator sends the message, how it sends the message, and what changes should be made to the message structure before sending it to the target service.	
A routing rule can be triggered either by a service operation or an event subscription. The service operation can be synchronous, asynchronous, or one-way. Routing rules can be of the following two types:	
Static rules do not change depending on the invocation context and are applied consistently.	
Dynamic rules let you externalize the routing logic to an Oracle Rules Dictionary, which in turn enables dynamic modification of the routing logic.	
For more information about creating routing rules, see Section 20.3.2, "How to Create Static Routing Rules" and Section 20.3.3, "How to Create Dynamic Routing Rules." For information about standard message exchange patterns and how they are handled by Mediator, see Chapter 24, "Understanding Message Exchange Patterns of an Oracle Mediator."	
A static routing rule is not expected to change depending on the invocation context. In this case, the routing can be an echo, a routing to another service, or a publishing of an event.	
When you define static rules, you can specify the following types of information:	
Mediator sends messages to the target service you specify. This service can either be defined as a WSDL interface or a Java interface. For information about invoking a target service, see Section 20.3.2.1, "How to Specify Mediator Services or Events".	
Mediator executes routing rules either sequentially (that is, running in the same thread) or in parallel (running on different threads). For information about specifying an execution type, see Section 20.3.2.3, "How to Specify Sequential or Parallel Execution".	
Note: For synchronous service invocations, the routing rule should always be sequential.	
You can define how Mediator handles synchronous reply, callback, and fault messages. For information about handlers, see Section 20.3.2.4, "How to Configure Response Messages," Section 20.3.2.7, "How to Handle Faults," and Section 20.1.1.2, "Static Routing Rule Components."	
You can define the following types of static rules for a Mediator:	
You can define a filter expression that is applied to the message content (payload or headers). When you define a filter, the contents are analyzed before any service is invoked. For example, you might apply a filter expression that specifies that a service be invoked only if the message includes a customer ID, or if the value for that customer ID matches a certain pattern. For information about specifying filter expressions, see Section 20.3.2.8, "How to Specify an Expression for Filtering Messages".	
Mediator can transform message data before forwarding the message to a service. You can define transformations to set a value on the target payload by mapping data or by assigning values.	
The XSLT Mapper lets you define transformations that apply to the whole message body to convert messages from one XML schema to another. The Assign Values function works on individual fields. Using this dialog, you can assign values from the message (for example, payload and headers), from a constant, or from various system properties, such as the properties of an adapter present in the data path. For information about defining transformations, see Section 20.3.2.9, "How to Create Transformations" and Section 20.3.2.10, "How to Assign Values".	
Mediator can detect any SOAP headers that are used in building the expression for the current routing rule operation. For information about accessing headers, see Section 20.3.2.12, "How to Access Headers for Filters and Assignments" and Section 20.3.2.12.2, "Manual Expression Building for Accessing Properties for Filters and Assignments".	
You can specify the Schematron files that Mediator should use to validate different parts of an inbound message. For information about performing Schematron-based validations, see Section 20.3.2.13, "How to Use Semantic Validation".	
Custom Java class callouts let you use regular expressions with Java code, when regular expressions alone do not suffice. For information about using Java callouts, see Section 20.3.2.15, "How to Use Java Callouts".	
These are your own set of functions that can be used by the XSLT Mapper. For information about using user-defined extension functions, see "To add user-defined extension functions:".	
Static routing rules define the following components:	
A dynamic routing rule lets you externalize the routing logic to an Oracle Rules Dictionary, which in turn enables dynamic modification of the routing logic in a routing rule. This feature depends on a decision service and Oracle Rules to obtain the routing logic at runtime.	
Dynamic routing separates the control logic, which determines the path taken by the process, from the execution of the process. In the dynamic routing scenario, a decision matrix determines the type of Level-2 service to be chosen for each routing. The factors that affect the decision on the type of Level-2 service are channel, customer type, and so on. The solution allows this decision matrix to be modified externally by business analysts without changing the routing. The decision matrix must be evaluated to determine the outbound service.	
Dynamic routing rules are described in more detail in Section 20.3.3, "How to Create Dynamic Routing Rules."	
Routing rules can be executed sequentially or in parallel. This section describes the basic principles of both types of execution. If an operation or event has both sequential and parallel routing rules, first sequential routing rules are evaluated and actions are performed, and then parallel routings are queued for parallel execution.	
Note: If a Mediator service component with a request-response interface has only parallel routing rules, the Mediator service component does not send a response back to the caller. Though you can create this type of Mediator service component, the caller of the Mediator service component does not receive a response at runtime.	
Mediator processes sequential routing rules based on the following principles:	
Mediator processes routing rules in parallel based on the following principles:	
The messages of each Mediator service component are retrieved in a weighted, round-robin fashion to ensure that all Mediator service components receive parallel processing cycles. This is true even if one or more Mediator service components produce a higher number of messages compared to other components. The weight used is the message priority set when designing a Mediator service component. Higher numbers of parallel processing cycles are allocated to the components that have higher message priority.	
You can set the Priority field in the Mediator Editor to indicate the priority of a Mediator service component. Priorities can range from zero to nine, with nine being the highest priority. The default priority is four.	
Note: The Priority property is applicable only to parallel routing rules.	
For example, if a Mediator service component has one parallel routing rule, one message is enqueued on the Mediator parallel message dehydration store. The parallel message dispatcher to the store then initiates a transaction, reads the message from the database store, and invokes the target component or service of this routing rule. The transaction initiated by the listener thread is a completely new transaction and is propagated to the target components.	
Note: Dehydrating of messages means storing the incoming messages in a database for parallel routing rules so they can be processed later by worker threads.	
Mediator includes a resequencer, which rearranges streams of related but out-of-sequence messages into their sequential order based on the type of resequencer used and the rules you define. When incoming messages arrive in a random order, the resequencer orders the messages based on sequential or chronological information, and then sends the messages to the target services in the correct order based on the resequencing configuration.	
For more information about resequencing messages, see Chapter 23, "Resequencing in Oracle Mediator."	
Routing rules can only be defined for a Mediator with a defined interface. For more information on how to define an interface, see Section 19.6.1, "How to Define an Interface for a Mediator."	
You define the routing rules in the Routing Rules section of the Mediator Editor.	
To access the routing rules section:	
You can access the Routing Rules section of the Mediator Editor using one of the following methods:	
The Mediator file has an MPLAN	
extension.	
Figure 20-1 shows the Routing Rules section of the Mediator Editor.	
Figure 20-1 Mediator Editor- Routing Rules Section	
Figure 20-2 lists and describes the icons in the Routing Rules section.	
After creating a Mediator component, you associate it with inbound service operations or event subscriptions and with outbound targets. Targets are outbound service operations or event publishing. A target specifies the next service or event to which a Mediator sends messages and also specifies which service operation to invoke. You can specify a service or an event as a target type.	
You can also echo source messages back to the initial caller after any transformation, validations, assignments, or sequencing operations are performed. An echo can only be specified if the Mediator component has a synchronous or asynchronous interface. Whether the echo is synchronous or asynchronous depends on the WSDL file of the caller. The echo option is only available for inbound service operations and is not available for event subscriptions.	
The purpose of the echo option is to expose all the Mediator functionality as a callable service without having to route it to any other service. For example, you can call a Mediator to perform a transformation, a validation, or an assignment, and then echo the Mediator back to your application without routing it anywhere else.	
You can specify multiple routings for an inbound operation or event. Each routing is mapped to one target service invocation or event. Therefore, to specify multiple service invocations or raise multiple events, you must specify one routing rule for each target. For example, you can invoke an operation based on a message payload from the following operations defined in a service:	
To do this action, you must create four routing rules, one for each operation. Later, when you specify a filter expression for each rule, you can specify which target and operation is applied to each message instance based on the message payload, as shown in Figure 20-3.	
Figure 20-3 Multiple Routings for an Inbound Operation	
To invoke a service:	
To perform this step, the target service must be defined in a WSDL document or a Java interface.	
The Target Type dialog appears, as shown in Figure 20-4.	
The Target Services dialog appears, as shown in Figure 20-5.	
In the Target Services dialog, navigate to and then select an operation provided by a service.	
Note: You can select a service defined by a WSDL file or a Java interface. A service can consist of multiple operations, as shown in Figure 20-5.	
A new Static Routing section appears where you can define the routing rule.	
To trigger an event:	
The Target Type dialog appears, as shown in Figure 20-4.	
The Event Chooser dialog appears.	
To the right of the Event Definition field, click Search.	
The SOA Resource Browser dialog appears.	
.edl	
) file and click OK. The Event field is populated with the events defined in the selected file, as shown in Figure 20-6.	
Note: Instead of browsing for an existing event definition file, you can create a new file by clicking Create new event definition (edl) file and completing the fields in the Create Event Definition File dialog.	
A new Static Routing section appears where you can define the routing rule.	
To echo a service:	
The Target Type dialog is displayed, as shown in Figure 20-7.	
Note: The Echo button only appears on the Target Type dialog if the interface is synchronous or asynchronous.	
Figure 20-8 shows a routing rule with a synchronous echo. An asynchronous echo has an icon with a dotted line on the return.	
Figure 20-8 Sample Mediator Supporting Echo Operation	
The echo option has the following limitations:	
Note: The echo option is not available for Mediator interfaces having request/reply/fault/callback WSDL files or for one-way WSDL files.	
Note: The echo option is only available for synchronous operations when the routing rule is sequential because parallel routing rules are not supported for Mediators with synchronous operations.	
false	
. Instead, it returns a null	
response. Note: The asynchronous echo option is available only when the routing rule is parallel. If you use the echo option, then sequential routing rules are not supported for Mediators with asynchronous operations.	
A routing rule can be executed either in parallel or sequentially. To specify an execution type for a routing rule, select the Sequential or Parallel execution type in the Routing Rules section.	
In the Mediator routing rules, you can specify how to handle the response messages in synchronous and asynchronous interactions. For synchronous interactions, you can specify the transformations and assignments for the response and the fault message. You can forward the response and the fault message to another service or event, or you can send them back to the initial caller, if the initial caller is expecting responses and faults.	
For asynchronous interactions, you can specify transformations and assignments, and a timeout period for receiving the response. The timeout period can be specified in seconds, hours, days, months, or years. By default, the timeout period is infinite. If a callback response does not come within the specified timeout period, a timeout response can be forwarded to another service, to another event, or back to the initial caller.	
You cannot route a Mediator response to a two-way service. If you want to route a response to a two-way service, you should use a one-way Mediator between the first Mediator and the two-way service. The response should first be forwarded to the one-way Mediator, which in turn should call the two-way service.	
Notes:	
To specify a timeout period for asynchronous processing:	
The following steps are performed in the Routing Rules section of the Mediator Editor.	
The Target Type dialog appears.	
If you selected Service or Event, the Target Service or the Event Chooser appears depending on your selection.	
The timeout response is forwarded to the specified service or event.	
Note: If the number of routing rules is larger and the time taken to execute the routing rules exceeds the transaction timeout, you must set the transaction timeout to a value that is greater than the time taken to execute all the routing rules.	
Callback messages might arrive before the initiating transaction is completed. In this case, correlation in Mediator fails. If you have an issue with premature callbacks, you can use the oracle.tip.mediator.callback.correlationWaitDuratino_in_seconds	
property to set a time period in seconds for which the callback thread waits before retrying the callback.	
You define the property in the composite.xml	
file in the component	
element that defines the Mediator component. In the example shown below, the wait time before retrying is 15 seconds.	
A single Mediator cannot handle multiple callbacks. If you have a composite application with a Mediator that receives multiple callbacks, the behavior of the composite application is undetermined. For example, in the scenario shown in Figure 20-9, AsyncMediator forwards the callback response from AsyncEchoMediator1 and AsyncEchoMediator2 to FileInMediator. In such a flow, the AsyncMediator might return the callback from both AsyncEchoMediator1 and AsyncEchoMediator2, or from either one of them. The exact behavior is random and unpredictable.	
Figure 20-9 Sample Mediator Handling Multiple Callback	
If you create a new routing rule in which the target service operation has one or more faults, you still see a single fault routing section in the Mediator Editor. If the source Mediator service component supports one or more faults, then the fault is routed back to the caller by default. You can choose the source and target fault names to be routed. You can also use the service browser to route the fault to another target.	
To define an additional fault routing:	
The following steps are performed in the Routing Rules section of the Mediator Editor.	
Another fault section appears in the routing rule box.	
Figure 20-11 shows a second fault being routed to a file adapter service.	
Figure 20-11 Second Fault Added to Routing Rules	
Note: You can route the same fault to multiple targets using different transformations.	
To remove a fault routing section:	
The following steps are performed in the Routing Rules section of the Mediator Editor.	
The filter expression routing rule lets you filter messages based on their payload. If the filter expression for a given message instance evaluates to true, the message is delivered to the target service or event specified within the routing rule.	
For example, you route your data to customers in two different countries, such as US and Canada, but you only want notices regarding the MOBILE product line to be sent to US customers and the LANDLINE product line to customers in Canada. To implement this routing, you must define a routing rule for each component and operation pair that sends messages to the target customers. In addition, you specify filter expressions for the routing rules that send messages to the customers in the US or Canada.	
You can also define filter expression message properties or message headers.	
Filter Expression Message Properties	
Two examples of filter expression message properties are shown in Example 20-1.	
Example 20-1 Filter Expression Message Properties	
Filter Expression Message Headers	
Two examples of filter expression message headers are shown in Example 20-2.	
Example 20-2 Filter Expression Message Headers	
For the preceding filter expression message headers to work, you must add the attribute shown in Example 20-3 to the root element of the .mplan	
file.	
Example 20-3 Attribute to Add	
To specify an expression for filtering messages:	
You can use the Expression Builder to graphically create a filter expression. The Expression Builder dialog contains the components and controls that assist you in designing a filter expression.	
The Expression Builder dialog appears, as shown in Figure 20-13.	
The following table describes each of the fields in the Expression Builder dialog:	
Table 20-1 Expression Builder Fields	
Field	Description
---	---
Expression	This field contains the actual expression used to filter messages. You can enter the filter expression either manually or by using the Variable field and the Functions palette. Using the icons on the upper right side of this field, you can undo the last edit made, redo the last edit made, or clear the entire Expression field.
Variables	This field contains the message defined for a Mediator component. Oracle JDeveloper parses the Mediator WSDL file and presents the message definition in the Variables field. The input message is stored in the If the input message consists of multiple parts, use
Functions Palette	This list provides a list of functions that you can include in an expression. When you select a function, a preview of how that function appears when added to the Expression field appears in the Content Preview field, and a description of the function appears in the Description field.
Content Preview	This field indicates how a value selected from the Variables field or Functions palette appears when it is inserted into the Expression field.
Description	This field describes the value selected from the Variables field or Functions Palette.
To specify a filter expression on a message payload:	
The Expression Builder dialog is displayed.	
For example, the CustomerId element is shown selected in Figure 20-14.	
Figure 20-14 Expression Builder Dialog – Variables Element Selected	
The expression is added in the Expression field, as shown in Figure 20-15.	
Figure 20-15 Expression Builder Dialog – Variables Element Inserted	
Functions are grouped in categories that are listed when you click the down arrow in the Functions list. For example, if you click the down arrow and select Logical Functions, the list appears as shown in Figure 20-15.	
The XPath expression for the selected function is inserted into the Expression field.	
In this example, the Customer ID must equal1001	
to evaluate to true, as shown in Figure 20-16.	
Figure 20-16 Sample Expression Builder Dialog – Value Entered	
The expression is added to the Routing Rules section.	
To modify or delete a filter expression, double-click the Add Filter Expression icon, and then modify or delete the expression in the Expression field of the Expression Builder.	
Oracle JDeveloper provides an XSLT Mapper that lets you specify a mapper file (XSL file) to transform data from one XML schema (expressed as an XSD file) to another. The XSLT Mapper enables data interchange among applications using different schemas. For example, you can map an incoming purchase order schema to an outgoing invoice schema. After you define an XSL file, you can reuse it in multiple routing rule specifications.	
To create a transformation:	
The Request Transformation Map dialog appears. You can select an existing XSL file or create a new XSL file with the XSLT Mapper to perform the required transformation.	
In case of synchronous reply or fault message, the Reply Transformation Map dialog or the Fault Transformation Map dialog contains an Include Request in the Reply Payload option, as shown in Figure 20-18.	
Figure 20-18 Reply Transformation Map Dialog	
$initial	
variable that contains the original message of a synchronous interaction, select the Include Request in the Reply Payload option. The variable is created, as shown in Figure 20-19.	
Figure 20-19 Initial Variable in XSL File	
Note: An initial message can also consist of multiple parts. Use	
For information about the XSLT Mapper, see Chapter 40, "Creating Transformations with the XSLT Mapper."	
To add user-defined extension functions:	
You can use the Expression Builder to include user-defined extension functions.	
xpath-function.xml	
file on the server. $BEAHOME/user_projects/domains/soainfra/autodeploy/soa-infra/APP-INF/lib	
directory. .mplan	
file of the project as follows: Mediator	
element. Expression	
element. This is shown in Figure 20-20.	
Figure 20-20 Project .mplan file – Modified to Use User-Defined Extension Functions	
You can use the Assign Values field to propagate the headers, payload, and properties of a message from source to target. Figure 20-21 shows the Assign Values dialog that is displayed when you click the Assign Values icon in the Routing Rules section.	
To set the properties of the target message:	
The Assign Value dialog is displayed, as shown in Figure 20-22.	
For more information about the Expression Builder dialog, see Section 20.3.2.8, "How to Specify an Expression for Filtering Messages."	
Figure 20-23 shows a sample Assign Value dialog in which a constant value is specified as an expression.	
Figure 20-23 Populated Assign Value Dialog	
Notes:	
Table 20-2 through Table 20-4 list the various possibilities of assignment on constants and properties, payloads, and headers of a message from source to target.	
Table 20-2 Possibilities on Constants and Properties	
Source	Target
---	---
Property	Property
Constant	Property
Table 20-3 Possibilities on Payload	
Source	Target
---	---
XPath Expression	Property
XPath Expression (below part level)	Property
Property	XPath Expression (below part level)
Constant	XPath Expression (below part level)
XPath Expression	XPath Expression
XPath Expression (below part level)	XPath Expression (below part level)
Table 20-4 Possibilities on Header	
Source	Target
---	---
XPath Expression (below part level)	Property
Property	XPath Expression (below part level)
Constant	XPath Expression (below part level)
Constant	XPath Expression (below part level)
XPath Expression	XPath Expression
XPath Expression (below part level)	XPath Expression (below part level)
Note the following issues about the assign activity.	
<copy>	
element. Example 20-4 XPath Expression Referring to a Leaf Node	
Note: A leaf node is a node with no child nodes.	
.xsd	
file. Example 20-5 provides details. Example 20-5 Target XPath Expression Pointing to a Leaf Node	
In this example, $out.request/inp1:request/ProductReq/Make	
refers to the leaf node.	
Example 20-9 One Child Node of the Source is Propagated into a Target	
In this case, the source element evaluated from $in.body/imp1:request/ProductReq	
does not contain a complete tree structure that starts from the root element, but contains only a child node. Example 20-10 provides details.	
passThroughHeader	
property is set, then copy	
element in the assign activity. Example 20-11 provides details. Example 20-11 Multiple Source Nodes Assigned to the Same Target Node	
In Example 20-11, the first copy	
element does not have any effect because the second copy	
element overwrites it.	
When the Expression Builder is invoked from a Mediator, either for defining a filter or for defining an assignment source or target, the WSDL file is parsed. This automatically detects any SOAP headers for the current routing rule operation and makes them visible as variables under the in	
or out	
folder as header./ns_elementName/	
, as shown in Figure 20-24. Here, ns	
is the namespace prefix and elementName	
is the root element name for the header schema.	
The following scenarios provide details.	
Scenario 1: Namespace Prefixes wsse and ns1 Are Already Defined	
Assume the namespace prefixes wsse	
and ns1	
are already defined in the WSDL file or the .mplan	
file. You can then write an XPath expression as follows:	
Scenario 2: Schema Without a Namespace Predefined in the WSDL File	
Assume you want to use a schema that does not have a namespace predefined in the WSDL file. The Expression Builder is then enhanced to allow you to enter {full_namespace}	
instead of a prefix. The Expression Builder then generates a unique prefix and the prefix definition is added to the .mplan	
file.	
For example, enter the expression in the Expression Builder shown in Example 20-12:	
Example 20-12 Expression	
The .mplan	
file contains the content shown in Example 20-13.	
Example 20-13 Contents of .mplan File	
Figure 20-24 Expression Builder Dialog - Automatic Header Detection	
By default, SOAP headers are not passed through by Mediator. You must add the passThroughHeader	
endpoint property to the corresponding Mediator routing service:	
For example, to add this property, you can modify the composite.xml	
file, as shown in Example 20-14.	
Example 20-14 passThroughHeader Property	
For the headers to pass through, the source and the target must have the same QName (name and namespace). If the source and the target have different QNames, then either a transformation or part-level assignment must be performed.	
It is important to note that, with a passthrough	
Mediator (without a transformation or assign), if the source and target part QNames are not identical, then Mediator passes through the message payloads to the target service without any error. However, this can result in an error in the target service because the message payloads are not reconstructed according to the message structure of the target service.	
Notes:	
There are use cases in which the header schemas cannot be determined from the WSDL files. For example, security headers that are appended to a message, or the headers for a Mediator that are created using an abstract WSDL file. To access these headers, you must manually enter the XPath expression into the Expression Builder.	
The syntax for header expressions is shown in Example 20-15.	
Example 20-15 Header Expressions Syntax	
Therefore, for the header shown in Example 20-16.	
Example 20-16 Header Syntax	
The filter expression is as follows:	
The assignment expression is as shown in Example 20-17.	
Example 20-17 Assignment Expression	
For the preceding expressions to work, you must add the attribute shown in Example 20-18 to the root element of the .mplan	
file.	
An example of a filter expression is as follows.	
An example of an assignment expression is as follows.	
You can specify Schematron files for validating an inbound message and its various parts. Schematron version 1.5 is the supported version.	
Perform the following steps for specifying a Schematron schema to validate an inbound message and its various parts.	
To use semantic validation:	
The Validations dialog is displayed.	
The Add Validation dialog is displayed.	
The SOA Resource Browser dialog is displayed.	
Notes:	
The Add Validation dialog is updated, as shown in Figure 20-25.	
The Validation dialog is updated, as shown in Figure 20-26.	
For more information about building a Schematron schema, see the resources available at	
Note: In semantic validation, if you check for the length of each element name, then the element name may change for a different set of inputs. This happens when there are white spaces between nodes because the parser treats the white spaces as test nodes.	
Mediator automatically propagates attachments to target receivers for Mediator components that are pass-through (that is, they do not contain a transformation or assign rule), and it does not propagate attachments for Mediator component that are not pass-through. The passThroughAttachment	
property lets you override the pass-through settings just for attachments. Setting this property to true	
copies all attachments to the target receiver implicitly.	
Use this property to propagate attachments when the Mediator component in not pass-through, or use it to block attachments when the Mediator component is pass-through. To implement the pass-through attachment override, add the property to the project's composite.xml	
file in the component	
element for the Mediator component. Set the property to true to override a Mediator component that is not pass-through; set it to false to override a pass-through component.	
Example 20-19 Setting Attachments to Pass Through	
Java callouts enable you to use external Java classes to manipulate messages flowing through the Mediator. Only one Java callout is supported per operation or event subscription. The callout class must implement the oracle.tip.mediator.common.api.IjavaCallout	
interface. Callouts are available for both static and dynamic routings. Figure 20-27 shows a sample Mediator with two operations, in which both the operations have one routing rule each and the first operation has a callout class.	
Figure 20-27 Sample Mediator Supporting Java Callout	
To make Java callout classes available:	
You must ensure that the Java callout class is available on the server. You can use any of the following methods for this:	
SCA-INF/classes	
folder. SCA-INF/lib	
folder. $DOMAIN_HOME/lib	
folder. If you want to make the Java callout class available to multiple Mediators, copy the JAR file containing the Java class to the $DOMAIN_HOME/lib	
folder.	
To enter the Java class for the callout:	
You can either manually enter the Java class or select a class from the Class Browser.	
The standard Oracle JDeveloper class browser appears, as shown in Figure 20-29.	
The class browser is filtered so it only displays classes that implement the oracle.tip.mediator.common.api.IjavaCallout	
interface.	
To set the payload root element (when using a filter expression):	
If you have a Java callout in Mediator and use a filter expression in the same Mediator, you must set the root element for the payload, as shown in Example 20-20.	
Example 20-20 Setting the Root Element for the Payload	
To enable domain value map and cross reference functions:	
To use domain value map functions or cross reference functions in a Java callout, you must add the soa-xpath-exts.jar	
file to the project and import the necessary Java classes into your code.	
The Project Properties dialog appears.	
Figure 20-30 Libraries and Classes on the Project Properties Dialog	
The Add Archive or Directory dialog appears, as shown in Figure 20-31.	
Figure 20-31 Add Archive or Directory Dialog	
<JDEV_HOME>/jdeveloper/soa/modules/oracle.soa.fabric_11.1.1/soa-xpath-exts.jar	
, and then click Select. The JAR file appears in the Classpath Entries list.	
Notes: When using domain value map functions, import the following into your Java class:	
When using cross reference (xref) functions, import the following into your Java class:	
Mediator Java Callout API	
The Java callout API defines two interfaces: oracle.tip.mediator.common.api.IjavaCallout	
and oracle.tip.mediator.common.api.CalloutMediatorMessage	
.	
Table 20-5 lists and describes the methods in the oracle.tip.mediator.common.api.IjavaCallout	
interface.	
Table 20-5 Description of Methods in the IjavaCallout Interface	
Method	Description
---	---
This method is invoked when the callout implementation class is instantiated for the first time.	
This method is called before Mediator starts executing the cases. You can customize this method to include validations and enhancements.	
This method is called before Mediator starts executing any particular case. You can customize this method to include case-specific validations and enhancements.	
This method is called before Mediator finishes executing callback handling. You can customize this method to perform callback auditing and custom fault tracking.	
This method is called after Mediator finishes executing the cases. You can customize this method to perform response auditing and custom fault tracking. Post-processing methods are called after all sequential routing rules are executed and do not wait for parallel routing rules to complete.	
This method is called after Mediator starts executing the cases. You can customize this method to perform response auditing and custom fault tracking.	
This method is called after Mediator finishes executing callback handling. You can customize this method to perform callback auditing and custom fault tracking.	
Note: If you change the message properties of a Mediator by using a Java callout in the <assign> <copy target="$out.property.jca.file.FileName" expression="$in.property.jca.file.FileName"/> </assign>	
Table 20-6 discusses the methods in the CalloutMediatorMessage	
interface.	
Table 20-6 Description of Methods in the CalloutMediatorMessage Interface	
Method	Description
---	---
This method sets a payload of the Mediator messages.	
This method adds a property to the Mediator messages.	
This method adds a header to the Mediator messages.	
This method retrieves Mediator message properties by providing the property name.	
This method retrieves Mediator message properties.	
This method retrieves the instance ID of the Mediator messages. This instance ID is the Mediator instance ID created for that particular message.	
This method retrieves a payload of the Mediator messages.	
This method retrieves a header of the Mediator messages.	
This method retrieves a componentDN for the Mediator service component.	
Notes:	
Footnote 1 Dummy implementation of an interface means that the implementation class provides definitions for all the methods declared in the particular interface, but one or more defined methods may have an empty method body. Extending a dummy implementation class is much easier because you can choose to override only a subset of the methods, unlike implementing an interface and defining all the methods.	
Sample Java Callout Class	
Example 20-21 shows a sample Java callout class:	
Example 20-21 Sample Java Callout Class	
The basic idea behind dynamic routing is to separate the control logic, which determines the path taken by the process, from the execution of the process. In the dynamic routing scenario, a decision matrix determines the type of Level-2 service to be chosen for each routing. The factors that affect the decision on the type of Level-2 service are channel, customer type, and so on. The solution allows this decision matrix to be modified externally by business analysts without changing the routing. The decision matrix must be evaluated to determine the outbound service.	
How to create dynamic routing rules:	
Figure 20-32 Mediator Editor Displaying Dynamic Routing Rule Option	
This creates a new business rule service component that is wired to the Mediator service component within the SOA composite of the Mediator service component. The wire links between the business rule service component and the Mediator service component are considered implementation details and are shown as dotted lines in the SOA Composite Editor, as shown in Figure 20-33.	
Figure 20-33 SOA Composite Editor with Wire Links Between the Business Rule and Mediator Service Components	
The business rule service component includes a rule dictionary. The rule dictionary is a metadata container for the rule engine artifacts, such as fact types, rulesets, rules, decision tables and so on. As part of creating the business rule service component, the rule dictionary is preinitialized with the following data.	
The fact type model is the data model that can be used for modeling rules. The rule dictionary is populated with a fact type model that corresponds to the input of a phase activity in a BPEL process, and some fixed data model that is required as part of the contract between the Mediator service component and the business rule service component.	
A ruleset is a container of rules used as a kind of grouping mechanism for rules. A ruleset can be exposed as a service. As part of creating the business rule service component, one ruleset is created within the rule dictionary.	
From a rule engine perspective, a decision table is a collection of rules with the same fact type model elements in the condition and action part of the rules. The decision table enables you to visualize rules in a tabular format. As part of creating the business rule service component, a new decision table is created within the ruleset.	
As part of creating the business rule service component, a decision service is created to expose the ruleset as a service of the business rule service component. The service interface is used by the Mediator service component to evaluate the decision table.	
After all the required artifacts of the phase activity are created, the wizard starts modeling the phase decision matrix (PDM). The wizard launches the Business Rules Designer of Oracle JDeveloper and enables you to edit the phase decision matrix. Figure 20-34 shows a sample decision table within the Business Rules Designer.	
Figure 20-34 Sample Decision Table Within the Rule Designer	
The Mediator Editor looks as shown in Figure 20-35 after the dynamic routing option is chosen.	
Figure 20-35 Mediator Editor with a Dynamic Routing Rule	
The changes in Source view are as follows.	
The switch	
element contains the decision service reference and operation details to enable the Mediator service component to invoke the decision service in runtime for obtaining the dynamic routing decisions. Dynamic decisions are returned by the business rule service engine user configuration at runtime.	
External service invocation contains an extra attribute called bindingInfo, which contains binding information to make the invocation dynamic.	
Note the following limitations on using dynamic routing rules with Mediator:	
composite.xml	
file. This endpoint is overridden by Mediator in runtime through an NM property. Therefore, outbound services can be called only over SOAP. Mediator processes messages depending on the conditions specified in the routing rules. In some cases, a Mediator may not process an incoming message because the message does not satisfy any of the conditions specified in the routing rules. You can define a default routing rule for such messages. The default routing rule is executed when none of the conditions of other routing rules are satisfied.	
A default routing rule is the same as the routing rules discussed in Section 20.3.2, "How to Create Static Routing Rules." The only difference between a default routing rule and other routing rules is that a default routing rule does not have any condition associated with it. Otherwise, a default routing rule is the same as other routing rules in every other aspect, such as target service, response handling, fault handling, and so on.	
Notes:	
A default routing rule can be either a sequential rule or a parallel rule. A default routing rule, whether sequential or parallel, is guaranteed to be executed when no other routing rule condition is satisfied. When the default rule is executed, the Mediator audit trail shows that the filter conditions of all the routing rules failed, and the filter condition of the default routing rule passed and was executed. Example 20-22 provides details.	
Example 20-22 Default Rule Scenarios	
You can define all routing rules, including default routing rules, as either sequential or parallel routing rules, so the expected behavior of routing rules varies. The following sections discuss each combination and the expected behavior:	
Sequential Default Routing Rule	
You can have the following possible scenarios with a sequential default routing rule:	
In this case, the server first evaluates the filter condition of parallel rules before evaluating the default routing rule filter condition. If none of the other filter conditions are matched, then the default sequential routing rule is executed.	
Parallel Default Routing Rule	
You can have the following possible scenarios with a parallel default routing rule:	
Note: The fact that the default routing rule is executed automatically implies that the default routing rule is the only case that was executed for the given Mediator service component. Similarly, if a Mediator service component has one routing rule without any filter condition and also has a default routing rule, then the default routing rule is never executed.	
The target of the default routing rule is the same as the supported targets of any other existing routing rule. This indicates that the target can be a service, an event, or an echo. Similarly, the response from the default routing rule target service can be forwarded or returned to the original caller. If the target service returns a fault, then the fault is handled in the same way as it is handled in any other routing rule.	
Note: If exceptions occur while evaluating or executing other routing rules, then the default routing rule is not executed.	
Schematron validation, transformation, and assign functionality for the default routing rule works in the same way as other routing rules.	
The current behavior of a pre-Java callout or post-Java callout works in the same way as for other routing rules. For the purpose of Java callouts, the default routing rule is considered another routing rule. Therefore, for the scenarios in which the default routing rule is executed, the postRouting()	
callback method occurs only after the default routing rule is executed.	
Note: The post-Java callouts occur after the execution of sequential rules and do not wait for the parallel rules to complete execution. Therefore, if the default routing rule is sequential, then the	
To set a routing rule as the default one, click the Set as Default Routing Rule icon shown on Figure 20-2. The .mplan	
file changes, as shown in Figure 20-36.	
Figure 20-36 .mplan File of a Mediator with a Default Routing Rule	
The following two tutorials give you step-by-step instructions for creating two of the Mediator sample projects provided on the Oracle SOA Suite samples page	
. They illustrate how to define routing rules for the Mediators you create.	
The CustomerRouter use case provides an overview of how to use a Mediator in a SOA composite sample application to route messages. To download the sample files mentioned in this section, see the Oracle SOA Suite samples page	
.	
The files are provided in the Basic Routing Sample for Mediator.	
The CustomerRouter use case consists of the following steps:	
Figure 20-37 provides an overview of the CustomerRouter use case.	
Figure 20-37 Overview of CustomerRouter Use Case	
This section provides the design-time tasks for creating, building, and deploying the use case.	
The New Gallery dialog appears.	
The Create SOA Application wizard appears.	
CustomerRouter	
and then click Next. The Name your project page appears.	
CustomerRouterProject	
and click Next. The Configure SOA settings page appears.	
The Application Navigator of Oracle JDeveloper is populated with the new application and the project, and the SOA Composite Editor contains a blank palette.	
The Create Mediator dialog is displayed.	
CustomerRouter	
. A Mediator with name CustomerRouter is created.	
You must create a file adapter service named ReadCust to read the XML files from a directory.	
Note: Mediator may process the same file twice when run against Oracle Real Application Clusters (Oracle RAC) planned outages. This is because a file adapter is a non-XA compliant adapter. Therefore, when it participates in a global transaction, it may not follow the XA interface specification of processing each file only once.	
The Adapter Configuration wizard Welcome page is displayed.	
The Service Name page is displayed.	
ReadCust	
. The Adapter Interface page is displayed.	
The Operation page is displayed.	
ReadFile	
. The File Directories page is displayed.	
C:\Customer\In	
. The File Filtering page is displayed.	
*.xml	
, and then click Next. The File Polling page is displayed.	
The Messages page is displayed.	
The Type Chooser dialog is displayed.	
The Import Schema File dialog is displayed.	
The Adapter Configuration wizard appears, as shown in Figure 20-39.	
Figure 20-39 Adapter Configuration Wizard – Messages page	
The Finish page is displayed.	
The Adapter Configuration wizard Welcome page is displayed.	
The Service Name page is displayed.	
USCustomer	
. The Adapter Interface page is displayed.	
The Operation page is displayed.	
The Operation page is displayed.	
WriteFile	
. The File Configuration page is displayed.	
For example, C:\Customer\out	
.	
customer_%SEQ%.xml	
and click Next. The Messages page is displayed.	
The Type Chooser dialog is displayed.	
The Import Schema File dialog is displayed.	
The Finish page is displayed.	
CanadaCustomer	
in a similar way by using the CanCustomer.xsd	
file. Figure 20-40 shows how the SOA Composite Editor appears after performing this task.	
Figure 20-40 Mediator Service Component with Adapter Services and References	
You must specify the path that messages take from the ReadCust adapter service to external references.	
This specifies the file adapter service to invoke the CustomerRouter Mediator while reading a file from the input directory.	
Figure 20-41 Connecting the ReadCust Service to the CustomerRouter Mediator	
In the Routing Rules section, click Add to the extreme right side of ReadFile, and then click static routing rule.	
The Target Type dialog is displayed.	
The Target Services dialog is displayed.	
The Routing Rules section is displayed.	
The Expression Builder dialog is displayed.	
The Country node is added in the Expression field, as shown in Figure 20-43.	
The <<Filter Expression>> field of the Routing Rules section is populated with the expression.	
The Request Transformation Map dialog is displayed, as shown in Figure 20-44.	
A CustomerData_To_Customer.xsl file is added, as shown in Figure 20-45.	
Figure 20-45 CustomerData_To_Customer.xsl File – Initially	
The Auto Map Preferences dialog is displayed.	
The Auto Map Preferences dialog is shown in Figure 20-46.	
The CustomerData_To_Customer.xsl file appears, as shown in Figure 20-47.	
Figure 20-47 CustomerData_To_Customer.xsl Tab – Auto Mapped Connections	
From the File menu, select Save All.	
Note: For repeating the steps, you must re-enter the Mediator Editor by closing it or by clicking the CustomerRouter.mplan tab above the editor.	
After performing all the steps described in this section, the SOA Composite Editor appears, as shown in Figure 20-37.	
An application server connection is required for deploying your SOA composite application. For information about creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."	
Deploying the CustomerRouterProject composite application to an application server consists of following steps:	
For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."	
After deploying the CustomerRouterProject	
application, you can run it by copying the input XML files to the input folder. The payload files are written to the specified output directories.	
For monitoring the running instance, you can use Oracle Enterprise Manager Fusion Middleware Control at the following URL:	
where hostname	
is the host on which you installed the Oracle SOA Suite infrastructure and port_number	
is the port of the server on which Oracle Enterprise Manager Fusion Middleware Control is installed.	
For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."	
This sample demonstrates an asynchronous request response scenario using Mediator. This composite has a client BPEL process invoking a Mediator, which invokes a server BPEL process. All the invocations are done as an asynchronous request response.	
Figure 20-48 provides an overview of the AsyncMediator use case.	
Figure 20-48 Overview of AsyncMediator Use Case	
To download the sample files mentioned in this section, see the Oracle SOA Suite samples page	
.	
This section provides the design-time tasks for creating, building, and deploying the use case. These tasks should be performed in the order in which they are presented.	
The New Gallery dialog appears.	
The Create SOA Application wizard appears.	
AsyncMediator	
and then click Next. The Name your project page appears.	
AsyncMediatorSample	
and click Next. The Configure SOA settings page appears.	
The Application Navigator of Oracle JDeveloper is populated with the new application and the project, and the SOA Composite Editor contains a blank palette.	
The Create BPEL Process dialog is displayed.	
ServerBPELProcess	
. The Create Mediator dialog is displayed.	
Mediator	
. A Mediator with name Mediator is created, as shown in Figure 20-49.	
Figure 20-49 Mediator and ServerBPELProcess in the Composite Window	
The Mediator Editor is displayed.	
The Target Type dialog is displayed.	
The Target Services dialog is displayed.	
The Request Transformation Map dialog is displayed.	
The XSLT Mapper is displayed and a target file named singleString_To_process.xsl is added.	
The Auto Map Preferences dialog is displayed.	
The XSLT Mapper displays, as shown in Figure 20-51.	
Figure 20-51 singleString_To_process.xsl Window	
The Request Transformation Map dialog is displayed.	
The XSLT Mapper is displayed and a target file named processResponse_To_singleString.xsl is added.	
The Auto Map Preferences dialog is displayed.	
The Create BPEL Process dialog is displayed.	
ClientBPELProcess	
. ClientBPELProcess is created in the SOA Composite Editor.	
InvokeMediator	
. InvokeMediator_execute_InputVariable_1	
and click OK. The Invoke dialog is displayed. ReceiveFromMediator	
. AssignRequest	
. Figure 20-52 The Create Copy Operation Dialog	
Figure 20-53 The Oracle JDeveloper - ClientBPELProcess.bpel	
Figure 20-54 The Create Copy Operation Dialog	
Figure 20-55 The Oracle JDeveloper - ServerBPELProcess.bpel	
An application server connection is required for deploying your SOA composite application. For information on creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."	
Deploying the EventMediatorApp composite application to Oracle WebLogic Server consists of following steps:	
For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."	
This chapter describes how to define routing rules for multiple part (multipart) messages for an Oracle Mediator service component, including defining filters, transformations, and validations.	
This chapter includes the following sections:	
For more information on routing rules, see Chapter 20, "Creating Oracle Mediator Routing Rules."	
Mediator includes support for importing multipart WSDL files in the Mediator Editor and for working with multipart source and target messages, which include multipart filter expression building, multipart schema validation, and transformations between multipart source and target messages for requests, replies, faults, and callbacks.	
The Mediator Editor with a multipart source looks similar to Figure 21-1.	
Figure 21-1 Mediator Editor for a Multipart Source	
This section describes how to work with different types of multipart messages.	
If you specify a filter expression for a multipart message, then the Expression Builder displays all message parts under the in variable, as shown in Figure 21-2:	
Figure 21-2 Expression Builder for a Multipart Request Source	
If you add a validation for a multiple part message, then the Add Validation dialog displays a list of parts from which you can choose one part, as shown in Figure 21-3. You specify a Schematron file for each request message part. Oracle Mediator then processes the Schematron files for the parts.	
Figure 21-3 Add Validation Dialog for a Multipart Request Source	
If you create a new mapper file for a multipart message, then the generated mapper file shows multiple source parts in the XSLT Mapper, as shown in Figure 21-4:	
Figure 21-4 XSLT Mapper for a Multipart Request Source	
If you assign values using a source expression and invoke the Expression Builder from the Assign Value dialog, the Expression Builder displays all message parts under the in variable, as shown in Figure 21-2. This is the same as specifying filter expressions.	
The method to create transformations and assign values to multipart reply, fault, and callback source messages is the same as working with request source messages.	
Note: You cannot specify filter expressions or add validations for reply, fault, and callback messages.	
If a routing target (that is, a request, reply, fault, or callback) has a multipart message, then the transformation is handled in a slightly different way. This is because the XSLT Mapper does not support multipart targets. In such a case, the Mediator creates and coordinates a separate mapper file for each target part, as shown in Figure 21-5:	
Figure 21-5 Request Transformation Map for a Multipart Routing Target	
This chapter describes the error handling capabilities of Oracle Mediatorand provides instructions for defining error handling for both business faults and system faults.	
This chapter includes the following sections:	
Mediator provides sophisticated error handling capabilities that enable you to configure a Mediator service component for error occurrences and corresponding corrective actions. Error handling enables an Mediator to handle errors that occur during the processing of messages and also the exceptions returned by outside web services. You can handle both business faults and system faults with Mediator.	
Business faults are application-specific and are explicitly defined in the service WSDL file. You can handle business faults by defining the fault handlers in Oracle JDeveloper at design time. System faults occur because of some problem in the underlying system such as a network not being available. Mediator provides fault policy-based error handling for system faults.	
Fault policies enable you to handle errors automatically or through human intervention. Mediator fault policy-based error handling consists of the following three components:	
A fault policy defines error conditions and corresponding actions. Fault policies are defined in the fault-policies.xml	
file. The fault-policies.xml	
file should be created based on the XML schema defined in Section 22.4.1, "Schema Definition File for fault-policies.xml."	
Note: Fault policies are applicable to parallel routing rules only. For sequential routing rules, the fault goes back to the caller directly and the policies are not applied. It is the responsibility of the caller to handle the fault. If the caller is an adapter, then you can define rejection handlers on the inbound adapter to take care of the messages that error out (that is, the rejected messages). For more information about rejection handlers, see Oracle Fusion Middleware User's Guide for Technology Adapters.	
A sample fault policy file is shown in Example 22-1:	
Example 22-1 Sample Fault Policy File	
The two components of the fault policy (conditions and actions) are described in the following sections.	
Conditions identify error or fault conditions along with a reference to the actions to be taken. You can use conditions to identify the action to be taken when a particular error or fault condition occurs. For example, for a particular error occurring because of a service not being available, you can perform an action such as a retry. Similarly, for another error occurring because of the failure of Schematron validation, you can perform the action of human intervention. This fault can be recovered manually by editing the payload and then resubmitting it through Oracle Enterprise Manager Fusion Middleware Control.	
Conditions are defined in the fault-policies.xml	
file, as shown in Example 22-2:	
Example 22-2 Conditions	
Identifying Fault Types Using Conditions	
You can categorize the faults that can be captured using conditions into the following types:	
For all Mediator-specific faults, the Mediator service engine throws only one fault, namely {http://schemas.oracle.com/mediator/faults}mediatorFault	
. Every Mediator fault is wrapped into this fault. The errors or faults generated by a Mediator can be captured by using the format shown in Example 22-3:	
Example 22-3 Oracle Mediator-Specific Faults	
These errors or faults can be captured by defining an XPath condition, which is based on the fault payload. Example 22-4 provides details.	
Example 22-4 Business Faults and SOAP Faults	
When a reference service returns a business fault, the fault can be handled in the Mediator service component. The returned fault can be forwarded to another component, redirected to an adapter service such as a file adapter, or an event can be raised. However, if both a fault policy and fault handler are defined for a business fault, then the fault policy takes precedence over the fault handler. In such a case, the fault handlers in the Mediator service component are ignored, if the fault policy is successfully executed.	
The errors or faults generated by an adapter can be captured by using the format shown in Example 22-5:	
Example 22-5 Capturing Errors or Faults Generated by an Adapter	
Actions specify the tasks to perform when an error occurs. Mediator provides a list of actions that you can use in a fault policy. These predefined actions are described in the following list:	
Table 22-1 Retry Action Options	
Option	Description
---	---
Retry Count	Retry N times.
Retry Interval	Delay in seconds for a retry.
Exponential Backoff	Retry interval increase with an exponential backoff.
Retry Failure Action	Chain to this action if a retry N times fails.
Retry Success Action	Chain to this action if a retry succeeds.
Note: Exponential backoff indicates that the next retry attempt is scheduled at 2 x the delay, where delay is the current retry interval. For example, if the current retry interval is	
Example 22-6 shows how to specify the retry action:	
Example 22-6 Retry Action	
If you set the retry Interval in the fault policy to a duration of less than 30 seconds, then the retry may not happen within the specified intervals. This is because the default value of the org.quartz.scheduler.idleWaitTime	
property is 30 seconds, and the scheduler waits for 30 seconds before retrying for available triggers, when the scheduler is otherwise idle. If the retry interval is set to a value of less than 30 seconds, then latency is expected.	
If you want the system to use a retry interval that is less than 30 seconds, add the following property under the section <property name="quartzProperties">	
in the fabric-config-core.xml	
file:	
oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass	
interface. You can specify this action as shown in Example 22-7: Note: The implemented Java class must implement a method that returns a string. The policy can be chained to a new action based on the returned string.	
Example 22-7 Customized Java Class Calling	
For more information, see Example 22-8 and Example 22-9.	
Example 22-8 oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass Interface	
Example 22-9 oracle.integration.platform.faultpolicy.IFaultRecoveryContext Interface	
Mediator Service Engine Implementation	
Example 22-10 shows the Oracle Mediator service engine implementation of the IFaultRecoveryContext	
interface.	
Example 22-10 IFaultRecoveryContext Interface Implementation	
You can use the methods shown in Example 22-11 to retrieve additional Oracle Mediator-specific data available with the MediatorRecoveryContext	
class:	
Example 22-11 Methods for Retrieving Data	
Example 22-12 shows how to retrieve data using the CalloutMediatorMessage	
interface:	
Example 22-12 Data Retrieval Using the CalloutMediatorMessage Interface	
Fault bindings associate fault policies with composites or components, and are defined in the fault-bindings.xml	
file. Create the fault-bindings.xml	
file based on the XML schema defined in Section 22.4.2, "Schema Definition File for fault-bindings.xml."	
Fault policies can be created at the following levels:	
Note: Human intervention is the default action for errors that do not have a fault policy defined.	
A sample fault binding file is shown in Example 22-15.	
You can specify an action for an error type or error group while defining the conditions in a fault policy. In the previous examples, medns:mediatorFault	
indicates that the error is a Mediator error, whereas medns:TYPE_FATAL_MESH	
refers to an error group. An error group consists of one or more child error types. TYPE_ALL	
is an error group that contains all Mediator errors.	
The following list describes various error groups contained in the TYPE_ALL	
error group:	
TYPE_DATA	
: Contains errors related to data handling. TYPE_DATA_ASSIGN	
: Contains errors related to data assignment. TYPE_DATA_FILTERING	
: Contains errors related to data filtering. TYPE_DATA_TRANSFORMATION	
: Contains errors that occur during a transformation. TYPE_DATA_VALIDATION	
: Contains errors that occur during payload validation. TYPE_METADATA	
: Contains errors related to Mediator metadata. TYPE_METADATA_FILTERING	
: Contains errors that occur while processing the filtering conditions. TYPE_METADATA_TRANSFORMATION	
: Contains errors that occur while getting the metadata for a transformation. TYPE_METADATA_VALIDATION	
: Contains errors that occur during validation of metadata for Mediator (.mplan	
file). TYPE_METADATA_COMMON	
: Contains other errors that occur during the handling of metadata. TYPE_FATAL	
: Contains fatal errors that are not easily recoverable. TYPE_FATAL_DB	
: Contains database-related fatal errors, such as a Datasource not found	
error. TYPE_FATAL_CACHE	
: Contains Mediator cache-related fatal errors. TYPE_FATAL_ERRORHANDLING	
: Contains fatal errors that occur during error handling such as Resubmission queues not available	
. TYPE_FATAL_MESH	
: Contains fatal errors from the Service Infrastructure such as Invoke service not available	
. TYPE_FATAL_MESSAGING	
: Contains fatal messaging errors arising from the Service Infrastructure. TYPE_FATAL_TRANSACTION	
: Contains fatal errors related to transactions such as Commit can't be called on a transaction which is marked for rollback	
. TYPE_FATAL_TRANSFORMATION	
: Contains fatal transformation errors such as an error occurring because of the XPath functions used in a transformation. TYPE_TRANSIENT	
: Contains transient errors that can be recovered on a retry. TYPE_TRANSIENT_MESH	
: Contains errors related to the Service Infrastructure. TYPE_TRANSIENT_MESSAGING	
: Contains errors related to JMS such as enqueuing and dequeuing. TYPE_INTERNAL	
: Contains internal errors. You can enable error handling for an Oracle Mediator by using the fault-policies.xml	
and fault-bindings.xml	
files.	
To use error handling for a Mediator service component:	
fault-policies.xml	
file based on the schema defined in Section 22.4.1, "Schema Definition File for fault-policies.xml." fault-bindings.xml	
file based on the schema defined in Section 22.4.2, "Schema Definition File for fault-bindings.xml." fault-policies.xml	
and the fault-bindings.xml	
file to your SOA composite application project directory. All the fault policies for a composite are loaded when the first error occurs. At runtime, Mediator checks whether there is any policy defined for the current error. If a fault policy is defined, then Mediator performs the action according to the configuration in the fault policies file. If there is no fault policy defined, then the default action of human intervention is performed.	
Apart from policy-based recovery using the fault policy file, you can also perform fault recovery actions on Oracle Mediator faults identified as recoverable in Oracle Enterprise Manager Fusion Middleware Control. This can be performed in the following ways:	
For more information about fault recovery using Oracle Enterprise Manager Fusion Middleware Control, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
This section describes the schema files for the fault-policies.xml	
and fault-bindings.xml	
files.	
The fault-policies.xml	
file should be based on the XSD file shown in Example 22-16.	
Example 22-16 XSD File for fault-policies.xml	
The fault-bindings.xml	
file should be based on the XSD file shown in Example 22-17.	
Example 22-17 XSD File for fault-bindings.xml	
The script content on this page is for navigation purposes only and does not alter the content in any way.	
This chapter describes message resequencing concepts in Oracle Mediator, and provides instructions for configuring standard resequencing, first-in/first-out resequencing, and best effort resequencing.	
This chapter includes the following sections:	
The resequencer in Mediator rearranges a stream of related but out-of-sequence messages into a sequential order. When incoming messages arrive, they may be in a random order. The resequencer orders the messages based on sequential or chronological information, and then sends the messages to the target services in an orderly manner. The sequencing is performed based on the sequencing strategy selected.	
The resequencer works with two central concepts: groups and sequence IDs. The sequence ID is an identifying part of the message, and messages are rearranged based on this identifier. The messages arriving for resequencing are split into groups and the messages within a group are sequenced according to the sequence ID. Sequencing within a group is independent of the sequencing of messages in any other group. Groups in themselves are not dependent on each other and can be processed independently of each other.	
As an example, messages attached to certain groups arrive to a Mediator service component in the following order:	
msg9(a), msg8(b), msg7(a), msg6(c), msg5(a), msg4(b), msg3(c), msg2(b), msg1(a)	
Table 23-1 shows how the Mediator sorts the messages into groups. The order of the messages in each group depends on the type of resequencer used.	
Table 23-1 Messages Sorted into Groups	
Group c	Group b
---	---
msg6(c), msg3(c)	msg8(b), msg4(b), msg2(b)
All the groups are processed independently of each other and any error occurring in ones group does not affect the processing of other groups.	
Groups and sequence IDs are identified through XPath expressions in the message payload and header. You specify XPath expressions that point to the elements in the message payload on which grouping is done and on which sequencing is done.	
In the message payload shown in Figure 23-1, CustomerId	
is the field on which to base instance sequencing and CustomerName	
is the field on which to base grouping.	
Note: Resequencing is supported only for Mediator components that have a request operation and a request-callback operation in the WSDL file. In other words, resequencing is not allowed by the user interface if the WSDL operation has a synchronous reply element. For more information about these operations, see Chapter 24, "Understanding Message Exchange Patterns of an Oracle Mediator."	
Mediator can resequence the incoming messages in a user-specified order. This implementation enables you to specify three types of resequencing orders:	
The standard resequencer supports a standard resequencer pattern. The following sections describe the standard resequencer and how it processes messages.	
The standard resequencer is useful for applications that use identifiers from a simple numeric identifier sequence in their messages. The standard resequencer receives a stream of messages that might not arrive in order; it then stores the out-of-sequence messages until a complete sequence based on the sequence IDs is received. The in-sequence messages are then processed asynchronously based on their sequence ID.	
It is important to note that the messages to outbound services of the standard resequencer Mediator service component are guaranteed to arrive in sequence.	
When using the standard resequencer in Mediator, you must always specify a group XPath expression and a sequence ID XPath expression. These specify where the Mediator resequencer can find the group and the sequence ID in the messages. You must also supply the sequence numbering in terms of the start sequence ID and the sequence ID incremental delta. This numbering is used to form each group. In addition to the group, sequence ID, and increment properties, you can also specify a time period, in seconds, to wait for the expected messages.	
Table 23-2 shows how groups are formed differently for two different values of the incremental delta.	
Table 23-2 Groups Formed Differently for Two Different Values	
Start SequenceID	Incremental Delta
---	---
1	1
1	5
Notes:	
Footnote 1 The timeout period is the time period in seconds to wait for an expected message.	
The FIFO resequencer supports a standard first in, first out (FIFO) pattern. The following sections describe the FIFO resequencer and how it processes messages.	
The FIFO resequencer is useful for applications that need sequencing based on the time the messages arrive to the Mediator. The FIFO resequencer receives a stream of messages that are in order and processes them in sequence for each group based on the arrival time of the messages.	
It is important to note that the messages to outbound services of the Mediator acting as a FIFO resequencer are guaranteed to arrive in order based on arrival time. Therefore, the messages are delivered in the order they were stored in the resequencer data store.	
When using the FIFO resequencer, you must always specify a group XPath expression. However, you do not need to specify a sequence ID because the messages are processed according to the time of arrival to the Mediator service component that is configured for FIFO resequencing. The group XPath expression specifies where the FIFO resequencer should find the group information in the message to group the messages. No further configuration is needed for a FIFO pattern.	
Table 23-3 illustrates the behavior of the FIFO resequencer where msgX(Y,Z)	
indicates that the message arrives as message number X to the Mediator service component and the message contains sequenceID	
Y and group Z.	
Table 23-3 FIFO Resequencer Behavior	
Incoming Messages	Sequenced Messages
---	---
msg03(2,c) msg06(1,c) msg07(5,a) msg10(3,a) msg10(3,c) msg02(7,a) msg05(9,a) msg12(4,c)	msg12(4,c),msg10(3,c),msg06(1,c),msg03(2,c) msg05(9,a), msg02(7,a), msg10(3,a), msg07(5,a)
As shown in Table 23-3, the messages are sequenced based on their time of arrival and the sequenceID	
is not used for sequencing.	
Note: When using the FIFO resequencer, use a single-threaded inbound adapter to avoid unpredictable results. For example, when you use the file/FTP adapter, the database adapter, or the AQ adapter in front of a Mediator service component that is configured as a FIFO resequencer, configure the adapter for single-threaded processing. Otherwise, unpredictable results occur because the arrival time of each message is calculated when the message arrives to the Mediator service component instead when it arrives to the adapter service.	
The Mediator resequencer supports a best effort pattern. The following sections describe the best effort resequencer and how it processes messages.	
The best effort pattern is useful for applications that produce a large number of messages in a short period of time and cannot provide information to the resequencer about the identifier to use for sequencing. Typically, the identifier used for sequencing in such scenarios is of a dateTime	
type or numeric	
type. Using the dateTime	
field as the sequence ID XPath enables you to control the sequencing. The messages are expected to be sent in sequence by the applications, thus the date and time the messages are sent can be used for sequencing. The Mediator makes the best effort to ensure that the messages are delivered in sequence.	
The best effort resequencer can reorder messages based on no knowledge about the increment of the sequence ID. This situation means that unlike the standard resequencer, you do not need to define the increment of the sequence ID for the best effort resequencer in advance. When the messages are processed, they are processed in sequence based on the specified sequence ID and the messages that have arrived, whether a true sequence is received. The sequence IDs are either numeric	
or dateTime	
. Therefore, sequencing occurs on the numeric order or the dateTime	
order of the sequence IDs.	
The best effort resequencer processes messages asynchronously based on one of two message selection strategies: Maximum rows selected or time window. The messages selected and processed at any one time are based either on the maximum number of rows you specify or on a window of time in which they arrive.	
Maximum Rows Selected	
When the best effort resequencer is configured to use a maximum number of rows, it performs the following steps whenever new messages are available in the resequencer database:	
maxRowsRetrieved	
parameter from the ordered messages above. Time Window	
When the best effort resequencer is configured to use a time window instead of a maximum number rows, the messages to select and process at one time are based on a period of time you specify plus an optional buffer time. Each message belongs to a specific time window, and messages that are part of one time window are processed separately from messages belonging to a different time window.	
In addition to the time window, you can specify a buffer time, which is an overlap between two sequential time windows that allows messages that arrive a little late to be associated with the first time window. By default, the buffer time is 10% of the time window you specify.	
When the best effort resequencer is configured to use a time window, groups are processed in an iterative manner and messages are processed in the following steps:	
It is important to note that the messages to outbound services of the Mediator service component configured for best effort resequencing are not guaranteed to arrive in order of a sequence ID. At any given time, a snapshot of the available messages is taken and sequencing is performed only on those messages. Therefore, unlike a standard resequencer, it is not guaranteed that a message with a lesser sequence ID value is sent before a message that ha a greater sequence ID value but that arrived earlier. Messages with a lesser sequence ID value that arrive later might be processed in the following cycle when a snapshot of available messages is taken again and the messages are reordered.	
When using the best effort resequencer, you must specify a group XPath expression, a sequence ID XPath expression, and the data type of the sequence ID (numeric	
or dateTime	
). These specify where the resequencer should find the group and the sequence ID in the messages and how to handle the sequence ID. In addition, you must specify either a maximum number of rows to select for each resequencing batch or a time window during which the messages included in one batch arrive.	
Unlike the standard resequencer, the best effort resequencer has no knowledge about how the sequence is built. No further information is used by the best effort resequencer to perform its responsibilities.	
Table 23-4 illustrates the behavior of the best effort resequencer when it is configured to use the maximum number of rows to determine which messages to process. In this example, msgX(Y,Z)	
indicates that the message arrives as message number X to the Mediator service component and the message contains sequenceID	
Y and group	
Z.	
Table 23-4 Best Effort Resequencer Behavior Based on Maximum Rows	
Group C	Sequenced Messages
---	---
msg03(1,c) msg06(2,c) msg10(3,c) msg12(4,c)	msg12(4,c),msg10(3,c),msg06(2,c),msg03(1,c)
Note: For the best effort resequencer to work correctly, the messages must arrive in sequence or nearly in sequence. Otherwise, they are not resequenced correctly. If the messages do not arrive close together, set the value of the	
Table 23-5 illustrates the behavior of the best effort resequencer when it is configured to process messages based on the time period in which they arrive. In this example, the time window is 10 minutes, the buffer is 10% (one minute), and msgX(Y)	
indicates that the message arrives as message number X to the Mediator service component and the message contains the sequence ID Y. The first message arrives at 2:00:00, which starts the time window. The time window lasts until 2:10:00, but with the addition of the buffer time, messages that arrived until 2:11:00 are processed.	
Table 23-5 Best Effort Resequencer Behavior Based on a Time Window	
Group CMessage/Time	Sequenced Messages
---	---
msg01(04)/2:00:00 msg02(05)/2:00:20 msg03(01)/2:00:30 msg04(03)/2:00:50 msg05(07)/2:04:20 msg06(02)/2:04:45 msg07(13)/2:05:10 msg08(08)/2:05:40 msg09(06)/2:08:40 msg10(12)/2:09:20 msg11(10)/2:10:30 msg12(09)/2:10:40 msg13(14)/2:10:50 msg14(11)/2:13:00	msg03(01), msg06(02), msg04(03), msg01(04), msg02(05), msg09(06), msg05(07), msg08(08), msg12(09), msg11(10), msg10(12), msg07(13)
Note: In the above example, the resequencer identified the maximum sequence ID for the time window as 13 (from message 7). Message 13 arrived within the buffer time, but has a sequence ID of 14. It is not processed with the original group, but instead begins a new time window at its arrival time of 2:10:50. Message 14 arrived too late and is included in the second time window.	
You can configure the resequencer using Oracle JDeveloper. This section describes how to configure the resequencer in Oracle JDeveloper.	
You can define resequencing at either the service component level or the operation level. For Mediator service components with only one operation, configuring resequencing at the operation or service component level results in the same behavior. For Mediator service components having multiple operations, specifying the resequencing at the service component level applies the same resequencing rules to all the operations, and messages arriving at any operation are resequenced. By default, the resequencing level is operations.	
To specify the resequencing level:	
Figure 23-2 Mediator Editor with Resequence Level Field	
If you choose component, the Resequence field under each operation no longer appears and the Resequence Mode field appears under the Resequence Level field so you can set the resequencing mode for the service component. By default, the resequencing mode is set to off.	
When you select a resequencing mode, the Resequence Options box appears under the service component or operation, as shown in Figure 23-3. If the Resequence Mode field for an operation is set to off, the Resequence Options box disappears.	
Figure 23-3 Mediator Editor with Resequence Options Section	
The options in the Resequence Options section change depending on the resequencing mode you select.	
This section provides instructions on how to configure the three different types of resequencing strategies.	
To configure a standard resequencer:	
The Resequence Options box appears and includes the options for the standard resequencer, as shown in Figure 23-4.	
Figure 23-4 Oracle Mediator with Resequence Mode set to Standard	
Note: You can either enter the XPath expressions directly in the Group and ID fields or you can click Invoke Expression Builder to the right of each field. This launches the Expression Builder, which provides graphical assistance in creating field expressions and adding functions.	
Table 23-6 Standard Resequencing Options	
Field Name	Description
---	---
Group	The XPath that points to the field in the incoming message on which grouping is done. If you are editing the MPLAN file directly, the corresponding element is named
ID	The XPath that points to the field in the incoming message on which resequencing is done. If you are editing the MPLAN file directly, the corresponding element is named
Timeout	The time period in seconds to wait for an expected message. The resequencer locks the group as timed-out if a time out occurs. If you are editing the MPLAN file directly, the corresponding element is named
Start	The starting number of the ID sequence. If you are editing the MPLAN file directly, the corresponding element is named
Increment	The increment of the ID sequence. If you are editing the MPLAN file directly, the corresponding element is named
Footnote 1 This default value means that the timeout never happens for a group by default.	
To configure a FIFO resequencer:	
The Resequence Options box appears and includes the option for the standard resequencer, as shown in Table 23-6.	
Figure 23-5 Oracle Mediator with Resequence Mode set to FIFO	
Notes: If you are modifying the	
To configure a best effort resequencer:	
The Resequence Options box appears and includes the option for the standard resequencer, as shown in Figure 23-6.	
Figure 23-6 Oracle Mediator with Resequence Mode set to Best Effort	
Tip: You can specify either a maximum number of rows to process at one time or a time window for the messages. You cannot specify both.	
For instructions, see “Configuring Resequenced Messages” in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
Table 23-7 Best Effort Resequencing Options	
Field Name	Description
---	---
Group	The XPath that points to the field in the incoming message on which grouping is performed. If you are editing the MPLAN file directly, the corresponding element is named
ID	The XPath that points to the field in the incoming message that contains the ID on which resequencing is performed. If you are editing the MPLAN file directly, the corresponding element is named
Datatype	The data type of the sequence ID. The ordering process is based on the data type. Supported values are datetime and numeric. If you are editing the MPLAN file directly, the corresponding element is named
Time Window	The length of time in minutes to wait after a message arrives to select messages from the data store for resequencing. You must specify a time window or the maximum rows (described below), but not both. If you are editing the MPLAN file directly, the corresponding element is named
Max Rows	Number of in-sequence messages that the resequencer should pick from the data store at a time. If you are editing the MPLAN file directly, the corresponding element is named
This chapter describes common message exchange patterns between an Oracle Mediator service component and other applications.	
This chapter includes the following sections:	
Notes: The following exchange patterns show the default handling of responses, faults, and callbacks by Oracle JDeveloper when a routing rule is created. Keep in mind the following points for all cases:	
In a one-way interaction, the Mediator is invoked, but it does not send a response back to the caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-1:	
Table 24-1 Response When Mediator's WSDL Is a One-way Interaction	
Routing Rule Target Type	Response
---	---
Request	No response.
Request Response	Response is forwarded to another target or event.
Request Response Fault	Response and fault are forwarded to another target or event.
Request Callback	Callback is forwarded to another target or event.
Request Response Callback	Response and callback are forwarded to another target or event.
Request Response Fault Callback	Response, fault, and callback are forwarded to another target or event.
Figure 24-1 illustrates the one-way message exchange pattern.	
Figure 24-1 One-way Message Exchange Pattern	
The one.way.returns.fault	
property controls how faults and one-way messages are handled for one-way interface SOAP calls. You can add this property to the service binding component of the web service section for one-way web services in the composite.xml	
file. This property is not applicable to references. It is applicable only to services and only to the binding.ws	
binding type. Table 24-2 provides more details on this property.	
Table 24-2 one.way.returns.fault Property	
If one.way.returns.fault Is...	Then...
---	---
Set to . . . <service name="Mediator1_2" ui:wsdlLocation="ReadFile.wsdl"> <interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/file /LocalSandbox/Project1/ReadFile%2F#wsdl.interface(Read_ ptt)"/> <binding.ws port="http://xmlns.oracle.com/pcbpel/adapter/file /LocalSandbox/Project1/ReadFile%2F#wsdl.endpoint (Mediator1/Read_pt)"> <property name="one.way.returns.fault" type="xs:string" many="false" override="may">true</property> </binding.ws> </service> . . .	Any fault that occurs during downstream processing returns a SOAP fault to the client and an HTTP response code of 500. (The same behavior as 11g Release 1.)
Set to . . . <service name="Mediator1_2" ui:wsdlLocation="ReadFile.wsdl"> <interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/file/ Local Sandbox/Project1/ReadFile%2F#wsdl.interface(Read_ ptt)"/> <binding.ws port="http://xmlns.oracle.com/pcbpel/adapter/file/LocalSan dbox/Project1/ReadFile%2F#wsdl.endpoint(Mediator1/Read_ pt)"> <property name="one.way.returns.fault" type="xs:string" many="false" override="may">false</property> </binding.ws> </service> . . .	Any fault that occurs during downstream processing returns only an HTTP response code of 500. No SOAP fault is returned to the client.
Not set (the default case)	Any fault that occurs during downstream processing returns a SOAP fault to the client and an HTTP response code of 500. (The same behavior as 11g Release 1.)
To add the one.way.returns.fault property:	
one.way.returns.fault	
property. The Create Property dialog is displayed.	
one.way.returns.fault	
. true	
or false	
. In a request-reply interaction, the Mediator is invoked and sends a reply to the caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-3:	
Table 24-3 Response When Mediator's WSDL Is a Request Reply	
Routing Rule Target Type	Response
---	---
Request	There is no response from the target, but there should be at least one sequential routing rule with a request-response service.
Request Response	The response is sent back to the caller. The response can be forwarded to another target or event, but there should be at least one sequential routing rule that returns a response back to the caller.
Request Response Fault	The response is sent back to the caller. The fault is forwarded to another target or event.
Request Callback	There is no response from the target, but there should be at least one sequential routing rule with a request-response service. The callback is forwarded to another target or event.
Request Response Callback	The response is sent back to the caller. The callback is forwarded to another target or event.
Request Response Fault Callback	The response is sent back to the caller. The callback and fault are forwarded to another target or event.
Figure 24-2 illustrates the request-reply message exchange pattern.	
Figure 24-2 Request-Reply Message Exchange Pattern	
In a request-reply-fault interaction, the Mediator is invoked and sends a reply and one or more faults back to the caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-4:	
Table 24-4 Response When Mediator's WSDL Is a Request Reply Fault	
Routing Rule Target Type	Response
---	---
Request	There should be at least one sequential routing rule with a request-response-fault service. Mediator returns
Request Response	The response is sent back to the caller. Any exception in Mediator message processing may result in a fault.
Request Response Fault	The response and fault are sent back to the caller. Any exception in Mediator message processing may result in a fault.
Request Callback	There is no response from the target, but there should be at least one sequential routing rule with a request-response service. Mediator returns
Request Response Callback	The response is sent back to the caller. Any exception in Mediator message processing may result in a fault.
Request Response Fault Callback	The response and fault are sent back to the caller. Any exception in Mediator message processing may result in a fault.
Figure 24-3 illustrates the request-reply-fault message exchange pattern.	
Figure 24-3 Request-Reply-Fault Message Exchange Pattern	
In a request-callback interaction, the Mediator is invoked and may send an asynchronous reply to the caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-5:	
Table 24-5 Response When Mediator's WSDL Is a Request Callback	
WSDL of the Routing Rule Target	Response
---	---
Request	There should be at least one sequential routing rule with a request-callback service. No callback is sent to the caller if there is no routing rule with a defined callback.
Request Response	The response is sent back to the caller, as a callback, in a separate thread. You can create additional routing rules to forward the response to another target or event.
Request Response Fault	The response is sent back to the caller, as a callback, in a separate thread. The fault is forwarded to another target or event. As above, you can create additional routing rules to forward the response to another target or event.
Request Callback	The callback is sent back to the caller.
Request Response Callback	The callback is sent back to the caller, and the response is forwarded to another target or event.
Request Response Fault Callback	The callback is sent back to the caller. The response and fault are forwarded to another target or event.
Figure 24-4 illustrates the request-callback message exchange pattern.	
Figure 24-4 Request-Callback Message Exchange Pattern	
In a request-reply-callback interaction, the Mediator is invoked and sends a response and an asynchronous reply to the initial caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-6:	
Table 24-6 Response When Mediator's WSDL Is a Request Response Callback	
Routing Rule Target Type	Response
---	---
Request	There should be at least one sequential routing rule that returns a response. No callback is sent to the caller if there is no routing rule with a defined callback.
Request Response	There should be at least one sequential routing rule that returns a response. No callback is sent if there is no routing rule with a defined callback.
Request Response Fault	There should be at least one sequential routing rule that returns a response. No callback is sent to the caller if there is no routing rule with a defined callback. The fault is forwarded to another target or event.
Request Callback	There should be at least one sequential routing rule that returns a response. Mediator returns
Request Response Callback	The response and callback are sent back to the caller.
Request Response Fault Callback	The response and callback are sent back to the caller. The fault is forwarded to another target or event.
Figure 24-5 illustrates the request-reply-callback message exchange pattern.	
Figure 24-5 Request-Reply-Callback Message Exchange Pattern	
In a request-reply-fault-callback interaction, the Mediator is invoked and sends a response, an asynchronous reply, and one or more fault types to the initial caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-7:	
Table 24-7 Response to a Request Response Fault Callback Mediator	
WSDL of the Routing Rule Target	Response
---	---
Request	There should be at least one sequential routing rule with a request-callback service and at least one sequential routing rule that returns a response. No callback or response is sent unless the required routing rules are defined.
Request Response	There should be at least one sequential routing rule with a request-callback service and at least one sequential routing rule that returns a response. No callback or response is sent unless the required routing rules are defined.
Request Response Fault	There should be at least one sequential routing rule with a request-callback service and at least one sequential routing rule that returns a response. No callback or response is sent unless the required routing rules are defined.
Request Callback	There should be at least one sequential routing rule that returns a response. Mediator returns
Request Response Callback	The response and callback are sent back to the caller. Any exception in Mediator message processing may result in a fault.
Request Response Fault Callback	The response, fault, and callback are sent back to the caller.
Figure 24-6 illustrates the request-reply-fault-callback message exchange pattern.	
Figure 24-6 Request-Reply-Fault-Callback Message Exchange Pattern	
This part describes how to use the business rules service component.	
This part contains the following chapters:	
This chapter describes how to use a business rule service component to integrate a SOA composite application with Oracle Business Rules. A business rule service component is also called a decision component. You can add business rules as part of a SOA composite application or as part of a BPEL process.	
This chapter includes the following sections:	
For more examples of using Oracle Business Rules, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.	
A decision component, also called a business rule service component, supports use of Oracle Business Rules in a SOA composite application. Decision components support the following SOA composite usage:	
For more information, see Chapter 20, "Creating Oracle Mediator Routing Rules."	
For more information, see Section 28.4, "Associating Human Tasks with BPEL Processes."	
You can create a SOA composite application that includes BPEL process, business rule, and human task service components. These components are complementary technologies. BPEL processes focus on the orchestration of systems, services, and people. Business rules focus on decision making and policies. Human tasks enable you to model a workflow that describes the tasks for users or groups to perform as part of an end-to-end business process flow.	
Some examples of where business rules can be used include:	
Rules can perform intelligent routing within the business process based on service level agreements or other guidelines. For example, if the customer requires a response within one day, send a loan application to the QuickLoan loan agency only. If the customer can wait longer, then route the request to three different loan agencies.	
There are typically many conditions that must be evaluated as part of a business process. However, the parameters to these conditions can be changed independently of the process. For example, you provide loans only to customers with a credit score of at least 650. This value may be changed dynamically based on new guidelines set by business analysts.	
Rules can validate input documents or apply additional constraints on requests. For example, a new customer request must always be accompanied with an employment verification letter and bank account details.	
Rules are frequently used for human tasks in the business process:	
For more information about creating business rules in the Human Task editor of a human task component, see Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."	
You can create a business rules service component in the SOA composite application of Oracle JDeveloper and then design it by using the Business Rules Designer, which is displayed when you double-click a business rule in the SOA Composite Editor.	
The Business Rules Designer consists of the following main sections shown in Figure 25-1. These sections enable you to work with business rules in Oracle JDeveloper.	
Figure 25-1 Rules Designer in Oracle JDeveloper	
The Application Navigator displays the files in the project. Each project can only contain one composite. But each composite can have multiple components of either the same type or different types (Business Rules, BPEL process, Oracle Mediator, and human workflow).	
As you design business rules, additional files, folders, and elements can appear in the Application Navigator.	
The Rules Designer window provides a visual view of the selected dictionary component. You use the Rules Designer navigation tabs to select different parts of the dictionary with which to work. The rules designer window displays when you perform one of the following actions:	
Table 25-1 describes where you can find information about working with a dictionary with Rules Designer.	
Table 25-1 Rules Designer Navigation Areas Descriptions	
For more information about the Rules Designer navigation areas and its descriptions, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.	
The Structure window offers a structural view of the data in the Business Rule dictionary currently selected in the Rules Designer window. You can perform a variety of tasks from this section, by selecting an element and right-clicking on the element, including:	
Figure 25-2 shows the Structure window.	
Figure 25-2 Structure Window with Rules Designer Dictionary	
Rules Designer displays the status of dictionary validation in the business rule validation log, as shown in Figure 25-3.	
When a dictionary is invalid, Rules Designer produces a list of warning messages and lists the associated dictionary objects that you can use to locate the dictionary object and to correct the problem. You can safely ignore the validation warnings that you see when you create rules using Rules Designer. The validation warnings are removed as you create the rules, but are shown during the intermediate steps. To test or deploy rules, the associated dictionary must not display warnings.	
For more information on business rules validation, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.	
Figure 25-3 Rules Designer Business Rule Validation Log	
This section describes how to get started with business rules and provides a brief introduction to the main sections of Oracle JDeveloper that you use to design business rules.	
You can add Business Rule components using the SOA Composite Editor.	
To create a Business Rule component:	
As a service component in an existing SOA composite application:	
In a new application:	
This starts the Create SOA Application wizard.	
Table 25-3 Restrictions on Naming a SOA Project	
Create an Application Named...	With a SOA Project Named...
---	---
During deployment, the second deployed project (composite) overwrites the first deployed project (composite).	
Each method causes the Create Business Rules dialog shown in Figure 25-4 to appear.	
You can use a decision component, also called a business rule service component, to execute business rules in a BPEL process.	
You add business rules to a BPEL process using a Business Rule component. When you add a business rule component to a BPEL process, you must include input and output variables to provide input to the rules and obtain results back from the business rules.	
A business rule component enables you to execute business rules and make business decisions based on the rules. To create a business rule component, also called a decision component, you drag-and-drop a Business Rule from the component palette into the BPEL process.	
To add a business rule to a BPEL process:	
receiveInput	
and callbackClient	
as shown in Figure 25-5. Figure 25-5 Adding A Business Rule to a BPEL Process	
receiveInput	
and callbackClient	
, as shown in Figure 25-6. Figure 25-6 Drag-and-drop a Business Rule into a BPEL Process	
GetCreditRating	
, as shown in Figure 25-7. If you previously created a dictionary, under the Dictionary tab, in the Dictionary field, select an existing dictionary. Figure 25-7 Business Rule Added to Auto Loan BPEL Process	
GetCreditRating	
, the input is a rating request document. The output is generated when you run the business rules, and for this example is a rating document. For example, in BPEL you can create two new variables, RatingRequest	
and Rating	
that carry the input and output data for the GetCreditRating	
rules. Enter a name for the Oracle Business Rules dictionary. For example, enter GetCreditRating	
, as shown in Figure 25-8.	
Figure 25-8 Adding GetCreditRating Business Rule Dictionary	
Add inputs for business rule:	
This displays the Add Input Variable dialog box.	
This displays the Create Variable dialog box.	
RatingRequest	
as shown in Figure 25-10. ratingrequest	
type. Add any needed types using the Type Chooser. CreditRatingTypes.xsd	
. Also import any other required schema for your application. Add outputs for business rule:	
GetCreditRating	
in the same way you created the input variable. Rating.	
CreditRatingTypes.xsd	
and select the element type rating	
. This displays the Create Business Rules dialog, as shown in Figure 25-11.	
Figure 25-11 Create Business Rules Dialog with Input and Output Variables	
Set options and create decision service and business rules dictionary:	
CreditRatingService	
. Figure 25-12 Rules Designer Canvas Where You Work with Business Rules	
For information on Rules Designer, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.	
When you add business rules to a BPEL process, Oracle JDeveloper creates a decision component to control and run the business rules using the Business Rule Service Engine.	
A decision component consists of the following:	
This web service lets business processes assert and retract facts as part of the process. In some cases, all facts can be asserted from the business process as one unit. In other cases, the business process can incrementally assert facts and eventually consult the rule engine for inferences. Therefore, the service supports both stateless and stateful interactions.	
You can create a variety of such decision components.	
For more information, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.	
After you create an application, a project, and a rules dictionary, the rules dictionary appears in the structure pane in Oracle JDeveloper and Rules Designer opens in the main canvas.	
As part of the create Business Rule dialog you either select an existing dictionary or a new rule dictionary is created with the following pre-loaded data:	
Note: When you create inputs and outputs for a business rule, the XML fact type that is created in the associated dictionary is named based on the schema types for the inputs and outputs that you supply in the Create Business Rules dialog. When you specify schema type for the input and the output, Rules Designer defines fact types and aliases associated with your type selections for input and output. If you only use a single type for both the input and the output, then the decision component creates a single fact that is shown in the Rules Designer Facts tab. This fact represents the fact type you specified and uses an alias name that is a concatenation of both the input variable name and the output variable name. In Rules Designer you can rename this alias if you do not like the default naming scheme for the fact type.	
When you add business rules to a BPEL process Oracle JDeveloper creates a decision Service that supports calling Oracle Business Rules with the inputs you supply, and returning the outputs with results. The decision service provides access to Oracle Business Rules Engine at runtime as a web service. For more information, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.	
A decision component running in a business rules service engine supports either stateful or stateless operation. The Reset Session checkbox in the Create Business Rules dialog provides support for these two modes of operation.	
By default the Reset Session checkbox is selected which indicates stateless operation. Stateless operation means that, at runtime, the rule session is released after the decision component invocation.	
When Reset Session is unselected, the underlying Oracle Business Rules object is kept in the memory of the business rules service engine at a separate location (so that it is not given back to the Rule Session Pool when the operation is finished). A subsequent use of the decision component re-uses the cached RuleSession object, with all its state information from the callFunctionStateful	
invocation, and then releases it back to the Rule Session pool after the callFunctionStateless	
operation is finished. Thus, when Reset Session is unselected the rule session is saved for a subsequent request and a sequence of decision service invocations from the same BPEL process should always end with a stateless invocation.	
To work with Oracle Business Rules in a SOA composite application, you create an application and add business rules.	
The business rule service component enables you to integrate your SOA composite application with business rules. This creates a business rule dictionary and enables you to execute business rules and make business decisions based on the rules.	
After creating a project in Oracle JDeveloper, you must create a Business Rule Service component within the project. When you add a business rule you can create input and output variables to provide input to the service component and to obtain results from the service component.	
To use business rules with Oracle JDeveloper, you do the following:	
To work with Oracle Business Rules in a SOA composite application you use Oracle JDeveloper to create an application, a project, and then add a business rule component.	
To create a SOA application with business rules:	
composite.xml	
to launch the SOA composite editor. Figure 25-13 Adding Business Rules to a SOA Composite Application	
Figure 25-14 Adding Business Rules to a SOA Composite and Creating a Dictionary	
Add inputs for business rules:	
order.xsd	
schema file, and click OK. Figure 25-15 Importing Schema for Input to Business Rules	
Use the Type Chooser dialog navigator to locate and select the input from the schema and click OK. For example, select the CustomerOrder	
element as the input.	
Add outputs for business rules:	
OrderApproval	
from the order.xsd	
and click OK. Figure 25-16 Create Business Rules Dialog with Input and Output	
Set options and create decision service and business rules dictionary:	
Figure 25-17 Business Rule Component in SOA Composite	
Figure 25-18 Rules Designer Showing New Dictionary for SOA Composite Application	
For information on Rules Designer, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.	
You can specify one or more decision functions as inputs for calling Oracle Business Rules as a component in a composite application. For example, you can specify a particular decision function as the input when multiple decision functions are available in an Oracle Business Rules dictionary.	
To specify a decision function in a composite application:	
Figure 25-19 Selecting a Business Rule Component in a Composite Application	
Figure 25-20 Selecting a Decision Function Port in a Business Rule Component	
Figure 25-21 Update Interface Dialog for a Decision Function in a Business Rule Decision Port	
You run business rules as part of a decision component within a SOA composite application. The business rules are executed by the Business Rule Service Engine. You can use Oracle Enterprise Manager Fusion Middleware Control to monitor the Business Rule Service Engine and to test a SOA composite application that includes a decision component. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
To test a standalone decision service component by using Oracle Enterprise Manager Fusion Middleware Control, you must provide the name of the decision service as the value of the payload name field in the Test Web Service page as shown in Figure 25-22.	
Figure 25-22 Invoking a Standalone Test Decision Service	
'name' in payload should be the decision service name as can be seen in the sample .decs	
file in Figure 25-23.	
Without the decision service name, it would not be possible to invoke the standalone decision service with just the payload and endpoint details.	
You can use Oracle ADF Business Components Fact Types and ActionTypes	
from the Business Rules Service Engine. Typically, a decision component can be used within a SOA composite and wired to a BPEL component and the Oracle Business Rules rules act on XML types. The Business Rules Service Engine is called as a web service with a payload containing instances of the XML schema types, and the service engine returns a response similarly.	
It is also possible to use Oracle ADF Business Components Fact Types from a decision component. Instead of loading the Oracle ADF Business Components Fact Type instances and passing them to the Business Rules Service Engine, you call the Business Rules Service Engine with configuration information describing how the Oracle ADF Business Components view object rows can be loaded. Special Oracle Business Rules decision functions in the DecisionPointDictionary	
and classes in the Oracle Business Rules SDK Decision Point API then load the rows and assert Oracle ADF Business Components fact type instances. When working with Oracle ADF Business Components Fact Types, you write rules that use user-defined Java classes which inherit from ActionType to affect action, such as modifying the Oracle ADF Business Components fact type instances such that they update their underlying database rows.	
A decision component requires an XML document as input. The Oracle Business Rules Decision Point dictionary provides an XML Fact Type called SimpleDecisionPointInput	
that serves as this input. The primary key(s) of Oracle ADF Business Components are passed to the business rule service component. The business rule service component invokes a user-defined decision function which it invokes to load the Oracle ADF Business Components view object instances, asserts them in the rules engine, and then marshals the results in the following order:	
ActionType	
to update the business component. ActionTypes	
is optional. For specific instructions on how to use Oracle ADF Business Components Fact Types and ActionTypes	
from the Business Rules Service Engine, see the source code for Oracle Business Rules-specific samples available with the Oracle SOA Suite samples.	
This chapter describes how to use different Oracle Business Rules declarative components and task flows to develop high-performance, interactive, and multitiered applications that are also easy to maintain. It describes how to use the Oracle Business Rules Editor declarative component and the Oracle Business Rules Dictionary Editor declarative component and task flow. It also describes how to localize the ADF-based web application.	
This chapter includes the following sections:	
Declarative components are reusable, composite user interface (UI) components that comprise other existing Application Development Framework (ADF) Faces components. Consider an application that contains multiple JSF pages. On a particular page, a set of specific components is used in multiple parts of that page. In this scenario, if you make any changes to any of the components in the set, you typically must replicate the changes in multiple parts of the page. This approach makes it difficult to maintain the consistency of the structure and layout of the page. However, by defining a declarative component that comprises the given set of components, you can reuse that composite declarative component in multiple places or pages. Declarative components, thereby, save time and ensure integrity across pages because when you make any changes to the components, the JSF pages using them automatically get updated.	
ADF task flows are reusable components that provide a modular and transactional method in specifying the control flow in an application. You can use a set of reusable task flows as an alternative to representing an application as a single large JSF page flow, thereby providing modularity. Each task flow contains a part of the entire navigational plan of the application. The nodes in a task flow are called activities. Apart from navigation, task flow activities can also call methods on managed beans or call another task flow without invoking any particular page. This facilitates reuse because business logic can be invoked independently of the page being displayed.	
This section discusses the Oracle Business Rules Editor declarative component. It also provides information on how to create and run an application using the Rules Editor component, and then deploy the application. In addition, this section lists the supported tags and the localization process for the application.	
The Oracle Business Rules Editor is a declarative component that can be embedded in any ADF-based web application. The component renders the user interface for rules editing and handles all events associated with rules editing. The Rules Editor uses the Rules SDK2 API to create and edit rules.	
Note: You should not confuse the Rules Editor with the Rules Dictionary Editor. The Rules Editor is used to edit rules inside a specified ruleset. In fact, the Rules Editor is embedded within the Rules Dictionary Editor. For more information about the Rules Dictionary Editor, see Section 26.3, "Using the Oracle Business Rules Dictionary Editor Declarative Component."	
Using the Rules Editor, you can edit rules and decision tables that are part of a single ruleset. You are required to specify a RuleSetModel	
object, which is a wrapper around the Rules SDK ruleset object, as a parameter to the Rules Editor component. If multiple rulesets are required to be modified, multiple Rules Editor components must be instantiated, one for each ruleset.	
The Rules Editor component performs the following functions:	
Figure 26-2 Simple Tests or Conditions in a Rule	
Figure 26-12 Validation Panel to Manage Error Messages	
Note: Once all the edits are done, the component user is responsible for saving the ruleset.	
This section lists the steps for creating and running a sample application by using the Rules Editor component.	
The prerequisite for using the Rules Editor component to create ADF-based web applications is having a running installation of Oracle SOA Suite and Oracle JDeveloper on your computer.	
To create a sample application by using the Rules Editor:	
The first task is to create a sample application.	
The steps are:	
useRulesDCApp	
, and click Next as shown in Figure 26-13. Figure 26-13 Creating a Generic Application	
useRulesDC	
in the Project Name field and ensure that ADF Faces is selected in the Project Technologies tab, as shown in Figure 26-14. In the Project Properties dialog box:	
Figure 26-16 Selecting Oracle Rules and Rules Editor Component	
This adds the Rules SDK and the Rules Editor Component tag libraries to the project.	
You have to ensure that all the required tag libraries are added:	
Figure 26-17 Checking the Required Tag Libraries	
To create the RuleSetModel object:	
The Rules Editor component requires a oracle.bpel.rulesdc.model.impl.RuleSetModel	
object. The component uses this object to read the rules and the decision tables that exist in the ruleset. Therefore, the next task is to create a managed bean called SomeBean.java	
that creates a RuleSetModel	
object.	
The steps are:	
SomeBean.java	
, and click OK to create the Java class in your project, as shown in Figure 26-18. SomeBean.java	
, provide a method that returns the RuleSetModel	
object. You must specify the location of the rules file here. The following is a sample of the SomeBean.java	
file: <your rules file here>	
";faces-config.xml	
file in Overview mode and click the + button under Managed Beans to display the Create Managed Bean dialog box. SomeBean.java	
by entering someBean	
in the Bean Name field and selecting session from the Scope list, as shown in Figure 26-19. Figure 26-19 Specifying the Bean Name and Scope	
The ADF/JSF framework makes multiple calls to SomeBean.java	
to render the user interface. For example, someBean.ruleSetModel	
is called multiple times. So, it is better to create the RuleSetModel	
object once, cache it, and return it each time instead of re-creating it.	
To create the .jspx file for the Rules Editor Component tag:	
The next task is to create the .jspx	
file to include the Rules Editor component tag.	
The steps are:	
useRulesDC.jspx	
as the file name, as shown in Figure 26-20. RulesCompLib is displayed in the Component Palette of Oracle JDeveloper as shown in Figure 26-21.	
Figure 26-21 Rules Editor Component Library in the Component Palette	
This is because you have added the Rules Editor Component tag library when creating the sample application.	
Rulesdc	
tag. You can drag and drop the Rulesdc	
tag into the .jspx	
file. You can also add the Rulesdc	
tag in the .jspx	
file manually as shown: To refer to the oracle.rules and the oracle.soa.rules_editor_dc.webapp shared libraries:	
After creating the .jspx	
file, you must refer to the oracle.rules	
and oracle.soa.rules_editor_dc.webapp	
shared libraries from the weblogic-application.xml	
file.	
The steps are:	
weblogic-application.xml	
file by browsing to Application Resources, then Descriptors, and then META-INF. oracle.rules	
shared library as shown in Figure 26-22. Figure 26-22 Referring to the oracle.rules Shared Library	
weblogic.xml	
, select Libraries from the left panel. oracle.soa.rules_editor_dc.webapp	
as the library name, as shown in Figure 26-23. Figure 26-23 Adding the Rules Editor Component Library	
oracle.rules	
shared library to the embedded Oracle WebLogic Server: http://	
host	
:	
port	
/console/login/LoginForm.jsp	
). Figure 26-24 Deploying the oracle.rules Shared Library	
oracle.soa.rules_editor_dc.webapp	
shared library to Oracle WebLogic Server: Figure 26-25 Deploying oracle.soa.rules_editor_dc.webapp Shared Library	
oracle.soa.rules_editor_dc.webapp is added to the list of deployments as shown in Figure 26-26.	
Figure 26-26 oracle.soa.rules_editor_dc.webapp Added to the Deployment List	
To run the sample Rules Editor application:	
The last task is running the sample application.	
This starts the sample application on a web browser, as shown in Figure 26-27.	
Figure 26-27 Running the Sample Application	
When you are ready to deploy your application EAR file to the standalone Oracle WebLogic Server, perform the following:	
http://	
host	
:	
port	
/console/login/LoginForm.jsp	
). Figure 26-28 Adding the Oracle Rules Editor Component	
This step enables you to refer to these libraries, but does not deploy these libraries by default. Therefore, the JARs are not included in your project WAR file.	
weblogic-application.xml	
: weblogic.xml	
in the project WAR file: For more information about creating an EAR file, see "How to Create an EAR File for Deployment" in Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework.	
For role-based authorization, Rules DC implements custom JAAS permissions (extending the oracle.adf.share.security.authorization.ADFPermission	
class to ensure that the permission can be used by ADF security).	
If a Rules Editor application supports ADF security, which means there is support for role-based authentication and authorization, then security is enforced by implementing custom JAAS permissions (by extending the oracle.adf.share.security.authorization.ADFPermission	
class to ensure that the permission can be used by ADF security). You have to create ADF security policies by granting the following permissions to the user roles based on your application requirement:	
oracle.rules.adf.permission.AddRulePermission	
: Displays the Add Rule button; if the permission is not granted, the Add Rule button is not visible to the user. oracle.rules.adf.permission.DeleteRulePermission	
: Displays the Delete Rule button; if the permission is not granted, the Delete Rule button is not visible to the user. oracle.rules.adf.permission.EditRulePermission	
: Displays the Edit Rule button for rules inside a ruleset; if the permission is not granted, then the rules are view-only. oracle.rules.adf.permission.AddDTPermission	
: Displays the Add Decision Table button; if the permission is not granted, the Add Decision Table button is not visible to the user. oracle.rules.adf.permission.DeleteDTPermission	
: Displays the Delete Decision Table button; if the permission is not granted, the Delete Decision Table button is not visible to the user. oracle.rules.adf.permission.EditDTPermission	
: Displays the Edit Decision Table button for decision tables within a ruleset; if the permission is not granted, the decision tables are view-only. oracle.rules.adf.permission.RulesEditorPermission	
: A global permission that sets all the preceding permissions to true	
. For example, to grant the delete rule permission to a role, specify the following code in the jazn-data.xml	
file of the application:	
If you do not want to use the individual permissions, such as AddRulePermission	
or DeleteRulePermission	
, you can set the RulesEditorPermission	
in the jazn-data.xml	
file to set global permissions.	
This section lists the tags and attributes that are supported by the Rules Editor component.	
Table 26-1 lists the supported facets.	
Table 26-1 Supported Facets of the Rules Editor Component	
Name	Description
---	---
Used to render specific user interfaces. This facet is used to display the rule condition and pattern (in advanced mode), which is the	
Used to render specific user interfaces. This facet is used to display the rule action, which is the	
Table 26-2 lists the supported attributes.	
Table 26-2 Supported Attributes of the Rules Editor Component	
Name	Type
---	---
no	Gets from the locale
no	Based on locale
no	
yes	If
no	
yes	If
no	
yes	If
no	
yes	Displays the editable ruleset name by default. You can choose to hide this by setting it to
no	5
no	
yes	Number of rows to be displayed at a time in the decision table. A scroll bar is displayed if the number of rows increases over the specified height.
j	no
yes	If
no	
yes	If
no	Based on Locale
no	
yes	Used for Localization
no	
yes	Used to customize the default
yes	-
j	no
yes	Specifies the number of rules to be displayed in a page. It is used in
no	
yes	Displays the add and delete decision table links by default. You can choose to hide these by setting this to
j	no
yes	Displays the validation panel by default. You can choose to hide this by setting this to
no	
yes	Used to customize the default
no	Gets from the locale
no	
yes	Used for localization.
no	
yes	If
This section discusses the Oracle Business Rules Dictionary Editor declarative component. It also provides information on how to create and run an application using the Rules Dictionary Editor component, and then deploy the application. In addition, this section lists the supported tags and the localization process for the application.	
The Oracle Business Rules Dictionary Editor is a composite declarative component that can be embedded in any ADF-based web application. It enables you to edit business rules metadata artifacts, such as globals, bucketsets, and rulesets, by using the Rules SDK2 API.	
Note: Do not confuse the Rules Dictionary Editor with the Rules Editor. The Rules Editor edits rules inside a specified ruleset. In fact, the Rules Editor is embedded within the Rules Dictionary Editor. For more information about the Rules Editor, see Section 26.2, "Using the Oracle Business Rules Editor Declarative Component."	
The Rules Dictionary Editor task flow uses the Rules Dictionary Editor Component to create applications. Typically, you should either use the Rules Dictionary Editor component or the Rules Dictionary Editor task flow, but not both. For more information on the Rules Dictionary Editor task flow, see Section 26.4, "Using the Oracle Business Rules Dictionary Editor Task Flow."	
The Rules Dictionary Editor component performs the following:	
final	
attribute set to true	
by using the Globals Editor, as shown in Figure 26-29. The Globals Editor enables you to edit only the name, description, and value of globals. It does not allow creation or deletion of globals. However, it supports validation of globals.	
Bucketset Editor enables you to perform CRUD (create, read, update, and delete) operations on bucketsets and buckets inside a bucketset. It also supports validation of bucketsets.	
The Rules Dictionary Editor enables you to edit only rules inside a selected ruleset. It does not allow creation or deletion of rulesets.	
This section lists the steps for creating and running a sample application by using the Rules Dictionary Editor component.	
The prerequisite for using the Rules Dictionary Editor component to create ADF-based web applications is having a running installation of Oracle SOA Suite and Oracle JDeveloper on your computer.	
To create a sample application by using the Rules Dictionary Editor:	
The first task is to create a sample application.	
The steps are:	
useRuleDictDCApp	
, and click Next as shown in Figure 26-32. Figure 26-32 Creating a Generic Application	
useRuleDictDC	
in the Project Name field and ensure that ADF Faces is selected in the Project Technologies tab, as shown in Figure 26-33. Click Finish to create the project.	
In the Project Properties dialog box:	
Figure 26-35 Selecting Oracle Rules and Rules Dictionary Component	
This adds the Rules SDK and the Rules Dictionary Editor tag libraries to the project.	
You have to ensure that all the required tag libraries are added:	
Figure 26-36 Checking the Required Tag Libraries for Rules Dictionary Editor	
To create the RuleDictionaryModel object:	
The Rules Dictionary Editor component requires a oracle.bpel.ruledictionarydc.model.impl.RuleDictionaryModel	
object. The component uses this object to read globals, bucketsets, and rulesets information from the dictionary. Therefore, the next task is to create a managed bean named SomeBean.java	
that creates a RuleDictionaryModel	
object.	
The steps are:	
SomeBean.java	
, and click OK to create the Java class in your project, as shown in Figure 26-37. SomeBean.java	
, provide a method that returns the RuleDictionaryModel	
object. You must specify the location of the rules file here. The following is a sample of the SomeBean.java	
file: faces-config.xml	
file in Overview mode and click the + button under Managed Beans to display the Create Managed Bean dialog box. SomeBean.java	
by entering someBean	
in the Bean Name field and selecting session from the Scope list, as shown in Figure 26-38. Figure 26-38 Specifying the Bean Name and Scope	
The ADF/JSF framework makes multiple calls to SomeBean.java	
to render the user interface. For example, someBean.ruleDictModel	
is called multiple times. Therefore, it is better to create the RuleDictModel	
object once, cache it, and return it each time instead of re-creating it.	
To create the .jspx file for the Rules Dictionary Editor Component tag:	
The next task is to create the .jspx	
file to include the Rules Dictionary Editor Component tag.	
The steps are:	
useRuleDictDC.jspx	
as the file name, as shown in Figure 26-39. Figure 26-39 Specifying the Name of the JSF Page	
RuleDictionaryDC is displayed in the Component Palette of Oracle JDeveloper, as shown in Figure 26-40.	
Figure 26-40 Rule Dictionary Editor Library in the Component Palette	
This is because you have added Rules Dictionary Component when creating the sample application.	
ruleDictionaryDC	
tag.You can drag and drop the RuleDictionaryDC	
tag into the .jspx	
file. You can also add the RuleDictionaryDC	
tag in the .jspx	
file manually as shown: To refer to the oracle.rules and the oracle.soa.rules_dict_dc.webapp shared libraries:	
After creating the .jspx	
file, you must refer to the oracle.rules	
and oracle.soa.rules_editor_dc.webapp	
shared libraries from the weblogic-application.xml	
file.	
The steps are:	
weblogic-application.xml	
file by browsing to Application Resources, then Descriptors, and then META-INF. oracle.rules	
shared library, as shown in Figure 26-41. Figure 26-41 Referring to the oracle.rules Shared Library	
oracle.soa.rules_dict_dc.webapp	
as the library name, as shown in Figure 26-42. Figure 26-42 Adding the Rules Dictionary Component Library	
oracle.rules	
shared library to the embedded Oracle WebLogic Server: Figure 26-43 Deploying the oracle.rules Shared Library	
oracle.soa.rules_dict_dc.webapp	
shared library to Oracle WebLogic Server: Figure 26-44 Deploying oracle.soa.rules_editor_dc.webapp Shared Library	
oracle.soa.rules_dict_dc.webapp	
is added to the list of deployments, as shown in Figure 26-45.	
Figure 26-45 oracle.soa.rules_dict_dc.webapp Added to the Deployment List	
To run the sample Rules Dictionary Editor application:	
The last task is running the sample application.	
To run the sample application, from Oracle JDeveloper, right-click the useRuleDictDC.jspx file, and select Run. This starts the sample application on a web browser, as shown in Figure 26-46.	
Figure 26-46 Running the Sample Rules Dictionary Editor Application	
When you are ready to deploy your application EAR file to the standalone Oracle WebLogic Server, perform the following:	
http://	
host	
:	
port	
/console/login/LoginForm.jsp	
) and ensure that oracle.rules	
is displayed in the deployments list. oracle.soa.rules_dict_dc.webapp	
is displayed in the deployments list. Figure 26-47 Adding the Oracle Rules Dictionary Component	
This step enables you to refer to these libraries, but does not deploy these libraries by default. Therefore, the JAR files are not included in your project war file.	
weblogic-application.xml	
: weblogic.xml	
in the project WAR file: This section lists the attributes that are supported by the Rules Dictionary Editor component.	
Table 26-3 lists the supported attributes.	
Table 26-3 Supported Rules Dictionary Editor Attributes	
Name	Type
---	---
no	Gets it from the locale
no	Based on Locale
no	
yes	If
no	
yes	Disables the add, edit, and delete operations for the Inputs table in the decision function editor window.
no	
yes	Disables the add, edit, and delete operations for the Outputs table in the decision function editor window.
no	
yes	If
no	
yes	If
no	
yes	Displays the Add Decision Function button.
no	
yes	Displays the Delete Decision Function button.
no	
yes	Displays the editable ruleset name by default. You can choose to hide this name by setting to
no	
yes	If
no	
yes	If
no	
yes	Number of columns to be displayed at a time in the decision table. This works only when rules are columnar.
no	
yes	Number of rows to be displayed at a time in the decision table. A scroll bar is displayed if the number of rows increases over the specified height.
no	Based on Locale
no	
yes	Used for localization
yes	-
no	
yes	Specifies the number of rules to be displayed in a page. It is used in
no	-
no	
yes	Displays the Add and Delete decision table buttons.
no	
yes	Displays the validation panel by default. You can choose to hide this panel by setting to
no	Gets it from the locale
no	
yes	Used for localization.
no	
yes	If
This section discusses the Oracle Business Rules Dictionary Editor task flow. It also provides information on how to create and run an application using the Rules Dictionary Editor task flow, and then deploy the application.	
The Oracle Rules Dictionary Editor Task Flow is basically a wrapper around the Rules Dictionary Editor declarative component. The task flow is used in ADF-based web applications that require a task flow instead of a declarative component. For more information on the Rules Dictionary Editor component, see Section 26.3, "Using the Oracle Business Rules Dictionary Editor Declarative Component."	
This section lists the steps for creating and running a sample application by using the Oracle Rules Dictionary Editor task flow.	
The prerequisites for using the Oracle Rules Dictionary Editor task flow to create ADF-based web applications is having a running installation of Oracle SOA Suite and Oracle JDeveloper on your computer.	
To create a sample application by using the Oracle Rules Dictionary Editor task flow:	
The first task is to create a sample application.	
The steps are:	
useRuleDictTaskFlowApp	
, and click Next as shown in Figure 26-48. Figure 26-48 Creating a Generic Task Flow Application	
useRuleDictTaskFlow	
in the Project Name field and ensure that ADF Faces is selected in the Project Technologies tab, as shown in Figure 26-49. Figure 26-49 Creating a Task Flow Project	
In the Project Properties dialog box:	
Figure 26-50 Choosing Tab Libraries for the Task Flow Application	
Figure 26-51 Adding the Rules SDK and Rules Dictionary Task Flow	
oracle.integration.console.metadata.model.share.MetadataDetails	
interface, which is defined in soaComposerTemplates.jar	
. For more information on the MetadataDetails	
interface, see Section I.1, "The MetadataDetails Interface." The steps are:	
MyMetaDataDetails	
. MetadataDetails	
interface in the Implements box under Optional Attributes, and click OK to create the Java class in your project, as shown in Figure 26-52. Figure 26-52 Creating a Java Class That Implements the MetadataDetails Interface	
The following is a sample of the content of the MyMetaDataDetails.java	
file:	
<path of Rules file>	
";MyNLSPreferences	
that implements the oracle.integration.console.metadata.model.share.NLSPreferences	
interface, which is defined in soaComposerTemplates.jar	
. For more information about the NLS Preferences interface, see Section I.2, "The NLSPreferences Interface."	
The following sample of MyNLSPreferences.java	
implements the NLSPreferences	
interface:	
MyBean.java	
to return the implementation of MetadataDetails	
and NLSPreferences	
. It also returns the oracle.integration.console.metadata.model.share.MetadataDetailsMode	
object and provides event handlers such as toggleMode()	
, saveDictionary()	
, saveNoValidateDictionary()	
, and validate()	
. The following is a sample of the MyBean.java	
file:	
faces-config.xml	
file in Overview mode and click the + button under Managed Beans to display the Create Managed Bean dialog box. MyBean.java	
by entering MyBean	
in the Bean Name field and selecting session	
from the Scope list, as shown in Figure 26-53. Figure 26-53 Specifying the Bean Name and Scope in the Task Flow Application	
To add a Rules Dictionary Editor task flow in a .jspx file:	
The next task is to create the .jspx	
file to include the Rules Dictionary Editor component tag.	
The steps are:	
Figure 26-54 Creating the JSF Page File to Include the Rules Dictionary Editor Task Flow	
useRuleDictTaskFlow.jspx	
as the file name, as shown in Figure 26-55. Figure 26-55 Specifying the Name of the JSF Page for the Task Flow	
adflibRuleDictionaryTaskFlow.jar is displayed in the Component Palette of Oracle JDeveloper, as shown in Figure 26-56.	
Figure 26-56 Rules Dictionary Task Flow JAR in the Component Palette	
This is because you have added the Oracle Rules Dictionary Task Flow shared library when creating the sample application.	
Figure 26-57 Dragging and Dropping the Region	
The following is a sample of the useRuleDictTaskFlow.jspx	
file with the task flow added:	
In the preceding sample, you can find code snippets for rendering the following buttons to the page:	
To edit the pagedef.xml file:	
After you add the task flow to the .jspx	
file, you must edit the useRuleDictTaskFlowPageDef.xml	
file. The pagedef.xml	
file is created when you drop the Rules Dictionary task flow into the .jspx	
page.	
The following is a sample of the pagedef.xml	
file along with all the parameters that must be passed to the rules dictionary task flow:	
To refer to the oracle.rules and the oracle.soa.rules_dict_dc.webapp shared libraries:	
The next task is to refer to the oracle.rules	
and oracle.soa.rules_dict_dc.webapp	
shared libraries from the weblogic-application.xml	
file.	
For more information on referring to the shared libraries, see Section 26.3.2, "How to Create and Run a Sample Application by Using the Rules Dictionary Editor Component."	
To run the sample task flow application:	
The last task is running the sample application in the embedded Oracle WebLogic Server.	
This starts the sample application in a web browser, as shown in Figure 26-58.	
Figure 26-58 Running the Sample Rules Dictionary Editor Task Flow Application	
When you are ready to deploy your application EAR file to the standalone Oracle WebLogic Server, perform the following:	
http://	
host	
:	
port	
/console/login/LoginForm.jsp	
). oracle.rules	
is displayed in the deployments list. oracle.soa.rules_dict_dc.webapp	
is displayed in the deployments list. weblogic-application.xml	
: weblogic.xml	
in the project WAR file: You can localize an application that is created using the Rules Editor component, Rules Dictionary Editor component, or Rules Dictionary Editor task flow.	
The steps are:	
faces-config.xml	
in the project that uses the Rules Editor component. The faces-config.xml	
file must have the following code within the <application>	
tag to support the available resource bundles: f:view	
tag in the application using the component as shown: The locale specified here should be the same as the one passed to the component using the locale	
attribute.	
This part describes how to use the human workflow service component.	
This part contains the following chapters:	
This chapter describes for developers the human workflow concepts, features, and architecture. Use cases for human workflow are provided. Instructions for designing your first workflow from start to finish are also provided.	
This chapter includes the following sections:	
Many end-to-end business processes require human interactions with the process. For example, humans may be needed for approvals, exception management, or performing activities required to advance the business process. The human workflow component provides the following features:	
Figure 27-1 provides an overview of human workflow.	
In Figure 27-1, the following actions occur:	
For information about portlets, see Chapter 36, "Configuring Task List Portlets."	
This section introduces you to key human workflow design time and runtime concepts. This section also provides an overview of the three main stages of human workflow design.	
Before designing a human task, it is important to understand the design and runtime concepts. A typical task consists of a subject, priority, task participants, task parameters or data, deadlines, notifications or reminders, and task forms. This section provides an overview of key concepts.	
Note: Human workflow design-time tasks are performed in a graphical editor known as the Human Task Editor. The tutorial in Chapter 31, "Human Workflow Tutorial" describes how to use this editor.	
Human workflow supports declarative assignment and routing of tasks. In the simplest case, a task is assigned to a single participant (user or group). However, there are many situations in which more detailed task assignment and routing is necessary (for example, when a task must be approved by a management chain or worked and voted on by a set of people in parallel, as shown in Figure 27-2). Human workflow provides declarative, pattern-based support for such scenarios.	
A participant is a user or set of users in the assignment and routing policy definition. In Figure 27-2, each block with an icon representing people is a participant.	
In simple cases, a participant maps to a user, group, or role. However, as discussed in Section 27.2.1.1, "Task Assignment and Routing," workflow supports declarative patterns for common routing scenarios such as management chain and group vote.The following participant types are available:	
This is the simple case where a participant maps to a user, group, or role.	
For example, a vacation request is assigned to a manager. The manager must act on the request task three days before the vacation starts. If the manager formally approves or rejects the request, the employee is notified with the decision. If the manager does not act on the task, the request is treated as rejected. Notification actions similar to the formal rejection are taken.	
This participant indicates that a set of people must work in parallel. This pattern is commonly used for voting.	
For example, multiple users in a hiring situation must vote to hire or reject an applicant. You specify the voting percentage that is needed for the outcome to take effect, such as a majority vote or a unanimous vote.	
This participant indicates that a set of users must work in sequence. While working in sequence can be specified in the routing policy by using multiple participants in sequence, this pattern is useful when the set of people is dynamic. The most common scenario for this is management chain escalation, which is done by specifying that the list is based on a management chain within the specification of this pattern.	
This participant also maps to a single user, group, or role, just as in single approver. However, this pattern indicates that the participant just receives a notification task and the business process does not wait for the participant's response. FYI participants cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.	
For example, a regional sales office is notified that a candidate for employment has been approved for hire by the regional manager and their candidacy is being passed onto the state wide manager for approval or rejection. FYIs cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.	
For more information, see Section 29.4, "Assigning Task Participants."	
A task is work that must be done by a user. When you create a task, you assign humans to participate in and act upon the task. Participants can perform actions upon tasks during runtime from Oracle BPM Worklist, such as approving a vacation request, rejecting a purchase order, providing feedback on a help desk request, or some other action. There are three types of participants:	
You can assign individual users to act upon tasks. For example, you may assign users jlondon	
or jstein	
to a particular task. Users are defined in an identity store configured with the SOA Infrastructure. These users can be in the embedded LDAP of Oracle WebLogic Server, Oracle Internet Directory, or a third party LDAP directory.	
You can assign groups to act upon tasks. Groups contain individual users who can claim and act upon a task. For example, users jcooper	
and fkafka	
may be members of the group LoanAgentGroup	
that you assign to act upon the task.	
As with users, groups are defined in the identity store of the SOA Infrastructure.	
You can assign users who are members of application roles to claim and act upon tasks.	
Application roles consist of users or other roles grouped logically for application-level authorizations. These roles are application-specific and are defined in the application Java policy store rather than the identity store. These roles are used by the application directly and are not necessarily known to a Java EE container.	
Application roles define policy. Java permissions can be granted to application roles. Therefore, application roles define a set of permissions granted to them directly or indirectly through other roles (if a role is granted to a role). The policy can contain grants of application roles to enterprise groups or users. In the jazn-data.xml	
file of the file-based policy store, these roles are defined in <app-role>	
elements under <policy-store>	
and written to system-jazn-data.xml	
at the farm level during deployment. You can also define these roles after deployment using Oracle Enterprise Manager Fusion Middleware Control. You can set a task owner or approver to an application role at design time if the role has been previously deployed.	
For more information about Oracle BPM Worklist, see Section 27.2.1.6, "Task Forms."	
In processes dealing with significant variance, you cannot always determine all participants. Human workflow enables you to specify that a participant can invite other participants as part of performing the task.	
For more information, see Section 29.5.1.1, "Allowing All Participants to Invite Other Participants."	
By default, a task goes from starting to final participant according to the flow defined in the routing policy (as shown in Figure 27-2). However, sometimes a certain outcome at a particular step within a task's routing flow makes it unnecessary or undesirable to continue presenting the task to the next participants. For example, if an approval is rejected by the first manager, it does not need to be routed to the second manager. Human workflow supports specifying that a task or subtask be completed when a certain outcome occurs.	
For more information, see Section 29.5.1.2, "Stopping Routing of a Task to Further Participants."	
There are different methods for assigning users, groups, and application roles to tasks.	
You can assign users, groups, and application roles statically (or by browsing the identity service). The values can be either of the following:	
jstein	
, CentralLoanRegion	
, or ApproverRole	
). jstein	
, wfaulk	
, cdickens	
). You can assign users, groups, and application roles dynamically in the following ways:	
For example, suppose that the potential assignees comprise the user jcooper	
, the group LoanAgent	
, and the application role Developers	
. Suppose further that the requested type is user	
. Applying this task-assignment pattern selects a single user from the user jcooper	
, and from all members of the group LoanAgent	
, and from all users with the application role Developers	
.	
For example, suppose that the potential assignees comprise the user jcooper	
, the group LoanAgent	
, and the application role Developers	
. Suppose further that the requested type is user	
. Applying this task-assignment pattern selects the user jcooper	
, and one user from the group LoanAgent	
, and one user with the application role Developers	
.	
By using XPath expressions. These expressions enable you to dynamically determine assignment to users not included in the participant type. Here you create a list of potential assignees, one of whom must then claim the task.	
For example, you may have a business requirement to create a dynamic list of task approvers specified in a payload variable. The XPath expression can resolve to zero or more XML nodes. Each node value can be either of the following:	
,	
). For example, if the task has a payload message attribute named po	
within which the task approvers are stored, you can use the following XPath expression:	
/task:task/task:payload/po:purchaseOrder/po:approvers	
ids:getManager('jstein', 'jazn.com')	
This returns the manager of jstein	
.	
ids:getReportees('jstein', 2, 'jazn.com')	
This returns all reportees of jstein	
up to two levels.	
ids:getUsersInGroup('LoanAgentGroup', false, 'jazn.com')	
This returns all direct and indirect users in the group LoanAgentGroup	
.	
You can use both options simultaneously—for example, you can use an XPath expression to dynamically select a group, and then apply a task-assignment pattern to dynamically select a user from that group.	
You can create the list of task participants with complex expressions. The result of using business rules is the same as using XPath expressions.	
A task has multiple stakeholders. Participants are the users defined in the assignment and routing section of the task definition. These users are the primary stakeholders that perform actions on the task.	
In addition to the participants specified in the assignment and routing policy, human workflow supports additional stakeholders:	
This participant has business administration privileges on the task. This participant can be specified as part of the task definition or from the invoking process (and for a particular instance). The task owner can act upon tasks they own and also on behalf of any other participant. The task owner can change both the outcome of the task and the assignments.	
For more information, see Section 29.2.7, "How to Specify a Task Owner" to specify an owner in the Human Task Editor or Section 28.4.4.2, "Specifying a Task Owner" to specify an owner in the Advanced tab of the Human Task dialog.	
The person who initiates the process (for example, the initiator files an expense report for approval). This person can review the status of the task using initiated task filters. Also, a useful concept is for including the initiator as a potential candidate for request-for-information from other participants.	
For more information, see Section 28.4.3.2, "Specifying the Task Initiator and Task Priority."	
This participant can review the status of the task and add comments and attachments.	
This participant can view all tasks and take certain actions such as reassigning a test, suspending a task to handle errors, and so on. The task admin cannot change the outcome of a task.	
While the task admin cannot perform the types of actions that a task participant can, such as approve, reject, and so on, this participant type is the most powerful because it can perform actions such as reassign, withdraw, and so on.	
When an error occurs, the task is assigned to this participant (for example, the task is assigned to a nonexistent user). The error assignee can perform task recovery actions from Oracle BPM Worklist, the task form in which you perform task actions during runtime.	
For more information, see Section 29.5.4, "How to Configure the Error Assignee."	
Human workflow supports the specification of deadlines associated with a task. You can associate the following actions with deadlines:	
The task can be reminded multiple times based on the time after the assignment or the time before the expiration.	
The task is escalated up the management hierarchy.	
The task has expired.	
The task is automatically renewed.	
For more information, see Section 29.7, "Escalating, Renewing, or Ending the Task."	
You can configure your human task to use notifications. Notifications enable you to alert interested users to changes in the state of a task during the task lifecycle. For example, a notification is sent to an assignee when a task has been approved or withdrawn.	
You can specify for notifications to be sent to different types of participants for different actions. For example, you can specify the following:	
You can specify the contents of the notification message and the notification channel to use for sending the message.	
You can configure email notification messages to be actionable, meaning that a task assignee can act upon a task from within the email.	
For example, you may send the message shown in Example 27-1 by email when a task assignee requests additional information before they can act upon a task:	
Example 27-1 Email Message	
During runtime, you can mark a message sender's address as spam and also display a list of bad or invalid addresses. These addresses are automatically removed from the bad address list.	
For more information about notifications, see the following:	
Task forms provide you with a way to interact with a task. Oracle BPM Worklist displays all worklist tasks that are assigned to task assignees in the task form. When you drill down into a specific task, the task form displays the contents of the task to the user's worklist. For example, an expense approval task may show a form with line items for various expenses, and a help desk task form may show details such as severity, problem location, and so on.	
The integrated development environment of Oracle SOA Suite includes Oracle Application Development Framework (Oracle ADF) for this purpose. With Oracle ADF, you can design a task form that depicts the human task in the SOA composite application.	
ADF-based task forms can be automatically generated. Advanced users can design their own task forms by using ADF data controls to lay out the content on the page and connect to the workflow service engine at execution time to retrieve task content and act on tasks.	
You can create task forms in JSF, .NET, or any other client technologies using the APIs.	
Integration with Microsoft Excel for initiating and acting on tasks is also provided.	
For more information, see the following:	
This section describes advanced human workflow concepts.	
You can use Oracle Business Rules to dynamically alter the routing flow. If used, each time a participant completes their step, the associated rules are invoked and the routing flow can be overridden from the rules.	
For more information, see Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."	
You can use Oracle Business Rules to dynamically build a list of users, groups, and roles to associate with a participant.	
For more information, see Section 29.4, "Assigning Task Participants."	
A stage is a way of organizing the approval process for blocks of participant types. You can have one or more stages in sequence or in parallel. Within each stage, you can have one or more participant type blocks in sequence or in parallel.	
For more information, see Section 29.4, "Assigning Task Participants."	
You can specify access rules that determine the parts of a task that assignees can view and update. For example, you can configure the task payload data to be read by assignees. This action enables only assignees (and nobody else) to have read permissions. No one, including assignees, has write permissions.	
For more information, see Section 29.9.1, "How to Specify Access Policies on Task Content."	
While human workflow supports detailed behavior that can be declaratively specified, in some advanced situations, more extensible behavior may be required. Task callbacks enable such extensibility; these callbacks can either be handled in the invoking BPEL process or a Java class.	
For more information, see Section 29.11.1, "How to Specify Callback Classes on Task Status."	
Oracle BPM Worklist provides several out-of-the-box reports for task analysis:	
Analysis of tasks assigned to users' groups or reportees' groups that have not yet been acquired.	
Analysis of tasks assigned to a user, reportees, or their groups, based on priority.	
Analysis of the time taken to complete tasks from assignment to completion based on users' groups or reportees' groups.	
Analysis of assigned tasks and completed tasks in a given time period for a user, reportees, or their groups.	
The time an assignee takes to perform a task.	
You can view an audit trail of actions performed by the participants in the task and a snapshot of the task payload and attachments at various points in the workflow. The short history for a task lists all versions created by the following tasks:	
For more information, see Chapter 32, "Using Oracle BPM Worklist."	
Human workflow modeling consists of three stages of modeling, as described in Table 27-1.	
Table 27-1 Stages of Human Workflow Modeling	
Step	Description
---	---
1	You create and define contents of the human task in the Human Task Editor, including defining a participant type, routing policy, escalation and expiration policy, notification, and so on.
2	You associate the human task definition with a BPEL process. The BPEL process integrates a series of activities (including the human task activity) and services into an end-to-end process flow.
3	You create a task form. This form displays the task details on which you act at runtime in Oracle BPM Worklist.
This section provides an introduction to use cases for human workflow. After that, a tutorial guides you through the design of a human task from start to finish.	
The following sections describe multiple use cases for workflow services.	
A vacation request process may start with getting the vacation details from a user and then routing the request to their manager for approval. User details and the organizational hierarchy can be looked up from a user directory or identity store. This scenario is shown in Figure 27-3.	
Figure 27-3 Assigning Tasks to a User or Role from a Directory	
A task can be routed through multiple users with a group vote, management chain, or sequential list of approvers participant type. For example, consider a loan request that is part of the loan approval flow. The loan request may first be assigned to a loan agent role. After a specific loan agent acquires and accepts the loan, the loan may be routed further through multiple levels of management if the loan amount is greater that $100,000. This scenario is shown in Figure 27-4.	
Figure 27-4 Flow Patterns and Routing Policies	
You can use these types as building blocks to create complex workflows.	
A high-priority task can be assigned to a certain user or role based on the task type through use of custom escalation functions. However, if the user does not act on it in a certain time, the task may expire and in turn be escalated to the manager for further action. As part of the escalation, you may also notify the users by email, telephone voice message, or SMS. Similarly, a manager may delegate tasks from one reportee to another to balance the load between various task assignees. All tasks defined in BPEL have an associated expiration date. Additionally, you may specify escalation or renewal policies, as shown in Figure 27-5. For example, consider a support call, which is part of a help desk service request process. A high-priority task may be assigned to a certain user, and if the user does not respond in two days, the task is routed to the manager for further action.	
A user may decide to have another user perform tasks on their behalf. Tasks can be explicitly delegated from the Oracle BPM Worklist or can be automatically delegated. For example, a manager sets up a vacation rule saying that all their high priority tasks are automatically routed to one of their direct reports while the manager is on vacation. In some cases, tasks can be routed to different individuals based on the content of the task. Another example of automatic routing is to allocate tasks among multiple individuals belonging to a group. For example, a help desk supervisor decides to allocate all tasks for the western region based on a round robin basis or assign tasks to the individual with the lowest number of outstanding tasks (the least busy).	
An employee named James in the human resources department requests new hardware that costs $5000. The company may have a policy that all hardware expenses greater than $3000 must go through manager and vice president approval, and then review by the director of IT. In this scenario, the workflow can be configured to automatically determine the manager of James, the vice president of the human resources department, and the director of IT. The purchase order is routed through these three individuals for approval before the hardware is purchased.	
This section provides an overview of human workflow architecture. The following topics are discussed:	
Starting with release 11g, all human task metadata is stored and managed in the Metadata Service (MDS) repository. The workflow service consists of many services that handle various aspects of human interaction with a business process.	
Figure 27-6 shows the following workflow service components:	
The task service provides task state management and persistence of tasks. In addition to these services, the task service exposes operations to update a task, complete a task, escalate and reassign tasks, and so on. The task service is used by Oracle BPM Worklist to retrieve tasks assigned to users. This service also determines if notifications are to be sent to users and groups when the state of the task changes. The task service consists of the following services.	
The task routing service offers services to route, escalate, and reassign the task. The service makes these decisions by interpreting a declarative specification in the form of the routing slip.	
The task query service queries tasks for a user based on a variety of search criterion such as keyword, category, status, business process, attribute values, history information of a task, and so on.	
The task metadata service exposes operations to retrieve metadata information related to a task.	
The identity service is a thin web service layer on top of the Oracle Application Server 11g security infrastructure or any custom user repository. It enables authentication and authorization of users and the lookup of user properties, roles, group memberships, and privileges.	
The notification service delivers notifications with the specified content to the specified user through any of the following channels: email, telephone voice message, IM, and SMS. See Section 34.2, "Notifications from Human Workflow" for more information.	
The user metadata service manages metadata related to workflow users, such as user work queues, preferences, vacations, and delegation rules.	
The runtime config service provides methods for managing metadata used in the task service runtime environment. It principally supports management of task payload mapped attribute mappings.	
The evidence service supports storage and nonrepudiation of digitally-signed workflow tasks.	
Figure 27-7 shows the interactions between the services and the business process.	
Figure 27-7 Workflow Services and Business Process Interactions	
There are two ways in which to use a human task:	
In most cases, you associate your human task with a BPEL process. The BPEL process integrates a series of activities (including the human task activity) and services into an end-to-end process flow.	
You can also create the human task as a standalone component only in the SOA Composite Editor and not associate it with a BPEL process. Standalone human task service components are useful for environments in which there is no need for any automated activity in an application. In the standalone case, the client can create the task themselves.	
During runtime, the business logic and processing rules of the human task service component are executed by the human workflow service engine. Each service component (BPEL process, human workflow, decision service (business rules), and Oracle Mediator) has its own service engine container for performing these tasks. All human task service components, regardless of the SOA composite application of which they are a part, are executed in this single human task service engine.	
For more information about configuring, monitoring, and managing the human workflow service engine, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
This chapter describes how to create a human task, save it and associate it with a BPEL process. It also describes how to delete a human task and remove its association with a BPEL process.	
This chapter includes the following sections:	
To use the Human Task Editor, you must understand human task design concepts, including the following:	
For information about human task concepts, see Chapter 27, "Getting Started with Human Workflow."	
For information about troubleshooting human workflow issues, see section "Human Workflow Troubleshooting" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
Oracle SOA Suite provides a graphical tool, known as the Human Task Editor, for modeling your task metadata. The modeling process consists of the following:	
This section provides a brief overview of these modeling tasks and provides references to specific modeling instructions.	
For more information about using the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."	
For information about available samples, see Chapter 31, "Human Workflow Tutorial"	
You define the metadata for the human task in either of two ways:	
For more information, see Section 28.2, "Creating Human Tasks."	
The Human Task Editor enables you to specify human task metadata such as task outcome, payload structure, assignment and routing policy, expiration and escalation policy, notification settings. This information is saved to a metadata task configuration file with a .task	
extension. In addition, some workflow patterns may also need to use the Oracle Business Rules Designer to define task routing policies or the list of approvers.	
After you create a Human Task you can configure its metadata using the Human Task Editor. For a detailed description of the metadata and configuration procedures, see Chapter 29, "Configuring Human Tasks".	
You can associate the .task	
file that consists of the human task settings with a BPEL process in Oracle BPEL Designer. Association is made with a human task that you drag into your BPEL process flow for configuring, as shown in Figure 28-1.	
Figure 28-1 Dragging a Human Task into a BPEL Process	
You also specify the task definition, task initiator, task priority, and task parameter mappings that carry the input data to a BPEL variable. You can also define advanced features, such as the scope and global task variables names (instead of accepting the default names), task owner, identification key, BPEL callback customizations, and whether to extend the human task to include other workflow tasks.	
When association is complete, a task service partner link is created. The task service exposes the operations required to act on the task.	
You can also create the human task as a standalone component only in the SOA Composite Editor and not associate it with a BPEL process. Standalone human task service components are useful for environments in which there is no need for any automated activity in an application. In the standalone case, the client can create the task themselves.	
For more information, see Section 28.4, "Associating Human Tasks with BPEL Processes."	
You can generate a task form using the Oracle Application Development Framework (ADF). This form is used for displaying the task details on which you act at runtime in Oracle BPM Worklist.	
For information on generating the task form, see Chapter 30, "Designing Task Forms for Human Tasks."	
The Human Task Editor enables you to define the metadata for the task. The editor enables you to specify human task settings, such as task outcome, payload structure, assignment and routing policy, expiration and escalation policy, notification settings, and so on.	
You create a human task service component in the SOA Composite Editor or in Oracle BPEL Designer. After creation, you design the component in the Human Task Editor. The method by which you create the human task service component determines whether the component can be associated later with a BPEL process service component or is a standalone component in the SOA Composite Editor.	
You can create a human task using the SOA Composite Editor. Generally you use this method to create human tasks to use as standalone components.	
To create a human task service component in the SOA Composite Editor:	
The list refreshes to display service components and service adapters.	
The Create Human Task dialog appears.	
The name you enter becomes the .task	
file name.	
Figure 28-3 Standalone Human Task Component	
This web service provides external customers with an entry point into the human task service component of the SOA composite application.	
For more information about creating a human task service component in the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."	
You can create a human task using Oracle BPEL Designer. Generally you use this method when you want to create a human task to use it from a BPEL process.	
To create a human task in Oracle BPEL Designer:	
The Create Human Task dialog appears.	
The name you enter becomes the .task	
file name.	
The Human Task Editor appears.	
Note: You can also create a human task that you later associate with a BPEL process by selecting New from the File main menu, then selecting SOA Tier > Service Components > Human Task.	
When a human task is created, the following folders and files appear:	
.task	
extension. This file appears in the Application Navigator under SOA_Project_Name > SOA Content. You can re-edit the settings in this file by double-clicking the following: .task	
file in the Application Navigator in either the SOA Composite Editor or Oracle BPEL Designer Figure 28-4 shows these folders and files.	
For information about available samples, see Chapter 31, "Human Workflow Tutorial".	
You can save your human task changes at any time. The task can be re-edited at a later time by double-clicking the metadata task configuration .task	
file in the Application Navigator.	
To exit the Human Task Editor and save your changes:	
.task	
metadata task configuration file. To associate the human task service component created in the SOA Composite Editor with a BPEL process, follow these instructions. When association is complete, a task service partner link is created in Oracle BPEL Designer. The task service exposes the operations required to act on a task.	
For more information about creating a human task, see Section 28.2, "Creating Human Tasks."	
There are two ways to associate a human task service component with a BPEL process:	
To associate a human task with a BPEL process:	
.task	
file of the human task service component. The Human Task dialog appears.	
Figure 28-6 Task Definition List Selection	
The .task	
file of the human task service component is associated with the BPEL process.	
Note: After you complete association of your human task activity with a BPEL process and close the Create Human Task dialog, you can always re-access this dialog by double-clicking the human task activity in Oracle BPEL Designer.	
If you delete the wire between a BPEL process and the human task service component that it invokes, the invoke activity of the human workflow is deleted from the BPEL process. However, the taskSwitch switch activity for taking action (contains the approve, reject, and otherwise task outcomes) is still there. This is by design for the following reasons:	
If you then drag and drop a human task service component into the BPEL process to use the same taskSwitch switch activity, a new taskSwitch switch activity is created. You then have two switch activities in the BPEL process with the same name. To determine which one to delete, you must go into the approve, reject, and otherwise task outcomes of the taskSwitch switch activities to determine which is the older, modified switch and which is the newer switch.	
Figure 28-7 shows the General tab that displays after you select the human task.	
Figure 28-7 Human Task — General Tab (After Selection)	
The General tab of the Human Task activity enables you to perform the tasks shown in Table 28-1:	
Table 28-1 Human Task - General Tab	
For this Field...	See...
---	---
Task Title	Section 28.4.3.1, "Specifying the Task Title"
Initiator Priority	Section 28.4.3.2, "Specifying the Task Initiator and Task Priority"
Task Parameters	Section 28.4.3.3, "Specifying Task Parameters"
The title displays the task in Oracle BPM Worklist during runtime. This is a mandatory field. Your entry in this field overrides the task title you entered in the Task Title field of the General section of the Human Task Editor described in Section 29.2.2, "How to Specify a Task Title."	
To specify the task title:	
You can also combine static text and dynamic expressions in the same title. To include dynamic text, place your cursor at the appropriate point in the text and click the icon on the right to invoke the Expression Builder dialog.	
You can specify a task initiator. The initiator is the user who initiates a task. The initiator can view their created tasks from Oracle BPM Worklist and perform specific tasks, such as withdrawing or suspending a task.	
To specify the task initiator and task priority:	
jcooper	
) or click the icon to display the Expression Builder dialog for dynamically specifying an initiator. This field is optional. If not specified, the initiator defaults to the task owner specified on the Advanced tab of the Human Task dialog. The initiator defaults to bpeladmin	
if a task owner is also not specified. For more information about specifying the priority in the Human Task Editor, see Section 29.2.2, "How to Specify a Task Title."	
The task parameter table shown in Figure 28-8 displays a list of task parameters after you complete the Task Title and Initiator fields.	
To specify task parameters:	
The Task Parameters dialog appears.	
The Human Task dialog shown in Figure 28-10 appears as follows.	
Figure 28-11 shows the Advanced tab.	
Figure 28-11 Create Human Task — Advanced Tab	
The Advanced tab of the Human Task activity enables you to perform the tasks shown in Table 28-2:	
Table 28-2 Human Task - Advanced Tab	
For this Field...	See...
---	---
Scope Name Global Task Variable Name	Section 28.4.4.1, "Specifying a Scope Name and a Global Task Variable Name"
Owner	Section 28.4.4.2, "Specifying a Task Owner"
Identification Key	Section 28.4.4.3, "Specifying an Identification Key"
Identity Context	Section 28.4.4.4, "Specifying an Identity Context"
Application Context	Section 28.4.4.5, "Specifying an Application Context"
Include task history from	Section 28.4.4.6, "Including the Task History of Other Human Tasks"
You are automatically provided with default scope and global task variable names during human task activity creation. However, you can specify custom names that are used to name the scope and global variable during human task activity creation.	
To specify a scope name and a global task variable name:	
This BPEL scope encapsulates the entire interaction with the workflow service and BPEL variable manipulation.	
This is the name of the BPEL task variable used for the workflow interaction.	
The task owner can view tasks belonging to business processes they own and perform operations on behalf of any of the task assignees. Additionally, the owner can also reassign, withdraw, or escalate tasks.	
If you do not specify a task initiator on the General tab of the Human Task dialog, it defaults to the owner specified here.	
To specify a task owner:	
The identification key can be used as a user-defined ID for the task. For example, if the task is meant for approving a purchase order, the purchase order ID can be set as the identification key of the task. Tasks can be searched from Oracle BPM Worklist using the identification key. This attribute has no default value.	
To specify an identification key:	
The identity realm name is used for the task when multiple realms are configured. You cannot have assignees from multiple realms working on the same task. This field is required if you are using multiple realms.	
To specify an identity context	
The stripe name of the application contains the application roles used in the task.	
To specify an application context	
This feature enables one human task to be continued with another human task. There are many scenarios in which you have related tasks in a single BPEL process. For example, assume you have the following:	
The participant of the second task may want to see the approval history, comments, and attachments created when the manager approved the purchase. You can link these different tasks in the BPEL process by chaining the second task to the first task with this option.	
For chained tasks, the title of the new task cannot be set from the task metadata (.task	
file). For example, assume existing Task A is chained with new task Task B, and Task B has a new title set in the Human Task Editor; this title is not recognized. Therefore, if the chained task requires a different title, it must be set in the task instance before calling the task service reinitiate	
operation. If a BPEL process is initiating the tasks, set the task title before the workflow service APIs are called. If a Java program is calling the workflow APIs programatically, then it must set the title.	
To include the task history of other tasks:	
When a human task is continued with another human task, the following information is carried over to the new workflow:	
In the Include task history from list, all existing workflows are listed.	
For example, a hiring process is used to hire new employees. Each interviewer votes to hire or not hire a candidate. If 75% of the votes are to hire, then the candidate is hired; otherwise, the candidate is rejected. If the candidate is to be hired, an entry in the HR database is created and the human resources contact completes the hiring process. The HR contact also must see the interviewers and the comments they made about the candidate. This process can be modeled using a parallel participant type for the hiring. If the candidate is hired, a database adapter is used to create the entry in the HR database. After this action, a simple workflow can include the task history from the parallel participant type so that the hiring request, history, and interviewer comments are carried over. This simple workflow is assigned to the HR contact.	
This option is applicable when the payload attributes in the XML files of the human tasks involved in this extended workflow are different. For example, the payload attribute for the human task whose history you are including has three extra attributes than the payload of the other human task.	
This option is applicable when the payload attributes in the XML files of the human tasks involved in this extended workflow are the same.	
When you have completed modeling the human task activity, the human task is generated in the designer.	
Figure 28-12 shows how a workflow interaction is modeled. Figure 28-12 also illustrates the interaction when no BPEL callbacks are modeled. In this case, after a task is complete, the BPEL process is called back with the completed task. No intermediary events are propagated to the BPEL process instance. It is recommended that any user customizations be done in the first assign, AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.	
Figure 28-12 Workflow Interaction Modeling	
Click the Expand icon next to the human task activity in Oracle BPEL Designer to display its contents, as shown in Figure 28-13.	
Figure 28-13 Expanding the Human Task Activity	
If intermediary events must be propagated to the BPEL process instance, select the Allow task and routing customization in BPEL callbacks checkbox in the Events section of the Human Task Editor. When this option is selected, the workflow service invokes callbacks in the BPEL instance during each update of the task. The callbacks are listed in the TaskService.wsdl	
file and described as follows:	
onTaskCompleted	
This callback is invoked when the task is completed, expired, withdrawn, or errored.	
onTaskAssigned	
This callback is invoked when the task is assigned to a new set of assignees due to the following actions:	
onTaskUpdated	
This callback is invoked for any other update to the task that does not fall in the onTaskComplete	
or onTaskAssigned	
callback. This includes updates on tasks due to a request for information, a submittal of information, an escalation, a reassign, and so on.	
onSubTaskUpdated	
This callback is invoked for any update to a subtask.	
Figure 28-14 shows how a workflow interaction with callbacks is modeled. After this task is initiated, a while loop is used to receive messages until the task is complete. The while loop contains a pick with four onMessage branches — one for each of the above-mentioned callback operations. The workflow interaction works fine even if nothing is changed in the onMessage branches, meaning that customizations in the onMessage branches are not required.	
In this scenario, a workflow context is captured in the BPEL instance. This context can be used for all interaction with the workflow services. For example, to reassign a task if it is assigned to a group, then you need the workflow context for the reassignTask	
operation on the task service.	
It is recommended that any user customizations be performed in the first assign, AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.	
Figure 28-14 Workflow Interaction Modeling (with Callbacks)	
If you must change a generated human task activity, note the following details:	
If the task outcomes in the Human Task Editor are modified, you must edit the human task activity and click OK. The switch case is then updated based on the changes to the outcomes.	
Deleting a partner link that was generated by a human task (for example, human_task_name.TaskService in the Partner Links swimlane) causes the human task to become unusable. If you delete the partner link, you must delete the human task activity in Oracle BPEL Designer and start over again.	
In many cases, the outcome of a task determines the flow of the business process. To facilitate modeling of the business logic, when a user task is generated, a BPEL switch activity is also generated with prebuilt BPEL case activities. By default, one case branch is created for each outcome selected during creation of the task. An otherwise branch is also generated in the switch to represent cases in which the task is withdrawn, expired, or in error.	
The task carries a payload in it. If the payload is set from a business process variable, then an assign activity with the name copyPayloadFromTask	
is created in each of the case and otherwise branches to copy the payload from the task back to its source. If the payload is expressed as other XPath expressions (such as ora:getNodes(...)	
), then this assign is not created because of the lack of a process variable to copy the payload back. If the payload does not require modification, then this assign can be removed.	
By default, the switch activity contains case statements for the outcomes only. The other task conclusions are captured in the otherwise branch. These conclusions are as follows:	
If business logic must be added for each of these other conclusions, then case statements can be added for each of the preceding conditions. The case statements can be created as shown in the following BPEL segment. The XPath conditions for the other conclusions in the case activities for each of the preceding cases are shown in bold in Example 28-1.	
Example 28-1 XPath Conditions for Other Conclusions in the Case Activities	
To enable text files to be attached to a human task, you must set a flag that describes whether the content of text attachments is encoded. This flag is named isContentEncoded	
.You can set this flag by customizing the BPEL code in any Human Workflow sample that includes a human task. To do this customization, in the .bpel	
file in the sample, enter the following copy rule in the BPEL assign activity code:	
Once you have entered this copy rule, you can either save the file and continue designing the BPEL process or, if you have finished designing, you can deploy the process.	
This chapter describes how to configure the different properties of a human task. It covers basic properties, task payload data structure, participant assignment, routing policies, localization, escalation, notification preferences, access policies and task actions, restrictions and Java and business event callbacks.	
This chapter includes the following sections:	
For information about troubleshooting human workflow issues, see section "Human Workflow Troubleshooting" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
This section describes how to access the sections of the Human Task Editor. Brief descriptions are provided of each section and references are provided to more specific information.	
To access the sections of the Human Task Editor:	
The Human Task Editor consists of the main sections shown on the left side in Figure 29-1. These sections enable you to design the metadata of a human task.	
Instructions for using these main sections of the Human Task Editor to create a workflow task are listed in Table 29-1.	
Table 29-1 Human Task Editor	
Section	Description
---	---
General (title, description, outcomes, category, priority, owner, and application context)	Enables you to define task details such as title, task outcomes, owner, and other attributes.
Data	Enables you to define the structure (message elements) of the task payload (the data in the task).
Assignment	Enables you to assign participants to the task and create a policy for routing the task through the workflow.
Presentation	Enables you to specify the following settings:
Section 29.6, "Specifying Multilingual Settings and Style Sheets"	
Deadlines	Enables you to specify the expiration duration of a task, custom escalation Java classes, and due dates.
Notification	Enables you to create and send notifications when a user is assigned a task or informed that the status of the task has changed.
Access	Enables you to specify access rules for task content and task actions, workflow signature policies, and assignment restrictions.
Events	Enables you to specify callback classes and task and routing assignments in BPEL callbacks.
Documents	Section 29.12, "Storing Documents in Oracle Enterprise Content Management"
This section contains these topics:	
To specify the title, description, outcome, priority, category, owner, and application context:	
Figure 29-2 shows the General section of the Human Task Editor.	
This section enables you to specify details such as the task title, description, task outcomes, task category, task priority, and task owner.	
Figure 29-2 Human Task Editor — General Section	
Instructions for configuring the following subsections of the General section are listed in Table 29-2:	
Table 29-2 Human Task Editor — General Section	
For This Subsection...	See...
---	---
Title	Section 29.2.2, "How to Specify a Task Title"
Description	Section 29.2.3, "How to Specify a Task Description"
Outcomes	Section 29.2.4, "How to Specify a Task Outcome"
Priority	Section 29.2.5, "How to Specify a Task Priority"
Category	Section 29.2.6, "How to Specify a Task Category"
Owner	Section 29.2.7, "How to Specify a Task Owner"
Application Context	Section 29.2.8, "How To Specify an Application Context"
To specify a task title:	
Enter an optional task title. The title defaults to this value only if the initiated task does not have a title set in it. The title provides a visual identifier for the task. The task title displays in Oracle BPM Worklist. You can also search on titles in Oracle BPM Worklist.	
Vacation Request Approved	
). Approval Required for Order Id:	
), place the cursor one blank space to the right of the text and click the icon to the right of this field. This displays the Expression Builder for dynamically creating the remaining portion of the title. After completing the dynamic portion of the name, click OK to return to this field. The complete name is displayed. For example: The expression is resolved during runtime with the exact order ID value from the task payload.	
If you enter a title in the Task Title field of the General tab of the Create Human Task dialog described in Section 28.4.3.1, "Specifying the Task Title," the title you enter here is overridden.	
You can optionally specify a description of the task in the Description field of the General section. The description enables you to provide additional details about a task. For example, if the task title is Computer Upgrade Request	
, you can provide additional details in this field, such as the model of the computer, amount of CPU, amount of RAM, and so on. The description does not display in Oracle BPM Worklist.	
Task outcomes capture the possible outcomes of a task. Oracle BPM Worklist displays the outcomes you specify here as the possible task actions to perform during runtime. Figure 29-3 provides details.	
Figure 29-3 Outcomes in Oracle BPM Worklist	
You can specify the following types of task outcomes:	
The task outcomes can also have runtime display values that are different from the actual outcome value specified here. This permits outcomes to be displayed in a different language in Oracle BPM Worklist. For more information about internationalization, see Section 29.6.2, "How to Specify Multilingual Settings."	
To specify a task outcome:	
The Outcomes dialog shown in Figure 29-4 displays the possible outcomes for tasks. APPROVE and REJECT are selected by default.	
Table 29-3 Outcomes Dialog	
Field	Description
---	---
Select one or more outcomes	Select additional task outcomes or deselect the default outcomes.
Add icon	Click to invoke a dialog for adding custom outcomes. In the Name field of the dialog, enter a custom name, and click OK. Your outcome displays in the Outcomes field. Notes: Be aware of the following naming restrictions:
Outcomes Requiring Comment	Click to select an outcome to which an assignee adds comments in Oracle BPM Worklist at runtime. The assignee must add the comments and perform the action without saving the task at runtime.
Default Outcome	Select the default outcome for this outcome.
The seeded and custom outcomes selected here display for selection in the Majority Voted Outcome section of the parallel participant type.	
Specify the priority of the tasks. Priority can be 1 through 5, with 1 being the highest. By default, the priority of a task is 3. This priority value is overridden by any priority value you select in the General tab of the Create Human Task dialog. You can filter tasks based on priority and create views on priorities in Oracle BPM Worklist.	
To specify a task priority:	
For more information about specifying a priority value in the Create Human Task dialog, see Section 28.4.3.2, "Specifying the Task Initiator and Task Priority."	
You can optionally specify a task category in the Category field of the General section. This categorizes tasks created in a system. For example, in a help desk environment, you may categorize customer requests as either software-related or hardware-related. The category displays in Oracle BPM Worklist. You can filter tasks based on category and create views on categories in Oracle BPM Worklist.	
To specify a task category:	
The task owner can view the tasks belonging to business processes they own and perform operations on behalf of any of the assigned task participant types. Additionally, the owner can also reassign, withdraw, or escalate tasks. The task owner can be considered the business administrator for a task. The task owner can also be specified in the Advanced tab of the Create Human Task dialog described in Section 28.4.4.2, "Specifying a Task Owner." The task owner specified in the Advanced tab overrides any task owner you enter here.	
For more information about the task owner, see Section 27.2.1.3, "Task Stakeholders."	
To specify a task owner:	
For example:	
po	
within which the owner	
is stored, you can specify an XPath expression such as: /task:task/task:payload/po:purchaseOrder/po:owner	
ids:getManager('jstein', 'jazn.com')	
The manager of jstein	
is the task owner.	
For more information about users, groups, and application roles, see Section 27.2.1.1.3, "Participant Assignment."	
Task owners can be selected by browsing the user directory (Oracle Internet Directory, Java AuthoriZatioN (JAZN)/XML, LDAP, and so on) or a list of application roles configured for use with Oracle SOA Suite.	
To specify a task owner statically through the user directory or a list of application roles:	
Note: By default, group names in human tasks are case sensitive. Therefore, if you select Group and enter a name in upper case text (for example,	
Figure 29-5 Specify a Task Owner By Browsing the User Directory or Application Roles	
If you selected User or Group, the Identity Lookup dialog shown in Figure 29-6 appears.	
To select a user or group, you must first create an application server connection by clicking the Add icon. Note the following restrictions:	
myhost.us.oracle.com	
). If you select a connection configured only with the hostname (for example, myhost	
), the Realm list may not display the available realms. If the existing connection does not include the domain name, perform the following steps: jcooper, j*, *,	
and so on. Clicking the Lookup icon to the right of the User Name field fetches all the users that match the search criteria. Figure 29-7 provides details. One or more users or groups can be highlighted and selected by clicking Select. Figure 29-7 Identity Lookup with Realm Selected	
Figure 29-8 User Hierarchy in Identity Lookup Dialog	
Your selection displays in the Owner field.	
If you selected Application Role, the Select an Application Role dialog appears.	
Task owners can be selected dynamically in the Expression Builder dialog.	
To specify a task owner dynamically:	
Figure 29-11 Specify a Task Owner Dynamically	
This displays the Expression Builder dialog shown in Figure 29-12:	
Your selection displays in the Owner field.	
For more information, see the following:	
You can specify the name of the application that contains the application roles used in the task. This indicates the context in which the application role operates. If you do not explicitly create a task, but end up having one, you can set up the context.	
Figure 29-13 shows the Data section of the Human Task Editor.	
This section enables you to specify the structure (message elements) of the task payload (the data in the task) defined in the XSD file. You create parameters to represent the elements in the XSD file. This makes the payload data available to the workflow task. For example:	
Task payload data consists of one or more elements or types. Based on your selections, an XML schema definition is created for the task payload.	
Figure 29-13 Human Task Editor — Parameters Section	
To specify the task payload data structure:	
The Add Task Parameter dialog is displayed, as shown in Figure 29-14.	
Enter the details described in Table 29-5:	
Table 29-5 Add Task Parameter Dialog Fields and Values	
Field	Description
---	---
Parameter Type	Select Type or Element and click the Search icon to display the Type Chooser dialog for selecting the task parameter.
Parameter Name	Accept the default name or enter a custom name. This field only displays if Type is the selected parameter type.
Editable via worklist	Select this checkbox to enable users to edit this part of the task payload in Oracle BPM Worklist. For example, for a loan approval task, the APR attribute may need to be updated by the user reviewing the task, but the SSN field may not be editable. You can also specify access rules that determine the parts of a task that participants can view and update. For more information, see Section 29.9.1, "How to Specify Access Policies on Task Content."
Note: You can only define payload mapped attributes (previously known as flex field mappings) in Oracle BPM Worklist for payload parameters that are simple XML types (string, integer, and so on) or complex types (for example, a purchase order, and so on). If you must search tasks using keywords or define views or delegation rules based on task content, then you must use payload parameters based on simple XML types. These simple types can be mapped to flex columns in Oracle BPM Worklist.	
Your selection displays in the Data section.	
Figure 29-16 shows the Assignment section of the Human Task Editor. This section enables you to select a participant type that meets your business requirements. While configuring the participant type, you build lists of users, groups, and application roles to act upon tasks.	
Figure 29-16 Human Task Editor — Assignment Section	
You can easily mix and match participant types to create simple or complex workflow routing policies. You can also extend the functionality of a previously configured human task to model more complex workflows.	
A participant type is grouped in a block under a stage (for example, named Stage1 in Figure 29-16). A stage is a way of organizing the approval process for blocks of participant types. You can have one or more stages in sequence or in parallel. Within each stage, you can have one or more participant type blocks in sequence or in parallel. The up and down keys enable you to rearrange the order of your participant type blocks.	
For example:	
Each of the participant types has an associated editor that you use for configuration tasks. The sequence in which the assignees are added indicates the execution sequence.	
To specify a different stage name or have a business requirement that requires you to create additional stages, perform the following steps. Creating additional stages is an advanced requirement that may not be necessary for your environment.	
This section contains these topics:	
For more information about participant types, see Section 27.2.1.1, "Task Assignment and Routing."	
To specify a stage name and add parallel and sequential blocks:	
The stage is named Stage1 by default. If you want, you can change the name.	
The Edit dialog shown in Figure 29-17 appears.	
A second stage is added in parallel to the first stage, as shown in Figure 29-19.	
A sequential stage is added below the selected block.	
You create participant types within these blocks.	
To assign task participants:	
or	
The Edit Participant Type dialog appears. This dialog enables you to select a specific participant type.	
Table 29-6 Participant Types	
Participant Type	For a Description of this Participant Type, See...
---	---
Section 27.2.1.1.2, "Participant Type"	Section 29.4.3, "How to Configure the Single Participant Type" Section 29.4.4, "How to Configure the Parallel Participant Type" Section 29.4.5, "How to Configure the Serial Participant Type" Section 29.4.6, "How to Configure the FYI Participant Type"
Figure 29-22 shows the Edit Participant Type dialog for the single participant type. Figure 29-23 shows the expanded Advanced section.	
Figure 29-22 Edit Participant Type — Single Type	
Figure 29-23 Edit Participant Type — Single Type (Expanded Advanced Section)	
To be dynamically assigned to a task, a single participant can be selected from a group, an application role, or a participant list.	
To configure the single participant type:	
Approval Manager	
, Primary Reviewers	
, and so on). Instructions for configuring the following subsections of the Edit Participant Type dialog for the single participant type are listed in Table 29-7:	
Table 29-7 Edit Participant Type — Single Type	
For This Subsection...	See...
---	---
Participant List	Section 29.4.3.1, "Creating a Single Task Participant List"
Limit allocated duration to (under the Advanced section)	Section 29.4.3.2, "Specifying a Time Limit for Acting on a Task"
Allow this participant to invite other participants (under the Advanced section)	Section 29.4.3.3, "Inviting Additional Participants to a Task"
Specify skip rule (under the Advanced section)	Section 29.4.3.4, "Bypassing a Task Participant"
Users assigned to a participant list can act upon tasks. In a single-task participant list, only one user is required to act on the task. You can specify either a single user or a list of users, groups, or application roles for this pattern. If a list is specified, then all users on the list are assigned the task. You can specify either that one of them must manually claim and act upon the task, or that one user from the list is automatically selected by an assignment pattern. When one user acts on the task, the task is withdrawn from the task list of other assignees.	
You can create several types of lists for the single user participant, and for the parallel, serial, and FYI user participants, for example:	
These lists enable you to statically or dynamically select users, groups, or application roles as task assignees.	
Management chains are typically used for serial approvals through multiple users in a management chain hierarchy. Therefore, this list is most likely useful with the serial participant type. This is typically the case if you want all users in the hierarchy to act upon the task. Management chains can also be used with the single participant type. In this case, however, all users in the hierarchy get the task assigned at the same time. As soon as one user acts on the task, it is withdrawn from the other users.	
For example, a purchase order is assigned to a manager. If the manager approves the order, it is assigned to their manager. If that manager approves it, it is assigned to their manager, and so on until three managers approve the order. If any managers reject the request or the request expires, the order is rejected if you specify an abrupt termination condition. Otherwise, the task flow continues to be routed.	
Business rules enable you to create the list of task participants with complex expressions. For example, you create a business rule in which a purchase order request below $5000 is sent to a manager for approval. However, if the purchase order request exceeds $5000, the request is sent to the manager of the manager for approval. Two key features of business rules are facts and action types, which are described in Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."	
When you select a participant type, a dialog box enables you to choose an option for building your list of task participant assignees (users, groups, or application roles), as shown in Figure 29-24. The three selections described above are available: Names and expressions, Management Chain, and Rule-based.	
Figure 29-24 Build a List of Participants	
After selecting an option, you dynamically assign task participant assignees (users, groups, or application roles) and a data type, as shown in Figure 29-25.	
Figure 29-25 Assignment of Task Assignees	
This section describes how to create these lists of participants.	
Select a method for statically or dynamically assigning a user, group, or application role as a task participant.	
For conceptual information, see the following:	
To create participant lists consisting of value-based names and expressions:	
To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.	
Figure 29-26 Selecting and Configuring an Assignment Pattern	
When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.	
If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.	
A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.	
The dialog refreshes to display the fields shown in Figure 29-27.	
Figure 29-27 Value-Based Names and Expressions	
Click the Add icon and select a user, group, or application role as a task participant.	
The Identification Type column of the Participant Names table displays your selection of user, group, or application role.	
To change your selection in the Identification Type column, click it to invoke a dropdown list.	
If your selection is an application role, click the Browse icon to display the Select an Application Role dialog for selecting an application role. To search for application roles, you must first create a connection to the application server. When searching, you must specify the application name to find the name of the role. The task definition can refer to only one application name. You cannot use application roles from different applications as assignees or task owners.	
bpws:getVariableData(...)	
expression or the ids:getManager()	
XPath function. The Value column displays the value you specified.	
To manually enter a value, click the field in the Value column and specify a value.	
Select a method for statically or dynamically assigning management chain parameters as task participants.	
For conceptual information about the following:	
To create participant lists based on value-based management chains:	
To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.	
When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.	
If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.	
A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.	
The dialog refreshes to display the fields shown in Figure 29-28.	
Figure 29-28 Value-Based Management Chains	
2	
and the task is initially assigned to user jcooper	
, both the user jstein	
(manager of jcooper	
) and the user wfaulk	
(manager of jstein	
) are included in the list (apart from jcooper	
, the initial assignee). A ruleset provides a unit of execution for rules and for decision tables. In addition, rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets can be executed in order. This is called rule flow. The ruleset stack determines the order. The order can be manipulated by rule actions that push and pop rulesets on the stack. In rulesets, the priority of rules applies to specify the order of firing of rules in the ruleset. Rulesets also provide an effective date specification that identifies that the ruleset is always active, or that the ruleset is restricted based on a time and date range, or a starting or ending time and date.	
The method by which you create a ruleset is based on how you access it. This is described in the following section.	
To specify participant lists based on rulesets:	
Business rules can define the participant list. There are two options for using business rules:	
Figure 29-29 provides details.	
To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.	
When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.	
If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.	
A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.	
Figure 29-30 provides details.	
To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.	
When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.	
If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.	
Both options create a rule dictionary, if one is not already created, and preseed several rule functions and facts for easy specifications of the participant list. In the rule dictionary, the following rule functions are seeded to create participant lists:	
CreateResourceList	
CreateManagementChainList	
The Task	
fact is asserted by the task service for basing rule conditions.	
After the rule dictionary is created, the Oracle Business Rules Designer is displayed.	
The parameters for the rule functions are similar to the ones in Oracle JDeveloper modeling. In addition to the configurations in Oracle JDeveloper, some additional options are available in the Oracle Business Rules Designer for the following attributes:	
An example of rules specifying management chain-based participants is shown in Figure 29-32.	
If multiple rules are fired, the list builder created by the rule with the highest priority is selected.	
You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.	
To specify a time limit for acting on a task:	
Figure 29-33 Advanced Section of Edit Participant Type — Single Type	
For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."	
You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.	
This is also known as ad hoc routing. If this option is selected, Adhoc Route is added to the Actions list in Oracle BPM Worklist at runtime.	
To invite additional participants to a task:	
You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.	
To bypass a task:	
This action displays an icon for accessing the Expression Builder dialog for building a condition.	
The expression to bypass a task participant must evaluate to a boolean value. For example, /task:task/task:payload/order:orderAmount < 1000 is a valid XPath expression for skipping a participant.	
For more information about creating dynamic rule conditions, see Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."	
Figure 29-34 and Figure 29-35 display the upper and lower sections of the Parallel dialog.	
This participant type is used when multiple users, working in parallel, must act simultaneously, such as in a hiring situation when multiple users vote to hire or reject an applicant. You specify the voting percentage that is needed for the outcome to take effect, such as a majority vote or a unanimous vote.	
For example, a business process collects the feedback from all interviewers in the hiring process, consolidates it, and assigns a hire or reject request to each of the interviewers. At the end, the candidate is hired if the majority of interviewers vote for hiring instead of rejecting.	
Figure 29-34 Edit Participant Type — Parallel Type (Upper Section of Dialog)	
Figure 29-35 Edit Participant Type — Parallel Type (Lower Section of Dialog)	
To assign participants to the parallel participant type:	
Approval Manager	
, Primary Reviewers	
, and so on). Instructions for configuring the following subsections of the Edit Participant Type dialog for the parallel participant type are listed in Table 29-8:	
Table 29-8 Edit Participant Type — Parallel Type	
For This Subsection...	See...
---	---
Vote Outcome	Section 29.4.4.1, "Specifying the Voting Outcome"
Participant List	Section 29.4.4.2, "Creating a Parallel Task Participant List"
Limit allocated duration to (under the Advanced section)	Section 29.4.4.3, "Specifying a Time Limit for Acting on a Task"
Allow this participant to invite other participants (under the Advanced section)	Section 29.4.4.4, "Inviting Additional Participants to a Task"
Specify skip rule (under the Advanced section)	Section 29.4.4.5, "Bypassing a Task Participant"
You can specify a voted-upon outcome that overrides the default outcome selected in the Default Outcome list. This outcome takes effect if the required percentage is reached. Outcomes are evaluated in the order listed in the table.	
To specify group voting details:	
The Any outcome enables you to determine the outcome dynamically at runtime. For example, if you select Any and set the outcome percentage to 60	
, then at runtime, whichever outcome reaches 60% becomes the final voted outcome. If 60% of assignees vote to reject the outcome, then it is rejected.	
From the list in the Outcome Type column, select a method for determining the outcome of the final task.	
51	
) or a unanimous vote (100	
)). For example, assume there are two possible outcomes (ACCEPT and REJECT) and five subtasks. If two subtasks are accepted and three are rejected, and the required acceptance percentage is 50%, the outcome of the task is rejected. Figure 29-36 provides details. This functionality is nondeterministic. For example, selecting a percentage of 30% when there are two subtasks does not make sense.	
If selected, the outcome of the task can be computed early with the outcomes of the completed subtasks, enabling the pending subtasks to be withdrawn. For example, assume four users are assigned to act on a task, the default outcome is APPROVE, and the consensus percentage is set at 50. If the first two users approve the task, the third and fourth users do not need to act on the task, since the consensus percentage value has been satisfied.	
If selected, the workflow waits for all responses before an outcome is initiated.	
Users assigned to the list of participants can act upon tasks. You can create several types of lists:	
For information about creating these lists of participants, see section Section 29.4.3.1, "Creating a Single Task Participant List."	
You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.	
To specify a time limit for acting on a task:	
For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."	
You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.	
To invite additional participants to a task:	
You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.	
To bypass a task participant:	
This action displays an icon for accessing the Expression Builder dialog for building a condition. The expression must evaluate to a boolean value.	
For information about a valid XPath expression for skipping a participant, see Section 29.4.3.4, "Bypassing a Task Participant."	
Figure 29-37 displays the Serial dialog. Figure 29-38 shows the expanded Advanced section.	
This participant type enables you to create a list of sequential participants for a workflow. For example, if you want a document to be reviewed by John, Mary, and Scott in sequence, use this participant type. For the serial participant type, they can be any list of users or groups.	
Figure 29-37 Edit Participant Type — Serial Type	
Figure 29-38 Edit Participant Type — Serial Type (Expanded Advanced Section)	
To configure the serial participant type:	
Approval Manager	
, Primary Reviewers	
, and so on). Instructions for configuring the following subsections of the Edit Participant Type dialog for the serial participant type are listed in Table 29-9.	
Table 29-9 Edit Participant Type — Serial Type	
For This Subsection...	See...
---	---
Participant List	Section 29.4.5.1, "Creating a Serial Task Participant List"
Limit allocated duration to (under the Advanced section)	Section 29.4.5.2, "Specifying a Time Limit for Acting on a Task"
Allow this participant to invite other participants (under the Advanced section)	Section 29.4.5.3, "Inviting Additional Participants to a Task"
Specify skip rule (under the Advanced section)	Section 29.4.5.4, "Bypassing a Task Participant"
Users assigned to the list of participants can act upon tasks. You can create several types of lists:	
See section Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on creating these lists of participants.	
You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.	
To specify a time limit for acting on a task:	
For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."	
You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.	
To invite additional participants to a task:	
Note: For the serial participant type, additional participants can be invited as follows:	
You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.	
To bypass a task participant:	
This action displays an icon for accessing the Expression Builder dialog for building a condition. The expression must evaluate to a boolean value.	
For more information about a valid XPath expression for skipping a participant, see Section 29.4.3.4, "Bypassing a Task Participant."	
Figure 29-39 displays the Edit Participant Type dialog for the FYI type. This dialog also includes a Participants Exclusion List at the bottom that is not displayed in Figure 29-39.	
This participant type is used when a task is sent to a user, but the business process does not wait for a user response; it just continues. FYIs cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.	
For example, a magazine subscription is due for renewal. If the user does not cancel the current subscription before the expiration date, the subscription is renewed. This user is reminded weekly until the request expires or the user acts on it.	
Figure 29-39 Edit Participant Type — FYI Type	
To configure the FYI participant type:	
Approval Manager	
, Primary Reviewers	
, and so on). Users assigned to the list of participants can act upon tasks. You can create several types of lists:	
See section Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on creating these lists of participants.	
After you configure a participant type and are returned to the Human Task Editor, click the Task will go from starting to final participant icon, as shown in Figure 29-40.	
Figure 29-40 Human Task Editor — Assignment Section	
This displays the Configure Assignment dialog shown in Figure 29-41 for specifying a method for routing your task through the workflow.	
Table 29-10 describes the routing policy methods provided.	
Table 29-10 Routing Policy Method	
Routing Policy Selection	Use This Policy In Environments Where...
---	---
Route task to all participants, in order specified This selection enables you to specify the following suboptions:	A task must be routed to each of the participants in the order in which they appear. This is predetermined, default routing. For example, in a hiring process, if three users interview and provide review feedback, then the task is sent to the human resources department.
A participant can select users or groups as the next assignee (ad hoc) when approving the task.	Section 29.5.1.1, "Allowing All Participants to Invite Other Participants"
A participant in a task can accept or reject it, thus ending the workflow without the task being sent to any other participant. For example, a manager rejects a purchase order, meaning that purchase order is not sent to their manager for review.	Section 29.5.1.2, "Stopping Routing of a Task to Further Participants"
Note: This option is for environments in which you have multiple stages and participants working in parallel. Participants perform subtasks in parallel, and one group's rejection or approval of a subtask does not cause the other group's subtask to also be rejected or approved.	Section 29.5.1.3, "Enabling Early Completion in Parallel Subtasks"
Note: This option is for environments in which you have multiple stages and participants working in parallel. Participants perform subtasks in parallel, and one group's rejection or approval of a subtask causes the other group's subtask to also be rejected or approved.	Section 29.5.1.4, "Completing Parent Subtasks of Early Completing Subtasks"
Use Advanced Rules	The participants to whom the task is routed are determined by the business rule logic that you model. For example, a loan application task is designed to go through a loan agent, their manager, and then the senior manager. If the loan agent approves the loan, but their manager rejects it, the task is returned to the loan agent.
Use External Routing	The participants in a task are dynamically determined. For example, a company's rules may require the task participants to be determined and then retrieved from a back-end database during runtime.
Assignment tab	A participant is assigned a failed task for the purposes of recovery.
You can select to have a task reviewed by all selected participants. This is known as default routing because the task is routed to each of the participants in the order in which they appear. This type of routing differs from state machine-based routing.	
To route tasks to all participants in the specified order:	
Figure 29-42 Route a Task to All Participants	
See the following tasks to define a routing policy:	
This checkbox is the equivalent of the ad hoc workflow pattern of pre-10.1.3 Oracle BPEL Process Manager releases. This applies when there is at least one participant. In this case, each user selects users or groups as the next assignee when approving the task.	
To allow all participants to invite other participants:	
You can specify conditions under which to complete a task early, regardless of the other participants in the workflow.	
For example, assume an expense report goes to the manager, and then the director. If the first participant (manager) rejects it, you can end the workflow without sending it to the next participant (director).	
To abruptly complete a condition:	
The Abrupt Completion Details dialog appears.	
There are two methods for specifying the abrupt completion of a task:	
If outcomes are specified, any time the selected task outcome occurs, the task completes. If both outcome and routing condition are specified, the workflow service performs a logical OR	
operation on the two.	
An early completion XPath expression is not evaluated until at least one user has acted upon the task.	
You can click the icon to the right of the Complete task when a participant chooses: <outcome> checkbox to edit this information.	
You can use this option in the following environments:	
For example, assume there are two parallel subgroups, each in separate stages. One group acts upon lines of a purchase order. The other group acts upon headers of the same purchase order. If participant ApproveLines.Participant2 of the first group rejects a line, all other task participants in the first group stop acting upon tasks. However, the second parallel group continues to act upon headers in the purchase order. In this scenario, the entire task does not complete early. Figure 29-44 provides details.	
Figure 29-44 Early Completion of Parallel Subtasks	
You can use this option in the following environments:	
For example, assume there are two parallel subgroups, each in separate stages, as shown in Figure 29-44. One group acts upon lines of a purchase order. The other group acts upon headers of the same purchase order. If participant ApproveLines.Participant2 of the first group rejects a line, all other task participants in the first group stop acting upon tasks. In addition, the second parallel group stops acting upon headers in the purchase order. In this scenario, the entire task completes early.	
Use advanced routing rules to create complex workflow routing scenarios. The participant types (single, parallel, serial, and FYI) are used to create a linear flow from one set of users to another with basic conditions such as abrupt termination, skipping assignees, and so on. However, there is often a need to perform more complex back and forth routing between multiple individuals in a workflow. One option is to use the BPEL process as the orchestrator of these tasks. Another option is to specify it declaratively using business rules. This section describes how you can model such complex interactions by using business rules with the Human Task Editor.	
You can define state machine routing rules using Oracle Business Rules. This action enables you to create Oracle Business Rules that are evaluated:	
This action enables you to override the standard task routing slip method described in Section 29.5.1, "How to Route Tasks to All Participants in the Specified Order" and build complex routing behavior into tasks.	
Using Oracle Business Rules, you define a set of rules (called a ruleset) that relies on business objects, called facts, to determine which action to take.	
A fact is an object with certain business data. Each time a routing slip assignee sets the outcome of a task, instead of automatically routing the task to the next assignee, the task service performs the following steps:	
Rules can test values in the asserted facts and specify the routing behavior by setting values in a TaskAction	
fact type.	
Table 29-11 describes the fact types asserted by the task service.	
Table 29-11 Fact Types Asserted By the Task Service	
Fact Type	Description
---	---
This fact contains the current state of the workflow task instance. All task attributes can be tested against it. The task fact also contains the current task payload. This fact enables you to construct tests against payload values and task attribute values.	
This fact describes the previous task outcome and the assignee who set the outcome. The previous outcome fact contains the following attributes:	
This fact is not intended for writing rule tests against it. Instead, it is updated by the ruleset, and returned to the task service to indicate how the task should be routed. Rules should not directly update the	
Some fact types can only be used in workflow routing rules, while others can only be used in workflow participant rules. Table 29-12 describes where you can use each type.	
Table 29-12 Use of Fact Types	
Fact Type	Can Use in Routing Rules?
---	---
Yes	Yes
Yes	No
Yes	No
No	Yes
No	Yes
No	Yes
No	Yes
No	Yes
No	Yes
No	Yes
No	Yes
To instruct the task service on how to route the task, rules can specify one of many task actions. This is done by updating the TaskAction	
fact asserted into the rule session. However, rules should not directly update the TaskAction	
fact. Instead, rules should call one of the action RL functions, passing the TaskAction	
fact as a parameter. These functions handle the actual updates to the fact. For example, to specify an action of go forward, you must add a call	
GO_FORWARD(TaskAction)	
to the action part of the rule.	
Each time a state machine routing rule is evaluated, the rule takes one of the actions shown in Table 29-13:	
Table 29-13 Business Rule Actions	
Action	Description
---	---
Goes to the next participant in the routing slip (default behavior).	None
Goes back to the previous participant in the routing slip (the participant before the one that just set the task outcome).	None
Goes to a specific participant in the routing slip.	
A string that identifies the label of the participant (for example,	
Finishes routing and completes the task. The task is marked as completed, and no further routing is required.	None
Escalates and reassigns the task according to the task escalation policy (usually to the manager of the current assignee).	None
This section describes how to use rules to implement custom routing behavior with a simple example. A human workflow task is created for managing approvals of expense requests. The outcomes for the task are approve and reject. The task definition includes an ExpenseRequest	
payload element. One of the fields of ExpenseRequest	
is the total amount of the expense request. The routing slip for the task consists of three single participants (assignee1	
, assignee2	
, and assignee3	
).	
By default, the task gets routed to each of the assignees, with each assignee choosing to approve or reject the task.	
Instead of this behavior, the necessary routing behavior is as follows:	
This behavior is implemented using the following rules. When a rule dictionary is generated for advanced routing rules, it is created with a template rule that implements the default GO_FORWARD	
behavior. You can edit this rule, and make copies of the template rule by right-clicking and selecting Copy Rule in the Oracle Business Rules Designer.	
If the amount is greater than $100 and the previous assignee approved the task, it is not necessary to provide a rule for routing a task to each of the assignees in turn. This is the default behavior that is reverted to if none of the rules in the ruleset are triggered:	
Figure 29-46 Push Back On The Rejected Rule	
Assignee1	
rejected rule (Figure 29-47): Figure 29-47 Completion of the Assignee1 Rejected Rule	
For information about iterative design, see the workflow-106-IterativeDesign	
sample available with the Oracle SOA Suite samples.	
For human workflow, business rule artifacts are now stored in two rules dictionaries. This is useful for scenarios in which you must customize your applications. For example, you create and ship version 1 of an application to a customer. The customer then customizes the rulesets in the application with Oracle SOA Composer. Those customizations are now stored in a different rules dictionary than the base rules dictionary. The rules dictionary that stores the customized rulesets links with the rules in the base dictionary. When you later ship version 2 of the application, the base rule dictionary may contain additional changes introduced in the product. The ruleset customization changes previously performed by the customer are preserved and available with the new changes in the base dictionary. When an existing application containing a task using rules is opened, if the rules are in the old format using one dictionary, they are automatically upgraded and divided into two rules dictionaries:	
For more information about customizations, see Chapter 46, "Customizing SOA Composite Applications."	
To create advanced routing rules:	
This starts the Oracle Business Rules Designer with a preseeded repository containing all necessary fact definitions, as shown in Figure 29-49. A decision service component is created for the dictionary, and is associated with the task service component.	
This automatically creates a fully-wired decision service in the human task and the associated rule repository and data model.	
For more information about business rules, see the following documentation:	
You configure an external routing service that dynamically determines the participants in the workflow. If this routing policy is specified, all other participant types are ignored. It is assumed that the external routing service provides a list of participant types (single approver, serial approver, parallel approver, and so on) at runtime to determine the routing of the task.	
Use this option if you do not want to use any of the routing rules to determine task assignees. In this case, all the logic of task assignment is delegated to the external routing service.	
Note: If you select Use External Routing in the Configure Assignment dialog, specify a Java class, and click OK to exit, the next time you open this dialog, the other two selections (Route task to all participants, in order specified and Use Advanced Rules) no longer appear in the dropdown list. To access all three selections again, you must delete the entire assignment.	
To use external routing	
Figure 29-50 Selection of Use External Routing	
The External Routing dialog appears, as shown in Figure 29-51.	
org.mycompany.tasks.RoutingService	
class name). This class must implement the following interface: Tasks can error for reasons such as incorrect assignments. When such errors occur, the task is assigned to the error assignee, who can perform corrective actions. Recoverable errors are as follows:	
The following errors are not recoverable. In these cases, the task is moved to the terminating state ERRORED	
.	
GOTO	
participant from state machine rules During modeling of workflow tasks, you can specify error assignees for the workflow. If error assignees are specified, they are evaluated and the task is assigned to them. If no error assignee is specified at runtime, an administration user is discovered and is assigned the alerted task. The error assignee can perform one of the following actions:	
Route the task to the actual users assigned to the task. Ad hoc routing allows the task to be routed to users in sequence, parallel, and so on.	
Reassign the task to the actual users assigned to this task	
Indicate that this task cannot be rectified.	
If there are any errors in evaluating the error assignees, the task is marked as being in error.	
This dialog enables you to specify the users or groups to whom the task is assigned if an error in assignment has occurred.	
To configure the error assignee:	
The Identification Type column of the Starting Participant table displays your selection of user, group, or application role.	
The SharePayloadAcrossAllParallelApprovers System MBean Browser boolean property in Oracle Enterprise Manager Fusion Middleware Control determines whether to share the payload of subtasks in the root task. By default, this property is set to true. If set to true, the All task participants share the same payload (better performance and less storage space) option is used. If this property is set to false, the Each parallel participant has a local copy of the payload option is used. To change this property, perform the following steps:	
The payload for the subtasks is stored in their root task. This situation means that the payload of the root task is shared across all its subtasks. Internally, this option provides better performance and storage space consumption. Less storage space is consumed because the payload of the root task is shared across all its subtasks.	
Each subtask has its own copy of the payload. Internally, this option provides lesser performance and storage space consumption because more storage space is consumed.	
For more information about users, groups, or application roles, see Section 27.2.1.1.3, "Participant Assignment."	
The Presentation section shown in Figure 29-53 enables you to specify resource bundles for displaying task details in different languages in Oracle BPM Worklist and WordML and custom style sheets for attachments.	
To specify WordML style sheets for attachments:	
You can specify resource bundles for displaying task details in different languages in Oracle BPM Worklist. Resource bundles are supported for the following task details:	
message(key)	
format. hwf:getTaskResourceBundleString(taskId, key, locale?)	
XPath extension function to obtain the internationalized string from the specified resource bundle. The locale of the notification recipient can be retrieved with the function hwf:getNotificationProperty(propertyName)	
. Resource bundles can also simply be property files. For example, a resource bundle that configures a display name for task outcomes can look as follows:	
APPROVE=Approve	
REJECT=Reject	
To specify multilingual settings:	
The Resource Details dialog shown in Figure 29-54 appears.	
.properties	
-based resource bundle file. If the resource bundle is outside of the composite project, you are prompted to place a local copy in SCA-INF/lib	
.	
If the resource bundle file is not in the composite class loader (directly under SCA-INF/classes	
or in a JAR file in SCA-INF/lib	
), you must specify its location. For example, if the resource bundle is accessible from a location outside of the composite class loader (for example, an HTTP location such as http://	
host	
:	
port	
/bundleApp/taskBundles.jar	
), then this location must be specified in this field.	
For more information, see Section 34.2.6, "How to Configure Notification Messages in Different Languages."	
Figure 29-55 shows the Deadlines section of the Human Task Editor.	
You can specify the expiration duration of a task in this global policy section (also known as the routing slip level). If the expiration duration is specified at the routing slip level instead of at the participant type level, then this duration is the expiration duration of the task across all the participants. However, if you specify expiration duration at the participant type level (through the Limit allocated duration to checkbox), then those settings take precedence over settings specified in the Deadlines section (routing slip level).	
You can also specify that a task be escalated to a user's manager after a specified time period. For more information, see Section 29.4.3.2, "Specifying a Time Limit for Acting on a Task."	
Figure 29-55 Human Task Editor — Deadlines Section	
This section provides an overview of how specifying the expiration duration at this level makes this setting the expiration duration of the task across all the participants.	
For example, participant LoanAgentGroup and participant Supervisor have three days to act on the task between them, as shown in Figure 29-56:	
If there is no expiration specified at either the participant level or this routing slip level, then that task has no expiration duration.	
If expiration duration is specified at any level of the participants, then for that participant, the participant expiration duration is used. However, the global expiration duration is still used for the participants that do not have participant level expiration duration. The global expiration duration is always decremented by the time elapsed in the task.	
The policy for interpreting the participant level expiration for the participants is described as follows:	
Each assignment in the management chain gets the same expiration duration as the one specified in the serial. The duration is not for all the assignments resulting from this assignment. If the task expires at any of the assignments in the management chain, the escalation and renewal policy is applied.	
Note: When the parent task expires in a parallel task, the subtasks are withdrawn if those tasks have not expired or completed.	
You can specify for a task to never expire.	
To specify a policy to never expire:	
You can specify for a task to expire. When the task expires, either the escalation policy or the renewal policy at the routing slip level is applied. If neither is specified, the task expires. The expiration policy at the routing slip level is common to all the participants.	
To specify for a task to expire:	
The expiration policy for parallel participants is interpreted as follows:	
Figure 29-57 indicates that the task expires in three days.	
You can extend the expiration period when the user does not respond within the allotted time. You do this by specifying the number of times the task can be renewed upon expiration (for example, renew it an additional three times) and the duration of each renewal (for example, three days for each renewal period).	
To extend an expiration policy period:	
In Figure 29-58, when the task expires, it is renewed at most three times. It does not matter if the task expired at the LoanAgentGroup participant or the Supervisor participant.	
You can escalate a task if a user does not respond within the allotted time. For example, if you are using the escalation hierarchy configured in your user directory, the task can be escalated to the user's manager. If you are using escalation callbacks, the task is escalated to whoever you have defined. When a task has been escalated the maximum number of times, it stops escalating. An escalated task can remain in a user inbox even after the task has expired.	
To escalate a task policy:	
Number of management levels to which to escalate the task. This field is required.	
The title of the highest approver (for example, self, manager, director, or CEO). These titles are compared against the title of the task assignee in the corresponding user repository. This field is optional.	
The escalation policy specifies the number of times the task can be escalated on expiration and the renewal duration. In Figure 29-59, when the task expires, it is escalated at most three times. It does not matter if the task expired at the LoanAgentGroup participant or the Supervisor participant.	
This option allows a custom escalation rule to be plugged in for a particular workflow. For example, to assign the task to a current user's department manager on task expiration, you can write a custom task escalation function, register it with the workflow service, and use that function in task definitions.	
The default escalation rule is to assign a task to the manager of the current user. To add a new escalation rule, follow these steps.	
To specify escalation rules:	
This implementation must be available in the class path for the server.	
The Workflow Task Service Properties page appears.	
DepartmentSupervisor	
oracle.bpel.services.workflow.assignment.dynamic.patterns.DepartmentSupervisor	
For more information, see Section 34.3.3, "Custom Escalation Function."	
A due date indicates the date by which the task should be completed. The due date is different from the expiration date. When a task expires it is either marked expired or automatically escalated or renewed based on the escalation policy. The due date is generally a date earlier than the expiration date and an indication to the user that the task is about to expire.	
You can enter a due date for a task, as shown in Figure 29-55. A task is considered overdue after it is past the specified due date. This date is in addition to the expiration policy. A due date can be specified irrespective of whether an expiration policy has been specified. The due date enables Oracle BPM Worklist to display a due date, list overdue tasks, filter overdue tasks in the inbox, and so on. Overdue tasks can be queried using a predicate on the TaskQueryService.queryTask(...)	
API.	
To specify a due date:	
Note the following details:	
.task	
file (using the Human Task Editor). This is to allow to-do tasks without task definitions to set a due date during initiation of the task. A due date that is set in the task (a runtime object) overrides a due date that is set in the .task	
file. .task	
file is ignored. .task	
file is evaluated and set on the task. .task	
file, there is no due date on the task. Note: You cannot specify business rules for to-do tasks.	
For more information, see Section 32.3.4, "How To Create a ToDo Task."	
Figure 29-60 shows the General tab of the Notification section of the Human Task Editor (when fully expanded).	
Notifications indicate when a user or group is assigned a task or informed that the status of the task has changed. Notifications can be sent through email, voice message, instant message, or SMS. Notifications are sent to different types of participants for different actions. Notifications are configured by default with default messages. For example, a notification message is sent to indicate that a task has completed and closed. You can create your own or modify existing configurations.	
Note: Embedded LDAP does not support group email addresses. Therefore, when a task is assigned to a group ID, emails are sent to all of its members instead of to the group email address.	
Figure 29-60 Human Task Editor — General Tab of Notification Section	
To specify participant notification preferences:	
Instructions for configuring the following subsections of the General tab of the Notification section are listed in Table 29-15.	
Table 29-15 Human Task Editor — General Tab of Notification Section	
For This Subsection...	See...
---	---
Task Status Recipient	Section 29.8.1, "How to Notify Recipients of Changes to Task Status"
Notification Header	Section 29.8.2, "How to Edit the Notification Message"
For information about the notification service, see Section 34.2, "Notifications from Human Workflow."	
Figure 29-61 Notification Section - Advanced Tab	
Instructions for configuring the following subsections of the Advanced tab of the Notification section are listed in Table 29-16.	
Table 29-16 Human Task Editor — Advanced Tab of Notification Section	
For This Subsection...	See...
---	---
Reminders	Section 29.8.3, "How to Set Up Reminders"
Encoding	Section 29.8.4, "How to Change the Character Set Encoding"
Make notifications secure (exclude details)	Section 29.8.5, "How to Secure Notifications to Exclude Details"
Show worklist URL in notifications	Section 29.8.6, "How to Display the Oracle BPM Worklist URL in Notifications"
Make notifications actionable	Section 29.8.7, "How to Make Email Messages Actionable"
Send task attachments with email notifications	Section 29.8.8, "How to Send Task Attachments with Email Notifications"
Group notification configuration	Section 29.8.9, "How to Send Email Notifications to Groups and Application Roles"
Notification header attributes	Section 29.8.10, "How to Customize Notification Headers"
Three default status types display in the Task Status column: Assign, Complete, and Error. You can select other status types for which to receive notification messages.	
To notify recipients of changes to task status:	
When a task is in an alerted state, you can notify recipients. However, none of the notification recipients (assignees, approvers, owner, initiator, or reviewer) can move the task from an alerted state to an error state; they only receive an FYI notification of the alerted state. The owner can reassign, withdraw, delete, or purge the task, or ask the error assignee to move the task to an error state if the error cannot be resolved. Only the error assignee can move a task from an alerted state to an error state.	
You configure the error assignee on the Assignment tab of the Configure Assignment dialog under the Task will go from starting to final participant icon in the Assignment section. For more information, see Section 29.5.4, "How to Configure the Error Assignee."	
When the task is assigned to users or a group. This captures the following actions:	
Notifications can be sent to users involved in the task in various capacities. This includes when the task is assigned to a group, each user in the group is sent a notification if there is no notification endpoint available for the group.	
The users or groups to whom the task is currently assigned.	
The user who created the task.	
The users who have acted on the task up to this point. This applies in a serial participant type in which multiple users have approved the task and a notification must be sent to all of them.	
The task owner	
The user who can add comments and attachments to a task.	
For more information, see Section 34.2.5, "How to Configure the Notification Channel Preferences."	
A default notification message is available for delivery to the selected recipient. If you want, you can modify the default message text.	
To edit the notification message:	
The Edit Notification Message dialog shown in Figure 29-62 appears.	
Figure 29-62 Edit Notification Message Dialog	
This message applies to all the supported notification channels: email, voice, instant messaging, and SMS. Email messages can also include the worklist task detail defined in this message. The channel by which the message is delivered is based upon the notification preferences you specify.	
For more information about notification preference details, see Section 34.2, "Notifications from Human Workflow."	
You can send task reminders, which can be based on the time the task was assigned to a user or the expiration time of a task. The number of reminders and the interval between the reminders can also be configured.	
To set up reminders:	
For more information, see Section 34.2.12, "How to Send Reminders."	
Unicode is a universally-encoded character set that enables information from any language to be stored using a single character set. Unicode provides a unique code value for every character, regardless of the platform, program, or language. You can use the default setting of UTF-8 or you can specify a character set with a Java class.	
To change the character set encoding	
To secure notifications, make messages actionable, and send attachments:	
If selected, a default notification message is used. There are no HTML worklist task details, attachments, or actionable links in the email. Only the task number is in the message.	
For more information, see Section 34.2.10, "How to Send Secure Notifications."	
You can configure whether to display the Oracle BPM Worklist URL in email notification messages.	
To display the Oracle BPM Worklist URL in notifications:	
To make email messages actionable:	
For more information about additional configuration details, see Section 34.2.7, "How to Send Actionable Messages."	
For more information about configuring outbound and inbound emails, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
You can send task attachments with email notifications.	
To send task attachments with email notifications:	
You can send email notifications to groups and application roles to which tasks are assigned.	
To send email notifications to groups and application roles:	
Each user in the group or application role receives an individual email notification. This is the default selection.	
In addition, the Use separate task forms based on locale checkbox is automatically selected.	
A shared notification email is generated once for a user locale in a group or application role, thereby saving time in notification email content generation. The email is sent to all users in the group or application role.	
Notes:	
Custom notification headers are used to specify name and value pairs to identify key fields within the notification. These entries can be used by users to define delivery preferences for their notifications. For example:You can set Name to ApprovalType and value to Expense or Name to Priority and value to High.Users can then specify delivery preferences in Oracle BPM Worklist. These preferences can be based on the contents of the notification.	
The rule-based notification service is only used to identify the preferred notification channel to use. The address for the preferred channel is still obtained from the identity service.	
To customize notification headers:	
For more information about preferences, see the following sections:	
You can specify access rules on task content and actions to perform on that content.	
You can specify access rules that determine the parts of a task that participants can view and update. Access rules are enforced by the workflow service by applying rules on the task object during the retrieval and update of the task.	
Note: Task content access rules and task actions access rules exist independently of one another.	
Access rules are computed based on the following details:	
TaskMetadataService.getVisibilityRules()	
contains one key for each. Similarly, if the participant does not have read permissions on DATES	
, the task does not contain any of the following task attributes: START_DATE	
END_DATE	
ASSIGNED_DATE	
SYSTEM_END_DATE	
CREATED_DATE	
EXPIRATION_DATE	
ALL_UPDATED_DATE	
TaskMetadataService.getVisibilityRules()	
contains one key for each of the following. Similarly, if the participant does not have read permissions on ASSIGNEES	
, the task does not contain any of the following task attributes: ASSIGNEES	
ASSIGNEE_USERS	
ASSIGNEE_GROUPS	
ACQUIRED_BY	
TaskMetadataService.getVisibilityRules()	
. TaskMetadataService.getVisibilityRules()	
are prefixed by ITaskMetadataService.TASK_VISIBILITY_ATTRIBUTE_PAYLOAD_MESSAGE_ATTR_PREFIX (PAYLOAD)	
. An application can also create pages to display or not display task attributes based on the access rules. This can be achieved by retrieving a participant's access rules by calling the API on oracle.bpel.services.workflow.metadata.ITaskMetadataService	
. Example 29-1 provides details.	
Example 29-1 API Call	
For more information about this method, see Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager.	
You can specify the privileges that specific users (such as the task creator or owner) have for acting on specific task content (such as a payload).	
To specify user privileges for acting on task content:	
Figure 29-63 Configure Task Content Access	
Table 29-17 Highest Privilege Levels for Users of Task Content	
Task Content	Individual with Read Access
---	---
Assignees	Admin, Approvers, Assignees, Creator, Owner, Reviewers
Attachments	Admin, Approvers
Comments	Admin, Approvers
Dates	Admin, Approvers, Assignees, Creator, Owner, Reviewers
Flexfields	Admin, Approvers, Reviewers
History	Admin, Approvers, Assignees, Creator, Owner, Reviewers
Payload	Admin, Approvers, Reviewers
Reviewers	Admin, Approvers, Assignees, Creator, Owner, Reviewers
Payload elements	Inherited from payload
For example, if you accept the default setting of ASSIGNEES, CREATOR, and OWNER with write access, ADMIN, APPROVERS, and REVIEWERS with read access, and PUBLIC with no access to the PAYLOAD task content, the dialog appears as shown in Figure 29-63.	
Displays the task content as a whole (for example, displays only one payload or reviewer).	
Displays the content as individual elements (for example, displays all payloads (such as p1, p2, and p3) and all reviewers assigned to this task (such as jstein, wfaulk, and cdickens).	
Note: Access rules are always applied on top of what the system permits, depending on who is performing the action and the current state of the task.	
You can specify the actions (either access or no access) that specific users (such as the task creator or owner) have for acting on the task content (such as a payload) that you specified in the Configure Task Content Access dialog.	
To specify actions for acting upon tasks:	
Figure 29-64 Selection of Add Action Access Rule	
Displays the task actions as a whole (for example, displays only one approval or rejection).	
Displays the content actions as individual elements. (for example, displays all approvals or rejections).	
Digital signatures provide a mechanism for the nonrepudiation of digitally-signed human tasks. This ability to mandate that a participant acting on a task signs the details and their action before the task is updated ensures that they cannot repudiate it later.	
Note: If digital signatures are enabled for a task, actionable emails are not sent during runtime. This is the case even if actionable emails are enabled during design time.	
To specify a workflow digital signature policy:	
Participants can send and act upon tasks without providing a signature. This is the default policy.	
Participants specify a signature before sending tasks to the next participant. Participants must reenter their password while acting on a task. The password is used to generate the digital signature. A digital signature authenticates the identity of the message sender or document signer. This ensures that the original content of the sent message is unchanged.	
Participants must possess a digital certificate for the nonrepudiation of digitally-signed human tasks. A digital certificate establishes the participant's credentials. It is issued by a certification authority (CA). It contains the following:	
The CA names and CA CRL and URLs of the issuing authorities must be configured separately.	
For more information, see Section 34.1.10, "Evidence Store Service and Digital Signatures."	
To use digital signatures, you must specify CAs you consider trustworthy in the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control. Only certificates issued from such CAs are considered valid by human workflow.	
To specify a certificate authority:	
You must validate these values before using them.	
You can restrict the users to which a task can be reassigned or routed by using a callback class.	
The user community seeded in a typical LDAP directory can represent the whole company or division. However, it may be necessary at times to limit the potential list of users to associate with a task based on the scope or importance of the task or associated data. For example, in a large company with thousands of users, only a few people have the ability to approve and create purchase orders. Specifically for such tasks, the users that can be chosen for ad hoc routing and reassignment should not be the whole company. Instead, only a few users who are relevant or have the right privilege should be chosen. This can be achieved by the restricted assignment functionality. This is implemented as a callback class that can implement the logic to choose the right set of users dynamically based on the task object that is passed containing the instance data.	
To specify restrictions on task assignments:	
The Configure Restricted Assignment dialog appears.	
oracle.bpel.services.workflow.task.IRestrictedAssignmentCallback	
interface. You can specify Java or business event callbacks.	
You can register callbacks for the workflow service to call when a particular stage is reached during the lifecycle of a task. Two types of callbacks are supported:	
oracle.bpel.services.workflow.task.IRoutingSlipCallback	
. Make the callback class available in the class path of the server. To specify callback classes on task status:	
The following state change callbacks are available for selection:	
Select if the callback class must be called on any assignment change, including standard routing, reassignment, delegation, escalation, and so on. If a callback is required when a task has an outcome update (that is, one of the approvers in a chain approves or rejects the task), this option must be selected.	
Select if the callback class must be called on any update (including payload, comments, attachments, priority, and so on).	
Select if the callback class must finally be called when the task is completed and control is about to be passed to the initiator (such as the BPEL process initiating the task).	
Select if the callback class must be called to enable business event callbacks in a human workflow task. When the event is raised, it contains the name of the completed stage, the outcome for the completed stage, and a snapshot of the task when the callback is invoked.	
Select if the callback class must be called on any update (including payload, comments, attachments, priority, and so on) on a subtask (one of the tasks in a parallel-and-parallel scenario).	
If your Oracle JDeveloper installation is updated to include both the BPEL and BPM extensions, then the following content callbacks are also available for selection:	
Select if the callback class must be called to store the comments in a schema other than the WFCOMMENT	
column.	
Select if the callback class must be called to store the comments in a schema other than the WFATTACHMENT	
column.	
Select if the callback class must be called to validate either the task or payload before updating, approving, and so on.	
To specify Java callbacks:	
oracle.bpel.services.workflow.task.IRoutingSlipCallback	
. Figure 29-66 provides details. Figure 29-66 CallBack Details Dialog with Java Selected	
To specify business event callbacks:	
Figure 29-67 CallBack Details Dialog with Business Events Selected	
A preseeded, static event definition language (EDL) file (JDev_Home	
\jdeveloper\integration\seed\soa\shared\workflow	
\HumanTaskEvent.edl	
) provides the list of available business events to which to subscribe. These business events correspond to the callbacks you select in the Callback Details dialog. You must now create an Oracle Mediator service component in which you reference the EDL file and subscribe to the appropriate business event.	
Note: A file-based MDS connection is required so that the EDL file can be located. The location for the file-based MDS is	
The SOA Resource Browser dialog appears.	
The Event Chooser is now populated with EDL file business events available for selection.	
You can have multiple human tasks available for subscribing to the event. For example, assume you performed the following:	
To distinguish between events for TaskA and TaskB and ensure that an event is processed only by the intended Oracle Mediator, you can add a static routing filter:	
This only invokes this routing when the sending component is TaskA.	
The Oracle Mediator service component is now populated with the business event to which to subscribe. You can also subscribe to other business events defined in the same EDL file now or at a later time.	
See the following documentation for additional details about business events and callbacks:	
In general, the BPEL process calls into the workflow component to assign tasks to users. When the workflow is complete, the human workflow service calls back into the BPEL process. However, if you want fine-grained callbacks (for example, onTaskUpdate	
or onTaskEscalated	
) to be sent to the BPEL process, you can use the Allow task and routing customization in BPEL callbacks option.	
Make sure to manually refresh the BPEL diagram for this callback setting.	
To specify task and routing customizations in BPEL callbacks:	
This creates the while, pick, and onMessage branch of a pick activity for BPEL callback customizations inside the task scope activity.	
For more information about specifying task and routing customizations, see Section 28.4.5.1, "Invoking BPEL Callbacks."	
A user talk activity (in Oracle BPEL Designer) has an invoke activity followed by a receive or pick activity. Deselecting the Disable BPEL callbacks checkbox enables you to invoke the task service without waiting for a reply.	
To disable BPEL callbacks:	
Figure 29-69 shows the Documents section of the Human Task Editor.	
Figure 29-69 Human Task Editor — Documents Section	
This chapter describes how developers can design and customize task forms for human tasks by using ADF task flows in Oracle JDeveloper. Human tasks enable users to interact with the business process. Each task has two parts—the task metadata and the task form. The task form is used to display the contents of the task to the user's worklist.	
Oracle BPM Worklist displays all worklist tasks that are assigned to a user or a group. When a worklist user drills down into a specific task, the task form renders the details of that task. For example, the task form for the Fusion Order Demo ApprovalHumanTask shows order information such as the order total and ship-to information.	
This chapter includes the following sections:	
For information about troubleshooting human workflow issues, see section "Human Workflow Troubleshooting" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
If your SOA composite includes a human task, then you need a way for users to interact with the task. The integrated development environment of Oracle SOA Suite includes Oracle Application Development Framework (Oracle ADF) for this purpose. With Oracle ADF, you can design a task form that depicts the human task in the SOA composite.	
The task form is a Java Server Page XML (.jspx	
) file that you create in the Oracle JDeveloper designer where you created the SOA composite containing the human task. You must set the page encoding to UTF-8 in Oracle JDeveloper before creating the Java Server Page XML file. You can do this in Oracle JDeveloper by choosing Tools > Preferences > Environment, and selecting UTF-8 using the Encoding dropdown list.	
Figure 30-1 shows the Oracle JDeveloper ADF Task Flow Based on Human Task option where you start creating a task form.	
Figure 30-1 ADF Task Flow Based on a Human Task, in Oracle JDeveloper	
Time zone conversion is not automatic for datetime elements in the task payload when a task form is created. You must add the <af:convertDateTime>	
tag to enable time zone conversion on a datetime element. See any standard task header time label for an example. Example 30-1 shows a sample header.	
When you create an ADF task flow based on a human task, you must select a task metadata file to generate the data control. This data control is used to lay out the content on the page and connect to the workflow service engine at execution time to retrieve task content and act on tasks. For more information, see "Getting Started with ADF Task Flows" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
The hwtaskflow.xml	
file is used to capture the details on connecting with the service engine. By default, it uses remote EJBs to connect to the workflow server. The SOA server URL and port are automatically determined by using WebLogic Server runtime MBeans. However, you can override these by explicitly specifying the URL and port information here.	
Seed a user that has ORMI privileges so that the task details application can connect to the workflow service. You can seed this user by using Oracle Enterprise Manager Fusion Middleware Control.	
ADF task flows are used to model the user interface for the task details page. You can create the task flow in the same application that contains the human task or in a separate application.	
You must have previously created a human task (.task	
file) as part of a SOA composite before you can create a task flow. See Chapter 28, "Creating Human Tasks" for how to create the.task	
file.	
If the task flow is in the same application as the human task, create a different project for the task flow. If the SOA composite contains multiple human tasks, create a separate project for each ADF task flow associated with each human task. By using an ADF task flow, you create data controls based on the task parameters and outcomes.	
To autogenerate an ADF task form, access the human task in the SOA composite application (form and task are in the same application). See Section 30.3.1, "How To Create an ADF Task Flow from the Human Task Editor," for more information.	
To create an ADF task form in a separate application, create the new application and project and browse for the .task	
file for the human task. See Section 30.3.2, "How To Create an ADF Task Flow Based on a Human Task," for more information.	
The.task	
file that specifies the human task is easily associated with the task flow when the two are located in the same application.	
To create an ADF task flow for a human task:	
Figure 30-2 shows the Human Task dialog.	
Figure 30-3 Creating a Task Flow from the Human Task Editor	
The taskDetails1_jspx icon appears in the designer, as shown in Figure 30-4.	
The task flow and task form are complete and ready to be deployed.	
The ADF Task Flow Based on Human Task option (shown in Figure 30-1) creates an ADF task flow and additional artifacts to make deployment easier. When you select the .task	
file to associate with the ADF task flow, human task data controls are created based on the task parameters and outcomes. These are then available to use in the JSPX page. You must have access to the SOA composite project while creating the task flow project.	
To create an ADF task flow based on a human task:	
.task	
file where you defined the human task and click OK. .task	
file, which is typically in the composite directory. .task	
file in the composite application. .task	
file is located within the current application, then click Application. This displays the Create Task Flow dialog and creates the data controls.	
The taskDetails1_jspx icon appears in the designer, as shown in Figure 30-4. The task flow has a view, a control flow, and a task return.	
To continue creating the task form, see the following:	
or	
With an ADF task flow based on a human task, the task flow application has task data controls that wire the task form with the workflow services. The data controls provide the following:	
The human task-aware data controls appear in the Data Controls panel of the Oracle JDeveloper Application Navigator, as shown in Figure 30-5.	
Figure 30-5 The Task Collection in the Data Controls Panel	
The data controls for the task (represented by the Task node in Figure 30-5) have drop handlers to render the task form. See Section 30.4, "Creating a Task Form," for more information.	
You must create separate ADF task flows if both contain the same element, but with different meta-attributes specified (for example, editable and noneditable).	
For example, assume you perform the following tasks.	
While creating the task form, the wizard provides you with the option to define the ADF table for payload Employee.	
There is a Validate Personal Information task (for ValidatePersonalInformation.task).	
Employee details are available for modification, as expected.	
Ensure that you create two separate ADF task flow applications because both contain the Employee element, but with different meta-attributes specified (editable and noneditable).	
You can create a task form by using the Auto-Generate Task Form option, the Launch Task Form Wizard option, or by using human task drop handlers.	
Autogenerating a task form opens a default template that you can then modify.	
To create an autogenerated task form:	
The default form opens in the taskDetails1.jspx tab. The default form for ApprovalHumanTask is shown in Figure 30-7.	
Figure 30-7 Autogenerated Task Form for ApprovalHumanTask	
You can optionally specify your own custom page templates in the Custom Task Form wizard. As described in Section 30.4.3, "How To Create a Task Form Using the Custom Task Form Wizard," you select Custom Page Template in the Name and Definition page of the Custom Task Form Wizard and specify the library JAR file name and the path to the .jspx	
template file within the JAR file.	
As a prerequisite, you first must register the library JAR file in Oracle JDeveloper.	
To create the library JAR file for custom page templates:	
The Create Library dialog appears.	
The Select Path Entry dialog appears.	
The class path is displayed below Class Path and the library JAR file name is displayed in the Library Name field. Ensure that the library name you select ends with a suffix of .jar	
. Figure 30-8 provides details.	
When you run the Custom Task Form wizard, you select Custom Page Template on the Name and Definition page, and enter the following information that you registered in the Create Library dialog:	
.jspx	
templates file in the library JAR file in the Template Path field. This wizard enables you to create a task form using ADF page templates and standardized task regions. The page templates can be either of the following:	
The default page templates are:	
taskDetailsTemplate.jspx	
taskDetailsTemplate2.jspx	
In the Name and Definition page of the Custom Task Flow wizard, select Packaged, then select either Default or Tabbed.	
You package a page template and its artifacts into an ADF library JAR file. These JAR files can be packaged, deployed, discovered, and used like any other Oracle library component. The wizard prompts you to specify the JAR name and template location in the JAR.	
Page templates let you define entire page layouts, including values for certain attributes of the page. When pages are created using a template, they all inherit the defined layout. When you make layout modifications to the template, all pages that consume the template automatically reflect the layout changes.	
The templates used in the wizard generate content for the following six facets:	
For the action, header, and body facets, you can pick the content and attributes to be displayed and then fine tune the layout.	
All six facets are defined in the default page templates. In the case of custom templates, you use these exact facet names in your template. If your template does not include these facets, then the facet content is not generated in the JSPX file.	
If you do not want to include page templates in your task form, select None in the Name and Definition page. In this case, the wizard generates a task form with a header, body (one or more), and footer, and provides for tabular formatting into columns and rows. You can select any of the task (system) actions to display on the form and you can specify that the custom actions defined for the human task appear on the form as buttons. Any or all parts of the payload can be selected to appear, as well as attachments and comments.	
For more information about facets, see Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.	
To create a custom task form:	
The Human Task Editor appears.	
Figure 30-9 Custom Task Form Wizard: Form Name and Definition	
.jspx	
file) that is to be generated at the end of the wizard. If you do not provide a name, then the default name, Humantask	
number	
_Form	
, is provided. Ensure that valid characters are used in the name. Spaces are not permitted. Specify the Task Flow Name, that is, the name of the ADF task flow that is generated at the end of the wizard. Accept the default name of Humantask	
number	
_TaskFlow	
or specify a different name.	
Figure 30-10 Custom Task Form Wizard: Setting Up the Header	
Figure 30-11 Custom Task Form Wizard: Setting Up the Body	
Note: If you specify rows or columns for which no payload data appears, then an empty panel group is displayed. You can use this blank section to add content to the form later by using data controls.	
On the Row1 Column1 page, shown in Figure 30-12, move all or part of the payload to the Selected list and click Next.	
Figure 30-12 Custom Task Form Wizard: Selecting the Body Fields	
The Footer page that displays is based upon the page template you selected on the Name and Definition page in Step 6 (either Default Page Template or Custom Page Template).	
If you selected Default Page Template, the Footer page shown in Figure 30-13 is displayed. Deselect any comments, attachments, or history facet that you do not want to include in the footer, and click Next. By default, the comments, attachments, and history facets are all selected.	
Figure 30-13 Custom Task Form Wizard: Selecting the Footer Fields for the Default Page Template	
Figure 30-14 Custom Task Form Wizard: Summary	
The Designer initializes and the form_name.jspx tab is displayed, as shown in Figure 30-15 (upper part of tab) and Figure 30-16 (lower part of tab).	
Figure 30-15 Custom Task Form (Upper Part of Tab)	
Figure 30-16 Custom Task Form (Lower Part of Tab)	
The human task drop handlers appear in the context menu of the designer, as shown in Figure 30-17.	
Figure 30-17 Human Task Drop Handlers for Creating the Task Form	
Other ADF drop handlers—for forms, tables, trees, and so on (shown in Figure 30-17)—can also be used to create task forms. See Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework for more information about standard ADF drop handlers .	
Complete Task with Payload	
This option creates the combination of all the preceding task form components (the task header, task history, task actions, and task comments and attachments), plus the interface for the payload. The payload interface is created as follows:	
maxOccurs="unbounded"	
, then it appears as a table. maxOccurs="unbounded"	
and it has a child with maxOccurs="unbounded"	
, then the child element is not rendered. Complete Task without Payload	
This option creates the combination of all of the preceding task form components (the task header, task history, task actions, and task comments and attachments).	
Task Details for Email	
This option creates an ADF region that renders well when sent by email. It generates the form shown in Figure 30-18.	
Figure 30-18 Task Form for Email Notification	
See Section 30.7, "Creating an Email Notification," for more information.	
Task Header	
All the standard header fields are added to the task form. This includes the task number and title; the state, outcome, and priority of the BPEL process, and information about who created, updated, claimed, or is assigned to the task. The header also displays dates related to task creation, last modification, and expiration. You can add or remove header fields as required for your task display.	
Figure 30-19 shows an example of header information.	
Buttons for task actions are also created in the header, as shown in Figure 30-20.	
Figure 30-20 Task Header: Task Action Buttons	
Task Actions	
The following task actions appear from the Actions dropdown list or as buttons. The tasks that appear depend on the state of the task (assigned, completed, and so on) and the privileges that are granted to the user viewing the task. For example, when a task is assigned to a group, only the Claim button appears. After the task is claimed, other actions such as Reject and Approve appear.	
The first three custom actions appear on the task form as buttons: Claim, Dismiss, and Resume. Only those buttons applicable to the task appear. Other actions are displayed under the Actions list, starting with Request for Information, Reassign, and Route. Systems actions—Withdraw, Pushback, Escalate, Release, Suspend, and Renew—follow the custom actions, followed by the Save button. These actions require no further dialog to complete.	
BPMWorkflowSuspend	
role. Other users can access the task by selecting Previous in the task filter or by looking up tasks in the Suspended status. Buttons that update a task are disabled after suspension. P7D	
is the default). The renewal duration is controlled from Oracle Enterprise Manager Grid Control. A renewal appears in the task history. The Comments area is available for an optional comment. While you are creating a task form, all possible system action buttons appear, although only those actions that are appropriate for the task state and fit the user's privileges appear in the worklist.	
Task History	
The history of task actions appears on the task details page, and is displayed in the worklist as a history table. The history includes the following fields:	
See Figure 32-20, "History: Graphical View" and Figure 32-21, "History: Full Task Actions" for how task history is displayed in Oracle BPM Worklist, including the options to take a history snapshot, list future participants, and list full task actions.	
Task Comments and Attachments	
A trail of comments with the comment date and comment writer's user name is maintained throughout the life cycle of a task.	
Files or reference URLs associated with a task can be added by any of the human task participants.	
Figure 30-21 shows an example of the comments and attachments region.	
Figure 30-21 Comments and Attachment Region	
The following steps describe how to use a drop handler that creates the task form, including the payload, without building each region individually. To build each region individually, see Section 30.4.5, "How To Create Task Form Regions Using Individual Drop Handlers."	
To create a task form using the Complete Task with Payload drop handler:	
Figure 30-23 Select the Data Collection and Action	
The task form is displayed, as shown in Figure 30-24.	
You can create a display form with multiple regions using the individual Task Header, Task Action, Task History, and Task Comment and Attachment drop handlers shown in Figure 30-25.	
Figure 30-25 Using Human Task Drop Handlers	
Task Header provides both header and task actions, so you do not need the Task Action drop handler when you use Task Header. Use Task Action when you want the actions dropdown menu and buttons, but not header details.	
To create the task form without building each region individually, see Section 30.4.4, "How To Create a Task Form Using the Complete Task with Payload Drop Handler."	
Before you create this task form, you must have created the following:	
To create task form regions using individual drop handlers:	
In the designer, double-click taskDetails1.jspx.	
This creates the Actions dropdown list and buttons for task actions, as shown in Figure 30-26, and header details, as shown in Figure 30-27.	
Figure 30-26 Designing the Task Form: Buttons for Task Actions	
Figure 30-27 Designing the Task Form: Task Headers	
The task form now has multiple regions for task action dropdown lists and buttons, task header details, task history, and comments and attachments.	
To continue creating the task form, see Step 1 in Section 30.4.6, "How To Add the Payload to the Task Form."	
In addition to adding the payload, you can create task form regions. See Step 1 in Section 30.4.5, "How To Create Task Form Regions Using Individual Drop Handlers."	
To add the payload to the task form:	
From the Component Palette, select ADF Faces.	
An alternative to dropping the payload node onto the form is to expand the payload node and drop the necessary child elements onto the form. For example, to create a read-only form for the VacationRequest payload, expand the payload node, drag the Vacation Request Process Request node onto the form, and select Forms > ADF Read-only Form.	
Figure 30-28 Adding ADF Read-Only Fields to the Task Form Payload Region	
This creates read-only fields in the payload region, between the Details and History sections.	
The payload regions appear, as shown in Figure 30-29.	
Figure 30-29 The Payload Region of the Task Form	
The task form, shown in Figure 30-30, is complete and ready to be deployed.	
Figure 30-30 The Task Form (taskDetails.jspx)	
The form you designed is saved in the .jspx	
file at	
The task form is ready to be deployed. See Section 30.8, "Deploying a Composite Application with a Task Flow."	
When task metadata changes, refresh the Data Controls view (XSD changes are not refreshed) that is based on that task metadata. The refresh functionality re-creates the data control. Figure 30-31 shows the Refresh option.	
To refresh the data control:	
Figure 30-32 The Refresh Data Control Button	
You can use any container-based security for securing the task flow. See Section 34.6.2.1.2, "Requirements for Client Applications For Identity Propagation," for more information. Form-based authentication and SSO-based authentication are available for web security.	
If you are sending a notification as email, do not secure the URL with "/notification/secure"	
to use container-based security because this is accessed by SOA APIs using an internal context that cannot be created outside of SOA. The URL pattern inside security cannot contain "/"	
(all URLs) and "//notification"	
.	
No additional steps are required for identity propagation. Identity is automatically propagated to the server EJBs.	
A task form is used to provide an email notification, if email notification is defined as part of the human task. Options for email notification include:	
Section 34.2, "Notifications from Human Workflow" to review notification settings as part of a human task definition (.task	
file).	
To send a custom email notification whose content and layout you have specified, create another JSPX file in which you design an email notification page. (Note, however, that you can use the default page for notification with no further modifications.) Create the custom notification page by using the custom and standard drop handlers, or use the email notification drop handler. In addition, do the following:	
bpmClientType	
page flow scope value. The control flow case with a router enables you to direct the request to a specific page based on certain parameters. For an ADF task flow based on a human task, you need a special page for email notifications. This section describes how to create a special page for email notifications.	
To create a task flow with a router:	
The XML file opens in the designer. In the diagram view, you see the taskDetails1.jspx icon.	
Figure 30-33 shows an example using the name EmailPage.	
Figure 30-35 shows an example using the name PageRouter.	
Figure 30-34 Marking the Router as the Default Activity	
default	
. #{pageFlowScope.bpmClientType=="notificationClient"}	
The control flow is automatically labeled default, as shown in Figure 30-35.	
Figure 30-36 shows the completed control flow.	
Figure 30-36 Completed Control Flow for an Email Notification	
To continue creating the email notification page, see Step 1 in Section 30.7.1.2, "Creating an Email Notification Page."	
Creating an email notification page is similar to creating a task form, with the addition of defining layout and inline styles. See Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework for design information.	
To create an email notification page:	
In the designer, double-click EmailPage.	
The EmailPage.jspx tab opens in the designer.	
Figure 30-37 shows the layout fields available when Panel Group Layout is selected.	
See Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework for more information about panel group layout.	
Figure 30-38 Specifying a Layout: More Details	
For more information, see "How to Set Component Attributes" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.	
This drop handler includes a header with inline style, a payload using ADF, and a comment using inline style. Because the payload is dynamically generated, it does not include an inline style.	
In general, you can find the inline styles for the Header section for each component and use the same style for the Content section for the respective components.	
The email task form is complete and ready to be deployed.	
The email notification page is sent as HTML content in the email message body. Images on the page are inlined as attachments. Relative URLs are converted to absolute URLs.	
A notification may not display correctly in email if the styles used in the fields of the form are not valid for email. Editing the generated inline CSS to customize the page may be required. See Section 30.7.1, "How To Create an Email Notification," for more information.	
Security issues can also prevent the form from being rendered correctly. See Section 30.6, "Securing the Task Flow Application," for more information.	
The composite application containing the task flow must be deployed before you can use the task form in the Worklist Application. The process for deploying an application with a task flow is basically the same as deploying any SOA composite application, as described in Section 30.8.1, "How To Deploy a Composite Application with a Task Flow." See Chapter 43, "Deploying SOA Composite Applications" for more information.	
An application server connection is required to do the following.	
To deploy a composite application with a task flow:	
If you do not have a connection, select New Connection and use the Application Server Connection wizard.	
If you change the task form and want to redeploy it, repeat the deployment step. (Right-click the task form application name, select Deploy, and then application_name > to > application_server_connection.) A message asking you if you want to undeploy the form is displayed. Click OK and deploy the task form again.	
If you want to deploy the task flow as a separate application, outside of the SOA composite application, then create an application and project as a container for the task flow. After you deploy the SOA composite application, deploy the task flow application.	
This section describes how to deploy a task form to a non-SOA Oracle WebLogic Server.	
If you are not using the default values for RMI or HTTP ports, open the wf_client_config.xml	
file in Oracle JDeveloper to change values.	
When you want to deploy task details on non-SOA servers, you must configure the wf_client_config.xml	
file. This file should be created and added to the task details project only if the task detail is deployed to a separate managed server that is not the SOA server. The <serverURL>	
and <rootEndpointURL>	
in the file should refer to the SOA server host name and port number.	
Example 30-2 shows a sample wf_client_config.xml	
file.	
Example 30-2 Sample wf_client_config.xml File	
Before deploying the task form to a non-SOA Oracle Weblogic Server, ensure that the session tracking cookie of your task-form web application is configured with a cookie trigger path unique to your application. This ensures that your task form application has its unique session tracking cookie and cannot be overwritten by the session tracking cookies created for other Oracle BPM applications like Oracle BPM Worklist or Oracle Business Process Management Workspace.	
To configure the session cookie trigger path, in JDeveloper, open the weblogic.xml	
file in your web project. Choose the overview tab in your .xml	
file editor, and choose the session. In the cookie trigger path field, enter the application context path of your web application. For example, if the URL of your application is http://host:port/my-application-context-root	
in which my-application-context-root	
is the name of your application context root, then the cookie trigger path is set as follows:	
The oracle.soa.workflow.jar shared library is needed on the non-SOA Oracle WebLogic Server. It is available from	
Use Oracle WebLogic Server Administration Console to deploy the JAR file.	
To deploy oracle.soa.workflow.jar:	
Figure 30-40 Oracle WebLogic Server Administration Console: List of Deployments	
Figure 30-41 Oracle WebLogic Server Administration Console: Install Applications Assistant	
Figure 30-42 Oracle WebLogic Server Administration Console: The oracle.soa.workflow Active State	
See Section 30.8.4.4, "Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server," to continue.	
Use Oracle WebLogic Server Administration Console to complete this portion of the task.	
To define the foreign JNDI provider:	
ForeignJNDIProvider-SOA	
, as shown in Figure 30-43, and click OK. Figure 30-43 Creating a Foreign JNDI Provider	
weblogic.jndi.WLInitialContextFactory	
. t3://	
soa_hostname	
:	
soa_portnumber	
/soa-infra	
. In a clustered environment, for Provider URL, enter http://	
soa_hostname	
:	
soa_portnumber	
/soa-infra	
.	
weblogic	
. weblogic	
. Figure 30-44 shows the page where you enter this information.	
Figure 30-44 Defining the Foreign JNDI Provider	
See Section 30.8.4.5, "Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server," to continue.	
Use Oracle WebLogic Server Administration Console to complete this portion of the task.	
To define the foreign JNDI provider links:	
Figure 30-45 shows the Links tab.	
Figure 30-45 Defining the Foreign JNDI Provider Links: The Links Tab	
RuntimeConfigService	
. RuntimeConfigService	
. RuntimeConfigService	
. Figure 30-46 shows where you do this.	
Figure 30-46 Defining the Foreign JNDI Provider Links: Link Properties	
ejb/bpel/services/workflow/TaskServiceBean	
. ejb/bpel/services/workflow/TaskMetadataServiceBean	
. TaskReportServiceBean	
. TaskEvidenceServiceBean	
. TaskQueryService	
. UserMetadataService	
. See Section 30.8.4.6, "Including a Grant for bpm-services.jar," to continue.	
To include a grant for bpm-services.jar, edit the system-jazn-data.xml	
file and then restart the non-SOA Oracle WebLogic Server.	
To include a grant for bpm-services.jar:	
system-jazn-data.xml	
file by navigating to the domain directory, soa-infra, and then to system-jazn-data.xml	
, add the following grant. (If all or some portion of the grant exists, then add only what is missing.) See Section 30.8.4.7, "Deploying the Application," to continue.	
Deploy the application that contains the task form to a non-SOA Oracle WebLogic Server the same way other applications are deployed. When you set up the application server connection, specify the domain on the non-SOA server (the domain you specified in Step 1 of Section 30.8.4.6, "Including a Grant for bpm-services.jar.". See Chapter 43, "Deploying SOA Composite Applications" for information on deploying applications.	
When the task form is deployed, an automatic association is created between the task metadata and the task flow application URL. Use Oracle Enterprise Manager 11g Fusion Middleware Control to update this mapping. Access the task flow component in the Component Metrics table for a specific SOA composite application. The Administration tab shows the URI for the task form. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information. If the task flow is configured for HTTPS access, you may need to do additional settings in Enterprise Manager.	
Note: For the task form association to happen automatically, the SOA server must be running. If the association does not happen, then you receive the message	
See Chapter 32, "Using Oracle BPM Worklist" for information on how to act on tasks.	
Notes:	
When a task flow Web application is deployed, the task flow URL is registered in the database. This URL is displayed in Oracle BPM Worklist when a task is clicked and the task details are displayed. If the task flow Web application is later undeployed or stopped, the task flow URL in the database is not removed as part of the undeployment. Consequently, when you click the task in the worklist to see the task details, a 404	
Not	
Found	
error is displayed rather than the message Details	
not	
available	
for	
task	
. To avoid the 404	
Not	
Found	
error, use Oracle Enterprise Manager Fusion Middleware Control to undeploy the task flow application from the application home page.	
The task form is displayed in Oracle BPM Worklist, a web-based interface for users to act on their assigned human tasks. Specific actions are available or unavailable depending on a user's privileges.	
Figure 30-47 shows how the task form for the help desk request example is displayed in the Worklist Application task details page.	
The task form is available in Oracle BPM Worklist after you log in. See Section 32.2.1, "How To Log In to the Worklist" for instructions.	
Figure 30-48 shows how an email task notification appears in email.	
You can click an available action, RESOLVED or UNRESOLVED, or click the Worklist Application link to log in to the worklist. Clicking an action displays an email composer window in which you can add a comment and send the email.	
By default, the text in a task notification refers to "Worklist Application," but you can change that text and its associated URL.	
By default, the text in a task notification refers to "Worklist Application," but you can change that text. To change it, you create a custom resource bundle and modify the appropriate strings.	
To change the text in a task notification:	
WorkflowLabels.properties	
resource bundle in the sample workflow-110-workflowCustomizations. WorkflowLabels.properties	
file, modify the following strings: For more details on how to modify the resource bundle string, see the workflow-110-workflowCustomizations sample.	
You do not have to deploy the WorkflowLabels.properties	
file as an application for it to work. Instead, you can do either of the following:	
file:///	
to point to the appropriate location. oramds:///...	
. To change the text in a task notification:	
The Workflow Task Service Properties page appears.	
to something like this:	
For information about showing or hiding the URL of the Worklist Application, see Section 29.8.6, "How to Display the Oracle BPM Worklist URL in Notifications".	
You can reuse a single task flow application with multiple human tasks. To use this feature, all human tasks must have identical payload elements.	
TASKFLOW_PROJ_DIR	
\adfmsrc\hwtaskflow.xml	
file. </hwTaskFlows>	
): where:	
$TASK_NAME	
is replaced with the name of the human task inside the .task	
file (value of the <name>	
element). $TASK_NAMESPACE	
is replaced with the namespace of the human task inside the .task	
file (value of the attribute targetNameSpace	
of element <taskDefinition>	
). $TASK_FLOW_NAME	
is copied from the existing <hwTaskFlow>/<TaskFlowId>	
element. $TASK_FLOW_FILENAME	
is copied from the existing <hwTaskFlow>/<TaskFlowFileName>	
element. This chapter describes how to design your first workflow from start to finish.	
This chapter includes the following sections:	
The application developed in this tutorial is based on the following use-case:	
This tutorial describes how to create a new application and SOA project and how to design a human task to send a vacation request to a manager for approval or rejection.	
The resulting SOA composite application contains the following components:	
It also describes how to create an Oracle ADF-based task form that enables the end user to act upon the vacation request once the application is deployed and running. To create an Oracle ADF-based task form you must create a new application and a new project.	
This tutorial guides you through the following tasks:	
This tutorial makes the following assumptions:	
VacationRequest.xsd	
with the following syntax. This file includes the schema for the vacation request and subsequent response. Note: The	
To create an application and a project with a BPEL process:	
VacationRequest	
, and click Next. VacationRequest	
, and click Next. VacationRequestProcess	
. The Type Chooser dialog appears.	
The Import Schema File dialog appears.	
Figure 31-1 Type Chooser Dialog with the Request and Response Elements	
You are returned to the Create BPEL Process dialog.	
You are returned to the Create BPEL Process dialog, as shown in Figure 31-2.	
A BPEL process service component is created in the SOA Composite Editor, as shown in Figure 31-3. Because Expose as a SOAP service was selected in the Create BPEL Process dialog, the BPEL process is automatically connected with a service binding component. The service exposes the SOA composite application to external customers.	
Figure 31-3 BPEL Process in SOA Composite Editor	
For more information about service components and the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."	
You are now ready to create the human task service component in which you design your human task.	
To create the human task service component:	
The Create Human Task dialog appears.	
Table 31-1 Create Human Task Dialog Fields and Values	
Field	Value
---	---
Name	Enter
Namespace	Accept the default value.
Create Composite Service with SOAP Bindings	Do not select the checkbox. Instead, you create a human task that you later associate with the BPEL process you created in Section 31.3, "Creating an Application and a Project with a BPEL Process." The BPEL process was created with an automatically-bound web service.
The Human Task icon appears in the SOA Composite Editor above the BPEL process, as shown in Figure 31-4.	
Figure 31-4 Human Task Icon in SOA Composite Editor	
The Human Task Editor appears. You are now ready to begin design of your human task.	
To design the human task:	
In the Task Title field, enter Request for Vacation	
.	
The Add Task Parameter dialog is displayed. You now create parameters to represent the elements in your XSD file. This makes the payload data available to the workflow task.	
The Type Chooser dialog appears.	
Figure 31-6 Assignment and Routing Policy	
The Edit Participant Type dialog appears. You now add participants to this task. As described in Section 27.2.1.1.2, "Participant Type," Oracle SOA Suite provides several out-of-the-box patterns known as participant types for addressing specific business needs.	
This participant type acts alone on the task.	
This action enables the task to be assigned dynamically by the contents of the task. The employee filing the vacation request comes from the parameter passed to the task (the creator	
element in the XSD file you imported in Section 31.3, "Creating an Application and a Project with a BPEL Process"). The task is automatically routed to the employee's manager.	
Figure 31-7 Selection of By Expression from the Data Type Column	
where ns1 is the namespace for this example; your namespace may be different.	
The Expression Builder dialog displays the XPath expression in the Expression section. Figure 31-8 provides details.	
You are now ready to associate your human task with the BPEL process you created in Section 31.3, "Creating an Application and a Project with a BPEL Process."	
To associate the human task and BPEL process service component:	
The BPEL process displays in Oracle BPEL Designer.	
The Human Task dialog appears.	
The dialog refreshes as shown in Figure 31-9 to display additional fields.	
In the BPEL Variable column, click the Browse icon (dots) shown in Figure 31-10.	
The Task Parameters dialog appears.	
Expand Process > Variables > inputVariable > payload > ns1:VacationRequestProcessRequest. Figure 31-11 provides details.	
Click OK.	
When complete, the dialog looks as shown in Figure 31-12:	
The human task activity appears as shown in Figure 31-13.	
Figure 31-13 Human Task and Partner Links in Oracle BPEL Designer	
You are now ready to create a connection to the application server on which Oracle SOA Suite is installed and configured with the SOA Infrastructure. These instructions describe how to create a connection to Oracle WebLogic Server. For information about creating a connection to other application servers such as IBM WebSphere Server, see Oracle Fusion Middleware Third-Party Application Server Guide.	
To create an application server connection	
weblogic	
. If successful, the message shown in Figure 31-15 is displayed.	
You are now ready to deploy to the application server on which you created the connection.	
To deploy the SOA composite application	
The project is deployed.	
For more information about deployment, see Section 43.7, "Deploying SOA Composite Applications."	
To initiate the process instance:	
You are now ready to create a project for the task form. This is a separate project from the one in which you created the human task.	
To create a task form project:	
The Human Task Editor is displayed.	
The Create Project dialog appears.	
VacationRequestTaskFlow	
, and click OK. To resolve the task in Oracle BPM Worklist:	
To deploy the task form:	
The task form is deployed.	
For more information about deployment, see Section 43.7, "Deploying SOA Composite Applications."	
In addition to the vacation request use case, other tutorials are available from the Oracle SOA Suite samples.	
Table 31-2 provides an overview of some samples. All samples show the use of worklist applications and workflow notifications. For the complete list of samples, visit the URL.	
Table 31-2 End-to-End Examples	
Sample	Description
---	---
Demo Community Seed Application	Performs demo community seeding. This is a prerequisite for all other workflow samples.
Vacation Request	Provides a sample in which a user submits a vacation request that gets assigned to their manager for approval or rejection. This sample also describes how to create Oracle ADF task forms for the vacation request to act on the task.
Sales Quote Request	Provides a complex workflow sample with chaining of multiple tasks.
Contract Approval	Provides a sample of approving a contract. This sample uses digital signatures for tasks.
Iterative Design	Provides a sample in which a workflow task can be passed multiple times between assignees during the design process. Advanced routing rules implement the routing behavior.
Workflow Customizations	Demonstrates how to deploy customizations to workflow service APIs, such as custom resource strings for task attributes, view names, and so on.
MLS Sample	Demonstrates the setting up of a task with multiple translations for the task title.
Workflow Event Callback	Demonstrates the use of the workflow event callback. Workflow events generated by task lifecycle events are consumed by an Oracle Mediator.
User Config Data Migrator	Moves user configurations (views, mapped attributes, and so on) from one instance to another through an intermediate export file.
Java Samples	Provides an assortment of samples that use Java to interact with human workflow.
The script content on this page is for navigation purposes only and does not alter the content in any way.	
This chapter describes how worklist users and administrators interact with Oracle BPM Worklist, and how to customize the worklist display to reflect local business needs, languages, and time zones.	
This chapter includes the following sections:	
For information about how to use the APIs exposed by the workflow service, Chapter 33, "Building a Custom Worklist Client."	
For information about troubleshooting human workflow issues, see section "Human Workflow Troubleshooting" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
Oracle BPM Worklist enables business users to access and act on tasks assigned to them. For example, from a worklist, a loan agent can review loan applications or a manager can approve employee vacation requests. These processes are defined in human tasks.	
Oracle BPM Worklist provides different functionality based on the user profile. Standard user profiles include task assignee, supervisor, process owner, and administrator. For example, worklist users can update payloads, attach documents or comments, and route tasks to other users, in addition to completing tasks by providing conclusions such as approvals or rejections. Supervisors or group administrators can use the worklist to analyze tasks assigned to a group and route them appropriately.	
Users can customize their task lists, as required, by adding worklist views, for example, selecting the columns to display, or displaying a subset of the tasks based on filter criteria.	
Using Oracle BPM Worklist, task assignees can do the following:	
Figure 32-1 shows an illustration of Oracle BPM Worklist.	
Figure 32-1 Oracle BPM Worklist—Access Tasks, Forms, Attachments, and Reports	
The worklist is rendered in a browser by a task form that you create using ADF task flows in Oracle JDeveloper. See Chapter 30, "Designing Task Forms for Human Tasks" for more information.	
Users can also act on tasks through portals such as Oracle WebCenter Portal. Portals enable users to present information from multiple, unrelated data sources in a single organized view. This view, a portal page, can contain one or more components called portlets that can each collect content from different data sources.	
You can build clients for workflow services using the APIs exposed by the workflow service. The APIs enable clients to communicate with the workflow service using local and remote EJBs, SOAP, and HTTP.	
Table 32-1 lists the different types of users recognized by Oracle BPM Worklist, based on the privileges assigned to the user.	
Table 32-1 Worklist User Types	
Type of User	Access
---	---
End user (user)	Acts on tasks assigned to him or his group and has access to system and custom actions, routing rules, and custom views
Supervisor (manager)	Acts on the tasks, reports, and custom views of his reportees, in addition to his own end-user access
Process owner	Acts on tasks belonging to the process but assigned to other users, in addition to his own end-user access
Group administrator	Manages group rules and dynamic assignments, in addition to his own end-user access
Workflow administrator	Administers tasks that are in an errored state, for example, tasks that must be reassigned or suspended. The workflow administrator can also change application preferences and map attributes, and manage rules for any user or group, in addition to his own end-user access.
Note: Multiple authentication providers (for example, SSO and forms) are not supported.	
To log in, you must have installed Oracle SOA Suite and the SOA server must be running. See Oracle Fusion Middleware Installation Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information.	
Use a supported web browser:	
To log in:	
hostname	
is the name of the host computer on which Oracle SOA Suite is installed port_number	
used at installation You can use the preseeded user to log in as an administrator. If you have loaded the demo user community in the identity store, then you can use other users such as jstein or jcooper.	
The user name and password must exist in the user community provided to JAZN. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for the organizational hierarchy of the demo user community used in examples throughout this chapter.	
For the weblogic	
user in Oracle Internet Directory to log in to Oracle BPM Worklist, the Oracle Internet Directory Authenticator must have an Administrators group, and the weblogic	
user must be a member of that group.	
To enable the weblogic user:	
users.ldif	
file is imported to Oracle Internet Directory as follows: weblogic	
user to it. The groups.ldif	
file is imported to Oracle Internet Directory as follows: Identity service workflow APIs authenticate and authorize logins using a user name, password, and optionally a realm set, if multiple realms were defined for an organization. See Section 32.8.2, "How to Specify the Login Page Realm Label," for information on how administrators can set a preference to change the realm label displayed in the interface, or specify an alternative location for the source of the login page image.	
After a user logs in, the Home (task list) page displays tasks for the user based on the user's permissions and assigned groups and roles. The My Tasks tab and the Inbox are displayed by default. The actions allowed from the Actions list also depend on the logged-in user's privileges.	
Figure 32-2 shows an example of the Home page.	
Figure 32-2 Oracle BPM Worklist—The Home (Task List) Page	
Table 32-2 describes the components of the Home (task list) page.	
Table 32-2 Components of the Home (Task List) Page	
Component	Description
---	---
Tabs	The tabs displayed depend on the role granted to the logged-in user.
See the following for more information:	
Worklist Views	Inbox, My Work Queues, Proxy Work Queues—See Section 32.3.2, "How To Create, Delete, and Customize Worklist Views," for more information.
Task Status	A bar chart shows the status of tasks in the current view. See Section 32.3.3, "How To Customize the Task Status Chart," for more information.
Display Filters	Specify search criteria from the View, Assignee or Status fields. The category filters that are available depend on which tab is selected.
Use Search to enter a keyword, or use Advanced Search. See Section 32.3.1, "How To Filter Tasks," for more information.	
Actions List	Select a group action (Claim) or a custom action (for example, Approve or Reject) that was defined for the human task. Claim appears for tasks assigned to a group or multiple users; one user must claim the task before it can be worked. Other possible actions for a task, such as system actions, are displayed on the task details page for a specific task. You can also create ToDo tasks and subtasks here. Note:
Default Columns	Title—The title specified when the human task was created. Tasks associated with a purged or archived process instance do not appear. Number—The task number generated when the BPEL process was created. Priority—The priority specified when the human task was created. The highest priority is 1; the lowest is 5. Assignees—The user or group or application roles. State—Select from Assigned, Completed, Errored, Expired, Information Requested, Stale, Suspended, or Withdrawn. Created—Date and time the human task was created Expires—Date and time the tasks expires, specified when the human task was created
Task Details	The lower section of the worklist displays the inline view of the task details page. Buttons indicate available actions. See Section 32.4, "Acting on Tasks: The Task Details Page," for more information.
Figure 32-2 also shows the Administration, Reports, and Preferences links (upper-right corner). Table 32-3 summarizes the Home, Administration, Reports, and Preferences pages.	
Table 32-3 Worklist Main Pages Summary	
Page	Description
---	---
Home	As described in Table 32-2, the logged-in user's list of tasks, details for a selected task, and all the functions needed to start acting on a task are provided.
Administration	The following administrative functions are available:
Reports	The following reports are available: Unattended Tasks Report, Tasks Priority Report, Tasks Cycle Time Report, Tasks Productivity Report, and Tasks Time Distribution Report. See Section 32.11.1, "How To Create Reports," for more information.
Preferences	Preference settings include:
If you change a user's privileges in Oracle Enterprise Manager Fusion Middleware Control while the user is logged in to Oracle BPM Worklist, the changes take effect only after a subsequent login by the user. This is true for situations in which there are two active worklist sessions, one in which the user is logged in before the privileges are changed, and one in which the same user logs in after the privileges are changed. In the first case, the changes to the user's privileges do not take effect while the user is logged in. In the second case, when the user logs in to the second instance of the Worklist Application, the changes to the user's privileges do take effect.	
You can customize your task list in several ways, including adding worklist views, selecting which columns to display, and displaying a subset of the tasks based on filter criteria. Resize the task list display area to increase the number of tasks fetched.	
Note: When you deploy SOA composite applications with human tasks to partitions, the tasks created for these composites cannot be filtered using the partition as a parameter inside Oracle BPM Worklist. For example, you can select a task type corresponding to a particular partition (the same task type, but in different partitions), but filtering does not work with the advanced search, custom views, custom rules, and mapped attribute features. For example, assume VacationRequestApp is deployed to partition 1 and partition 2. When the advanced search is used to select tasks corresponding to composites deployed in partition 1, the result does not return the tasks.	
Figure 32-3 shows the filter fields.	
Figure 32-3 Filters—Assignee, Status, Search, and Advanced Search	
Filters are used to display a subset of tasks, based on the following filter criteria:	
From the My Tasks tab, select from the following:	
From the Initiated Tasks tab, select Creator.	
From the My Staff Tasks tab, select Reportees.	
From the Administration Tasks tab, select Admin.	
Note: If a task is assigned separately to multiple reportees, then, when a manager looks at the My Staff Tasks list, the manager sees as many copies of that task as the number of reportees that the task is assigned to.	
To filter tasks based on assignee or status:	
The task list is automatically updated based on the filter selections.	
To filter tasks based on keyword search:	
To filter tasks based on an advanced search:	
Mapped attribute labels can be used in an advanced search if you select task types for which mapped attribute mappings have been defined.	
See Section 32.10.1, "How To Map Attributes," for more information.	
Figure 32-4 Worklist Advanced Search—Definition Tab	
Figure 32-5 Worklist Advanced Search—Display Tab	
Table 32-4 describes the advanced search view columns available in the Display tab.	
Table 32-4 Advanced Search—View Columns	
Column	Description
---	---
Start Date	The start date of the task (used with ToDo tasks).
Task Definition Name	The name of the task component that defines the task instance.
Owner Role	The application role (if any) that owns the task instance. Task owners can be application roles, users, or groups. If the owner of the task is an application role, this field is set.
Updated Date	The date the task instance was last updated.
Composite Version	The version of the composite that contains the task component that defines the task instance.
Creator	The name of the creator of the task.
From User	The from user for the task.
Percentage Complete	The percentage of the task completed (used with ToDo tasks).
Owner Group	The group (if any) that owns the task instance. Task owners can be application roles, users, or groups. If the owner of the task is a group, this field is set.
End Date	The end date of the task (used with ToDo tasks).
Composite	The name of the composite that contains the task component that defines the task instance.
Due Date	The due date of the task (used with ToDo tasks).
Composite Distinguished Name	The unique name for the particular deployment of the composite that contains the task component that defines the task instance.
Task Display URL	The URL to display the details for the task.
Updated By	The user who last updated the task.
Outcome	The outcome of the task, for example Approved or Rejected. This is only set on completed task instances.
Task Namespace	A namespace that uniquely defines all versions of the task component that defines this task instance. Different versions of the same task component can have the same namespace, but no two task components can have the same namespace.
Approvers	The approvers of the task.
Application Context	The application to which any application roles associated with the tasks (such as assignees, owners, and so on) belong.
Owner User	The user (if any) that owns the task instance. Task owners can be application roles, users, or groups. If the owner of the task is a user, this field is set.
Identifier	The (optional) custom unique identifier for the task. This is an additional unique identifier to the standard task number.
Category	The category of the task.
Acquired By	The name of the user who claimed the task in the case when the task is assigned to a group, application role, or to multiple users, and then claimed by the user.
Component	The name of the task component that defines the task instance.
Original Assignee User	The name of the user who delegated the task in the case when the user delegates a task to another user.
Assigned	The date that this task was assigned.
Partition	The domain to which the composite that contains the task component that defines the task instance belongs.
Title	The title of the task.
Number	An integer that uniquely identifies the task instance.
Priority	An integer that defines the priority of the task. A lower number indicates a higher priority—typically numbers 1 to 5 are used.
Assignees	The current task assignees (users, groups or application roles).
State	The state of the task instance.
Created	The date that the task instance was created.
Expires	The date on which the task instance expires.
Custom Date 1	Custom flex field 1 with Date data type
Custom Date 2	Custom flex field 2 with Date data type
Custom String 1	Custom flex field 1 with String data type
Custom String 2	Custom flex field 2 with String data type
Custom Number 1	Custom flex field 1 with Number data type
Custom Number 2	Custom flex field 2 with Number data type
The saved view appears in the Inbox under My Views, as shown in Figure 32-6.	
Note: When a user view is created, and there are multiple versions of the same composite deployed, then selecting the task type with a particular version, for example, 'TestCompositeHumanTask2.0 ' does not ensure that only the tasks corresponding to this version are filtered. Instead use the task definition id column in the conditions, apart from selecting the task type, to get the correct result.	
Figure 32-8 Adding Filters for an Advanced Search on Tasks	
Table 32-5 describes the available conditions.	
Table 32-5 Advanced Search—Conditions	
Condition	Description
---	---
Start Date	The start date of the task (used with ToDo tasks).
Assignees	The current task assignees (users, groups or application roles).
Task Definition Name	The name of the task component that defines the task instance.
Owner Role	The application role (if any) that owns the task instance. Task owners can be application roles, users, or groups. If the owner of the task is an application role, this field is set.
Updated Date	The date that the task instance was last updated.
Created	The date that the task instance was created.
Composite Version	The version of the composite that contains the task component that defines the task instance.
Creator	The name of the creator of the task.
From User	The from user for the task.
Percentage Complete	The percentage of the task completed (used with ToDo tasks).
Title	The title of the task.
Owner Group	The group (if any) that owns the task instance. Task owners can be application roles, users, or groups. If the owner of the task is a group, this field is set.
End Date	The end date of the task (used with ToDo tasks).
Priority	An integer that defines the priority of the task. A lower number indicates a higher priority—typically numbers 1 to 5 are used.
Number	An integer that uniquely identifies the task instance.
Composite	The name of the composite that contains the task component that defines the task instance.
Due Date	The due date of the task (used with ToDo tasks).
State	The state of the task instance.
Composite Distinguished Name	The unique name for the particular deployment of the composite that contains the task component that defines the task instance.
Task Display URL	The URL to display the details for the task.
Updated By	The user who last updated the task.
Outcome	The outcome of the task, for example Approved or Rejected. This is only set on completed task instances.
Task Namespace	The namespace of the task.
Approvers	The approvers of the task.
Application Context	The application to which any application roles associated with the tasks (such as assignees, owners, and so on) belong.
Owner User	The user (if any) that owns the task instance. Task owners can be application roles, users, or groups. If the owner of the task is a user, this field is set.
Identifier	The (optional) custom unique identifier for the task. This is an additional unique identifier to the standard task number.
Expires	The date on which the task instance expires.
Category	The category of the task.
Acquired By	The name of the user who claimed the task in the case when the task is assigned to a group, application role, or to multiple users, and then claimed by the user.
Component	The name of the task component that defines the task instance.
Original Assignee User	The name of the user who delegated the task in the case when the user delegates a task to another user.
Assigned	The date that this task was assigned.
Domain	The domain to which the composite that contains the task component that defines the task instance belongs.
The task list page with the tasks filtered according to your criteria appears.	
The Worklist Views area, shown in Figure 32-10, displays the following:	
Use Worklist Views to create, share, and customize views.	
To create a worklist view:	
Figure 32-12 Displaying Fields in a Worklist View	
To delete a view:	
Note: If an administrator inadvertently deletes the pre-seeded standard views, then those views do not remain permanently deleted. They are recreated when the server restarts.	
To customize a worklist view:	
Figure 32-14 Customizing Fields in a Worklist View	
When you select and move items from the Available Columns list to the Selected Columns list (or vice-versa), the items remain checked. Therefore, if you select items to move back, the previously selected items are also moved. Be sure to uncheck items after moving them between the lists if you intend to move additional columns.	
The bar chart shows tasks broken down by status, with a count of how many tasks in each status category. The chart applies to the filtered set of tasks within the current view.	
To customize the task status chart:	
Figure 32-15 Customizing the Task Status Chart	
Use the Create ToDo Task dialog, shown in Figure 32-16, to create a top-level ToDo task for yourself or others. This task is not associated with a business task.	
ToDo tasks appear in the assignee's Inbox.	
You can create ToDo tasks that are children of other ToDo tasks or business tasks. A ToDo task can have only one level of child ToDo tasks. When all child ToDo tasks are 100% complete, the parent ToDo task is also marked as completed. If the parent ToDo task is completed, then child ToDo tasks are at 100% within the workflow system. If the parent is a business task, the child ToDo is not marked as completed. You must set the outcome and complete it. If you explicitly set a ToDo task to 100%, there is no aggregation on the parent task.	
ToDo tasks can be reassigned, escalated, and so on, and deleted (logical delete) and purged (physical delete). Reassignment, escalation, and so on of the parent task does not affect the assignment of any child ToDo tasks. The completion percentage of a ToDo task can be reset to less than 100% after it is completed.	
Assignment rules (such as vacation rules) are not applied to ToDo tasks. You cannot specify business rules for ToDo tasks.	
To create a ToDo task:	
Use the Create Sub Task dialog, shown in Figure 32-18, to create a subtask, which is a ToDo task for a business task. You must select a business task before selecting the Create Sub Task option (shown in Figure 32-17).	
Subtasks can break down a business task into measurable subtasks, and can be created for ToDo tasks also. Multiple levels of subtasks are not supported (that is, you cannot have subtasks inside of subtasks). If you create multiple levels of subtasks, and attempt to act on the main task (for example, to approve or reject), you receive an error.	
Task details can be viewed inline (see the lower section in Figure 32-2, "Oracle BPM Worklist—The Home (Task List) Page") or in a pop-up browser window. (Double-click the task.)	
Figure 32-19 shows the task details page.	
Any kind of change to the task details page, such as changing a priority or adding a comment or attachment, requires you to save the change before you go on to make any other changes.	
The task details page has the following components:	
Table 32-6 tells what the icons used in the Task Details History section signify.	
Table 32-6 Icons for Task Action History	
Icon	Description
---	---
	Indicates an approver in an ad hoc routing scenario.
	Indicates that the task has been approved.
	Indicates that the participant is an FYI participant—that is, this participant just receives a notification task and the business process does not wait for the participant's response. Participant cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.
	Indicates that a set of people must work in parallel. This pattern is commonly used for voting.
	Indicates that the participant belongs to a management chain.
	Indicates the simple case in which a participant maps to a user, group, or role.
	Indicates that the task is untouched.
Note: In an environment with servers clustered for high availability purposes, file uploading is not supported if a failover occurs. If the active server shuts down, then the uploading process is not assumed by the other server and the upload fails.	
Comments and attachments are shared between tasks and subtasks. Therefore, when you create a ToDo task and add comments and attachments, subtasks of this ToDo task include the same comments and attachments.	
A user can view a task when associated with the task as the current assignee (directly or by group membership), the current assignee's manager, the creator, the owner, or a previous actor.	
A user's profile determines his group memberships and roles. The roles determine a user's privileges. Apart from the privileges, the exact set of actions a user can perform is also determined by the state of the task, the custom actions, and restricted actions defined for the task flow at design time.	
The following algorithm is used to determine the actions a user can perform on a task:	
Get the list of actions that can be performed in the current state of the task.	
The resulting list of actions is displayed in the task list page and the task details page for the user. When a user requests a specific action, such as claim, suspend, or reassign, the workflow service ensures that the requested action is contained in the list determined by the preceding algorithm.	
Step 2 in the preceding algorithm deals with many cases. If a task is in a final, completed state (after all approvals in a sequential flow), an expired state, a withdrawn state, or an errored state, then no further update actions are permitted. In any of the these states, the task, task history, and subtasks (parent task in parallel flow) can be viewed. If a task is suspended, then it can only be resumed or withdrawn. A task that is assigned to a group must be claimed before any actions can be performed on it.	
Note: If you act on a task from the task details page, for example, if you approve a task, then any unchanged task details data is saved along with the saved changes to the task. However if you act on a task from the Actions menu, then unchanged task details are not saved.	
The action bar displays system actions, which are available on all tasks based on the user's privileges. Table 32-7 lists system actions.	
Table 32-7 System Task Actions	
Action	Description
---	---
Claim	If a task is assigned to a group or multiple users, then the task must be claimed first. Claim is the only action available in the Task Action list for group or multiuser assignments. After a task is claimed, all applicable actions are listed.
Escalate	If you are not able to complete a task, you can escalate it and add an optional comment in the Comments area. The task is reassigned to your manager (up one level in a hierarchy).
Pushback	Use this action to send a task down one level in the workflow to the previous assignee. The pushback action overrides all other actions. For example, if a task is pushed back and then reassigned, after the reassignee approves it, the task goes to the user who performed the pushback. This is the expected behavior. Note: If the task is aggregated, then the Pushback action is not available.
Reassign	If you are a manager, you can delegate a task to reportees.
Release	If a task is assigned to a group or multiple users, it can be released if the user who claimed the task cannot complete the task. Any of the other assignees can claim and complete the task.
Renew	If a task is about to expire, you can renew it and add an optional comment in the Comments area. The task expiration date is extended one week. A renewal appears in the task history. The renewal duration for a task can be controlled by an optional parameter. The default value is
Submit Information and Request Information	Use these actions if another user requests that you supply more information or to request more information from the task creator or any of the previous assignees. If reapproval is not required, then the task is assigned to the next approver or the next step in the business process.
Suspend and Resume	If a task is not relevant, you can suspend it. These options are available only to users who have been granted the BPMWorkflowSuspend role. Other users can access the task by selecting Previous in the task filter or by looking up tasks in the Suspended status. A suspension is indefinite. It does not expire until Resume is used to resume working on the task.
Withdraw	If you are the creator of a task and do not want to continue with it, for example, you want to cancel a vacation request, you can withdraw it and add an optional comment in the Comments area. The business process determines what happens next. You can use the Withdraw action on the home page by using the Creator task filter.
The task history maintains an audit trail of the actions performed by the participants in the workflow and a snapshot of the task payload and attachments at various points in the workflow. The short history for a task lists all versions created by the following tasks:	
You can include the following actions in the short history list by modifying the shortHistoryActions	
element.	
The history provides a graphical view of a task flow, as shown in Figure 32-20.	
Check Full task actions to see all actions performed, including those that do not make changes to the task, such as adding comments, as shown in Figure 32-21.	
Available ways to view the task history include:	
If the human task was designed to permit ad hoc routing, or if no predetermined sequence of approvers was defined, then the task can be routed in an ad hoc fashion in the worklist. For such tasks, a Route button appears on the task details page. From the Route page, you can look up one or more users for routing. When you specify multiple assignees, you can select whether the list of assignees is for simple (group assignment to all users), sequential, or parallel assignment.	
Parallel tasks are created when a parallel flow pattern is specified for scenarios such as voting. In this pattern, the parallel tasks have a common parent. The parent task is visible to a user only if the user is an assignee or an owner or creator of the task. The parallel tasks themselves (referred to as subtasks) are visible to whomever the task is assigned, just like any other task. It is possible to view the subtasks from a parent task. In such a scenario, the task details page of the parent task contains a View SubTasks button. The SubTasks page lists the corresponding parallel tasks. In a voting scenario, if any of the assignees updates the payload or comments or attachments, the changes are visible only to the assignee of that task.	
A user who can view the parent task (such as the final reviewer of a parallel flow pattern), can drill down to the subtasks and view the updates made to the subtasks by the participants in the parallel flow. The parent task is a container for the subtasks while they are worked on by the assignees. The task owner must not act on or approve the parent task.	
If a human task was set up to require a password, then when you act on it, you must provide the password, as shown in Figure 32-22.	
Figure 32-22 Acting on a Task That Requires a Password	
Note: Any kind of change to the task details page, such as changing a priority or adding a comment, requires you to save the change. If you add an attachment to a task, it is automatically saved.	
To reassign or delegate a task:	
Delegate differs from Reassign in that the privileges of the delegatee are based on the delegator's privileges. This function can be used by managers' assistants, for example.	
A supervisor can always reassign tasks to any of his reportees.	
You can reassign to multiple users or groups. One of the assignees must claim the task, as shown in Figure 32-25.	
Note: When task details have been upgraded from an earlier release, you can see a "Request Failed" error when executing the Reassign action. Actually, the reassign completes, and when you click OK again, a popup says the task is already assigned. To eliminate the error message, upgrade your task flow applications by opening them in Oracle JDeveloper, then redeploy the task form.	
To request information:	
Figure 32-27 Requesting Information from Past Approvers or Another User, or Pushing the Task Back	
If you use the Search icon to find a user name, the Identity Browser appears, as shown in Figure 32-28.	
Note: If you are in a multi-tenancy environment, search for a user simply by the user identifier and not by the tenant identifier. For example, if the user identifier is jstein and the tenant identifier is company_name.jstein, you would search by using jstein.	
To route a task:	
Figure 32-31 Providing Consensus Information	
To add comments or attachments:	
Notes:	
Figure 32-32 Worklist Comments and Attachments	
The date and timestamp and your user name are included with the comment.	
Figure 32-33 Adding a Worklist Attachment	
If you attach a URL file in Oracle BPM Worklist (for example, http://www.example.com/technology/products/oem/management_partners/snmpwp6.gif	
), it is not sent as an e-mail attachment. Instead, it appears as a hyperlink in the task details of the e-mail notification. However, if a desktop file is attached, it can be seen as a separate attachment in the task notification.	
Note: Attachment file names that use a multibyte character set (MBCS) are not supported. Attachments of up to 1998K can be uploaded. You can modify this setting by setting the context parameter in <context-param> <param-name>org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_SPACE</param-name> <param-value>1998</param-value> </context-param> For more information about file uploading, see the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application.	
The worklist supports the signature policy created in the human task:	
When you act on a task that has a signature policy, the Sign button appears, as shown in Figure 32-34.	
Figure 32-34 Digital Signature Task Details	
The evidence store service is used for digital signature storage and nonrepudiation of digitally signed human tasks. You can search the evidence store, as shown in Figure 32-35.	
See Section 34.1.10, "Evidence Store Service and Digital Signatures" for more information.	
To provide a digital signature:	
When signing a task outcome using your certificate, you must upload the entire chain of certificates through Oracle BPM Worklist as a .P7B	
(PKCS7 format) file, not just the one certificate issued to you by the certificate issuer. The entire chain can be exported through Internet Explorer. Mozilla Firefox does not let you export the chain as a .P7B	
file. Therefore, you can perform the following steps:	
.P12	
file in Internet Explorer. .P7B	
file. Note the following important points when providing your certificate to the system. Otherwise, you cannot use your certificate to sign your decisions on tasks.	
The task details are displayed.	
Details about the digital signature are displayed.	
The Text Signing Report dialog appears.	
The web browser signs the string displayed in the upper half of the Text Signing Request with the certificate you selected and invokes the action (approval or rejection) that you selected. The task status is appropriately updated in the human workflow service.	
For more information about how certificates are uploaded and used, see Section 34.1.10, "Evidence Store Service and Digital Signatures."	
Table 32-8 describes the type of actions that can be performed on tasks by the various task approvers.	
Table 32-8 Task Actions and Approvers	
Task Action	Admin
---	---
Acquire (Claim)	No
Custom	No
Delegate	No
Delete	NoFoot 2
Error	No
Escalate	YesFoot 4
Info Request	No
Info Submit	No
Override Routing Slip	Yes
Push Back	No
Purge	YesFootref 2
Reassign	YesFoot 5
Release	Yes
Renew	No
Resume	Yes
Route	No
Skip Current Assignment	Yes
Suspend	Yes
Update	No
Update Attachment	Yes
Update Comment	Yes
View Process History	Yes
View Sub Tasks	Yes
View Task History	Yes
Withdraw	Yes
Footnote 1 Not valid for ToDo tasks	
Footnote 2 Valid only for ToDo tasks	
Footnote 3 Applicable for tasks in alerted states	
Footnote 4 Without claim and escalate to current assignee's manager	
Footnote 5 Without claim	
You can set a vacation period so that you are removed from automatic task assignment during the dates you specify, as shown in Figure 32-37.	
Vacation rules are not executed for ToDo tasks. See Section 32.7, "Setting Rules," for how to set a vacation rule that is synchronized with the vacation period.	
To create a vacation period:	
The My Rules tab is displayed.	
The vacation period is enabled, as shown in Figure 32-38.	
Rules act on tasks, either a specific task type or all the tasks assigned to a user or group. Figure 32-39 shows where you set rules, including vacation rules (different from the vacation period settings described in Section 32.6, "Setting a Vacation Period").	
A rule cannot always apply in all circumstances in which it is used. For example, if a rule applies to multiple task types, it may not be possible to set the outcome for all tasks, since different tasks can have different outcomes.	
Rules are executed in the order in which they are listed. Rules can be reordered by using the up and down buttons in the header, as shown in Figure 32-39.	
If a rule meets its filter conditions, then it is executed and no other rules are evaluated. For your rule to execute, you must be the only user assigned to that task. If the task is assigned to multiple users (including you), the rule does not execute.	
You cannot specify business rules for ToDo tasks	
Specify the following when creating a user rule:	
User rules do the following actions:	
To create a user rule:	
The My Rules tab is displayed.	
The new rule appears under the My Rules node.	
Creating a group rule is similar to creating a user rule, with the addition of a list of the groups that you (as the logged-in user) manage. Examples of group rules include:	
Group rules do the following actions:	
To create a group rule:	
The Identity Browser opens for you to find and select a group.	
The new rule appears under the Group Rules node.	
If a task has multiple assignees, then assignment rules are not evaluated for the task, and the task is not automatically routed. This is because each of the task's assignees can define assignment rules, which can potentially provide conflicting actions to take on the task. Only tasks that are assigned exclusively to a single user are routed by the assignment rules.	
For example, consider the following sequence:	
The task is not automatically reassigned to jstein. The task is routed to jstein, following the assignment rule set for cdickens, if user jcooper explicitly re-assigns the task only to cdickens instead of reassigning the task to multiple users (cdickens and cdoyle).	
Administrators are users who have been granted the BPMWorkflowAdmin role. Administration functions include the following:	
oracle.com	
, or google.com	
An administrator can view and update all tasks assigned to all users. An administrator's Assignee filter displays Admin when the Admin tab is selected.	
This section contains these topics:	
For information about specifying mapped attributes, see Section 32.10, "Using Mapped Attributes (Flex Fields)"	
This function is useful for fixing a problem with a rule. Also, for a user who no longer works for the company, administrators can set up a rule for that user so that all tasks assigned to the user are automatically assigned to another user or group.	
To create a rule for another user or group:	
Figure 32-41 Creating Rules for Another User or Group	
Figure 32-42 Defining Rules for Another User or Group	
If the identity service is configured with multiple realms, then, when a user logs in to Oracle BPM Worklist, the login page displays a list of realm names. LABEL_LOGIN_REALM specifies the resource bundle key used to look up the label to display these realms. You can change the term realm to fit the user community—terms such as country, company, division, or department may be more appropriate. To change the term realm, customize the resource bundle, specify a resource bundle key for this string, and then set the Login page realm label parameter to point to that resource bundle key.	
Figure 32-43 shows the Application Preferences page with the Login page realm label field highlighted. You reach the Application Preferences page by clicking Administration on the global toolbar at the very top of the Worklist Application interface.	
The resource bundle provides the strings displayed in the Worklist Application. By default, the class path to the resource bundle is:	
oracle.bpel.worklistapp.resource.WorklistResourceBundle	
Figure 32-44 shows the Application Preferences page with the Resource Bundle field highlighted. You reach the Application Preferences page by clicking Administration on the global toolbar at the very top of the Worklist Application interface.	
As an administrator, you can add or modify strings shown in the application by creating a custom resource bundle. You can then use the Resource Bundle field in the Application Preferences page to specify the class path to your custom resource bundle.	
For more information about customizing resource bundles, see Oracle Fusion Middleware User's Guide for Oracle Business Process Management.	
From the Application Preferences page, you can specify how the Worklist Application display language is determined. Information about the language locale can be derived from either the user's browser or the identity provider that stores information on worklist users.	
You reach the Application Preferences page by clicking Administration on the global toolbar at the very top of the Worklist Application interface.	
Figure 32-45 Specifying Language Local Information	
A branding logo is the image displayed in the top left corner of every page of the Worklist Application. The Oracle logo is the default, and you can change it to one of your choosing.	
Note: The ideal image size is 120px x 40px (length x width) for proper display. Although images with high resolution and size are compressed to fit the branding logo size, smaller images display better.	
Figure 32-46 shows the Application Preferences page with the Branding Logo field highlighted. You reach the Application Preferences page by clicking Administration on the global toolbar at the very top of the Worklist Application interface.	
To specify the branding logo:	
Do one of the following:	
/afr/my_logo.png	
. /my_logo.pngv	
. Note: Customizing the branding logo from either the Worklist Application or Process Workspace changes the logo in both applications. For example, if you change the logo from Worklist, the Workspace logo is changed automatically.	
For information about deploying images and JAR files as part of a shared library, see Oracle Fusion Middleware User's Guide for Oracle Business Process Management.	
You can specify the title for your site, changing the default title, BPM Worklist, to one that you choose.	
Figure 32-47 shows the Application Preferences field with the Branding Title field highlighted. You reach the Application Preferences page by clicking Administration on the global toolbar at the very top of the Worklist Application interface.	
To specify the branding title:	
Do one of the following:	
A skin determines the look and feel of your graphical interface. You specify the skin from the Application Preferences page. You reach the Application Preferences page by clicking Administration on the global toolbar at the very top of the Worklist Application interface.	
Figure 32-48 shows the Application Preferences page with the Choose a Skin field highlighted.	
To choose a skin:	
Do one of the following:	
.css	
file in a .JAR	
file and deploy it as a part of shared library. Then, when you restart your application from the console, your custom skin appears in the Choose a Skin list. To create a JAR file containing customized skins:	
In this example, you can change the word custom	
to the name of your own customized skin.	
trinidad-skins.xml	
file is as follows: c:\temp	
directory: /scratch/	
username	
/sharedLib	
. Note: Refer to the images in your css file this way:	
This allows the search for the META-INF root to start one directory above the	
For information about deploying JAR files as part of a shared library, see Oracle Fusion Middleware User's Guide for Oracle Business Process Management.	
For Process Workspace, you can create customized external applications and links that become available in the External Applications panel. Moreover, in both Process Workspace and the Worklist Application, you can specify the columns that appear in the Task Details pane.	
You specify a custom application by using the Application Preferences page. You reach the Application Preferences page by clicking Administration on the global toolbar at the very top of the Worklist Application interface.	
To see the Java code for specifying a custom application, see Section 32.14, "Java Code for Enabling Customized Applications in Worklist Application".	
To enable customized applications:	
Depending on your customization, you can now see it's effects.	
If your customization is for Process Workspace and involves either creating an external application or specifying inbox columns in the Task Details pane or both, you see the following:	
For more information about customizing applications in Worklist Application and Process Workspace, see Oracle Fusion Middleware User's Guide for Oracle Business Process Management.	
You can configure the notification settings to control how, when, and where you receive messages in cases when you have access to multiple communication channels (delivery types). Specifically, you can define messaging filters (delivery preferences) that specify the channel to which a message should be delivered, and under what circumstances.	
For example, you might want to create filters for messages received from customers with different Service Level Agreements (SLA), specifying to be notified through business phone and SMS channels for customers with a premium SLA and by EMAIL for customers with a nonpremium SLA.	
A messaging filter rule consists of rule conditions and rule actions. A rule condition consists of a rule attribute, an operator, and an associated value. A rule action is the action to be taken if the specified conditions in a rule are true.	
Table 32-9 lists data types supported by messaging filters. Each attribute has an associated data type, and each data type has a set of predefined comparison operators.	
Table 32-9 Data Types Supported by Messaging Filters	
Data Type	Comparison Operators
---	---
Date	isEqual, isNotEqual, isGreaterThan, isGreaterThanOrEqual, isLessThan, isLessThanOrEqual, Between, isWeekday, isWeekend
Time	isEqual, isNotEqual, Between
Number	isEqual, isNotEqual, Between, isGreaterThan, isGreaterThanOrEqual, isLessThan, isLessThanOrEqual
String	isEqual, isNotEqual, Contains, NotContains
Note: The String data type does not support regular expressions.	
Table 32-10 lists the predefined attributes for messaging filters.	
Table 32-10 Predefined Attributes for Messaging Filters	
Attribute	Data Type
---	---
Total Cost	Number
From	String
Expense Type	String
To	String
Application Type	String
Duration	Number
Application	String
Process Type	String
Status	String
Subject	String
Customer Type	String
Time	Time
Group Name	String
Processing Time	Number
Date	Date
Due Date	Date
User	String
Source	String
Amount	Number
Role	String
Priority	String
Customer Name	String
Expiration Date	Date
Order Type	String
Organization	String
Classification	String
Service Request Type	String
For a given rule, a messaging filter can define the following actions:	
In Oracle BPM Worklist, messaging channels represent both physical channels, such as business mobile phones, and also email client applications running on desktops. Specifically, Oracle BPM Worklist supports the following messaging channels:	
Note the following about message channels:	
You can use the Messaging Channels tab to view, create, edit, and delete messaging channels.	
You can display your existing messaging channels.	
To view messaging channels:	
The My Messaging Channels list appears (Figure 32-52) and displays the following information:	
You can also click View > Reorder Columns to display a dialog to reorder the displayed columns.	
Messaging channel names and addresses are retrieved from the underlying identity store, such as Oracle Internet Directory.	
Oracle BPM Worklist uses an underlying identity store, such as Oracle Internet Directory, to manage messaging channels and addresses. Therefore, you cannot directly create, modify, or delete messaging channels using Oracle BPM Worklist.	
To perform these actions, contact the system administrator responsible for managing your organization's identity store.	
You can use the Messaging Filters tab to define filters that specify the types of notifications you want to receive along with the channels through which to receive these notifications. You can do this through a combination of comparison operators (such as is equal to, is not equal to), attributes that describe the notification type, content, or source, and notification actions, which send the notifications to the first available messaging channels, all messaging channels, or to no channels (effectively blocking the notification).	
For example, you can create a messaging filter called Messages from Lise, that retrieves all messages addressed to you from your boss, Lise. Notifications that match all of the filter conditions might first be directed to your business mobile phone, for instance, and then to your business email if the first messaging channel is unavailable.	
You can display your existing messaging filters.	
To view your messaging filters:	
The My Messaging Filters list appears (Figure 32-53) and displays the following information:	
You can also click View > Reorder Columns to display a dialog to reorder the displayed columns.	
To create a messaging filter:	
The Messaging Filters page appears, as shown in Figure 32-54.	
The messaging filter appears on the My Messaging Filters page. The My Messaging Filters page enables you to edit or delete the channel. Click Cancel to dismiss the dialog without creating the filter.	
Human workflow mapped attributes (formerly referred to as flex fields) store and query use case-specific custom attributes. These custom attributes typically come from the task payload values. Storing custom attributes in mapped attributes provides the following benefits:	
For example the Requester	
, PurchaseOrderID	
, and Amount	
fields in a purchase order request payload of a task can be stored in the mapped attributes. An approver logging into Oracle BPM Worklist can see these fields as column values in the task list and decide which task to access. The user can define views that filter tasks based on the mapped attributes. For example, a user can create views for purchase order approvals based on different amount ranges. If the user must also retrieve tasks at some point related to a specific requester or a purchase order ID, they can specify this in the keyword field and perform a search to retrieve the relevant tasks.	
For the mapped attributes to be populated, an administrator must create mapped attribute mappings, as follows:	
These mappings are valid for a certain task type. Therefore, each task type can have different mapped attribute mappings. After the mapping is complete and any new task is initiated, the value of the payload is promoted to the mapped attribute. Tasks initiated before the mapping do not contain the value in the mapped attribute. Only top-level simple type attributes in the payload can be promoted to a mapped attribute. Complex attributes or simple types nested inside a complex attribute cannot be promoted. It is important to define the payload for a task in the Human Task Editor, keeping in mind which attributes from the payload may must promoted to a mapped attribute. All text and number mapped attributes are automatically included in the keyword-based search.	
Essentially, the Human Task Editor is used only when defining the payload for a task. All other operations are performed at runtime.	
Directory naming is not available concomitant with the flex file naming convention.	
Note:	
An administrator, or users with special privileges, can use attribute mapping, shown in Figure 32-55, to promote data from the payload to inline mapped attributes. By promoting data to mapped attributes, the data becomes searchable and can be displayed as columns on the task list page.	
Administrators can map public mapped attributes. Users who have been granted the workflow.mapping.publicFlexField	
privilege can map public mapped attributes, and see a Public Flex Fields node on the Administration tab.	
To create labels:	
To create a mapped attribute mapping, an administrator first defines a semantic label, which provides a more meaningful display name for the mapped attribute. Click Add to use the Create Label dialog, as shown in Figure 32-56.	
As Figure 32-56 shows, labelName is mapped to the task attribute TextAttribute3. The payload attribute is also mapped to the label. In this example, the Text attribute type is associated with labelName. The result is that the value of the Text attribute is stored in the TextAttribute3 column, and labelName is the column label displayed in the user's task list. Labels can be reused for different task types. You can delete a label only if it is not used in any mappings.	
A mapped payload attribute can also be displayed as a column in a custom view, and used as a filter condition in both custom views and workflow rules. The display name of the payload attribute is the attribute label that is selected when doing the mapping.	
Note the following restrictions:	
number	
or date	
data types. For example, you may not map a payload attribute of type string	
to a label of type number	
. To browse all mappings:	
To edit mappings by task type:	
All current mappings for the task type are displayed, as shown in Figure 32-59.	
Figure 32-60 shows a completed mapping.	
Figure 32-60 Mapped Attribute Mapping Created	
See Section 34.1.9.1, "Internationalization of Attribute Labels" for more information.	
The following mapped attributes are included in the WorkflowTask.xsd	
file and are available for your use without restrictions.	
Table 32-11 Custom Mapped Attributes	
Attribute	Data Type
---	---
customerAttributeString1	String
customerAttributeString2	String
customerAttributeNumber1	Double
customerAttributeNumber2	Double
customerAttributeDate1	Date
customerAttributeDate2	Date
Use the following Java Architecture for XML Binding (JAXB) methods to set and get these attributes:	
task.getCustomerAttributes.getCustomerAttributeString1()	
task.getCustomerAttributes.setCustomerAttributeString1("String")	
task.getCustomerAttributes.getCustomerAttributeNumber1()	
task.getCustomerAttributes.setCustomerAttributeNumber2(9)	
task.getCustomerAttributes.setCustomerAttributeDate1()	
task.getCustomerAttributes.setCustomerAttributeDate2()	
These fields are persisted in the database as customerAttributeString1	
, customerAttributeString2	
, customerAttributeNumber1	
, customerAttributeNumber2	
, customerAttributeDate1	
, customerAttributeDate2	
.	
Table 32-12 lists the worklist reports available for task analysis.	
Table 32-12 Worklist Report Types	
Report Name	Description
---	---
Unattended Tasks	Provides an analysis of tasks assigned to users' groups or reportees' groups that have not yet been acquired (the "unattended" tasks).
Tasks Priority	Provides an analysis of the number of tasks assigned to a user, reportees, or their groups, broken down by priority.
Tasks Cycle Time	Provides an analysis of the time taken to complete tasks from assignment to completion based on users' groups or reportees' groups.
Tasks Productivity	Provides an analysis of assigned tasks and completed tasks in a given time period for a user, reportees, or their groups.
Tasks Time Distribution	Provides the time an assignee takes to perform a task.
Reports are available from the Reports link. Report results cannot be saved.	
To create a report:	
Figure 32-61 shows the report types available.	
Figure 32-62 shows an example of the Unattended Tasks Report input page. The other reports are similar. See Table 32-12 for information about input parameters for all the report types.	
Figure 32-62 Unattended Tasks Report—Input Page for Task Analysis	
As shown in Figure 32-63, report results (for all report types) are displayed in both a table format and a bar chart format. The input parameters used to run the report are displayed under Report Inputs, in the lower-left corner (may require scrolling to view).	
Figure 32-63 Report Display—Table Format, Bar Chart Format, and Report Inputs	
Figure 32-64 shows an example of an Unattended Tasks report.	
The report shows that the California group has 15 unattended tasks, the Supervisor group has 7 unattended tasks, and the LoanAgentGroup has 11 unattended tasks. The unattended (unclaimed) tasks in this report are all DocumentReview tasks. If multiple types of unattended task exists when a report is run, all task types are included in the report, and the various task types are differentiated by color.	
Figure 32-65 shows an example of a Tasks Priority report.	
The report shows that the California group, the Supervisor group, and the LoanAgentGroup each have 16 tasks of normal priority. The users rsteven and jcooper have 5 and 22 tasks, respectively, all normal priority. Priorities (highest, high, normal, low, lowest) are distinguished by different colors in the bar chart.	
Figure 32-66 shows an example of a Tasks Cycle Time Report.	
The report shows that it takes 1 hour and 6 minutes on average to complete DocumentReview tasks, and 1 hour and 28 minutes on average to complete VacationApproval tasks. The bar chart shows the average cycle time in milliseconds.	
Figure 32-67 shows an example of a Tasks Productivity Report.	
The report shows the number of tasks assigned to the California, LoanAgentGroup, and Supervisor groups. For individual users, the report shows that jcooper has 22 assigned tasks. In addition to his assigned tasks, jcooper has completed 2 tasks. The report shows that mtwain and rsteven have completed 6 and 11 tasks respectively. In the bar chart, the two task states—assigned and completed—are differentiated by color.	
Note: The Me and Group and Reportees options have been removed from the Productivity Report.	
A user's preferred worklist language is configured from either the identity store or the browser.	
A user's preferred time zone is configured from the identity store.	
If no preference information is available, then the user's preferred language and time zone are determined by the system defaults. System defaults are based on the server settings for language and time zone.	
If the custom resource bundle class in the browser locale is not available and the custom resource bundle class in default server locale is available, then the language is derived from the custom resource bundle class in default server locale.If the custom resource bundle class in the default server locale is also not available, then the language is derived from the custom base class.	
If no user language preferences are set, or if they are set to a language not supported by Oracle BPM Worklist, then the Worklist Application defaults to English.	
For more information, see the following sections for instructions on how to select Browser or Identity Provider in the worklist interface:	
Most strings in the worklist come from the Worklist Application bundle. By default, this is the class	
However, this can be changed to a custom resource bundle by setting the appropriate application preference (see Section 32.8.3, "How to Specify the Resource Bundle") or by providing an updated version of the default bundle class. See the Workflow Customizations sample for details.	
For task attribute names, mapped attribute labels, and dynamic assignment function names, the strings come from configuring the resource property file WorkflowLabels.properties	
. This file exists in the wfresource	
subdirectory of the services config directory. See Chapter 34, "Introduction to Human Workflow Services" for information on adding entries to this file for dynamic assignment functions and attribute labels.	
For custom actions and task titles, the display names come from the message bundle specified in the task configuration file. If no message bundle is specified, then the values specified at design time are used. See Chapter 34, "Introduction to Human Workflow Services" for information on how to specify message bundles so that custom actions and task titles are displayed in the preferred language.	
Note: You cannot use Korean characters in the human task name. In place of Korean characters, Oracle recommends using only letters A-Z, a-z, 0-9, and "_" in the human task name.	
If an LDAP-based provider such as Oracle Internet Directory is used, then language settings are changed in the Oracle Internet Directory community. Connect to the embedded LDAP server, where you can change language settings in the Oracle Internet Directory community.	
7001	
. cn=admin	
. For instructions on changing the default password credential, see Chapter 9, "Managing the Embedded LDAP Server" of Oracle Fusion Middleware Securing Oracle WebLogic Server.	
3060	
. cn=orcladmin	
. preferredLanguage	
attribute. See Table 32-13, "Languages Supported in Oracle BPM Worklist" for a list of supported languages. You can also determine the language in which user names are displayed. To do this task, navigate to the user entry in the LDAP directory, then add or specify the displayname	
attribute. Note, however, that the user name that appears in the Assignee column in the worklist does not honor the setting of the displayname	
attribute.	
To change the time zone setting, either add or set the orclTimeZone	
attribute. The format of the time zone string is Continent/Region. You can find the time zone values in the $JAVA_HOME/jre/lib/zi	
directory. The directories specify the continent names, for example, Africa, Asia, America, and so on, while the files within the directories specify the regions. Some regions include subregions, for example America/Indiana/Indianapolis.	
When a user logs in, the worklist pages are rendered in the user's preferred language and time zone.	
For better performance, only the English language is listed for the LocaleList	
property in the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control. If you want to display the task title, category, and subcategory in other languages or add other languages, you must change the required language locale in the System MBean Browser.	
Note: You should add all languages at the very beginning. If you add another language later, then any tasks previously written in other languages no longer appear in the worklist. For example, if the previously specified language was English, and you later added French, then any tasks written before you added French no longer appear in the worklist.	
To add or change a language:	
soa-infra	
in the navigator, select Administration, then select System MBean Browser. oracle.as.soainfra.config	
; then Server: server_name; then WorkflowConfig. To change the language:	
en	
to the language value to use. To add additional languages:	
createLocale	
. In the JAZN XML file, change the portion in bold to set the user's preferred language.	
Oracle BPM Worklist supports the languages shown in Table 32-13.	
Oracle BPM Worklist supports nine administration languages. However, the user's notification preference interface, as a standalone application, supports 21 runtime languages. If a user's preferred language is set to a language that is not supported by the worklist, but which is supported by the user's notification preference interface, then the worklist displays the language set by the server (or English if the server language is also not supported by the worklist), while the embedded user's notification preference interface displays in the user's preferred language. In this case, two languages are seen when you navigate to the Preferences settings in the Notification tab in the worklist.	
For example, assume that the language of the SOA server is French and that someone tries to access the worklist in a browser with the language set to Arabic. The worklist interface displays the server language, French, while the embedded user's notification preference interface displays in Arabic when navigating to the Preferences > Notification tab.	
Oracle BPM Worklist can be configured to set the language from the browser or from the identity store. There are two levels to this setting: the application level and the user level. If the user preference is set, it takes precedence in determining the worklist display language. However, the embedded user's notification preference interface always respects the application preference. Therefore, if the user's preference indicates that the language from the browser is to be used, while the application preference is set to use the language from the identity store, or vice versa, you may see different display languages in the worklist and in the user's notification preference interface.	
The following is based on extracting a user's time zone from a JAZN XML file.	
To change the time zone:	
Change the string in bold to set the user's preferred time zone.	
The format of the time zone string is Continent/Region. You can find the time zone values in the $JAVA_HOME/jre/lib/zi	
directory. The directories specify the continent names, for example Africa, Asia, America, and so on, while the files within the directories specify the regions. Some regions include sub-regions, for example America/Indiana/Indianapolis	
.	
Some features available in worklist are exposed as standalone reusable components that can be embedded in any application. Moreover, these standalone task flows provide many customizations through parameters that enable user to build and customize a worklist application to meet requirements. All of the task flows are bundled in an ADF library that can be included in the embedding application.	
The usage of each reusable worklist region is the same with a few exceptions. The following procedure provides the detailed steps to create an application and embed the Task List task flow in the application. Where applicable, notes on how to use other types of reusable worklist regions are provided.	
To create an application with an embedded reusable worklist region:	
Figure 32-68 Creation of Application with an Embedded Reusable Worklist Region	
adflibTaskListTaskFlow.jar	
and adflibWorklistComponents.jar	
, which are required in the project's class path. Figure 32-69 provides details.	
Figure 32-69 Libraries and Classpath Section	
oracle.soa.workflow	
shared library. If your server has oracle.soa.workflow.wc	
already installed, you do not need to install oracle.soa.workflow	
.	
If you run the Task List task flow in federated mode, you do not need to do this step. See the section "federatedMode" for information about how to use the task flow in federated mode.	
testSample.jspx	
). Be sure to select Create as XML document (*.jspx) in the Create JSF Page dialog.	
adflibTaskListTaskFlow.jar	
from the component palette. It contains the list of all the Task Flows and Regions. Figure 32-70 provides details. See the following sections for details about the task flow definitions:	
pagename	
Pagedef.xml	
file. For example, adding the taskList-task-flow-definition results in the following new entry:	
weblogic-application.xml	
file. If you have oracle.soa.workflow.wc	
installed on your server, add that library. Before deploying the application, you must edit the deployment profile.	
To edit the deployment profile	
adflibTaskListTaskFlow.jar	
, adflibWorklistComponents.jar	
and wsrp-container.jar	
. If you are using the task flow in federated mode, you must pass the list of federated servers to the task flow. See "federatedMode" for details.	
If the task flow is used in the federated mode, then enable global trust between the federated servers. This is done so that the already authenticated user token is passed to all the federated servers passed.	
Do the below steps for all the federated servers and restart all the servers. It is very important that you restart all the servers.	
To restart the servers:	
The Task List task flow takes in the parameters to control the display behavior of the embedded region. Figure 32-71 provides details.	
Some of the parameters are listed below. For the full list of parameters, see Section 36.4, "Passing Worklist Portlet Parameters."	
federatedMode	
If this is passed as true, the task list is shown in the federated mode. To run the task flow in federated mode, the list of federated servers must be passed to the task flow. You can pass the federated servers list to the task flow in one of the following two ways.	
wf_client_config.xml	
in the class path (APP-INF\classes\wf_client_config.xml	
at the EAR level, or the WEB-INF\classes	
of the web application). The client configuration file contains all federated server details. See more information about this parameter in detail in Section 36.4, "Passing Worklist Portlet Parameters." federatedServers	
parameter. See "federatedServers" for information about constructing the JAXB object. If both the client configuration file (wf_client_config.xml	
) and the JAXB object were provided to the task flow, the JAXB object takes the precedence.	
federatedServers	
This parameter is a JAXB object that contains the list of servers if the task flow is run in federated mode. This parameter takes precedence over the client configuration file (wf_client_config.xml	
) if it were also provided. See the code example in Example 32-1 for details about to constructing the JAXB object (WorkflowServicesClientConfigurationType	
).	
Make sure that you set one of the servers as default	
, as shown in Example 32-1. Only one server is required to be designated as the default. Also, verify that the server you designate as the default is excluded from the federated servers list. The relevant code for doing this is in bold in the example.	
The default server is used when you have many servers defined in wf_client_config.xml	
or in the JAXB object, but the workflow client is desired for a single server. There are a few legacy APIs that do not take a server name as a parameter. To support such legacy APIs, your must define a single server as the default server, otherwise any legacy APIs that do not take a server name do not work.	
Example 32-1 federatedServers	
showServerColumn	
If the task flow is run in federated mode, the server column in the task list is not shown by default. The server column is shown if this parameter is passed as true	
, otherwise it is not.	
wfCtxID	
This is a workflow context token string. It is used to create workflow context inside the task flow. If the application is SSO-enabled, or it is secured using ADF security, this parameter is not required, otherwise this is a required parameter. You can get the workflow context ID as shown in Example 32-2.	
The user can upload the certificate to use to sign a decision, as shown in the following graphic. When signing a task outcome using your certificate, you must upload the entire chain of certificates through Oracle BPM Worklist as a .P7B (PKCS7 format) file, not only the one certificate issued to you by the certificate issuer.	
A digital certificate contains the digital signature of the certificate-issuing authority, so that anyone can verify that the certificate is real. A digital certificate establishes the participant's credentials. It is issued by a certification authority (CA). It contains your name, a serial number, expiration dates, a copy of the certificate holder's public key (used for encrypting messages and digital signatures), and the digital signature of the certificate-issuing authority, so that a recipient can verify that the certificate is real.	
Certificates task flow does not have any parameters. Figure 32-72 provides details.	
Figure 32-73 shows the unattended tasks report.	
The following worklist reports are available for task analysis.	
Unattended Tasks	
Unattended Tasks provides an analysis of tasks assigned to users' groups or reportees' groups that have not yet been acquired (the "unattended" tasks).	
Tasks Priority	
Tasks Priority provides an analysis of the number of tasks assigned to a user, reportees, or their groups, broken down by priority.	
Tasks Cycle Time	
Tasks Cycle Time provides an analysis of the time taken to complete tasks from assignment to completion based on users' groups or reportees' groups.	
Tasks Productivity	
Tasks Productivity provides an analysis of assigned tasks and completed tasks in a given time period for a user, reportees, or their groups.	
Tasks Time Distribution	
Tasks Time Distribution provides the time an assignee takes to perform a task.	
Application preferences customize the appearance of the worklist. Administrators can specify the following:	
LABEL_LOGIN_REALM	
specifies the resource bundle key used to look up the label to display these realms. The term realm can be changed to fit the user community. Terms such as country, company, division, or department may be more appropriate. Administrators can customize the resource bundle, specify a resource key for this string, and then set this parameter to point to the resource key. .gif	
, .png	
, or .jpg	
file for the logo. This file must be in the public_html	
directory. oracle.bpel.worklistapp.resource.WorklistResourceBundle	
. Figure 32-74 provides details. Human workflow mapped attributes store and query use case-specific custom attributes. These custom attributes typically come from the task payload values. Storing custom attributes in mapped attributes provides the following benefits:	
For example the Requester, PurchaseOrderID, and Amount fields in a purchase order request payload of a task can be stored in the mapped attributes. An approver logging into Oracle BPM Worklist can see these fields as column values in the task list and decide which task to access. The user can define views that filter tasks based on the mapped attributes.	
For example, a user can create views for purchase order approvals based on different amount ranges. If the user must also retrieve tasks at some point related to a specific requester or a purchase order ID, they can specify this in the keyword field and perform a search to retrieve the relevant tasks. Figure 32-75 provides details.	
Rules act on tasks, either a specific task type, or all the tasks assigned to a user or group. The graphic below shows where you set rules, including vacation rules.	
A rule cannot always apply in all circumstances in which it is used. For example, if a rule applies to multiple task types, it may not be possible to set the outcome for all tasks, since different tasks can have different outcomes.	
Rules are executed in the order in which they are listed. Rules can be reordered by using the up and down buttons in the header. If a rule meets its filter conditions, then it is executed and no other rules are evaluated. For your rule to execute, you must be the only user assigned to that task. If the task is assigned to multiple users (including you), the rule does not execute.	
The showOtherUsersRules	
parameter takes a boolean value. When it is passed as True	
other users' rules are displayed, and when it is passed as False	
other users' rules are not shown. In addition, this user has to have required permission to view other user rules. Figure 32-76 and Figure 32-77 provide details.	
Section 32.8.8, "How to Enable Customized Applications and Links" explained how to specify a custom application by using the Application Preferences page of Worklist Application. The Java code for performing this specification is as follows:	
This chapter describes how, starting with the sample Worklist Application, a developer can build clients for workflow services by using the APIs exposed by the workflow service. The APIs enable clients to communicate with the workflow service by using remote EJBs, SOAP, and HTTP.	
This chapter includes the following sections:	
The typical sequence of calls when building a simple worklist application is as follows.	
To build a simple worklist application:	
IWorklistServiceClient	
from WorkflowServiceClientFactory	
. ITaskQueryService	
from IWorklistServiceClient	
. Authenticate a user by passing a username and password to the authenticate method on ITaskQueryService	
. Get a handle to IWorkflowContext	
.	
Query the list of tasks using ITaskQueryService	
.	
ITaskService	
from IWorklistServiceClient	
. ITaskService	
. Example 33-1 demonstrates how to build a client for workflow services. A list of all tasks assigned to jstein is queried. A task whose outcome has not been set is approved.	
Example 33-1 Building a Client for Workflow Services—Setting the Outcome to APPROVE	
Use the following packages and classes for building clients:	
oracle.bpel.services.workflow.metadata.config.model	
The classes in this package contain the object model for the workflow configuration in the task definition file. The ObjectFactory	
class can create objects.	
oracle.bpel.services.workflow.metadata.routingslip.model	
The classes in this package contain the object model for the routing slip. The ObjectFactory	
class can create objects.	
oracle.bpel.services.workflow.metadata.taskdisplay.model	
The classes in this package contain the object model for the task display. The ObjectFactory	
class can create objects.	
oracle.bpel.services.workflow.metadata.taskdefinition.model	
The classes in this package contain the object model for the task definition file. The ObjectFactory	
class can create objects.	
oracle.bpel.services.workflow.client.IWorkflowServiceClient	
The interface for the workflow service client.	
oracle.bpel.services.workflow.client.WorkflowServiceClientFactory	
The factory for creating the workflow service client.	
oracle.bpel.services.workflow.metadata.ITaskMetadataService	
The interface for the task metadata service.	
oracle.bpel.services.workflow.task.ITaskService	
The interface for the task service.	
oracle.bpel.services.workflow.task.IRoutingSlipCallback	
The interface for the callback class to receive callbacks during task processing.	
oracle.bpel.services.workflow.task.IAssignmentService	
The interface for the assignment service.	
Any worklist application accesses the various workflow services through the workflow service client. The workflow service client code encapsulates all the logic required for communicating with the workflow services using different local and remote protocols. After the worklist application has an instance of the workflow service client, it does not need to consider how the client communicates with the workflow services.	
The advantages of using the client are as follows:	
The following class is used to create instances of the IWorkflowServiceClient	
interface:	
WorkflowServiceClientFactory	
has several methods that create workflow clients. The simplest method, getWorkflowServiceClient	
, takes a single parameter, the client type. The client type can be one of the following:	
WorkflowServiceClientFactory.REMOTE_CLIENT	
—The client uses a remote Enterprise JavaBeans interface to invoke workflow services located remotely from the client. WorkflowServiceClientFactory.SOAP_CLIENT	
—The client uses SOAP to invoke web service interfaces to the workflow services, located remotely from the client. The other factory methods enable you to specify the connection properties directly (rather than having the factory load them from the wf_client_config.xml file	
), and enable you to specify a logger to log client activity.	
The following enhancements to the workflow service clients are included in this release:	
Example 33-2 Workflow Client Configuration Using a JAXB Object	
Example 33-3 Workflow Client Configuration Using a Map	
java.util.logging.Logger	
where the client logs messages. If no logger is specified, then the workflow service client code does not log anything. Example 33-4 shows how a logger can be passed to the workflow service clients. Through the factory, it is possible to get the client libraries for all the workflow services. See Table 34-1, "Enterprise JavaBeans, SOAP, and Java Support" for the clients available for each of the services.	
You can obtain instances of BPMIdentityService	
and BPMIdentityConfigService	
by calling the getSOAPIdentityServiceClient	
and getSOAPIdentityConfigServiceClient	
methods on WorkflowServiceClientFactory	
. You can obtain all other services through an instance of IWorkflowServiceClient	
.	
The client classes use the configuration file wf_client_config.xml	
for the service endpoints. In the client class path, this file is in the class path directly, meaning the containing directory is in the class path. The wf_client_config.xml	
file contains:	
Example 33-5 Section for Remote Clients	
Example 33-6 Section for SOAP Endpoints	
The workflow client configuration XML schema definition is in the wf_client_config.xsd	
file.	
The IWorkflowServiceClient	
interface provides methods, summarized in Table 33-1, for obtaining handles to the various workflow services interfaces.	
Table 33-1 IWorkflowServiceClient Methods	
Method	Interface
---	---
getTaskService	oracle.bpel.services.workflow.task.ITaskService
getTaskQueryService	oracle.bpel.services.workflow.query.ITaskQueryService
getTaskReportService	oracle.bpel.services.workflow.report.ITaskReportService
getTaskMetadataService	oracle.bpel.services.workflow.metadata.ITaskMetadataService
getUserMetadataService	oracle.bpel.services.workflow.user.IUserMetadataService
getRuntimeConfigService	oracle.bpel.services.workflow.runtimeconfig.IRuntimeConfigService
getTaskEvidenceService	oracle.bpel.services.workflow.metadata.ITaskMetadataService
SOAP clients must have the following JAR files in their class path:	
${bea.home}/wlserver_10.3/server/lib/wlfullclient.jar	
${bea.home}/AS11gR1SOA/webservices/wsclient_extended.jar	
${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.fabric_11.1.1/bpm-infra.jar	
${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.workflow_11.1.1/bpm-services.jar	
${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.fabric_11.1.1/fabric-runtime.jar	
You can generate the wlfullclient.jar	
file using the commands shown in Example 33-7.	
Example 33-7 wlfullclient.jar File Generation	
Note: Client applications no longer use the	
Clients using remote EJBs must have the following JAR files in their class path:	
wlfullclient.jar	
wsclient_extended.jar	
wlclient.jar	
xmlparserv2.jar	
xml.jar	
bpm-infra.jar	
bpm-services.jar	
fabric-runtime.jar	
Note: Client applications no longer use the	
Tasks can be initiated programmatically, in which case the following task attributes must be set:	
taskDefinitionId	
title	
payload	
priority	
The following task attributes are optional, but are typically set by clients:	
creator	
ownerUser	
—Defaults to bpeladmin	
if empty processInfo	
identificationKey	
—Tasks can be queried based on the identification key from the TaskQueryService. The task object model is available in the package	
To create objects in this model, use the ObjectFactory	
class.	
The task payload can contain multiple payload message attributes. Since the payload is not well defined until the task definition, the Java object model for the task does not contain strong type objects for the client payload. The task payload is represented by the AnyType	
Java object. The AnyType	
Java object is created with an XML element whose root is payload	
in the namespace	
The payload XML element contains all the other XML elements in it. Each XML element defines a message attribute.	
Example 33-8 shows how to set a task payload.	
Example 33-8 Setting a Task Payload	
Note: The	
Example 33-9 shows how to initiate a vacation request task programmatically.	
Example 33-9 Initiating a Vacation Request Task Programmatically	
The worklist application and the UserMetadataService	
API provide methods that you can use to create, update, and delete standard views. See Section 34.1.7, "User Metadata Service" for more information.	
The following example shows how to modify the help desk interface that is part of the HelpDeskRequest demo.	
To write a worklist application	
This is Step 3 in Section 33.1, "Introduction to Building Clients for Workflow Services."	
The login.jsp	
file of HelpDeskRequest uses the preceding API to authenticate the user and create a workflow context. After the user is authenticated, the statusPage.jsp	
file displays the tasks assigned to the logged-in user. Example 33-10 shows sample code from the login.jsp	
file.	
Example 33-10 Login.jsp	
queryTask	
API from TaskQueryService	
. This is Step 4 in Section 33.1, "Introduction to Building Clients for Workflow Services."	
The statusPage.jsp	
file of HelpDeskRequest is used to display the status of help desk requests. Example 33-11 shows the statusPage.jsp	
example code.	
Example 33-11 statusPage.jsp	
The script content on this page is for navigation purposes only and does not alter the content in any way.	
This chapter describes for developers how the human workflow services in Oracle SOA Suite are used. These services perform a variety of operations in the life cycle of a task.	
This chapter includes the following sections:	
Note: In previous releases, Oracle BPM Worklist included a feature known as flex fields. Starting with Release 11g R1 (11.1.1.4), flex fields are now known as mapped attributes.	
This section describes the responsibilities of the following human workflow services.	
Table 34-1 lists the type of Simple Object Access Protocol (SOAP), Enterprise JavaBeans, and Java support provided for the task services. Most human workflow services are accessible through SOAP and remote Enterprise JavaBeans APIs. You can use these services directly by using appropriate client proxies. Additionally, the client libraries are provided to abstract out the protocol details and provide a common interface for all transports.	
Table 34-1 Enterprise JavaBeans, SOAP, and Java Support	
Table 34-2 lists the location for the SOAP Web Services Description Language (WSDL) file for each task service.	
Table 34-2 SOAP WSDL Location for the Task Services	
Service name	SOAP WSDL location
---	---
Table 34-3 lists the JDNI names for the different Enterprise JavaBeans.	
Table 34-3 JNDI Names for the Different Enterprise JavaBeans	
Service name	JNDI Names for the Different Enterprise JavaBeans
---	---
Task Service	
Task Service Enterprise JavaBeans participating in client transaction	
Task Metadata Service	
Task Query Service	
User Metadata Service	
Runtime Config Service	
Task Report Service	
Task Evidence Service	
For more information about the client library for worklist services, see Chapter 33, "Building a Custom Worklist Client" for details.	
Human workflow services can be integrated with J2EE applications through web services and remote method invocation (RMI). To simplify the remote lookup of Enterprise JavaBeans in other managed servers and clusters or even other Oracle WebLogic Server domains, Oracle WebLogic Server includes foreign JNDI providers that are configured with the remote server's host and port to link Enterprise JavaBeans from that remote server into the local server's JNDI trees.	
Workflow services expose the Enterprise JavaBeans listed in Table 34-3 that must all be linked through the foreign JNDI providers to provide full support for the task query service, ADF task flow for human task registration, and embedded worklist region use cases.	
To provide support for foreign JNDI names:	
There is one caveat when linking remote Enterprise JavaBeans names to the local JNDI namespace through a foreign JNDI provider from a SOA server to a managed server or cluster in the same Oracle WebLogic Server domain. The local JNDI names are exposed to all of the managed servers within that domain. This causes namespace collisions on the SOA server within that domain, which already has those Enterprise JavaBeans registered from the Oracle BPM Worklist. An alternative, which avoids collisions while keeping configuration to a minimum, is to use JNDI suffixing. This is done by appending a consistent suffix to the end of all the local JNDI links of the remote workflow Enterprise JavaBeans and creating a simple wf_client_config.xml	
file that contains the suffix key.	
You can define client properties in either of three ways. For more information, see Section 34.6.1.2, "Configuration Option."	
ejb/bpel/services/workflow/TaskServiceGlobalTransactionean_server1	
ejb/bpel/services/workflow/TaskServiceBean_server1	
ejb/bpel/services/workflow/TaskMetadataServiceBean_server1	
TaskQueryService_server1	
UserMetadataService_server1	
RuntimeConfigService_server1	
TaskReportServiceBean_server1	
TaskEvidenceServiceBean_server1	
ejbJndiSuffix	
element value in the wf_client_config.xml	
file, as shown in Example 34-1. You can also use the JAXB WorkflowServicesClientConfigurationType	
object or the CONNECTION_PROPERTY.EJB_JNDI_SUFFIX	
in the Map<CONNECTION_PROPERTY, String>	
properties. With the exception of the identity service, all services that use the above-mentioned APIs (SOAP and remote Enterprise JavaBeans) require authentication to be invoked. All the above channels support passing the user identity using the human workflow context. The human workflow context contains either of the following:	
The task query service exposes the authenticate	
operation that takes the login and password and returns the human workflow context used for all services. Optionally, with each request, you can pass the human workflow context with the login and password.	
The authenticate	
operation also supports the concept of creating the context on behalf of a user with the admin ID and admin password. This operation enables you to create the context for a logged-in user to the Oracle BPM Worklist if the password for that user is not available.	
Oracle recommends that you get the workflow context one time and use it everywhere. There are performance implications for getting the workflow context for every request.	
A realm is an identity service context from the identity configuration. The realm name can be null if the default configuration is used.	
Identity propagation is the replication of authenticated identities across multiple SOAP web services used to complete a single transaction. SOAP web services also support web service security. When web service security is used, the human workflow context does not need to be present in the SOAP input. Web service security can be configured from Oracle Enterprise Manager Fusion Middleware Control.	
Note: Human workflow SOAP clients have been enhanced to work with Security Assertion Markup Language (SAML) token-based identity propagation when the web service is secured.	
The authenticateOnBehalfOf	
API method on the task query service can create the human workflow context on behalf of a user by passing the user ID and password of an admin user in the request. An admin user is a user with the workflow.admin	
privilege. This created context is as if it was created using the password on behalf of the user.	
This is useful for environments in which a back-end system acts on workflow tasks while users act in their own system. There is no direct interaction with workflow services; the system can use the on-behalf-of-user login to get a context for the user.	
Note: Oracle recommends that you only use this feature for system operations. This is because you must create an admin user context and then query for the human workflow context created on behalf of the user. If you instead use identity propagation, the user is already authenticated and the client can get	
In Example 34-2, the human workflow context is created for user jcooper	
.	
Example 34-2 Human Workflow Context Creation	
If the client wants to obtain the workflow context for a user previously authenticated by a JAAS application, you can use identity propagation as shown in Example 34-3.	
Example 34-3 Identity Propagation	
This API returns a workflow context for the authenticated user if the client configures the identity propagation for the appropriate client type. If the client type is remote, Enterprise JavaBeans identity propagation is used with this method. If the client type is SOAP, SAML token propagation is used with this method.	
The task service exposes operations to act on tasks. Table 34-4 describes the operations of the task service. Package oracle.bpel.services.workflow.task	
corresponds to the task service.	
Table 34-4 Task Service Methods	
Method	Description
---	---
Acquire a task.	
Acquire a set of tasks.	
Add an attachment to a task.	
Add a comment to a task.	
Create a to-do task.	
Delegate a task to a different user. Both the current assignee and the user to whom the task is delegated can view and act on the task.	
Delegate a list of tasks to a different user. Both the current assignee and the user to whom the list of tasks is delegated can view and act on the tasks.	
Perform a logical deletion of a task. The task still exists in the database.	
Perform a logical deletion of a list of tasks. The tasks still exist in the database.	
Cause the task to error. This operation is typically used by the error assignee.	
Escalate a task. The default escalation is to the manager of the current user. This can be overridden using escalation functions.	
Escalate tasks in bulk. The default escalation is to the manager of the current user. This can be overridden using escalation functions.	
Get the previous approvers of a task.	
Get the future participants of a task. The future participants are returned in the form of a routing slip that contains simple participants (participant node and parallel nodes that contain routing slips).	
Get the users from whom a request for information can be requested.	
Initiate a task.	
Merge and update a task. Use this operation when a partial task should be updated. A partial task is one in which not all the task attributes are present. In this partial task, only the following task attributes are interpreted:	
Override the routing slip of a task instance with a new routing slip. The current task assignment is nullified and the new routing slip is interpreted as its task is initiated.	
Remove a task from the persistent store.	
Remove a list of tasks from the persistent store.	
Push back a task to the previous approver or original assignees. The original assignees do not need to be the approver, as they may have reassigned the task, escalated the task, and so on. The property PushbackAssignee in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control controls whether the task is pushed back to the original assignees or the approvers.	
Reassign a task.	
Reassign tasks in bulk.	
Reinitiate a task. Reinitiating a task causes a previously completed task to be carried forward so that the history, comments, and attachments are carried forward in a new task.	
Release a previously acquired task.	
Release a set of previously acquired tasks.	
Remove a task attachment.	
Renew a task to extend the time it takes to expire.	
Request information for a task.	
Request information for a task with reapproval. For example, assume	
Resume a task. Operations can only be performed by the task owners (or users with the	
Resume a set of tasks.	
Allow a user to route the task in an ad hoc fashion to the next user(s) who must review the task. The user can specify to route the tasks in serial, parallel, or single assignment. Routing a task is permitted only when the human workflow permits ad hoc routing of the task.	
Skip the current assignment and move to the next assignment or pick the outcome as set by the previous approver if there are no more assignees.	
Submit information for a task. This action is typically performed after the user has made the necessary updates to the task or has added comments or attachments containing additional information.	
Allow task owners (or users with the	
Suspend a set of tasks.	
Update the outcome of a set of tasks.	
Update the priority of the task and its subtasks for the given task ID. If	
For bulk update of tasks. A list of tasks for which the priority must be updated can be passed as a parameter to this API. The priorities of the list of tasks is updated. It updates the priority of the task and its subtasks.	
Update the task.	
Update the task outcome.	
Update the task outcome and route the task. Routing a task allows a user to route the task in an ad hoc fashion to the next user(s) who must review the task. The user can specify to route the tasks in serial, parallel, or single assignment. Routing a task is permitted only when the human workflow permits ad hoc routing of the task.	
The creator of the task can withdraw any pending task if they are no longer interested in sending it further through the human workflow. A task owner can also withdraw a task on behalf of the creator. When a task is withdrawn, the business process is called back with the state attribute of the task set to	
Withdraw a set of tasks.	
For more information, see the following:	
The task query service queries tasks based on a variety of search criterion such as keyword, category, status, business process, attribute values, historical information of a task, and so on. Table 34-5 describes the operations of the task query service, including how to use the service over SOAP. Package oracle.bpel.services.workflow.query	
corresponds to the task query service.	
Table 34-5 Task Query Service Methods	
Method	Description
---	---
Authenticates a user with the identity authentication service and passes back a valid	
Optionally makes authentication on behalf of another user.	
Counts the number of tasks that match the specified query criteria.	
Counts the number of tasks that match the query criteria of the specified view.	
Creates a valid	
Checks to see if any existing tasks match the specified query criteria.	
Checks to see if any tasks exist match the query criteria of the specified view.	
Gets a human workflow context with the specified context token.	
Cleans up a human workflow context that is no longer needed. This method is typically used when a user logs out.	
Gets the details of a specific task from the task's	
Gets the details of a specific task from the task's	
Gets a list of the task versions for the specified task ID.	
Gets the task sequence tree of a task whose ID is a task ID, for those type of sequences.	
Gets the specific task version details for the specified task ID and version number.	
Gets the	
Executes the specified query, and aggregates a count of the tasks returned by the query, grouped by the specified column.	
Returns a list of task error objects matching the specified predicate.	
Returns a list of tasks that match the specified filter conditions. Tasks are listed according to the ordering condition specified (if any). The entire list of tasks matching the criteria can be returned or clients can execute paging queries in which only a specified number of tasks in the list are retrieved. The filter conditions are as follows:	
Executes the query as defined in the specified view, and aggregates the selected tasks according to the chart property defined in the view.	
Returns a list of tasks according to the criteria in the specified view. The entire list or paged list of tasks can be returned. Clients can specify additional filter and ordering criteria to those in the view.	
For more information, see the following:	
The identity service is a thin web service layer on top of the Oracle WebLogic Server security infrastructure, namely Oracle Identity Management and Oracle Platform Security Services (OPSS), or any custom user repository. The identity service enables authentication of users and the lookup of user properties, roles, group memberships, and privileges. Oracle Identity Management is the sole identity service provider for Oracle WebLogic Server. Oracle Identity Management handles all storage and retrieval of users and roles for various repositories, including XML, LDAP, and so on. More specifically, Oracle Identity Management provides the following features:	
For more information, see Oracle Fusion Middleware Security Guide. All security configuration is done through the jps-config.xml	
file.	
SOAAdmin	
: Grant this role to users who must perform administrative actions on any SOA module. This role is also granted the BPMWorkflowAdmin	
and B2BAdmin	
roles. BPMWorkflowAdmin	
: Grant this role to users who must perform any workflow administrative action. This includes actions such as searching and acting on any task in the system, creating and modifying user and group rules, performing application customization, and so on. This role is granted the BPMWorkflowCustomize	
role and the following permissions: workflow.mapping.protectedFlexField	
workflow.admin.evidenceStore	
workflow.admin	
BPMWorkflowCustomize	
: Grant this role to business users who must perform mapped attributes (formally flex field) mapping to public mapped attributes. This role is also granted the workflow.mapping.publicFlexField	
permission. workflow.admin	
: Controls who can perform administrative actions related to tasks, user and group rules, and customizations. workflow.admin.evidenceStore	
: Controls who can view and search evidence records related to digitally-signed tasks (tasks that require a signature with the use of digital certificates). workflow.mapping.publicFlexField	
: Controls who can perform mapping of task payload attributes to public mapped attributes. workflow.mapping.protectedFlexField	
: Controls who can perform mapping of task payload attributes to protected mapped attributes. Note: You cannot specify multiple authentication providers for Oracle SOA Suite. This is because OPSS does not support multiple providers. The provider to use for human workflow authentication must be the first one listed in the order of authentication providers for Oracle SOA Suite.	
For more information, see the following:	
Oracle Identity Management is the only supported provider for release 11g, as shown in Figure 34-1.	
Starting with release 11g, custom provider plug-ins in the identity service are not supported. All identity customizations are now done in the identity store. Oracle Fusion Middleware supports providers that enable the User and Role API to interact with custom identity stores. For more information, visit the following URL:	
The task metadata service exposes operations to retrieve metadata information related to a task. Table 34-6 describes these methods. Package oracle.bpel.services.workflow.metadata	
corresponds to the task metadata service.	
Table 34-6 Task Metadata Service Methods	
Method	Description
---	---
Gets the	
Gets the permitted outcomes of a task. The outcomes are returned with their display values.	
Gets the resource bundle information of the task. The resource bundle information contains the location and the name of the bundle.	
Gets the actions that are restricted for a particular task.	
Gets a list of	
Gets a list of	
Gets the task message attributes.	
Gets the message attributes for a particular task definition.	
Gets the task definition associated with the task.	
Gets the task definition by the task definition ID.	
Gets the outcomes given the task definition ID.	
Gets the task display for a task.	
Gets the task visibility rules.	
Gets the task display region for a task.	
Gets the task attributes that when changed cause a task version creation.	
Lists the task definitions in the system.	
For more information, see Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager.	
The user metadata service provides methods for managing metadata specific to individual users and groups. It is used for getting and setting user worklist preferences, managing user custom views, and managing human workflow rules for users and groups.	
For most methods in the user metadata service, the authenticated user can query and update their own user metadata. However, they cannot update metadata belonging to other users.	
In the case of group metadata (for example, human workflow rules for groups), only a user designated as an owner of a group (or a user with the workflow.admin	
privilege) can query and update the metadata for that group. However, a user with the workflow.admin	
privilege can query and update metadata for any user or group.	
Table 34-7 describes the methods in the user metadata service. Package oracle.bpel.services.workflow.user	
corresponds to the user metadata service.	
Table 34-7 User Metadata Service Methods	
Method	Description
---	---
Creates a new rule.	
Decreases the priority of a rule by one. This method does nothing if this rule has the lowest priority.	
Deletes a rule.	
Retrieves the date range (if any) during which a user is unavailable for the assignment of tasks.	
Gets the details for a particular human workflow rule.	
Retrieves a list of rules for a particular user or group.	
Updates an existing rule.	
Increases the priority of a rule by one. Rules for a user or group are maintained in an ordered list of priority. Higher priority rules (those closer to the head of the list) are executed before rules with lower priority. This method does nothing if this rule has the highest priority.	
Gets a list of the user task views that the user owns.	
Gets a list of user task views that have been granted to the user by other users. Users can use granted views for querying lists of tasks, but they cannot update the view definition.	
Gets a list of standard task views that ship with the human workflow service, and are available to all users.	
Gets the details for a single view.	
Creates a new user task view.	
Updates an existing user task view.	
Deletes a user task view.	
Updates details of a view grant made to this user by another user. Updates are limited to hiding or unhiding the view grant (hiding a view means that the view is not listed in the main inbox page of Oracle BPM Worklist), and changing the name and description that the granted user sees for the view.	
Gets a list of user preferences for the user. User preferences are simple name-value pairs of strings. User preferences are private to each user (but can still be queried and updated by a user with the	
Sets the user preference values for the user. Any preferences that were previously stored and are not in the new list of user preferences are deleted.	
Gets a list of public preferences for the user. Public preferences are similar to user preferences, except that any user can query them. However, only the user that owns the preferences, or a user with the w	
Sets the public preferences for the user.	
Sets a date range over which the user is unavailable for the assignment of tasks. (Dynamic assignment functions do not assign tasks to a user that is on vacation.)	
Gets the full details for a particular standard view, identified by its	
For more information, see the following:	
The task report service executes a report and receives the results. Table 34-8 describes the method. Package oracle.bpel.services.workflow.report	
corresponds to the task report service. The standard reports shown in Table 34-8 are available as part of installation.	
Table 34-8 Task Report Service	
Report	Description
---	---
Unattended tasks report	Provides an analysis of tasks assigned to users' groups or reportees' groups that require attention because they have not yet been acquired.
Tasks priority report	Provides an analysis of the number of tasks by priorities assigned to a user, reportees, or their groups.
Tasks cycle time report	Provides an analysis of time taken to complete tasks from assignment to completion based on users' groups or reportees' groups.
Tasks productivity report	Provides an analysis of tasks assigned and tasks completed in a given time period for a user, reportees, or their groups.
Tasks time distribution report	Provides an analysis of time taken to complete their part of the tasks for a given user, user's groups, or reportees in the given time period.
The runtime config service provides methods for managing metadata used in the task service runtime environment. It principally supports the management of task payload mapped attribute mappings and the URIs used for displaying task details.	
The task object used by the task service contains many mapped attributes, which can be populated with information from the task payload. This allows the task payload information to be queried, displayed in task listings, and used in human workflow rules.	
The runtime config service provides methods for querying and updating the URI used for displaying the task details of instances of a particular task definition in a client application. For any given task definition, multiple display URIs can be supported, with different URIs being used for different applications. The method getTaskDisplayInfo	
can query the URIs for a particular task definition. The method setTaskDisplayInfo	
can define new URIs or update existing ones. Only users with the workflow.admin	
privilege can call setTaskDisplayInfo	
, but any authenticated user can call getTaskDisplayInfo	
.	
The runtime config service allows administrators to create mappings between simple task payload attributes and these mapped attributes.	
Only a user with the workflow.mapping.publicFlexField	
or workflow.mapping.protectedFlexField	
privilege can make updates to payload mappings for public mapped attributes. Only a user with the workflow.mapping.protectedFlexField	
privilege can make updates to payload mappings for protected mapped attributes. Any authenticated user can use the query methods in this service.	
An administrator can create attribute labels for the various mapped attributes. These attribute labels provide a meaningful label for the attribute (for example, a label Location	
may be created for the mapped attribute TextAttribute1	
). A given mapped attribute may have multiple labels associated with it. This attribute label is what is displayed to users when displaying lists of attributes for a specific task in Oracle BPM Worklist. The attribute labels for a specific task type can be determined by calling the getTaskAttributesForTaskDefinition	
method on the task metadata service.	
When defining attribute labels, the following fields are automatically populated by the service. You do not need to specify values for these attributes when creating or updating attribute labels:	
Id	
CreatedDate	
WorkflowType	
Active	
Valid values for the task attribute field for public mapped attributes are as follows:	
TextAttribute1	
through TextAttribute	
20	
FormAttribute1	
through FormAttribute10	
UrlAttribute1	
through UrlAttribute10	
DateAttribute1	
through DateAttribute10	
NumberAttribute1	
through NumberAttribute10	
Mappings can then be created between task payload fields and the attribute labels. For example, the payload field customerLocation	
can be mapped to the attribute label Location	
. Different task types can share the same attribute label. This allows payload attributes from different task types that have the same semantic meaning to be mapped to the same attribute label.	
Note: Only payload fields that are simple XML types can be mapped.	
The runtime config service also provides the following:	
Table 34-9 describes the methods in the runtime config service. Package oracle.bpel.services.workflow.runtimeconfig	
corresponds to the runtime config service.	
Table 34-9 Runtime Config Service	
Method	Description
---	---
Creates a new attribute label for a particular task mapped attribute.	
Creates a new mapping between an attribute label and a task payload field.	
Deletes an existing attribute label.	
Deletes an existing payload mapping.	
Gets a list of attribute labels (either all attribute labels or labels for a specific type of attribute) for which mapping (if any) the labels are currently used.	
Returns a list of the dynamic assignment functions that can select a group that are implemented on this server.	
Retrieves information relating to the URIs used for displaying task instances of a specific task definition.	
Gets the status of a task instance corresponding to a particular task definition and composite instance.	
Returns a list of the dynamic assignment functions that can select a user that are implemented on this server.	
Gets a list of all the mapped attribute mappings for a particular human workflow definition.	
Sets information relating to the URIs to be used for displaying task instances of a specific task definition.	
Updates an existing attribute label.	
For more information, see the following:	
Attribute labels provide a method of attaching a meaningful label to a task mapped attribute. It can be desirable to present attribute labels that are translated into the appropriate language for the locale of the user.	
To use a custom resource bundle, place it at the location identified by the workflow configuration parameter workflowCustomClasspathURL	
(which can be a file or HTTP path).	
This can be set in either of two places in Oracle Enterprise Manager Fusion Middleware Control:	
For more information, see the workflow-110-workflowCustomizations sample, which describes how to use this parameter. Visit the Oracle SOA Suite samples for details:	
Entries for mapped attribute labels must be of the form:	
For instance, the entry for a label named Location	
is:	
Adding entries to these files for attribute labels is optional. If no entry is present in the file, the name of the attribute label as specified using the API is used instead.	
The evidence store service is used for digital signature storage and nonrepudiation of digitally-signed human workflows. A digital signature is an electronic signature that authenticates the identity of a message sender or document signer. This ensures that the original content of the message or document sent is unchanged. Digital signatures are transportable, cannot be imitated by others, and are automatically time-stamped. The ability to ensure that the original signed message arrived means that the sender cannot repudiate it later. Digital signatures ensure that a human workflow document:	
A cryptographically-based digital signature is created when a public key algorithm signs a sender's message with a sender's private key.	
During design time, signatures are enabled for the task. During runtime in Oracle BPM Worklist, when a user approves or rejects the task, the web browser:	
Figure 34-2 provides an example.	
Figure 34-2 Digital Signature and Certificate	
Notes:	
The following digital signature features are supported:	
Prerequisites for using digital signatures and certificates are as follows:	
The System Mbean Browser displays on the right side of the page.	
Table 34-10 caName and caURL Values	
caName	caURL
---	---
Table 34-11 through Table 34-14 describe the methods in the evidence store service. Package oracle.bpel.services.security.evidence	
corresponds to the evidence service.	
Table 34-11 ITaskEvidenceService Interface	
Method	Description
---	---
Creates evidence and stores it in the repository for nonrepudiation.	
Gets a list of evidence matching the given criteria. The result also depends on the privileges associated with the user querying the service. If the user has been granted the	
Uploads certificates to be used later for signature verification. This is a prerequisite for creating evidence using a given certificate. A user can only upload their certificates.	
Updates the CRL verification part of the status. This includes verified time, status, and error messages, if any.	
Validates the evidence signature. This essentially performs a nonrepudiation check on the evidence. A value of	
Table 34-12 Evidence Interface	
Method	Description
---	---
Gets the certificate used to sign this evidence.	
Gets the creation date of the evidence.	
Gets the error message associated with the CRL validation.	
Gets the unique identifier associated with the evidence.	
Gets the content that was signed as part of this evidence.	
Gets the signature policy of the evidence. This is either	
Gets the signature of this evidence.	
Gets the date on which the signature was created.	
Gets the CRL validation status. This can be one of the following:	
Gets the unique identifier of the task with which this evidence is associated.	
Gets the task number of the task with which this evidence is associated.	
Gets the task priority of the task with which this evidence is associated.	
Gets the task status of the task with which this evidence is associated.	
Gets the task substatus of the task with which this evidence is associated.	
Gets the title of the task with which this evidence is associated.	
Gets the version of the task with which this evidence is associated.	
Gets the date on which the CRL validation of the certificate used was performed.	
Gets the workflow type of the task with which this evidence is associated. This is typically	
Table 34-13 Certificate Interface	
Method	Description
---	---
Gets the certificate issuer's distinguished name (DN).	
Gets the certificate object that is abstracted by the interface.	
Gets the certificate's serial number.	
Gets the identity context with which the uploader of this certificate is associated.	
Gets the user name with whom this certificate is associated.	
Returns	
Table 34-14 Policy Type and Workflow Type Interface	
Method	Description
---	---
Constructs an object from the string representation.	
Returns the string representation of this object.	
For more information, see the following:	
A task is work that must be done by a user. When you create a task, you assign humans to participate in and act upon the task. Table 34-15 describes the task attributes that are commonly used and interpreted by applications.	
Table 34-15 Task Attributes	
Task Attribute Name	Description
---	---
The application with which any application roles associated with this task (assignees, owners, and so on) belong.	
An optional category of the task.	
The name of the creator of this task.	
The due date for the task. This is used on to-do tasks.	
An optional, custom, unique identifier for the task. This can be set as an additional unique identifier to the standard task ID and task number. This key can retrieve a task based on business object identifiers for which the task is created.	
The identity realm under which the users and groups are seeded. In a single realm environment, this defaults to the default realm.	
The group (if any) that owns this task instance. Task owners can be application roles, users, or groups. If the owner of the task is a group, this field is set.	
The application role (if any) that owns this task instance. Task owners can be application roles, users, or groups. If the owner of the task is an application role, this field is set.	
The user (if any) that owns this task instance. Task owners can be application roles, users, or groups. If the owner of the task is a user, this field is set.	
The task payload that is captured as XML.	
The percentage of the task completed. This is used on to-do tasks.	
An integer number that defines the priority of this task. A lower number indicates a higher priority. The numbers	
The start date for the task. This is used on to-do tasks.	
An optional subcategory of the task.	
The task definition ID that binds the task to the task metadata. At task initiation time, this can be either the	
The URL to use to display the details for this task.	
The title of the task.	
Table 34-16 lists the attributes that capture process metadata information.	
Table 34-16 Attributes Capturing Process Metadata Information	
Attribute	Description
---	---
The domain to which the composite that contains the task component that defines this task instance belongs.	
The application that is deployed.	
The name of the task component that defines this task instance.	
A unique name for the particular deployment of the composite that contains the task component that defines this task instance.	
The composite instance ID.	
The name of the composite that contains the task component that defines this task instance.	
The version of the composite that contains the task component that defines this task instance.	
Table 34-17 lists the attachment-related attributes.	
Table 34-17 Attachment-related attributes	
Attribute	Description
---	---
The attachment content.	
The Multipurpose Internet Mail Extension (MIME) type of the attachment.	
The name of the attachment.	
The user who updated the attachment.	
The date on which the attachment was updated.	
The URI if the attachment is URI-based.	
Table 34-18 lists the comment-related attributes.	
Table 34-18 Comment-related Attributes	
Attribute	Description
---	---
The user comment.	
The user who added the comment.	
The date on which the comment was added.	
Table 34-19 lists the attributes manipulated by the workflow services system.	
Table 34-19 Attributes Manipulated by the Workflow Services System	
Attribute	Description
---	---
If a task is assigned to a group, application role, or to multiple users, and then claimed by a user, this field is set to the name of the user who claimed the task.	
The IDs of users who performed custom actions on the task.	
The date that this task was assigned.	
The current task assignees (can be users, groups, or application roles).	
The date the task instance was created.	
The custom actions that can be performed on the task.	
The end date for the task. This is used on to-do tasks.	
The date on which the task instance expires.	
The user who previously acted on the task.	
If	
If	
If a user delegates a task to another user, this field is populated with the name of the user who delegated the task.	
The outcome of the task (for example, approved or rejected). This is only set on completed task instances.	
This is only set on reinitiated tasks (the task ID of the previous task that is being reinitiated).	
This only set on a subtask. This refers to the version of the parent task.	
The logical name of the participant as modeled from Oracle JDeveloper.	
The reviewers of the task. This can be a user, group, or application role.	
The ID of the root task. This is the same as the task ID for the root task.	
The stage name that is being executed.	
The current state of the task instance.	
The current substate of the task.	
A unique ID that is set on a subtask. This same ID is set on the parent task's	
The system actions (such as reassign, escalate, and so on) that can be performed on a task.	
The name of the task component that defines this task instance.	
The ID of the immediate parent task. This only sets a subtask.	
A unique ID that is set on the parent task. This same ID is set on the subtask's	
The unique ID of the task.	
A namespace that uniquely defines all versions of the task component that defines this task instance. Different versions of the same task component can have the same namespace, but no two task components can have the same namespace.	
An integer number that uniquely identifies this task instance.	
The user who last updated the task.	
The date this instance was last updated.	
The version of the task.	
The reason the version was created.	
The pattern that is being executed (for example, parallel, serial, FYI, or single).	
Table 34-20 lists the mapped attributes.	
Notifications are sent to alert users of changes to the state of a task. Notifications can be sent through any of the following channels: email, telephone voice message, instant messaging (IM), or short message service (SMS). Notifications can be sent from a human task in a BPEL process or directly from a BPEL process.	
In releases before 11g, email notifications were sent through the human workflow email notification layer. Voice and SMS notifications were sent through Oracle's hosted notification service. IM notifications were not supported.	
Starting with release 11g, the human workflow email notification layer works with Oracle User Messaging Service to alert users to changes in the state of a task. The Oracle User Messaging Service exposes operations that can be invoked from the BPEL process or human task to send notifications through email, voice, IM, or SMS channels.	
The Oracle User Messaging Service supports features such as:	
On application servers other than Oracle Fusion Middleware, the human workflow email notification layer can be used for email notifications.	
For more information about configuring the Oracle User Messaging Service, see the following:	
Each email notification can contain the following parts:	
This is a read-only view of Oracle BPM Worklist on the task. For information on how you can configure email notifications to include the content from Oracle BPM Worklist, see Section 30.7, "Creating an Email Notification."	
For notifications that include task attachments.	
Notifications through SMS, IM, and voice contain only the notification message.	
The notification message is an XPath expression that can contain static text and dynamic values. In creating the messages, only the task BPEL variable is available for dynamic values. This restriction is because the messages are evaluated outside the context of the BPEL process. The payload in the task variable is also strongly typed to contain the type of the payload for XPath tree browsing. The XPath extension function hwf:getNotificationProperty(propertyName)	
is available to get properties for a particular notification. The function evaluates to corresponding values for each notification. The propertyName	
can be one of the following values:	
recipient	
The recipient of the notification	
recipientDisplay	
The display name of the recipient	
taskAssignees	
The task assignees	
taskAssigneesDisplay	
The display names of the task assignees	
locale	
The locale of the recipient	
taskId	
The ID of the task for which the notification is meant	
taskNumber	
The number of the task for which the notification is meant	
appLink	
The HTML link to the Oracle BPM Worklist task details page	
Example 34-4 demonstrates the use of hwf:getNotificationProperty	
and hwf:getTaskResourceBundle	
:	
Example 34-4 Use of hwf:getNotificationProperty and hwf:getTaskResourceBundle	
This results in a message similar to the following:	
The human workflow email notification layer is automatically configured to warn an administrator about error occurrences in which intervention is required. Error notifications and error response messages are persisted.	
You can view messages in Oracle Enterprise Manager Fusion Middleware Control.	
For more information about viewing messages, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
The human workflow email notification layer works with Oracle User Messaging Service to provide the following reliability support:	
For more information about notifications, see the following:	
An administrator can perform the following management tasks from Oracle Enterprise Manager Fusion Middleware Control:	
For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
To configure the notification channel preferences:	
The notifications for a task can be configured during the creation of a task in the Human Task Editor. Notifications can be sent to different types of participants for different actions.	
The actions for which a task notification can be sent are described in Section 29.8.1, "How to Notify Recipients of Changes to Task Status."	
Notifications can be sent to users involved in the task in various capacities. These users are described in Section 29.8.1, "How to Notify Recipients of Changes to Task Status."	
When the task is assigned to a group, each user in the group is sent a notification if no notification endpoint is available for the group.	
For more information, see the following:	
By default, this value is set to NONE, meaning that no notifications are sent. The possible values are:	
The email, IM, SMS, and voice channels are configured and notification is sent through any channel.	
Only the email channel is configured for sending notification messages.	
No channel is configured for sending notification messages. This is the default setting.	
A notification consists of four types of data generated from multiples sources and internationalized differently. However, for all internationalized notifications, the locale is obtained from the BPMUser	
object of the identity service.	
These strings are internationalized in the product as part of the following package:	
The user's locale is used to get the appropriate message.	
The user's locale is used to retrieve the task detail HTML content.	
The resource bundle for outcomes is specified when the task definition is modeled in the Advanced Settings section of the Human Task Editor. The key to each of the outcomes in the resource bundle is the outcome name itself.	
To configure notification messages in different languages:	
This function returns the internationalized string from the resource bundle specified in the task definition.	
The locale of the notification recipient can be retrieved with the following function:	
The task ID corresponding to a notification can be retrieved with the following function:	
For more information, see Section 29.6.2, "How to Specify Multilingual Settings."	
There are several methods for sending actionable messages. This section provides an overview of procedures.	
Task actions can be performed through email if the task is set up to enable actionable email (the same actions can also be performed from Oracle BPM Worklist). An actionable email account is the account in which task action-related emails are received and processed.	
To send actionable emails for human tasks:	
If a notification is actionable, the email contains links for each of the custom outcomes.	
When an actionable email arrives, perform the following tasks.	
Figure 34-4 Attachment to an Actionable Email	
NID	
substrings, the email is not processed. Set properties such as incoming server, outgoing mail server, outgoing user name and password, and others from the Oracle User Messaging Service section of Oracle Enterprise Manager Fusion Middleware Control.	
For more information about the Oracle User Messaging Service section, Workflow Notification Properties page, and Workflow Task Service Properties page of Oracle Enterprise Manager Fusion Middleware Control, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
If the include attachments flag is checked; only email is sent. The emails include all the task attachments as email attachments.	
To send inbound and outbound attachments:	
In the actionable email reply, the user can add attachments in the email. These attachments are added as task attachments.	
For more information, see Section 29.8.7, "How to Make Email Messages Actionable."	
To send inbound comments:	
Comments[[' and ']]	
, as shown in Figure 34-3. Those contents are added as task comments. For example, Comments[[looks good]]	
. To send secure notifications:	
For more information, see Section 29.8.5, "How to Secure Notifications to Exclude Details."	
To set channels used for notifications:	
For more information about the Oracle Delegated Administration Service, see Oracle Fusion Middleware Guide to Delegated Administration for Oracle Identity Management.	
Tasks can be configured to send reminders, which can be based on the time the task was assigned to a user or the expiration time of a task. The number of reminders and the interval between the reminders can also be configured. The message used for reminders is the message that is meant for ASSIGNEES	
when the task is marked as ASSIGNED	
.	
To send reminders:	
Recurrence	
: Specifies the number of times reminders are sent. The possible values for recurrence are EVERY	
, NEVER	
, 0	
, 1	
, 2	
…, 10	
.	
RelativeDate	
: Specifies if the reminder duration is computed relative to the assigned date or to the expiration date of the task. The possible values for the relativeDate	
are ASSIGNED	
, EXPIRATION	
, and BEFORE DUE DATE	
. The final value appears in Oracle JDeveloper if you modify the escalation and expiration policy of the task to use the option Action Requested Before (known as Use Due Date in previous releases).	
Duration	
: Specifies the duration from the relativeDate	
and the first reminder and each reminder since then. The data type of duration is xsd:duration	
, whose format is defined by ISO 8601 under the form PnYnMnDTnHnMnS	
. The capital letters are delimiters and can be omitted when the corresponding member is not used. Examples include PT1004199059S	
, PT130S	
, PT2M10S	
, P1DT2S	
, -P1Y,	
or P1Y2M3DT5H20M30.123S	
.	
The following examples illustrate when reminders are sent:	
relativeDate	
is ASSIGNED	
, the recurrence	
is EVERY	
, the reminder duration is PT1D	
, and the task is assigned at 3/24/2005 10:00 AM	
, then reminders are sent at 3/25/2005 10:00 AM	
, 3/26/2005 10:00 AM	
, 3/27/2005 10:00 AM	
, and so on until the user acts on the task. relativeDate	
is EXPIRATION	
, the recurrence	
is 2	
, the reminder duration is PT1D,	
and the task expires at 3/26/2005 10:00 AM	
, then reminders are sent at 3/24/2005 10:00 AM	
and 3/25/2005 10:00 AM	
if the task was assigned before 3	
/24/2005 10:00 AM	
. relativeDate	
is EXPIRATION	
, the recurrence	
is 2	
, the reminder duration is PT1D	
, the task expires at 3/26/2005 10:00 AM	
, and the task was assigned at 3/24/2005 3:00 PM	
, then only one reminder is sent at 3/25/2005 10:00 AM	
. For more information, see Section 29.8.3, "How to Set Up Reminders."	
The human workflow notification service sends you an automatic reply message when it cannot process an incoming message (due to system error, exception error, user error, and so on). You can modify the text for these messages in the global resource bundle. Example 34-5 shows the WorkflowLabels.properties	
file. For more information, see Section 34.5.2, "Global Resource Bundle – WorkflowLabels.properties."	
Example 34-5 WorkflowLabels.properties	
Some task participants may have access to multiple notification channels. You can use custom notification headers to enable this type of participant to specify a single channel as the preferred channel on which to receive notifications.	
To create custom notification headers:	
For example, set the Name field to deliveryType	
and the Value field to SMS	
.	
The rule-based notification service is only used to identify the preferred notification channel to use. The address for the preferred channel is obtained from Oracle Identity Management. The notification message is created from the information provided by both services.	
For more information, see the following:	
This section describes how to configure the assignment service with dynamic assignment functions. It contains these topics:	
When tasks are assigned to a group, application role, or list of users a single user must claim a task to act on it. However, you can also automatically send work to users by using various dispatching mechanisms.	
Automatic task dispatching is done through dynamic assignment patterns. Dynamic assignment patterns select a particular user or group from either a group or a list of users or groups. Similarly, when a task is escalated, a task escalation pattern can be used to determine the user to whom the task should be escalated to. Several patterns are provided out of the box. However, you can also create your own patterns for dynamic assignment and task escalation and register them with the workflow service. Table 34-21 describes the three dynamic assignment patterns and one task escalation pattern that are provided out-of-the-box.	
Table 34-21 Dynamic Assignment Patterns	
Assignment Pattern	Type
---	---
Dynamic assignment	Picks the user or group with the least number of tasks currently assigned to it.
Dynamic assignment	Picks the user or group that has completed the most tasks over a certain time period (by default, the last seven days).
Dynamic assignment	Picks each user or group in turn.
Task escalation	Picks the manager's manager.
These patterns all check a user's vacation status. A user that is currently unavailable is not automatically assigned tasks.	
Dynamic assignment patterns can be used when defining a task participant, as described in Section 29.4.3, "How to Configure the Single Participant Type". They can also be used with task-assignment rules allowing end-users to specify dynamic assignment of tasks to the members of groups that they manage, as described in Section 32.7.2, "How To Create Group Rules."	
The dynamic assignment patterns can also be called by using an xpath function in any xpath expression in the task definition.	
The signature of the function is:	
The parameters are:	
patternName	
: Mandatory. Name of the pattern to use participants	
: Mandatory. The participant or participants to select the assignee from. Can be a string or element containing a participant name or a comma-separated list of participant names, or a set of elements containing participant names or comma-separated lists of participant names. Participants must all be of the same type. inputParticipantType	
: Mandatory. The type of the input participants (user, group, or application_role) targetAssigneeType	
: Mandatory. The type of assignee to select (user, group, or application_role). Value must match the context in which the function is being used (for example, must be user if dynamically selecting an owner user. If the inputParticipantType is user, the only valid value here is user. isGlobal	
: Boolean value that indicates if the pattern should be assessed using tasks of all types, or just tasks of the same type as the current task. Optional - defaults to false. invocationContext	
: String to uniquely identify where this function is being used. If not specified, a default context is assigned. parameterN	
: Some dynamic assignment patterns allow parameters to be specified. The parameter values can be specified as name-value pairs, using an “=” character as a delimiter - for example, “TIME_PERIOD=7” Example usages:	
Before 11g Release 1 (11.1.1.6.1), dynamic assignment could be achieved by using the XPath functions wfDynamicUserAssign	
and wfDynamicGroupAssign	
. These XPath functions have been deprecated in 11g Release 1 (11.1.1.6.1). They can still be used, but Oracle recommends that you migrate any existing usage of these XPath functions to the new dynamicTaskAssign	
function.	
Follow these procedures to implement your own dynamic assignment pattern.	
To implement dynamic assignment patterns:	
Write a Java class that implements the following interface:	
Implementations must provide support for selecting a single assignee from a list of participants (all of the same type) by implementing the method getAssigneeFromParticipantList	
.	
An implementation does not have to support all assignee types. The interface provides the method getSupportedAssigneeType	
to enable the implementation to specify which types of assignee it supports.	
Implementations can accept input parameters to specify selection criteria, the Dynamic Assignment Framework validates these input parameters, and the implementation can define its parameters (if any) in the method getPatternParameters()	
.	
An implementation can also accept initialization parameters, which are set when the implementation is initialized by the framework. The parameter values are defined in the human workflow configuration (either via configMBean	
, or by Human Workflow Service Engine configuration in Oracle Enterprise Manager Fusion Middleware Control), where the dynamic assignment pattern is registered.	
For convenience, the framework provides the class AbstractDynamicAssignmentPattern	
which implements some common functionality. Assignment pattern implementations can extend this abstract class, to save implementing some parameter and localization support.	
Before 11g Release 1 (11.1.1.6.1), custom dynamic assignment patterns were implemented using one or both of the following interfaces:	
These interfaces do not offer all the features available in the new IDynamicAssingmentPattern	
interface, and have been deprecated. The Dynamic Assignment Framework remains backward compatible with implementations that use the old interface, but Oracle recommends that you migrate any implementations you have to use the new interface.	
For information about the Javadoc for dynamic assignment interfaces and utilities, see Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager.	
Dynamic assignment patterns are configured along with other human workflow configuration parameters in Oracle Enterprise Manager Fusion Middleware Control.	
Each dynamic assignment has two mandatory parameters:	
name	
: The name of the pattern	
classpath	
: The fully qualified class name of the class that implements the pattern.	
In addition, each pattern can optionally have any number of properties. These properties are simple name-value pairs that are passed as initialization parameters to the pattern.	
The property values specified in these tags are passed as a map (indexed by the value of the name attributes) to the setInitParameters	
method of the dynamic assignment patterns.	
Two of the out-of-the-box patterns have initialization parameters. These are:	
ROUND_ROBIN	
The parameter MAX_MAP_SIZE	
specifies the maximum number of sets of users or groups for which the pattern can maintain ROUND_ROBIN	
counts. The dynamic assignment pattern holds a list of users and groups in memory for each group (or list of users and groups) on which it is asked to execute the ROUND_ROBIN	
pattern.	
MOST_PRODUCTIVE	
The parameter DEAFULT_TIME_PERIOD	
specifies the length of time (in days) over which to calculate the user's productivity. This value can be overridden when calling the MOST_PRODUCTIVE	
dynamic assignment pattern.	
For more information about configuring the dynamic assignment functions from Oracle Enterprise Manager Fusion Middleware Control, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
The runtime config service provides methods for returning a list of available user and group dynamic assignment patterns. These patterns return both the name of the pattern, and a user-displayable label and description for the pattern and its parameters. The patterns support localization of the display name, so that it displays in the appropriate language for the context user. These patterns are used by Oracle BPM Worklist and the JDeveloper Human Task Editor to show a list of available dynamic assignment patterns.	
The dynamic assignment framework provides methods allowing pattern implementations to provide human-readable display names and descriptions for patterns and their parameters.	
The out-of-the-box pattern implementations, and custom implementations that extend the AbstractDynamicPattern	
class use the WorkflowLabels.properties	
resource bundle file to configure these display strings.	
To configure display names for dynamic assignment patterns:	
Specify display names and descriptions (and appropriate translations) for your dynamic assignment patterns and their parameters by adding entries to the resource property file WorkflowLabels.properties	
, and associated resource property files in other languages. This file should be placed in the class path identified in the workflow configuration parameter workflowCustomizationsClasspathURL	
, at the path	
Entries for dynamic assignment patterns must be of the following form:	
For instance, the entries for the MOST_PRODUCTIVE	
pattern are:	
Adding entries to these files for dynamic assignment patterns is optional. If no entry is present in the file, then the name of the function (for example, ROUND_ROBIN	
') is used instead.	
For more information about the WorkflowLabels.properties	
file, see the workflow-110-workflowCustomizations	
sample available with the Oracle SOA Suite samples.	
Task escalation functions are very similar to dynamic assignment patterns, but perform a different function (determining to whom a task is assigned when it is escalated). Custom implementations must implement a different interface (IDynamicTaskEscaltionPattern	
).	
Human workflow participants are specified declaratively in a routing slip. The routing slip guides the human workflow by specifying the participants and how they participate in the human workflow (for example, management chain hierarchy, serial list of approvers, and so on).	
The Human Task Editor enables you to declaratively create the routing slip using various built-in patterns. In addition, you can use advanced routing based on business rules to do more complex routing. However, to do more sophisticated routing using custom logic, you implement a custom assignment service to do routing.	
To support a dynamic assignment, an assignment service is used. The assignment service is responsible for determining the task assignees. You can also implement your own assignment service and plug in that implementation for use with a particular human workflow.	
The assignment service determines the following task assignment details in a human workflow:	
The human workflow service identifies and invokes the assignment service for a particular task to determine the task assignment.	
For example, a simple assignment service iteration is as follows:	
jcooper	
. jcooper	
approves the task, the assignment service assigns the task to jstein	
. The assignment service also specifies that a notification must be sent to the creator of the task, jlondon	
. jstein	
approves the task and the assignment service indicates that there are no more users to whom to assign the task. To implement an assignment service:	
IAssignmentService	
interface. The human workflow service passes the following information to the assignment service to determine the task assignment: The task document that is executed by the human workflow. The task document contains the payload and other task information like current state, and so on.	
When an assignment service is specified, a list of properties can also be specified to correlate callbacks with back-end services that determine the task assignees.	
The task history is a list of chronologically-ordered task documents to trace the history of the task. The task documents in this list contain a subset of attributes in the actual task (such as state	
, updatedBy	
, outcome	
, updatedDate	
, and so on).	
Notes:	
You can implement your own assignment service plug-in that the human workflow service invokes during human workflow execution.	
Example 34-6 provides a sample IAssignmentService	
implementation named TestAssignmentService.java	
.	
Example 34-6 Sample IAssignmentService Implementation	
To deploy a custom assignment service:	
SCA-INF/classes	
directly or in SCA-INF/lib	
as a JAR. worklfowCustomClasspathURL	
configuration parameter to point to the JAR or root directory in which your classes are located. As this is a URL, it is possible to host the class files on a web server, and make them accessible to multiple Oracle WebLogic Servers through HTTP. It is even possible to deploy the files into the metadata repository (MDS), and use an ORAMDS URL to point to the appropriate location. This approach is described in detail in sample workflow-110-workflowCustomizations. To download this sample, visit the Oracle SOA Suite samples. Notes:	
The custom escalation function enables you to integrate a custom rule in a human workflow.	
To implement a custom escalation function:	
For more information, see Section 29.7.6, "How to Specify Escalation Rules."	
You can load classes for the following callbacks and resource bundles directly from the SOA project instead of having to load classes in the oracle.soainfra.common	
shared library and restarting Oracle WebLogic Server:	
IAssignmentService	
IRestrictedAssignmentService	
IRoutingSlipCallback	
IPercentageCompletionCallback	
INotificationCallback	
The callback classes can be in the following locations:	
SCA-INF/lib	
directory of the project SCA-INF/classes	
directory of the project Additionally, to support backward compatibility, the project level resource bundles can also be in the same directory as the .task	
file.	
This section describes the resource bundles used in human workflow services and how they can be customized to provide alternative resource strings.	
The human workflow service APIs and Oracle BPM Worklist use the locale set in the IWorkflowContext	
object to access the APIs. This is the locale of the user in the user directory configured with the identity service. If no locale is specified for the user, then the default locale for the Java EE server is used instead.	
It is possible for API clients to override this locale by setting a new value in the IWorkflowContext	
object. Oracle BPM Worklist provides a user preference option that allows users to use their browser's locale, rather than the locale set in their user directory.	
Each human workflow component can be associated with a resource bundle. The bundle defines the resource strings to use as display names for the task outcomes. The resource strings are returned by the TaskMetadataService	
method getTaskDefinitionOutcomes	
, and are displayed in Oracle BPM Worklist and the task flow task details application.	
In addition, you can use the human workflow XPath function getTaskResourceBundle	
string to look up resource strings for the task's resource bundle. For example, this XPath function can be part of the XPath expression used to construct notification messages for the task.	
A human workflow component is associated with a resource bundle by setting the Resource Name and Resource Location fields of the Resource Details dialog in the Presentation section of the Human Task Editor. The value for the Resource Location field is a URL, and the resource bundle can be contained within a JAR file pointed to by the URL. It is possible to share the same resource bundle between multiple human workflow components by using a common location for the resource bundle.	
If no resource bundle is specified for the human workflow component, the resource string is looked up in the global resource bundle. (See Section 34.5.2, "Global Resource Bundle – WorkflowLabels.properties.") Commonly-used task outcomes can be defined in the global resource bundle, alleviating the need to define a resource bundle for individual human workflow components.	
If no resource string can be located for a particular outcome, then the outcome name is used as the display value in all locales.	
The following global resource bundle is used by human workflow service APIs to look up resource strings:	
You can customize this bundle to provide alternatives for existing display strings or to add additional strings (for example, for mapped attribute labels, standard views, or custom dynamic assignment functions).	
The global resource bundle provides resource strings for the following:	
Labels for the various task attributes displayed in Oracle BPM Worklist (or other clients). Resource string values are returned from the following TaskMetadataService	
methods:	
getTaskAttributes	
getTaskAttributesForTaskDefinition	
getTaskAttributesForTaskDefinitions	
Mapped attribute labels created through the runtime config service. These strings are used in Oracle BPM Worklist when displaying mapped attributes. Resource string values are returned from the TaskMetadataService	
methods:	
getTaskAttributesForTaskDefinition	
getTaskAttributesForTaskDefinitions	
If translated resource strings are required for mapped attribute mappings, then customize the WorkflowLabels.properties	
bundle to include the appropriate strings.	
Default resource strings for common task outcomes. These can be overridden by the task resource bundle, as described above. The resource strings are returned by the TaskMetadataService	
method getTaskDefinitionOutcomes	
, if no task-specific resource bundle has been specified. As shipped, the global resource bundle contains resource strings for the following outcomes:	
Labels for dynamic assignment functions. These strings are returned from the runtime config service methods getUserDynamicAssignmentFunctions	
and getGroupDynamicAssignmentFunctions	
. The shipped resource bundle contains labels for the standard dynamic assignment functions (ROUND_ROBIN	
, LEAST_BUSY	
, and MOST_PRODUCTIVE	
). If additional custom dynamic assignment functions have been created, then modify the WorkflowLabels.properties	
resource bundle to provide resource strings for the new functions.	
Labels for standard views. If you want translated resource strings for any standard views you create, then add them here. Standard view resource strings are looked up from the resource bundle, and are returned as the standard view name from the UserMetadataService	
methods getStandardTaskViewList	
and getStandardTaskViewDetails	
. The key for the resource string should be the name given to the standard view when it is created. If no resource string is added for a particular standard view, then the name as entered is used instead.	
Resource strings used when the task service sends automatic notifications. These can be customized to suit user requirements.	
When an error is encountered in the routing of a task, the task service automatically appends comments to the task to describe the error. The various strings used for the comments are defined in this resource bundle.	
A copy of the WorkflowLabels.properties	
resource bundle is available in the sample workflow-110-workflowCustomizations.	
You can customize the WorkflowLabels.properties	
resource bundle by editing it and then adding the customized version to the class path for workflow services, ahead of the version that ships with the product.	
This can be done in the following ways:	
worklfowCustomClasspathURL	
configuration parameter to point to directory_path	
. (As this is a URL, it is possible to host the resource bundles on a web server, and make them accessible to multiple Oracle WebLogic Servers.) This approach is described in detail in sample workflow-110-workflowCustomizations. To download this sample, visit the Oracle SOA Suite samples. The ADF worklist client application uses two resource bundles that contain all the strings displayed in the worklist client web application.	
oracle.bpel.worklistapp.resource.WorkflowResourceBundle	
: This contains strings used by both the ADF Oracle BPM Worklist, and the JSP-based sample Oracle BPM Worklist that shipped with version 10.1.3 of Oracle SOA Suite.	
oracle.bpel.worklistapp.resource.WorklistResourceBundle	
: This contains strings used only by the ADF Oracle BPM Worklist.	
Copies of the worklist resource bundles are available in the sample workflow-110-workflowCustomizations.	
The sample illustrates how to customize Oracle BPM Worklist by recompiling these resource bundles, and adding the updated classes to Oracle BPM Worklist.	
The ADF task flow applications and associated data controls that get created to display the details of a particular task type use the resource bundle oracle.bpel.services.workflow.worklist.resource.worklist	
to store their resource strings.	
You can provide your own custom resource strings for a task detail ADF task flow by adding a customized resource bundle in the task flow application.	
You can localize the XML element name displayed in the task flow form through this resource bundle. You can add keys, and use them in the task flow form contents section. The input text label looks as follows:	
A copy of the WorkflowLabels.properties	
resource bundle is available in the sample workflow-110-workflowCustomizations. This sample illustrates in detail how to provide your own customized resource strings for the task detail ADF task flow application.	
You can provide translated values for stage names and participant names in the composite resource bundle. The resource bundle should contain entries such as the following:	
stage_name	
=	
translated_value	
participant_name	
=	
translated_value	
By default, the human workflow system is case insensitive to user names. All user names are stored in lowercase. However, group names and application role names are always case sensitive. User name case insensitivity can be changed in Oracle Enterprise Manager Fusion Middleware Control.	
Caution: Only change this setting after performing a new installation. Changing this value on an installation that is actively processing instances, or has many instances in the database, causes serious issues.	
To change case sensitivity:	
The System MBean Browser displays on the right side of the page.	
true	
, and click Invoke. If you are upgrading from 10.1.3, which by default was case sensitive, set caseSensitive to true	
for the system to be the same as with 10.1.3.	
This section describes how human workflow clients integrate with Oracle WebLogic Server services.	
Human workflow services expose the following workflow services:	
To use any of these services, you must use the abstract factory pattern for workflow services. The abstract factory pattern provides a way to encapsulate a group of individual factories that have a common theme.	
Perform the following tasks:	
IWorkflowServiceClient	
instance for the specific service type. The WorkflowServiceClientFactory	
provides a static factory method to get IWorkflowServiceClient	
according to the service type. IWorkflowServiceClient	
instance to get the service instance to use. The supported service types are Remote and Soap.	
Remote clients use Enterprise JavaBeans clients (remote Enterprise JavaBeans, accordingly). SOAP uses SOAP clients. Each type of service requires you to configure workflow clients. Example 34-7 provides details.	
Example 34-7 Client Configuration File	
The client configuration file can contain definitions for several configurations. Each server must have its own unique name. If the configuration file defines multiple servers, one server must be set with the default attribute equal to true	
. The workflowServicesClientConfiguration	
has an optional attribute named serverType	
that can be set to one of the following: LOCAL	
, REMOTE	
, or SOAP	
. Each server can override the client type by using the optional attribute clientType	
.	
Example 34-8 provides details.	
Example 34-8 Client Configuration File with Multiple Configuration Definitions	
In Example 34-8, server2	
uses the default clientType	
of REMOTE	
, while server1	
overrides the default clientType	
value to use the clientType	
of SOAP	
. The same rule applies if the JAXB WorkflowServicesClientConfigurationType	
object is used instead of the wf_client_config.xml	
file.	
If the configuration defines a client type, you can use the factory method from the WorkflowServiceClientFactory	
class. Example 34-9 provides details.	
Example 34-9 Factory Method from WorkflowServiceClientFactory Class	
If the map defines a client type with the property CONNECTION_PROPERTY.CLIENT_TYPE	
, the factory method in Example 34-10 can be used:	
Example 34-10 Factory Method for CONNECTION_PROPERTY.CLIENT_TYPE	
Example 34-11 provides an example of the task query service client code.	
Example 34-11 Task Query Service Client Code	
Each type of client is required to have a workflow client configuration. You can set the configuration in the following locations:	
wf_client_config.xml	
file The property map is always complementary to the wf_client_config.xml	
file. The JAXB object or property map can overwrite the configuration attribute. The file is optional. If it cannot be found in the application class path, then the property map is the main source of configuration.	
You can use the JAXB object to define the client configuration. Example 34-12 shows how to use the WorkflowServiceClientFactory	
method.	
The client configuration XSD schema is present in the wf_client_config.xsd	
file.	
The server configuration should contain three types of clients:	
localClient	
remoteClient	
soapClient	
Oracle recommends that you specify all clients. This is because some services (for example, the identity service) do not have remote clients. Therefore, when you use remote clients for other services, the identity service uses the SOAP service.	
An example of a client configuration XML file is shown in Example 34-13. The configuration defines a server named default	
. The XML file must go into the client application's EAR file.	
Example 34-13 Client Configuration	
You can define client properties in wf_client_config.xml	
when WorkflowServicesClientConfigurationType	
wscc	
is null	
.	
The WorkflowServiceClientFactory getWorkflowServiceClient()	
methods always look for wf_client_config.xml	
in the class path. If this file is found, the client properties are loaded.	
All properties defined in either the property map or the JAXB object override values defined in the wf_client_config.xml	
file.	
To specify the connection property dynamically, you can use a java.util.Map	
to specify the properties. The properties take precedence over definitions in the configuration file. Therefore, the values of the properties overwrite the values defined in wf_client_config.xml	
. If you do not want to dynamically specify connection details to the server, you can omit the property setting in the map and pass a null value to the factory method. In that case, the configuration wf_client_config.xml	
is searched for in the client application class path.	
The configuration file must be in the class path only to get the configuration from the file. It is optional to have the file if all settings from the specific client type are done through the property map. The JAXB object is also not required to have the file, since all settings are taken from the JAXB object. Example 34-14 provides details.	
Example 34-14 Property Map	
If you do so, the value from wf_client_config.xml	
found in the class path is used by the client to access the services. If the file is not found in the class path and you do not provide the setting according to the service type, a workflow exception is thrown. If the properties map is null and the file is not found, an exception is thrown. If the client omits some properties in the map while the file is not found, the service call fails at runtime (the properties are complementary to the file).	
You can define client properties by using the WorkflowServiceClientFactory	
method. Example 34-15 provides details.	
Example 34-15 WorkflowServiceClientFactory Method	
If the map defines a client type with the property CONNECTION_PROPERTY	
type, the factory method in Example 34-16 can be used:	
Example 34-16 Factory Method for CONNECTION_PROPERTY Type	
The IWorkflowServiceClientConstants.CONNECTION_PROPERTY	
, which can be used in the properties map for setting client properties, is shown in Example 34-17:	
Example 34-17 CONNECTION_PROPERTY	
Note: If you use the properties map, you do not need to specify	
Example 34-18 provides an example for remote Enterprise JavaBeans clients.	
Example 34-18 Example for Remote Enterprise JavaBeans Clients	
Example 34-19 provides an example for a SOAP client.	
Example 34-19 Example for SOAP Client	
Clients can optionally pass in a java.util.logging.Logger	
to where the client logs messages. If there is no logger specified, the workflow service client code does not log anything. Example 34-20 shows how to pass a logger to the workflow service clients:	
The client configuration schema has changed between release 10.1.3.x and 11g Release 1. To migrate from release 10.1.3.x to 11g Release 1, use the utility shown in Example 34-21.	
Example 34-21 Configuration Migration Utility	
where original_file	
is a wf_client_config.xml	
file from 10.1.3.x and new_file	
is the optional name of the new configuration file. If a new name is not specified, the utility backs up the original configuration file and overwrites the wf_client_config.xml	
file.	
This section describes how to propagate identities using Enterprise JavaBeans and SAML-tokens for SOAP clients.	
There are performance implications for getting the workflow context for every request. This is also true for identity propagation. If you use identity propagation with SAML-token or Enterprise JavaBeans, authenticate the client by passing null for the user and password, get the workflow context instance, and use another service call with workflow context without identity propagation.	
The client application can propagate user identity to services by using Enterprise JavaBeans identity propagation. The client code is responsible for securing the user identity.	
If you use identity propagation, the client code must omit the element's <userName>	
and <password>	
under the <remoteClient>	
element in the wf_client_config.xml	
configuration file. In addition, do not populate the following properties into Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,String>	
properties as you did in Section 34.6.1.2.3, "Workflow Client Configuration in the Property Map."	
IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL	
IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS	
Identity propagation only works if the application is deployed under the Oracle WebLogic Server container and secured with container security or the client is secured with a custom JAAS login module.	
End users log in to the client application with the correct user name and password. The users using the client application must be available in the identity store used by the SOA application. As a best practice, configure the client to use the same identity store as the workflow services and Oracle SOA Suite are using. This guarantees that if the user exists on the client side, they also exist on the server side.	
For information about configuring the identity store, see Oracle Fusion Middleware Security Guide.	
For information about interacting with custom identity stores, visit the following URL:	
If you use a SOAP client, you can use the SAML-token identity propagation supported by Oracle web services.	
This section assumes the application resides in and is secured by the Oracle WebLogic Server container.	
To enable identity propagation, the client configuration must specify a special propagation mode.	
If properties are used, then populate the property CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION	
with the value saml	
.	
The SAML token policy is provided dynamically (the default). The property shown in Example 34-22 is optional. If the identity propagation mode is set, you run by default in dynamic mode.	
By default, SAML-token constructs dynamic policy based on the following security policy URI: oracle/wss10_saml_token_client_policy	
. Logging is not used. To overwrite the default policy URI, the client can add the code shown in Example 34-23.	
Example 34-23 Default Policy URI Overwrite	
Example 34-24 shows the SAML token dynamic client.	
Example 34-24 Token Dynamic Client	
The client reference to the policy URI must match the server policy URI. Otherwise, SAML token propagation fails.	
In the configuration file, you can define the propagation mode by using the <identityPropagation>	
element in the <soapClient>	
, as shown in Example 34-25.	
Example 34-25 <identityPropagation> Element	
For more information, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.	
You can programmatically set the identity propagation mode with the JAXB object.	
You can use the oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_RECIPIENT_KEY_ALIAS	
property with the workflow client. This property sets the alias for the recipient's public key that is used to encrypt the type outbound message. Use this property to secure workflow services with the public key alias. This property is only relevant when the SOAP client type uses identity propagation.	
The client code must add the WSS_RECIPIENT_KEY_ALIAS	
value to the map if the public key alias is defined. Example 34-26 provides details.	
Example 34-26 WSS_RECIPIENT_KEY_ALIAS Property	
If the client uses the JAXB WorkflowServicesClientConfigurationType	
object or the wf_client_config.xml	
file, an optional element called wssRecipientKeyAlias	
is added under the identityPropagation	
element for a SOAP client. Example 34-27 provides details.	
Example 34-27 wssRecipientKeyAlias Element	
For more information about how to create and use the public key alias in the credential store, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.	
A client application without identity propagation must have the bpm-services.jar	
file in its class path. For 11g Release 1, the client class path requires the files shown in Example 34-28.	
Example 34-28 Client JAR Files	
The wlfullclient.jar	
file must be generated.	
wlfullclient.jar	
as follows: The following list identifies all the task states available in a human task. The constants for all states are defined in IWorkflowConstants.java	
.	
String TASK_STATE_ALERTED = "ALERTED";	
String TASK_STATE_ASSIGNED = "ASSIGNED";	
String TASK_STATE_COMPLETED = "COMPLETED";	
String TASK_STATE_DELETED = "DELETED";	
String TASK_STATE_ERRORED = "ERRORED";	
String TASK_STATE_EXPIRED = "EXPIRED";	
String TASK_STATE_INFO_REQUESTED = "INFO_REQUESTED";	
String TASK_STATE_OUTCOME_UPDATED = "OUTCOME_UPDATED";	
String TASK_STATE_STALE = "STALE";	
String TASK_STATE_SUSPENDED = "SUSPENDED";	
String TASK_STATE_WITHDRAWN = "WITHDRAWN";	
For more information about IWorkflowConstants.java	
, see Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager.	
This section describes database views that enable queries against the Oracle workflow services schema to receive reports. Table 34-22 lists the reports exposed in Oracle BPM Worklist and the database views corresponding to these reports.	
Table 34-22 Report Views	
Existing Worklist Report	Corresponding Database View
---	---
Unattended Tasks report	
Task Cycle Time report	
Task Productivity report	
Task Priority Report	
Table 34-23 describes the WFUNATTENDEDTASKS_VIEW	
report view.	
Table 34-23 Unattended Tasks Report View	
Name	Type
---	---
Footnote 1 NOT NULL column	
For example:	
mygroup	
, as shown in Example 34-30. Table 34-24 describes the WFTASKCYCLETIME_VIEW	
report view.	
Table 34-24 Task Cycle Time Report View	
Name	Type
---	---
Footnote 1 NOT NULL column	
For example:	
Table 34-25 describes the WFPRODUCTIVITY_VIEW	
report view.	
Table 34-25 Task Productivity Report View	
Name	Type
---	---
Footnote 1 For completed tasks, the state is null. Use decode(outcome, '', 'COMPLETED', outcome)	
in queries.	
For example:	
Table 34-26 describes the WFTASKPRIORITY_VIEW	
report view.	
Table 34-26 Task Priority Report View	
Name	Type
---	---
Footnote 1 NOT NULL column
For example:
This chapter describes for developers how to integrate the enterprise system capabilities of Oracle SOA Suite with Microsoft Excel 2007. This integration enables you to invoke a BPEL process from Microsoft Excel and attach Microsoft Excel workbooks to workflow email notifications. You can configure this integration without having to switch between tools.
This chapter includes the following sections:
From an Excel workbook, you can invoke a BPEL process that is deployed in Oracle WebLogic Server. To perform this task, you install a plug-in of the Application Development Framework Desktop Integration (ADF-DI) on the same host as the Excel document that invokes the BPEL process.
You use the Create Web Service Data Control Wizard to create the project.
To create an Oracle JDeveloper project of the type web service data control:
In this task, you generate a page definition file. The actual layout generated in the JSF file is not of a concern. Instead, you simply want to generate a page definition file that contains these controls and actions. This page definition is used later in the Excel file.
To create a dummy JSF page:
For an example of how to perform this task, see Section 35.2.3.3, "Task 3: Create a Valid Page Definition File to Be Used in the Excel Workbook."
To add Oracle ADF-DI to the technology scope of your project, use the Project Properties dialog in JDeveloper.
To add Oracle ADF Desktop Integration to your project:
If your application uses the Fusion Web Application application template, select the ViewController project. If your application uses another application template, select the project that corresponds to the web application.
When you add the Oracle ADF-DI module to the technology scope of your project, the following events occur:
.jar
files in its class path: adfBindings
). web.xml
) is modified to include the following entries: adfdiRemote
Note: The value for the |
adfdiExcelDownload
.xlsx
and .xlsm
) The previous list is not exhaustive. Adding Oracle ADF-DI to a project makes other changes to web.xml
. Some entries in web.xml
are only added if they do not exist.
When you add ADF Library Web Application Support to the technology scope of your project, the project's web.xml
file is modified to include the entries shown in Example 35-1.
Example 35-1 web.xml File Entries
Ensure that the filter for ADF Library Web Application Support (<filter-name>ADFLibraryFilter</filter-name>
) appears below the adfdiExcelDownload
filter entries in web.xml
, as shown in Example 35-2. This action enables integrated Excel workbooks to be downloaded from the application.
Example 35-2 web.xml File Entries
For more information about web.xml
, see Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.
For an example of how to perform this task, see Section 35.2.3.5, "Task 5: Deploy the ADF Task Flow."
Install Microsoft Excel by following the appropriate Microsoft documentation.
To perform this installation, follow the steps in Section 35.2.3.4, "Task 4: Prepare the Excel Workbook."
For instructions, see Section 35.2.3.4, "Task 4: Prepare the Excel Workbook."
As an alternative to using Oracle BPM Worklist, you can attach an Excel workbook with task details as part of a human task workflow email notification. In this case, the user receives an email about a new task. This email has an Excel workbook attached, and, when the user opens the attachment, they are directed to a login page similar to that for Oracle BPM Worklist. The Excel workbook includes such task details as task ID, payload, and so on. Buttons correspond to the actions the user can perform, and clicking one of them invokes the corresponding BPEL process.
To enable this functionality, do the following:
.war
file packaged for the ADF task flow. The steps for performing these tasks are covered in Section 35.2.3, "Example: Attaching an Excel Workbook to Email Notifications." Later, you use the page definition files generated in Section 35.1.2, "How to Create a Dummy JSF Page." Note: Packaging the Excel workbook with the ADF task flow assumes that there is a one-to-one correspondence between the ADF task flow and the Excel sheet used for a workflow. |
Note the following end-user experience during runtime:
Note the following runtime behaviors:
true
. workflow_name
.xls
. This section describes how to attach an Excel workbook to email notifications.
In this task, you configure the web application to work with Oracle ADF-DI.
Create an ADF task flow project based on a human task. This creates a data control corresponding to the task and an .xml
files corresponding to the task's structure. Figure 35-1 shows Oracle JDeveloper with a sample project open.
Figure 35-1 Oracle JDeveloper with a Sample Project Open
Add Oracle ADF Desktop Integration to the project by following the instructions in Section 35.1.3, "How to Add Desktop Integration to Your Oracle JDeveloper Project."
Figure 35-2 shows the Oracle JDeveloper Project Properties dialog when you add Oracle ADF-DI to your project.
Figure 35-2 Oracle JDeveloper Project Properties Dialog
wsclient.jar
and adf-desktop-integration.jar
are in its class path. web.xml
, is modified to include the following entries: adfdiRemote
adfdiExcelDownload
The previous list is not exhaustive. Adding ADF Desktop Integration and ADF Library Web Application Support to the project makes other changes to web.xml
. Here is a sample snippet of the deployment descriptor:
<auth-filter>
entry to weblogic.xml
. The web application is now configured to work with Oracle ADF-DI.
This task is required to add Oracle ADF-DI to create a web session for an Excel workbook.
Create a login page for the application:
ExpenseReportTaskFlow\public_html\
, copy the file LoginPage.jsp
to the directory project_home
\public_html
. LoginPage.jsp
is visible. It should appear as shown in Figure 35-3. Figure 35-3 Oracle JDeveloper: Login.jsp File
web.xml
file. If some entries are missing, add them manually. Form authentication, using the login page created in Step 2 of Section 35.2.3.2, "Task 2: Set up Authentication," is used. Figure 35-4 shows how these entries appear graphically in the Web Application Deployment Descriptor dialog.
Figure 35-4 Oracle JDeveloper: Application Deployment Descriptor
web.xml
, make a corresponding entry in weblogic.xml
as follows: The ADF task flow web application is now configured for login capability that can be used by the Excel workbook.
The page definition file ExcelControlsPageDef.xml
is used to create the Excel workbook. Perform the following steps:
Name: TaskRetrievers
Package: (leave it as default)
Extends: oracle.bpel.services.workflow.client.worklist.excel.TasksRetriever
(Click Browse to select this class.)
This creates a new Java class <default-package>.TasksRetriever
.
Figure 35-5 Oracle JDeveloper: Creating a Data Control
Figure 35-6 Oracle JDeveloper: Application Navigator with Data Control Palette Expanded
ExcelControls.jspx
. This generates a page definition that can be used by ADF-DI while authoring the Excel document. Figure 35-7 provides details. Figure 35-7 Oracle JDeveloper: Creating a JSF JSP Page
ExcelControls.jspx
. Figure 35-8 Oracle JDeveloper: Creating an ADF Read-Only Form
.jspx
file. In this example, as shown in Figure 35-9, the actions APPROVE, REJECT, update, and Suspend are added to create the entries in the page definition. Figure 35-9 Oracle JDeveloper: Configuring the Page Definition File
ExcelControlsPageDef.xml
to extract all assigned tasks for the logged-in user. <methodIterator
> executable and <attributeValues>
bindings are created in ExcelControlsPageDef.xml
. Figure 35-10 provides details. Figure 35-10 Oracle JDeveloper: Page Definition File
ExcelControlsPageDef.xml
that can create a list of assigned tasks in the Excel workbook. <bindings>
element in the page definition. ExcelControlsPageDef.xml
to use later to create a list of an updatable table of expense items in the Excel workbook. To author the Excel workbook, follow these steps:
JDEV_HOME\jdeveloper\adfdi\bin\excel\client
. project_home
\public_html
. convert-adfdi-excel-solution.exe
, in ORACLE_JDEVELOPER_HOME
\jdeveloper\adfdi\bin\excel\convert
. To convert the Excel workbook, execute the following command: The Excel workbook is now enabled to use the Oracle ADF-DI framework.
expensereporttaskflow_ExcelControlsPageDef
. Figure 35-11 provides details. Figure 35-11 Excel: Page Definition Dialog
http://
application_server:port
//workflow/
application_name
/faces/app/logon
. (This URL is protected and triggers form authentication. See Section 35.2.3.2, "Task 2: Set up Authentication.") Specify WebAppRoot: http://
application_server:port
//workflow/
application_name
. Click OK.
Figure 35-12 provides details.
For more information, see Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.
Figure 35-13 Excel: Creating s List of Values
Figure 35-14 Excel: Inserting a methodAction Binding
See Also: Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework for further information about creating and modifying a Table component. |
A completed Excel workbook for an expense report application looks similar to that shown in Figure 35-15.
Figure 35-15 Excel Workbook Integrated with Oracle ADF-DI
workflow_name
.xls
. The workflow name is the value of the element WorkflowName
specified in project_home
\adfmsrc\hwtaskflow.xml
. In this example, the name of the published Excel workbook is ExpenseReportTask.xls
. Figure 35-16 Oracle JDeveloper: Verifying Workbook Under WebContent
To deploy the ADF task flow, follow these steps:
.task
file. At this point, the ADF task flow is successfully deployed.
To test the deployed application, follow these steps:
Figure 35-17 Excel Workbook Attached to an Email
Note: To successfully open and execute the workbook, the user's desktop host should have the correct security policy and must run the |
LoginPage.jsp
from Section 35.1.2, "How to Create a Dummy JSF Page.") Figure 35-18 Desktop-Integrated Excel Workbook: Login Page
Figure 35-19 ADF Desktop-Integrated Excel Workbook with Assigned Tasks
Figure 35-20 ADF Desktop-Integrated Excel Workbook Uploading New Items
Figure 35-21 ADF Desktop-Integrated Excel Workbook
Also, you can perform actions on the task by clicking Approve, Reject, Update, or Suspend. Figure 35-22 provides details.
This chapter describes how developers can configure the task list portlets. This action enables you to review and act upon worklist tasks from an Oracle WebCenter Portal portlet.
This chapter includes the following sections:
The worklist task list is exposed as a JSR-168 Web Services for Remote Portlets (WSRP) portlet and can be embedded in portal applications. This portlet enables you to check the business and personal ToDo tasks assigned to the user and take actions on the tasks. You build a consumer application that can consume the JSR-168 portlet hosted by the task list portlet producer application. Any consumer can consume the portlet after registering with the portlet producer (the Oracle WebLogic Server portlet server). The portlet also supports many customizations through parameters, which are described in Section 36.4, "Passing Worklist Portlet Parameters." Figure 36-1 shows the high level portlet deployment and usage.
Figure 36-1 High Level Portlet Deployment and Usage
This section describes how to deploy and configure the task list portlet producer application on a managed portlet server.
This section describes deployment prerequisites for the task list portlet producer application.
(for example, /fmwhome/AS11gR1SOA/soa/applications
)
oracle.soa.workflow.wc
must be targeted to the Oracle WebLogic Server portlet managed server. See Section 36.2.2, "How to Deploy the Task List Portlet Producer Application" for instructions. To deploy the task list portlet producer application:
oracle.soa.workflow.wc
, you must confirm that the library is targeted to the Oracle WebLogic Server portlet managed server. where hostname
and port
are the hostname and port for the Oracle WebLogic Server Administration Console.
The task list portlet producer application communicates with the remote Oracle WebLogic Server SOA managed server to get the task list for the logged-in user. See Figure 36-1 for details. The task list portlet producer application uses remote EJB calls to the human workflow services API to achieve this. Therefore, you must configure the remote JNDI providers on the Oracle WebLogic Server on which Oracle WebCenter Portal is installed.
To define the foreign JNDI on the Oracle WebCenter Portal Oracle WebLogic Server:
where remote_hostname
and remote_port
are the hostname and port for the remote Oracle WebCenter Portal Oracle WebLogic Server.
ForeignJNDIProvider-SOA
. The Settings for ForeignJNDIProvider-SOA page appears.
Table 36-1 Parameters and Values
Field | Description |
---|---|
Initial Context Factory | Enter |
Provider URL | Enter Note: Replace |
User | Enter |
Password | Enter the password for the user. |
Confirm Password | Enter the same password again. |
The Create a Foreign JNDI Link page appears.
Enter values for the fields listed in Table 36-2, and click OK.
Table 36-3 Parameters and Values
The... | Enter This Value in the Name, Local JNDI Name, and Remote JNDI Name Fields, and click OK... |
---|---|
First time |
|
Second time |
|
Third time |
|
Fourth time |
|
Fifth time |
|
Sixth time |
|
For more information about configuring a foreign JNDI provider, see the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.
The task list portlet producer application must be configured so that the already-authenticated user token in the consumer application is passed to the producer-managed server and then to the remote SOA server. This can be achieved by enabling global trust between the concerned domains. For more information about enabling cross domain security between Oracle WebLogic Server domains, see Oracle Fusion Middleware Securing Oracle WebLogic Server.
To configure EJB identity propagation:
Modify the domain credentials.
You must configure the authenticator of the Oracle WebCenter Portal Oracle WebLogic Server domain to point to the same identity provider used by the SOA server.
Either the user name used to log in to the consumer application must be present in the identity stores of the portlet server and SOA server or all three servers must point to the same identity store. The three impacted servers are as follows:
The user first logs in to the consumer application. Therefore, the user must be present in the identity store of this server. Then, when the consumer application contacts the task list portlet producer application, it must propagate the user name to the Oracle WebCenter Portal managed server. The same user name must also be present in the identity store of this server. Then, to fetch the Oracle SOA Suite data, the task list portlet producer application contacts the Oracle SOA Suite managed server. Therefore, it must again propagate the user name to the SOA server. Again, the same user name must be present in the identity store of the Oracle SOA Suite server. Alternatively, all the above servers can point to the same identity store.
To configure the identity store:
You must perform the following tasks to secure the task list portlet producer application:
Note: Ensure that you copy the |
To secure the task list portlet producer application using web services security:
While following the instructions in those sections, you access the following pages in Oracle Enterprise Manager Fusion Middleware Control.
where base_domain is the domain name for this example.
You now specify the inbound security policy. This section assumes that the keystore configuration steps described in Section 36.2.4, "How to Secure the Task List Portlet Producer Application Using Web Services Security" have been completed.
To specify the inbound security policy:
Note: The policy you select must be the same on both the consumer and producer sides. |
You now create a portlet consumer application for embedding the task list portlet, as shown in Figure 36-1.
Ensure that you have already deployed and configured the task list portlet producer application as described in Section 36.2, "Deploying the Task List Portlet Producer Application to a Portlet Server" and verified that it is running. The portlet consumer application can only be deployed on a managed server that has Oracle WebCenter Portal installed.
Follow these procedures to create a consumer application for embedding the task list portlet.
To create a portlet consumer application for embedding the task list portlet:
TaskListConsumer
is entered). A Register WSRP Portlet Producer wizard is displayed.
where server
is the host on which the portal service is installed and port
is the port on that server.
Figure 36-7 provides details.
300
seconds. This reduces the chance of timeout exceptions occurring during runtime. The Configure Security Attributes page appears.
fmwadmin
and the issuer name as www.oracle.com
, as shown in Figure 36-9. Figure 36-9 Security Attribute Configuration
consumer.jks
to your local directory. Figure 36-10 provides details.
The registered portlets appear under Application Resources.
consumer.jspx
, as shown in Figure 36-12. Figure 36-13 Height and Width Specifications for the Portlet
This takes you to consumerPageDef.xml.
Table 36-4 Parameters and Values
Parameter | Description of Value |
---|---|
Used when the SOA server and the portlet server are different. The task details for the ToDo task require this URL. | <variable Name="Worklist1_1_soaURL" Type="java.lang.Object" DefaultValue="${'http://soa_host:soa_port')"/> |
The complete URL of the page, including the task list portlet. | <variable Name="Worklist1_1_refreshURL" Type="java.lang.Object" DefaultValue="${'http://soa_host:soa_port/HWTFConsumer/faces) |
Figure 36-15 provides details.
This starts the embedded Oracle WebLogic Server instance, deploys the consumer application, and shows the portlet in the consumer.jspx page.
The task list portlet can accept certain parameters in the consumerPageDef.xml
file. The consumer application for the task list region can do the following:
Table 36-5 shows the display parameters.
Table 36-5 Display Parameters
Parameters | Description | Values | Mandatory |
---|---|---|---|
| A comma separated string of the columns to be displayed in the task list table. | Possible values:
See Section 36.4.2, "Example of File Containing All Column Constants" for an example. | No |
| Specifies whether to take language settings from the web browser or the identity settings. | Possible values:
| No |
| The complete URL of the page, including the task list portlet. This is a mandatory parameter if The task details in the task list region are shown in an inline frame. Therefore, if any action is taken on the task details page, it tries to refresh the task listing area. To do that, it refreshes the page URL in which the taskflow/portlet is contained. Since the taskflow does not know the URL of the container page, this URL must be passed as a parameter. If | Enter a value appropriate to your environment. See Section 36.4.2, "Example of File Containing All Column Constants" for an example. | Yes |
| Specifies whether to display the Actions list on the toolbar. | Possible values:
| No |
| Specifies whether to display the Assignment Filter Selection dropdown list in the toolbar. | Possible values:
| No |
| Specifies whether to display the Quick Search text field. | Possible values:
| No |
| Specifies whether to display the Task Status Filter Selection dropdown list in the toolbar. | Possible values:
| No |
| Specifies whether to display the task details panel. | Possible values:
| No |
| Specifies whether to display the View selection dropdown list in the toolbar. | Possible values:
| No |
| Specifies whether to display the View selection panel. | Possible values:
| No |
| Used where the SOA server and the portlet server are different. This is a mandatory parameter if The task details for the ToDo task require this URL. This is because the ToDo task is an internal application and does not know the URL of the SOA server when accessed from an application deployed on a remote non-SOA Oracle WebLogic Server. The format is as follows: http://soa_host:soa_port | Enter a value appropriate to your environment. See Section 36.4.2, "Example of File Containing All Column Constants" for an example. | Yes |
| The name of the column to use for sorting tasks by default in the region. | The default value is | No |
| Specifies whether to sort the task list in ascending or descending order. | Possible values:
| No |
| Specifies the authenticated workflow context token. | Enter a value appropriate to your environment. See Section 36.4.2, "Example of File Containing All Column Constants" for an example. | No |
Table 36-6 shows the filter parameters.
Table 36-6 Filter Parameters
Parameters | Description | Values | Mandatory |
---|---|---|---|
| Specifies the type of assignee. | See Section 36.4.1, "Assignment Filter Constraints" for examples. | No |
| Specifies the selected view for which the tasks are displayed. | Enter a custom value that you create or accept the default value of | No |
| A comma-separated list of task type values to display tasks of only the passed-in task types. | Enter a value appropriate to your environment. | No |
| The | Possible values:
| No |
| The specified comma-separated list of name-value pairs used to filter tasks based on attribute values (the name is the task column name and the value is the column value). | See Section 36.4.2, "Example of File Containing All Column Constants" for an example. | No |
For example, to see the task with attribute filter values as priority = 1
, status = ASSIGNED
, and promoted mapped attribute textAttribute1 = NorthAmerica
, then you set the values as follows:
and set the attribute filter operator as:
The parameters in Table 36-5 and Table 36-6 are defined in the page definition of the test JSPX page. Example 36-1 shows the consumerPageDef.xml
page definition file syntax when the task list is consumed as a task flow. The attribute value
has the value of the parameter.
Example 36-1 Parameter Definition
Example 36-2 shows the page definition code example in consumerPageDef.xml
in which the task list is consumed as a portlet. The attribute DefaultValue
has the value of the parameter.
Example 36-2 Task List is Consumed as a Portlet
The following list shows the available assignment filter constraints.
My
Group
My+
Group
Reportees
Creator
Owner
Reviewer
Previous
Admin
Example 36-3 shows a file example that contains all column constants that can be passed in the displayColumnList
parameter. The constant value must be passed. For example, for TITLE_COLUMN = "title"
, the “title”
must be passed, not the TITLE_COLUMN
.
Example 36-3 All Column Constants That Can Be Passed in the displayColumnList Parameter
This section describes how to use binding components.
This part contains the following chapters:
This chapter describes the supported service and reference binding component types and technologies that you can integrate in a SOA composite application. Supported binding components include web services, HTTP binding, JCA adapters, Oracle Business Activity Monitoring (BAM), Oracle B2B, ADF-BC services, EJB services, and direct binding services.
This chapter includes the following sections:
Binding components establish the connection between a SOA composite application and the external world. There are two types of binding components:
Provide the outside world with an entry point to the SOA composite application. The WSDL file of the service advertises its capabilities to external applications. These capabilities are used for contacting the SOA composite application components. The binding connectivity of the service describes the protocols that can communicate with the service (for example, SOAP/HTTP or a JCA adapter).
Enable messages to be sent from the SOA composite application to external services in the outside world.
Figure 37-1 shows the OrderBookingComposite project in the Fusion Order Demo in which a service (UpdateOrderStatus) in the Exposed Services swimlane provides the entry point to the composite and a reference (BAM_OrderDO) in the External References swimlane enables information to be sent to an Oracle Business Activity Monitoring (BAM) Server in the outside world.
Figure 37-1 Service and Reference Binding Components
Binding components enable you to integrate the following types of technologies with SOA composite applications:
These technologies are described in the following sections.
This service enables you to integrate applications with a standards-based web service using SOAP over HTTP. Web services are described in the WSDL file.
Dragging a web service into a swimlane of the SOA Composite Editor invokes the Create Web Service dialog for specifying configuration properties.
For more information about web services, see Section 2.3.2, "How to Define the Interface (WSDL) for a Web Service."
For information about adding Message Transmission Optimization Mechanism (MTOM) attachments to web services, see Section 45.1.1.3, "Adding MTOM Attachments to Web Services."
The Create Web Service dialog also enables you to configure support for WS-Coordination and WS-AtomicTransaction (WS-AT) transactions. WS-AT provides transaction interoperability between Oracle WebLogic Server and other vendors' transaction services. Interoperability is provided at two levels:
Figure 37-2 shows the support for WS-AT at the bottom of the Create Web Service dialog.
Figure 37-2 WS-AT Support in Create Web Service Dialog
Table 37-1 describes the WS-AT fields. For a description of the remaining fields in the Create Web Service dialog, see Section 2.3.2, "How to Define the Interface (WSDL) for a Web Service."
Table 37-1 WS-AT Fields of the Create Web Service Dialog
Property | Description |
---|---|
Transaction Participation | Select a value. If you added the web service to the Exposed Services swimlane, this action enables external transaction managers to coordinate resources hosted on Oracle WebLogic Server over WS-AT. If you added the web service to the External References swimlane, this addition enables Oracle WebLogic Server transactions to coordinate resources hosted in external environments over WS-AT.
|
Version | Displays the WS-AT supported version (1.0, 1,1, 1,2, or default). By default, this list is only enabled if you select Supports or Mandatory from the Transaction Participation list. |
When complete, the composite.xml
file displays your WS-AT selections, as shown in Example 37-1.
Example 37-1 WS-AT Syntax in composite.xml File
If you want to edit your changes, you can right-click the service and select Edit or double-click the service in the SOA Composite Editor.
After deployment, you can modify the transaction participation and version values through the System MBean Browser. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
For more information about WS-AT and WS-Coordination, see Oracle Fusion Middleware Developer's Guide for Oracle Infrastructure Web Services and the WS-AT and WS-Coordination specifications, which are available at the following URL:
In addition to setting the WS-AT participation property, if a client calls a web service that is a BPEL process, for that web service to be enlisted in the caller's transaction, the callee BPEL process must have the transaction
property set in its composite.xml
file.
This setting ensures that, if an error occurs (such as a database adapter invocation failing due to an integrity constraint violation), a transaction rollback is successfully completed.
For more information about setting the transaction
property, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector" and Section 13.1.1, "Oracle BPEL Process Manager Transaction Semantics."
You can configure a web service binding component as either a service or reference to support WS-AT transactions from the Transaction Participation dropdown list of the Create Web Service dialog. WS-AT transactions are supported in composite-to-web service environments, or vice-versa, with the oracle.webservices.local.optimization
property set to false
.
WS-AT transactions are not supported in composite-to-composite calls, even with the oracle.webservices.local.optimization
property set to false
.
For more information about the oracle.webservices.local.optimization
property, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
The HTTP binding service enables you to integrate SOA composite applications with HTTP binding.
You drag the HTTP Binding service from the Component Palette into a swimlane of the SOA Composite Editor to invoke the HTTP Binding Wizard. This addition enables you to configure HTTP binding as follows:
Table 37-2 shows the supported verbs, payloads, and operations for the inbound and outbound directions.
Table 37-2 Supported Verbs, Payloads, and Operations
Direction | Verb | Payload Type | Operation | Supported? |
---|---|---|---|---|
Inbound | GET | URL-encoded | One-way | Yes |
Inbound | GET | URL-encoded | Request-response | Yes |
Inbound | GET | XML | One-way | No |
Inbound | GET | XML | Request-response | No |
Inbound | POST | URL-encoded | One-way | Yes |
Inbound | POST | URL-encoded | Request-response | Yes |
Inbound | POST | XML | One-way | Yes |
Inbound | POST | XML | Request-response | Yes |
Outbound | GET | URL-encoded | One-way | No |
Outbound | GET | URL-encoded | Request-response | Yes |
Outbound | GET | XML | One-way | No |
Outbound | GET | XML | Request-response | Yes |
Outbound | POST | URL-encoded | One-way | No |
Outbound | POST | URL-encoded | Request-response | Yes |
Outbound | POST | XML | One-way | No |
Outbound | POST | XML | Request-response | Yes |
Table 37-3 shows the supported XSD types for the inbound and outbound directions.
Table 37-3 Supported XSDs
Direction | XSD Type | Supported? |
---|---|---|
Inbound | Simple | Yes |
Inbound | Complex | No |
Inbound | Native | No |
Outbound | Simple | Yes |
Outbound | Complex | No |
Outbound | Native | No |
The following HTTP headers are not supported in either the inbound or outbound direction (that is, you cannot access HTTP headers in the composite and set them in the composite):
User-agent
Content-type
Content-length
Server
Server-port
Referrer
Authorization
MIME-Version
Location
You invoke the HTTP Binding Wizard to configure HTTP binding by dragging the HTTP Binding icon from the Component Palette. The HTTP Binding Component page of the wizard enables you to specify the operation type, verb, and payload type. Figure 37-3 provides details.
Figure 37-3 Create HTTP Binding Wizard - HTTP Binding Configuration Page
This page of the wizard enables you to select the following operation types for inbound HTTP binding:
For HTTP POST request methods, you can select a payload type of either URL-encoded (ampersand-separated name-value pairs) or XML.
For HTTP GET request methods, the payload type is URL-encoded.
For HTTP GET or POST request methods for reference binding components, you are also prompted to specify the endpoint URL. Support for HTTP authentication and secure socket layer (SSL) is also provided.
During the configuration process with the HTTP Binding Wizard, you have the option of browsing for an existing request message schema or defining your own schema with the links to the right of the URL field on the Messages page. Figure 37-4 provides details.
Figure 37-4 Create HTTP Binding Wizard - Messages Page
If you select to define your own schema, you are prompted to specify the element names, data types, min occurs value, and max occurs value in the Create Schema dialog. Figure 37-5 provides details.
Figure 37-5 Create HTTP Binding Wizard - Create Schema Page
At runtime, the concrete WSDL is generated with an HTTP binding and a SOAP binding; this is because the SOAP endpoint is used to provide HTTP support.
Inbound and outbound HTTP binding supports basic authentication. If you want to enable basic authentication for inbound HTTP binding, you must attach a security policy. Inbound HTTP binding can also be used without enabling basic authentication.
To enable basic authentication:
JCA adapters enable you to integrate services and references with the following technologies:
Dragging a JCA adapter into a swimlane of the SOA Composite Editor invokes the Adapter Configuration Wizard for specifying configuration properties.
The AQ adapter enables you to interact with a single consumer or multiconsumer queue.
Oracle Streams AQ provides a flexible mechanism for bidirectional, asynchronous communication between participating applications. Advanced queues are an Oracle database feature, and are therefore scalable and reliable. Multiple queues can also service a single application, partitioning messages in a variety of ways and providing another level of scalability through load balancing.
For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.
The database adapter enables a BPEL process to communicate with Oracle databases or third-party databases through JDBC.
For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.
The file adapter enables a BPEL process or Oracle Mediator to exchange (read and write) files on local file systems. The file contents can be in both XML and non-XML data formats.
Note: When calling the file adapter, Oracle BPEL Process Manager may process the same file twice when run against Oracle Real Application Clusters planned outages. This is because a file adapter is a non-XA compliant adapter. Therefore, when it participates in a global transaction, it may not follow the XA interface specification of processing each file only once. |
For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.
The FTP adapter enables a BPEL process or Oracle Mediator to exchange (read and write) files on remote file systems through use of the file transfer protocol (FTP). The file contents can be in both XML and non-XML data formats.
For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.
The JMS adapter enables an Oracle BPEL process or Oracle Mediator to interact with a Java Messaging System (JMS).
The JMS architecture uses one client interface to many messaging servers. The JMS model has two messaging domains:
For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.
The MQ adapter provides message exchange capabilities between BPEL processes and Oracle Mediator and the WebSphere MQ queuing systems.
The Messaging and Queuing Series (MQ Series) is a set of products and standards developed by IBM. MQ Series provides a queuing infrastructure that provides guaranteed message delivery, security, and priority-based messaging.
For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.
The socket adapter enables you to create a client or a server socket, and establish a connection. This adapter enables you to model standard or nonstandard protocols for communication over TCP/IP sockets. The transported data can be text or binary in format.
For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.
The third party adapter enables you to integrate third-party adapters such as PeopleSoft, SAP, and others into a SOA composite application. These third-party adapters produce artifacts (WSDLs and JCA files) that can configure a JCA adapter.
For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.
The Oracle applications adapter provides connectivity to Oracle Applications. The adapter supports all modules of Oracle Applications in Release 12 and Release 11i, including selecting custom integration interface types based on the version of Oracle E-Business Suite.
For more information, see Oracle Fusion Middleware Adapter for Oracle Applications User's Guide.
The Oracle BAM adapter enables you to integrate Java EE applications with Oracle BAM Server to send data.
Dragging an Oracle BAM adapter into a swimlane of the SOA Composite Editor invokes the Adapter Configuration Wizard for specifying configuration properties.
For more information, see Part X, "Using Oracle Business Activity Monitoring" and Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.
The Oracle B2B service enables you to browse B2B metadata in the MDS repository and select document definitions.
Oracle B2B is an e-commerce gateway that enables the secure and reliable exchange of transactions between an organization and its external trading partners. Oracle B2B and Oracle SOA Suite are designed for e-commerce business processes that require process orchestration, error mitigation, and data translation and transformation within an infrastructure that addresses the issues of security, compliance, visibility, and management.
Dragging Oracle B2B into a swimlane of the SOA Composite Editor invokes the B2B Configuration Wizard for specifying configuration properties.
For more information, see Oracle Fusion Middleware User's Guide for Oracle B2B.
The ADF-BC service enables you to integrate Oracle Application Development Framework (ADF) applications using service data objects (SDOs) with SOA composite applications.
Dragging an ADF-BC Service into a swimlane of the SOA Composite Editor invokes the Create ADF-BC Service dialog for specifying configuration properties.
For more information about ADF, see
The EJB service enables Enterprise JavaBeans and SOA composite applications to interact by passing SDO parameters (uses a WSDL file to define the interface) or Java interfaces (does not use a WSDL file to define the interface).
SDOs enable you to modify business data regardless of how it is physically accessed. Knowledge is not required about how to access a particular back-end data source to use SDO in a SOA composite application. Consequently, you can use static or dynamic programming styles and obtain connected and disconnected access.
Enterprise JavaBeans are server-side domain objects that fit into a standard component-based architecture for building enterprise applications with Java. These objects become distributed, transactional, and secure components.
Java interfaces eliminate the need for WSDL file definitions. This type of integration provides support with the following objects:
Dragging an EJB service into a swimlane of the SOA Composite Editor invokes the Create EJB Service dialog for specifying configuration properties.
For more information, see Chapter 38, "Integrating Enterprise JavaBeans with SOA Composite Applications."
The direct binding service uses the Direct Binding Invocation API to invoke a SOA composite application in the inbound direction and exchange messages over a remote method invocation (RMI). This option supports the propagation of both identities and transactions across JVMs and uses the T3 optimized path. Both synchronous and asynchronous invocation patterns are supported.
You can also invoke an Oracle Service Bus (OSB) flow or another SOA composite application in the outbound direction.
Dragging a direct binding service into a swimlane of the SOA Composite Editor invokes the Create Direct Binding Service dialog for specifying configuration properties.
For more information about direct binding, see Chapter 39, "Using the Direct Binding Invocation API."
For information about the Direct Binding Invocation API, see Oracle Fusion Middleware Infrastructure Management Java API Reference for Oracle SOA Suite.
For more information about OSB, see Oracle Fusion Middleware Developer's Guide for Oracle Service Bus.
You integrate a binding component with a SOA composite application by dragging it from the Component Palette.
Figure 37-6 shows a web service being dragged into the composite. This action invokes a dialog for specifying various configuration properties.
Figure 37-6 Integration of a Web Service Binding Component into a Composite
For more information about adding binding components, see Section 2.3, "Adding Service Binding Components" and Section 2.4, "Adding Reference Binding Components."
If a SOA composite application uses web service binding to define an endpoint reference, the composite cannot be invoked from a JSP/Java class. WS binding is defined with the binding.ws port="" location=""
tag in the composite.xml
file. Example 37-2 provides details.
Example 37-2 WS Binding Definition
Instead, use ADF binding. After deployment of the composite with ADF binding, invocation from a JSP/Java class is successful. Example 37-3 provides details.
This chapter describes how to integrate Enterprise JavaBeans with SOA composite applications through use of service data object (SDO) parameters or Java interfaces. It describes how to design an SDO-based Enterprise JavaBeans application, create an Enterprise JavaBeans service in Oracle JDeveloper, design an Enterprise JavaBeans client to invoke Oracle SOA Suite, specify Enterprise JavaBeans roles, and configure JNDI access.
This chapter includes the following sections:
There are two options for integrating Enterprise JavaBeans with SOA composite applications:
This chapter describes both options.
You can also use the spring service component to integrate Java interfaces with SOA composite applications. For information about using the spring service component, see Chapter 52, "Integrating the Spring Framework in SOA Composite Applications."
SDOs enable you to modify business data regardless of how it is physically accessed. Knowledge is not required about how to access a particular back-end data source to use SDOs in a SOA composite application. Consequently, you can use static or dynamic programming styles and obtain connected and disconnected access.
Enterprise JavaBeans are server-side domain objects that fit into a standard component-based architecture for building enterprise applications with Java. These objects become distributed, transactional, and secure components.
Many Oracle SOA Suite interfaces are described by WSDL files. Enterprise JavaBeans interfaces are described by Java interfaces. Invocations between the two are made possible in Oracle SOA Suite by an Enterprise JavaBeans Java interface that corresponds to an Oracle SOA Suite WSDL interface.
Through this interface, Oracle SOA Suite provides support for the following:
Figure 38-1 provides an overview.
Figure 38-1 SDO and Enterprise JavaBeans Binding Integration
You use the Create EJB Service dialog in Oracle JDeveloper to define this integration, as described in Section 38.3.1, "How to Integrate SDO-based Enterprise JavaBeans with SOA Composite Applications." This option requires the use of a WSDL file. Once complete, the WSDL interaction is defined in the composite.xml
file through the interface.wsdl
entry, as shown in Example 38-1.
You can also integrate Enterprise JavaBeans with Oracle SOA Suite through Java interfaces, therefore eliminating the need for WSDL file definitions. This type of integration provides support with the following objects:
Java interfaces differ from SDO interfaces, which are defined in a WSDL file because of the XML-centric nature of service components such as Oracle BPEL Process Manager, Oracle Mediator, and others. No SDO parameters are required when using Java interfaces.
You use the Create EJB Service dialog in Oracle JDeveloper to define this integration, as described in Section 38.3.2, "How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite Applications." This option does not require the use of a WSDL file. Once complete, the interaction is defined in the composite.xml
file through the interface.java
entry, as shown in Example 38-2.
Example 38-2 Java Interface Definition Through interface.java Entry
The Java class must be in the project's loader to be available to the user interface. The class must be in SCA-INF
to be deployed (not all JAR files in the project class path are deployed). This typically means that the class must be in the SCA-INF/classes
directory or in a JAR in the SCA-INF/lib
directory. However, it can also be an interface from the system class path.
For information about JAXB, see Oracle Fusion Middleware Developer's Guide for Oracle TopLink and Chapter 52, "Integrating the Spring Framework in SOA Composite Applications."
This section provides a high-level overview of the steps for designing an Enterprise JavaBeans application. For more information, see the following documentation:
Access the help by selecting Help > Table of Contents in Oracle JDeveloper.
Select one of the following options for creating SDO objects:
Use EclipseLink to create SDO objects. For instructions on installing, configuring, and using EclipseLink to create SDO objects, visit the following URL:
For more information, see the SDO for Enterprise JavaBeans/JPA topic in the Oracle JDeveloper online help (this includes instructions on how create to an SDO service interface).
To create a session bean and import the SDO objects:
Commonj.sdo.jar
file. JAR files can be added in the Libraries and Classpath dialog. This dialog is accessible by double-clicking the project and selecting Libraries and Classpath in the Project Properties dialog. You are now ready to design the logic. To create a profile and an EAR file:
An Enterprise JavaBeans bean must define the SDO types. Example 38-3 provides details.
Caution: Where to call |
Example 38-3 Definition of SDO Types
The weblogic-ejb-jar.xml
file is the descriptor file that must be added in the deployment jar. The weblogic-ejb-jar.xml
file is automatically created when you create a session bean. This file must be modified by adding the following entries shown in Example 38-4.
Example 38-4 weblogic-ejb-jar.xml File
Figure 38-2 provides a code example of a session bean with SDO logic defined:
Figure 38-2 Session Bean with Defined SDO Logic
To generate the WSDL file, the Enterprise JavaBeans interface must use the following web service annotations. Use of these annotations is described in JSR 224: Java API for XML-Based Web Services (JAX-WS) 2.0. Visit the following URL for details:
In addition, only a document/literal WSDL is currently supported by the Enterprise JavaBeans binding layer.
Table 38-1 describes the annotations to use.
Table 38-1 Annotations
Name | Description |
---|---|
| Customizes the mapping of an individual parameter to a web service message part and XML element. Both annotations are used to map SDO parameters to the correct XML element from the normalized message payload. |
| Denotes a method as a web service one-way operation that has only an input message and no output message. The Enterprise JavaBeans binding component does not expect any reply in this case. |
| Tells the Enterprise JavaBeans binding components whether the deserialized object must be unwrapped or whether a wrapper must be created before serialization. An Enterprise JavaBeans interface can be generated from an existing WSDL or obtained by some other means. If the WSDL does not exist, it can be generated. |
| Maps WSDL faults to Java exceptions. This annotation captures the fault element name used when marshalling the JAXB type generated from the global element referenced by the WSDL fault message. |
| Specifies the @PortableWebService(targetNamespace = "http://hello.demo.oracle/", serviceName = "HelloService") The |
Add appropriate method parameter annotations | Adds to control how message elements and types are mapped to the WSDL. For example, if your interface is in @WebMethod @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE) |
| Adds to the interface class to use the existing schema instead of a generated one. For example: @SDODatabinding(schemaLocation = "etc/HelloService.xsd") |
Example 38-5 provides an example of an Enterprise JavaBeans interface with annotations.
Example 38-5 Enterprise JavaBeans Interface with Annotations
This section describes how to create an Enterprise JavaBeans reference binding component or Enterprise JavaBeans service binding component in Oracle JDeveloper. The Enterprise JavaBeans service enables the Enterprise JavaBeans application to communicate with Oracle SOA Suite and Oracle SOA Suite to communicate with remote Enterprise JavaBeans.
This section describes how to create the following types of integrations:
You can create the following types of SDO-based Enterprise JavaBeans integrations with SOA composite applications:
To integrate SDO-based Enterprise JavaBeans with SOA composite applications:
See the step in Table 38-3 based on the swimlane in which you dragged the EJB Service.
Table 38-3 Swimlane Location
If You Dragged the EJB Service to this Swimlane... | Then Go To... |
---|---|
External References | |
Exposed Services | |
View the Create EJB Service dialog that displays in the External References swimlane, as shown in Figure 38-3.
Figure 38-3 Create EJB Service in External References Swimlane
View the Create EJB Service dialog that displays in the Exposed Services swimlane, as shown in Figure 38-4.
Figure 38-4 Create EJB Service in Exposed Services Swimlane
Table 38-4 Create EJB Service Dialog
Field | Value |
---|---|
Name | Accept the default value or enter a different name. |
Type | Displays the following value:
|
Version | Select the version of EJB to support: EJB2 or EJB3 (the default selection). Note: This field only displays if you dragged the EJB Service icon into the External References swimlane. |
Interface | Select WSDL. |
JNDI Name | Note: This field only displays if you dragged the EJB Service icon into the External References swimlane. Enter the JNDI name of your Enterprise JavaBeans. |
Jar File | Click the Search icon to select the EJB JAR file created in Section 38.2, "Designing an SDO-Based Enterprise JavaBeans Application." The SOA Resource Browser dialog searches for and displays JAR files starting in the Note: If you select a JAR file outside of the current project, Oracle JDeveloper creates a copy of the JAR file in the SCA-INF/lib directory of the current project. When prompted, click OK to accept. |
Java Interface | Click the Browse icon to invoke the Class Browser dialog for selecting the fully qualified Java class name of the previously created Enterprise JavaBeans interface. This class must exist in the selected JAR file. If a JAR file is not specified, it is assumed that the class is in the Note: If you use the Jar File field, you do not need to add a new JAR file to the project by selecting Project Properties > Libraries and Classpath > Add JAR/Directory from the Application main menu. |
WSDL URL | Note: Ensure that you have created the annotations for the Enterprise JavaBeans interface before generating the WSDL file, as described in Section 38.2.5, "How to Use Web Service Annotations." Click the second icon to the right to generate a WSDL file that represents the Enterprise JavaBeans interface. If you created SDO objects through Oracle JDeveloper, as described in Section 38.2.1, "How to Create SDO Objects Using the SDO Compiler," ensure that you select the WSDL file that was automatically generated with this option. |
Port Type | Select the port type. |
Callback Port Type | Select the callback port type (for asynchronous services). |
You can create the following types of Java interface-based Enterprise JavaBeans integrations with SOA composite applications:
To integrate Java interface-based Enterprise JavaBeans with SOA composite applications:
Figure 38-5 Create EJB Service for Java Interface
Table 38-5 Create EJB Service Dialog
Field | Value |
---|---|
Name | Accept the default value or enter a different name. |
Type | Displays the following value:
|
Version | Select the version of EJB to support: EJB2 or EJB3 (the default selection). Note: This field only displays if you dragged the EJB Service icon into the External References swimlane. |
Interface | Select Java. |
JNDI Name | Enter the JNDI name of your Enterprise JavaBeans. |
Jar File | Click the Search icon to select the EJB JAR file created in Section 38.2, "Designing an SDO-Based Enterprise JavaBeans Application." The SOA Resource Browser dialog searches for and displays JAR files starting in the Note: If you select a JAR file outside of the current project, Oracle JDeveloper creates a copy of the JAR file in the SCA-INF/lib directory of the current project. When prompted, click OK to accept. |
Java Interface | Select one of the following options.
|
To invoke an SDO - Enterprise JavaBeans service from Enterprise JavaBeans, you must use the client library. Follow these guidelines to design an Enterprise JavaBeans client.
SOAServiceInvokerBean
from the JNDI tree. SOAServiceFactory
and ask the factory to return a proxy for the Enterprise JavaBeans service interface. fabric-ejbClient.jar
or the fabric-runtime.jar
file located in the Oracle JDeveloper home directory or Oracle WebLogic Server) in the Enterprise JavaBeans client application. For example, the fabric-runtime.jar
file can be located in the JDev_Home
\jdeveloper\soa\modules\oracle.soa.fabric_11.1.1
directory. If the Enterprise JavaBeans application is running in a different JVM than Oracle SOA Suite, the Enterprise JavaBeans application must reference the ejbClient
library.
Example 38-6 provides an example.
Example 38-6 Enterprise JavaBeans Client Code
To specify role names required to invoke SOA composite applications from any Java EE application, you add the roles names in the Enterprise JavaBeans service configuration. The Enterprise JavaBeans service checks to see if the caller principal has the security role. Example 38-7 provides details.
Example 38-7 Enterprise JavaBeans Roles
This section describes two methods for configuring JNDI access.
Follow these guidelines to configure JNDI access.
EJBBC
binding component map. The map
property is optional if you use EJBBC
. For security reasons, the JNDI security credentials must be stored in a CSF store and referenced as shown in Example 38-8. Example 38-8 Environment Variables for Enterprise JavaBeans Reference
The security credential can also be stored in the credential store framework. For more information, see Oracle Fusion Middleware Security Guide.
If you create your own credential store framework (CSF) map instead of using the default Enterprise JavaBeans BC CSF map, you must modify the Domain_Home
/config/fmwconfig/
system-jazn.data.xml
file and add the permission shown in Example 38-9 to the entry for the fabric-runtime.jar
permission grant.
Example 38-9 Permission to Add
You must then restart Oracle WebLogic Server.
For more information on CSF, see Oracle Fusion Middleware Security Guide.
This chapter describes the Direct Binding Invocation API and how to invoke a SOA composite application. It describes how to create an inbound direct binding service, how to create an outbound direct binding reference, and how to set an identity for J2SE clients invoking direct binding. Samples of using the Direct Binding Invocation API are also provided.
This chapter includes the following sections:
A common way to invoke a composite is to use SOAP over HTTP. This is enabled by creating a SOAP service for your composite using web service binding. However, you can also use direct binding, which provides a tighter integration alternative. Direct binding enables Java clients to directly invoke composite services, bypassing the intermediate conversion to XML required with web service binding.
Direct binding provides two types of invocation styles:
The direct service binding component allows an external client to send messages using the Direct Binding Invocation API, where the Direct Binding Invocation API takes the JNDI connection parameters and creates a connection object on behalf of the client.
The direct reference binding component provides support for sending SOA messages directly to external services over RMI. These external services must implement the SOA invocation API (the same as the direct inbound invocation API).
In the case of direct outbound binding, the connection object is created with the JNDI name of the external service bean configured for the binding.
Direct binding must be associated with the interface.wsdl
, providing the interface clause and, optionally, the callbackInterface
clause. The associated WSDL must be imported into the composite.
The service binding component also publishes a modified version of the WSDL that advertises the direct binding.
A sample configuration using the direct service binding component is shown in Example 39-1.
Example 39-1 Direct Service Binding Component
The direct reference binding component requires the following information to connect to a user-provided SOA invoker:
A set of properties that defines the DirectConnection
for the end service.
ConnectionFactory
class name: The ConnectionFactory
class must implement the oracle.soa.api.invocation.DirectConnectFactory
interface.
This address value is not processed by the binding component, but is passed on to the service bean during invocation.
AddressingVersion
(optional): The default addressing version used is 2005/08
.
useSSLForCallback
: Use SSL for the callback JNDI connection. If this flag is set to true
, then the WSA replyTo
header instructs the service to call back at an SSL JNDI port.
A sample configuration is shown in Example 39-2.
Example 39-2 Sample Configuration
The direct binding components support both synchronous and asynchronous invocation patterns. Figure 39-1 describes a sample synchronous invocation pattern and Figure 39-2 describes a sample asynchronous invocation pattern.
Figure 39-1 Sample Synchronous Invocation Patterns
Figure 39-2 Sample Asynchronous Invocation Pattern
The different packages used in the Direct Binding Invocation API are as follows:
oracle.soa.management.facade.Locator
The oracle.soa.management.facade.Locator
interface exposes a method, createConnection
, which returns a direct connection. The Locator
exposes the method shown in Example 39-3 for returning the DirectConnection
.
Example 39-3 oracle.soa.management.facade.Locator
You can use the LocatorFactory
implementation to obtain the DirectConnection
, as shown in Example 39-4.
Example 39-4 LocatorFactory Implementation
oracle.soa.api.invocation.DirectConnection
The DirectConnection
interface invokes a composite service using direct binding. For more information, see Oracle Fusion Middleware Infrastructure Management Java API Reference for Oracle SOA Suite.
oracle.soa.api.message.Message
The Message
interface encapsulates the data exchanged. For more information, see Oracle Fusion Middleware Infrastructure Management Java API Reference for Oracle SOA Suite.
Direct binding also supports the synchronous direct invocation with the usage of the method shown in Example 39-5.
Asynchronous invocation relies on the WS-Addressing headers set on the message instance. All headers must adhere to the WS-Addressing specification.
The Direct Binding Invocation API allows the clients to specify the WS-Addressing ReplyTo
SOAP header to communicate a destination by which they can receive responses.
Note: The supported addressing version includes: |
An example of the WS-Addressing header used for asynchronous invocation is shown in Example 39-6.
Example 39-6 WS-Addressing Header
Note: You must qualify the callback and its property elements properly with the SOA direct namespace. |
The direct binding component is responsible for parsing the addressing headers set on the message instance. In this example, there are two headers: wsa:MessageID
and wsa:ReplyTo
. The service binding component makes the following properties available for the internal SOA components:
tracking.conversationId
= D6202742-D9D9-4023-8167-EF0AB81042E
replyToAddress
= sb://testserver:9001/callback
replyToReferenceParameter
: element of WSA:ReferenceParameters
The service paths used with the Direct Binding Invocation API follow the SOA direct address pattern:
soadirect:/CompositeDN/serviceName
, where CompositeDN
stands for composite distinguished name In the SOA direct address, the CompositeDN
has the following form:
domainName/compositeName[!compositeVersion[*label]]
Direct binding supports the SOA transaction propagation feature. You can invoke this feature from the client in the following ways:
The Direct Binding component in Oracle JDeveloper, as shown in Figure 39-3, provides support for exchanging SOA messages with SOA over RMI.
Oracle JDeveloper supports creating a direct service binding and a direct reference binding that invokes either an Oracle Service Bus or another SOA composite.
Note: For a client to invoke composite services over direct binding, its class path must include both |
For more information about the Direct Binding Invocation API, see Section 39.2, "Introduction to the Direct Binding Invocation API."
You can invoke a SOA composite application using the Direct Binding option in Oracle JDeveloper.
To create an inbound direct binding service:
Table 39-1 Direct Binding Service Dialog Fields and Values
Field | Value |
---|---|
Name | Enter a name. |
Type | Select Service from the list. |
Reference Target | This field is disabled when defining this service in the Exposed Services swimlane. |
WSDL URL | The URL location of the WSDL file. If you have an existing WSDL, then click the Find Existing WSDLs option. Otherwise, click Generate WSDL from schema(s). |
Port Type | The port type of the WSDL file. You must select a port from the list. |
Callback Port Type | The callback port type for asynchronous processes. |
Use SSL For Callback | Select to use SSL for the callback. |
Address | This field is automatically populated when the WSDL is concrete and it has at least one binding that is direct. |
Provider URL | This field is automatically populated when the WSDL is concrete and it has at least one binding that is direct. |
Use local JNDI Provider | Select to use the local JNDI provider. |
copy wsdl and its dependent artifacts into the project | Deselect this checkbox. If you select this checkbox, the local copies of the WSDL file may result in synchronization issues if a remote WSDL is updated. |
When complete, the Create Direct Binding dialog appears as shown in Figure 39-4.
The direct binding service displays in the SOA Composite Editor shown in Figure 39-5. The single arrow in a circle indicates that this is a synchronous, one-way, direct binding component.
You can create an outbound direct binding reference, using the Direct Binding option in Oracle JDeveloper, to either invoke a composite application or an Oracle Service Bus.
To create an outbound direct binding reference:
Table 39-2 Direct Binding Service Dialog Fields and Values
Field | Value |
---|---|
Name | Enter a name. |
Type | Select Reference from the list. |
Reference Target | Select the reference target on which you want the direct binding service to operate:
|
WSDL URL | The URL location of the WSDL file. If you have an existing WSDL, then click the Find Existing WSDLs option. |
Port Type | The port type of the WSDL file. You must select a port from the list. |
Callback Port Type | The callback port type for asynchronous processes. |
Use SSL For Callback | Select to use SSL for the callback. |
Address | This field is automatically populated when you select a concrete WSDL URL and port type. However, you must manually populate this field if a nonconcrete WSDL is provided. |
Provider URL | This field is automatically populated when you select a concrete WSDL URL and port type. However, you must manually populate this field if a nonconcrete WSDL is provided. |
Use local JNDI Provider | Select to use the local JNDI provider. |
copy wsdl and its dependent artifacts into the project | Deselect this checkbox. If you select this checkbox, the local copies of the WSDL file may result in synchronization issues if a remote WSDL is updated. |
When complete, the Create Direct Binding dialog appears as shown in Figure 39-6. For more information about using the Oracle SOA Suite services with Oracle Service Bus, see the Oracle SOA Suite Transport (SOA-DIRECT) chapter in Oracle Fusion Middleware Developer's Guide for Oracle Service Bus.
The direct binding reference displays in the designer shown in Figure 39-7. The single arrow in a circle indicates that this is a synchronous, one-way direct binding reference component.
J2SE clients can set an identity while invoking direct binding, as shown in Example 39-7.
Example 39-7 Identity Setup for J2SE Clients Invoking Direct Binding
If one SOA composite application invokes another SOA composite application on another host through direct binding, and both composites are on hosts with the same server name and domain name, the invocation fails.
This is because the Oracle WebLogic Server transaction subsystem requires the domain names and server names to be different for transaction management to work properly. The transaction subsystem uses these names to track the location of a server related to a transaction. If the two servers in the invocation have the same name, the transaction subsystem can mistakenly confuse the two servers.
Ensure that you use hosts with separate server names and domain names.
Example 39-8 through Example 39-10 provide some examples of how the API is used. This section describes how the connection parameter can invoke SOA composite applications over direct binding and how message objects can be modified to invoke a direct binding invocation.
Example 39-8 Usage of a Connection Parameter
Example 39-9 Usage of Messages
Example 39-10 Usage of LocatorFactory and DirectConnection Creation
This part describes functionality that can be used by multiple service components.
This part contains the following chapters:
This chapter describes how to use the XSLT Mapper to create, design, and test data transformations between source schema elements and target schema elements in either Oracle BPEL Process Manager or Oracle Mediator. Samples of creating a data transformation are also provided. Version 1.0 of XSLT is supported.
This chapter includes the following sections:
For information on invoking the XSLT Mapper from Oracle BPEL Process Manager, see Section 40.2.1, "How to Create an XSL Map File in Oracle BPEL Process Manager." For information on invoking the XSLT Mapper from Oracle Mediator, see Section 40.2.3, "How to Create an XSL Map File in Oracle Mediator."
You use the XSLT Mapper to create the contents of a map file. Figure 40-1 shows the layout of the XSLT Mapper.
The Source and the Target schemas are represented as trees and the nodes in the trees are represented using a variety of icons. The displayed icon reflects the schema or property of the node. For example:
The various properties of the element and attribute are displayed in the Property Inspector in the lower right of the XSLT Mapper when the element or attribute is selected (for example, type, cardinality, and so on). The Component Palette in the upper right of Figure 40-1 is the container for all functions provided by the XSLT Mapper. The XSLT Mapper is the actual drawing area for dropping functions and connecting them to source and target nodes.
When an XSLT map is first created, the target tree shows the element and attribute structure of the target XSD. An XSLT map is created by inserting XSLT constructs and XPath expressions into the target tree at appropriate positions. When executed, the XSLT map generates the appropriate elements and attributes in the target XSD.
Editing can be done in design view or source view. When a map is first created, you are in design view. Design view provides a graphical display and enables editing of the map. To see the text representation of the XSLT being created, switch to source view. To switch views, click the Source or Design tabs at the bottom of the XSLT Mapper.
While in design view, the following pages from the Component Palette can be used:
Note: The following functions are only available with Oracle Mediator, and not Oracle BPEL Process Manager, in the XSLT Mapper.
For Oracle BPEL Process Manager, you can use these functions in an assign activity. |
While in source view, the XML and the http://www.w3.org/1999/XSL/Transform pages can be used.
The XSLT Mapper provides three separate context sensitive menus:
Right-click each of the three separate panels to see what the context menus look like.
By default, design view shows all defined prefixes for all nodes in the source and target trees. You can elect not to display prefixes by selecting Hide Prefixes from the context menu in the center panel of the design view. After prefixes are hidden, select Show Prefixes to display them again.
It is important to understand how design view representation of the map relates to the generated XSLT in source view. This section provides a brief example.
After creating an initial map, the XSLT Mapper displays a graphical representation of the source and target schemas, as shown in Figure 40-2.
At this point, no target fields are mapped. Switching to source view displays an empty XSLT map. XSLT statements are built graphically in design view, and XSLT text is then generated. For example, design view mapping is shown in Figure 40-3.
The design view results in the generation of the following XSLT statements in source view:
value-of
statement in the XSLT, as shown in Example 40-1. Example 40-3 for-each Construct
The line linking Item in the source tree to the for-each construct in the target tree in Figure 40-3 determines the XPath expression used in the for-each select attribute. In general, XSLT constructs have a select or test attribute that is populated by an XPath statement typically referencing a source tree element.
The XPath expressions in the value-of statements beneath the for-each construct are relative to the XPath referenced in the for-each. In general, the XSLT Mapper creates relative paths within for-each statements.
If you must create an absolute path within a for-each construct, you must do this within source view. When switching back to design view, it is remembered that the path is absolute and the XSLT Mapper does not modify it.
Note: In Example 40-3, the fields <xsl:if test="ProductName"> <ProductName> <xsl:value-of select="ProductName"/> </ProductName> </xsl:if> |
The entire XSLT map generated for this example is shown in Example 40-4:
Example 40-4 Entire XSLT Map
Subsequent sections of this chapter describe how to link source and target elements, add XSLT constructs, and create XPath expressions in design view.
Example 40-5 Duplicate Name Error Messages
Duplicate nodes can be created in design view by surrounding each duplicate node with a for-each statement that executes once.
Transformations are performed in an XSL map file in which you map source schema elements to target schema elements. This section describes methods for creating the XSL map file.
A transform activity enables you to create a transformation using the XSLT Mapper in Oracle BPEL Process Manager. This tool enables you to map one or more source elements to target elements. For example, you can map incoming source purchase order schema data to outgoing invoice schema data.
To create an XSL map file in Oracle BPEL Process Manager:
The Transform dialog shown in Figure 40-5 appears.
Note: You can select multiple input variables. The first variable defined represents the main XML input to the XSL map. Additional variables that are added here are defined in the XSL map as input parameters. |
The XSLT Mapper appears.
Note: If you select a file with a |
The following steps provide a high level overview of how to create an XSL map in Oracle BPEL Process Manager using a po.xsd
file and invoice.xsd
file.
To create an XSL map file from imported source and target schema files in Oracle BPEL Process Manager:
The New Gallery dialog appears.
The Create XSL Map File dialog appears. This dialog enables you to create an XSL map file that maps a root element of a source schema file or Web Services Description Language (WSDL) file to a root element of a target schema file or WSDL file. Note the following details:
Enter a name for the XSL map file in the File Name field.
A new XSL map is created, as shown in Figure 40-7.
Note: You can select multiple input variables. The first variable defined represents the main XML input to the XSL map. Additional variables that are added here are defined in the XSL map as input parameters. |
The XSLT Mapper displays your XSL map file.
The XSLT Mapper enables you to create an XSL file to transform data from one XML schema to another in Oracle Mediator. After you define an XSL file, you can reuse it in multiple routing rule specifications. This section provides an overview of creating a transformation map XSL file with the XSLT Mapper.
The XSLT Mapper is available from the Application Navigator in Oracle JDeveloper by clicking an XSL file or from the Mediator Editor by clicking the transformation icon, as described in the following steps. You can either create a new transformation map or update an existing one.
To launch the XSLT Mapper from the Mediator Editor and create or update a data transformation XSL file, follow these steps.
To create an XSL map file in the Mediator Editor:
The transformation map icon is visible in the routing rules panel.
To the right of the Transform Using field shown in Figure 40-8, click the appropriate transformation map icon to open the Transformation Map dialog.
The appropriate Transformation Map dialog displays with options for selecting an existing transformation map (XSL) file or creating a new map file. For example, if you select the transformation map icon in the Synchronous Reply section, the dialog shown in Figure 40-9 appears.
Figure 40-9 Reply Transformation Map Dialog
If the routing rule includes a synchronous reply or fault, the Reply Transformation Map dialog or Fault Transformation Map dialog contains the Include Request in the Reply Payload option. When you enable this option, you can obtain information from the request message. The request message and the reply and fault message can consist of multiple parts, meaning you can have multiple source schemas. Callback and callback timeout transformations can also consist of multiple parts.
Each message part includes a variable. For a reply transformation, the reply message includes a schema for the main part (the first part encountered) and an in.partname variable for each subsequent part. The include request message includes an initial.partname variable for each part.
For example, assume the main reply part is the out1.HoustonStoreProduct schema and the reply also includes two other parts that are handled as variables, in.HoustonStoreProduct and in.HoustonStoreProduct2. The request message includes three parts that are handled as the variables initial.expense, initial.expense2, and initial.expense3. Figure 40-10 provides an example.
Figure 40-11 provides an example.
Figure 40-11 Request Transformation Map Dialog
If you chose Create New Mapper File, the XSLT Mapper opens to enable you to correlate source schema elements to target schema elements.
XSL file errors do not display during a transformation at runtime if you manually remove all existing mapping entries from an XSL file except for the basic format data. Ensure that you always specify mapping entries. For example, assume you perform the following actions:
While the file can still be compiled, the XSL mapping is now invalid.
During instance creation, an exception error occurs when the write operation fails because it did not receive any input. However, no errors are displayed during XSL transformation.
If you import a SOA archive exported from Oracle Enterprise Manager Fusion Middleware Control into Oracle JDeveloper by selecting File > Import > SOA Archive Into SOA Project, you cannot open any XSL map files because the map headers have been removed.
As a work around, perform the following steps:
The Create XSL Map File From XSL Stylesheet appears.
Transformation_new
.xsl
). Transformation_old.xsl
). Transformation_old.xsl
). Transformation_new.xslt
to Transformation_old.xsl
). If you design a SOA composite application to pass a payload through Oracle Mediator without defining any transformation mapping or assigning any values, Oracle Mediator passes the payload through. However, for the payload to be passed through successfully, the source and target message part names must be the same and of the same type. Otherwise, the target reference may fail to execute with error messages such as Input
source
like
Null
or Part
not
found
.
The XML representation from an XSL file may differ from that used in a scenario in which a message is passed through with a transformation being performed or in which an assign activity is used, even though the XMLs are syntactically and semantically the same. For example, if you use a mediator service component to map an inbound payload that includes an element without a namespace to an outbound payload, you may receive an empty namespace tag in the output message.
This is the correct behavior. A blank namespace, xmlns=""
, is automatically added.
The following sections describe how to use the XSLT Mapper in Oracle BPEL Process Manager or Oracle Mediator.
You can add additional sources to an existing XSLT map. These sources are defined as global parameters and have schema files defining their structure. Multiple source documents may be required in certain instances depending upon the logic of the map. For instance, to produce an invoice, the map may need access to both a purchase order and a customer data document as input.
XSL has no knowledge of BPEL variables. When you add multiple sources in XSL design time, ensure that you also add these multiple sources in the transform activity of a BPEL process.
To add additional sources:
The Add Source dialog shown in Figure 40-13 appears.
The Type Chooser dialog appears.
The schema definition appears in the Source Schema section of the Create Source as Parameter dialog.
The selected schema is imported and the parameter appears in the source panel above the main source. The parameter can be expanded as shown in Figure 40-14 to view the structure of the underlying schema.
The parameter can be referenced in XPath expressions by prefacing it with a $. For example, a parameter named CUST appears as $CUST in an XPath expression. Nodes under the parameter can also be referenced (for example, $CUST/customer/Header/customerid).
To copy an attribute or leaf-element in the source to an attribute or leaf-element in the target, drag the source to the target. For example, copy the element PurchaseOrder/ID to Invoice/ID and the attribute PurchaseOrder/OrderDate to Invoice/InvoiceDate, as shown in Figure 40-15.
Perform the following steps to set a constant value.
To set constant values:
A menu provides the following selections:
The Set Text dialog appears.
A T icon is displayed next to the node that has text associated with it. The beginning of the text that is entered is shown next to the node name.
For more information about the fields, see the online Help for the Set Text dialog.
In addition to the standard XPath 1.0 functions, the XSLT Mapper provides many prebuilt extension functions and can support user-defined functions and named templates. The extension functions are prefixed with oraext or orcl and mimic XPath 2.0 functions.
Perform the following steps to view function definitions and use a function.
To add functions:
www.w3.org
. To edit the parameters of any function, double-click the function icon to launch the Edit Function dialog. For example, to add a new comma parameter so that the output of the concat function used in the previous example is Last, First, then click Add to add a comma and reorder the parameters to get this output. Figure 40-19 provides details.
For more information about how to add, remove, and reorder function parameters, see the online Help for the Edit Function dialog.
Complex expressions can be built by chaining functions (that is, mapping the output of one function to the input of another). For example, to remove all leading and trailing spaces from the output of the concat function, perform the following steps:
Chaining can also be performed by dragging and dropping a function onto a connecting link.
Some complicated mapping logic cannot be represented or achieved by visual mappings. For these situations, named templates are useful. Named templates enable you to share common mapping logic. You can define the common mapping logic as a named template and then use it as often as you want.
You can define named templates in two ways:
The templates you define appear in the User Defined Named Templates list of the User Defined page in the Component Palette. You can use named templates in almost the same way as you use other functions. The only difference is that you cannot link the output of a named template to a function or another named template; you can only link its output to a target node in the target tree.
To create named templates, you must be familiar with the XSLT language. See any XSLT book or visit the following URL for details about writing named templates:
For more information about including templates defined in external files, see Section 40.3.6.7, "Including External Templates with xsl:include."
You can create and import a user-defined Java function if you have complex functionality that cannot be performed in XSLT or with XPath expressions.
Follow these steps to create and use your own functions. External, user-defined functions can be necessary when logic is too complex to perform within the XSL map.
To import user-defined functions:
The XSLT Mapper extension functions are coded differently than the Oracle BPEL Process Manager extension functions. Two examples are provided in the SampleExtensionFunctions.java
file of the mapper-107-extension-functions
sample scenario. Example 40-6 provides the text for these functions. To download these and other samples, see the Oracle SOA Suite samples.
Each function must be declared as a static function. Input parameters and the returned value must be declared as one of the following types:
java.lang.String
int
float
double
boolean
oracle.xml.parser.v2.XMLNodeList
oracle.xml.parser.v2.XMLDocumentFragment
Example 40-6 XSLT Mapper Extension Functions
This file must have the name ext-mapper-xpath-functions-config.xml
. See Section B.7, "Creating User-Defined XPath Extension Functions" for more information on the format of this file. The file shown in Example 40-7 represents the functions toKilograms
and replaceChar
as they are coded in Example 40-6.
Example 40-7 XML Extension Function Configuration File
Some additional rules apply to the definitions of XSLT extension functions:
sample
and http://www.oracle.com/XSL/Transform/java/oracle.sample.Sam pleExtensionFunctions
. http://www.oracle.com/XSL/Transform/java/
for extension functions to work with the Oracle XSLT processor. oracle.sample.SampleExtensionFunctions
, must be the fully qualified name of the Java class that implements the extension functions. META-INF
directory for the JAR file. For the example in this section, the directory structure is as follows with the oracle
and META-INF
directories added to a JAR file: oracle
sample
(contains the class file) META-INF
ext-mapper-xpath-functions-config.xml
The JAR file must then be registered with Oracle JDeveloper.
New functions appear in the Component Palette under the User Defined page in the User Defined Extension Functions group.
To use an XPath expression in a transformation mapping, select the Advanced page and then the Advanced Function group from the Component Palette and drag xpath-expression from the list into the XSLT Mapper. This is shown in Figure 40-21.
When you double-click the icon, the Edit XPath Expression dialog appears, as shown in Figure 40-22. You can press Ctrl+Space to invoke the XPath Building Assistant.
Figure 40-22 Edit XPath Expression Dialog
Figure 40-23 shows the XPath Building Assistant.
Figure 40-23 The XPath Building Assistant
For more information about using the XPath Building Assistant, see the online Help for the Edit XPath Expression dialog and Section B.6, "Building XPath Expressions in Oracle JDeveloper."
While mapping complex schemas, it is essential to be able to add XSLT constructs. For instance, you may need to create a node in the target when a particular condition exists; this requires the use of an xsl:if
statement or an xsl:choose
statement. You may also need to loop over a node-set
in the source such as a list of items in a sales order and create nodes in the target XML for each item in the sales order; this requires the use of an xsl:for-each
statement. The XSLT Mapper provides XSLT constructs for performing these and other tasks.
There are two ways to add XSLT constructs such as for-each, if, or choose to the target XSLT tree:
To add XSLT constructs from the Component Palette:
Figure 40-24 XSLT Constructs Available Through the Component Palette
To add XSLT constructs through the context menu on the target tree:
Figure 40-25 XSLT Constructs in Available Through the Context Menu
The XSLT construct is inserted. In most cases, an error icon initially appears next to the construct. This indicates that the construct requires an XPath expression to be defined for it.
In the case of the for-each construct, for example, an XPath expression defines the node set over which the for-each statement loops. In the case of the if construct, the XPath expression defines a boolean expression that is evaluated to determine if the contents of the if construct are executed.
The XPath expression can be created in the same manner as mapping elements and attributes in the target tree. The following methods create an underlying XPath expression in the XSLT. You can perform all of these methods on XSLT constructs in the target tree to set their XPath expressions:
The following sections describe specific steps for inserting each supported XSLT construct.
In Figure 40-26, HQAccount and BranchAccount are part of a choice in the PurchaseOrder schema; only one of them exists in an actual instance. To illustrate conditional mapping, copy PurchaseOrder/HQAccount/AccountNumber to Invoice/BilledToAccount/AccountNumber, only if it exists.
To use conditional processing with xsl:if:
Figure 40-26 shows the results.
Figure 40-26 Conditional Processing with xsl:if
When mapping an optional source node to an optional target node, it is important to surround the mapping with an xsl:if
statement that tests for the existence of the source node. If this is not done and the source node does not exist in the input document, an empty node is created in the target document. For example, note the mapping shown in Example 40-8:
Example 40-8 Statement Without xsl:If
If the ProductName
field is optional in both the source and target and the element does not exist in the source document, then an empty ProductName
element is created in the target document. To avoid this situation, add an if
statement to test for the existence of the source node before the target node is created, as shown in Example 40-9:
In this same example, you can copy PurchaseOrder/HQAccount/AccountNumber to Invoice/BilledToAccount/AccountNumber, if it exists. Otherwise, copy PurchaseOrder/BranchAccount to Invoice/BilledToAccount/AccountNumber.
To use conditional processing with xsl:choose:
Figure 40-27 shows the results.
Figure 40-27 Conditional Processing with xsl:choose
The XSLT Mapper enables you to create loops with the xsl:for-each command. For example, copy PurchaseOrder/Items/HighPriorityItems/Item to Invoice/ShippedItems/Item.
To create loops with xsl:for-each:
Figure 40-28 shows the results.
Figure 40-28 Creating Loops with xsl:for-each
Notes:
|
You can create additional loops by cloning an existing xsl:for-each. For example, copy all LowPriorityItems to ShippedItems, in addition to HighPriorityItems.
To clone xsl:for-each:
This inserts a copy of the for-each node beneath the original for-each.
The XSLT Mapper enables you to add xsl:sort statements to xsl:for-each commands.
To add an xsl:sort statement:
A context menu appears.
You may need to use the XSLT copy-of construct to copy a node, along with any child nodes, from the source to the target tree. This is typically done when working with anyType or any element nodes. The anyType and any element and attribute nodes cannot be mapped directly. Use copy-of or element and type substitution.
To copy nodes with xsl:copy-of:
If the node is not an any element node, a dialog appears requesting you to either replace the selected node or replace the children of the selected node.
If you select Replace the selected node with the copy-of, a processing directive is created immediately following the copy-of in the XSL indicating which node is replaced by the copy-of. Without the processing directive in the XSL, the conversion back to design view is interpreted incorrectly. For this reason, do not remove or edit this processing instruction while in source view.
Note: Always create the copy-of command in design view so that the correct processing directive can be created in the XSLT Mapper to indicate the correct placement of the copy-of command in the target tree. |
WARNING: The XSLT Mapper does not currently validate the mapping of data performed through use of the copy-of command. You must ensure that copy-of is used to correctly map elements to the target tree so that the target XML document contains valid data. You can test the validity by using the test tool. |
You can reuse templates that are defined in external XSL files by including them in the current map with an include statement.
To include external templates with xsl:include:
A dialog prompts you for the include file name.
The file is copied to the same project directory as the existing map file. A relative path name is created for it and the include statement instruction is inserted in the target tree.
The include file can only contain named template definitions. These are parsed and available to you in design view of the Component Palette under the User Defined Named Templates category in the User Defined page.
Note: An |
Mapping nonleaf nodes starts the auto map feature. The system automatically tries to link all relevant nodes under the selected source and target. Try the auto map feature by mapping PurchaseOrder/ShipTo/Address to Invoice/ShippedTo/Address. All nodes under Address are automatically mapped, as shown in Figure 40-30.
The behavior of the auto map can be tuned by altering the settings in Oracle JDeveloper preferences or by right-clicking the XSLT Mapper and selecting Auto Map Preferences. This displays the dialog shown in Figure 40-31.
This dialog enables you to customize your auto mapping as follows:
For more information on the fields, see the online Help for the Auto Map Preferences dialog.
Follow these instructions to see potential source mapping candidates for a target node.
To automatically map nodes:
The Auto Map dialog appears, as shown in Figure 40-32.
For more information on the fields, see the online Help for the Auto Map dialog.
When the Confirm Auto Map Results checkbox shown in Figure 40-31 is selected, a confirmation dialog appears. If matches are found, the potential source-to-target mappings detected by the XSLT Mapper are displayed, as shown in Figure 40-33. The dialog enables you to filter one or more mappings.
For more information about the fields, see the online Help for the Auto Map dialog.
The automatic mapping algorithm depends on existing maps between source and target nodes. When maps exist between source and target nodes before executing automatic mapping, these existing maps are used to define valid synonyms that are used by the algorithm.
For example, assume you have a simple source and target tree, each with two elements called test1 and test2, as shown in Figure 40-34.
Figure 40-34 Source and Target Tree with Two Elements
If no nodes are mapped, the automatic mapping algorithm does not match the names test1 and test2. However, if mapping exists between the test1 and test2 nodes, the algorithm predefines the names test1 and test2 as synonyms for any additional mapping.
In the example in Figure 40-34, if you drag the exampleElement from the source to the target, the automatic mapping algorithm maps the test1 node in the source to the test2 node in the target because your map previously linked those two names. This results in the map shown in Figure 40-35:
Figure 40-35 Results of Dragging exampleElement
You can view a list of target nodes that are currently unmapped to source nodes.
To view unmapped target nodes:
This dialog provides statistics at the bottom about the number of unmapped target nodes. This dialog enables you to identify and correct any unmapped nodes before you test your transformation mapping logic on the Test XSL Map dialog.
Note: Nodes are marked as required in the Completion Status dialog based on the XSD definition for a node. It is possible that a node marked as required is not actually required for a specific mapping if a parent node of the required node is optional and is not part of the XSL mapping. |
Figure 40-36 provides an example of the Completion Status dialog.
A dictionary is an XML file used by automatic mapping. It contains synonyms for field names. For instance, assume that the element QtyOrdered should map to the element Quantity. The element names QtyOrdered and Quantity are then synonyms for one another. If this mapping commonly appears from one map to another, it is a good practice to save these synonyms in a dictionary file. After being saved, they can be reapplied to another map using automatic mapping.
A dictionary can be created from any existing XSL map and can contain all mappings that are not automatically generated by the XSLT Mapper for the existing map.
To generate and use dictionaries:
Note: Because dictionary entries are dependent upon the current automatic mapping settings, you must make a note of those settings for future use. To later reapply a dictionary mapping, it is best to set the automatic mapping preferences to those that were in effect at the time the dictionary was created. Therefore, it is important to note the automatic mapping settings at the time the dictionary is created. |
This prompts you for the dictionary name and the directory in which to place the dictionary.
For more information about automatic mapping, see Section 40.3.7, "How to Automatically Map Nodes."
You cannot create a dictionary for mappings in which functions are used. In these cases, the dictionary XML instructions are missing for the elements that were automatically mapped or which had an XPath function mapping. For example, assume you use string functions to map XSDs during design time. If you right-click the center panel of the XSLT Mapper and select Generate Dictionary, the dictionary is created, but instructions are not created in all places in which the string functions were used during mapping.
You can create a dictionary for simple type mappings.
You can create map parameters and variables. You create map parameters in the source tree and map variables in the target tree.
Note the following issues:
To create a map parameter:
The Add Parameter dialog shown in Figure 40-37 appears.
discount
with a numeric default value of 0.0
is specified. To create a map variable:
The Add Variable dialog shown in Figure 40-38 appears.
Since variables appear in the target tree, their XPath expression can be set in the same manner as other XSLT constructs in the target tree after inserting the variable. Therefore, the only required information in this dialog is a name for the variable. To set content for the variable, you must enter it through this dialog. Content is handled differently from the XSLT select
attribute on the variable.
The variable is added to the target tree at the position selected. The variable initially has a warning icon beside it. This indicates that its select XPath statement is undefined. Define the XPath through linking a source node, creating a function, or defining an explicit XPath expression as done for other target elements and XSLT constructs.
You can search source and target nodes. For example, you can search in a source node named invoice for all occurrences of the subnode named price.
To search source and target nodes:
The Find Node dialog shown in Figure 40-39 is displayed.
The first match found is highlighted, and the Find dialog closes. If no matches are found, a message displays on-screen.
Note: You cannot search on functions or text values set with the Set Text option. |
There are five options for controlling the generation of empty elements in the target XSL:
Set these options as follows:
Select Tools > Preferences > XSL Maps. The global setting applies only when a map is created.
Select XSL Generation Options from the map context menu. Each map can then be set independently by setting the options at the map level.
Empty elements are then generated for the selected unmapped nodes. If the unmapped node is nillable, it is generated with xsi:nil="true"
.
When the XSLT Mapper encounters any elements in the XSLT document that cannot be found in the source or target schema, it cannot process them and displays an Invalid Source Node Path
error. XSL map generation fails. You can create and import a file that directs the XSLT Mapper to ignore and preserve these specific elements during XSLT parsing by selecting Preferences > XSL Maps in the Tools main menu of Oracle JDeveloper.
For example, preprocessing may create elements named myElement
and myOtherElementWithNS
that you want the XSLT Mapper to ignore when it creates the graphical representation of the XSLT document. You create and import a file with these elements to ignore that includes the syntax shown in Example 40-10.
Example 40-10 File with Elements to Ignore
You must restart Oracle JDeveloper after importing the file.
You can replace the map source or target schema that currently displays in the XSLT Mapper.
To replace a schema in the XSLT Mapper:
This opens the Type Chooser dialog shown in Figure 40-40, which enables you to select the new source or target schema to use.
You are then prompted to select to clear expressions in the current map.
You can substitute elements and types in the source and target trees.
Use element substitution when:
any
element. Any global element defined in the schema can be substituted. Use type substitution when:
anyType
. Any global type defined in the schema can then be substituted. Type substitution is supported by use of the xsi:type
attribute in XML.
To substitute an element or type in the source and target trees:
The Substitute Element or Type dialog shown in Figure 40-41 appears.
Figure 40-41 Substitute Element or Type Dialog
A list of global types or elements that can be substituted displays in the dialog.
The element or type is substituted for the originally selected element. This selection displays differently depending upon whether this is a type or element substitution and this is the source or target tree.
The xsi:type attribute is added beneath the original element, as shown in Figure 40-42. It is disabled in design view and set to the type value that was selected. An S icon displays to indicate the node was substituted. You can map to any structural elements in the substituted type.
Figure 40-42 If the Element is in the Target Tree and Type Substitution is Selected
The xsi:type attribute is added beneath the original element, as shown in Figure 40-43. An S icon is displayed to indicate the node was substituted. You can map from any structural elements in the substituted type.
Figure 40-43 If the Element is in the Source Tree and Type Substitution is Selected
The original element is replaced in the tree with the substituted element, as shown in Figure 40-44. A comment indicates that the original element name was added and an S icon displays to indicate the node was substituted. You may map to any structural elements in the substituted element.
Figure 40-44 If the Element is in the Target Tree and Element Substitution is Selected
The original element and its possible replacement both display in the source tree under a new node named <Element Substitution>, as shown in Figure 40-45. An S icon displays to indicate that the node was added. This feature enables you to build a map where the source object can contain either the original node or a substituted node. You can map to any structural elements in the substituted element.
Figure 40-45 If the Element is in the Source Tree and Element Substitution is Selected
Note: Unlike element substitution, only one type substitution at a time can display in the source tree. This does not prevent you from writing a map that allows the source to sometimes have the original type or the substituted type; you can switch to another type at any time. XPath expressions that map to nodes that may not be visible in the source tree at any given time are still retained. |
All nodes where substitution is possible are marked with an * icon, as shown in Figure 40-46.
The XSLT Mapper provides a test tool to test the style sheet or map. The test tool can be invoked by selecting the Test menu item, as shown in Figure 40-47.
The Test XSL Map dialog shown in Figure 40-48 enables you to test the transformation mapping logic you designed with the XSLT Mapper. The test settings you specify are stored and do not need to be entered again the next time you test. Test settings must be entered again if you close and reopen Oracle JDeveloper.
To test the transformation mapping logic:
When you click OK, the source XML file is validated. If validation passes, transformation occurs, and the target XML file is created.
If validation fails, no transformation occurs and a message displays on-screen.
If the map has defined parameters, the Parameters With Schema or Parameters Without Schema table can appear.
The test results shown in Figure 40-49 appear.
For this example, the source XML and target XML display side-by-side with the XSL map underneath (the default setting). Additional source XML files corresponding to the Parameters With Schema table are displayed as tabs in the same area as the main source file. You can right-click an editor and select Validate XML to validate the source or target XML against the map source or target XSD schema.
Note: If the XSL map file contains domain value map (DVM) and cross reference (XREF) XPath functions, it cannot be tested. These functions cannot be executed during design time; they can only be executed during runtime. |
You can generate an HTML report with the following information:
Follow these instructions to generate a report.
The Generate Report dialog appears, as shown in Figure 40-50. If the map has defined parameters, the appropriate parameter tables appear.
For more information about the fields, see the online Help for the Generate Report dialog.
If you attempt to generate a report and receive an out-of-memory error, increase the heap size of the JVM as follows.
To increase the JVM heap size:
JDev_Oracle_Home
\jdev\bin\jdev.conf
file. 1024
): In addition, you can also unselect the Open Report option on the Generate Report dialog before generating the report.
You can customize sample XML generation by specifying the following parameters. Select Preferences > XSL Maps in the Tools main menu of Oracle JDeveloper to display the Preferences dialog.
Specifies how many occurrences of an element are created if the element has the attribute maxOccurs
set to a value greater than 1
. If the specified value is greater than the value of the maxOccurs
attribute for a particular element, the number of occurrences created for that particular element is the maxOccurs
value, not the specified number.
If selected, any optional element (its attribute minOccurs
set to a value of 0
) is generated the same way as any required element (its attribute minOccurs
set to a value greater than 0
).
To avoid the occurrence of recursion in sample XML generation caused by optional elements, specify a maximum depth in the XML document hierarchy tree beyond which no optional elements are generated.
This sample demonstrates the following features of the XSLT mapper:
xsl:sort
and xsl:copy-of
In addition to this sample, Oracle provides other transformation samples that are available for download from the Oracle Technology Network (OTN). These samples are described in Table 40-2. To access these samples, see the Oracle SOA Suite samples.
Table 40-2 Transformation Samples
Sample | Description |
---|---|
mapper-101-basic-mapping | Demonstrates creation and basic editing of an XSLT map. |
mapper-102-import-and-test | Demonstrates the following XSL mapper features:
|
mapper-104-auto-mapping | Demonstrates the automatic mapping feature of the XSLT Mapper. |
mapper-105-multiple-sources | Demonstrates the use of multiple sources. The following topics are also covered in the process of creating the map sample.
|
mapper-107-extension-functions | Demonstrates the use of user-defined extension functions. |
mapper-108-substitution-mapping | Demonstrates the use of element substitution when:
|
mapper-109-whats-new | Demonstrates new 11g features in the XSLT Mapper. These features are described in Section 40.5.1, "Opening the Application" through Section 40.5.7, "Testing the Map." |
You first create the sample application. When complete, the application matches the one provided in the WhatsNewApplication
directory described in Step 1.
Download sample mapper-109-whats-new
from OTN.
The sample includes the following files and directories:
artifacts/schemas/po.xsd
and Attachment.xsd
: source schemas artifacts/schemas/invoice.xsd
and ReasonCodes.xsd
: target schemas artifacts/application
: starting application for this sample WhatsNewApplication
directory: completed sample map artifacts/application
folder to a separate work area. WhatsNewApplication.jws
in the artifacts/application
folder you copied to a separate area. The WhatsNewApplication displays in the Application Navigator.
You now create a new XSLT map with two sources that is invoked from the BPEL process included in the WhatsNewApplication application.
Po2Invoice
. This variable contains the purchase order that is input to the BPEL process.
xsl/Po2Invoice
. The XSLT Mapper opens.
You now use type and element substitutions to map the purchase order items to the invoice items.
To map to the Item element, you must first indicate which type the element takes in the final XML output.
The Substitute Element or Type dialog appears.
The Item element structure is filled out. The xsi:type attribute sets the type of the Item element in the target XML.
Note: If you view invoice.xsd, ShippedItemType is derived from the abstract type ItemType, which is the type of the Item element. |
When complete, the Item elements in your map now look as shown in Figure 40-52:
Figure 40-52 Item Elements in XSLT Mapper
You now use the information in the additional source variable, DiscontinuedList, to eliminate items that have been discontinued. If the product name for an item is in DiscontinuedList, then that item cannot be shipped and is not placed in the final shipped item list.
The if statement must test if a discontinued product exists in DiscontinuedList with the name of the current item. The item is added only to the shipped items if it is not in DiscontinuedList. There are many ways to define the test expression for the if statement. One way is described in the following steps.
The Add Variable dialog appears.
DelimitedList
. In the following steps, this variable is set to a string with a delimited list of discontinued product names. The variable is added with a warning icon next to it.
|
") character. The input source is referenced in XPath expressions with $DiscontinuedList. This source is referenced as an input parameter in XPath expressions.
To set the XPath expression for the if statement, drag the contains function from the String section of the Component Palette to the center panel.
Drag the not function from the Logical Functions section of the Component Palette to the shaded area surrounding the contains function you added in Step 3.
The map file now looks as shown in Figure 40-53.
You now map a substituted shipping contact element in the source to the ShippedTo element in the target.
This element has an error icon next to it.
In this situation, you must perform an element substitution to map the element.
The Substitute Element or Type dialog is displayed with a list of elements in the substitution group of the abstract element Contact.
This is the element that you expect in the input XML. The structure of the ShipToContact element is now displayed in the source tree.
Note the similarity in field names here, indicating that the automatic mapper can be used.
The copy-of statement is added and the original any element is grayed out. This indicates that it is to be replaced by the nodes selected by the copy-of statement.
The Sort Edit dialog appears.
This sets the field on which to sort.
An XSL map can be tested independently from the BPEL process in Oracle JDeveloper using the XSLT Mapper. XML files can be input for each source input to the map.
The Test XSL Map dialog appears after a warning dialog. The warning indicates that you can test the map by creating your own sample input XML. The sample XML generator cannot generate sample data for the source tree substitutions.
A sample input XML file is provided: artifacts/xml/POInput.xml.
A second sample file has been created with discontinued item data. This file is artifacts/xml/DiscontinuedItems.xml.
A PO2Invoice-Target.xml file is generated by the execution of the map. Note the use of xsi:type attributes, the Attachments node created by the copy-of statement, and the ordering of items caused by the sort statement in the PO2Invoice-Target.xml file.
This chapter describes how to subscribe to or publish business events from Oracle Mediator or a BPEL process in a SOA composite application. Business events consist of message data sent as the result of an occurrence in a business environment. When a business event is published, other service components can subscribe to it.s
This chapter includes the following sections:
For samples that show how to use business events with Oracle Mediator, see the Oracle SOA Suite samples.
For information about creating composite sensors on service components that subscribe to business events, see Section 50, "Defining Composite Sensors."
For information about troubleshooting business events, see Appendix "Troubleshooting Oracle SOA Suite" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can raise business events when a situation of interest occurs. For example, in a loan flow scenario, a BPEL process service component executing a loan process can raise a loan completed event at the completion of the process. Other systems within the infrastructure of this application can listen for these events and, upon receipt of one instance of an event:
Business events are typically a one-way, fire-and-forget, asynchronous way to send a notification of a business occurrence. The business process does not:
These are important distinctions between business events and direct service invocations that rely on the Web Services Description Language (WSDL) file contract (for example, a SOAP service client). If the author of the event depends on the receiver of the event, then messaging typically must be accomplished through service invocation rather than through a business event. Unlike direct service invocation, the business event separates the client from the server.
A business event is defined using the event definition language (EDL). EDL is a schema used to build business event definitions. Applications work with instances of the business event definition.
EDL consists of the following:
Typically a Java package name (for example, com.acme.ExpenseReport.created
), though this is not required.
The most common use for a definition is an XML Schema (XSD). The payload of a business event is defined using an XSD. The schema URI is contained in the root element of the payload.
Example 41-1 shows an EDL file with two business events in the BugReport
event definition: bugUpdated
and bugCreated
. The namespace (BugReport
) and associated schema file (BugReport.xsd
) are referenced.
Example 41-1 EDL File with Two Business Events
These two events are available for subscription in Oracle Mediator.
Business events are deployed to the metadata service (MDS) repository. Deploying a business event to MDS along with its artifacts (for example, the XSDs) is known as publishing the EDL (or event definition). This action transfers the EDL and its artifacts to a shared area in MDS. An object in an MDS shared area is visible to all applications in the Resource Palette of Oracle JDeveloper. After an EDL is published, it can be subscribed to by other applications. EDLs cannot be unpublished; the definition always exists.
A subscription is for a specific qualified name (QName) (for example, x.y.z/newOrders
). A QName is a tuple (URI
, localName
) that may be derived from a string prefix:localName
with a namespace declaration such as xmlns:prefix=URI
or a namespace context. In addition, subscriptions can be further narrowed down by using content-based filters.
Business events are published in the Event Delivery Network (EDN). The EDN runs within every SOA instance. Raised events are delivered by EDN to the subscribing service components. Oracle Mediator service components and BPEL process service components can subscribe to and publish events.
The EDN has two different implementations:
If you are using an Oracle database, Oracle recommends that you use EDN-DB instead of EDN-JMS.
A single SOA composite application instance can reside in a single container or can be clustered across multiple containers. Another application (for example, an Oracle Application Development Framework (ADF) Business Component application) can be configured to run in the same container as the SOA composite application instance or in a different container.
Raising an event from a Java EE application can be done through a local event connection or a remote event connection:
If the publisher resides on the same Oracle WebLogic Server as the application and the publisher uses a local business event connection factory, the event is raised through a local event connection. In this scenario, synchronous subscriptions are executed synchronously.
If the caller resides in a different container (different JVM) then the application, the event is raised through a remote event connection. Only asynchronous subscriptions are supported for remote event connections.
You can also raise events through PL/SQL APIs.
If another application (for example, an Oracle ADF Business Component application) is configured to run in the same container as the SOA composite application, it is optimized to use local event connections. The boundary for events is the application instance. When an event is raised in the application instance, subscriptions registered in the application instance are executed. Events are not propagated from one application instance to another. Propagation can be achieved through an Oracle Mediator in both instances, which listens for events and publishes them to a JMS queue.
This section provides a high-level overview of how to create and subscribe to a business event. In this scenario, a business event named NewOrderSubmitted is created when a user places an order in a store front application (StoreFrontService service). You then create an Oracle Mediator service component to subscribe to this business event.
To create a business event:
The Event Definition Creation dialog appears.
Table 41-1 Event Definition Creation Wizard Fields and Values
Field | Value |
---|---|
Event Definition Name | Enter a name. Note: Do not enter a forward slash (|
Directory | Displays the directory path. |
Namespace | Accept the default namespace or enter a value for the namespace in which to place the event. |
The Add an Event dialog appears.
The added event now appears in the Events section, as shown in Figure 41-4.
Figure 41-4 Event Definition Creation Dialog
event_definition_name
.edl
to close the editor. The business event is published to MDS and you are returned to the SOA Composite Editor. The business event displays for browsing in the Resource Palette.
This section describes how to subscribe to a business event or publish a business event from an Oracle Mediator service component.
To subscribe to a business event:
The window is refreshed to display an events table.
The Event Chooser window appears.
You are returned to the Create Mediator dialog.
Events are delivered to the subscriber in its own global (that is, JTA) transaction. Any changes made by the subscriber within that transaction are committed after the event processing is complete. If the subscriber fails, the transaction is rolled back. Failed events are retried a configured number of times.
Events are delivered to the subscriber asynchronously without a global transaction. The subscriber can choose to create its own local transaction for processing, but it is committed independently of the rest of the event processing. The event is guaranteed to be handed to the subscriber, but because there is no global transaction, there is a possibility that a system failure can cause an event to be delivered more than once. If the subscriber throws an exception (or fails in any way), the exception is logged, but the event is not resent.
Events are delivered to the subscriber in the same global transaction and same thread as the publisher. The publish call does not return until all immediate subscribers have completed processing. If any subscribers throw an exception, no additional subscribers are invoked and an exception is thrown to the publisher. The transaction is rolled back in case of any error during immediate processing.
When the expression logic is satisfied, the event is accepted for delivery.
For more information about filters, see Section 20.3.2.8, "How to Specify an Expression for Filtering Messages."
Figure 41-5 shows the Create Mediator dialog.
Figure 41-6 shows an icon on the left side that indicates that Oracle Mediator is configured for an event subscription.
Figure 41-6 Configuration for Event Subscription
The source code in Example 41-2 provides details about the subscribed event of the Oracle Mediator service component.
Example 41-2 Subscribed Event
While not explicitly demonstrated in this example, you can define XPath filters on events. In Example 41-3, the event is accepted for delivery only if the initial deposit is greater than 50000
:
Example 41-3 Definition of XPath Filters on Events
Subscribers in nondefault revisions of SOA composite applications can still get business events. For example, note the following behavior:
Oracle Mediator M2 writes the output to two files with the same content in the directory. As expected, Oracle Mediator M3 picks up the event and writes the output successfully to another directory. However, Oracle Mediator M2 (from revision 1) is also picking up and processing the published event from revision 2 of the composite application. Therefore, it creates one more output file in the same directory.
You can create a second Oracle Mediator to publish the event that you subscribed to in Section 41.3.1, "How to Subscribe to a Business Event."
To publish a business event:
This section describes how to configure a foreign JNDI Provider when the publishing application (for example, an ADF EAR file) is deployed on the administration server instead of the SOA server.
To configure a foreign JNDI provider to enable administration server applications to publish events to the SOA Server:
In the Name field, enter a name (for example, SOA_JNDI
), and click Next.
Table 41-2 Configuration Details
Field | Description |
---|---|
Initial Context Factory | Enter |
Provider URL | Enter |
User | Enter the Oracle WebLogic Server user name. |
Password and Confirm Password | Enter the password for the Oracle WebLogic Server user name. |
FMW_Home
/user_projects/domains/
domain_name
/bin/setDomainEnv.sh
file for Linux (or setDomainEnv.bat
file for Windows) as follows: The following JNDI configuration changes are required when the EDN implementation is JMS-based (EDN-JMS). In these scenarios, a generic JMS queue is used as the back-end store. These changes enable the remote client (for example, the ADF application client) to look up the connection factory before publishing events.
To configure JMS-based EDN Implementations
You must remove the EDN-DB JNDI sources to use EDN-JMS data sources.
jdbc/EDNDataSource
If the event publisher is in an application (for example, ADF) running in a different cluster or even in a different domain from the SOA server for EDN, you must configure a foreign JNDI provider with the local JNDI names for the cluster mapping to JNDI names targeted to the SOA Infrastructure. Local and remote JNDI names are the same in the links.
Enter a name, then specify the local and remote JNDI name of jms/fabric/EDNConnectionFactory
.
jms/fabric/xaEDNConnectionFactory
.Repeat Step 12, and specify a name and the local and remote JNDI name of jms/fabric/EDNQueue
. Once complete, three links are created.
If you do not make these configuration changes, errors similar to those shown in Example 41-4 occur.
Example 41-4 EDN-JMS Error Messages
Two Oracle Mediator service components appear in Example 41-5. One service component (OrderPendingEvent
) subscribes to the event and the other service component (PublishOrderPendingEvent
) publishes the event.
Example 41-5 Event Subscription and Publication
This section describes how to subscribe to a business event or publish a business event from a BPEL process service component.
To subscribe to a business event:
The BPEL process service component is created.
Note: The onMessage branch of a pick activity can also be set up to receive events from the EDN. For more information about the onMessage branch, see Section 15.2, "Creating a Pick Activity to Select Between Continuing a Process or Waiting." |
The Event Chooser dialog appears, as shown in Figure 41-8.
You are returned to the Subscribed Events dialog.
Events are delivered to the subscriber in its own global (that is, JTA) transaction. Any changes made by the subscriber within that transaction are committed after the event processing is complete. If the subscriber fails, the transaction is rolled back. Failed events are retried a configured number of times.
Events are delivered to the subscriber asynchronously without a global transaction. The subscriber can choose to create its own local transaction for processing, but it is committed independently of the rest of the event processing. The event is guaranteed to be handed to the subscriber, but because there is no global transaction, there is a possibility that a system failure can cause an event to be delivered more than once. If the subscriber throws an exception (or fails in any way), the exception is logged, but the event is not resent.
Events are delivered to the subscriber in the same global transaction and same thread as the publisher. The publish call does not return until all immediate subscribers have completed processing. If any subscribers throw an exception, no additional subscribers are invoked and an exception is thrown to the publisher. The transaction is rolled back in case of any error during immediate processing.
When the expression logic is satisfied, the event is accepted for delivery.
Note: Optionally, you can select the Create Instance checkbox, if this receive activity is the initiating receive activity that starts the BPEL process service component instance. This action enables creation of a new BPEL process service component instance for every invocation. If this receive activity is a midprocess receive activity in which the BPEL instance is already started, then this receive activity waits for another event to continue the execution of this BPEL instance. |
Figure 41-9 shows a BPEL process service component that is configured for event subscription.
Figure 41-9 BPEL Process Service component Configuration for Event Subscription
To publish a business event:
You are returned to the Invoke dialog.
Figure 41-10 shows a BPEL process service component that is configured for an event subscription and publication. The blue lightning bolt in the circle on the left side indicates event subscription. The yellow lightning bolt in the circle on the right side indicates event publication. Clicking the blue arrow inside the title changes it to display the title of the published event.
Figure 41-10 BPEL Process Service Component Configuration for Event Subscription and Publishing
The source code in Example 41-6 shows how the composite.xml
source changes for the subscribed and published events of a BPEL process service component.
Example 41-6 Event Subscription and Publication
While not explicitly demonstrated in this example, you can define XPath filters on events. A filter is typically present in event subscriptions (the subscribe
element limits the type of event to which this service component is subscribed, and the filter
section further limits the event to specific content in which the component is interested). In Example 41-7, the event is accepted for delivery only if the initial deposit is greater than 50000
.
Example 41-7 Definition of XPath Filters on Events
The standard BPEL activities such as receive, invoke, onMessage, and onEvent (in BPEL 2.0) are extended with an extra attribute bpelx:eventName
, so that the BPEL process service component can receive events from the EDN event bus. The schema for the eventName
attribute is shown in Example 41-8:
Example 41-8 The Schema for the Eventname Attribute
Example 41-9 shows how the eventName
attribute is used in the BPEL source file:
Example 41-9 BPEL Source Code Using eventName Attribute
If the bpelx:eventName
attribute is used in a receive, invoke, onMessage, or onEvent (in BPEL 2.0) element, then the standard attributes such as partnerLink
, operation
, or portType
attributes are not present. This is because the existence of the bpelx:eventName
attribute shows that the activity is only interested in receiving events from the EDN event bus or publishing events to the EDN event bus.
The XSD file for the BPEL process service component is slightly modified, so that the partnerLink
, operation
, and portType
attributes are no longer mandatory. The Oracle JDeveloper validation logic should enforce the presence of either the bpelx:eventName
attribute or the partnerLink
, operation
, and portType
attributes, but not both. Example 41-10 shows the modified schema definition of a BPEL receive activity.
Example 41-10 Schema Definition of a BPEL Receive Activity
The schema definition for the invoke and onMessage activities are modified similarly.
Subscribers in nondefault revisions of SOA composite applications can still get business events. For example, note the following behavior:
Service component S2 writes the output to two files with the same content in the directory. As expected, service component S3 picks up the event and writes the output successfully to another directory. However, service component S2 (from revision 1) also picks up and processes the published event from revision 2 of the composite application. Therefore, it creates one more output file in the same directory.
This section provides a high-level overview of how to integrate Oracle ADF Business Component event conditions with SOA components. The SOA components include Mediator service components and BPEL process service components.
To integrate Oracle ADF Business Component business events with SOA Components:
Add a business event definition to the project. This action generates an EDL file and an XSD file. The XSD file contains the definition of the payload. Ensure also that you specify that the event be raised by the Oracle ADF Business Component upon creation.
For more information about creating and publishing Oracle ADF Business Component business events, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
SOA composite application design is now complete.
This part describes how to complete design of your application.
This part contains the following chapters:
This chapter describes how to attach policies to binding components and service components during design-time in SOA composite applications. It also describes how to how to override policy configuration property values.
This chapter includes the following sections:
Oracle Fusion Middleware uses a policy-based model to manage and secure Web services across an organization. Policies apply security to the delivery of messages. Policies can be managed by both developers in a design-time environment and system administrators in a runtime environment.
Policies are comprised of one or more assertions. A policy assertion is the smallest unit of a policy that performs a specific action. Policy assertions are executed on the request message and the response message, and the same set of assertions is executed on both types of messages. The assertions are executed in the order in which they appear in the policy.
Table 42-1 describes the supported policy categories.
Table 42-1 Supported Policy Categories
Category | Description |
---|---|
Message Transmission Optimization Mechanism (MTOM) | Ensures that attachments are in MTOM format. This format enables binary data to be sent to and from web services. This reduces the transmission size on the wire. |
Reliability | Supports the WS-Reliable Messaging protocol. This guarantees the end-to-end delivery of messages. |
Addressing | Verifies that simple object access protocol (SOAP) messages include WS-Addressing headers in conformance with the WS-Addressing specification. Transport-level data is included in the XML message rather than relying on the network-level transport to convey this information. |
Security | Implements the WS-Security 1.0 and 1.1 standards. They enforce authentication and authorization of users. identity propagation, and message protection (message integrity and message confidentiality). |
Management | Logs request, response, and fault messages to a message log. Management policies can also include custom policies. |
Within each category there are one or more policy types that you can attach. For example, if you select the reliability category, the following types are available for selection:
Supports version 1.0 of the Web Services Reliable Messaging protocol
Supports version 1.1 of the Web Services Reliable Messaging protocol
Supports the disabling of a globally attached Web Services Reliable Messaging policy
For more information about available policies, details about which ones to use in your environment, and global policies, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
You can attach or detach policies to and from service binding components, service components, and reference binding components in a SOA composite application. Use Oracle JDeveloper to attach policies for testing security in a design-time environment. When your application is ready for deployment to a production environment, you can attach or detach runtime policies in Oracle Enterprise Manager Fusion Middleware Control.
For more information about runtime management of policies, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
To attach a policy to a service or reference binding component:
Depending upon the interface definition of your SOA composite application, you may be prompted with an additional menu of options.
Select the type of binding to use:
Select the request binding for the service component with which to bind. You can only select a single request binding. This action enables communication between the binding component and the service component.
When request binding is configured for a service in the Exposed Services swimlane, the service acts as the server. When request binding is configured for a reference in the External References swimlane, the reference acts as the client.
Select the callback binding for the service component with which to bind. This action enables message communication between the binding component and the service component. You can only select a single callback binding.
When callback binding is configured for a service in the Exposed Services swimlane, the service acts as the client. When callback binding is configured for a reference in the External References swimlane, the reference acts as the server.
The Configure SOA WS Policies dialog shown in Figure 42-1 appears. For this example, the For Request option was selected for a service binding component. The same types of policy categories are also available if you select For Callback.
Figure 42-1 Configure SOA WS Policies Dialog
Click the Add icon for the type of policy to attach:
For this example, Security is selected. The dialog shown in Figure 42-2 is displayed.
You are returned to the Configure SOA WS Policies dialog shown in Figure 42-3. The attached security policy displays in the Security section.
You can temporarily disable a policy by deselecting the checkbox to the left of the name of the attached policy. This action does not detach the policy.
You are returned to the SOA Composite Editor.
To attach a policy to a service component:
The Configure SOA WS Policies dialog shown in Figure 42-4 appears.
Figure 42-4 Configure SOA WS Policies Dialog
The dialog for your selection appears.
For information about attaching policies during runtime in Oracle Enterprise Manager Fusion Middleware Control, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Your environment may include multiple clients or servers with the same policies. However, each client or server may have their own specific policy requirements. You can override the policy property values based on your runtime requirements.
You can override the default values of client policy configuration properties on a per client basis without creating new policies for each client. In this way, you can override client policies that define default configuration values and customize those values based on your runtime requirements.
The Edit icon is enabled for both sections. Figure 42-5 provides details.
The overriding value is reflected with the property name
attribute in the composite.xml
file, as shown in Example 42-1.
Example 42-1 Client Policy Override Value in composite.xml File
For more information about overriding policy settings, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
You can override the default values of server policy configuration properties on a per server basis without creating new policies for each server. In this way, you can override server policies that define default configuration values and customize those values based on your runtime requirements.
The Edit icon is not enabled by default for both sections. You must explicitly select a policy to enable this icon. This is because you can override fewer property values for the server. Figure 42-7 provides details.
no
property
store
found
in
the
store
display in red in the Value column. The overriding value is reflected with the OverrideProperty
attribute in the composite.xml
file, as shown in Example 42-2.
Example 42-2 Server Policy Override Value in composite.xml File
For more information about overriding policy settings, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
This chapter describes the deployment life cycle of SOA composite applications. Deployment prerequisite, packaging, preparation, and configuration tasks are described. It also describes how to deploy composites with Oracle JDeveloper and the ant
scripting tool and create configuration plans for moving SOA composite applications to and from different environments. A reference to documentation for deploying with the WebLogic Scripting Tool (WLST) utility is also provided.
This chapter includes the following sections:
See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for instructions on deploying SOA composite applications from Oracle Enterprise Manager Fusion Middleware Control and Oracle Fusion Middleware WebLogic Scripting Tool Command Reference for instructions on deploying SOA composite applications with the WLST utility.
This chapter describes the following deployment life cycle topics:
For more information about the deployment life cycle, see Oracle Fusion Middleware Administrator's Guide.
This section describes the basic prerequisites required for creating and deploying a SOA composite application.
Oracle SOA Suite components require schemas that must be installed in the Oracle or Microsoft SQL Server database. You create and load these schemas in your database with the Repository Creation Utility (RCU). For information about installing and configuring your schemas, see Oracle Fusion Middleware Installation Guide for Oracle SOA Suite and Oracle Business Process Management Suite and Oracle Fusion Middleware Repository Creation Utility User's Guide.
After installation, you use the Oracle Fusion Middleware Configuration Wizard to create and configure a new Oracle WebLogic Server domain, and choose products such as Oracle SOA Suite to configure in that domain. This new domain contains the administration server and other managed servers, depending on the products you choose to configure.For more information, see Oracle Fusion Middleware Installation Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can deploy a SOA composite application into a clustered environment. For more information on creating and configuring a clustered environment, see Oracle Fusion Middleware High Availability Guide.
You can separately package all required artifact files within a project of a SOA composite application into a SOA archive (SAR) JAR file though use of the following tools:
During deployment on the Deployment Action page, you select the Deploy to SAR option. For more information, see Section 43.7.1.1.3, "Deploying the Profile."
ant
scripts Use the ant-sca-package
script to package your artifacts. For more information, see Section 43.7.5.2.3, "Packaging a SOA Composite Application into a Composite SAR File."
Use the sca_package
script to package your artifacts. For more information, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.
A SAR file is a special JAR file that requires a prefix of sca_
(for example, sca_HelloWorld_rev1.0.jar
).
In addition, when you deploy a SOA composite application with the Deploy to Application Server option on the Deployment Action page in Oracle JDeveloper, all required artifact files within a project are automatically packaged into one of the following files:
For more information about self-contained composites, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper" and Section 43.7.2, "Deploying Multiple SOA Composite Applications in Oracle JDeveloper."
You can deploy and use shared metadata across SOA composite applications. Shared metadata is deployed to the SOA Infrastructure on the application server as a metadata service (MDS) archive JAR file. The archive file contains all shared resources. For more information, see Section 43.7.3, "Deploying and Using Shared Metadata Across SOA Composite Applications in Oracle JDeveloper."
When you deploy a SOA composite application in Oracle JDeveloper, the composite is packaged in a JAR file (for a single composite application) or a ZIP file (for multiple SOA composite applications). These files can include the following artifacts:
/apps
namespace. When you refer to this artifact in Oracle JDeveloper using a SOA-MDS connection, the URL is prefixed with oramds
. The target environment is the SOA Infrastructure environment to which you want to deploy your SOA composite application. This is typically a development, test, or production environment. Depending upon the components, identity service provider, and security policies you are using in your composite application, additional configuration steps may be required as you move your application from one target environment to another. This section describes these tasks.
A JDBC data source is an object bound to the JNDI tree that includes a pool of JDBC connections. Applications can look up a data source on the JNDI tree and then reserve a database connection from the data source. You create queues in which to enqueue outgoing messages or dequeue incoming messages. The Oracle JCA adapters listed in Table 43-1 require JDBC data sources and queues to be configured before deployment.
Table 43-1 Oracle JCA Adapter Tasks
Adapter | Configuration Task | See Section... |
---|---|---|
Database adapter | JDBC data source | “Deployment" of Oracle Fusion Middleware User's Guide for Technology Adapters |
AQ adapter | JDBC data source | “Configuring the Data Sources in the Oracle WebLogic Server Administration Console" of Oracle Fusion Middleware User's Guide for Technology Adapters |
JMS adapter | Queue | “Using the Adapter Configuration Wizard to Configure Oracle JMS Adapter" of Oracle Fusion Middleware User's Guide for Technology Adapters |
Example 43-1 provides a script for creating the JMS resource and redeploying the JMS adapter.
Note: This script is for demonstration purposes. You may need to modify this script based on your environment. |
Example 43-1 Script for Creation of JMS Resource and Redeployment of JMS Adapter
Example 43-2 provides a script for creating the database resource and redeploying the database adapter.
Note: This script is for demonstration purposes. You may need to modify this script based on your environment. |
Example 43-2 Script for Creation of the Database Resource and Redeployment of the Database Adapter
The Oracle JCA adapters are deployed as JCA 1.5 resource adapters in an Oracle WebLogic Server container. Adapters are packaged as Resource Adapter Archive (RAR) files using a JAR format. When adapters are deployed, the RAR files are used and the adapters are registered as connectors with the Oracle WebLogic Server or middle-tier platform. The RAR file contains the following:
ra.xml
file, which is the deployment descriptor XML file containing deployment-specific information about the resource adapter Adapters also package the weblogic-ra.xml
template file, which defines the endpoints for connection factories.
For information about creating connection factories and connection pools, see Oracle Fusion Middleware User's Guide for Technology Adapters.
If you are using an identity service provider with human workflow or attaching authentication and authorization policies, you must perform additional setup tasks.
By default, the identity service uses the embedded LDAP server in Oracle WebLogic Server as the default authentication provider. If you are using human workflow, you can configure Oracle WebLogic Server to use an alternative identity service provider, such as Oracle Internet Directory, Microsoft Active Directory, or Sun iPlanet. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite. The embedded LDAP server is not supported in clustered environments.
Policies that use certain types of tokens (for example, the username, X.509, and SAML tokens) require an authentication provider. For information about selecting and configuring an authentication provider, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
After a user is authenticated, you must verify that the user is authorized to access a web service with an authorization policy. You can create an authorization policy with several types of assertion templates. For information about authorization policies and which resources to protect, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.
You can set the instance name of a SOA composite application during design time for Oracle Mediator and Oracle BPEL Process Manager. The instance name appears in the Name column on the Instances page of a SOA composite application in Oracle Enterprise Manager Fusion Middleware Control. When you specify a search criteria on the Instances page of a SOA composite application or the SOA Infrastructure in Oracle Enterprise Manager Fusion Middleware Control, you can specify this name in the Name field.
To set the composite instance name in Oracle Mediator:
med:setCompositeInstanceTitle
in an assign activity. For example: The expression med:setCompositeInstanceTitle("sample")
executes the entire function in setting the title. The value provided in the target
is a dummy value and used only for the assign activity to work correctly.
To set the composite instance name in a BPEL process:
exec
extension bpelx:exec
. This extension includes the built-in method setCompositeInstanceTitle(String title)
for setting the instance name. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
If you are using Oracle B2B or a human task, you must perform additional setup tasks.
A trading partner agreement defines the terms that enable two trading partners, the initiator and the responder, to exchange business documents. It identifies the trading partners, trading partner identifiers, document definitions, and channels. You must deploy the agreement from the design-time repository to the run-time repository. For more information, see Oracle Fusion Middleware User's Guide for Oracle B2B.
You must deploy the task flow to use it in Oracle BPM Worklist.
To deploy a SOA composite application that does not share metadata with another composite, use the Create Application Server Connection wizard to create an application server connection. For more information, see Section 43.7.1.1.1, "Creating an Application Server Connection."
To deploy a SOA composite application that shares metadata with other composites, use the Create SOA-MDS Connection wizard to create a connection to a database-based MDS server. For more information, see Section 43.7.3.2.1, "Creating a SOA-MDS Connection."
If you create a SOA-MDS connection in Oracle JDeveloper, expand the connection, and attempt to open the composite.xml file of a composite from the Resource Palette, the file may not load correctly. Only open a composite from the Application Navigator.
For information about the Oracle Metadata Services (MDS) repository, see Oracle Fusion Middleware Administrator's Guide.
Not all customization tasks must be manually performed as you move to and from development, test, and production environments. This section describes how to use a configuration plan to automatically configure your SOA composite application for the next target environment.
As you move projects from one environment to another (for example, from testing to production), you typically must modify several environment-specific values, such as JDBC connection strings, hostnames of various servers, and so on. Configuration plans enable you to modify these values using a single text (XML) file called a configuration plan. The configuration plan is created in either Oracle JDeveloper or with WebLogic Scripting Tool (WLST) commands. During process deployment, the configuration plan searches the SOA project for values that must be replaced to adapt the project to the next target environment.
This section provides an overview of creating and attaching a configuration plan:
composite.xml
) binding.ws
) schemaLocation
attribute of an import in a WSDL file location
attribute of an include in a WSDL file schemaLocation
attribute of an include, import, and redefine in an XSD file Note: The configuration plan does not alter XSLT artifacts in the SOA composite application. To modify any XSL, do so in the XSLT Mapper. Using a configuration plan is not useful. For example, you cannot change references in XSL using the configuration plan file. Instead, they must be changed manually in the XSLT Mapper in Oracle JDeveloper when moving to and from test, development, and production environments. This ensures that the XSLT Mapper opens without any issues in design time. However, leaving the references unchanged does not impact runtime behavior. |
For more information, see Section 43.7.1.1.3, "Deploying the Profile."
ant
scripts For more information, see Section 43.7.5.2.4, "Deploying a SOA Composite Application."
For more information, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.
composite.xml
, WSDL, and XSD files in the SOA composite application JAR or ZIP file for values that must be replaced to adapt the project to the next target environment. The following example shows a configuration plan in which you modify the following:
inFileFolder
property for composite FileAdaptorComposite
is replaced with mytestserver/newinFileFolder
. myserver17
) is replaced with test-server
and port 8888
is replaced with 8198
in the following locations: binding.ws
locations The composite.xml
file looks as shown in Example 43-3:
Example 43-3 composite.xml File
The configuration plan file looks as shown in Example 43-4.
Example 43-4 Configuration Plan File
A policy is replaced if a policy for the same URI is available. Otherwise, it is added. This is different from properties, which are modified, but not added.
The following steps provide an overview of how to use a configuration plan when moving from development to testing environments:
User A creates and edits a configuration plan for Foo, which enables the URLs and properties in the application to be modified to match the testing environment.
The following steps provide an overview of how to use a configuration plan when creating environment-independent processes:
Note: This use case is useful for users that have their own development server and a common development and testing server if they share development of the same process. Users that share the same deployment environment (that is, the same development server) may not find this use case as useful. |
User A creates a configuration plan for Foo, which enables the URLs and properties in the process to be modified to match the settings for User A's environment.
This section describes how to create and use a configuration plan. In particular, this section describes the following:
To create a configuration plan in Oracle JDeveloper:
Open Oracle JDeveloper.
Figure 43-1 Generate a Configuration Plan
The Composite Configuration Plan Generator dialog appears, as shown in Figure 43-2.
Figure 43-2 Composite Configuration Plan Generator Dialog
Create a configuration plan file for editing, as shown in Table 43-2.
Table 43-2 Generate a Configuration Plan
Field | Description |
---|---|
Specify the file name (.xml) for the configuration plan | Enter a specific name or accept the default name for the configuration plan. The file is created in the directory of the project and packaged with the SOA composite application JAR or ZIP file. Note: During deployment, you can specify a different configuration file when prompted in the Deploy Configuration page of the deployment wizard. |
Overwrite existing file | Click to overwrite an existing configuration plan file with a different file in the project directory. |
Click OK.
This creates and opens a single configuration plan file for editing, similar to that shown in Example 43-4. You can modify URLs and properties for the composite.xml
, WSDL, and schema files of the SOA composite application. Figure 43-3 provides details.
Right-click the composite.xml file again, and select Validate Config Plan.
The Composite Configuration Plan Validator appears, as shown in Figure 43-4.
Figure 43-4 Validate the Configuration Plan
Select the configuration plan to validate. This step identifies all search and replacement changes to be made during deployment. Use this option for debugging only.
Note the directory in which a report describing validation results is created, and click OK.
The Log window in Oracle JDeveloper indicates if validation succeeded and lists all search and replacement commands to perform during SOA composite application deployment. This information is also written to the validation report.
Note: The old |
During deployment, the Deploy Configuration page shown in Step 4 of Section 43.7.1.1.3, "Deploying the Profile" prompts you to select the configuration plan to include in the SOA composite application archive.
As an alternative to using Oracle JDeveloper, you can use the WLST command line utility to perform the following configuration plan management tasks:
For information on how to use these commands, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.
As an alternative to using Oracle JDeveloper, you can use ant
scripts to attach the configuration plan file to the SOA composite application JAR or ZIP file during deployment. For instructions, see Section 43.7.5.2.4, "Deploying a SOA Composite Application."
This section describes how to deploy the following types of SOA composite applications.
ant
scripts Oracle JDeveloper requires the use of profiles for SOA projects and applications to be deployed to Oracle WebLogic Server.
This section describes how to deploy a single SOA composite application with Oracle JDeveloper.
You must create a connection to the application server to which to deploy a SOA composite application. The following instructions describe how to create a connection to Oracle WebLogic Server. For information about creating a connection to other application servers such as IBM WebSphere Server, see Oracle Fusion Middleware Third-Party Application Server Guide.
To create an application server connection:
The Name and Type page appears.
The Authentication page appears.
The Configuration page appears.
Table 43-3 Deployment to HTTPS and HTTP Servers
If This Checkbox Is... | Then... |
---|---|
Selected | An HTTPS server URL must exist to deploy the composite with SSL. Otherwise, deployment fails. If the server has only an HTTP URL, deployment also fails. This option enables you to ensure that SSL deployment must not go through a non-SSL HTTP URL, and must only go through an HTTPS URL. |
Not selected | An HTTP server URL must exist to deploy to a non-SSL environment. Otherwise, deployment fails. If the server has both HTTPS and HTTP URLs, deployment occurs through a non-SSL connection. This option enables you to force a non-SSL deployment from Oracle JDeveloper, even though the server is SSL-enabled. |
Click Test Connection to test your server connection.
If the connection is successful, click Finish. Otherwise, click Back to make corrections in the previous dialogs. Even if the connection test is unsuccessful, a connection is created.
A required deployment profile is automatically created for your project. The application profile includes the JAR files of your SOA projects. If you want, you can create additional profiles.
To create a project deployment profile:
The Project Properties dialog appears.
The Create Deployment Profile dialog appears.
Enter the values shown in Table 43-4.
Table 43-4 Create Deployment Profile Dialog Fields and Values
The SAR Deployment Profile dialog appears.
The deployment profile shown in Figure 43-5 displays in the Project Properties dialog.
You now deploy the project profile to Oracle WebLogic Server. Deployment requires the creation of an application server connection. You can create a connection during deployment by clicking the Add icon in Step 10 or before deployment by following the instructions in Section 43.7.1.1.1, "Creating an Application Server Connection."
To deploy the profile:
The value for project_name is the SOA project name.
The Deployment Action page of the Deploy Project_Name wizard appears. Figure 43-6 provides an example.
Select one of the following deployment options:
Creates a JAR file for the selected SOA project and deploys it to an application server such as Oracle WebLogic Server.
Creates a SAR (JAR) file of the selected SOA project, but does not deploy it to an application server such as Oracle WebLogic Server. This option is useful for environments in which:
The page that displays differs based on your selection.
Select the deployment option appropriate for your environment.
Table 43-5 Deployment Target
If You Select... | Go to... |
---|---|
Deploy to Application Server | |
Deploy to SAR |
View the Deploy Configuration page shown in Figure 43-7.
Figure 43-7 Deploy Configuration Page for Application Server Deployment
View the Deploy Configuration page shown in Figure 43-8.
Figure 43-8 Deploy Configuration Page for SAR Deployment
Provide values appropriate to your environment, as described in Table 43-6. If you selected to deploy to a server, additional fields display in the page.
Table 43-6 SOA Deployment Configuration Dialog
Field | Description |
---|---|
Composite Revision ID | Expand to display details about the project. |
| Displays the project name. |
| Displays the current revision ID of the project. |
| Optionally change the revision ID of the SOA composite application. |
SOA Configuration Plan | Expand to display details about the configuration plan. The configuration plan enables you to define the URL and property values to use in different environments. During process deployment, the configuration plan is used to search the SOA project for values that must be replaced to adapt the project to the next target environment. |
| Select to not include a configuration plan with the SOA composite application JAR file. If you have not created a configuration plan, this field is disabled. This is the default selection. |
| Select the specific plan. A configuration plan must already exist in the SOA project for this selection to be available. See Section 43.6.1, "Customizing SOA Composite Applications for the Target Environment" for instructions on creating a configuration plan. |
BPEL Monitor | Expand to display details about BPEL monitors. |
Note: This checkbox only appears if there is at least one | Deselect this checkbox to display BPEL Monitor deployment errors. This checkbox corresponds to the |
Mark composite revision as default | If you do not want the new revision to be the default, you can deselect this box. By default, a newly deployed composite revision is the default. This revision is instantiated when a new request comes in. The option only displays if you selected Deploy to Application Server on the Deployment Action page. |
Overwrite any existing composites with the same revision ID | Select to overwrite any existing SOA composite application of the same revision value. The option only displays if you selected Deploy to Application Server on the Deployment Action page. |
Keep running instances on after redeployment | Note: This option is displayed if Oracle BPM Suite is installed in Oracle JDeveloper, and only supported for the deployment of BPM composites. Do not select this option if you are deploying:
Select to enable existing instances of the overwritten revision to continue running instead of going stale. These instances run side by side with any new instances that you create with the new revision of the BPM composite application. |
Force deployment of incompatible processes | This option is only displayed for Oracle BPM Suite composites. If Keep running instances on after redeployment is checked, this option is displayed. Select this checkbox to force deployment of incompatible BPM processes. When a composite with BPM processes is overwritten, the system checks to see if the BPM processes being overwritten are compatible with the processes being deployed. If they are compatible, running instances of these processes are not marked as stale and deployment is successful. If they are incompatible, deployment fails unless you select this checkbox. |
Use the following SOA configuration plan for all composites | Click Browse to select the same configuration plan to use for all composite applications. This option is used when deploying multiple composite applications. |
Otherwise, go to Step 10.
You create or configure an Enterprise Resource Archive (EAR) file for the task flow forms of human tasks. The EAR file consists of a Web Resource Archive (WAR) profile that you select in the Deployable Task Flow Projects table of this dialog.
Table 43-7 Task Flow Deployment Dialog
Field | Description |
---|---|
Application Name | Select the EAR file to include in the deployment. This list displays all available EAR profiles in the current Oracle JDeveloper application. These EAR profiles are used as a template to create an EAR profile to deploy based on the WAR profiles selected in the Deployable Task Flow Projects table. You can also enter any EAR profile name to deploy. |
Deploy to specific composite revision & partition | Select to append the revision number of the composite to the EAR file name. If selected, this checkbox includes the composite revision in the EAR name, WAR profile, and context root. This option enables you to deploy an application specific to a composite revision. |
Add generated profiles to application | Select to add the generated EAR profile to the current SOA composite application's EAR deployment profile list. The application may have to be saved to persist the generated EAR profile. Once the deployment profile is available, you can deploy the EAR profile by selecting Application > Deploy. This option enables you to avoid using the SOA deployment wizard, if only task flow application deployment is necessary. |
Overwrite Existing Application | Select to overwrite the existing version of the EAR file on the server. |
Deployable Task Flow Projects | Select the task flow project WAR profiles to include in the EAR file. The task flow project WAR profiles are grouped in accordance with the composites that include the human task related to the task flow project. The context root of the WAR changes if the Add generated profiles to application checkbox is selected. Note: If you do not select a WAR profile, no task flows are deployed. |
| Select from the list of deployable task flow projects or select the Projects checkbox to choose all available task flows. The task flows that display are based on the composites included in the SOA project or bundle selected for deployment. |
| Select the task flow project WAR files. Only the most recently created or modified task flow of the human task is available for selection. |
| Displays the application context root directory based on your selection for the WAR profile. |
When you deploy a task form for a human task, as part of notification, the task form details are included in an email. For dynamic payloads, this email includes the content of the payload as it appears at that particular time.
For information about deploying SOA composite applications with task flows to multiple partition environments, see Section 43.7.1.2, "What You May Need to Know About Deploying Human Task Composites with Task Flows to Partitions."
If you selected to deploy to an application server, the Select Server page appears for selecting an existing connection to an application server such as Oracle WebLogic Server from the list or clicking the Add icon to create a connection to a server. Figure 43-10 provides details.
Otherwise, go to Step 15.
Click Next.
Review the archive details on the Summary page shown in Figure 43-12, and click Finish.
Enter the user name and password, and click OK.
If deployment is successful, the following actions occur:
You are now ready to monitor your application from Oracle Enterprise Manager Fusion Middleware Control. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for details.
If deployment is unsuccessful, view the messages that display in the Deployment log window and take corrective actions. For more information, see Section 43.9, "Testing and Troubleshooting."
For information on creating partitions, see the following documentation:
Note: If you want to redeploy the same version of a SOA composite application, you cannot change the composite name. You can deploy with the same revision number if you selected the Overwrite any existing composites with the same revision ID checkbox on the Deploy Configuration page. |
To deploy a SOA composite application with a task flow from Oracle JDeveloper to a multiple partition environment, select the task flows to be deployed to the same partition in which the SOA composite application is being deployed.
When the task flow is deployed using only the EAR profile (deploying the task flow using the EAR deployer), the task flow is not partition-aware. Therefore, you must modify the hwtaskflow.xml
file to include the partition name in the generated EAR file (the project version of the file remains unchanged). This file is located under the TaskForm
project adfmsrc
directory (for example, HelpDeskRequestTaskFlow\adfmsrc\hwtaskflow.xml
). Example 43-5 provides details.
Example 43-5 hwtaskflow.xml file Modification
In addition, if you want to reuse the same task flow project for another partition, you must change the web context-root.
You can deploy multiple SOA composite applications to an application server such as Oracle WebLogic Server at the same time by using the SOA bundle profile. This profile enables you to include one or more SAR profiles in the bundle and deploy the bundle to an application server.
Note: You cannot deploy multiple SOA applications that are dependent upon one another in the same SOA bundle profile. For example, if application A calls application B, then you must first deploy application B separately. |
Note: This section assumes you have created an application server connection. If not, see Section 43.7.1.1.1, "Creating an Application Server Connection" for instructions. |
To deploy multiple SOA composite applications
The Create Deployment Profile dialog appears.
Figure 43-14 provides details.
This invokes the deployment wizard.
This section describes how to deploy and use shared metadata across SOA composite applications.
Shared metadata is deployed to the SOA Infrastructure on the application server as a JAR file. The JAR file should contain all the resources to share. In Oracle JDeveloper, you can create a JAR profile for creating a shared artifacts archive.
All shared metadata is deployed to an existing SOA Infrastructure partition on the server. This metadata is deployed under the /apps
namespace. For example, if you have a MyProject/xsd/MySchema.xsd
file in the JAR file, then this file is deployed under the /apps
namespace on the server. When you refer to this artifact in Oracle JDeveloper using a SOA-MDS connection, the URL becomes oramds:/apps/MyProject/xsd/MySchema.xsd
.
This section describes how to perform the following tasks:
To create a JAR profile and include the artifacts to share:
The Project Properties dialog appears.
The Create Deployment Profile dialog appears.
shared_archive
is entered). The Create Deployment Profile dialog looks as shown in Figure 43-16.
The JAR Deployment Profile Properties dialog appears.
This prevents the archive generator from adding the manifest file (META-INF/MANIFEST.MF
) into the JAR file.
This prevents the archive generator from adding the contents of the project output and project dependencies into the archive.
The Add Contributor dialog appears. This dialog enables you to add artifacts to your archive.
Select only the artifacts to include in the archive, as shown in Figure 43-20. For this example, the archive contains the following XSD files:
Figure 43-20 Artifacts to Include in the Archive
To create a SOA bundle that includes the JAR profile:
The Create Deployment Profile dialog appears.
sharedArtifactBundle
is entered). Figure 43-21 provides details. Figure 43-22 Deployment Profile Dependencies
To deploy the SOA bundle:
This invokes the deployment wizard.
This deploys the SOA bundle to the application server (shared artifacts are deployed to the MDS database of Oracle SOA Suite).
This section describes how to browse and select the shared metadata you created in Section 43.7.3.1, "How to Deploy Shared Metadata."
To create a SOA-MDS connection:
The Create SOA-MDS Connection dialog shown in Figure 43-23 is displayed.
Table 43-8 Create SOA-MDS Connection Dialog
Field | Description |
---|---|
Create Connection In: | Ensure that IDE Connection is selected. This option enables the connection to display in the Resource Palette and be available to multiple applications. You cannot create a connection with the Application Resources option. This selection is disabled. |
Connection Name | Enter a connection name. Upon successful completion of this connection creation, this name displays under SOA-MDS in the Resource Palette. |
Connection Type | Select a connection type. An MDS repository can be file-based or database-based. The dialog is refreshed based on your selection.
|
Choose a database connection | Select an existing connection or create a new connection to the Oracle SOA Suite database with the MDS schema. |
Select MDS Partition | Select the MDS partition (for example, soa-infra). |
Test Connection | Click to test the SOA-MDS connection. Note: Even if the connection test fails, a connection is created. |
Status | Displays status of the connection test. |
You can now browse the connection in the Resource Palette and view shared artifacts under the /apps node.
You can now browse and use the shared metadata from a different SOA composite application. For this example, you create a BPEL process service component in a different application.
To create a BPEL process:
The Type Chooser dialog appears.
The Import Schema File dialog appears.
The SOA Resource Browser dialog appears.
Figure 43-24 Shared Metadata in the SOA Resource Browser
The WSDL file includes the following definition.
You can deploy an existing SOA archive from the Application Server Navigator in Oracle JDeveloper.
Notes:
|
To deploy an existing SOA archive from Oracle JDeveloper:
The Deploy SOA Archive dialog shown in Figure 43-25 appears.
Table 43-9 Create Deployment Profile Dialog Fields and Values
Field | Description |
---|---|
SOA Server | Select the SOA server to which to deploy the archive. |
Partition | Select the partition in which to deploy the archive. If the server contains no partitions, you cannot deploy this archive. By default, a partition named default is automatically included with Oracle SOA Suite. |
Status | Displays the status of the server. If the server is not in a running state, you cannot deploy this archive. |
Server URL | Displays the URL of the server. |
Choose target SOA server(s) to which you want to deploy this archive | Select the Oracle WebLogic Administration Server to which to deploy the archive. |
SOA Archive | Click Browse to select a prebuilt SOA composite application archive. The archive consists of a JAR file of a single application or a SOA bundle ZIP file containing multiple applications. |
Configuration Plan (Optional) | Click Browse to select a configuration plan to attach to the SOA composite application archive. The configuration plan enables you to define the URL and property values to use in different environments. During process deployment, the configuration plan is used to search the SOA project for values that must be replaced to adapt the project to the next target environment. For information about creating configuration plans, see Section 43.6.1.4, "How to Create a Configuration Plan in Oracle JDeveloper" or Section 43.6.1.5, "How to Create a Configuration Plan with the WLST Utility." |
Mark composite revision as default | If you do not want the new revision to be the default, you can deselect this box. By default, a newly deployed composite revision is the default. This revision is instantiated when a new request comes in. |
Overwrite any existing composites with the same revision ID | Select to overwrite (redeploy) an existing SOA composite application with the same revision ID. The consequences of this action are as follows:
|
For more information on deploying and testing SOA composite applications from the Application Server Navigator, see Section 2.8, "Managing and Testing a SOA Composite Application."
You can also manage SOA composite applications from a command line or scripting environment using the WLST scripting utility or ant
. These options are well-suited for automation and can be easily integrated into existing release processes.
You can manage SOA composite applications with the WLST scripting utility. For instructions, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.
You can manage SOA composite applications with the ant
utility. ant
is a Java-based build tool used by Oracle SOA Suite for managing SOA composite applications. The configuration files are XML-based and call out a target tree where various tasks are executed.
Table 43-10 lists the ant
scripts available in the Middleware_Home
\
SOA_Suite_Home
\bin
directory.
Table 43-10 ant Management Scripts
Script | Description |
---|---|
| Automates the testing of SOA composite applications. |
| Compiles a SOA composite application. |
| Packages a SOA composite application into a composite SAR file. |
| Deploys a SOA composite application. |
| Undeploys a SOA composite application. |
| Exports a composite into a SAR file. |
| Exports postdeployment changes of a composite into a JAR file. |
| Imports postdeployment changes of a composite. |
| Exports shared data of a given pattern into a JAR file. |
| Removes a top-level shared data folder. |
| Starts a SOA composite application. |
| Stops a SOA composite application. |
| Activates a SOA composite application. |
| Retires a SOA composite application. |
| Assigns a default revision version. |
| Lists deployed SOA composite applications. |
| Lists all available partitions in the SOA Infrastructure. |
| Lists all composites in a partition. |
| Creates a partition in the SOA Infrastructure. |
| Undeploys all composites in a partition before deleting the partition. |
| Starts all composites in a partition. |
| Stops all composites in a partition. |
| Activates all composites in a partition. |
| Retires all composites in a partition. |
| Migrates BPEL and ESB release 10.1.3 metadata to release 11g. Note: If any Java code is part of the project, you must manually modify the code to pass compilation with an 11g compiler. For BPEL process instance data, active data used by the 10.1.3 Oracle BPEL Server is not migrated. |
For additional information about ant
, visit the following URL:
Example 43-6 provides an example of executing a test case. Test cases enable you to automate the testing of SOA composite applications.
Example 43-6 Testing an Application
Table 43-11 describes the syntax.
Table 43-11 ant Testing Commands
Argument | Definition |
---|---|
scatest | Possible inputs are as follows:
|
jndi. properties | Absolute path to the JNDI property file. This is a property file that contains JNDI properties for connecting to the server. For example: java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory java.naming.provider.url=t3://myserver.us.oracle.com:8001/soa-infra java.naming.security.principal=weblogic dedicated.connection=true dedicated.rmicontext=true Since a composite test (in a test suite) is executed on the SOA Infrastructure, this properties file contains the connection information. For this example, these properties create a connection to the SOA Infrastructure hosted in You typically create one |
For more information on creating and running tests on SOA composite applications, see Chapter 44, "Automating Testing of SOA Composite Applications" and Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Example 43-7 provides an example of compiling a SOA composite application, which validates it for structure and syntax.
Example 43-7 Compiling an Application
Table 43-12 describes the syntax.
Table 43-12 ant Compiling Commands
Argument | Definition |
---|---|
scac | Possible inputs are as follows:
|
Example 43-8 provides an example of packaging a SOA composite application into a composite SAR file. The outcome of this command is a SOA archive. Check the output of the command for the exact location of the resulting file.
Example 43-8 Packaging an Application
Table 43-13 describes the syntax.
Table 43-13 ant Packaging Commands
Argument | Definition |
---|---|
compositeDir | Absolute path of a directory that contains composite artifacts. |
compositeName | Name of the composite. |
revision | Revision ID of the composite. |
sca.application.home | Optional. Absolute path of the application home directory. This property is required if you have shared data. |
oracle.home | Optional. The |
Example 43-9 provides an example of deploying a SOA composite application.
Example 43-9 Deploying an Application
Note: After specifying the user name, enter the password when prompted. |
Table 43-14 describes the syntax.
Table 43-14 ant Deployment Commands
Argument | Definition |
---|---|
| URL of the server that hosts the SOA Infrastructure application (for example, |
| Absolute path to one the following:
|
| Optional. Indicates whether to overwrite an existing SOA composite application on the server.
|
| Optional. User name to access the composite deployer servlet when basic authentication is configured. |
| Optional. Password to access the composite deployer servlet when basic authentication is configured. If you enter the user name, you are prompted to enter the password if you do not provide it here. |
| Optional. Indicates whether to set the version being deployed as the default version for that composite application.
|
| Absolute path of a configuration plan to be applied to a specified SAR file or to all SAR files included in the ZIP file. |
| Passes in a system properties file that is useful for setting extra system properties, for debugging, for SSL configuration, and so on. If you specify a file name (for example, javax.net.debug=all |
| Optional. The name of the external custom library. If you have a SOA composite application with a BPEL process service component that refers to a custom JAR file, set this property. |
| Optional. The name of the partition in which to deploy the SOA composite application. The default value is |
Example 43-10 provides an example of undeploying a SOA composite application.
Example 43-10 Undeploying a SOA Composite Application
Note: After specifying the user name, enter the password when prompted. |
Table 43-15 describes the syntax.
Table 43-15 ant Undeployment Commands
Argument | Definition |
---|---|
| URL of the server that hosts the SOA Infrastructure application (for example, |
| Name of the SOA composite application. |
| Revision ID of the SOA composite application. |
| Optional. User name to access the composite deployer servlet when basic authentication is configured. If you enter the user name, you are prompted to enter the corresponding password. |
| Optional. Password to access the composite deployer servlet when basic authentication is configured. |
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
Example 43-11 provides an example of exporting a composite into a SAR file.
Example 43-11 Exporting a Composite into a SAR File
Note: After specifying the user name, enter the password when prompted. |
Table 43-16 describes the syntax.
Table 43-16 ant Export Commands
Argument | Definition |
---|---|
| The URL of the server that hosts the SOA Infrastructure application (for example, |
| The type of postdeployment changes to be included:
|
| The absolute path of the SAR file to be generated. |
| The name of the composite to be exported. |
| The revision of the composite to be exported. |
| Optional. The user name for accessing the server when basic configuration is configured. |
| Optional. The password for accessing the server when basic configuration is configured. |
Example 43-12 shows how to export a composite without including any postdeployment changes.
Example 43-12 Exporting a Composite Without Including Any Postdeployment Changes
Example 43-13 shows how to export a composite with all postdeployment changes.
Example 43-13 Exporting a Composite With All Postdeployment Changes
Example 43-14 shows how to export a composite with property postdeployment updates.
Example 43-14 Exporting a Composite With Property Postdeployment Updates
Example 43-15 shows how to export a composite with runtime/metadata postdeployment updates.
Example 43-16 provides an example of exporting postdeployment changes of a composite into a JAR file.
Example 43-16 Exporting Postdeployment Changes of a Composite into a JAR File
Note: After specifying the user name, enter the password when prompted. |
Table 43-17 describes the syntax.
Table 43-17 ant Postdeployment Export Commands
Argument | Definition |
---|---|
| The URL of the server that hosts the SOA Infrastructure application (for example, |
| The type of postdeployment changes to be exported.
|
| The absolute path of the JAR file to be generated. |
| The name of the composite to be exported. |
| The revision of the composite to be exported. |
| Optional. The user name for accessing the server when basic configuration is configured. |
| Optional. The password for accessing the server when basic configuration is configured. |
Example 43-17 shows how to export all postdeployment updates.
Example 43-17 Exporting All Postdeployment Updates
Example 43-18 shows how to export property postdeployment updates.
Example 43-18 Exporting Property Postdeployment Updates
Example 43-19 shows how to export runtime/metadata postdeployment updates.
Example 43-20 provides an example of importing postdeployment changes of a composite.
Example 43-20 Importing Postdeployment Changes of a Composite
Note: After specifying the user name, enter the password when prompted. |
Table 43-18 describes the syntax.
Table 43-18 ant Postdeployment Import Commands
Argument | Definition |
---|---|
| The URL of the server that hosts the SOA Infrastructure application (for example, |
| The absolute path of the JAR file that contains postdeployment changes. |
| The name of the composite into which the postdeployment changes are imported. |
| The revision of the composite to which the postdeployment changes are imported. |
| Optional. The user name for accessing the server when basic configuration is configured. |
| Optional. The password for accessing the server when basic configuration is configured. |
Example 43-21 shows how to import postdeployment changes of a composite.
Example 43-22 provides an example of exporting shared data of a given pattern into a JAR file.
Example 43-22 Exporting Shared Data of a Given Pattern into a JAR File
Note: After specifying the user name, enter the password when prompted. |
Table 43-19 describes the syntax.
Table 43-19 ant Shared Data Export Commands
Argument | Definition |
---|---|
| The URL of the server that hosts the SOA Infrastructure application (for example, |
| The absolute path of the JAR file to be generated. |
| The file pattern supported by MDS transfer APIs. Use the semicolon delimiter (/Project1/**;/Project2/** This example exports all documents under |
| Optional. The user name for accessing the server when basic configuration is configured. |
| The password for accessing the server when basic configuration is configured. This parameter is optional. |
Example 43-23 shows how to export shared data of a given pattern into a JAR file.
Example 43-24 provides an example of removing a top-level shared data folder, even if there are composites deployed in the service engine.
Example 43-24 Removing a Top-level Shared Data Folder
Note: After specifying the user name, enter the password when prompted. |
Table 43-20 describes the syntax.
Table 43-20 ant Shared Data Folder Removal Commands
Argument | Definition |
---|---|
| URL of the server that hosts the SOA Infrastructure application (for example, |
| The name of the top-level shared data folder to remove. |
| Optional. The user name for accessing the server when basic configuration is configured. |
| Optional. The password for accessing the server when basic configuration is configured. |
Example 43-25 shows how to remove a top-level shared data folder named Project1
.
Example 43-26 provides an example of starting a SOA composite application.
Example 43-26 Starting an Application
Note: After specifying the user name, enter the password when prompted. |
Table 43-21 describes the syntax.
Table 43-21 ant SOA Composite Application Startup Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| Name of the SOA composite application. |
| Revision of the SOA composite application. |
| Optional. Label of the SOA composite application. The label identifies the MDS artifacts associated with the application. If the label is not specified, the system finds the latest one. |
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
Example 43-27 provides an example of stopping a SOA composite application.
Example 43-27 Stopping an Application
Note: After specifying the user name, enter the password when prompted. |
Table 43-22 describes the syntax.
Table 43-22 ant SOA Composite Application Stop Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| Name of the SOA composite application. |
| Revision of the SOA composite application. |
| Optional. Label of the SOA composite application. The label identifies the MDS artifacts associated with the application. If the label is not specified, the system finds the latest one. |
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
Example 43-28 provides an example of activating a SOA composite application.
Example 43-28 Activating an Application
Note: After specifying the user name, enter the password when prompted. |
Table 43-23 describes the syntax.
Table 43-23 ant SOA Composite Application Activation Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| Name of the SOA composite application. |
| Revision of the SOA composite application. |
| Optional. Label of the SOA composite application. The label identifies the MDS artifacts associated with the application. If the label is not specified, the system finds the latest one. |
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
Example 43-29 provides an example of retiring a SOA composite application.
Example 43-29 Retiring an Application
Note: After specifying the user name, enter the password when prompted. |
Table 43-24 describes the syntax.
Table 43-24 ant SOA Composite Application Retirement Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| Name of the SOA composite application. |
| Revision of the SOA composite application. |
| Optional. Label of the SOA composite application. The label identifies the MDS artifacts associated with the application. If the label is not specified, the system finds the latest one. |
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
Example 43-30 provides an example of assigning the default version to a SOA composite application.
Example 43-30 Assigning the Default Version to a SOA Composite Application
Note: After specifying the user name, enter the password when prompted. |
Table 43-25 describes the syntax.
Table 43-25 ant SOA Composite Application Default Version Assignment Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| Name of the SOA composite application. |
| Revision of the SOA composite application. |
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
Example 43-31 provides an example of listing the deployed SOA composite applications.
Example 43-31 Listing the Deployed SOA Composite Applications
Note: After specifying the user name, enter the password when prompted. |
Table 43-26 describes the syntax.
Table 43-26 ant SOA Composite Application Deployment List Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
Example 43-32 provides the syntax for listing all available partitions in the SOA Infrastructure.
Example 43-32 Listing All Available Partitions in the SOA Infrastructure
Note: After specifying the user name, enter the password when prompted. |
Table 43-27 describes the syntax.
Table 43-27 ant SOA Infrastructure Partitioning List Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
Example 43-33 provides an example of listing all available partitions in the SOA Infrastructure.
Example 43-34 provides the syntax for listing all composites in a partition.
Example 43-34 Listing All Composites in a Partition
Note: After specifying the user name, enter the password when prompted. |
Table 43-28 describes the syntax.
Table 43-28 ant Composite Partitioning List Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| The name of the partition. |
Example 43-35 provides an example of listing all composites in a partition named myPartition
.
Example 43-36 provides the syntax for creating a partition in the SOA Infrastructure.
Example 43-36 Creating a Partition in the SOA Infrastructure
Note: After specifying the user name, enter the password when prompted. |
Table 43-29 describes the syntax.
Table 43-29 ant Partition Creation Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| The name of the partition to create. |
Example 43-37 provides an example of creating a partition in the SOA Infrastructure named myPartition
.
Example 43-38 provides the syntax for deleting a partition in the SOA Infrastructure. This command undeploys all composites in the partition before deleting the partition.
Example 43-38 Deleting a Partition in the SOA Infrastructure
Note: After specifying the user name, enter the password when prompted. |
Table 43-30 describes the syntax.
Table 43-30 ant Partition Deletion Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| The name of the partition to delete. |
Example 43-39 provides an example of deleting a partition in the SOA Infrastructure named myPartition
.
Example 43-40 provides the syntax for starting all composites in the partition.
Example 43-40 Starting All Composites in the Partition
Note: After specifying the user name, enter the password when prompted. |
Table 43-31 describes the syntax.
Table 43-31 ant Partition Startup Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| The name of the partition. |
Example 43-41 provides an example of starting all composites in the partition named myPartition
.
Example 43-42 provides the syntax for stopping all composites in the partition.
Example 43-42 Stopping All Composites in the Partition
Note: After specifying the user name, enter the password when prompted. |
Table 43-32 describes the syntax.
Table 43-32 ant Partition Composite Stop Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| The name of the partition. |
Example 43-43 provides an example of stopping all composites in the partition named myPartition
.
Example 43-44 provides the syntax for activating all composites in the partition.
Example 43-44 Activating All Composites in the Partition
Note: After specifying the user name, enter the password when prompted. |
Table 43-33 describes the syntax.
Table 43-33 ant Partition Composite Activation Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| The name of the partition. |
Example 43-45 provides an example of activating all composites in the partition named myPartition
.
Example 43-46 provides the syntax for retiring all composites in the partition.
Example 43-46 Retiring All Composites in the Partition
Note: After specifying the user name, enter the password when prompted. |
Table 43-34 describes the syntax.
Table 43-34 ant Partition Composite Retirement Commands
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| The name of the partition. |
Example 43-47 provides an example of retiring all composites in the partition named myPartition
.
You can use ant
to upgrade a SOA composite application from 10.1.3 to 11g. For information, see Oracle Fusion Middleware Upgrade Guide for Oracle SOA Suite, WebCenter Portal, and ADF.
The WebLogic Fusion Order Demo application provides an example of using ant
scripts to compile, package, and deploy the application. You can create the initial ant
build files by selecting New > Ant > Buildfile from Project from the File main menu.
Figure 43-26 shows the build.properties and build.xml files that display in the Application Navigator after creation.
A file that you edit to reflect your environment (for example, specifying Oracle home and Java home directories, setting server properties such as hostname and port number to use for deployment, specifying the application to deploy, and so on).
Used by ant
to compile, build, and deploy composite applications to the server specified in the build.properties file.
This builds targets defined in the current project's build file.
You can deploy SOA composite applications from Oracle Enterprise Manager Fusion Middleware Control. You must first create a deployable archive in Oracle JDeveloper or through the ant
or WLST command line tools. The archive can consist of a single SOA composite application revision in a JAR file or multiple composite application revisions (known as a SOA bundle) in a ZIP file. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can deploy a SOA composite application into a clustered environment. For more information, see chapter "Configuring High Availability for Oracle Fusion Middleware SOA Suite" of the Oracle Fusion Middleware High Availability Guide.
This section describes postdeployment configuration tasks.
For information about securing SOA composite applications, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Ensure that any connections that you created to the application server or MDS repository are re-created to point to servers applicable to the next target environment. For more information, see Section 43.7.1.1.1, "Creating an Application Server Connection" and Section 43.7.3.2.1, "Creating a SOA-MDS Connection."
Ensure that all JDBC data source, queue, and connection factory locations that you previously configured are applicable to the next target environment. For more information, see Section 43.5.1, "Creating Data Sources and Queues" and Section 43.5.2, "Creating Connection Factories and Connection Pooling."
You can attach policies to a deployed SOA composite application during runtime in Oracle Enterprise Manager Fusion Middleware Control. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This section describes how to test and troubleshoot your SOA composite application.
You can verify that you have successfully deployed your SOA composite application to the SOA Infrastructure. If successful, the deployed composite displays in the Deployed Composites tab of the SOA Infrastructure page of Oracle Enterprise Manager Fusion Middleware Control. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can initiate an instance of a deployed SOA composite application from the Test Instance page in Oracle Enterprise Manager Fusion Middleware Control. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can create, deploy, and run test cases that automate the testing of SOA composite applications. Test cases enable you to simulate the interaction between a SOA composite application and its web service partners before deployment in a production environment. You create test cases in Oracle JDeveloper and include them in a SOA composite application that is then deployed and administered from Oracle Enterprise Manager Fusion Middleware Control. You then run the test cases from Oracle Enterprise Manager Fusion Middleware Control.
For information about creating test cases, see Chapter 44, "Automating Testing of SOA Composite Applications."
For information about running test cases, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
If you receive the error shown in Example 43-48 when deploying a SOA composite application from Oracle JDeveloper, recompile the project and redeploy the composite. This error is intermittent and should not occur again.
Example 43-48 Intermittent Deployment Error Message
If you receive the Java compilation error shown in Example 43-49 in your server log files, you may have too much code in your Java classes.
Example 43-49 Java Compilation Error
$MIDDLEWARE_HOME/user_projects/domains/
domain_name
/bin/
SetDomainEnv.sh
file (for Linux) or SetDomainEnv.bat
file (for Windows). EXTRA_JAVA_PROPERTIES="-Dorabpel.codegen.density"
property in this file. If this property is not explicitly set, it defaults to values of 64,32
. By reducing these two values, you increase the number of classes and methods that are generated for the compiled process map. As a best practice, if the process fails to compile using the default settings, set the property with smaller values. The following values are good combinations to try:
This section describes how to troubleshoot common deployment errors.
For information about general composite application troubleshooting issues, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This section provides a list of common deployment issues to check.
scac.log
) is displayed in the Messages tab. The message looks similar to that shown in Example 43-50. Example 43-51 Archive Message
For a SOA bundle archive, the message shown in Example 43-52 is displayed in the Deployment tab.
Example 43-52 Archive Message
For example, sca_FirstComposite_rev1.0.jar
.
soa_server1-diagnostic.log
on the server to find additional information (where soa_server1
is the name of the managed server). This file is located on the server in domain_home
/servers/soa_server1/logs
. This section provides a list of common configuration plan issues to check.
soaconfigplan.xml
file. This file is generated during deployment based on the configuration plan you selected. If you start a managed Oracle WebLogic Server without starting an Oracle WebLogic Administration Server (known as running in independence mode) and attempt to deploy a SOA composite application from Oracle JDeveloper, you receive the following error:
The Oracle WebLogic Administration Server must be running. Deployment uses the Oracle WebLogic Administration Server connection to identify the servers running Oracle SOA Suite. In addition, do not create an application server connection to a managed Oracle WebLogic Server; only create connections to an Oracle WebLogic Administration Server.
You can also receive a similar error if the condition of the SOA-configured Oracle WebLogic Server is not healthy. This condition displays in the Health column of the Servers page of Oracle WebLogic Server Administration Console.
You can use WLST to deploy SOA composite applications to a managed Oracle WebLogic Server without starting an Oracle WebLogic Administration Server. See Section 43.7.5.1, "How to Manage SOA Composite Applications with the WLST Utility" for details.
Deployment from Oracle JDeveloper to a two-way, SSL-enabled Oracle WebLogic Server is not supported.
You can receive an error similar to that shown in Figure 43-27 during SOA composite application deployment if you have a proxy server set in Oracle JDeveloper that is not reachable from your host.
A valid proxy setting is necessary for accessing a SOA Infrastructure (for example, soa_server1
) outside the network. If the SOA Infrastructure is within the network, perform one of the following actions:
To change the proxy setting:
If you deploy a SOA composite application JAR file and ADF task form EAR file, and the SOA JAR file is deployed successfully, but while deploying the EAR file, the following errors are displayed:
This error means you must first release the lock from Oracle WebLogic Server Administration Console to successfully deploy the EAR file.
Note the following description that is displayed in the Oracle WebLogic Server Administration Console:
This error can occur regardless of the deployment method you are using (for example, deploying through Oracle JDeveloper or through ant
scripts).
This chapter describes how to create, deploy, and run test cases that automate the testing of SOA composite applications. You can also create test cases for testing BPEL process service components included in the SOA composite application. Test cases enable you to simulate the interaction between a SOA composite application and its web service partners before deployment in a production environment. This helps to ensure that a process interacts with web service partners as expected by the time it is ready for deployment to a production environment.
This chapter includes the following sections:
Oracle SOA Suite provides an automated test suite framework for creating and running repeatable tests on a SOA composite application.
The test suite framework provides the following features:
The test framework supports testing at the SOA composite application level. In this type of testing, wires, service binding components, service components (such as BPEL processes and Oracle Mediator service components), and reference binding components are tested.
For more information, see Section 44.3, "Creating Test Suites and Test Cases."
Test suites consist of a logical collection of one or more test cases. Each test case contains a set of commands to perform as the test instance is executed. The execution of a test suite is known as a test run. Each test corresponds to a single SOA composite application instance.
For more information, see the following:
Emulations enable you to simulate the behavior of the following components with which your SOA composite application interacts during execution:
Instead of invoking another service component or binding component, you can specify a response from the component or reference.
For more information, see the following:
Assertions enable you to verify variable data or process flow. You can perform the following types of assertions:
Compare the element values of an entire XML document to the expected element values. For example, compare the exact contents of an entire loan request XML document to another document. The XMLTestCase
class in the XMLUnit
package includes a collection of methods for performing assertions between XML files. For more information about these methods, visit the following URL:
Compare the values of a part section of a message to the expected values. An example is a payload part of an entire XML document message.
Compare the values of an XML fragment to the expected values. An example is a loan application, which includes leaf elements SSN, email, customerName, and loanAmount.
Compare the value of a selected string or number element or a regular expression pattern to an expected value. An example is the SSN of a loan application.
For more information about asserts, see Section 44.2.3, "Assertions."
This section describes and provides examples of the test components that comprise a test case. Methods for creating and importing these tests into your process are described in subsequent sections of this chapter.
You first define the operation of your process in a binding component service such as a SOAP web service. Example 44-1 defines the operation of initiate
to initiate the TestFwk
SOA composite application. The initiation payload is also defined in this section:
Example 44-1 Process Initiation
You create emulations to simulate the message data that your SOA composite application receives from web service partners.
In the test code in Example 44-2, the loan request is initiated with an error. A fault message is received in return from a web service partner:
Example 44-2 Emulations
Two message files, loanApplication.xml
and creditRatingFault.xml
, are invoked in this emulation. If the loan application request in loanApplication.xml
contains a social security number beginning with 0
, the creditRatingFault.xml
file returns the fault message shown in Example 44-3:
Example 44-3 Fault Message
For more information, see Section 44.4, "Creating the Contents of Test Cases."
You create assertions to validate an entire XML document, a part section of a message, a nonleaf element, or a leaf element at a point during SOA composite application execution. Example 44-4 instructs Oracle SOA Suite to ensure that the content of the customerName
variable matches the content specified.
Example 44-4 Assertions
For more information, see Section 44.4, "Creating the Contents of Test Cases."
Message instance files provide a method for simulating the message data received back from web service partners. You can manually enter the received message data into this XML file or load a file through the test mode of the SOA Composite Editor. For example, the following message file simulates a credit rating result of 900
returned from a partner:
For more information about loading message files into test mode, see Section 44.4, "Creating the Contents of Test Cases."
This section describes how to create test suites and their test cases for a SOA composite application. The test cases consist of sets of commands to perform as the test instance is executed.
To create test suites and test cases:
Enter a test suite name (for example, OrderBookingMainTestsuite
of the Fusion Order Demo).
The Create Composite Test dialog appears.
NoErrorSanityTest
of the Fusion Order Demo is entered) and an optional description. This description displays in the Description column of the Test Cases page of the Unit Tests tab in Oracle Enterprise Manager Fusion Middleware Control. This action creates a test named NoErrorSanityTest.xml in the Application Navigator, along with the following subfolders:
This folder is not used in 11g Release 1.
This folder is not used in 11g Release 1.
Contains message test files that you load into this directory through the test mode user interface.
Contains NoErrorSanityTest.xml.
A NoErrorSanityTest.xml folder also displays in the Structure window. Figure 44-4 provides details. This indicates that you are in the test mode of the SOA Composite Editor. You can create test initiations, assertions, and emulations in test mode. No other modifications, such as editing the property dialogs of service components or dropping service components into the editor, can be performed in test mode.
The following operating system test suite directory is also created:
The following subdirectories for adding test files are created beneath OrderBookingMainTestsuite
: componenttests
, includes
, messages
, and tests
.
Notes:
|
The Fusion Order Demo provides examples of using test suites. For more information about the Fusion Order Demo, see Chapter 3, "Introduction to the SOA Sample Application."
Test cases consist of process initiations, emulations, and assertions. You add these actions to test cases in the test mode of the SOA Composite Editor. You create process initiations to initiate client inbound messages into your SOA composite application. You create emulations to simulate input or output message data, fault data, callback data, or all of these types that your SOA composite application receives from web service partners. You create assertions to validate entire XML documents, part sections of messages, nonleaf elements, and leaf elements as a process is executed.
To initiate inbound messages:
You must first initiate the sending of inbound client messages to the SOA composite application.
Figure 44-7 Binding Component Service Access
The Edit Initiate dialog appears.
Table 44-1 Edit Initiate Dialog Fields and Values
Field | Value |
---|---|
Service | Displays the name of the binding component service (client). |
Operation | Displays the operation type of the service binding component (initiate). |
Part | Select the type of inbound message to send (for example, payload). |
Value | Create a simulated message to send from a client: |
| Click to manually enter message data in the Enter Value field. A Generate Sample button enables you to automatically generate a sample file for testing. Click Save As to save the sample file. |
| Click the Browse icon to load message data from a file. The file is added to the messages folder in the Application Navigator. |
Figure 44-8 shows this dialog:
Example 44-5 shows an inbound process initiation message from a client:
Example 44-5 Inbound Process Initiation Message
The loanApplication.xml
referenced in the process initiation file contains a loan application payload. Example 44-6 provides details.
Example 44-6 Loan Application Payload
To emulate outbound messages:
Note: The creation of multiple emulations in an instance in a test case is supported only if one emulation is for an output message and the other is for a callback message. |
You can simulate a message returned from a synchronous web service partner.
Go to the SOA composite application in test mode.
The SOA composite application in the SOA Composite Editor is refreshed to display in test mode. This mode enables you to define test information.
Double-click the wire of the SOA composite application area to test. For the example shown in Figure 44-10, the wire between the LoanBroker process and the synchronous CreditRating web service is selected.
This displays the Wire Actions dialog shown in Figure 44-11, from which you can design emulations and assertions for the selected part of the SOA composite application.
Table 44-2 Emulate Output Message Dialog Fields and Values
Field | Value |
---|---|
Part | Select the message part containing the output (for example, payload). |
Value | Create a simulated output message to return from a web service partner: |
| Click to manually enter message data in the Enter Value field. A Generate Sample button enables you to automatically generate a sample file for testing. Click Save As to save the sample file. |
| Click the Browse icon to load message data from a file. The file is added to the messages folder in the Application Navigator. |
Duration | Enter the maximum amount of time to wait for the message to be delivered from the web service partner. |
Figure 44-12 shows this dialog:
Figure 44-12 Emulate Dialog with Emulate Output Selected
Example 44-7 shows a simulated output message from a synchronous web service partner that you enter manually or load from a file:
Example 44-7 Simulated Output Message Example
The creditRatingResult.xml
message file referenced in the output message provides details about the credit rating result.
To emulate callback messages:
Note: The creation of multiple emulations in an instance in a test case is supported only if one emulation is for an output message and the other is for a callback message. |
You can simulate a callback message returned from an asynchronous web service partner.
Table 44-3 Emulate Callback Message Fields
Field | Value |
---|---|
Callback Operation | Select the callback operation (for example, onResult). |
Callback Message | Displays the callback message name of the asynchronous process. |
Part | Select the message part containing the callback (for example, payload). |
Value | Create a simulated callback message to return from an asynchronous web service partner: |
| Click to manually enter message data in the Enter Value field. A Generate Sample button enables you to automatically generate a sample file for testing. Click Save As to save the sample file. |
| Click the Browse icon to load message data from a file. The file is added to the messages folder in the Application Navigator. |
Duration | Enter the maximum amount of time to wait for the callback message to be delivered from the web service partner. |
Figure 44-13 shows this dialog:
Figure 44-13 Emulate Dialog with Emulate Callback Selected
Example 44-8 shows a simulated callback message from a web service partner. You enter this message manually or load it from a file:
Example 44-8 Simulated Callback Message Example
The loanOffer.xml
message file referenced in the callback message provides details about the credit rating approval. Example 44-9 provides details.
To emulate fault messages:
You can simulate a fault message returned from a web service partner. This simulation enables you to test fault handling capabilities in your process.
Table 44-4 Emulate Fault Message Fields
Field | Value |
---|---|
Fault | Select the fault type to return from a partner (for example, NegativeCredit). |
Fault Message | Displays the message name. |
Part | Select the message part containing the fault (for example, payload). |
Value | Create a simulated fault message to return from a web service partner: |
| Click to manually enter message data in the Enter Value field. A Generate Sample button enables you to automatically generate a sample file for testing. Click Save As to save the sample file. |
| Click the Browse icon to load message data from a file. The file is added to the messages folder in the Application Navigator. |
Duration | Enter the maximum amount of time to wait for the fault message to be delivered from the web service partner. |
Figure 44-14 shows this dialog:
Figure 44-14 Emulate Dialog with Emulate Fault Selected
An example of a simulated fault message from a web service partner that you enter manually or load from a file is shown in Section 44.2.2, "Emulations."
To create assertions:
You perform assertions to verify variable data or process flow. Assertions enable you to validate test data in an entire XML document, a part section of a message, a nonleaf element, or a leaf element as a process is executed. This is done by extracting a value and comparing it to an expected value.
Figure 44-15 shows this dialog:
Figure 44-15 Wire Actions Dialog with Asserts Tab Selected
The Create Assert dialog appears.
Select the type of assertion to perform at the top of the dialog, as shown in Table 44-5. If the operation supports only input messages, the Assert Input button is enabled. If the operation supports both input and output messages, the Assert Input and Assert Output buttons are both enabled.
Table 44-5 Assertion Types
Type | Description |
---|---|
Assert Input | Select to create an assertion in the inbound direction. |
Assert Output | Select to create an assertion in the outbound direction. |
Assert Callback | Select to create an assertion on a callback. |
Assert Fault | Select to assert a fault into the application flow. |
Table 44-6 Assertion Types
For an Assertion on... | See... |
---|---|
| Section 44.4.5.1, "Creating Assertions on a Part Section, Nonleaf Element, or Entire XML Document" |
A leaf element | Section 44.4.5.2, "Creating Assertions on a Leaf Element" |
To create assertions on a part section, nonleaf element, or entire XML document:
This test compares the values to the expected values.
Note: If the message contains multiple parts (for example, payload1, payload2, and payload3), you must create separate assertions for each part. |
The Select Assert Target dialog appears.
Select a value, and click OK. For example, select a variable such as payload to perform a part section assertion.
Figure 44-16 shows this dialog. While this example shows how to perform a part section assertion, selecting LoanBrokerRequestMessage is an example of an entire XML document assertion and selecting loanApplication is an example of a nonleaf assertion.
Figure 44-16 Select a Part Section of a Message
The Create Assert dialog refreshes based on your selection of a variable.
Table 44-7 Create Assert Dialog Fields and Values
Field | Value |
---|---|
Fault | Select the type of fault to assert (for example, NegativeCredit). This field only displays if you select Assert Fault in Step 4.of Section 44.4.5, "How to Create Assertions." |
Assert Target | Displays the assert target you selected in Step 2. |
Compare By | Specify the strictness of the comparison.
For more information about comparing the contents of XML files, see the XMLUnit web site: |
Part | Select the message part containing the XML document (for example, payload). |
Value | Create an XML document whose content is compared to the assert target content: |
| Click to manually enter message data in the Enter Value field. A Generate Sample button enables you to automatically generate a sample file for testing. Click Save As to save the sample file. |
| Click the Browse icon to load message data from a file. The file is added to the messages folder in the Application Navigator. |
Description | Enter an optional description. |
Figure 44-17 shows this dialog with Assert Input selected:
Figure 44-17 Create Assert Dialog with Assert Input Selected
The Wire Actions dialog shown in Figure 44-18 displays your selection.
Figure 44-18 Wire Actions Dialog with Asserts Tab Selected
To create assertions on a leaf element:
This test compares the value to an expected value.
The Select Assert Target dialog appears.
The Create Assert dialog refreshes based on your selection of an entire XML document.
Table 44-8 Create Assert Dialog Fields and Values
Field | Value |
---|---|
Fault | Select the type of fault to assert (for example, NegativeCredit). This field only displays if you select Assert Fault in Step 4 of Section 44.4.5, "How to Create Assertions." |
Callback Operation | Select the type of callback to assert (for example, onResult). This field only displays if you select Assert Callback in Step 4 of Section 44.4.5, "How to Create Assertions." |
Assert Target | Displays the variable assert target you selected in Step 2. |
Compare By | Select the type of comparison:
|
Assert Value | Enter the value you are expecting. This value is compared to the value for the assert target. |
Description | Enter an optional description. |
Figure 44-20 shows this dialog with Assert Input selected:
The Wire Actions dialog shown in Figure 44-21 displays your selection.
Figure 44-21 Wire Actions Dialog with Asserts Tab Selected
When a test is executed, and the response type returned is different from the type expected, the assertion is skipped. For example, you are expecting a fault (RemoteFault
) to be returned for a specific message, but a response (BpelResponseMessage
) is instead returned.
As a best practice, always assert and emulate the expected behavior.
You can automate the testing of an individual BPEL process service component included in a new or existing SOA composite application test suite. These test cases enable you to simulate the interaction between a BPEL process and its web service partners before deployment in a production environment. This helps to ensure that a BPEL process interacts with web service partners as expected by the time it is ready for deployment to a production environment.
Example 44-10 provides an example of a SOA composite application test suite that includes a component test for the LoanBroker
BPEL process service component.
Example 44-10 BPEL Process Server Component Tests in a SOA Composite Application Test Suite
The assert.xml
test shown in Example 44-10 specifies assertions for variables and faults.
Note: You cannot automate the testing of business rule, human task, Oracle Mediator, or spring service components. |
You can create variable and fault assertions on BPEL process activities. Example 44-11 instructs the BPEL process to ensure that the contents of textVar
and crOutput
match the contents specified.
Example 44-11 Assertion on a BPEL Activity
For more information about creating assertions on BPEL process activities, see Section 44.5.5, "How to Create Assertions."
A wait activity allows a process to wait for a given time period or until a time limit has been reached. When testing a BPEL process service component, you may want to bypass the wait activity to continue with testing. A fast forward action enables you to specify the amount of time for which to bypass a wait activity and move forward in the test scenario. Example 44-12 instructs the BPEL process to bypass the wait activity for 1
second.
Example 44-12 Fast Forward Action on a Wait Activity
For more information about creating fast forward actions on wait activities, see Section 44.5.6, "How to Bypass a Wait Activity."
You can specify and validate the number of times an activity is executed in a BPEL process. Example 44-13 instructs the BPEL process to execute the invoke
, elementAssign
, invokeCR
, and replyOutput
activities one time each.
Example 44-13 Assert Activity Executed
For more information about creating assert activity executions, see Section 44.5.7, "How to Specify the Number of Times to Execute an Activity."
To create BPEL process service component tests:
If you have not yet created a test suite, see Section 44.3.1, "How to Create Test Suites and Test Cases." The BPEL process service component test that you create is included in the overall test suite for the SOA composite application.
The Create Component Test dialog is displayed, as shown in Figure 44-22.
Figure 44-22 Create Component Test Dialog
The BPEL process in test mode is displayed, as shown in Figure 44-23.
In the lower left section, the Structure window displays the Asserts, Fast Forwards, and Assert Execution Counts folders. You can right-click these folders to create assertions, fast forwards (to bypass executions of wait activities), and assertion execution counts, respectively.
Above the designer, the following buttons are displayed:
Figure 44-23 BPEL Process Service Component in Test Mode
You can create assertions for variables and faults in BPEL process activities.
To create assertions:
The Assert dialog is displayed.
or
The activity you selected is displayed in the Activity Name field.
Table 44-9 Assertions on BPEL Activities
Field | Value |
---|---|
Assert Variable | Select to assert a variable. |
Assert Fault | Select to assert a fault. |
Target | Select a target to assert:
|
Compare By | Specify the strictness of the comparison.
|
Parts | Select the message part containing the XML document (for example, payload). |
Value | Create an XML document whose content is compared to the assert target content: |
| Click to manually enter message data in the Enter Value field. A Generate Instance Sample icon enables you to automatically generate a sample file for testing. Click the Save As icon to save the sample file. |
| Click the Browse icon to load message data from a file. The file is added to the messages folder in the Application Navigator. |
Description | Enter an optional description. |
Expand the Assert folder in the Structure window to view the activities on which you have created asserts. Figure 44-24 provides details.
Figure 44-24 Assert Folder in Structure Window
You can specify the amount of time for which to bypass a wait activity and move forward in the test scenario. Once the time limit expires, the wait activity is processed.
To bypass a wait activity:
The Fast Forward dialog is displayed.
or
The wait activity you selected is displayed in the Activity Name field.
Figure 44-25 Fast Forwards Folder in Structure Window
For more information about wait activities, see Section 15.4, "Creating a Wait Activity to Set an Expiration Time."
You can specify to execute an activity a specified number of times. This provides a method for verifying that an activity executes the correct number of times in a process flow (for example, ensuring that a while activity executes the correct number of times).
To specify the number of times an activity is executed:
The Assert Execution Count dialog is displayed.
or
The activity you selected is displayed in the Activity Name field.
Figure 44-26 Assert Execution Counts Folder in Structure Window
After creating a test suite of test cases, you deploy the suite as part of a SOA composite application. You then run the test suites from Oracle Enterprise Manager Fusion Middleware Control.
sca_test
WLST command to execute a test suite, see Section "sca_test" of Oracle Fusion Middleware WebLogic Scripting Tool Command Reference. ant-sca-test.xml
ant script to execute a test suite, see Section 43.7.5.2.1, "Testing a SOA Composite Application." This part describes advanced topics.
This part contains the following chapters:
This chapter describes the best practices for managing large documents and metadata and for managing environments with large numbers of instances in Oracle SOA Suite. It also describes use cases for handling large documents, limitations on concurrent processing of large documents, and tuning recommendations.
This chapter includes the following sections:
For more information about Oracle SOA Suite tuning and performance, see Oracle Fusion Middleware Performance and Tuning Guide.
For information about troubleshooting Oracle SOA Suite issues, see Chapter "Troubleshooting Oracle SOA Suite" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
For information about using Oracle Data Integrator to perform fast bulk data movement and handle complex data transformations, visit the following URL:
This section describes the following scenarios for handling large documents and the best practice approach for each scenario. Oracle recommends that you follow these best practices before developing and executing large payloads.
This section describes use cases for handling large documents.
This section describes use cases for passing binary objects as Base64-encoded text in the XML payload.
In this use case, the binary attachments (for example, an image) are Base64-encoded as text and then passed inline in the XML document. Table 45-1 provides details.
Table 45-1 Capabilities
Capability | Description |
---|---|
Security | Supported. |
Filter/Transformation/Assign | Use of transformations may lead to slower performance, out-of-memory errors, or both. |
Fanout | Supported. |
Binding | WS binding sends it as a document object model (DOM). |
Oracle BPEL Process Manager/Oracle Mediator | Can be decoded in a BPEL process using Java |
In this use case, the binary attachments (for example, an image) are Base64-encoded as text and then passed as a Message Transmission Optimization Mechanism (MTOM) document. Table 45-2 provides details.
Table 45-2 Capabilities
Capability | Description |
---|---|
Security | Supported. |
Filter/Transformation/Assign | Assign activities are supported. |
Fanout | Supported. |
Binding | WS binding materializes the attachment sent as MTOM and puts it inside in Base64-encoded format (streaming is not supported). Outbound MTOM is not supported. |
Oracle BPEL Process Manager/Oracle Mediator | No additional work is required. |
In this use case, the binary attachments (for example, an image) are Base64-encoded as text and then passed inline in the XML document. Table 45-3 provides details.
Table 45-3 Capabilities
Capability | Description |
---|---|
Security | Not supported. |
Filter/Transformation/Assign | Pass through. |
Fanout | Supported. |
Binding | Adapter encodes it to Base64 format. |
Oracle BPEL Process Manager/Oracle Mediator | Supported. Opaque content cannot be manipulated in an assign or a transformation activity. |
In this use case, the binary attachments (for example, an image) are Base64-encoded as text encoded. Table 45-4 provides details.
Table 45-4 Capabilities
Capability | Description |
---|---|
Security | Not supported. |
Filter/Transformation/Assign | Pass through. |
Fanout | Supported. |
Oracle B2B | Oracle B2B encodes the native payload to Base64 format. For this scenario, you must configure the Oracle B2B binding document definition handling to be opaque. |
This section describes use cases for end-to-end streaming of attachments.
In this use case, the binary attachments (for instance an image) are passed end-to-end as a stream. Table 45-5 provides details.
Table 45-5 Capabilities
Capability | Description |
---|---|
Security | Not supported. |
Filter/Transformation/Assign | Pass through. You must use an XPath extension function in Oracle BPEL Process Manager. |
Fanout | Not supported. |
Binding | WS binding creates stream iterators for the SOAP attachment. |
Oracle BPEL Process Manager/Oracle Mediator | Oracle Mediator can perform a pass through without materializing it. Oracle BPEL Process Manager persists it. |
Tuning | Manage the database tablespace when using with Oracle BPEL Process Manager. |
WSDL Code for defining SOAP with attachments | <mime:part> <mime:content part="bin" type=“image/jpeg"/> </mime:part> |
Working with Streaming Attachments
Oracle Fusion Middleware web services enable you to pass large attachments as a stream. Unlike the JAX-RPC API, which treats attachments as if they are entirely in memory, streams make the programming model more efficient to use. Streams also enhance performance and scalability because there is no need to load the attachment into memory before service execution.
As with embedded attachments, streamed attachments conform to the multipart MIME binary format. On the wire, messages with streamed attachments are identical to any other SOAP message with attachments.
Example 45-1 provides a sample message with a streamed attachment. The first part in the message is the SOAP envelope (<SOAP-ENV:Envelope...
). The second part is the attachment (for this example, myImage.gif
).
Example 45-1 Sample Message with a Streamed Attachment
Creating Composites that Use MIME Attachments
Perform the following procedures to create composites that use MIME attachments.
To create composites that use MIME attachments:
When complete, the WSDL that references a MIME attachment is displayed.
Performance Overhead and Pass Through Attachments
Because Oracle Mediator is stateless, there is no performance overhead with pass through attachments. However, Oracle BPEL Process Manager dehydrates attachments and has performance overhead, even for pass through attachments. Using Oracle BPEL Process Manager for attachments over a period of time, the SOA Infrastructure schema can grow to its maximum size and encounter memory issues. It is recommended that you extend the database tablespace appropriately for the SOA Infrastructure schema to accommodate large attachments. Simultaneously, you can use purge scripts to purge completed instances along with the attachments table. For information on purge scripts, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
In scenarios in which one BPEL process calls a second BPEL process within the same composite, the second BPEL process does not dehydrate the same attachment again.
In scenarios in which one BPEL process from composite 1 invokes a second BPEL process from composite 2 and optimization is disabled, composite 1 makes a SOAP call to composite 2. The second BPEL process does dehydrate attachments.
Properties for Streaming Attachments
To stream attachments, add the following properties in the composite.xml
file. If optimization is enabled, then a native call is used instead of a SOAP call. Example 45-2 provides details.
Example 45-2 Properties for Streaming Attachments
For information about the oracle.webservices.local.optimization
property, see "Managing SOA Composite Application Policies" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Note: Oracle Web Services Manager (OWSM) does not inspect or enforce policies on streamed attachments. For more information about OWSM, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services. |
Oracle Mediator Streaming Attachment Property
In addition to the properties described in "Properties for Streaming Attachments", Oracle Mediator requires an additional property, persistStreamAttachment
, for streaming attachments where the source message that contains the attachment is shared by multiple target receivers. Set this property to true
in composite.xml
to enable streaming attachments to multiple targets.
Example 45-3 Oracle Mediator Streaming Attachments Property
Reading and Encoding SOAP Attachment Content
The ora:getAttachmentContent
function reads SOAP attachment content and encodes that data in Base64 format in a BPEL process by providing the BPEL variable as an argument, which has an href
of the SOAP attachment. Example 45-4 shows how to use this function:
Example 45-4 ora:getAttachmentContent Function
Example 45-4 copies the attachment content, which has its href
stored in the "input/bin"
variable to the content variable, in Base64-encoded format.
With the default configuration, Oracle Mediator can pass an attachment stream to only one target receiver, which can be another component or a web service/adapter. The second target cannot receive the attachment. When you define the persistStreamAttachment
property for the Mediator component, Oracle Mediator can pass an attachment stream to multiple target receivers. This parameter is described in "Properties for Streaming Attachments".
Oracle BPEL Process Manager supports sending the attachment stream to multiple receivers. For Oracle BPEL Process Manager to send a stream to multiple receivers, it must read the attachment stream from the database using the readBinaryFromFile
XPath function and pass the stream to the appropriate targets.
Sharing Attachments Using Synchronous Flows
When Oracle BPEL Process Manager-based composites share attachments using synchronous flows, it is necessary to use the same end-to-end transaction. This is applicable to composites that are colocated and use local/optimized calls. This can be achieved by setting the property shown in Example 45-5 on all the called BPEL components (callees) in the call chain.
Example 45-5 bpel.config.transaction Property
If such composites do not execute as part of the same transaction context, the attachment data saved by the first BPEL component in the call chain is not visible to the other BPEL components in the call chain. In addition, they incur database locking and timeout exceptions:
In this use case, the adapter streams the binary data to a database store and publishes an href
to the service engine (Oracle BPEL Process Manager or Oracle Mediator). Table 45-6 provides details.
Table 45-6 Capabilities
Capability | Description |
---|---|
Security | N/A. |
Filter/Transformation/Assign | Filters and transformations on the attachment are not supported. |
Fanout | Supported. |
Binding | The adapter streams the non-XML to the database as a binary large object (BLOB) and passes the key to the service engines. |
Oracle BPEL Process Manager/Oracle Mediator | Supported. |
Tuning |
|
Documentation | See Oracle Fusion Middleware User's Guide for Technology Adapters. |
Writing Attachments Using an Outbound File Adapter
Example 45-6 shows a sample schema that can be used by the file adapter to write attachments to disk.
Example 45-6 Schema for Writing Attachments to Disk
Use Oracle Mediator in the flow to map the attachment part from the source (Oracle Mediator) to the target (file adapter) using an Oracle Mediator assign.
If you use Oracle BPEL Process Manager, the attachment is written to the dehydration store, which slows down the process.
Transforming Attachments with the ora:doStreamingTranslate XPath Function
Use of the ora:doStreamingTranslate
XPath function is only recommended while transforming attachments within an Oracle BPEL Process Manager or Oracle Mediator composite. This function expects the attachment location to be a relative path on the server. This function cannot translate incoming attachment streams.
For more information about this function, see Section B.2.7, "doStreamingTranslate."
In this use case, Oracle B2B stores the binary data to a database and publishes an href
to the service engine (Oracle BPEL Process Manager or Oracle Mediator) based on an Oracle B2B-defined XSD. Oracle B2B protocols define the attachment. Table 45-7 provides details.
Table 45-7 Capabilities
Capability | Description |
---|---|
Security | N/A. |
Filter/Transformation/Assign | Filters and transformations on the attachment are not supported. |
Fanout | Supported. |
Binding | Oracle B2B passes it as an |
Tuning | Extend the database tablespace for the Oracle SOA Suite schema. |
Within a SOA composite application, you must attach the Oracle WS-MTOM policy to service and reference binding components to receive and send MTOM (MIME binary) attachments within Oracle SOA Suite. When a service binding component (defined under binding.ws
in the composite.xml
file) is configured with an Oracle WS-MTOM policy, Oracle SOA Suite's MTOM message handling feature is used. When a reference binding component (also defined under binding.ws
in the composite.xml
file) is configured with an Oracle MTOM policy, Oracle SOA Suite sends MTOM-compliant messages with attachments.
Note the following issues with MTOM attachments.
mtomThreshold
value is 1024 bytes and cannot be modified. If an attachment is less than 1024 bytes, for outbound configurations, Oracle SOA Suite sends it as an inline attachment. If the size is greater than 1024 bytes, then the attachment is sent as an attachment part with an href
attribute in the message, and is sent as a WSDL-defined format on the wire. However, if the incoming request (for example, from a different web services provider) has an xop
href
node for small binary data (that is, size is less than 1024 bytes), Oracle SOA Suite uses the same href
attribute in the payload in the flow trace. For example: Note: If the input is of type |
xsl:copy-of
instruction (copy-of
copies everything, including attributes) or use custom functions to copy attributes from source to target. Unless a SOAP message passed to the dispatch.invoke()
call of the SOA Infrastructure already contains BinaryTextIml
nodes, binary data transmission is not optimized on the wire. Therefore, there is no guarantee that binary data optimization is always performed when a WS-MTOM policy is configured. The only way to ensure that optimization is performed is if the SOA MTOM configuration is also specified. The WS-MTOM policy guarantees the proper content-type setting with or without the SOA MTOM settings.
For example, assume you create a SOA composite application without BinaryTextIml
nodes in the SOAP message that consists of the following components:
The JAX-WS, MTOM-enabled, client service binding component invokes the BPEL service component. The BPEL service component then invokes the JAX-WS, web service, reference binding component. The SOAP message from the JAX-WS client service binding component to the BPEL service component is MTOM-optimized. However, from the BPEL service component to the JAX-WS, web service reference binding component, the message is base64binary-enabled, and not MTOM-optimized.
This section describes use cases for processing large XML with repeating constructs.
In this use case, the inbound adapter splits a source document into multiple batches of records, each of which initiates a composite instance. Table 45-8 provides details.
Table 45-8 Capabilities
Capability | Description |
---|---|
Security | N/A. |
Filter/Transformation/Assign | Supported. |
Fanout | Supported. |
Binding | The file/FTP adapter debatches it to a small chunk based on the native XSD (NXSD) definition. |
Oracle BPEL Process Manager/Oracle Mediator | Supported. |
Tuning | For repeating structures, XSLT is supported for scenarios in which the repeating structure is of smaller payloads compared to the overall payload size. Substitution with assign activities is preferred, as it performs a shadow copy. |
Documentation | See Oracle Fusion Middleware User's Guide for Technology Adapters. |
In this use case, a loop within a BPEL process reads a chunk of records at a time and process (that is, cursor). Table 45-9 provides details.
Table 45-9 Capabilities
Capability | Description |
---|---|
Security | Supported. |
Filter/Transformation/Assign | Supported. |
Fanout | Supported. |
Oracle BPEL Process Manager/Oracle Mediator | Supported only from Oracle BPEL Process Manager. |
Documentation | See Oracle Fusion Middleware User's Guide for Technology Adapters. |
This section describes use cases for processing very large XML documents with complex structures.
In this use case, very large XML files are streamed through Oracle SOA Suite. Table 45-10 provides details.
Table 45-10 Capabilities
Capability | Description |
---|---|
Security | N/A. |
Filter/Transformation/Assign | Supported, but must optimize to avoid issues. |
Fanout | Supported. |
Binding | The adapter streams the payload to a database as an SDOM and passes the key to the service engines. |
Documentation | See Oracle Fusion Middleware User's Guide for Technology Adapters. |
In this use case, large XML files are passed by Oracle B2B to Oracle SOA Suite as an SDOM. This only occurs when a large payload size is defined in the Oracle B2B user interface. Table 45-11 provides details.
Table 45-11 Capabilities
Capability | Description |
---|---|
Security | N/A. |
Filter/Transformation/Assign | Supported, but must optimize to avoid issues. |
Fanout | Supported. |
Binding | Oracle B2B streams the payload to a database as SDOM and passes the key to the service engines. |
Oracle BPEL Process Manager/Oracle Mediator | Can use an XPath extension function to manipulate the payload. |
This section describes the limitations on concurrent processing of large documents.
There is a limitation when you use an opaque schema for processing large payloads. The entire data for the opaque translator is converted to a single Base64-encoded string. An opaque schema is generally used for smaller data. For large data, use the attachments feature instead of the opaque translator.
This section provides general tuning recommendations.
For more information about Oracle SOA Suite tuning and performance, see Oracle Fusion Middleware Performance and Tuning Guide.
This section provides general tuning recommendations.
500
seconds in Oracle WebLogic Server Administration Console. For instructions, see section "Resolving Connection Timeouts" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite. setDomainEnv.sh
(for Linux) or setDomainEnv.bat (for Windows) for JAVA_OPTIONS
, and restart the server. If this line does not exist, add it. Without this setting, large payload scenarios fail with ResourceDisabledException
for the dehydration data source. setSOADomainEnv.sh
or setDomainEnv.bat as follows: ora:
doTranslateFromNative
, ora:
doTranslateToNative
, ora:
doStreamingTranslate
, and so on). For information about these functions, see Appendix B, "XPath Extension Functions."
Increase the timeout property value as follows:
Increase the Stuck Thread Max Time property value as follows:
For large payload processing, turn off audit level logging for the specific composite. You can set the composite audit level option to Off or Production in Oracle Enterprise Manager Fusion Middleware Control. If you set the composite audit level option to Development, then it serializes the entire large payload into an in-memory string, which can lead to an out-of-memory error.
For more information about setting audit levels, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
When using the assign activity in Oracle BPEL Process Manager or Oracle Mediator to manipulate large payloads, do not assign the complete message. Instead, assign only the part of the payload that you need.
In addition, when using the assign activity in Oracle BPEL Process Manager, Oracle recommends using local variables instead of process variables, wherever possible. Local variables are limited to the scope of the BPEL process. These get deleted from memory and from the database after you close the scope. However, the life cycle of a global variable is tied with the instance life cycle. These variables stay in memory or remain on disk until the instance completes. Thus, local variables are preferred to process or global variables.
Until 11g Release 1 11.1.1.3, for XSLT operations in Oracle BPEL Process Manager, the result was cached into memory as a whole document in binary XML format. For large document processing, this caused out-of-memory errors. Starting with 11g Release 1 11.1.1.4, a the streamResultToTempFile
property has been added. This property enables XSLT results to be streamed to a temporary file and then loaded from the temporary file. Set streamResultToTempFile
to yes
when processing large payload using XSLT. The default value is no
.
This property is applicable when using the following BPEL XPath functions:
ora:processXSLT('template','input','properties'?)
ora:doXSLTransformForDoc ('template','input','name', 'value')
To configure large XML documents to be processed using XSLT:
import
section: propertiesXMLVar
): streamResultToTempFile
property to yes
. This assign activity should exist before using performing an XSLT transformation. Until 11g Release 1 11.1.1.3, for XSLT operations in Oracle Mediator, the result was cached into memory as a whole document in binary XML format. For large document processing, this caused out-of-memory errors. Starting with 11g Release 1 11.1.1.4, the streamResultToTempFile
property is available. This property enables XSLT results to be streamed to a temporary file and then loaded from the temporary file. Set streamResultToTempFile
to yes
when processing large payload using XSLT. The default value is no
.
Note: This property is recommended only for processing large payloads. Enabling this property could reduce performance for normal payloads. |
To configure large XML documents to be processed using XSLT:
composite.xml
file for the project in Source view. composite.xml
file, scroll to the component element that defines the Mediator component to process large XML documents, and add the streamResultToTempFile
property. Set the property to yes
as shown below. In scenarios in which the repeating structure is of smaller payloads compared to the overall payload size, Oracle recommends using XSLT transformation because the current XSLT implementation materializes the entire DOM in memory. For example, use PurchaseOrder.LineItem.Supplier
(a subpart of a large payload).
You can also substitute it with the assign activity, as it performs a shadow copy. Although a shadow copy does not materialize DOM, it creates a shadow node to point to the source document.
You can also use the following optimized translation functions while performing transformations/translations of large payloads:
ora:doTranslateFromNative
or med:doTranslateFromNative
ora:doTranslateToNative
or med:doTranslateToNative
ora:doStreamingTranslate
or med:doStreamingTranslate
For more information about the usage of these functions, see Oracle Fusion Middleware User's Guide for Technology Adapters.
For processing large documents in Oracle B2B, tune the following parameters:
mdsCache
Cache
Size
Protocol
Message
Size
Number
of
threads
Stuck
Thread
Max
Time
Tablespace
The following sections describe the parameters you must set for processing large documents in Oracle B2B:
To set Metadata Service (MDS) instance cache size, the property and value must be added to the $DOMAIN_HOME/config/soa-infra/configuration/b2b-config.xm
l file, as shown in Example 45-7.
If Oracle B2B wants to send or receive more than 10 MB of message or the import/export configuration is more than 10 MB, then change the following setting accordingly at the Oracle WebLogic Server Administration Console:
This setting can also be added/modified in the $DOMAIN_HOME/config/config.xml
file next to the server name configuration, as shown in Example 45-8.
Example 45-8 max-message-size Property
Note: By default, |
This parameter helps to improve the message processing capability of Oracle B2B and must be set in the $DOMAIN_HOME/config/soa-infra/configuration/b2b-config.xml
file. Example 45-9 provides an example.
Example 45-9 Number of Threads
The Stuck Thread Max Time parameter checks the number of seconds that a thread must be continually working before the server considers the thread stuck. You must change the following setting in the Oracle WebLogic Server Administration Console:
If you must store more than a 150 MB configuration in the data file, then you must extend or add the data file to increase the tablespace size, as shown in Example 45-10.
If you want to set a size restriction on inbound web service message size, configure the binding component property max-message-size
in the composite.xml
file. The property value is made available to the underlying web service infrastructure, which uses the value to test against the incoming message size. If the value specified is exceeded, an exception is thrown indicating that the message size is too large and the transaction is not processed. Example 45-11 provides details.
Example 45-11 max-message-size Setting in composite.xml
You can use the following functions to write the results of large XSLT/XQuery operations to a temp file in a directory system. The document is then loaded from the temp file when needed. This eliminates the need for caching an entire document as binary XML in memory.
ora:processXSLT
ora:doXSLTransformForDoc
With the ora:processXSLT
function, you use the properties
argument to enable this functionality.
You retrieve the value of this argument within your XSLT in a way similar to extracting data from XSL variables. The properties
argument is an XML element of the structure shown in Example 45-12. For large payload results (for example, above 10 MB), set streamResultToTempFile
to yes
. For small payload results in which you do not need to write results to a temp file, leave this property set to its default value of no
.
Example 45-12 properties XML
Within the XSLT, the parameters are accessible through the name of streamResultToTempFile
and its value of yes
.
In Oracle BPEL Process Manager, a literal assign is performed to populate the properties for ora:processXSLT('template','input','properties'?)
.
For more information on using this function, see Section B.2.52, "processXSLT."
With the ora:doXSLTransformForDoc
function, you set the name
and value
properties to enable this functionality.
With this function, the name
of streamResultToTempFile and the value
of yes
are passed.
For more information on using the function, see Section B.2.11, "doXSLTransformForDoc."
This section provides recommendations for handling large metadata.
There is a limit to the number of activities that can be executed in a BPEL process. When you exceed this limit, system memory fills up, which can cause timeouts to occur. For example, with the following parameters, two fault instances occur due to a timeout:
100
threads 1
second of think time 1000
incoming request messages Try to keep the number of incoming request messages at a proper level to ensure system memory stability.
To deploy BPEL processes that have a large number of activities (for example, 50,000), the following settings are required:
MEM_ARGS: -Xms512m -Xmx1024m -XX:PermSize = 128m -XX:MaxPermSize = 256m
Number of Concurrent Threads = 20
Number of Loops = 5 Delay = 100 ms
The above settings enable you to deploy and execute BPEL processes, which use only while loops without the flowN activities, successfully.
To deploy BPEL processes that have a large number of activities (for example, 50,000), the following settings are required:
USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=256m
Number of Concurrent Threads= 10
Number of Loops=5 Delay=100 ms
Set the StatsLastN property to -1
in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control.
The above settings enable you to deploy and execute BPEL processes, which use the flowN activities, successfully.
For more information, see Chapter 10, "Using Parallel Flow in a BPEL Process."
BPEL processes that have up to 7000 activities can be deployed and executed successfully with the following settings:
USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=256m
Note: If you deploy BPEL processes with more than 8000 activities, Oracle BPEL Process Manager compilation throws errors. |
BPEL processes that have up to 7000 activities can be deployed and executed successfully with the following settings:
USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m -XX:MaxPermSize=512m
Note: If you deploy BPEL processes with more than 10,000 activities, the Oracle BPEL Process Manager compilation fails. |
You can deploy and execute BPEL processes that have a large number of activities (for example, up to 5000) successfully.
There is a probability that the BPEL compilation may fail for 6000 activities.
Oracle recommends that you not have more than 50 Oracle Mediators in a single composite. Increase the JTA Transaction timeout to a high value based on the environment.
Oracle recommends that you do not use browsers for large data set imports, and that you use the command-line utility. The following utility commands are recommended for large data configuration:
purge
: This command is used to purge the entire repository. import
: This command is used to import the specified ZIP file. deploy
: This command is used to deploy an agreement with whichever name is specified. If no name is specified, then all the agreements are deployed. However, the purgeimportdeploy
option is not recommended for transferring or deploying the Oracle B2B configuration.
For more information, see Oracle Fusion Middleware User's Guide for Oracle B2B.
This section provides recommendations for handling large numbers of instance and fault metrics.
Deleting thousands of instances and rejected messages in Oracle Enterprise Manager Fusion Middleware Control takes time and can result in a transaction timeout. If you must perform this task, use the PL/SQL purge script for instance and rejected message deletion.
For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can improve the loading of pages that display large amounts of instance and fault data in Oracle Enterprise Manager Fusion Middleware Control by setting two properties in the Display Data Counts section of the SOA Infrastructure Common Properties page.
These two properties enable you to perform the following:
These settings disable the loading of all metrics information upon page load. For example, on the Dashboard page for the SOA Infrastructure, the values that typically appear in the Running and Total fields in the Recent Composite Instances section and the Instances column of the Deployed Composites section are replaced with links. When these values are large, it can take time to load this page and other pages with similar information.
For more information about setting these properties, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This chapter describes how to customize SOA composite applications with the customization feature available with a BPEL process service component. It describes how to create a customizable application, customize the vertical version of the application, and customize the customer version of the application. It also describes how to upgrade to the next version of the application.
This chapter includes the following sections:
This section describes the life cycle for customizing SOA composite applications. For example, assume the following organizations require use of the same composite, but with slight modifications:
The core applications development team creates a base customizable composite and delivers it to a vertical applications team that customizes it for a certain industry (for example, telecommunications). The tailored solution is then sold to a telecommunications customer that further customizes the composite for their specific geographic business needs. Essentially, there is a base composite and several layers of customized composites. At a later time in the composite life cycle, the core applications development team creates the next version of the base composite, triggering an upgrade cycle for the vertical applications team and the customer.
Note: Do not customize the same SOA composite application for different layer values. Only a single layer value for customization is supported. If you must support another layer value, always import the base composite into a different project and change the composite name to be specific to the layer value you want to customize. This approach is also useful for deployments in which you do not want to deploy different layer values with the same composite name. |
This section provides an overview of the steps required for creating the customizable, base SOA composite application.
To create the customizable composite:
Note: You can only customize the |
In real environments, the customization classes are provided by the core applications team. When you use your own customization classes, you must add your customization class JAR file to your project to make the classes available for the adf-config.xml file.
For information on how to write customization classes, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
This section describes how to create customization classes. In this example, you create a class for a customization layer named MyCustomizationLayer
.
To create customization classes:
The Create Java Class Wizard automatically generates the following content:
You can also optionally remove the constructor with parameters.
You can add an XML schema or WSDL document in Oracle JDeveloper when logged in with the Customization Developer role.
Invokes the Create XML Schema dialog for adding a new XML schema file in the project. When complete, the new schema file automatically opens.
Invokes the Create WSDL dialog to add a new WSDL file in the project.
You can search for customized activities in a BPEL process in Oracle JDeveloper.
To search for customized activities:
The search results display in the Search for Customizations tab of the Log window at the bottom of the designer.
The source of any artifact in Oracle JDeveloper (except for new artifacts created in the Customization Developer role) is editable in the Customization Developer role of another application.
For example:
composite.xml
property in the composite (as an example, add the passThroughHeader
property for an Oracle Mediator service component included in the composite). composite.xml
file, and from the Property Inspector attempt to modify the passThroughHeader property value. The property is editable.
In the customization role, the metadata repository (MDS) merges customizations with the base metadata. The merging can result in an invalid XML document against its schema. MDS merging does not invoke a schema validation to ensure that the merging always creates a valid XML document. This can cause a problem for MDS clients that rely on the validity of the metadata to render their metadata UI editors.
Whenever a SOA file such as composite.xml
becomes invalid, you must switch to Source view in Oracle JDeveloper to directly fix the XML source. If Source view is not editable (for example, you have accessed Oracle JDeveloper using the Customization Developer role), you must use the Structure window in Oracle JDeveloper to fix the XML source.
For example, assume you created a base SOA composite application with a BPEL process that included a customized scope. The SAR file for the base application was then imported into a new application in which the following components were added when accessing Oracle JDeveloper with the Customization Developer role:
When version two of the base SOA composite application was created, a synchronous Oracle Mediator service component was added, which caused the routing rules to the BPEL process service component to be updated.
The SAR file for version two of the base application was then imported into the customized application. When the user accessed Oracle JDeveloper with the Customization Developer role, an invalid composite error was displayed. The composite.xml
file in the Structure window showed the following invalid structure for the sequence of service components and reference binding components.
The <reference>
component (in this case, the outbound file adapter added when the user accessed Oracle JDeveloper with the Customization Developer role in version one of the base application) should have displayed last.
To resolve this error, go to the Structure window and copy and paste these components into the correct order. This action resolves the composite validation error.
Assume you perform the following steps.
For example, while using Oracle JDeveloper in the Customization Developer role, you add new activities into a customizable scope activity of the BPEL process. The BPEL process creates a sequence activity into which the new activities are added.
In the version 2 composite, if new activities are added into the same customizable scope, a new sequence activity is created.
The following error is displayed:
Perform the following steps to resolve the conflict:
When you deploy or compile a customized application at the core application, vertical application, or customer level, warning messages describing unexpected ID attributes are displayed, as shown in Example 46-1. You can safely ignore these messages. These messages display because the schema definition does not include these simple-type elements, which is expected behavior. These messages do not prevent the customized composite from being successfully deployed.
Example 46-1 Deployment or Compilation Errors
This section provides an overview of the steps required for customizing the vertical SOA composite application.
To customize the vertical application:
Add the layer values for the customization layers through either of the following methods:
Figure 46-3 Configure Design Time Customization Layer Values Link
After you specify the values and save the file, the CustomizationLayerValues.xml file is displayed in the MDS DT folder under Application Resources. You can double-click the file in this location to open an editor for making additional modifications.
or
CustomizationLayerValues.xml
file in $JDEV_HOME/jdeveloper/jdev
and add the layer values for the customization layers. For example, add the value Communications
to the industry
layer. Note: Do not select any SOA project. You must create a new SOA project for the JAR file that you import. |
The Customization Context dialog displays the available customization layers and layer values.
You can only edit scope activities that have been set to customizable. In the example shown in Figure 46-5, the core applications team set only one scope to be customizable. The other activities in the BPEL process are disabled and cannot be edited.
Since deployment is invoked with the customization role enabled, the base composite with the appropriate layers based on the current customization context is automatically merged.
The JAR file contains a merged composite that in turn acts as a base process for the next level of customization. The JAR file can now be delivered to the customer.
Note: You can create WSDL and XSD files while running Oracle JDeveloper in the Customization Developer role. In the Application Navigator, right-click the project name and select SOA > Create WSDL or SOA > Create XSD. |
This section provides an overview of the steps required for customizing the customer version of the SOA composite application.
How to customize the customer version:
After you specify the values and save the file, the CustomizationLayerValues.xml file is displayed in the MDS DT folder under Application Resources. You can double-click the file in this location to open an editor for making additional modifications.
or
CustomizationLayerValues.xml
file in $JDEV_HOME/jdeveloper/jdev
and add the layer values for the customization layers. For example, add the values North America
and Asia Pacific
to the site
layer. The Customization Context dialog displays the available customization layers and layer values.
This section provides an overview of the steps required for upgrading the SOA composite application to the next version.
The core application team fixes bugs, makes product enhancements. and creates the next version of the composite.
To upgrade the core application team composite:
The vertical applications team customizes the new base composite to create a version of the JAR file.
To upgrade the vertical application team composite:
The customer follows the same procedures as the vertical applications team in Section 46.5.2, "How to Upgrade the Vertical Application Team Composite" to apply their layers to the new base composite.
This chapter describes how to create and use domain value maps to map the terms used by different domains to describe the same entity, allowing you to map values used by one domain for specific fields to the values used by other domains for the same fields. This chapter also describes the XPath functions used for domain value lookups.
This chapter includes the following sections:
When information is transmitted between different domains, each domain might use different terminology or processing codes to describe the same entity. For example, one domain might use complete city names in its messages (Boston
), while another domain uses a code to indicate the city (BO
). Rather than requiring each domain to standardize their data to one set of terminology, you can use domain value maps to map the terms used in one domain to the terms used in other domains. Domain value maps operate on the actual data values in the messages that are transmitted through an application at runtime.
While each domain value map typically defines the mapping for only one field or category, a single SOA composite can require mappings for multiple categories. Thus, one SOA composite might contain several domain value maps. For example, you might have one domain value map that defines city name mapping, one that defines state name mapping, and one that defines country name mapping.
A direct mapping of values between two or more domains is known as point-to-point mapping. Table 47-1 shows a point-to-point mapping for cities between two domains:
Table 47-1 Point-to-Point Mapping
CityCode | CityName |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
Domain value map values are static. You specify the domain value map values at design time using Oracle JDeveloper, and then at runtime the application performs a lookup for the values in the domain value maps. For information about editing domain value maps at runtime with Oracle SOA Composer, see Chapter 48, "Using Oracle SOA Composer with Domain Value Maps."
Note: To dynamically integrate values between applications, you can use the cross referencing feature of Oracle SOA Suite. For information about cross references, see Chapter 49, "Working with Cross References." |
Oracle SOA Suite domain value maps let you further refine the performance and results of the domain value map lookups that are performed at runtime. For example, you can specify qualifying information that provides additional information to assist with mapping. Domain value maps also support one-to-many mappings.
Qualifier domains contain information solely to clarify the mapping. A mapping might be ambiguous unless this additional information is defined. For example, a domain value map that defines a city name mapping could have multiple mappings from KN
to Kensington
because Kensington
is a city in both Canada
and the USA
. Therefore, this mapping requires a qualifier (USA
or Canada
) to indicate which mapping to use. An example of this is shown in Table 47-2.
Table 47-2 Qualifier Support Example
Country (Qualifier) | CityCode | CityName |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A domain value map can contain multiple qualifier domains. For example, as shown in Table 47-3, the mappings are also qualified with a state name.
Table 47-3 Multiple Qualifier Support Example
Country (Qualifier) | State (Qualifier) | CityCode | CityName |
---|---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Qualifiers are used only to qualify the mappings. Therefore, the qualifier values cannot be looked up.
When there are multiple qualifier domains, you can specify a qualifier order to indicate how they are used during runtime lookups. The order of a qualifier varies from highest to lowest depending on the role of the qualifier in defining a more exact match. In Table 47-3, the state qualifier would probably be given a higher order than the country qualifier because a matching state indicates a more precise match.
Domain value maps support hierarchical lookup. If you specify a qualifier value during a lookup and no exact match is found, then the lookup mechanism tries to find a more generalized match by setting the higher order qualifiers to empty quotes (""
). It proceeds until a match is found, or until a the lookup is exhausted and no match is found. Figure 47-1 describes the steps of a hierarchical lookup performed for the following lookup (based on the values in Table 47-3):
In this example, the State
qualifier has a qualifier order of 1
and the Country
qualifier has a qualifier order of 2
. As shown in Figure 47-1, the lookup mechanism sets the higher order qualifier State
to the exact lookup value Arkansas
and uses Canada|""
for the lower order qualifier Country
.
If no match is found, the lookup mechanism sets the higher order qualifier State
to a value of ""
and sets the next higher qualifier Country
to an exact value of Canada
. If no match is found, the lookup mechanism sets the value of the previous higher order qualifier Country
to a value of ""
. One matching row is found where CityCode
is KN_USA
and Kensington
is returned as a value.
Table 47-4 provides a summary of these steps.
One value can be mapped to multiple values in a domain value map. For example, a domain value map for payment terms can contain a mapping of payment terms to multiple values, such as discount percentage, discount period, and net credit period, as shown in Table 47-5.
You can create one or more domain value maps in a SOA composite application in Oracle JDeveloper, and then use the maps to look up the mapped values at runtime. Creating a domain value map creates a file with a .dvm
extension in the application file structure.
Create and configure domain value maps using the Create Domain Value Map(DVM) File dialog in Oracle JDeveloper. This dialog lets you define two domains, each with one value. Upon completion, the Domain Value Map Editor appears so you can define additional domains and corresponding values.
To create a domain value map:
The New Gallery dialog appears.
The Create Domain Value Map(DVM) File dialog appears.
Note: Each domain name must be unique in a domain value map. You can add more domains later. |
BO
for a CityCode
domain and Boston
for a CityName
domain, as shown in Figure 47-2. Figure 47-2 Populated Create Domain Value Map File Dialog
The Domain Value Map Editor appears with the new domain value map displayed.
A file with the extension .dvm
is created in the project file structure and appears in the Application Navigator, as shown in Figure 47-3.
Figure 47-3 A Domain Value Map File in Application Navigator
All .dvm
files are based on the schema definition (XSD) file shown in Example 47-1.
Example 47-1 XSD File for Domain Value Map Files
After you create the framework for a domain value map, you can add domains and corresponding domain values to the map using the Domain Value Map Editor.
You can define additional domains to map, which are represented as columns in the domain value map. You can also specify whether each new domain contains values to be included in the lookups at runtime or if it is only used to qualify the mapping.
To add a domain to a domain value map:
The Create Domain dialog appears.
Tip: For more information about qualifier domains and qualifier order, see Section 47.1.1.1, "Qualifier Domains" and Section 47.1.1.2, "Qualifier Hierarchies.". |
This field is enabled only if you selected True in the Qualifier field.
Figure 47-4 Domain Value Map - Create Domain Dialog
A new column appears in the Map Table.
Once you add a domain to a domain value map, you can change the name, change whether it is a qualifier domain, and change the qualifier order.
To edit a domain
The Edit Domain dialog appears.
Figure 47-5 Domain Value Map - Edit Domain Dialog
Domain values are displayed in rows in the domain value map, with each row containing the values to be mapped for each domain. You can add as many domain values as required to fully define the mapping between domains.
To add domain values to a domain value map:
A new row appears beneath the existing rows in the Map Table.
Once you add domain values to a domain value map, you can modify the values if needed.
To modify domain values
The Edit Domain Values dialog appears.
Figure 47-6 Domain Value Map - Edit Domain Values
After creating a domain value map, you can use the XPath functions of the domain value map to look up appropriate values and populate the targets for the applications at runtime.
The dvm:lookupValue
and dvm:lookupValue1M
XPath functions look up a domain value map for a single value or multiple values at runtime.
The dvm:lookupValue
function returns a string by looking up the value for the target column in a domain value map, where the source column contains the given source value.
dvm:lookupValue
function syntax. Example 47-2 dvm:lookupValue Function Syntax
Example 47-3 provides an example of dvm:lookupValue
function use.
dvm:lookupValue
function syntax. Example 47-4 dvm:lookupValue Function Syntax
Example 47-5 provides another example of dvm:lookupValue
function use.
Arguments
dvmMetadataURI
- The domain value map URI. SourceColumnName
- The source column name. SourceValue
- The source value (an XPath expression bound to the source document of the XSLT transformation). TargetColumnName
- The target column name. DefaultValue
- If the value is not found, then the default value is returned. QualifierSourceColumn
: The name of the qualifier column. QualifierSourceValue
: The value of the qualifier. The dvm:lookupValue1M
function returns an XML document fragment containing values for multiple target columns of a domain value map, where the value for the source column is equal to the source value. Example 47-6 provides details.
Example 47-6 dvm:lookupValue1M Function Syntax
Arguments
dvmMetadataURI
- The domain value map URI. SourceColumnName
- The source column name. SourceValue
- The source value (an XPath expression bound to the source document of the XSLT transformation). TargetColumnName
- The name of the target columns. At least one column name should be specified. The question mark symbol (?
) indicates that you can specify multiple target column names. Example 47-7 shows an example of dvm:lookupValue1M
function use.
Example 47-7 dvm:lookupValue1M Function Use
The result is shown in Example 47-8.
The domain value map functions can be used for transformations with a BPEL process service component or a Mediator service component. Transformations are performed by using the XSLT Mapper, which appears when you create an XSL file to transform the data from one XML schema to another.
For information about the XSLT Mapper, see Chapter 40, "Creating Transformations with the XSLT Mapper."
To use the lookupValue1M function in a transformation:
Figure 47-7 Domain Value Map Functions in the Component Palette
A dvm:lookupValue1M icon appears on the connecting line.
The Edit Function – lookupValue1M dialog appears, as shown in Figure 47-8.
Figure 47-8 Edit Function – lookupValue1M Dialog
A populated Edit Function - lookupValue1M dialog is shown in Figure 47-9.
Figure 47-9 Populated Edit Function – lookupValue1M Dialog
The XSLT Mapper appears with the lookupValue1M function icon.
For more information about selecting deployed domain value maps, see Section 43.7.3, "Deploying and Using Shared Metadata Across SOA Composite Applications in Oracle JDeveloper."
You can use the domain value map functions to create XPath expressions in the Expression Builder dialog. You can access the Expression Builder dialog through the Filter Expressions or the Assign Values functionality of an Oracle Mediator service component.
For information about the Assign Values functionality, see Section 20.3.2.10, "How to Assign Values."
To use the lookupValue function in the Expression Builder dialog:
This expression, also shown in Figure 47-10, looks up a domain value map for the city name equivalent of a city code. The value of the city code depends on the value specified at runtime.
Figure 47-10 Domain Value Map Functions in the Expression Builder Dialog
This section provides a tutorial for using domain value maps in a SOA composite. This use case demonstrates the hierarchical lookup feature of domain value maps. The hierarchical lookup use case consists of the following steps:
To download the sample files mentioned in this section, see the Oracle SOA Suite samples page
.
This section provides the design-time tasks for creating, building, and deploying your SOA composite application. These tasks must be performed in the order in which they are presented.
To create an Oracle JDeveloper application and a project:
The New Gallery dialog appears.
The Create SOA Application wizard appears.
Hierarchical
and then click Next. The Name your project page appears.
HierarchicalValue
and click Next. The Configure SOA settings page appears.
The Application Navigator of Oracle JDeveloper is populated with the new application and the project, and the SOA Composite Editor contains a blank composite.
After creating an application and a project for the use case, create a domain value map.
To create a domain value map:
The Create Domain Value Map(DVM) File dialog appears.
UnitsOfMeasure.dvm
. Siebel
and Common
. Siebel
domain, enter Ea
. Common
domain, enter Each
. The Domain Value Map Editor appears.
Click Add and then select Add Column.
The Create DVM Column dialog appears.
TradingPartner
. In the QualifierOrder field, enter 1
and click OK.
StandardCode
with a qualifier order value of 2
. Repeat this step to add two more rows.
Table 47-6 Information for Rows of Domain Value Map Table
Siebel | Common | TradingPartner | StandardCode |
---|---|---|---|
|
|
| |
|
|
|
|
|
|
|
|
The Domain Value Map Editor appears, as shown in Figure 47-11.
Figure 47-11 UnitsOfMeasure Domain Value Map
After creating the domain value map, create a file adapter service named ReadOrders to read the XML files from a directory.
Note: Oracle Mediator may process the same file twice when run against Oracle Real Application Clusters (Oracle RAC) planned outages. This is because a file adapter is a non-XA compliant adapter. Therefore, when it participates in a global transaction, it may not follow the XA interface specification of processing each file only once. |
To create a file adapter service:
The Service Name page appears.
ReadOrders
and then click Next. The Operation page appears.
The File Directories page appears.
The File Filtering page appears.
*.xml
and then click Next. The File Polling page appears.
The Messages page appears.
The Type Chooser dialog appears.
The Import Schema File dialog appears.
Samples
folder. The Finish page appears.
Figure 47-12 shows the ReadOrders service in the SOA Composite Editor.
Figure 47-12 ReadOrders Service in the SOA Composite Editor
To create a Mediator named ProcessOrders:
The Create Mediator dialog appears.
ProcessOrders
. A Mediator with name ProcessOrders is created.
This specifies the file adapter service to invoke the ProcessOrders Mediator while reading a file from the input directory.
Figure 47-13 ReadOrders Service Connected to the ProcessOrders Mediator
To create a file adapter reference:
The Adapter Configuration wizard Welcome page appears.
The Service Name page appears.
WriteCommonOrder
. The Operation page appears.
The File Configuration page appears.
common_order_%SEQ%.xml
and click Next. The Messages page appears.
The Type Chooser dialog appears.
The Finish page appears.
Figure 47-14 shows the WriteCommonOrder reference in the SOA Composite Editor.
Figure 47-14 WriteCommonOrder Reference in the SOA Composite Editor
You must specify the path that messages take from the ReadOrders adapter service to the external reference.
To specify routing rules:
Figure 47-15 ProcessOrders Mediator Connected to the WriteCommonOrder Reference
The Request Transformation Map dialog appears.
A listOfOrder_To_listOfOrder.xsl file appears in the XSLT Mapper.
The Auto Map Preferences dialog appears.
The listOfOrder_To_listOfOrder.xsl file appears, as shown in Figure 47-16.
Figure 47-16 imp1:listOfOrder To imp1:listOfOrder Transformation
Figure 47-17 Adding lookupValue Function to imp1:listOfOrder To imp1:listOfOrder.xsl
The Edit Function-lookupValue dialog appears.
The SOA Resource Lookup dialog appears.
The Select DVM Column dialog appears.
/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:unitOfMeasure
The Select DVM Column dialog appears.
"No_Value_Found"
. A qualifierColumnName row is added.
"StandardCode"
. A qualifierValue row is added.
/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:standard
.
"TradingPartner"
. /imp1:listOfOrder/imp1:order/imp1:baseData/imp1:tp
.
The Edit Function-lookupValue dialog appears, as shown in Figure 47-18.
Figure 47-18 Edit Function-lookupValue Function Dialog: Hierarchical Lookup Use Case
The transformation appears, as shown in Figure 47-19.
Figure 47-19 Complete imp1:listOfOrder To imp1:listOfOrder Transformation
An application server connection is required for deploying your SOA composite application. For information on creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."
Deploying the HierarchicalValue composite application to an application server consists of the following steps:
For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."
After deploying the HierarchicalValue application, you can run it by copying the input XML file sampleorder.xml
to the input folder. This file is available in the samples
folder. On successful completion, a file named common_order_1.xml
is written to the specified output directory.
For monitoring the running instance, you can use Oracle Enterprise Manager Fusion Middleware Control at the following URL:
where hostname
is the host on which you installed the Oracle SOA Suite infrastructure.
For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."
This section provides a tutorial demonstrating how to create a domain value map with multiple values to look up. This use case demonstrates the integration scenario for using a domain value map lookup between two endpoints to look up multiple values. For example, if the inbound value is State, then the outbound values are Shortname of State, Language, and Capital. The multivalue lookup use case consists of the following steps:
To download the sample files mentioned in this section, see Oracle SOA Suite samples page
.
This section provides the design-time tasks for creating, building, and deploying your SOA composite application. Perform these tasks in the order in which they are presented.
To create an Oracle JDeveloper application and project:
The New Gallery dialog appears.
The Create SOA Application wizard appears.
Multivalue
and then click Next. The Name your project page appears.
Multivalue
and click Next. The Configure SOA settings page appears.
The Application Navigator of Oracle JDeveloper is populated with the new application and project, and the SOA Composite Editor contains a blank composite.
After creating an application and a project for the use case, create the domain value map.
To create a domain value map:
The Create Domain Value Map(DVM) File dialog appears.
multivalue.dvm
. Longname
, Shortname
, Language
, and Capital
. Longname
domain, enter Karnataka
. Shortname
domain, enter KA
. Language
domain, enter Kannada
. Capital
domain, enter Bangalore
. The Domain Value Map Editor appears.
Repeat this step to add two more rows.
Table 47-7 Information for Rows of Domain Value Map Table
Longname | Shortname | Language | Capital |
---|---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The Domain Value Map Editor appears, as shown in Figure 47-20.
After creating the domain value map, create a file adapter service named readFile to read the XML files from a directory.
Note: Mediator may process the same file twice when run against Oracle RAC planned outages. This is because a file adapter is a non-XA compliant adapter. Therefore, when it participates in a global transaction, it may not follow the XA interface specification of processing each file only once. |
To create a file adapter service:
The Service Name page appears.
readFile
and then click Next. The Adapter Interface page appears.
The Operation page appears.
The File Directories page appears.
The File Filtering page appears.
*.xml
and then click Next. The File Polling page appears.
The Messages page appears.
The Type Chooser dialog appears.
The Import Schema File dialog appears.
The Finish page appears.
Figure 47-21 shows the readFile service in the SOA Composite Editor.
Figure 47-21 readFile Service in the SOA Composite Editor
To create the LookupMultiplevaluesMediator Mediator:
The Create Mediator dialog appears.
LookupMultiplevaluesMediator
. An Oracle Mediator with the name LookupMultiplevaluesMediator is created.
This specifies the file adapter service to invoke the LookupMultiplevaluesMediator Oracle Mediator while reading a file from the input directory.
Figure 47-22 readFile Service Connected to the LookupMultiplevaluesMediator Mediator
To create a file adapter reference:
The Adapter Configuration wizard Welcome page appears.
The Service Name page appears.
writeFile
and then click Next. The Adapter Interface page appears.
The Operation page appears.
The Operation page appears.
The File Configuration page appears.
multivalue_%SEQ%.xml
and click Next. The Messages page appears.
The Type Chooser dialog appears.
The Finish page appears.
Figure 47-23 shows the writeFile reference in the SOA Composite Editor.
Figure 47-23 writeFile Reference in SOA Composite Editor
You must specify the path that messages take from the readFile adapter service to the external reference.
To specify routing rules
Figure 47-24 LookupMultiplevaluesMediator Mediator Connected to the writeFile Reference
The Request Transformation Map dialog appears.
An Input_To_Output_with_multiple_values_lookup.xsl file appears in the XSLT Mapper.
The Auto Map Preferences dialog appears.
The Input_To_Output_with_multiple_values_lookup.xsl file appears in the XSLT Mapper, as shown in Figure 47-25.
Figure 47-25 imp1:Root-Element To ns2:Root-Element Transformation
Figure 47-26 Adding lookupValue Function to imp1:Root-Element to ns2:Root-Element
The Edit Function-lookupValue1M dialog appears.
The SOA Resource Lookup dialog appears.
The Select DVM Column dialog appears.
/imp1:Root-Element/imp1:Details/imp1:Longname
.
The Select DVM Column dialog appears.
A targetColumnName row is added.
"Language"
. "Capital"
. The Edit Function-lookupValue dialog appears, as shown in Figure 47-27.
Figure 47-27 Edit Function-lookupValue Function Dialog: Multiple Value Lookup Use Case
The Transformation appears, as shown in Figure 47-28.
Figure 47-28 Complete imp1:Root-Element To ns2:Root-Element Transformation
An application server connection is required for deploying your SOA composite application. For information on creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."
Deploying the Multivalue composite application to an application server consists of the following steps:
For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."
After deploying the Multivalue application, you can run it by copying the input XML file sampleinput.xml
to the input folder. This file is available in the samples
folder. On successful completion, a file with name multivalue_1.xml
is written to the specified output directory.
For monitoring the running instance, you can use Oracle Enterprise Manager Fusion Middleware Control at the following URL:
where hostname
is the host on which you installed the Oracle SOA Suite infrastructure.
In Oracle Enterprise Manager Fusion Middleware Control, you can click Multivalue to see the project dashboard.
To view the detailed execution trail, click the instance ID in the instance column. The Flow Trace page appears.
This chapter describes how to modify domain value maps for an Oracle SOA Suite project at runtime using Oracle SOA Composer. Domain value maps let you map values from one vocabulary used in a given domain to another vocabulary used in a different domain.
In earlier releases, for editing a domain value map at runtime, you first had to make the changes in Oracle JDeveloper, and then redeploy the domain value map in the application server. Oracle SOA Composer now offers support for editing domain value maps at runtime.
This chapter includes the following sections:
For more information about domain value maps, see Chapter 47, "Working with Domain Value Maps."
Oracle SOA Composer is an EAR file that is installed as part of the Oracle SOA Suite installation. Oracle SOA Composer enables you to manage deployed domain value maps during runtime without needing to redeploy the project that uses the domain value maps. Domain value map metadata can be associated either with a SOA composite application, or it can be shared across different composite applications. Figure 48-1 shows how Oracle SOA Composer lets you access a domain value map from the Metadata Service (MDS) repository.
Figure 48-1 Oracle SOA Composer High-Level Deployment Topology
To log in to Oracle SOA Composer:
The Oracle SOA Composer Login page appears, as shown in Figure 48-2.
Figure 48-2 Oracle SOA Composer Login Page
You must authenticate yourself by entering the login ID and password.
After you log in to Oracle SOA Composer, you see the Oracle SOA Composer home page, as shown in Figure 48-3:
Figure 48-3 Oracle SOA Composer Home Page
You must have the SOADesigner
application role to access Oracle SOA Composer metadata. By default, all the users with Oracle Enterprise Manager Fusion Middleware Control administrator privileges have this role. If you log in to Oracle SOA Composer without this role, you see the following message:
For information about adding the SOADesigner
application role to users without administrator privileges, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can view domain value maps at runtime. Perform the following steps to open and view a domain value map.
To view domain value maps at runtime:
The Select a DVM to open dialog appears, as shown in Figure 48-4:
You can also select a document from the My Edits option that displays recently opened documents.
Note: Alternatively, you can search for a domain value map by entering the name of the composite application containing the domain value map file in the Search composite field and then clicking the Search icon to the right of the field. |
The selected domain value map opens in view mode.
To get a direct link to the selected domain value map, click Bookmarkable Link. The Info button provides more information on the selected domain value map.
You can edit domain value maps while the applications using the domain value map are running.
By default, domain value maps open in view mode. Once you change to edit mode, you can modify row information. When you finish making changes, be sure to save and commit them as described in Section 48.4.1, "How to Save Domain Value Maps at Runtime" and Section 48.5.1, "How to Commit Changes at Runtime."
To change to edit mode:
The domain value map opens in edit mode.
To add rows:
You can add rows by performing the following steps:
The Add Domain Values dialog appears.
The entered values are added to the domain value map.
Every time a domain value map is opened in an edit session, a sandbox is created per domain value map, per user. If you save your changes, then the changes are saved in your sandbox.
To save domain value maps at runtime:
You can also revert a domain value map to the last saved state.
You must commit the changes you make to domain value maps in order to save and have them picked up by the runtime and be saved permanently to the MDS repository. In a session, you can also save your changes without committing them. In such a case, the domain value map remains in the saved state. You can reopen the domain value map and commit the changes later.
To commit changes at runtime:
Oracle SOA Composer detects conflicts that can occur among concurrent users. If you open a domain value map that is being edited by another user, then you see a warning, as shown in Figure 48-5.
Figure 48-5 Confirm Dialog for Concurrent Users of a Domain Value Map
However, if you still want to edit the domain value map, you can click Yes and make the modifications.
If the other user makes changes to the domain value map and commits the changes, you receive a notification message while trying to commit your changes.
If you click Yes and commit your changes, then the changes made by the other user are overwritten by your changes.
This chapter describes how to use the cross referencing feature of Oracle SOA Suite to associate identifiers for equivalent entities created in different applications. It includes a reference of the XRef functions you can use to populate, view, and maintain entries in the cross reference tables.
This chapter includes the following sections:
Cross references enable you to dynamically map values for equivalent entities created in different applications.
Note: The cross referencing feature enables you to dynamically integrate values between applications, whereas domain value maps enable you to specify values at design time and edit values at runtime. For more information about domain value maps, see Chapter 47, "Working with Domain Value Maps" and Chapter 48, "Using Oracle SOA Composer with Domain Value Maps." |
When you create or update objects in one application, you may also want to propagate the changes to other applications. For example, when a new customer is created in an SAP application, you may want to create an entry for the same customer in your Oracle E-Business Suite application named EBS. However, the applications that you are integrating may be using different entities to represent the same information. For example, for each new customer in an SAP application, a new row is inserted in its Customer
database with a unique identifier such as SAP_001
. When the same information is propagated to an Oracle E-Business Suite application and a Siebel application, the new row should be inserted with different identifiers such as EBS_1001
and SBL001
. In such cases, you need some type of functionality to map these identifiers with each other so that they can be interpreted by different applications to be referring to the same entity. This can be done by using cross references.
Cross references are stored in the form of tables. Table 49-1 shows a cross reference table containing information about customer identifiers in different applications.
The identifier mapping is also required when information about a customer is updated in one application and the changes must be propagated to other applications. You can integrate different identifiers by using a common value integration pattern, which maps to all identifiers in a cross reference table. For example, you can add one more column named Common
to the cross reference table shown in Table 49-1. The updated cross reference table then appears, as shown in Table 49-2.
Table 49-2 Cross Reference Table with Common Column
SAP | EBS | SBL | Common |
---|---|---|---|
|
|
|
|
|
|
|
|
Figure 49-1 shows how you can use common value integration patterns to map identifiers in different applications.
Figure 49-1 Common Value Integration Pattern Example
A cross reference table consists of two parts: metadata and actual data. The metadata is saved as the .xref
file created in Oracle JDeveloper, and is stored in the Metadata Services (MDS) repository as an XML file. By default, the actual data is stored in the XREF_DATA
table of the database in the SOA Infrastructure database schema. You can also generate a custom database table for each cross reference entity. The database table depends on the metadata of the cross reference entity.
Consider the following two cross reference entities:
ORDER
with cross reference columns SIEBEL
, COMMON
, and EBS
, as shown in Table 49-3 CUSTOMER
with cross reference columns EBS
, COMMON
, and PORTAL
, as shown in Table 49-4 Table 49-3 ORDER Table
Column Name | SIEBEL | COMMON | EBS |
---|---|---|---|
|
|
|
|
|
|
|
If you chose to save all the runtime data in one generic table, then the data is stored in the XREF_DATA
table, as shown in Table 49-5.
Table 49-5 XREF_DATA Table
XREF_TABLE_NAME | XREF_COLUMN_NAME | ROW_NUMBER | VALUE | IS_DELETED |
---|---|---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This approach has the following advantages:
However, this approach has the following disadvantages:
XREF_TABLE_NAME
and XREF_COLUMN_NAME
is repeated across a large number of rows. To overcome these problems, you can generate a custom database table for each cross reference entity. The custom database tables depend on the metadata of the cross reference entities. For example, for the XREF_ORDER
table and XREF_CUSTOMER
table, you can generate the custom database tables shown in Table 49-6 and Table 49-7.
Table 49-6 XREF_ORDER Table
ROW_ID | SIEBEL | COMMON | EBS |
---|---|---|---|
|
|
|
|
|
|
|
This approach requires you to execute Data Definition Language (DDL) scripts to generate the custom database tables. For more information about custom database tables, see Section 49.4.3, "How to Create Custom Database Tables."
Oracle Data Integrator (ODI) achieves data integration through an E-LT (extract, load, transform) model. You can use ODI to help with your cross-referencing needs. ODI provides three Knowledge Modules for handling SOA cross references that perform the following functions: Populate the cross-reference table, create a common ID for the target table, push the common ID and the source primary key to the cross-reference table, and create and push a unique row number that creates the cross reference between the source primary key and the common ID. With the modules, you can create an integration interface that both loads a target table from several source tables and handles cross-references between one of the sources and the target.
For more information about ODI and cross referencing, see "Oracle SOA Suite Cross References" in Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator.
You can create cross references tables in a SOA composite application and then use it with a BPEL process service component or an Oracle Mediator service component during transformations.
To create cross reference metadata:
The New Gallery dialog is displayed.
The Create Cross Reference(XREF) File dialog is displayed.
Customer
. A cross reference name is used to uniquely identify a cross reference table. Two cross reference tables cannot have same name in the cross reference repository. The cross reference file name is the name of the cross reference table with an extension of .xref
.
The end systems map to the cross reference columns in a cross reference table. For example, you can change the first end system name to SAP
and the second end system name to EBS
. Each end system name must be unique within a cross reference
A sample Create Cross Reference(XREF) File dialog is displayed in Figure 49-2.
Figure 49-2 Create Cross Reference(XREF) File Dialog
The Cross Reference Editor is displayed, as shown in Figure 49-3. You can use this editor to modify the cross reference.
A file with extension .xref
gets created and appears in the Application Navigator. All .xref
files are based on the schema definition (XSD) file shown in Example 49-1.
Example 49-1 Cross Reference XSD File
As mentioned previously, all the runtime data by default gets stored in the XREF_DATA
table. If you want to create custom database tables, then perform the following steps.
To create custom database tables:
The name of the custom database table to be generated is displayed in the Table Name field, as shown in Figure 49-4.
Figure 49-4 Generating Custom Database Tables
The Table Name field is editable and you can change the name of the custom table. The custom database table name should be prefixed with xref_
. If you do not prefix your table name with xref_
, then while generating the table, you receive the following error message:
If there is no available connection, then click Create a new database connection to open the Create Database Connection dialog, as shown in Figure 49-5. If you want to edit an existing connection, then select the connection and click Edit selected database connection to open the Edit Database Connection dialog.
Figure 49-5 Create Database Connection Dialog
Note: Create the database table in the soainfra schema of the database. |
The Table DDL Run Results dialog displays the execution status of your DDL scripts.
For custom database tables, two additional attributes, namely mode
and dbtable
, are added to the schema definition mentioned in Section 49.4.2, "What Happens When You Create a Cross Reference." They are added for the table
element in the following way:
You can create a cross reference table in a SOA composite application in Oracle JDeveloper and then use it to look up column values at runtime. However, before using a cross reference to look up a particular value, you must populate it at runtime. You can use the cross reference XPath functions to populate the cross-reference tables. The XPath functions enable you to populate a cross reference column, perform lookups, and delete a column value. These XPath functions can be used in the Expression Builder dialog to create an expression or in the XSLT Mapper to create transformations. For example, you can use the xref:populateXRefRow
function to populate a cross reference column with a single value and the xref:populateXRefRow1M
function to populate a cross reference column with multiple values.
You can access the Expression Builder dialog through an assign activity, an XSL transformation, or the filtering functionality of a BPEL process service component or an Oracle Mediator service component. Figure 49-6 shows how you can select the cross reference functions in the Expression Builder dialog.
Figure 49-6 Expression Builder Dialog with Cross Reference Functions
The XSLT Mapper is displayed when you create an XSL file to transform data from one XML schema to another. Figure 49-7 shows how you can select the cross reference functions in the XSLT Mapper.
Figure 49-7 XSLT Mapper Dialog with Cross Reference Functions
A cross reference table must be populated at runtime before using it. By default, the data is stored in the XREF_DATA
table under the SOA Infrastructure database schema. You can use the xref:populateXRefRow
function to populate a cross reference column with a single value and the xref:populateXRefRow1M
function to populate a cross reference column with multiple values.
Note: You can also store the data in a different database schema by configuring a data source in the following way:
|
The xref:populateXRefRow
function populates a cross reference column with a single value. The xref:populateXRefRow
function returns a string value, which is the cross reference value being populated. For example, as shown in Table 49-8, the Order
table has the following columns: EBS
, Common
, and SBL
with values E100
, 100
, and SBL_001
respectively.
Note: If you find you have concurrency issues when using this function, you can also use the |
The syntax of the xref:populateXRefRow
function is shown in Example 49-2.
Example 49-2 xref:populateXRefRow Function
xrefLocation
: The cross reference table URI. xrefReferenceColumnName
: The name of the reference column. xrefReferenceValue
: The value corresponding to the reference column name. xrefColumnName
: The name of the column to be populated. xrefValue
: The value to be populated in the column. mode
: The mode in which the xref:populateXRefRow
function populates the column. You can specify any of the following values: ADD
, LINK
, or UPDATE
. Table 49-9 describes these modes. Table 49-9 xref:populateXRefRow Function Modes
Mode | Description | Exception Reasons |
---|---|---|
| Adds the reference value and the value to be added. For example, the following mode: xref:populateXRefRow("customers.xref" ,"EBS","EBS100", "Common","CM001", "ADD") Adds the reference value | Exceptions can occur for the following reasons:
|
| Adds the cross reference value corresponding to the existing reference value. For example, the following mode: xref:populateXRefRow("customers.xref" ,"Common","CM001","SBL","SBL_ 001","LINK") Links the value | Exceptions can occur for the following reasons:
|
| Updates the cross reference value corresponding to an existing reference column-value pair. For example, the following mode: xref:populateXRefRow("customers.xref" ,"SBL","SBL_001", "SBL","SBL_ 1001","UPDATE") Updates the value | Exceptions can occur for the following reasons:
|
Note: The mode parameter values are case-sensitive and should be specified in upper case only, as shown in Table 49-9. |
Table 49-10 describes the xref:populateXRefRow
function modes and exception conditions for these modes.
Table 49-10 xref:populateXRefRow Function Results with Different Modes
Mode | Reference Value | Value to be Added | Result |
---|---|---|---|
|
|
| Success Exception Exception |
|
|
| Exception Success Exception |
|
|
| Exception Exception Success |
Like the xref:populateXRefRow
function, the xref:populateLookupXRefRow
function populates a cross reference column with a single value. Unlike the xref:populateXRefRow
function, the xref:populateLookupXRefRow
function does not throw a unique constraint violation error when records with the same ID are added simultaneously. Instead, it behaves as a lookup and returns the existing source value that caused the error and does not stop the processing flow. Use this function to resolve any concurrency issues that could arise when using the xref:populateXRefRow
function.
The xref:populateLookupXRefRow
function returns a string value, which is the cross reference value being populated or, with a unique constraint violation, the cross reference value that was already populated by the first committed thread. For example, as shown in Table 49-8, the XREF_CUSTOMER_DATA
table has the following columns: EBS
, Common
, and SBL
. The xref:populateLookupXRefRow
function is invoked by two threads in parallel with following values:
xref: populateLookupXRefRow ("default/xref/example.xref", "EBS", "EBS100", "Common" "CM001", "ADD")
xref: populateLookupXRefRow ("default/xref/example.xref", "EBS", "EBS100", "Common" "CM002", "ADD")
The table is populated as shown in Table 49-11. Since thread one is committed first, thread two returns "CM001" to the caller.
Table 49-11 Cross Reference Table Populated by xref:populateLookupXRefRow
EBS | Common | SBL |
---|---|---|
|
|
The syntax of the xref:populateLookupXRefRow
function is shown in Example 49-3.
Example 49-3 xref:populateLookupXRefRow Function
xrefMetadataURI
: The cross reference table URI. xrefReferenceColumnName
: The name of the reference column. xrefReferenceValue
: The value corresponding to the reference column name. xrefColumnName
: The name of the column to be populated. xrefValue
: The value to be populated in the column. mode
: The mode in which the xref:populateXRefRow
function populates the column. You can specify ADD
or LINK
. Table 49-10 describes these modes and exception conditions for the modes. Note: The mode parameter values are case-sensitive and should be specified in upper case only. |
Table 49-12 xref:populateLookupXRefRow Function Results with Different Modes
Mode | Reference Value | Value to be Added | Result |
---|---|---|---|
|
|
| Success Exception Exception |
|
|
| Exception Success Exception |
Usage Notes
Populate the primary constraint columns first and then populate the remaining columns in subsequent calls.
Two values in an end system can correspond to a single value in another system. In such a scenario, you should use the xref:populateXRefRow1M
function to populate a cross reference column with a value. For example, as shown in Table 49-13, the SAP_001
and SAP_0011
values refer to one value of the EBS
and SBL
applications. To populate columns such as SAP
, you can use the xref:populateXRefRow1M
function.
Table 49-13 Cross Reference Table with Multiple Column Values
SAP | EBS | SBL |
---|---|---|
|
|
|
|
|
|
The syntax of the xref:populateXRefRow1M
function is shown in Example 49-4.
Example 49-4 xref:populateXRefRow1M Function
xrefLocation
: The cross reference URI. xrefReferenceColumnName
: The name of the reference column. xrefReferenceValue
: The value corresponding to the reference column name. xrefColumnName
: The name of the column to be populated. xrefValue
: The value to be populated in the column. mode
: The mode in which the xref:populateXRefRow
function populates the column. You can specify either of the following values: ADD
or LINK
. Table 49-14 describes these modes: Table 49-14 xref:populateXRefRow1M Function Modes
Mode | Description | Exception Reasons |
---|---|---|
| Adds the reference value and the value to be added. For example, the following mode: xref:populateXRefRow1M("customers.xref"," EBS","EBS_1002", "SAP","SAP_0011","ADD") Adds the reference value | Exceptions can occur for the following reasons:
|
| Adds the cross reference value corresponding to the existing reference value. For example, the following mode: xref:populateXRefRow1M("customers.xref"," EBS","EBS_1002", "SAP","SAP_002","LINK") Links the value | Exceptions can occur for the following reasons:
|
Table 49-15 describes the xref:populateXRefRow1M
function modes and exception conditions for these modes.
To populate a column of a cross reference table:
A populateXRefRow icon appears on the connecting line.
The Edit Function – populateXRefRow dialog is displayed, as shown in Figure 49-8.
Figure 49-8 Edit Function – populateXRefRow Dialog
Click Browse to the right of the xrefLocation field to select the cross reference file. You can select an already-deployed cross reference from MDS and also from a shared location in MDS using the Resource Palette.
Click Browse to the right of the referenceColumnName field to select a column name from the columns defined for the cross reference you previously selected.
Click the Browse icon to the right of the columnName field to select a column name from the columns defined for the cross reference you previously selected.
ADD
. You can also click Browse to select a mode. The Select Populate Mode dialog is displayed from which you can select a mode.
A populated Edit Function – populateXRefRow dialog is shown in Figure 49-9.
Figure 49-9 Populated Edit Function – populateXRefRow Dialog
After populating the cross reference table, you can use it to look up a value. The xref:lookupXRef
and xref:lookupXRef1M
functions enable you to look up a cross reference for single and multiple values, respectively.
You can use the xref:lookupXRef
function to look up a cross reference column for a value that corresponds to a value in a reference column. For example, the following function looks up the Common
column of the cross reference tables described in Table 49-2 for a value corresponding to the SAP_001
value in the SAP
column.
The syntax of the xref:lookupXRef
function is shown in Example 49-5.
Example 49-5 xref:lookupXRef Function
xrefLocation
: The cross reference URI. xrefReferenceColumnName
: The name of the reference column. xrefReferenceValue
: The value corresponding to the reference column name. xrefColumnName
: The name of the column to be looked up for the value. needAnException
: When the value is set to true
, an exception is thrown if the value is not found. Otherwise, an empty value is returned. At runtime, an exception can occur for the following reasons:
You can use the xref:lookupXRef1M
function to look up a cross reference column for multiple values corresponding to a value in a reference column. The xref:lookupXRef1M
function returns a node-set containing multiple nodes. Each node in the node-set contains a value.
For example, the following function looks up the SAP
column of Table 49-13 for multiple values corresponding to the EBS_1001
value in the EBS
column:
The syntax of the xref:lookupXRefRow1M
function is shown in Example 49-6.
Example 49-6 xref:lookupXRefRow1M Function
xrefLocation
: The cross reference URI. xrefReferenceColumnName
: The name of the reference column. xrefReferenceValue
: The value corresponding to the reference column name. xrefColumnName
: The name of the column to be looked up for the value. needAnException
: If this value is set to true
, an exception is thrown when the referenced value is not found. Otherwise, an empty node-set is returned. Example of the xref:lookupXRefRow1M Function
Consider the Order
table shown in Table 49-16 with the following three columns: Siebel
, Billing1
, and Billing2
.
For 1:1 mapping, the xref:lookupPopulatedColumns("Order","Siebel","100","false")
method returns the values shown in Example 49-7.
Example 49-7 xref:lookupPopulatedColumns Method
In this case, both the columns, Billing1
and Billing2
, are populated.
For 1:M mapping, the xref:lookupPopulatedColumns("Order","Siebel","110","false")
method returns the values shown in Example 49-8.
Example 49-8 xref:lookupPopulatedColumns
In this case, Billing1
is not populated.
An exception can occur for the following reasons:
You can use the xref:lookupPopulatedColumns
function to look up all the populated columns for a given cross reference table, a cross reference column, and a value. The xref:lookupPopulatedColumns
function returns a node-set with each node containing a column name and the corresponding value.
The syntax of the xref:LookupPopulatedColumns
function is shown in Example 49-9.
Example 49-9 xref:LookupPopulatedColumns Function
xrefTableName
: The name of the reference table. xrefColumnName
: The name of the reference column. xrefValue
: The value corresponding to the reference column name. needAnException
: If this value is set to true
, then an exception is thrown when no value is found in the referenced column. Otherwise, an empty node-set is returned. An exception can occur for the following reasons:
To look up a cross reference table column:
A lookupXRef icon appears on the connecting line.
The Edit Function – lookupXRef dialog is displayed, as shown in Figure 49-10.
Figure 49-10 Edit Function – lookupXRef Dialog
Click Browse to the right of the xrefLocation field to select the cross reference file. You can select an already deployed cross reference from MDS and also from a shared location in MDS by using the Resource Palette.
Click Browse to the right of the referenceColumnName field to select a column name from the columns defined for the cross reference you previously selected.
Click Browse to the right of the columnName field to select a column name from the columns defined for the cross reference you previously selected.
A populated Edit Function – lookupXRef dialog is shown in Figure 49-11.
Figure 49-11 Populated Edit Function – lookupXRef Dialog
You can use the xref:markForDelete
function to delete a value in a cross reference table. The value in the column is marked as deleted. This function returns true
if the deletion is successful. Otherwise, it returns false
.
Any column value marked for deletion is treated as if the value does not exist. Therefore, you can populate the same column with the xref:populateXRefRow
function in ADD
mode.
Note: Using a column value marked for deletion as a reference value in |
A cross reference table row should have at least two mappings. If you have only two mappings in a row and you mark one value for deletion, then the value in another column is also deleted.
The syntax for the xref:markForDelete
function is shown in Example 49-10.
Example 49-10 xref:markForDelete Function
xrefTableName
: The cross reference table name. xrefColumnName
: The name of the column from which you want to delete a value. xrefValueToDelete
: The value to be deleted. An exception can occur for the following reasons:
To delete a cross reference table value:
A markForDelete icon appears on the connecting line.
The Edit Function – markForDelete dialog is displayed, as shown in Figure 49-12.
Figure 49-12 Edit Function – markForDelete Dialog
Click the Search icon to the right of the xrefLocation field to select the cross reference file. You can select an already deployed cross reference from MDS and also from a shared location in MDS by using the Resource Palette.
Click the Search icon to the right of the columnName field to select a column name from the columns defined for the cross reference you previously selected.
A populated Edit Function – markForDelete dialog is shown in Figure 49-13.
Figure 49-13 Populated Edit Function – markForDelete Dialog
This cross reference use case implements an integration scenario between Oracle EBS, SAP, and Siebel instances. In this use case, when an insert, update, or delete operation is performed on the SAP_01
table, the corresponding data is inserted or updated in the EBS
and SBL
tables. Figure 49-14 provides an overview of this use case.
Figure 49-14 XrefCustApp Use Case in SOA Composite Editor
To download the sample files mentioned in this section, see the Oracle SOA Suite samples page
.
This section provides the design-time tasks for creating, building, and deploying your SOA Composite application. These tasks should be performed in the order in which they are presented.
To configure the Oracle database and database adapter:
SCOTT
database account with password TIGER
for this use case. You must ensure that the SCOTT
account is unlocked. You can log in as SYSDBA
and then run the setup_user.sql
script available in the XrefOrderApp1M/sql
directory to unlock the account.
create_schema.sql
script available in the XrefOrderApp1M/sql
directory to create the tables required for this use case. create_app_procedure.sql
script available in the XrefOrderApp1M/sql
directory to create a procedure that simulates the various applications participating in this integration. createschema_xref_oracle.sql
script available in the OH/rcu/integration/soainfra/sql/xref/
directory to create a cross reference table to store runtime cross reference data. ra.xml
and weblogic-ra.xml
files from $BEAHOME/META-INF
to the newly created directory called META-INF
on your computer. weblogic-ra.xml
file available in the $BEAHOME/META-INF
directory as follows: xADataSourceName
as follows: jndi-name
as follows: This sample uses eis/DB/DBConnection1
to poll the SAP table for new messages and to connect to the procedure that simulates Oracle EBS and Siebel instances.
ra.xml
and weblogic-ra.xml
files as a RAR file and deploy the RAR file by using Oracle WebLogic Server Administration Console. jdbc/DBConnection1
scott
tiger
jdbc:oracle:thin:@host:port:service
oracle.jdbc.pool.OracleDataSource
jdbc/xref
scott
tiger
jdbc:oracle:thin:@host:port:service
oracle.jdbc.pool.OracleDataSource
To create an Oracle JDeveloper application and a project:
The New Gallery dialog appears.
The Create SOA Application wizard appears.
XrefCustApp
, and then click Next. The Name your SOA project page appears.
XrefCustApp
and click Next. The Configure SOA settings page appears.
The Application Navigator of Oracle JDeveloper is updated with the new application and project and the SOA Composite Editor contains a blank composite.
After creating an application and a project for the use case, you must create a cross reference table.
To create a cross reference table:
The Create Cross Reference(XREF) File dialog is displayed.
customer.xref
. SAP_01
and EBS_i76
. The Cross Reference Editor is displayed.
A new row is added.
SBL_78
as the end system name in the newly added row. Common
as the end system name. The Cross Reference Editor appears, as shown in Figure 49-15.
To create a database adapter service:
The Adapter Configuration wizard Welcome page is displayed.
The Service Name page is displayed.
SAP
. The Service Connection page is displayed.
eis/DB/DBConnection1
. The Operation Type page is displayed.
The Select Table page is displayed.
The Import Tables dialog is displayed.
%SAP%
and click Query. The Available field is populated with SAP_01
table name.
The selected field is populated with SAP_01.
The Select Table page now contains the SAP_01 table.
The Define Primary Key page is displayed.
The Relationships page is displayed.
The Attribute Filtering page is displayed.
The After Read page is displayed.
The Logical Delete page is displayed.
Y
. N
. Figure 49-16 shows the Logical Delete page of the Adapter Configuration wizard.
Figure 49-16 Logical Delete Page: Adapter Configuration Wizard
The Polling Options page is displayed.
The Define Selection Criteria page is displayed.
The Finish page is displayed.
A database adapter service named SAP is created, as shown in Figure 49-17.
Figure 49-17 SAP Database Adapter Service in SOA Composite Editor
To create EBS and SBL external references:
Select Database Adapter and drag it to the External References swimlane.
The Adapter Configuration wizard Welcome page is displayed.
The Service Name page is displayed.
EBS
. The Service Connection page is displayed.
eis/DB/DBConnection1
. The Operation Type page is displayed.
The Specify Stored Procedure page is displayed.
The Stored Procedures dialog is displayed.
The Specify Stored Procedure page appears, as shown in Figure 49-19.
Figure 49-19 Specify Stored Procedure Page of Adapter Configuration Wizard
The Finish page is displayed.
Figure 49-20 shows the EBS reference in the SOA Composite Editor.
Figure 49-20 EBS Reference in SOA Composite Editor
From the File menu, select Save All.
SBL
. After completing this task, the SOA Composite Editor appears, as shown in Figure 49-21.
Figure 49-21 SBL Reference in SOA Composite Editor
To create the Logger file adapter external reference:
The Adapter Configuration wizard Welcome page is displayed.
The Service Name page is displayed.
Logger
. The Operation page is displayed.
The File Configuration page is displayed.
output.xml
and click Next. The Messages page is displayed.
The Type Chooser dialog is displayed.
The Finish page is displayed.
Figure 49-22 shows the Logger reference in the SOA Composite Editor.
Figure 49-22 Logger Reference in SOA Composite Editor
To create an Oracle Mediator service component:
The Create Mediator dialog is displayed.
An Oracle Mediator with name Mediator1
is created.
Figure 49-23 SAP Service Connected to Mediator1
The Create Mediator dialog is displayed.
An Oracle Mediator with name Common is created.
You must specify routing rules for the following operations:
To create routing rules for an insert operation:
The Mediator Editor is displayed.
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Expression Builder dialog is displayed.
The Request Transformation map dialog is displayed.
SAP_TO_COMMON_INSERT.xsl
. An SAP_TO_COMMON_INSERT.xsl file is displayed in the XSLT Mapper.
The Auto Map Preferences dialog is displayed.
The transformation is created, as shown in Figure 49-24.
Figure 49-24 SAP_TO_COMMON_INSERT.xsl Transformation
The Edit Function-populateXRefRow dialog is displayed.
The SOA Resource Lookup dialog is displayed.
"SAP_01"
or click Search to select the column name. /top:Sap01Collection/top:Sap01/top:id
. "Common"
or click Search to select the column name. oraext:generate-guid()
. "Add"
or click Search to select this mode. Figure 49-25 shows the populated Edit Function – populateXRefRow dialog.
Figure 49-25 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case
The Routing Rules section appears, as shown in Figure 49-26.
Figure 49-26 Routing Rules Section with Insert Operation
To create routing rules for an update operation:
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Expression Builder dialog is displayed.
The Request Transformation map dialog is displayed.
SAP_TO_COMMON_UPDATE.xsl
. An SAP_TO_COMMON_UPDATE.xsl file is displayed.
The Auto Map Preferences dialog is displayed.
The Edit Function-lookupXRef dialog is displayed.
The SOA Resource Lookup dialog is displayed.
"SAP_01"
or click Search to select the column name. /top:Sap01Collection/top:Sap01/top:id
. "COMMON"
or click Search to select the column name. true()
or click Search to select this mode. Figure 49-27 shows the populated Edit Function – looupXRef dialog.
Figure 49-27 Edit Function – lookupXRef Dialog: XrefCustApp Use Case
The Routing Rules section appears, as shown in Figure 49-28.
Figure 49-28 Insert Operation and Update Operation
To create routing rules for an updateID operation:
Perform the following tasks to create routing rules for an updateID
operation:
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Expression Builder dialog is displayed.
The Request Transformation map dialog is displayed.
SAP_TO_COMMON_UPDATEID
.xsl. An SAP_TO_COMMON_UPDATEID.xsl file is displayed.
The Auto Map Preferences dialog is displayed.
The Edit Function-populateXRefRow dialog is displayed.
The SOA Resource Lookup dialog is displayed.
"SAP_01"
or click Search to select the column name. /top:Sap01Collection/top:Sap01/top:refId
. "SAP_01"
or click Search to select the column name. /top:Sap01Collection/top:Sap01/top:Id
. "UPDATE"
or click Search to select this mode. Figure 49-29 shows a populated Edit Function – populateXRefRow dialog.
Figure 49-29 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case
The Edit Function-lookupXRef dialog is displayed.
The SOA Resource Lookup dialog is displayed.
"SAP_01"
or click Search to select the column name. 01",/top:Sap01Collection/top:Sap01/top:id,"UPDATE")
."COMMON"
or click Search to select the column name. false()
or click Search to select this mode. Figure 49-30 shows a populated Edit Function – lookupXRef dialog.
Figure 49-30 Edit Function – lookupXRef Dialog: XrefCustApp Use Case
The Routing Rules section appears, as shown in Figure 49-31.
Figure 49-31 Insert, Update, and UpdateID Operations
To create routing rules for a delete operation:
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Expression Builder dialog is displayed.
The Request Transformation map dialog is displayed.
SAP_TO_COMMON_DELETE
.xsl. A SAP_TO_COMMON_DELETE.xsl file is displayed.
The Add Parameter dialog is displayed.
COMMONID
. The Auto Map Preferences dialog is displayed.
A new node if
is inserted between inp1:customer
and inp1:id
.
The Edit Function-markForDelete dialog is displayed.
The SOA Resource Lookup dialog is displayed.
"SAP_01"
or click Search to select the column name. /top:Sap01Collection/top:Sap01/top:Id
. Figure 49-32 shows a populated Edit Function – markForDelete dialog.
Figure 49-32 Edit Function – markForDelete Dialog: XrefCustApp Use Case
The SAP_TO_COMMON_DELETE.xsl file appears, as shown in Figure 49-33.
The Routing Rules section appears, as shown in Figure 49-34.
Figure 49-34 Insert, Update, UpdateID, and Delete Operations
You must specify routing rules for the following operations of the Common Oracle Mediator:
To create routing rules for the insert operation:
The Mediator Editor is displayed.
In the Routing Rules section, click the Create a new Routing Rule icon.
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Request Transformation map dialog is displayed.
COMMON_TO_SBL_INSERT.xsl
. A COMMON_TO_SBL_INSERT.xsl file is displayed.
The Auto Map Preferences dialog is displayed.
The transformation is created, as shown in Figure 49-35.
Figure 49-35 COMMON_TO_SBL_INSERT.xsl Transformation
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Reply Transformation map dialog is displayed.
SBL_TO_COMMON_INSERT.xsl
. A SBL_TO_COMMON_INSERT.xsl file is displayed.
The Edit Function-populateXRefRow dialog is displayed.
"customer.xref"
"Common"
$initial.Customers/inp1:Customers/inp1:Customer/inp1:Id
"SBL_78"
/db:OutputParameters/db:X_APP_ID
"LINK"
The SBL_TO_COMMON_INSERT.xsl file appears, as shown in Figure 49-36.
Figure 49-36 SBL_TO_COMMON_INSERT.xsl Transformation
The Assign Values dialog is displayed.
The Assign Value dialog is displayed.
The Expression Builder dialog is displayed.
The insert operation section appears, as shown in Figure 49-37.
Figure 49-37 Insert Operation with SBL Target Service
From the File menu, select Save All.
Figure 49-38 shows the insert operation section with SBL and EBS target services.
Figure 49-38 Insert Operation with SBL and EBS Target Services
To create routing rules for a delete operation:
Perform the following tasks to create the routing rules for a delete operation.
In the Routing Rules section, click the Create a new Routing Rule icon.
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Request Transformation map dialog is displayed.
COMMON_TO_SBL_DELETE.xsl
. A COMMON_TO_SBL_DELETE.xsl file is displayed.
The Auto Map Preferences dialog is displayed.
The transformation is created, as shown in Figure 49-39.
Figure 49-39 COMMON_TO_SBL_DELETE.xsl Transformation
The Edit Function: lookupXRef dialog is displayed.
"customer.xref"
"Common"
/inp1:Customers/inp1:Customer/inp1:Id
"SBL_78"
false()
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Reply Transformation map dialog is displayed.
SBL_TO_COMMON_DELETE.xsl
. The SBL_TO_COMMON_DELETE.xsl file is displayed.
The Edit Function-markForDelete dialog is displayed.
"customer.xref"
"SBL_78"
/db:OutputParameters/db:X_APP_ID
The Assign Values dialog is displayed.
The Assign Value dialog is displayed.
The Expression Builder dialog is displayed.
The delete operation section appears, as shown in Figure 49-40.
Figure 49-40 Delete Operation with SBL Target Service
From the File menu, select Save All.
Figure 49-41 shows the delete operation section with SBL and EBS target services.
Figure 49-41 Delete Operation with SBL and EBS Target Service
To create routing rules for the update operation:
Perform the following tasks to create routing rules for the update operation.
In the Routing Rules section, click the Create a new Routing Rule icon.
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Request Transformation map dialog is displayed.
COMMON_TO_SBL_UPDATE.xsl
. A COMMON_TO_SBL_UPDATE.xsl file is displayed.
The Auto Map Preferences dialog is displayed.
The transformation is created, as shown in Figure 49-39.
The Edit Function: lookupXRef dialog is displayed.
"customer.xref"
"Common"
/inp1:Customers/inp1:Customer/inp1:Id
"SBL_78"
true()
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Reply Transformation map dialog is displayed.
SBL_TO_COMMON_UPDATE.xsl
. A SBL_TO_COMMON_UPDATE.xsl file is displayed.
The Assign Values dialog is displayed.
The Assign Value dialog is displayed.
The Expression Builder dialog is displayed.
The update operation section appears, as shown in Figure 49-42.
Figure 49-42 Update Operation with SBL Target Service
From the File menu, select Save All.
Figure 49-43 shows the update operation section with SBL and EBS target services.
Figure 49-43 Update Operation with SBL and EBS Target Service
To create routing rules for the UpdateID operation:
Perform the following tasks to create routing rules for the UpdateID operation.
In the Routing Rules section, click the Create a new Routing Rule icon.
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Request Transformation map dialog is displayed.
COMMON_TO_SBL_UPDATEID.xsl
. The COMMON_TO_SBL_UPDATEID.xsl file is displayed.
The Auto Map Preferences dialog is displayed.
The transformation is created, as shown in Figure 49-39.
The Edit Function: lookupXRef dialog is displayed.
customer.xref
Common
/inp1:Customers/inp1:Customer/inp1:Id
SBL_78
false()
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Reply Transformation map dialog is displayed.
The SBL_TO_COMMON_UPDATEID.xsl file is displayed.
The Edit Function-populateXRefRow dialog is displayed.
customer.xref
Common
$initial.Customers/inp1:Customers/inp1:Customer/inp1:Id
SBL_78
/db:OutputParameters/db:X_APP_ID
UPDATE
The Assign Values dialog is displayed.
The Assign Value dialog is displayed.
The Expression Builder dialog is displayed.
The updateid operation section appears, as shown in Figure 49-44.
Figure 49-44 Updateid Operation with SBL Target Service
From the File menu, select Save All.
Figure 49-45 shows the updateid operation section with the SBL and EBS target services.
Figure 49-45 Updateid Operation with SBL and EBS Target Service
An application server connection is required for deploying your SOA composite application. For information on creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."
Deploying the XrefCustApp composite application consists of the following steps:
For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."
After deploying the XrefCustApp application, you can run it by using any command from the insert_sap_record.sql
file present in the XrefCustApp/sql
folder. On successful completion, the records are inserted or updated in the EBS
and SBL
tables and the Logger reference writes the output to the output.xml
file.
For monitoring the running instance, you can use the Oracle Enterprise Manager Fusion Middleware Control at the following URL:
where hostname
is the host on which you installed the Oracle SOA Suite infrastructure and port_number
is the port running the service.
The cross reference use case implements an integration scenario between two end-system Oracle EBS and SAP instances. In this use case, the order passes from SAP to EBS. SAP represents the orders with a unique ID, whereas EBS splits the order into two orders: ID1 and ID2. This scenario is created using database adapters. When you poll the SAP table for updated or created records, an SAP instance is created. In EBS, the instance is simulated by a procedure and the table is populated. Figure 49-46 provides an overview of this use case.
Figure 49-46 XrefOrderApp Use Case in SOA Composite Editor
To download the sample files mentioned in this section, see the Oracle SOA Suite samples page
.
This section provides the design-time tasks for creating, building, and deploying your SOA composite application. These tasks should be performed in the order in which they are presented.
To configure the Oracle database and database adapter:
SCOTT
database account with password TIGER
for this use case. You must ensure that the SCOTT
account is unlocked. You can log in as SYSDBA
and then run the setup_user.sql
script available in the XrefOrderApp1M/sql
folder to unlock the account.
create_schema.sql
script available in the XrefOrderApp1M/sql
folder to create the tables required for this use case. create_app_procedure.sql
script available in the XrefOrderApp1M/sql
folder to create a procedure that simulates the various applications participating in this integration. createschema_xref_oracle.sql
script available in the Oracle_Home
/rcu/integration/soainfra/sql/xref/
folder to create a cross reference table to store runtime cross reference data. ra.xml
and weblogic-ra.xml
files from $BEAHOME/META-INF
to the newly created directory called META-INF
on your computer. weblogic-ra.xml
file, which is available in the $BEAHOME/src/oracle/tip/adapter/db/test/deploy/weblogic/META-INF
folder for your SOA application, as follows: xADataSourceName
as follows: jndi-name
as follows: This sample uses eis/DB/DBConnection1
to poll the SAP
table for new messages and to connect to the procedure that simulates Oracle EBS and Siebel instances.
ra.xml
and weblogic-ra.xml
files as a RAR file and deploy the RAR file by using Oracle WebLogic Server Administration Console. jdbc/DBConnection1
scott
tiger
jdbc:oracle:thin:@host:port:service
oracle.jdbc.pool.OracleDataSource
jdbc/xref
scott
tiger
jdbc:oracle:thin:@host:port:service
oracle.jdbc.pool.OracleDataSource
To create an Oracle JDeveloper application and a project:
The New Gallery dialog appears.
The Create SOA Application wizard appears.
XRefOrderApp
, and then click Next. The Name your project page appears.
XRefOrderApp
and click Next. The Configure SOA Settings page appears.
The Application Navigator of Oracle JDeveloper is updated with the new application and project and the SOA Composite Editor contains a blank project.
After creating an application and a project for the use case, you must create a cross reference table.
To create a cross reference table:
The Create Cross Reference(XREF) File dialog is displayed.
order.xref
. SAP_05
and EBS_i75
. The Cross Reference Editor is displayed.
A new row is added.
The Cross Reference Editor appears, as shown in Figure 49-47.
To create a database adapter service:
The Adapter Configuration wizard Welcome page is displayed.
The Service Name page is displayed.
SAP
. The Service Connection page is displayed.
eis/DB/DBConnection1
. The Operation Type page is displayed.
The Select Table page is displayed.
The Import Tables dialog is displayed.
%SAP%
and click Query. The Available field is populated with the SAP_05 table name.
The selected field is populated with SAP_05.
The Select Table page now contains the SAP_05 table.
The Define Primary Key page is displayed.
The Relationships page is displayed.
The Attribute Filtering page is displayed.
The After Read page is displayed.
The Logical Delete page is displayed.
Y
. N
. Figure 49-16 shows the Logical Delete page of the Adapter Configuration wizard.
The Polling Options page is displayed.
The Define Selection Criteria page is displayed.
The Advanced Options page is displayed.
The Finish page is displayed.
A database adapter service named SAP is created, as shown in Figure 49-48.
Figure 49-48 SAP Database Adapter Service in SOA Composite Editor
To create an EBS external reference:
The Adapter Configuration wizard Welcome page is displayed.
The Service Name page is displayed.
EBS
. The Service Connection page is displayed.
eis/DB/DBConnection1
. The Operation Type page is displayed.
The Specify Stored Procedure page is displayed.
The Stored Procedures dialog is displayed.
The Specify Stored Procedure page appears, as shown in Figure 49-50.
Figure 49-50 Specify Stored Procedure Page of Adapter Configuration Wizard
The Advanced Options page is displayed.
Figure 49-51 shows the EBS reference in the SOA Composite Editor.
Figure 49-51 EBS Reference in SOA Composite Editor
To create a Logger file adapter external reference:
The Adapter Configuration wizard Welcome page is displayed.
The Service Name page is displayed.
Logger
. The Adapter Interface page is displayed.
The Operation page is displayed.
The File Configuration page is displayed.
output.xml
and click Next. The Messages page is displayed.
The Type Chooser dialog is displayed.
The Finish page is displayed.
Figure 49-52 shows the Logger reference in the SOA Composite Editor.
Figure 49-52 Logger Reference in SOA Composite Editor
To create an Oracle Mediator service component:
The Create Mediator dialog is displayed.
An Oracle Mediator with name Mediator2 is created.
Figure 49-53 SAP Service Connected to Mediator2
The Create Mediator dialog is displayed.
An Oracle Mediator named Common is created.
You must specify routing rules for following operations:
To create routing rules for the insert operation:
The Mediator Editor is displayed.
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Expression Builder dialog is displayed.
The Request Transformation map dialog is displayed.
SAP_TO_COMMON_INSERT.xsl
. An SAP_TO_COMMON_INSERT.xsl file is displayed.
The Auto Map Preferences dialog is displayed.
The transformation is created, as shown in Figure 49-54.
Figure 49-54 SAP_TO_COMMON_INSERT.xsl Transformation
The Edit Function-populateXRefRow dialog is displayed.
The SOA Resource Lookup dialog is displayed.
"SAP_05"
or click Search to select the column name. /top:Sap05Collection/top:Sap05/top:id
. "Common"
or click Search to select the column name. orcl:generate-guid()
. "Add"
or click Search to select this mode. Figure 49-55 shows the populated Edit Function – populateXRefRow1M dialog.
Figure 49-55 Edit Function – populateXRefRow1M Dialog: XrefOrderApp Use Case
The Routing Rules section appears, as shown in Figure 49-56.
Figure 49-56 Routing Rules Section with Insert Operation
To create routing rules for the update operation:
Perform the following tasks to create routing rules for the update operation.
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Expression Builder dialog is displayed.
The Request Transformation map dialog is displayed.
SAP_TO_COMMON_UPDATE.xsl
. An SAP_TO_COMMON_UPDATE.xsl file is displayed.
The Auto Map Preferences dialog is displayed.
The Edit Function-lookupXRef dialog is displayed.
The SOA Resource Lookup dialog is displayed.
"SAP_05"
or click Search to select the column name. /top:Sap05Collection/top:Sap05/top:id
. "COMMON"
or click Search to select the column name. true()
or click Search to select this mode. Figure 49-57 shows the populated Edit Function – looupXRef dialog.
Figure 49-57 Edit Function – looupXRef Dialog: XRefOrderApp Use Case
The Routing Rules section appears, as shown in Figure 49-58.
Figure 49-58 Insert Operation and Update Operation
You must specify routing rules for the following operations of the Common Oracle Mediator:
To create routing rules for the insert operation:
The Mediator Editor is displayed.
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Request Transformation map dialog is displayed.
COMMON_TO_EBS_INSERT.xsl
. A COMMON_TO_EBS_INSERT.xsl file is displayed.
The Auto Map Preferences dialog is displayed.
Click OK.
The transformation is created, as shown in Figure 49-59.
Figure 49-59 COMMON_TO_EBS_INSERT.xsl Transformation
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Reply Transformation map dialog is displayed.
EBS_TO_COMMON_INSERT.xsl
. An EBS_TO_COMMON_INSERT.xsl file is displayed.
The Edit Function-populateXRefRow dialog is displayed.
order.xref
Common
$initial.Customers/inp1:Customers/inp1:Order/inp1:Id
EBS_75
/db:OutputParameters/db:X_APP_ID
LINK
The EBS_TO_COMMON_INSERT.xsl file appears, as shown in Figure 49-60.
Figure 49-60 EBS_TO_COMMON_INSERT.xsl Transformation
The Assign Values dialog is displayed.
The Assign Value dialog is displayed.
The Expression Builder dialog is displayed.
The insert operation section appears, as shown in Figure 49-61.
Figure 49-61 Insert Operation with EBS Target Service
To create routing rules for the update operation:
Perform the following tasks to create routing rules for the update operation.
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Request Transformation map dialog is displayed.
COMMON_TO_EBS_UPDATE.xsl
. The COMMON_TO_EBS_UPDATE.xsl file is displayed.
The Auto Map Preferences dialog is displayed.
The transformation is created, as shown in Figure 49-39.
The Edit Function: lookupXRef dialog is displayed.
order.xref
Common
/inp1:Customers/inp1:Order/inp1:Id
EBS_i75
true()
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Reply Transformation map dialog is displayed.
EBS_TO_COMMON_UPDATE.xsl
. The EBS_TO_COMMON_UPDATE.xsl file is displayed.
The Assign Values dialog is displayed.
The Assign Value dialog is displayed.
The Expression Builder dialog is displayed.
The update operation section appears, as shown in Figure 49-62.
Figure 49-62 Update Operation with EBS Target Service
An application server connection is required for deploying your SOA composite application. For information about creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."
Deploying the XrefOrderApp composite application to the application server consists of the following steps:
For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."
This chapter describes how to define composite sensors that provide a method for implementing trackable fields on messages in a SOA composite application. It describes how to define sensors on binding components and on service components that have subscribed to business events. Restrictions are also described.
This chapter includes the following sections:
Composite sensors provide a method for implementing trackable fields on messages. Composite sensors enable you to perform the following tasks:
You define composite sensors on service and reference binding components or on service components that have business event subscriptions in Oracle JDeveloper. This functionality is similar to variable sensors in BPEL processes. During runtime, composite sensor data is persisted in the database.
Note the following restrictions on the use of composite sensors:
concat()
and others cannot be used with properties. like
comparison operator. Also, even if the value is a number, you cannot use other logical operators such as <
, >
, =
, and any combination of these. STRING
NUMBER
DATE
DATE_TIME
You add sensors to the following components of a SOA composite application in the SOA Composite Editor:
To add composite sensors:
Note: The service component must already have a subscribed business event for the Configure Sensors option to be displayed. |
If you selected a binding component, the Composite Sensors dialog displays the details shown in Figure 50-1. For this example, a service binding component is selected.
Figure 50-1 Composite Sensors Dialog for the Selected Binding Component
If you selected a service component, the Composite Sensors dialog displays the details shown in Figure 50-2.
Figure 50-2 Composite Sensors Dialog for the Selected Service Component
or
The Composite Sensors dialog for the SOA composite application appears, as shown in Figure 50-4. This option displays all the service and reference binding components and service components with subscribed business events in the SOA composite application.
If you selected a binding component such as a service, the Create Composite Sensor dialog appears as shown in Figure 50-5.
Figure 50-5 Create Composite Sensor Dialog for a Service Binding Component
If you selected a service component that has a business event subscription, the Create Composite Sensor dialog appears as shown in Figure 50-6.
Figure 50-6 Create Composite Sensor Dialog for a Service Component
Table 50-1 Create Composite Sensor Dialog
Name | Description |
---|---|
Name | Enter a name for the composite sensor. You must enter a name to enable the Edit icon of the Expression field. |
Service | Displays the name of the service. This field is only displayed if you are creating a composite sensor for a service binding component. This field cannot be edited. Service sensors monitor the messages that the service receives from the external world or from another composite application. |
Reference | Displays the name of the reference. This field is only displayed if you are creating a composite sensor for a reference binding component. This field cannot be edited. Reference sensors monitor the messages that the reference sends to the external world or to another composite application. |
Operation | Select the operation for the port type of the service or reference. This field only displays for service or reference binding components. |
Event | Displays the name of the service component. This field is only displayed if you are creating a composite sensor for a service component. This field cannot be edited. Event sensors track composite instances initiated through a business event. You can create multiple sensors per business event. |
Event Type | Displays the Subscribe business event type. This field cannot be edited. The publish business event type is not supported. |
Expression | Click the Edit icon to invoke a dropdown list for selecting the type of expression to create:
|
Filter | Click the Edit icon to invoke the Expression Builder dialog to create an XPath filter for the expression. You must first create an expression to enable this field. For example, you may create an expression for tracking purchase order amounts over $in.inDict/tns:inDict/ns2:KeyValueOfstringstring/ns2:Value > 10000.00 |
Composite Sensor Actions | Displays the supported sensor actions. This feature enables you to store runtime sensor data. You can select both Enterprise Manager and either JMS Queue or JMS Topic.
Notes: The JMS Queue and JMS Topic selections enable the composite sensor data (XML payload) to be used by other consumers, including Oracle Business Activity Monitoring and Oracle Complex Event Processing (CEP). Both selections use the native JMS support provided with Oracle WebLogic Server, and not the Oracle SOA Suite JMS adapter described in Oracle Fusion Middleware User's Guide for Technology Adapters. You can view JMS messages in the Oracle WebLogic Server Administration Console. For information about using sensor data with Oracle Business Activity Monitoring, see Chapter 53, "Integrating Oracle BAM with SOA Composite Applications." |
For a service or reference binding component, a composite sensor icon displays in the upper right corner, as shown in Figure 50-7.
Figure 50-7 Sensor Icon on Binding Component
For a service component, a composite sensor icon also displays in the upper right corner, as shown in Figure 50-8.
Figure 50-8 Sensor Icon on Service Component
The Select XPath Expression dialog shown in Figure 50-9 enables you to select an element for tracking.
To add a variable:
The Select Properties shown in Figure 50-10 enables you to create an expression for tracking.
To add an expression:
The Select Property shown in Figure 50-11 enables you to select a normalized message header property for tracking.
To add a property:
Note the following details when using duplicate names for composite sensors.
For the scenario shown in sensor.xml
in Example 50-1, the following occurs:
Service1
are identical. In addition, the configuration type for both is serviceConfig
(composite sensors defined on a service binding component). Therefore, the sensors become one entry (the second one is ignored). Service1
has a different configuration type of eventConfig
(a composite sensor defined on a business event). Therefore, this sensor is represented with a separate entry. PurchaseOrder
Id
have different configuration types (eventConfig
and serviceConfig
). Therefore, they are represented with separate entries. PurchaseOrder
have the same configuration type (eventConfig
), but different expressions. Therefore, they are represented with separate entries. Example 50-1 Duplicate Composite Sensors with Multiple Endpoints
During runtime, composite sensor data can be monitored in Oracle Enterprise Manager Fusion Middleware Control:
For more information, see Section "Monitoring and Deleting SOA Composite Application Instances from the Application Home Page" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This chapter describes how to use two-layer Business Process Management (BPM). Two-layer BPM enables you to create dynamic business processes whose execution, rather than being predetermined at design time, depends on elements of the context in which the process executes. Such elements can include, for example, the type of customer, the geographical location, or the channel.
To illustrate further, assume you have an application that performs multichannel banking using various processes. In this scenario, the execution of each process depends on the channel for each particular process instance.
This chapter includes the following sections:
Two-layer BPM enables you to model business processes using a layered approach. In that model, a first level is a very abstract specification of the business process. Activities of a first-level process delegate the work to processes or services in a second level. Figure 51-1 illustrates this behavior.
In Figure 51-1, the phase I activity of the business process can delegate its work to one of the corresponding layer II processes: Task 1.1, Task 1.2, or Task 1.3.
The two-layer BPM functionality enables you to create the key element (namely, the phase activity) declaratively.
By using the design time and runtime functionality of Oracle Business Rules, you can add more channels dynamically without having to redeploy the business process. Design time at runtime enables you to add rules (columns) to the dynamic routing decision table at runtime. Then, during runtime, business process instances consider those new rules and eventually route the requests to a different channel.
The design time at runtime functionality of Oracle Business Rules also enables you to modify the endpoint reference of a service that is invoked from a phase activity, pointing that reference to a different service.
Note: You can use the design time at runtime functionality of Oracle Business Rules through Oracle SOA Composer and the Oracle Business Rules SDK. For information about using Oracle SOA Composer and the Oracle Business Rules SDK, see: |
To enable two-layer BPM, follow the steps shown in Table 51-1.
Table 51-1 Steps for Enabling Two-Layer BPM
Step | Information |
---|---|
Install Oracle WebLogic Server. | Oracle WebLogic Server Installation Guide |
Design the SOA composite application. | Section 51.4.1, "Designing the SOA Composite" |
Create element-type variables named | Section 51.4.1, "Designing the SOA Composite" |
Create a phase activity. | Section 51.2, "Creating a Phase Activity" |
Create and edit the dynamic routing decision table. | Section 51.3, "Creating the Dynamic Routing Decision Table" |
Add assign activities to the BPEL process model. | Section A.2.3, "Assign Activity" |
Create the application deployment profile. | Chapter 43, "Deploying SOA Composite Applications" |
Create an application server connection. | Section 43.7.1.1.1, "Creating an Application Server Connection" |
Deploy the application. | Chapter 43, "Deploying SOA Composite Applications" |
In two-layer BPM, a phase is a level-1 activity in the BPEL process. It complements the existing higher-level Oracle Business Rules and human task BPEL activities.
You add a phase to a process declaratively in Oracle BPEL Designer by dragging and dropping it from the Oracle Extensions section of the Component Palette to the process model. Figure 51-2 provides details.
Figure 51-2 Phase Activity in BPEL Designer
Note: The reference WSDL (layer 2 or called references) must have the same abstract WSDL as that for the phase reference that gets automatically created. |
You create the phase activity for your composite application after you have created the necessary variables, as described in Section 51.4.1, "Designing the SOA Composite."
To create a phase activity:
When you create a phase activity, the artifacts described in Table 51-2 are created.
Table 51-2 Artifacts Created with a Phase Activity
At runtime, the input of the phase activity is used to evaluate the dynamic routing decision table. This is performed by a specific decision component of the phase activity. The result of this evaluation is an instruction for the Oracle Mediator. The Oracle Mediator routes the request to a service based on instructions from the decision component.
Note: In the current release, an asynchronous phase activity is supported. A synchronous or one-way phase activity is not supported. |
When creating a phase activity, you must know the following:
For information on specifying endpoints, see Section 51.4.3, "Creating and Editing the Dynamic Routing Decision Table."
Note: No transformation, assignment, or validation can be performed on a payload. |
A Dynamic Routing Decision Table is a decision table evaluated by Oracle Business Rules. Conditions are evaluated on the input data of a phase activity. The result of the evaluation is a routing instruction for the Oracle Mediator.
After you have created the phase activity, the wizard launches the Oracle Business Rules Designer in Oracle JDeveloper for you to edit the Dynamic Routing Decision Table. Figure 51-3 shows a sample decision table within the Oracle Business Rules Designer.
You can leave the information for the action attribute serviceBindingInfo empty while modeling the level-2 process phases and complete it after the level-1 process is being deployed using Oracle SOA Composer.
Once you have created and edited the Dynamic Routing Decision Table, the new level-1 phase activity appears in the BPEL process in Oracle JDeveloper, as illustrated in Figure 51-4.
Figure 51-4 Completed Level-1 Phase in Oracle JDeveloper
By creating the Dynamic Routing Decision Table, you are configuring the decision service to dynamically evaluate the conditions applied to the incoming payload and give the corresponding routing rules to the Oracle Mediator. The Oracle Mediator then executes these rules when invoking the service in layer 2.
More specifically, here is what happens at design time when you create the Dynamic Routing Decision Table:
This section describes how to build a sample SOA composite application for routing a customer order.
You design the SOA composite application in Oracle JDeveloper.
To design the SOA composite application:
BPELPhaseActivity
and then click Next. The second page of the Create Generic Application wizard appears. BPELPhaseCustomerRouter
. The Create BPEL Process dialog appears.
CustomerRouterBPELProcess
. The Type Chooser dialog displays.
The Import Schema File dialog displays.
The SOA Resource Browser appears.
The Localize Files dialog prompts you to import the schema file and any dependent files.
The Type Chooser dialog appears.
To create variables:
Note: Phase variables can be of the element type only. |
InputPhaseVariable
. OutputPhaseVariable
. To create a phase activity:
CustomerRoutingPhase_1
. Note:
|
To create and edit the Dynamic Routing Decision Table:
localhost
is the host server and 8001
is the host port. The composite in this example is named CustomerRouter
and it must already be deployed. Before deploying the phase activity, you must initialize the phase variables. You do this by adding assign activities in the phase in the BPEL process.
To add assign activities to the BPEL process model:
AssignInput
. The input copy rule is recorded at the bottom of the Edit Assign dialog, as shown in Table 51-3.
AssignOutput
. The output copy rule is recorded, as shown in Table 51-4.
For instructions on deploying the sample, see Section 43.7, "Deploying SOA Composite Applications."
For instructions on testing a composite instance in Oracle Enterprise Manager Fusion Middleware Control, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This chapter describes how to use the spring framework to integrate components that use Java interfaces into SOA composite applications. Oracle SOA Suite uses the spring framework functionality provided by the WebLogic Service Component Architecture (SCA) of Oracle WebLogic Server. This chapter also describes how to integrate components that use Java interfaces with components that use WSDL files in the same SOA composite application. It also describes using Java Architecture for XML Binding (JAXB) and the EclipseLink O/X-Mapper (OXM) to map Java classes to XML data.
This chapter includes the following sections:
For more information about the WebLogic SCA functionality used by Oracle SOA Suite, see Oracle Fusion Middleware Developing WebLogic SCA Applications for Oracle WebLogic Server.
The spring framework is a lightweight container that makes it easy to use different types of services. Lightweight containers can accept any JavaBean, instead of specific types of components.
WebLogic SCA enables you to use the spring framework to create Java applications using plain old Java objects (POJOs) and expose components as SCA services and references. In SCA terms, a WebLogic spring framework SCA application is a collection of POJOs plus a spring SCA context file that wires the classes with SCA services and references.
You can use the spring framework to create service components and wire them within a SOA composite application using its dependency injection capabilities. SCA can extend spring framework capabilities as follows:
Like all service components, spring components have a componentType
file. The interfaces defined in the componentType
file use the interface.java
definition to identify their service and reference interfaces.
Services are implemented by beans and are targeted in the spring context file. References are supplied by the runtime as implicit (or virtual) beans in the spring context file.
You can also integrate Enterprise JavaBeans with SOA composite applications through use of Java interfaces (with no requirement for SDO parameters). For information, see Chapter 38, "Integrating Enterprise JavaBeans with SOA Composite Applications."
For more information about the spring framework, visit the following URL:
In releases before 11g Release 1 11.1.1.3, components in SOA composite applications were entirely WSDL-based. Starting with 11g Release 1 11.1.1.3, you can integrate components using Java interfaces and WSDL files in a SOA composite application in the SOA Composite Editor. As an example, this integration enables a spring service component to invoke an Oracle BPEL Process Manager or an Oracle Mediator service component to invoke an Enterprise JavaBean, and so on.
The following types of component integrations are supported:
If you drag a wire from a Java interface (for example, Enterprise JavaBeans service or spring service component) to a component that does not support Java interfaces (for example, Oracle Mediator, Oracle BPEL Process Manager, or others) a compatible WSDL is generated for the component interfaces.
If you drag a wire from a WSDL interface to a component that does not support WSDL files (for example, a spring service component), a compatible Java interface is automatically generated. It is also possible to wire an existing WSDL interface to an existing Java interface. In this case, there is no checking of the compatibility between the WSDL and Java interfaces. You must ensure that it is correct.
If you create a spring service component, you can automatically configure it with Java interface-based EJB service and reference binding components. No WSDL files are required.
When wiring any two service components (or a service component with a binding component), each end of the wire has an interface defined. With XML, those interfaces must have the same WSDL definition, and are defined with interface.wsdl
in the composite.xml
file or component
.componentType
file.
From the JAX-WS point of view, when wiring a Java interface (which is defined by interface.java
) to a WSDL interface, it is assumed that the two interfaces are compatible. This is typically enforced and automated by Oracle JDeveloper.
Note: Only use Oracle JDeveloper to create and modify the |
For example, assume you have a Java interface for a service, as shown in Example 52-1.
Example 52-1 Java Interface for a Service
Assume the implementation can use an additional StockQuote
service that is implemented by another component that may be a BPEL process, an external web service, or an EJB. Example 52-2 provides details.
Example 52-2 Additional Java Interface for a Service
The componentType
file for the spring framework lists the PortfolioService
service and the StockQuote
service with the interface.java
definitions. Example 52-3 provides details.
Example 52-3 componentType File
The implementation class implements the service interface and provides a setter for the reference interface. Example 52-4 provides details.
Example 52-4 Implementation of the Service Interface
The spring context file calls out the services and references and binds them to the implementation. Example 52-5 provides details.
Example 52-5 Callout of Services and References by the Spring Context
The composite.xml
file of the composite defines the components and references. Example 52-6 provides details.
Example 52-6 Definition of Components and References in the composite.xml File
Oracle SOA Suite uses callbacks for both interface.wsdl
and interface.java
. However, the concept of callbacks does not exist in the spring framework. For Oracle SOA Suite services and references, a callback is specified (in the metadata) as a second port type for interface.wsdl
or a second Java name for interface.java
. The spring metadata has only sca:services
and sca:references
and no way to specify a callback.
To design a callback with spring, you must provide sca:services
and sca:references
with a specific name. If you create both a sca:service
and sca:reference
using the naming conventions of some
Service
and some
ServiceCallback
, Oracle SOA Suite recognizes this convention and creates a single service or reference with a callback.
For example, assume you create the syntax shown in Example 52-7 in the spring context file with the spring editor in Oracle JDeveloper:
Example 52-7 Callbacks with the Spring Service Component
Oracle SOA Suite automatically creates a single service (in the spring componentType
file) as shown in Example 52-8:
Example 52-8 Single Service
In the SOA Composite Editor, if a spring interface.java
with a callback interface is dragged to a WSDL component (for example, Oracle BPEL Process Manager, Oracle Mediator, or others), a WSDL with two port types is generated (technically, a wrapper WSDL, which is a WSDL that imports two other WSDLs, each having a single port type).
If you drag a WSDL or Java interface that has a callback to a spring service component, a single interface is displayed in the SOA Composite Editor. However, inside the spring editor, you find both a sca:service
and sca:reference
that have the same naming conventions (some
Service
and some
ServiceCallback
).
This section describes how to create a spring service component and wire the component as follows in Oracle JDeveloper:
For an overview of spring service component integration in the Fusion Order Demo, see Section 52.6, "Spring Service Component Integration in the Fusion Order Demo."
To create a spring service component in Oracle JDeveloper:
Figure 52-1 Spring Context Service Component
The Create Spring dialog is displayed.
You can also select Use Existing Context and click Browse to select an existing spring file. For example, you may want to import a spring context that was created in Oracle JDeveloper, but outside of Oracle SOA Suite. If you browse and select a spring context from another project, it is copied to the SOA project.
Note: A standalone spring version of WebLogic SCA is also available for use. This version is typically used outside of Oracle SOA Suite. This version is accessible by selecting Spring 2.5 JEE from the Component Palette while inside the spring editor. |
A spring icon is displayed in the SOA Composite Editor.
The list is refreshed to display the selections shown in Figure 52-3.
The Insert Service dialog appears.
Complete the fields shown in Table 52-1 to define the target bean and Java interface.
Table 52-1 Insert Service Dialog
Field | Description |
---|---|
name | Enter a name. |
target | Enter the target bean. This action enables you to expose the bean as a service. Note: Ensure that this target exists. There is no validation support that checks for the existence of this target. |
type | Enter the Java interface. |
When complete, the Insert Service dialog looks as shown in Figure 52-4.
The target bean becomes the service interface in the spring context.
If you close the spring editor and return to the SOA Composite Editor, you see that a handle has been added to the left side of the spring service component, as shown in Figure 52-5.
The Insert Reference dialog is displayed.
Complete the dialog, as shown in Table 52-2, and click OK.
Table 52-2 Insert Reference Dialog
Field | Description |
---|---|
name | Enter a name. |
type | Enter the Java interface. |
When complete, the spring context displays the service and reference in the spring editor.
A handle is added to the right side of the spring service component, as shown in Figure 52-7.
Drag the left handle into the Exposed Services swimlane to create a service binding component, as shown in Figure 52-8.
You are prompted to select to expose the service as either a web service or as an EJB service, as shown in Figure 52-9.
Figure 52-10 EJB Service Binding Component Wired to the Spring Service Component
Figure 52-11 EJB Service Dialog in Exposed Services Swimlane
You are prompted with the same spring type option message as shown in Step 13.
Figure 52-12 EJB Reference Binding Component Wired to the Spring Service Component
Figure 52-13 EJB Reference Dialog in External References Swimlane
Figure 52-14 Java Interface-Based EJB Service and Reference Binding Components
Figure 52-16 Java Interface of Spring Service Component
componentType
file, select this file in the Application Navigator. The interfaces for both components are defined by interface.java
. composite.xml
file to display similar details. Figure 52-17 Integration of Spring Service Component and Oracle Mediator
Figure 52-18 Java File Creation from the Oracle Mediator WSDL File
If you drag a wire between a Java interface and a WSDL-based component, and the WSDL file with the default name (based on the Java Interface name) already exists, you are prompted with four options. Click Cancel to cancel creation of the wire. Figure 52-19 provides details.
Figure 52-20 Spring Service Component Interface
For more information about integrating components that use Java interfaces with components that use WSDL files in the same SOA composite application, see Section 52.6, "Spring Service Component Integration in the Fusion Order Demo."
Notes:
|
When a Java-to-WSDL conversion fails because of a bad Java class and you modify the Java code to correct the problem, you must restart Oracle JDeveloper. Not doing so results in a Java-to-WSDL conversion failure because the new class does not get reloaded.
You can define custom spring beans through a global spring context definition. This configuration enables you to define these beans only once, at the global level.
To define custom spring beans through a global spring context:
lib
directory (as a JAR file) or the classes directory (as extracted files of the JAR file). For more information, see the readme.txt
file located in the following directory:
Note: A server restart is required to pick up newly added spring beans. |
Oracle SOA Suite provides the following predefined spring beans:
headerHelperBean
: For getting and setting header properties. instanceHelperBean
: For getting the following information: loggerBean
: For providing context-aware logging messages. The predefined spring beans are automatically injected into the spring service component. However, you must explicitly integrate the predefined spring beans into a SOA composite application by providing a reference to the bean in the spring context file.
For an example of how to reference loggerBean
and headerHelperBean
in a spring context file, see Section 52.5.4, "How to Reference Predefined Spring Beans in the Spring Context File."
Example 52-9 shows the IHeaderHelperBean.java
interface for the headerHelperBean
bean.
Example 52-9 IHeaderHelperBean.java Interface
Example 52-10 shows the IInstanceHelperBean.java
interface for the instanceHelperBean
bean.
Example 52-10 IInstanceHelperBean.java Interface
Example 52-11 shows the ILoggerBean.java
interface for the loggerBean
bean.
Example 52-11 ILoggerBean.java Interface
You create references to the predefined beans in the spring context file.
To reference predefined spring beans in the spring context file:
loggerBean
and headerHelperBean
predefined beans. This syntax is included in the spring context file of the Partner Supplier Composite application of the Fusion Order Demo. For more information about the Fusion Order Demo, see Section 52.6, "Spring Service Component Integration in the Fusion Order Demo."
The Partner Supplier Composite application of the Fusion Order Demo demonstrates how the spring service component obtains a price quote from a partner warehouse. Figure 52-22 shows the SOA Composite Editor for this composite application.
Figure 52-22 Partner Supplier Composite with Spring Service Component
IInternalPartnerSupplier is exposed as an external client service in the Exposed Services swimlane.
The Oracle Mediator service component PartnerSupplierMediator routes client requests differently based on the amount of the quote:
Figure 52-23 provides an overview of this behavior.
For requests that are more than $2000 and less than $3000, the target bean InternalPartnerSupplierMediator is exposed as a service. The Java interface IInternalPartnerSupplier is used. In the External References swimlane, the Java interface IExternalPartnerSupplierService is exposed as an external EJB for obtaining a quote.
For requests that are more than $3000, the target bean InternalPartnerSupplierMediatorSimple is exposed as a service. The Java interface IInternalPartnerSupplier is used. The internal Java Interface IExternalPartnerSupplierServiceMock is used to obtain a quote. The IExternalPartnerSupplierService reference in the External References swimlane is not invoked.
In the External References swimlane, since the WriteQuoteRequest reference uses a WSDL-based file adapter and does not support Java interfaces, a compatible WSDL file is generated.
Figure 52-23 Spring Architecture in Fusion Order Demo
Example 52-12 shows the IInternalPartnerSupplier.java
file. IInternalPartnerSupplier
is implemented by InternalSupplierMediator
.
Example 52-12 IInternalPartnerSupplier.java
The SpringPartnerSupplierMediator.componentType
file in Example 52-13 shows the services and references defined for the spring service component shown in Figure 52-23.
Example 52-13 SpringPartnerSupplierMediator.componentType File
Example 52-14 shows the SpringPartnerSupplierMediator.xml
spring context file.
Example 52-14 SpringPartnerSupplierMediator.xml spring context File
For information on downloading and installing the Fusion Order Demo and using the Partner Supplier Composite, see Section 3.2, "Setting Up the Fusion Order Demo Application."
After download, see the following Fusion Order Demo directory for Java code samples used by the Partner Supplier Composite:
Your Java code may include vectors. However, vectors cannot be serialized to XML without declaring the content POJOs. The following example provides an overview of how to resolve this issue and uses code samples from the Fusion Order Demo.
To use EJBs with Java vector type parameters:
Figure 52-25 EJB Binding Reference Creation
Figure 52-26 EJB Reference Wired to Spring Service Component
A new reference is created in the spring context file. Figure 52-27 provides details.
Figure 52-27 Reference Addition to Spring Context File
IExternalPartnerSupplierService
. Figure 52-28 provides details. IExternalPartnerSupplierService
and refer to the ExternalPartnerSupplier
reference bean. Figure 52-29 provides details. Figure 52-29 Property Added with Name of the Member
This converts the vectors to EJB parameters.
Oracle Fusion Middleware provides support for using JAXB and EclipseLink OXM to map Java classes to XML data. You can store and retrieve data in memory in any XML format without implementing a specific set of XML routines for the program's class structure. This support enables you to perform the following:
For design information about external metadata for JAXB mappings, visit the following URL:
For information about JAXB OXM and the OXM mapping file (eclipselink-oxm.xsd
), visit the following URLs:
http://wiki.eclipse.org/EclipseLink/FAQ/WhatIsMOXy
http://wiki.eclipse.org/EclipseLink/Examples/MOXy
http://wiki.eclipse.org/Category:XML
You can also map Java classes to XML data when integrating Enterprise JavaBeans with SOA composite applications. For more information, see Chapter 38, "Integrating Enterprise JavaBeans with SOA Composite Applications."
Oracle SOA Suite extends JAXB and OXM file support through use of an extended mapping (EXM) file. If an EXM file is present in the class path of the design time project, then it can be used for Java-to-WSDL conversions. The EXM file provides data binding metadata in the following situations:
The external JAXB annotations can be specified either directly in the EXM file or included in the separate TopLink JAXB mapping OXM file that can be referred to from the EXM file.
The EXM file name must match the Java class name and reside in the same package location. For example, if the Java class is named pack1.pack2.myJavaInterface.class
, the EXM file must be named pack1/pack2/myJavaInterface.exm
.
Oracle SOA Suite design time supports placing the EXM file in either the source path (SCA-INF/src
) or the class path (SCA-INF/classes
or a JAR in SCA-INF/lib
).
Placing the EXM file in the source path (SCA-INF/src
) enables you to edit the EXM using Oracle JDeveloper (files in the class path do not appear in the Application Navigator in Oracle JDeveloper). When project compilation is complete, the EXM file (and any XML files that it imports) is copied to the class path (SCA-INF/classes
) for deployment. If the EXM file is in the source path, it must still be in the same corresponding directory structure.
If you place the EXM (and OXM) files in SCA-INF/src
, ensure that your Oracle JDeveloper project is configured so that SCA-INF/src
is the default source directory (right-click the project name, and select Project Properties > Java Source Paths). EXM files can also be found in JAR files that are in the project's class path.
When you drag and drop a Java interface (EJB) to a BPEL process, Oracle SOA Suite checks to see if the EXM file exists. If it does, it is passed to the web services java2wsdl
API.
After the WSDL file is generated, an informational message is displayed. If an EXM file was used, the message displayed takes the following format:
Example 52-15 provides an example of an EXM file.
Example 52-15 EXM Sample File
The EXM schema file for external mapping metadata for the data binding framework is available at the following URL:
The data defines the attributes of a particular Java web service endpoint. This schema defines three types of XML constructs:
java.util.Collections
API. When a construct is the direct analog of a JAX-WS, JSR-181, or JAXB annotation, the comment in the schema contains a notation such as:
If you configure a Groovy or Aspectj class in the spring configuration file, you must follow these conventions:
classpath
protocol: Using a relative file path is not possible because the SCA package is not treated as a regular JAR file for the class loader. For example, the following classpath
protocol indicates to find the Groovy file from the class path.
classpath
protocol. No other directories are possible. SCA-INF/classes
SCA-INF/lib
lib
If your build scripts are configured to clean the classes
directory, either put the Groovy files in the SCA-INF/lib
directory or design your build scripts to prevent cleaning.
setDomainENV.sh
or setDomainENV.bat
file and restart the server. This ensures that deployment is successful. The restart is required because spring uses Java reflection to instantiate aspect-oriented programming (AOP). The use of reflection restricts the search for classes to the system class loader. Any changes to the system class loader require a server restart. This part describes Oracle Business Activity Monitoring.
This part contains the following chapters:
This chapter describes how to integrate Oracle Business Activity Monitoring (Oracle BAM) Adapter with SOA composite applications in Oracle JDeveloper to capture BPEL process metrics using activity monitors, and monitoring objects such as counters, business indicators, and intervals. It explains how to use Oracle BAM Monitor Express to track Key Performance Indicators (KPIs) and describes in detail the Monitor Express data objects that capture data about deployed BPEL processes. Information about integrating BPEL sensors with Oracle BAM sensor actions to publish event-based data is also provided.
This chapter contains the following topics:
The Oracle BAM Adapter is a Java Connector Architecture (JCA)-compliant adapter that can be used from a Java EE client to send data and events to the Oracle BAM Server. The Oracle BAM Adapter supports the following operations on Oracle BAM data objects: inserts, updates, upserts, and deletes.
The Oracle BAM Adapter can perform these operations over Remote Method Invocation (RMI) calls (if they are deployed in the same farm), direct Java object invocations (if they are deployed in the same container), or over Simple Object Access Protocol (SOAP) (if there is a fire wall between them).
Oracle BAM Adapter is configured in Oracle WebLogic Server Administration Console to provide any of these connection pools. See Section 53.2, "Configuring Oracle BAM Adapter" for more information.
Some configuration is required to connect SOA composite applications to Oracle BAM. See Section 53.4, "Creating a Design Time Connection to an Oracle BAM Server" for more information.
Oracle BAM Adapter can be used with various features in SOA composite applications by which you can send data to an Oracle BAM Server:
JMS sensor actions on BPEL sensors can feed data to Oracle BAM, and circumvent Oracle BAM Adapter. See Section 53.8, "Integrating SOA Applications and Oracle BAM Using Enterprise Message Resources" for more information.
JMS sensor actions at the SOA composite application level can feed data to Oracle BAM. See Chapter 50, "Defining Composite Sensors" for more information.
The Oracle BAM Adapter Java Naming and Directory Interface (JNDI) connection pools must be configured when you use the Oracle BAM adapter to connect with the Oracle BAM Server at runtime. For information about configuration see "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Make note of the JDNI names that you configure in the Oracle BAM Adapter properties, so that you can use them in the Oracle BAM Adapter wizard, Monitor Express configuration, and the Oracle BAM sensor action configuration in Oracle JDeveloper.
When using an RMI connection between a SOA composite application and Oracle BAM Server, that is, when they are deployed in different domains, trusted domain configuration must be done in Oracle WebLogic Server Administrative Console. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information.
The Monitor Express offering from Oracle BAM provides high level instrumentation of BPEL processes, automatically handling Oracle BAM data object deployment and population.
Figure 53-1 Oracle BAM Monitor Express Dashboard
Activity Monitors and Monitoring Objects are used to capture BPEL process metrics, which are sent to Oracle BAM Server, and then used for analysis and graphic display. All of the connection, design, and deployment configuration is accomplished in Oracle JDeveloper.
Monitor Express ships with sample dashboards to demonstrate solutions you can build on top of the automatically deployed data objects. You can also build custom dashboards on the data objects generated by Monitor Express using Oracle BAM Active Studio or with Oracle BAM data controls in an ADF application.
Using the BPEL Designer Monitor view in Oracle JDeveloper, you can create the following types of monitors on a BPEL process:
When the SOA composite application is deployed, the Oracle BAM data objects corresponding to the BPEL process monitors are created or updated automatically.
Related Documentation
You use the Monitor view in the BPEL Designer to configure BPEL process monitors. To access BPEL Designer Monitor view, select Monitor on the BPEL Designer toolbar.
While in Monitor view, the Structure window displays the Monitoring Objects folder. You can expand the folder to expose the Business Indicators, Intervals, and Counters folders.
Configure and enable Activity Monitors to capture data on start and end times for the BPEL process including the individual BPEL activities, scopes, and human tasks.
To configure Activity Monitors:
Note: The global Enable Monitoring flag overrides the local setting. |
You can disable Activity Monitors by deselecting the Enable Activity Monitoring checkbox.
If Activity Monitors are enabled, data is sent to Oracle BAM data objects at runtime. See Section 53.3.10, "What You Need To Know About Monitor Express Data Objects" for more information about Oracle BAM data objects for monitoring objects.
Use the BPEL Designer Monitor view in Oracle JDeveloper to create BPEL process monitoring objects.
To create a BPEL process monitoring object:
Alternatively, you can use the Monitoring Objects menu, located at the top left corner of the BPEL Designer window, to create monitoring objects.
As another alternative, you can open a context menu for each Monitoring Objects type folder in the Structure window to create a monitoring object.
BPEL process configurable monitoring objects are available in three types: Counters, Intervals, and Business Indicators. See the following topics for more information.
When checked, the Enable Monitoring option in BPEL Designer enables all of the monitors and sensors in all BPEL processes in the current SOA composite application. It overrides any monitoring object-level enable flags.
When the Enable Monitoring option is not checked, a property called enableProcessSensors
is added to composite.xml
with the value false
. That property disables all monitors and sensors in all BPEL processes in the current SOA composite application.
Every time the BPEL process passes a snapshot of a Counter (which is attached to an activity in the BPEL process diagram), data is sent to Oracle BAM. The Counter indicates how often a BPEL activity is encountered, and creates a new record in an Oracle BAM data object with time data.
Use the Counter dialog to configure a Counter monitoring object.
The Enabled checkbox enables or disables this particular monitoring object. If it is not enabled, the Counter is not evaluated during the BPEL process, therefore no data is sent to Oracle BAM.
To attach a snapshot of a Counter to a BPEL activity, click the Add icon in the Counter dialog. Then select an activity from the list.
Next, choose an evaluation event (an event within the activity), by clicking the browsing icon.
The Evaluation Event Chooser dialog opens to let you select one or more evaluation events.
When the Counter snapshot configuration is complete, it is displayed as an N icon next to activity in the BPEL process diagram.
The Counter and its snapshot are represented in the Structure window.
An Interval monitoring object captures the amount of time to go from one activity to another in the BPEL process. The start and end times are captured and sent to an Oracle BAM data object.
Use the Interval dialog to configure an Interval monitoring object.
The Enabled checkbox enables or disables this particular monitoring object. If it is not enabled, the Interval is not evaluated during the BPEL process, therefore no data is sent to Oracle BAM.
The Start Activity defines the beginning of the Interval. Select a Start Activity from the list, and a single selection in the Evaluation Events list.
End Activity defines the end of the Interval. Select an End Activity from the list, and a single selection in the Evaluation Events list.
You can select Associated References if a Business Indicator has been previously defined in the BPEL process. Selecting an associated indicator automatically provides two snapshots on the selected Business Indicator. This captures the Business Indicator metrics at the start and at the end of the Interval.
Note: If you plan to include an associated indicator snapshot in the Interval, it is not recommended to use the BPEL activities of type |
The Interval is represented in the Structure window.
On execution, the Interval start and end times are sent to Oracle BAM as a new record in a data object. See Section 53.3.10, "What You Need To Know About Monitor Express Data Objects" for information about the Oracle BAM data objects.
An empty Interval, one in which the start and end activities and evaluation events are the same, is valid, and it can label Business Indicator snapshots. The Interval can uniquely identify multiple snapshots for a single Business Indicator. Instead of configuring snapshots in the Business Indicator dialog, you can create an empty Interval for each snapshot you want to create for a Business Indicator, and select the Business Indicator's indicator reference in each Interval.
A Business Indicator monitoring object captures a snapshot of BPEL variables, specified by the metrics in the Business Indicator, or evaluates expressions, when the events specified in the Business Indicator are encountered in the BPEL process.
Use the Business Indicator dialog to configure a Business Indicator monitoring object.
The Enabled checkbox enables or disables this particular monitoring object. If it is not enabled, the configured expression in the Business Indicator is not evaluated during the BPEL process, therefore no data is sent to Oracle BAM.
Metrics are defined to evaluate an expression or variable when the events specified in the Business Indicator are encountered in the BPEL process.
Click the green plus icon to configure a metric. Metrics have a name, data type, and XPath expression.
You can enter an expression directly in the XPath field, or click Edit to open the Metric configuration dialog, then click Edit to use the Expression Builder.
Snapshots associate the Business Indicator with activities in the BPEL process. The snapshot tells the BPEL process at what point to evaluate the Business Indicator metrics. To create a snapshot, click the green plus icon.
Note: You can use empty Interval monitoring objects to uniquely identify snapshots of a particular Business Indicator. See Section 53.3.5, "How to Configure Intervals" for more information. |
Evaluation Events indicate at what point during the activity to evaluate the Business Indicator metrics. Select a Snapshot in the table and click Edit to select one or more evaluation events. You can pick multiple evaluation events within the BPEL activity on which to evaluate the metric.
Note: Configuring a snapshot on the |
When the configuration is saved, a Business Indicator icon is displayed in the top right corner of the associated activity in the BPEL process diagram.
The Business Indicator is also represented in the Structure window with its metrics and snapshots.
On execution, when a Business Indicator is encountered in the BPEL process, the metrics are evaluated and results sent to Oracle BAM as new records in a data object. See Section 53.3.10, "What You Need To Know About Monitor Express Data Objects" for information about the Oracle BAM data objects.
You can add previously created Counters and Business Indicators to activities in the BPEL process with a shortcut menu provided in the BPEL Designer Monitor view. This creates a new snapshot in the selected Counter or Business Indicator.
To add a monitor to an activity:
When any BPEL process in the current SOA composite application contains monitoring objects, during the deployment of that composite, Oracle BAM data objects are created in Oracle BAM Server in the location specified in the monitor.config
file.
Note: The The |
Deployment is incremental, meaning that existing data objects are not deleted, and columns are added to data objects when required by the monitoring object configuration. See Section 53.3.10, "What You Need To Know About Monitor Express Data Objects" for details about the data objects.
To configure deployment properties:
In the Application Navigator project folder, open the monitor.config
file for editing.
The monitor.config
file defines deployment and runtime properties needed to connect with Oracle BAM Server to create and populate the data objects.
Caution: Do not edit the |
The default monitor.config
file is shown in the following example.
The properties are described in Table 53-1.
Define only one Connection block per BPEL project.
Table 53-1 Monitor Configuration Properties
Property | Default | Description |
---|---|---|
| /Samples/Monitor Express/ | Path to the location of the data objects for the monitors configured in all of the BPEL process for the SOA composite application. If the directory does not exist, it is created during deployment. The path is relative to the root data object folder in Oracle BAM Server. There is only one data objects folder per SOA composite application. The application can contain many BPEL processes. All of the data objects associated with all of the BPEL processes in the application are created in this location. |
| eis/bam/rmi | Oracle BAM Adapter connection pool configured in Oracle WebLogic Server Administration Console. Oracle BAM Adapter must be configured before deployment and runtime. When using the RMI protocol, as when Oracle SOA Server and Oracle BAM Server are deployed in separate domains, you must also configure trusted domain credentials for both Oracle SOA Server and Oracle BAM Server domains. See Section 53.2, "Configuring Oracle BAM Adapter" and Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information. |
| true | Indicates that batching using Oracle BAM Adapter is enabled. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for information about batching configuration properties. |
| http | The only valid value is |
| true | If Oracle BAM Server is unreachable or there are any problems with the deployment of the Oracle BAM data objects, and this property is set to This property corresponds to the Ignore BPEL Monitor deployment errors checkbox in the deployment configuration wizard. |
Oracle BAM provides a sample dashboard that you can use to monitor your BPEL process out of the box.
The Monitor Express dashboard and data object samples allow users to enable Oracle BAM for your SOA composite applications in relatively few steps from within Oracle JDeveloper. The ready-to-use dashboards provide a single integrated view to track Key Performance Indicators (KPIs) in real-time and promote operational efficiency. The rich user experience for monitoring is delivered by BPEL Monitor instrumentation in Oracle JDeveloper.
The data objects are located in the Samples/Monitors/
data object directory in Oracle BAM Architect, and the sample reports are located in the Shared Reports/Samples/Monitor Express/
folder in Oracle BAM Active Viewer.
If the samples are not installed on your system, the installation script and instructions are located in the SOA_ORACLE_HOME
/bam/samples/bam/monitorexpress
directory.
Oracle BAM data objects are deployed automatically when a SOA composite application containing enabled BPEL process monitors is deployed. Preseeded sample data objects are present in the Samples/Monitor Express/
directory.
You can use these data objects to construct Oracle BAM dashboards. See Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring for information about creating dashboards in Oracle BAM Active Studio.
You can add columns and indexes to the data objects using Oracle BAM Architect. The custom columns and indexes you add in Oracle BAM Architect are preserved when a revised SOA composite application containing changes to BPEL process monitor configuration is deployed. See Chapter 55, "Defining and Managing Oracle BAM Data Objects" for information about adding columns and indexes.
If a data object already exists in the configured location at deployment time, it is used as is, or updated with the appropriate additional columns to accommodate messages from the BPEL process monitors.
Oracle BAM data objects cannot be changed if they are in use. If there are Oracle BAM dashboards open against BPEL process monitor data objects, and the data objects require changes upon deployment, the data object updates fail.
Note: Do not change the existing monitoring data object column names. |
Oracle BAM Adapter Configuration
BPEL process monitors use Oracle BAM Adapter to convey messages to Oracle BAM Server. At deployment time, if Oracle BAM Server is unreachable, deployment fails. If Oracle BAM Server is unreachable at runtime, the retry behavior is determined by the Oracle BAM Adapter configuration. See Section 53.2, "Configuring Oracle BAM Adapter" and "Configuring Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information.
See the following sections for a detailed description of the data objects and troubleshooting information.
The COMPONENT data object is the main dimension table. It compiles information about how long a BPEL process instance takes to run, and if it has failed at least once.
This data object is always populated when at least one monitoring object is configured or if you have activity monitoring enabled.
Table 53-2 COMPONENT Data Object Fields
Column Name | Description |
---|---|
| SCA composite instance ID number. |
| SCA component instance ID number. For BPEL it is the BPEL instance ID number. |
| The partition name. |
| The name of the SOA composite application. |
| The revision number of the SOA composite application. |
| SOA composite application internal label. This label is created every time you deploy even if you override the revision ID. |
| The component type (|
| The component display name (The name of a BPEL process, for example). |
| The date and time that the component started running. |
| The date and time that the component stopped running. |
| Indicates whether the component has faulted at least once. 1=faulted, 0=no fault. |
| Name of the last fault that occurred. |
| Indicates whether the component is currently running. 1=the component is running, 0=the component is not running. |
| The calculated length of time between |
| The calculated length of time between |
| Indicates whether the component completed with no faults. 1=completed with no fault, 0=either did not complete yet, or did complete with fault. |
| Indicates that the component has not completed, and has faulted at least once. 1=has not completed, and has faulted at least once, 0=otherwise. |
| Allows you to create reports that aggregate data over multiple BPEL process instances executed by a single SOA request. |
The COUNTER data object contains data captured by all of the Counter monitoring objects encountered in the BPEL processes.
Table 53-3 COUNTER Data Object Fields
Column Name | Description |
---|---|
| SCA composite instance ID number. |
| SCA component instance ID number. For BPEL it is the BPEL instance ID number. |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| The name of the Counter monitoring object. |
| An internal value that is used as a key field. |
| Type of the sub-component (|
| Name of the sub-component (|
| The event within the life cycle of the BPEL activity (activate, for example) at which the data is captured. |
| Date and time when the Counter data was captured. |
The INTERVAL data object contains data captured by all of the Interval monitoring objects and Activity Monitors configured in the BPEL processes.
Table 53-4 INTERVAL Data Object Fields
Column Name | Description |
---|---|
| SCA composite instance ID number. |
| SCA component instance ID number. For BPEL it is the BPEL instance ID number. |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Display name of the Interval monitoring object, or the name of the activity, human task, or scope being monitored by Activity Monitors. |
| Indicates the type of BPEL process monitor where the data was captured.
|
| Date and time recorded when the Interval or Activity Monitor start activity was encountered. |
| Date and time recorded when the Interval or Activity Monitor end activity was encountered. |
| An internal value that is used as a key field. |
| The type of the BPEL process activity being monitored by an interval. The |
| The display name of the process activity being monitored by an interval. |
| The event within the life cycle of the BPEL activity (activate, for example) at which the data is captured. |
| An internal value that is used as a key field. |
| The type of the BPEL process activity being monitored by an interval. The |
| The display name of the process activity being monitored by an interval. |
| The event within the life cycle of the BPEL activity (activate, for example) at which the data is captured. |
| For future use. |
| Indicates if the Interval or Activity Monitor end activity is running. 1 indicates that the end activity has not been encountered. 0 indicates otherwise. |
| The length of time between the |
| The length of time between the |
The data objects containing data captured by all of the Business Indicator metrics configured in a BPEL process are named BI_Partition_Name_Composite_Name_BPELPROCESS_Name.
A separate data object is created for each BPEL process in the SOA composite application that contains Business Indicator monitoring objects.
If a Business Indicator is referenced by an Interval monitoring object, some of the data related to the Interval (INTERVAL_NAME
, INTERVAL_START_FLAG
, and INTERVAL_END_FLAG
) is captured in the Business Indicator data object.
Note: If one of the metrics fails at the time of evaluation (snapshot) the data is not sent to Oracle BAM; however, the remaining metrics configured in the Business Indicator are evaluated at the snapshot. If the failed Business Indicator metric is encountered at another snapshot, the BPEL engine attempts to evaluate it. |
Table 53-5 Business Indicator Data Object Fields
Column Name | Description |
---|---|
| SCA composite instance ID number. |
| SCA component instance ID number. For BPEL it is the BPEL instance ID number. |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Lookup to |
| Name of the Business Indicator. |
| Date and time recorded when the Business Indicator data was captured. |
| An internal value that is used as a key field. |
| Type of the subcomponent (|
| Name of the subcomponent (|
| The event within the life cycle of the BPEL activity (activate, for example) at which the data is captured. |
| The name of the Business Indicator-instrumented Interval monitoring object that lead to the Business Indicator data capture. The field is null if the data was captured within an Activity Monitor. |
| Indicates whether the data was captured at the Interval start activity. 1=yes, NULL=otherwise. The field is null if the data was captured within an Activity Monitor. |
| Indicates whether the data was captured at the Interval end activity. 1=yes, NULL=otherwise. The field is null if the data was captured within an Activity Monitor. |
| Indicates (with value "Y") the latest snapshot of a Business Indicator record for a particular composite/component instance (based on COMPOSITE_INSTANCE_ID and COMPONENT_INSTANCE_ID). Allows the creation of dashboards that filter Business Indicator records so only the latest is used (a Business Indicator can have many snapshots in the same process, but LATEST indicates the most recent at any point in time). |
| Contains the result of the XPath expression evaluated in the Each The There are as many Metric names must be unique within a BPEL process to avoid name collisions in this data object. |
This section contains Monitor Express troubleshooting information.
In Oracle BAM Server data objects, older data can be purged with an alert rule, so that the data object does not grow too large.
See Chapter 60, "Creating Oracle BAM Alerts" for general information alerts, and see Section F.3.8, "Delete rows from a Data Object" for information about configuring the delete action.
Monitor Express runtime logs messages using the oracle.soa.bpel.engine.sensor
logger. For more information, see Configuring Log Files in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You must create a connection to an Oracle BAM Server to browse the available data objects and construct transformations while you are designing your applications in Oracle JDeveloper.
Note: Oracle BAM Server connections should be created in Application Resources, directly, or by copying an existing connection from the Resource Catalog. |
You create a connection to an Oracle BAM Server to browse data objects available on that server.
To create a connection to an Oracle BAM Server:
The New Gallery dialog box opens.
The BAM Connection wizard opens.
Table 53-6 Oracle BAM Server Connection Information
Field | Description |
---|---|
BAM Web Host | Enter the name of the host on which the Oracle BAM Report Server and web applications are installed. In most cases, the Oracle BAM web applications host and Oracle BAM Server host are the same. |
BAM Server Host | Enter the name of the host on which the Oracle BAM Server is installed. |
User Name | Enter the Oracle BAM Server user name. |
Password | Enter the password of the user name. |
HTTP Port | Enter the port number or accept the default value of 9001. This is the HTTP port for the Oracle BAM web applications host. |
JNDI Port | Enter the port number or accept the default value of 9001. The JNDI port is for the Oracle BAM report cache, which is part of the Oracle BAM Server. |
Use HTTPS | Select this checkbox to use secure HTTP (HTTPS) to connect to the Oracle BAM Server during design time. Otherwise, HTTP is used. |
The Oracle BAM Adapter is used as a reference that enables the SOA composite application to send data to an Oracle BAM Server external to the SOA composite application.
You can add Oracle BAM Adapter references that enable the SOA composite application to send data to Oracle BAM Servers external to the SOA composite application.
To add an Oracle BAM Adapter reference:
This launches the Adapter Configuration wizard.
When you click Browse, the BAM Data Object Chooser dialog box opens allowing you to browse the available Oracle BAM Server connections in the BAM Data Object Explorer tree. Select a data object and click OK.
Insert adds a row to the data object.
Upsert inserts new data into an existing row in a data object if the row exists. If the row does not exist a new row is created. You must select a key from the Available column to upsert rows in a data object.
Delete removes a row from the data object. You must select a key from the Available column to delete rows in a data object.
Update inserts new data into an existing row in a data object. You must select a key from the Available column to update rows in a data object.
The data cached in memory by the Oracle BAM Adapter of the Oracle BPEL Process Manager runtime is flushed (sent) to Oracle BAM Server periodically. The Oracle BAM component may decide to send data before a batch timeout if the cache has some data objects between automatically defined lower and upper limit values.
Batching properties are configured in BAMCommonConfig.xml. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information.
The JNDI name is configured in the Oracle WebLogic Server Administration Console. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information.
The Oracle BAM Adapter is used as a partner link in a BPEL process to send data to Oracle BAM as a step in the process.
For more information, see Section 4.3, "Introduction to Partner Links."
You can add the Oracle BAM Adapter to a BPEL process to send data to Oracle BAM as a step in the process. The Oracle BAM Adapter is used as a partner link and connected to an activity in the BPEL process.
To add an Oracle BAM partner link:
When the wizard completes, a Web Services Description Language (WSDL) file by this name appears in the Application Navigator for the BPEL process or Oracle Mediator message flow. This file includes the adapter configuration settings you specify with this wizard.
When you click Browse, the Data Object Chooser dialog box opens allowing you to browse the available Oracle BAM Server connections in the BAM Data Object Explorer tree. Select a data object and click OK.
Insert adds a row to the data object.
Upsert inserts new data into an existing row in a data object if the row exists. If the row does not exist a new row is created.
Delete removes a row from the data object.
Update inserts new data into an existing row in a data object.
The data cached in memory by the Oracle BAM Adapter of the Oracle BPEL Process Manager runtime is flushed (sent) to Oracle BAM Server periodically. The Oracle BAM component may decide to send data before a batch timeout if the cache has some data objects between automatically defined lower and upper limit values.
Batching properties are configured in BAMCommonConfig.xml. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information.
The JNDI name is configured in the Oracle WebLogic Server Administration Console. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information.
For more information about using the Oracle BPEL Process Manager see Chapter 4, "Getting Started with Oracle BPEL Process Manager."
You can create sensor actions in Oracle BPEL Process Manager to publish sensor data into existing data objects on an Oracle BAM Server. When you create the sensor action, you can select an Oracle BPEL Process Manager variable sensor or activity sensor to get the data from and the data object in Oracle BAM Server in which you want to publish the sensor data.
The Oracle BAM Adapter supports batching of operations, but behavior with batching is different from behavior without batching. As the Oracle BAM Adapter is applied to BPEL sensor actions, the Oracle BAM sensor action is not part of the BPEL transaction. When batching is enabled, BPEL does not wait for an Oracle BAM operation to complete. It is an asynchronous call.
When batching is disabled, BPEL waits for the Oracle BAM operation to complete before proceeding with the BPEL process, but it does not roll back or stop when there is an exception from Oracle BAM. The Oracle BAM sensor action logs messages to the same sensor action logger as BPEL. See "Configuring Oracle BAM Batching Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for information about batching behavior.
These instructions assume you have installed and configured Oracle BAM.
Notes: Connection factory configuration must be completed before using Oracle BAM sensor actions. Also, if the Oracle BAM Adapter is using credentials rather than a plain text user name and password, in order for the Oracle BAM Adapter (including Oracle BAM sensor actions used in BPEL) to connect to the Oracle BAM Server the credentials must also be established and mapped. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information. |
Before you can create an Oracle BAM sensor action, you must first create a Variable sensor or an Activity sensor in the BPEL process.
Restrictions: A Variable sensor's variable must be defined in a standalone XSD. This variable must not be defined inline in the WSDL file. If the variable has message parts, then there must be only one message part.
Restrictions: Because you map the sensor data to a single Oracle BAM Server data object, the Activity sensor must contain only one variable. All of the Variable sensor restrictions also apply.
Note: Any sensor that does not conform to these rules are be filtered from the Oracle BAM sensor action configuration dialog box. Also, if a sensor is created conforming to the restrictions, but the variable is deleted (rendering the sensor invalid), it does not appear in Oracle BAM sensor action configuration dialog box. |
For more information about creating sensors, see Section 18.2, "Configuring Sensors and Sensor Actions in Oracle JDeveloper."
When you create the Oracle BAM sensor action, you select the BPEL variable sensor or activity sensor from which to get data, and you select the data object in Oracle BAM Server to which you want to publish the sensor data.
To create an Oracle BAM sensor action:
If the Structure window is not open, select View > Structure Window to open it.
The Create Sensor Action dialog box appears.
Table 53-7 Create Sensor Action Dialog Box Fields and Values
Field | Description |
---|---|
Action Name | Enter a unique and recognizable name for the sensor action. |
Enable | Select this option to enable the sensor action. When disabled no sensor action data is sent to Oracle BAM. Sensors can be also be disabled using Oracle Enterprise Manager Fusion Middleware Control. |
Sensor | Select a BPEL sensor to monitor. This is the sensor that you created in Section 53.7.1, "How to Create a Sensor" for mapping sensor data to a data object in Oracle BAM Server. |
Data Object | Click the Browse icon to open the BAM Data Object Chooser dialog box to select the data object in Oracle BAM Server in which you want to publish the sensor data. If you have not created a connection to Oracle BAM Server to select data objects, click the icon in the upper right corner of the BAM Data Object Chooser dialog box. |
Operation | Select to Delete, Update, Insert, or Upsert a row in the Oracle BAM Server database. Upsert first attempts to update a row if it exists. If the row does not exit, it is inserted. |
Available Keys/Selected Keys | If you selected the Delete, Update, or Upsert operation, you must also select a column name in the Oracle BAM Server database to use as a key to determine the row with which this sensor object corresponds. A key can be a single column or a composite key consisting of multiple columns. Select a key and click the > button. To select all, click the >> button. |
Map File | Provide a file name to create a mapping between the sensor data (selected in the Sensor list) and the Oracle BAM Server data object (selected in the Data Object list). You can also invoke a mapper dialog box by clicking the Create Mapping icon (second icon) or Edit Mapping icon (third icon). |
Filter | Enter an XPath expression to filter sensor action data that is sent to Oracle BAM. At runtime the XPath expression entered in the field is evaluated, and it must return true for the sensor action to be fired. Enter filter logic as a boolean expression. A filter enables you to monitor sensor data within a specific range. For example, you may want to monitor loan requests in which the loan amount is greater that $100,000. In this case, you can enter an expression such as the following: boolean(/s:actionData/s:payload/s:variableData/s:data/autoloan:loanAmount > 100000) See Figure 18-9, "Creating a Sensor Action with a Filter" for an example. |
BAM Connection Factory JNDI | Specify the JNDI name for the Oracle BAM Server connection factory. The JNDI name is configured in the Oracle WebLogic Server Administration Console. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information. |
Enable Batching | The data accumulated by the Oracle BAM component of the Oracle BPEL Process Manager runtime is flushed (sent) to Oracle BAM Server periodically. The Oracle BAM component may decide to send data before a batch timeout if the queue has some data objects between automatically defined lower and upper limit values. If batching is enabled, performance is dramatically improved, but there is no transaction guarantee. The BPEL process continues to run without waiting for the data to get to the Oracle BAM Server. If batching is not enabled, the BPEL process waits until the Oracle BAM Server confirms that the record operation was completed; however, if there is a failure, the exception from Oracle BAM Server is logged and the BPEL process continues. BPEL does not roll back the operation or stop when there is an exception from Oracle BAM. See "Configuring Oracle BAM Batching Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for information about batching behavior. |
Notes: After you click the Create Mapping or Edit Mapping, or the OK button on the Create Sensor Action dialog box, you must explicitly save the BPEL file. |
You must complete the XSLT mapping the sensor action XML schema to the Oracle BAM data object schema.
You can use BPEL JMS sensor actions to send data to Oracle BAM from a SOA composite application by way of a JMS topic or queue, using Oracle BAM Enterprise Message Sources.
You can also use the generic JMS adapter at the SOA composite or BPEL level, and Enterprise Message Sources can read that data into Oracle BAM.
XSL must be used to transform the payload from the BPEL JMS sensor action. You can use the advanced XML processing option in Oracle BAM Enterprise Message Sources, including using XSL, to get to any attribute or node in the XML.
See the following documentation for more information:
This chapter describes how to create and use Oracle Business Activity Monitoring (Oracle BAM) data controls, which are binding components in the Oracle ADF Model with support for Active Data Services. It describes how to add Oracle BAM Server connections in Oracle JDeveloper and create projects and web pages that use Oracle BAM data controls. Information is also included about how to use parameters to create Oracle BAM data control queries for displaying data in flat lists or in trees and charts using groups and aggregates of data.
For more comprehensive information about using Oracle ADF Model data binding and Active Data Services, refer to Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
This chapter contains the following topics:
Oracle BAM data control allows ADF developers to build applications with a dynamic user interface that changes based on real-time business events. Oracle BAM data control is used to bind data from Oracle BAM data objects to databound UI components in an ADF page.
Oracle BAM data control abstracts a query on Oracle BAM data objects using standard metadata interfaces to describe the Oracle BAM data collections. Using JDeveloper, you can view that information as icons which you can drag and drop onto a page. Using those icons, you can create databound UI components (for JSF JSP pages) by dragging and dropping them from the Data Controls panel onto the visual editor for a page. JDeveloper automatically creates the metadata that describes the bindings from the page to the Oracle BAM data objects. At runtime, the ADF Model layer reads the metadata information from appropriate XML files for both the data controls and bindings and implements the connection between your user interface and Oracle BAM data objects. Oracle BAM data control is read-only.
For general information about Oracle ADF data controls, and information about ADS (active data services), see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Oracle BAM data control must to be hosted by a valid ADF web application. Also, a limited set of ADF Faces components support active data, therefore a limited set of ADF Faces components can make use of the main functionality of an Oracle BAM data control. Refer to Oracle JDeveloper ADF documentation for information about creating ADF web applications, including a list of components that support active data.
An Oracle BAM data control can still be used by view components that do not support active data.
Oracle BAM data control requires that the project contain the ADF Faces and ADF Page Flow technologies. The Fusion Web Application (ADF) template in JDeveloper contains these technologies.
You must create a connection to Oracle BAM to browse the available data objects in JDeveloper. This connection information is automatically used during deployment and runtime. See Section 53.4, "Creating a Design Time Connection to an Oracle BAM Server" for details on creating the connection.
Note: Oracle BAM data control only uses connections that appear in the Application Resources panel. It does not find connections in the Resource Palette. Oracle JDeveloper facilitates copying connections from Resource Palette to the Application Resources panel of your application. |
Note: To create an Oracle BAM data control against an SSL-enabled Oracle BAM Server Oracle JDeveloper must be started with the Example: C:\jdevrc1\jdeveloper\jdev\bin>jdev -J-Djavax.net.ssl.trustStore=C:\jdevrc1\wlserver_10.3\server\lib\DemoTrust.jks |
Each Oracle BAM data control has an associated Oracle BAM connection. When a connection has changed name or has been removed from the application resources, you get an error when you attempt to use any data controls that are associated with the connection. You can do one of the following to resolve the lost connection:
To change the Oracle BAM connection associated with a particular data control you must edit the DataControls.dcx file in the current project. Change the connection
attribute of the BAMDataControl
element with the name of the desired Oracle BAM connection.
To modify the Oracle BAM connection in an Oracle BAM data control:
If you do not have a BAM connection in the Application Resources to use for this data control, create a new one. See Section 54.3, "Creating Oracle BAM Server Connections" for more information.
The DataControls.dcx file is located in the Application Sources directory under the node named for the project.
Each project in a ADF application has a DataControl.dcx file associated with it. Each DataControls.dcx file may have one or more data control definitions. If the current project does not contain the definition for the data control you want to modify, look through the other projects in the current application to locate it.
BAMDataControl
element within it. In the source view find the AdapterDataControl block with the id that matches the display name of your data control.
connection
attribute to the name of the new Oracle BAM connection. Once you have created your Oracle BAM data objects and established a connection to an Oracle BAM server from JDeveloper, you can use JDeveloper to create data controls that provide the information needed to declaratively bind UI components to those data objects. Data controls consist of many XML metadata files that define the capabilities of the service that the bindings can work with at runtime.
See Chapter 55, "Defining and Managing Oracle BAM Data Objects" for information about creating Oracle BAM data objects. For information about creating a connection to your Oracle BAM instance, see Section 54.3, "Creating Oracle BAM Server Connections."
You create Oracle BAM data controls from within the Application Navigator of JDeveloper.
To create a data control:
See Section 54.5, "Creating Oracle BAM Data Control Queries" for more information.
When you create a data control based on an Oracle BAM data object, the data control contains a representation of a query on all of the selected fields that is constructed based on the groupings, aggregates, filters, parameters, and additional calculated fields that you configure using the BAM Data Control wizard in JDeveloper.
For the data control to work directly with the service and the bindings, JDeveloper creates the following metadata XML files:
DataControls.dcx
) JDeveloper also adds the icons to the Data Controls panel that you can use to create data bound UI components.
The Data Controls panel lists all the data controls that have been created for the application's business services and exposes all the queries that are available for binding to UI components. The panel is a direct representation of the structure of the data to be returned by the data control. By editing the data control, you can change the elements displayed in the panel.
Figure 54-1 Data Controls Panel in Oracle JDeveloper
You can design a databound user interface by dragging an item from the Data Controls panel and dropping it on a page as a specific UI component. When you use Oracle BAM data controls to create a UI component, JDeveloper automatically creates the various code and objects needed to bind the component to the data control you selected.
You can create an Oracle BAM data control query using the Oracle BAM Data Control wizard. The wizard lets you choose between creating a flat query or a group query.
The following sections explain how to use each page in the wizard to create your query:
On the Name page of the Oracle BAM Data Control wizard, in addition to naming the data control and selecting the metadata XML files location, you can choose to create either a flat query or a group query.
In the BAM Data Control Name field, enter a display name for the data control.
In the Directory Name field, enter the directory in which the data control metadata XML files are saved.
The Data Object path displays the location of the data object from which the query is built.
Select Group Query when you want to create groups and aggregates of data to display in trees or charts. The Collapsed checkbox, enabled only when Group Query is selected, makes the structure of the group query flat.
Select Flat Query when you want to show the data in a flat table or list.
In New records position select whether the new records are added to the beginning or end of the graph. For example, if you want new bars to appear on the right side of a bar graph, select At the end. If you want new rows inserted at the top of a list, select At the beginning.
Select the Connect to BAM using ADF credentials checkbox to connect to Oracle BAM Server at runtime using the credentials in the ADF application containing the Oracle BAM data control. This feature takes advantage of row-level security provided by Oracle BAM Server by using the ADF application user's identity to display only the data that the user is permitted to see.
To use this feature, both Oracle BAM Server and the ADF server must use the same credential store. When this feature is disabled (unchecked) the runtime connects to Oracle BAM Server using the credentials provided in the Oracle BAM connection, specified in Oracle JDeveloper or Oracle Enterprise Manager Fusion Middleware Control.
For more information about row-level security, see Section 55.6, "Creating Security Filters."
On the Parameters page of the Oracle BAM Data Control wizard you can create parameters that are used to pass values to filters on the Filters page of the wizard. For more information about creating filters see Section 54.5.6, "How to Create Filters."
For information about passing values to parameters, see Section 54.5.3, "How to Pass Values to Parameters."
To create parameters:
Click the Add icon above and to the right of the Parameters box.
Table 54-1 Oracle BAM and Java Type Mapping
Java Type | Oracle BAM Type |
---|---|
java.lang.Integer | Integer |
java.lang.String | String |
java.util.Date | DateTime, Timestamp |
java.lang.Boolean | Boolean |
java.lang.BigDecimal | Decimal |
jave.lang.Double | Float |
Field* |
*The Field parameter type is used in charts for specifying groups at runtime. This parameter type allows the user to choose which field in the data object to group by. See the following topics for more information:
To enter a default value for the parameter, select one of the available defaults, or select the first option and enter a value in the field.
The operation setParameters
appears in the Oracle BAM data control structure every time an Oracle BAM data control query is created with parameters.
To pass parameters to an Oracle BAM data control, the setParameters
operation must be called in Oracle BAM data control before the query is executed.
One of the many ways that can be done is by using an ADF parameter form. For more information, see Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
Calculated fields allow you to create new columns based on data derived from existing fields without updating the physical data object. Use the Oracle BAM Data Control wizard Calculated Fields page to create them.
To create calculated fields:
Click the Add icon above and to the right of the box.
The new default field name appears in the list of calculations. You can rename it later, after entering a valid expression.
Complete the expression in the right-hand box, and click Validate to check the syntax of your expression.
There are several preformed expressions available. See Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring for examples and more information about each expression.
You can create groups in the calculations page.
To create groups on calculations:
You can use the up and down arrows to change the group order.
To deselect all of the fields, uncheck the ALL checkbox, and select individual fields.
The field at the top of the list appears in the left-most column of the final table in the ADF page. To change the order in which the fields appear, select a field and use the blue arrows to move it up or down the list.
To apply sorting on a field, click the sorting type in the Sorting column, and choose a new sorting type from the list.
Note: If you use Active Data, sorting is preserved on Update, Upsert operations, but not on Insert operations. |
You can apply filters to both Group Query and Flat Query types of Oracle BAM data controls. Add combinations of entries and headers to create complex filter expressions.
To create a sub-header under an existing header:
You can select the main header at the top of the filter expression to create a sub-header under it.
To create a filter entry:
For information about creating headers in the filter expression see Section 54.5.6.1, "How to Create Filter Headers."
The Add Filter Entry dialog opens.
See Section 54.5.6.3, "Entering Comparison Values" for information on configuring comparison values.
When filtering on a datetime or timestamp field, you can enable Active Now to keep the displayed time interval current as time passes. Configure the Active Now Interval to specify how often to refresh the display. See Section 54.5.6.4, "Using Active Now" for more information.
When filtering on a datetime or timestamp field, you can enable Active Now to keep the displayed time period current as time passes. See Section 54.5.6.4, "Using Active Now" for more information.
When filtering on a datetime or timestamp field, you can enable Active Now to keep the displayed time period current as time passes. See Section 54.5.6.4, "Using Active Now" for more information.
For most Comparison values you must choose Value, Field, or Calculation from the Value list.
Only the following comparisons do not require a comparison value:
If you select Value, do one of the following:
Note: If there are more than 50 values in the field, not all of the values are shown in the Browse list. Your Oracle Business Activity Monitoring administrator can configure the number of rows to display in the list. See the Oracle Business Activity Monitoring Installation Guide for more information. |
If you select Calculation, enter an expression in the field to compare with the first field.
For example, if you create a list view using the sample Call Center data object and create a filter with the following attributes:
This filter yields only those rows where the value in the Total column is equal to twice the value in the Quantity column.
If you select Field, select a field from the last list to compare with the field selected in the Field list.
If you select Parameter, select a parameter from the list at the right. Creating a filter using a parameter allows the user to change the filter values at runtime.
The list contains the parameters you created in the Parameters step of the Create Oracle BAM Data Control wizard. For more information about creating parameters see Section 54.5.2, "How to Create Parameters."
The Active Now feature in data filtering enables you to display in your views a segment of the data that is always within a defined time window. As time passes, the view is updated with the data within the defined time interval in the filter. Older data is removed from the view and newer data is added as time passes.
Active Now is available when you choose one of the following comparison expressions:
Active Now behaves differently depending on which comparison expression you choose.
When you choose is within a time interval, you can control how often the data is refreshed using the Active Now Interval setting.
For example, if you create a filter using is within a time interval, previous type, 1, Hours unit, and Active Now, set the Active Now Interval to 60 seconds, and the current time is 3:25 p.m., data from 2:25 p.m. - 3:25 p.m. is displayed in the view. When the current time changes to 3:26 p.m., data from 2:26 p.m. - 3:26 p.m. is displayed in the view. Every 60 seconds the oldest minute of data is removed from the view and the newest minute is added.
When you choose is within the current time period or is within a time period, the data is refreshed when the time period changes.
For example, when you create a filter using is within the current time period, the Hours unit, and Active Now, and the current time is 3:25 p.m., only data from 3:00 p.m. - 3:59 p.m. is displayed in the view until the current time is 4:00 p.m. At 4:00 p.m. all the data from 3:00 p.m. - 3:59 p.m. is removed from the view, and data that accumulates during the 4:00 p.m. - 4:59 p.m. time interval is displayed in the view.
If you created a Field parameter, it appears in the list. See Section 54.5.2, "How to Create Parameters" for more information about creating field parameters.
To group by numeric fields, first select Show Numeric Fields at the bottom of the list.
See Section 54.5.7.1, "How to Configure Time Groups and Time Series" for more information.
You can create a chart where the grouping (x axis) is based on a datetime field.
To configure time groups:
This action enables the Time Groups options on the right side of the wizard page.
There may be time gaps where the data object did not have entries. The Continuous Time Series feature adds groups to the result whose values are zero, so that when the results are shown on the graph, the x axis represents a smooth time series.
Continuous Time Series is valid only if you have chosen a single datetime field to group by. Continuous Time Series is not supported if any additional group fields are selected.
If you selected Use Time Groups, the groups are described in the following list.
To specify an aggregate on a field:
The valid Summary Functions for the data type of that field are enabled.
The expressions appear in the Summary Values list.
Oracle BAM data controls can be used in all ADF Faces components. Only a subset of ADF Faces components are ADS (active data service) capable. Refer to Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework for information about ADF Faces components that support ADS.
Oracle BAM data control instances use the resources of the Oracle BAM Server instance they are connected to. Those resources are released when the data control is released. In order to release those resources in a timely fashion it is required that you use Oracle BAM data controls within bounded ADF task flows with Data Control Scope set to isolated
. It is recommended that you set the session time out in web.xml
to a reasonable value so that resources are released in a timely way. Refer to Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework for information about the general life cycle of data controls.
Note: Oracle BAM data control instance sharing is not supported. When two or more ADF Faces components must display the same data, and are bound to the same Oracle BAM data control definition, make sure to wrap each ADF Faces component in a bounded ADF task flow, and set the Data Control Scope to When using an Oracle BAM data control with |
To use an Oracle BAM data control in a JSF page:
isolated
in the Property Inspector. A subset of ADF components support active data. See the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework for more information about binding data controls with data visualization components.
At runtime, Oracle BAM data control must use the Oracle BAM connection to connect to Oracle BAM Server.
Deployment to the Integrated WebLogic Server is automatic; however, deployment to a standalone Oracle WebLogic Server requires some extra steps. See Section 54.7.1, "How to Deploy to Oracle WebLogic Server in Development Mode," and Section 54.7.2, "How to Deploy to a Production Mode Oracle WebLogic Server," for more information
See Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework for more information about deploying Fusion Web applications.
Before deployment to a development-mode Oracle WebLogic Server, verify that the Java system property jps.app.credential.overwrite.allowed
to true
during Oracle WebLogic Server startup.
Add the following to the JAVA_PROPERTIES
entry in the ORACLE_HOME
/user_projects/domains/
domain
/bin/setDomainEnv.sh
file:
Post-deployment configuration is not required.
Before and after deploying an ADF application with Oracle BAM data controls to a production-mode Oracle WebLogic Server you must do the following steps:
adf-config.xml
file to add the following block: Go to the ADF Connections Configuration page, and create a BAM connection.
http://
host
:
port_number
/em
). The Oracle BAM Web Tier is the location where report server is running. The valid values for BAM Webtier Protocol are http
and https
.
You must enter the same Connection Name as the Oracle BAM connection that was configured for design time (see Section 53.4, "Creating a Design Time Connection to an Oracle BAM Server").
This chapter describes how to create and manage data objects in Oracle Business Activity Monitoring (Oracle BAM) Architect, including assigning permissions, managing folders, creating security filters, and adding dimensions and hierarchies.
This chapter includes the following sections:
Data objects are tables that store raw data in the database. Each data object has a specific layout which can be a combination of data fields, lookup fields, and calculated fields.
The data objects are used to create reports in Oracle BAM Active Studio, active data visualization components in ADF applications, among other uses. For more information about how data objects are used see "Creating and Managing Reports" in Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring and Chapter 54, "Using Oracle BAM Data Control."
The data objects you define are based on the types of data available from Enterprise Message Sources (EMS) that you can define in Oracle BAM Architect. You must define columns in the data object. The data object contains no data when you create it. You must load or stream data into data objects using the technologies discussed in the following topics:
Data objects can also be accessed and updated by Oracle BAM alerts. See Chapter 60, "Creating Oracle BAM Alerts" for more information.
WARNING: Do not read or manipulate data directly in the database. All access to data must be done using Oracle BAM Architect or the Oracle BAM Active Data Cache API. |
Data objects are defined using Oracle BAM Architect. See the following topics for more information:
To define a data object:
Caution: A single or double quotation mark in an Oracle BAM object name, such as a data object, report, or enterprise message source name, causes a runtime error. Do not include single or double quotation marks in an Oracle BAM object name. |
Note: Only the tables that belong to the user are shown when a data object is created on an EDS. Creating a data object with multiple time stamp fields on an EDS is not supported. |
See Section 55.2.2, "How to Add Columns to a Data Object" and Section 55.2.3, "How to Add Lookup Columns to a Data Object" for more information.
To add columns to a data object:
If you are adding a column in a data object based on an External Data Source you must also supply the External field name.
The data types include:
A string with a max size greater than 0 and less than or equal to 2000 becomes an Oracle database data type VARCHAR field. If the max size is less than zero or greater than 2000 the string field is stored as a CLOB. To get a CLOB field, just define a string field with a max size greater than 2000.
The Oracle BAM Float type does not map to the Oracle database Float type. Oracle BAM Float truncates numeric data that has very high precision. If you do not want to see loss of precision use the Oracle BAM Decimal type (NUMBER
in Oracle database) with the scale you want.
The Oracle BAM Decimal data type is stored as a NUMBER (38, X)
in the Oracle database. The first argument, 38
, is the precision, and this is hard-coded. The second argument, X
, is the scale, and you can adjust this value. The scale value cannot be greater than 38.
A DateTime field is stored as an Oracle database data type DATE. A Timestamp field is stored as an Oracle database data type TIMESTAMP(6). Depending on how the Timestamp field is populated, Oracle BAM may fill in the time stamp value for you. For instance, in Oracle BAM Architect you cannot specify the value for Timestamp when adding a row, but if the value for Timestamp is specified in an ICommand import file, the specified value is added as the value of Timestamp instead of the current time.
Keep adding columns using Add a field and Add one or more lookup fields until all the required columns are listed. Click Remove to remove a column in the data object.
You can add lookup columns to a data object. This performs lookups on key columns in a specified data object to return columns to the current data object. You can match multiple columns and return multiple lookup columns.
To add a lookup column to a data object:
The Define Lookup Field dialog opens.
Select the column to match from the lookup data object.
Click Add.
The matched column names are displayed in the list. You can click Remove to remove any matched pairs you create.
The new lookup columns are added to the data object. Click Modify Lookup Field in Layout > Edit Layout page to make changes to a lookup column. Multiple selection of return columns is possible when defining a new lookup but not when modifying an existing one.
You can click Remove to remove any lookups you create.
Note: Oracle Business Activity Monitoring supports two types of schema models: unrelated tables or star schemas. Any other kind of schema that does not conform to these models may result in performance issues or deadlocks. Snowflake dimensions (daisy-chained lookups) are not supported. Supported: Table 1 (with no lookups to any other tables) Table 1 > Lookup > Table 2 Not supported: Table 1 > Lookup > Table 2 > Lookup > Table 3 |
When creating calculated columns in a data object you can use operators and expression functions, combined with column names, to produce a new column.
Table 55-1 Describes the operators you can use to build calculated columns.
The Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring provides the syntax and examples for expressions you can use in a calculated column.
Numbers of type Decimal require a "D" character suffix when used in a calculated column (field). See Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring for more information.
Table 55-1 Operators Used in Calculated Columns
Operator | Function |
---|---|
+ (plus sign) | Add |
- (minus sign) | Subtract |
* (asterisk) | Multiply |
/ (slash) | Divide |
% (percent sign) | Modulus |
() (parentheses) | Parentheses determine the order of operations |
&& (double ampersand) | Logical AND |
!= (exclamation point and equal sign) | Logical NOT |
|| (double pipe) | Logical OR For example if ((CallbackClientTime == NULL) || (ReceiveInputTime == NULL)) then (-1) else (CallbackClientTime-ReceiveInputTime) |
== (double equal sign) | Equality |
= (equal sign) | Assignment |
Column names containing any special characters, such as the operators listed in Table 55-1 double quotation marks, or spaces, must be surrounded with curly braces {}. If column names contain only numbers, letters and underscores and begin with a letter or underscore they do not need curly braces. For example, if the column name is Sales+Costs, the correct way to enter this in a calculation is {Sales+Costs}
.
Double quotation marks must be escaped with another set of double quotation marks if used inside double quotation marks. For example, Length("""Hello World, "" I said")
.
WARNING: If you enter a calculated column with incorrect syntax in a data object, you could lose the data object definition. |
You can create a date time stamp column generated to milliseconds by selecting the Timestamp data type. This column in the data object must be empty when the data object is populated by the Oracle BAM ADC so that the time stamp data can be created.
The System data objects folder contains data objects used to run Oracle Business Activity Monitoring. You should not make any changes to these data objects, except for the following:
For more information about matrix and color themes, Action Buttons, and Action Forms see Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.
If you install the integration files for Oracle BAM and Oracle Data Integrator, three data objects are created in Oracle BAM Architect: Context, Scenarios and Variables in the /System/ODI/
folder. These data objects should not be deleted from Oracle BAM Architect, and their configuration should not be changed.
You can add permissions for users and groups on data objects. When users have at least a read permissions on a data object they can choose the data object when creating reports.
To add permissions on a data object:
The general information for the data object is displayed in the right frame.
Alternatively you can copy permissions from another data object. See Section 55.3.3, "How to Copy Permissions from Other Data Objects" for more information.
The list of users and groups and permissions is displayed.
The permissions are Read, Update, and Delete. You can set permissions for individual users or groups in the list by clicking the checkbox in the permission column that is next to the user or group name.
Note: Delete and Update permissions are not effective unless a user is also granted the Read permission. |
Members of the Administrator role have all permissions to all data objects, and their permissions cannot be edited.
A message is displayed to confirm that your changes are saved.
Users assigned to the Administrator role have access to all data objects. The Administrator role overrides the data object permissions.
To add a group to the list:
The group is added to the list.
You can copy the permissions from another data object and then make additional changes to the permissions before saving.
In Oracle BAM Architect for a data object, click Permissions and then click Copy from. Select the data object that contains the permissions to copy and click OK. You can edit the copied permissions and click Save changes.
To copy permissions from another data object:
The general information for the data object is displayed in the right frame.
The Choose Data Object dialog opens.
This section describes how to view information about data objects.
The general information of a data object displays the owner, when it was created, when it was last modified, and the row count.
To view the general information of a data object:
If you are currently viewing the layout or contents of a data object, click General.
The general information is displayed in the right frame. It contains the following information:
Note: If the row count is over 500,000 rows, an approximate row count is displayed in the General information for increased performance purposes. The approximate row count is accurate within 5-10% of the actual count. If you want to view an exact row count instead of the approximation, click Show exact count. The exact count is displayed. This could take a few minutes if the data object has millions of rows. |
The layout describes the columns in a data object. The columns are described by name, column ID, data type, maximum length allowed, scale, nullable, public, calculated, text tip, and lookup.
To view the layout of a data object:
The layout information is displayed in the right frame. It contains the following information:
You can view the rows of data stored in a data object by viewing the data object contents. You can also edit the contents of the data object.
To view the contents of a data object:
The general information is displayed in the right frame.
The first 100 rows of the data object display in the right frame.
(To change this default, update the Architect_Content_PageSize
property. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for information.)
Oracle BAM Architect displays the total number of rows in the data object and the number of rows that are available for viewing. For better server performance, the number of rows shown in Oracle BAM Architect is limited by configuration properties.
When internal data objects are displayed in No row number mode (default), you can view all of the records in the data object using the navigation tools.
When internal data objects are displayed in Show row numbers mode, you can view a limited number of records. This number is 64000 by default, and can be changed by modifying the ADCMaxViewsetRowCount
property in BAMServerConfig.xml
.
When external data objects are displayed in either mode, you can view a limited number of records. This number is 64000 by default, and can be changed by modifying the Import_Maxsize
property in BAMServerConfig.xml
.
Rows are listed with a Row ID column. Displaying only Row ID provides faster paging for large data objects. Row IDs are assigned one time in each row and maintain a continuous row count when you clear and reload a data object.
You can click Show row numbers to display an additional column containing a current row count starting at 1. Click No row numbers to hide the row count column again.
You can organize data objects by creating folders and subfolders for them. When you create a folder for data objects, you can assign permissions by associating users and actions with the folder.
You can create new folders for organizing data objects. Then you can move or create data objects into separate folders for different purposes or users. After creating folders, you can set folder permissions to limit which users can view the data objects it contains.
To create a new folder:
The current data object folders display in a tree hierarchy.
A field for naming the new folder is displayed.
The folder is created as a subfolder under the Data Objects folder and a message is displayed confirming that the new folder was created.
To open a folder:
The System subfolders contain data objects for running Oracle Business Activity Monitoring. For more information about these data objects see Section 55.2.6, "What You May Need to Know About System Data Objects."
The folder is opened, and the data objects in the folder are shown in the list underneath the folder tree. The general properties for the folder display in the right frame and the following links apply to the current folder:
View. Displays the general properties of this folder such as name, date created, date last modified, user who last modified it. View is selected when you first click a folder.
Create subfolder. Creates another folder within the selected folder.
Delete. Removes the selected folder and all the data objects it contains.
Rename. Changes the folder name.
Move. Moves this folder to a new location, for example, as a subfolder under another folder.
Permissions. Sets permissions on this folder.
Create Data Object. Creates a data object in this folder.
When you create a folder, you can set permissions on it so that other users can access the data objects contained in the folder.
To set permissions on a folder:
The list of users and groups and permissions is displayed.
The permissions are Read, Update, and Delete. You can set permissions for individual users or groups in the list by selecting the checkbox in the permission column that is next to the user or group name.
Note: Delete and Update permissions are not effective unless a user is also granted the Read permission. |
A message is displayed to confirm that your changes are saved.
To add a group to the list:
The group is added to the list.
To move a folder:
The folder is moved.
To rename a folder:
The folder is renamed. You must assign unique folder names within a containing folder.
When you delete a folder, you also delete all of the data objects in the folder.
To delete a folder:
A message is displayed to confirm deletion of the folder and all of its contents.
The folder is deleted.
You can add security filters to data objects so that only specific users can view specific rows in the data object. This can be useful when working with data objects that contain sensitive or confidential information that is not intended for all report designers or report viewers.
Security filters perform a lookup using another data object, referred to as a security data object, containing user names or group names. Before you can add a security filter, you must create a security data object containing the user names or group names and the value in the column to allow for each user name or each group name. Security data objects cannot contain null values.
If the user has a view open, and you change that user's security filter, it does not effect the currently open view. If the user reopens that view, it has the new security filter settings applied. Security filter settings are used to construct the query behind the view at view construction time, so changes to a security filter are not seen by previously created views.
To add a security filter to a data object:
The general information for the data object is displayed in the right frame.
If the data object includes security filters, the filter name is displayed and you can expand and view the information.
The fields for defining the security filter display.
Name of this Security Filter. Type a name for this filter.
Security Data Object. Select the name of the security data object containing the mapped columns.
Type of identification. Select either By user or By group from the dropdown list. The security data object must include either domain or local users or groups mapped to values in the identification column.
Identification column in Security Data Object. Select the name of the column for containing user names or group names.
Match column in Security Data Object. Select the column to match in the security data object.
Match column in this Data Object. Select the name of the column to match in this data object.
By default the security filters are applied with an OR condition, meaning that if there is a match in one security data object, then the user or group identified can access the data object. The AND condition requires that the user or group be identified in all of the security data objects to access the data object protected by the filters.
Note: If there are more than two security filters, you cannot use both AND and OR. You must either use AND or OR for all of the filters. |
Security Filters: An Example
For example, to add a security filter to the following data object, you need a security data object containing Region information to perform the security lookup.
Sample data object:
User | Region | Sales |
---|---|---|
John Smith | 1 | $55,000 |
Bob Wright | 1 | $43,000 |
Betty Reid | 2 | $38,000 |
Security data object:
Login | Region ID |
---|---|
DomainName\jsmith | 1 |
DomainName\jsmith | 2 |
DomainName\bwright | 1 |
DomainName\breid | 2 |
When the bwright account views a report that accesses the data object with a security filter applied based on Region ID and Region, it is only able to access information for jsmith and bwright. It is not able to view the breid information because it is not able to view data for the same region. However, the jsmith account is set up to view data in both region 1 and 2.
You can copy security filters from another data object and apply them to the data object you are editing.
To copy security filters from another data object:
The general information for the data object is displayed in the right frame.
If the data object includes security filters, the filter name is displayed and you can expand and view the information.
The Choose Data Object dialog opens.
In Oracle BAM Architect, you can add dimensions to data objects to define drill paths for charts in Oracle BAM Active Studio. Dimensions contain columns in a hierarchy. When a hierarchy is selected in chart, the end user can drill down and up the hierarchy of information. When a user drills down in a chart, they can view data at more and more detailed levels.
Hierarchies are an attribute of a dimension in a data object. Multiple dimensions can be created in each data object. Each column in a data object can belong to one dimension only. You can create and edit multiple, independent hierarchies.
To use hierarchies as drill paths in charts, the report designer must select the hierarchy to use as the drill path. To create a dimension, you must select multiple columns to save as a dimension. Then you organize the columns into a hierarchy.
The following is a sample dimension and hierarchy:
Dimension | Hierarchy |
---|---|
Sales | Category |
Brand | |
Description |
To add a dimension and hierarchy:
The general information for the data object is displayed in the right frame.
The column names are moved from the Data Objects Fields list to the Dimension Fields list to show that they are selected.
The new dimension is listed. You must still define a hierarchy for the columns.
The new hierarchy is listed. You can edit or remove hierarchies and dimensions by clicking the links. You can also continue defining multiple hierarchies for the dimension or add new dimensions to the data object.
If your dimension contains a time date data type column, you can select the time levels to include in the hierarchy.
To select time levels:
The Time Levels Definition dialog opens.
You can rename and move a data object without editing or clearing the data object. If you only want to change the data object name or description, use the Rename option.
To rename a data object:
The general information for the data object is displayed in the right frame.
To move a data object:
The general information for the data object is displayed in the right frame.
Indexes improve performance for large data objects containing many rows. Without any indexes, accessing data requires scanning all rows in a data object. Scans are inefficient for very large data objects. Indexes can help find rows with a specified value in a column.
If the data object has an index for the columns requested, the information is found without having to look at all the data. Indexes are most useful for locating rows by values in columns, aggregating data, and sorting data.
You can add indexes to data objects by selecting columns to be indexed as you are creating a data object.
To add an index:
The Add Index dialog opens.
Click a column in the list on the right to remove the column from the index.
The index is added and is named after the columns it contains. You can create multiple indexes. To remove an index you created, click Remove Index next to the Index name.
Clearing a data object removes the current contents without deleting the data object from the Oracle BAM ADC.
This chapter describes how to create and use Enterprise Message Sources (EMS) in the Oracle Business Activity Monitoring (Oracle BAM) Architect application. It explains how to use XML formatting configuration parameters, specify date and time patterns and locale information, handle errors in EMS payloads, and use Java Message Service (JMS) resources hosted on remote providers.
This chapter includes the following sections:
Enterprise Message Sources (EMS) are used by applications to provide direct Java Message Service (JMS) connectivity to the Oracle BAM Server. JMS is the standard messaging API for passing data between application components and allowing business integration in heterogeneous and legacy environments.
The EMS does not configure Extract Transform and Load (ETL) scenarios, but rather maps from a message directly to a data object on the Oracle BAM Server; however, you can still use XML Stylesheet Language (XSL) to perform a transformation in between. Each EMS connects to a specific JMS topic or queue, and the information is delivered into a data object in the Oracle BAM Active Data Cache. The Oracle BAM Architect web application is used to configure EMS definitions.
The following JMS providers are supported:
See Section 56.4, "Using Foreign JMS Providers" for more information.
The following message types are supported:
The following XML formatting options are supported for Text message transformation:
To view the existing EMS definitions, select Enterprise Message Sources from the Oracle BAM Architect function list.
Figure 56-1 Oracle BAM Architect Function List
When you define an EMS, you specify all of the fields in the messages to be received. Some messaging systems have a variable number of user-defined fields, while other systems have a fixed number of fields.
For any string type field, you can apply formatting to that field to break apart the contents of the field into separate, individual fields. This is useful for messaging systems where you cannot create user-defined fields and the entire message body is received as one large field. The formatting specifications allow you to specify the path to a location in the XML tree, and then extract the attributes or tags as fields.
Before defining an EMS, you must be familiar with the third party application providing the messages so that you can specify the message source connection details in Oracle BAM Architect. Furthermore, the JMS server (where you host queues/topics) can be configured on a different system than that which hosts the Oracle BAM Server. (For Oracle Advanced Queuing (AQ) it is acceptable to host on the same server as Oracle BAM because the database hosts the JMS server, but for other cases it is recommended to host the JMS server on another system).
To define an EMS:
Caution: A single or double quotation mark in an Oracle BAM object name, such as a data object, report, or EMS name, causes a runtime error. Do not include single or double quotation marks in an Oracle BAM object name. Do not configure two Enterprise Message Sources on the same topic or queue. If you require two Enterprise Message Sources on the same Queue, each EMS must have different Message Selector value specified; otherwise, the messages are duplicated on both of the Enterprise Message Sources. If a non-Oracle WebLogic Server JMS server is used (such as Tibco) then the durable subscription name should not be repeated in any of the Enterprise Message Sources created. Some JMS servers do not allow the clients to have multiple ConnectionFactory for a single topic destination, and Oracle BAM does not support the ability to reuse the same ConnectionFactory for the same topic. |
Note that when DateTime Specification is disabled (not checked), the incoming value must be in xsd:dateFormat
. That is, xsd:dateFormat
([-]CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]) is the default format when DateTime Specification is not configured.
Valid value patterns for xsd:dateTime
include:
Note: When a timestamp field is included in an EMS payload, the following must be considered: Inserting null in a timestamp field might not be in the control of a client like EMS. When no value is given for a timestamp field (as in Oracle BAM Architect), EMS assigns the current datetime. When the incoming timestamp value does not adhere to the |
Table 56-1 EMS Configuration Parameters
Parameter | Description |
---|---|
Name | A unique display name that appears in the EMS list in Oracle BAM Architect. |
Initial Context Factory | The initial context factory to be used for looking up specified JMS connection factory or destination. For example: weblogic.jndi.WLInitialContextFactory |
JNDI Service Provider URL | Configuration information for the service provider to use. Used to set javax.naming.Context.PROVIDER_URL property and passed as an argument to initialContext(). An incorrect provider URL is the most common cause of errors. For example: t3://localhost:7001 |
Topic/Queue ConnectionFactory Name | The name used in a JNDI lookup of a previously created JMS connection factory. For example: jms/QueueConnectionFactory |
Topic/Queue Name | The name used in the JNDI lookup of a previously created JMS topic or queue. For example: jms/demoQueue jms/demoTopic |
JNDI Username | The identity of the principal for authenticating the JNDI service caller. This user must have RMI login permissions. Used to set javax.naming.Context.SECURITY_PRINCIPAL and passed to initialContext(). |
JNDI Password | The identity of the principal for authenticating the JNDI service caller. Used to set javax.naming.Context.SECURITY_CREDENTIALS and passed to initialContext(). |
JMS Message Type | TextMessage or MapMessage. If TextMessage is selected, XML is used to specify the contents of the payload, and an additional set of XML Formatting configuration parameters must be completed. See Table 56-2 for more information. |
Durable Subscriber Name | Enter the name of the subscriber, for example, BAMFilteredSubscription. The Durable Subscriber Name should match the event-publisher subscriber name property if it is provided. A durable subscription can preserve messages published on a topic while the subscriber is not active. It enables Oracle BAM to be disconnected from the JMS provider for periods of time, and then reconnect to the provider and process messages that were published during the disconnected period. See Section 56.3.3, "How to Subscribe and Unsubscribe Enterprise Message Sources" for information about unsubscribing an EMS from a durable subscription once the EMS is started. |
Message Selector (Optional) | A single name-value pair (currently only one name-value pair is supported) that allows an application to have a JMS provider select, or filter, messages on its behalf using application-specific criteria. When this parameter is set, the application-defined message property value must match the specified criteria for it to receive messages. To set message property values, use stringProperty() method on the Message interface. he name value pair format should be |
Data Object Name | Data object in Oracle BAM in which to deposit message data. Operations can be performed on only one data object per EMS. The data object can have Lookup columns. Click Browse to choose a data object. |
Operation | Select the operation from the list: Insert inserts all new data as new rows Upsert merges data into existing rows Update updates existing rows Delete removes rows from the data object |
Batching | Specify whether the EMS communicates with the Oracle BAM Active Data Cache API with batching enabled. Batching allows multiple messages to be inserted using a single Text Message. If Batching is disabled (the default state), each row read from JMS would be sent to the Active Data Cache as a separate unit and not part of a batch of rows. Batching properties are contained in configuration files. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information. |
Transaction | Enabling Transaction ensures that the operation is atomic when Batching is enabled (Batching allows multiple messages to be inserted using a single Text Message). Transaction itself does not have any impact on Active Data Cache batching, but setting Transaction to true ensures that all of the messages in Messaging Batching (when many messages are batched in a single batch) are part of an atomic operation. See Message Batching inTable 56-2. |
Start when BAM Server starts | Specify whether the EMS starts reading messages and sending them to the Active Data Cache as soon as the Oracle BAM Server starts (or restarts). |
JMS Username (Optional) JMS Password (Optional) | You can optionally provide this information when a new JMS connection is created by a connection factory. Used to authenticate a connection to a JMS provider for either application-managed or container-managed authentication. |
Table 56-2 EMS XML Formatting Configuration Parameters
Parameter | Description |
---|---|
Pre-Processing | XSL transformation can be applied to an incoming Text Message before message retrieval and column mapping are done. See Section 56.2.3, "How to Use Advanced XML Formatting" for more information. XML names can be qualified. If qualified, select the Namespace Qualified box and enter the namespace URI in the field. |
Message Element Name | The parent element that contains column values in either its sub-elements or attributes. XML names can be qualified. If qualified, select the Namespace Qualified box and enter the namespace URI in the field. |
Message Batching | Multiple messages can be batched in a single JMS message. If this is the case, a wrapper element must be specified as the containing element in Batch Element Name. If qualified, select the Namespace Qualified box and enter the namespace URI in the field. |
Column Value | Column values can be provided using either elements or attributes in an XML payload. Specify which column value type is provided in the payload. |
You can enter a data and time pattern and provide locale information.
To configure DataTime Specification:
You can select one of the suggested supported patterns provided in the dropdown list, or enter it manually into the text box.
You must supply a valid date and time pattern that adheres to the Java SimpleDateFormat. Table 56-3 provides the syntax elements for SimpleDateFormat, and Table 56-4 provides some examples.
Note: If you are sending datetime/timestamp data to an Oracle BAM EMS through Oracle AQ JMS, the following must be considered while configuring DateTime Specification: The default datetime formats in Oracle database are specified either explicitly, with the NLS session parameters If trigger processing code (PL/SQL) does not override the date format with explicit formatting, the dates are formatted according to the format specified by NLS parameters for the database session, and sent accordingly to EMS. This situation means that the EMS DateTime Specification must have the equivalent format of NLS parameters to parse and interpret the incoming data. However, problems arise on the EMS side if a database administrator changes the NLS parameters. It is always safe to use explicit formatting using the A line such as this example in Trigger processing code '<HIREDATE>' || :new.HIREDATE || '</HIREDATE>' || should be changed to something similar to '<HIREDATE>' || to_char(:new.HIREDATE, 'MM/dd/yy HH24:MI:SS') || '</HIREDATE>' || The corresponding format selected from EMS DateTime Specification drop down is Similarly, for timestamp data, if the format selected on the database side with the |
Note: When you explicitly select the When you explicitly select only the date (excluding the hour, minute, and second) as the datetime format, then the date is inserted with its hour, minute, and second set to |
Figure 56-2 EMS Configuration Source Value Formatting Section
Table 56-3 Syntax Elements for SimpleDateFormat
Symbol | Meaning | Presentation | Example |
---|---|---|---|
G | Era | Text | AD |
y | Year | Number | 2003 |
M | Month | Text or Number | July; Jul; 07 |
w | Week in year (1-53) | Number | 27 |
W | Week in month (1-5) | Number | 2 |
D | Day in year (1-365 or 1-364) | Number | 189 |
d | Day in a month | Number | 10 |
F | Day of week in month (1-5) | Number | 2 |
E | Day in week | Text | Tuesday; Tue |
a | AM/PM marker | Text | AM |
H | Hour (0-23) | Number | 0 |
k | Hour (1-24) | Number | 24 |
K | Hour (0-11 AM/PM) | Number | 0 |
h | Hour (1-12 AM/PM) | Number | 12 |
m | Minute in an hour | Number | 30 |
s | Second in a minute | Number | 55 |
S | Millisecond (0-999) | Number | 978 |
z | Time zone | General time zone | Pacific Standard Time; PST; GMT-08:00 |
Z | Time zone | RFC 822 time zone | -0800 |
' | Escape for text | Delimiter | MMM ''01 -> Jul '01 |
The examples in Table 56-4 show how date and time patterns are interpreted in the United States locale. The date and time used in all of the examples are 2001-07-04 12:08:56 local time in the U.S. Pacific Time time zone.
Table 56-4 Date and Time Pattern Examples
Date and Time Pattern | Result |
---|---|
"yyyy.MM.dd G 'at' HH:mm:ss z" | 2001.07.04 AD at 12:08:56 PDT |
"EEE, MMM d, '' yy" | Wed, Jul 4, '01 |
"h:mm a" | 12:08 PM |
"hh 'o''clock' a, zzzz" | 12 o'clock PM, Pacific Daylight Time |
"K:mm a, z" | 0:08 PM, PDT |
"yyyyy.MMMMM.dd GGG hh:mm aaa" | 02001.July.04 AD 12:08 PM |
"EEE, d MMM yyyy HH:mm:ss Z" | Wed, 4 Jul 2001 12:08:56 -0700 |
"yyMMddHHmmssZ" | 010704120856-0700 |
"yyyy-MM-dd'T'HH:mm:ss.SSSZ" | 2001-07-04T12:08:56.235-0700 |
The Advanced formatting options allow an EMS to contain a user-supplied XSL Transformation (XSLT) for each formatted field in the message.
Uses for XSLT include:
To specify an XSL transformation:
The Advanced Formatting dialog opens.
The results are displayed in the field underneath the links. If any errors are found in the XSL syntax, the sample XML syntax, or during the transformation, the error text is shown in this field.
In the Faults section, configure how you want EMS payload errors to be handled. You can configure how to handle errors in EMS payloads in these ways: write the error message to a log file, insert the error message into a data object, or publish the error message to a JMS topic or queue.
To configure fault handling:
You can select both options to log and write faulted messages.
Table 56-5 Parameters for Write Faulted Messages Options
Option | Parameter | Description |
---|---|---|
To Data Objects | Error Data Object Name | The data object name to write the error message to. |
Error Data Object Field | The field in the data object to write the error message to. Be sure to select a string field that is long enough to accommodate the longest error payload. | |
To JMS Queue/Topic | Initial Context Factory | The initial context factory to be used for looking up specified JMS connection factory or destination. For example: weblogic.jndi.WLInitialContextFactory |
JNDI Service Provider URL | Configuration information for the service provider to use. Used to set javax.naming.Context.PROVIDER_URL property and passed as an argument to initialContext(). An incorrect provider URL is the most common cause of errors. For example: t3://localhost:7001 | |
Topic/Queue Connection factory Name | The name used in a JNDI lookup of a previously created JMS connection factory. For example: jms/QueueConnectionFactory | |
Topic/Queue Name | The Topic/Queue used to post the error message. For example: jms/demoQueue jms/demoTopic | |
JNDI Username | The identity of the principal for authenticating the JNDI service caller. This user must have RMI login permissions. | |
JNDI Password | The identity of the principal for authenticating the JNDI service caller. | |
JMS Username (Optional) JMS Password (Optional) | You can optionally provide this information when a new JMS connection is created by a connection factory. Used to authenticate a connection to a JMS provider for either application-managed or container-managed authentication. |
The following example is the format of a published message:
For example:
Use caution while designing the fault handling when the error message is pushed to a JMS topic or queue. If this topic or queue is in turn configured for another (or the same) EMS, then that EMS pulls the same message again, which fails recursively. Although Oracle BAM has taken care of the message by encoding that message with a CDATA, there might be other issues such as SQL exceptions that might fail recursively.
The Enterprise Message Sources page in Oracle BAM Architect is used to view the EMS definition, and perform operations on it. Select any EMS in the Enterprise Message Sources list to display information about it and work with it.
Use the links displayed at the top of the EMS definition page (the pane on the right side of the browser window) to perform operations on the EMS.
Use the Edit, Copy, and Delete links on an individual EMS definition page to edit, copy, or delete the current EMS definition.
Use the Start and Stop links on an individual EMS definition page to start and stop the EMS, which makes the consumer inactive in Stopped status.
For a durable subscribed EMS, clicking on Stop only makes the consumer inactive. It does not unsubscribe the EMS from a durable subscription. See Section 56.3.3, "How to Subscribe and Unsubscribe Enterprise Message Sources" for more information.
By default the EMS starts when the Oracle BAM Server is started.
Click Edit to change the Start when BAM Server starts property.
Use the Unsubscribe link on an individual EMS definition page to unsubscribe a durable subscribed EMS.
For a durable subscribed EMS, clicking on Stop only makes the consumer inactive with Stopped status.
Clicking on Unsubscribe unsubscribes it and the EMS status displays as Unsubscribed.
For non-durable subscribed EMS, clicking Unsubscribe does not have any effect. A message is displayed that the feature is not applicable in this case.
See Table 56-1 for information about configuring the Durable Subscriber Name property.
Use the Test link on an individual EMS definition page to test the EMS definition against the data source and the mapped data object fields. The test results appear in the Status field in the EMS definition.
The status is reflected in the Status field as Test OK
if the test is done successfully, or Test failed -
exception
are displayed when there is a problem. Also, when the Test link is clicked:
Use the Refresh link on an individual EMS definition page to refresh the EMS definition page. Typically a user refreshes the page to obtain the current status of the EMS.
Use the Metrics link on an individual EMS definition page to monitor selected EMS statistics. The Metrics page displays the Total Messages Received, Total Messages committed in ADC, and Total Messages Lost counters. These values are accumulated since last start or reset.
Total Messages Lost is calculated by subtracting Total Messages committed in ADC from Total Messages Received.
Click Refresh to see these latest counter values.
Click Reset to set counter values to zero.
Oracle WebLogic Server provides support for integrating non-Oracle WebLogic Server (foreign) JMS providers with applications deployed in it, such as Oracle BAM. Foreign JMS providers have their own JMS client and Java Naming and Directory Interface (JNDI) Client APIs. Some configuration must be done to identify these depedencies and make these APIs available on Oracle WebLogic Server so that JMS resources hosted on a remote provider can be looked up by applications deployed in Oracle WebLogic Server.
See "Configuring Foreign Server Resources to Access Third-Party JMS Providers" in Oracle Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server for more information.
Section 56.5.3, "Creating a Foreign JMS Server" in the "Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider" provides a detailed example.
The high level configuration steps are:
Identify the JMS and JNDI client Java Archive (JAR) files of the foreign provider and place them in the DOMAIN_HOME
/lib
directory.
Go to JMS Modules in Oracle WebLogic Server Administration Console, and create a new module.
Inside this module, click New, select Foreign Server, and create a new foreign server by navigating through all of the pages.
Provide appropriate JNDI properties for the remote provider for the foreign server definition.
Inside the Foreign Server link, select the Destination tab and create links for
Local JNDI names configured for these destinations must be used while configuring EMS to consume messages from these destinations.
The whole process of accessing JMS resources hosted on foreign providers is transparent to Oracle BAM Server. After the previous steps have been followed correctly, remote destinations from foreign JMS providers are published on the local WL server JNDI tree, so that applications deployed on the server (like Oracle BAM EMS) can look them up, just like any other collocated Oracle WebLogic Server JMS resource. Oracle WebLogic Server takes care of communicating with the appropriate foreign JMS provider at runtime.
The following are the steps to configure Oracle Streams AQ JMS Provider (AQ-JMS) in Oracle WebLogic Server, and an EMS definition in Oracle BAM Architect.
Open a SQLplus command prompt and do the following:
The scripts do the following things:
MyChannelDemoUser
. EMP
. EMP
. Example 56-1 Contents of usertabletopiccreation.sql
Example 56-2 Contents of createtable.sql
Example 56-3 Contents of createtrigger.sql
You can skip this step if a data source exists. An existing data source can also be reused in this section.
http://
hostname
:7001/console
where hostname is the name of the system where Oracle BAM Server is installed.
BAMAQDataSource
). jdbc/oracle/bamaq
). This name is used to configure the foreign JMS server. ORCL
). localhost
). MyChannelDemoUser
). To create a foreign JMS server:
BAMAQsystemModule
). BAMAQForeignServer
), and click Finish. where datasource_jndi_location
is the JNDI location of your data source (for example, jdbc/oracle/bamaq
).
jms/BAMAQTopicCF
). jms/BAMAQTopic
). If the destination is a topic enter the following value:
jms/BAMAQTopicCF
). jms/BAMAQTopic
). Now you can test the functionality end to end by inserting or updating some records in the EMP database table.
You can use SQLPlus to run SQL queries.
Now you should see the values from the record being inserted into data object.
For example,
This chapter describes how to set up the integration between Oracle Business Activity Monitoring (Oracle BAM) and Oracle Data Integrator (ODI), and create the Oracle BAM targets in ODI. It describes in detail the Oracle BAM knowledge modules for loading from source data stores, integration to target data stores, checking, reverse-engineering, journalizing, and creating services.
This chapter includes the following sections:
Oracle Data Integrator documentation is located on the Oracle Technology Network web site at the following location:
This document assumes the following:
When using Oracle Data Integrator with Oracle BAM, keep the following in mind:
There are two ways to set up the Oracle BAM and Oracle Data Integrator integration.
The first method uses an installation script, typically when Oracle Data Integrator and Oracle BAM are deployed on the same system or the same network file system (Section 57.2.1, "How to Install Integration Files Using the Script").
The second method uses manual steps to configure the properties and copy the required files to the Oracle Data Integrator directories (Section 57.2.2, "How to Manually Install Integration Files"). This method is typically used if you are unable to map the ODI_HOME
drive from the system where Oracle BAM is installed (usually when Oracle Data Integrator and Oracle BAM are installed in different network or file system).
The logs contain information about the installation and the integration messages. See Section 57.2.3, "Using the Logs" for more information.
Recommended Memory Settings for Using Oracle Data Integrator with Oracle BAM
The default memory settings for Oracle Data Integrator are included in the odiparams.sh
script (or odiparams.bat
for windows). The values for the ODI_INIT_HEAP
and ODI_MAX_HEAP
properties default to 32M and 256M. It is recommended that you change these values to 256 M and 1024 M respectively. This enhances Oracle Data Integrator performance. Otherwise, Oracle Data Integrator OutOfMemory
errors may occur, especially when running memory intensive tasks.
Use the installation script when you have Oracle Data Integrator and Oracle BAM installed on the same system or the same network file system.
A log file called utility.log
is created if there is a problem with the installation. The file location is controlled by the utility.logging.properties
file. See Section 57.2.3, "Using the Logs" for more information.
To install the integration files:
ORACLE_HOME
\bam\config
directory and edit the bam_odi_configuration.properties
file. This property identifies the path to the Oracle Data Integrator home directory.
The default value on Linux is /scratch/$user/
ODI_HOME
/oracledi
.
On Microsoft Windows systems, use the short 8-character name convention. Also, use double back-slashes (\\) to denote a directory separator. For example, C:\Program Files\
ODI_HOME
\oracledi
would appear as:
Note: If Oracle BAM Server and Oracle Data Integrator are deployed on two different hosts, then you must map the Oracle Data Integrator drive on the Oracle BAM system, and then set the |
This property identifies the Oracle WebLogic Server folder name on the Oracle BAM system.
The default value is wlserver_10.3
.
bam_odi_configuration.sh
(or bam_odi_configuration.bat
on a Microsoft Windows host) in ORACLE_HOME
\bam\bin
. Note: The configuration script does the following steps:
In an existing working Oracle Data Integrator environment, you need only to copy the Oracle BAM artifacts. To do this run the script with the sh bam_odi_configuration.sh PATCH |
Enter the values as prompted by the script. You must have the Oracle Data Integrator Master and Oracle Data Integrator Work repository account credentials to complete the script execution.
The prompts displayed with [value
] have default values in the brackets. Press Enter to choose the default. If there is no bracketed default value displayed, an input value is required, or the script stops.
The script creates the resources required in the Oracle BAM web applications, sets the Oracle BAM configuration properties in Oracle Data Integrator, generates a Oracle WebLogic Server client Java Archive (JAR) to deploy to the Oracle Data Integrator system, and copies all of the required files into the appropriate Oracle Data Integrator directories.
While the script is running the following message may appear: "Trying to contact Oracle BAM Server. It may take few minutes." If Oracle BAM Server cannot be reached, the script retries the connection multiple times.
Note: If you cannot use the script in your environment, use the instructions in Section 57.2.2, "How to Manually Install Integration Files." |
Note: Every time |
Now you can create an Oracle BAM target in the Oracle Data Integrator Topology Manager. See Section 57.4, "Creating the Oracle BAM Target" for instructions.
Use these steps if Oracle Data Integrator and Oracle BAM Server are installed on hosts in different networks, or for any reason you cannot use the script in your environment.
There are four major steps to this process:
Set JAVA_HOME
The environment variable JAVA_HOME
must be set to Java version 1.6.x in the environment in which an Oracle Data Integrator application is invoked. This situation means that Java version 1.6.x must be installed on the host. To set the environment variable:
On Microsoft Windows, go to the Control Panel, click the System icon. In the System Properties, go to the Advanced tab, and then click the Environment Variables button. In the Environment Variables window, create or modify a variable named JAVA_HOME
for the user (upper box), and set the value to the path for the Java installation (for example: c:\PROGRA~1\Java\jdk1.6.0_12
). Click OK. When you launch Oracle Data Integrator, be sure to do it from a fresh command prompt, to pick up the new environment variable.
On UNIX, follow the procedure for the shell script to create the environment variable JAVA_HOME
. This can be done in a startup script (such as .cshrc in the user's home directory) or on the command line before invoking Oracle Data Integrator.
Create External Data Sources for Oracle Data Integrator
Create the external data sources in Oracle BAM Architect.
Table 57-1 ODI_Master external data source values
Property | Value |
---|---|
External Data Source Name | ODI_Master |
Driver | oracle.jdbc.driver.OracleDriver |
Login | Oracle Data Integrator Master repository account user name |
Password | Oracle Data Integrator Master repository account password |
Connection String | jdbc:oracle:thin:@ip_address:port_number:db_service_name |
Table 57-2 ODI_Work external data source values
Property | Value |
---|---|
External Data Source Name | ODI_Work |
Driver | oracle.jdbc.driver.OracleDriver |
Login | Oracle Data Integrator Work repository account user name |
Password | Oracle Data Integrator Work repository account password |
Connection String | jdbc:oracle:thin:@ip_address:port_number:db_service_name |
Set Oracle Data Integrator Configuration Properties
Modify the ODI_JAVA_OPTIONS
and ODI_ADDITIONAL_CLASSPATH
values in the odiparams.sh(bat)
file located in ODI_HOME
/bin
as shown in Example 57-1 and Example 57-2.
Example 57-1 ODI_JAVA_OPTIONS Modification
On Microsoft Windows:
On Linux:
Example 57-2 ODI_ADDITIONAL_CLASSPATH Modification
Copy files to Oracle Data Integrator Directories
This procedure copies several JAR files, logging properties files, and knowledge modules into the Oracle Data Integrator directories.
ORACLE_HOME
/bam/modules/oracle.bam_11.1.1
to
ODI_HOME
/lib
: oracle-bam-common.jar
oracle-bam-etl.jar
oracle-bam-adc-ejb.jar
ORACLE_HOME
/bam/modules/oracle.bam.thirdparty_11.1.1
to
ODI_HOME
/lib
: commons-codec-1.3.jar
xstream-1.1.3.jar
ORACLE_HOME
/modules/oracle.odl_11.1.1
to
ODI_HOME
/lib
: ojdl.jar
ORACLE_HOME
/modules/oracle.jps_11.1.1
to
ODI_HOME
/lib
: jps-api.jar
ORACLE_HOME
/modules/oracle.dms_11.1.1
to
ODI_HOME
/lib
: dms.jar
ORACLE_HOME
/modules
to
ODI_HOME
/lib
: org.jaxen_1.1.1.jar
ORACLE_HOME
/bam/config
to /lib
: bam.odi.logging.properties
ORACLE_HOME
/bam/ODI/config
toODI_HOME
/lib/config
: BAMODIConfig.xml
ORACLE_HOME
/bam/odi/knowledge_modules
to
ODI_HOME
/impexp
. Generate the Oracle WebLogic Server Client JAR
wlfullclient.jar
file using the Oracle WebLogic Server JarBuilder
tool. See "Using the WebLogic JARBuilder tool" in Oracle Fusion Middleware Programming Stand-alone Clients for Oracle WebLogic Server for instructions. ODI_HOME
/oracledi/lib/weblogic
. wlfullclient.jar
into ODI_HOME
/oracledi/lib/weblogic
. Install Log
Part of the installation process uses Oracle BAM ICommand, and the logs associated with this process are written to files in the same directory where the configuration script is run (ORACLE_HOME
\bam\bin
).
The logging properties for installation logs are configured in the utility.logging.properties
file in the same directory. The default logging level is set to INFO
.
Runtime Log
The bam_odi.logging.properties
file is used to configure logging for messages that occur when Oracle Data Integrator is running with Oracle BAM. This file is located in ODI_HOME/lib
.
Knowledge modules are generic code templates containing the sequence of commands necessary for a data integration pattern. A knowledge module contains the knowledge required by Oracle Data Integrator to perform a specific set of tasks against a specific storage technology. It defines methods related to a given storage technology and it enables processes generation for that technology.
There are different knowledge modules for loading (from the source data store), integration (to target data store), checking, reverse-engineering, journalizing and creating services. All knowledge modules work by generating code to be executed at runtime by knowledge module Interpreter.
There is a set of knowledge modules specific to Oracle BAM functionality within Oracle Data Integrator. These knowledge modules are installed in the ODI_HOME
/oracledi/impexp
directory when the integration files are installed. To use these Oracle BAM-specific knowledge modules, you must import them into the appropriate projects in the Oracle Data Integrator Designer application. Table 57-3 describes the Oracle BAM-specific knowledge modules.
For information about importing knowledge modules, see "Importing a KM" in Oracle Data Integrator User's Guide. Oracle Data Integrator documentation is located on the Oracle Technology Network web site at the following location:
Table 57-3 Oracle BAM Knowledge Modules
Knowledge Module | Description |
---|---|
CKM Get Oracle BAM Metadata | A check knowledge module that is used internally before integration knowledge module steps. This check knowledge module is the default knowledge module in Oracle BAM technology, and it is automatically acquired by Oracle Data Integrator. This check knowledge module creates two arrays which are later used by Oracle BAM-specific integration knowledge modules in the same Java session. This knowledge module has no options. |
IKM SQL to Oracle BAM (delete) | An integration knowledge module that can delete rows from Oracle BAM data objects by sending matching key column values. It has the following options: COMMIT_SIZE BATCH_SIZE DATETIME_PATTERN KEY_CONDITION LAST_BAM_TASK LOCALE_COUNTRY LOCALE_LANGUAGE LOCALE_VARIANT |
IKM SQL to Oracle BAM (insert) | An integration knowledge module that can insert rows to Oracle BAM data objects from heterogeneous data sources. It has the following options: BATCH_SIZE COMMIT_SIZE CREATE_TARG_TABLE DATETIME_PATTERN LAST_BAM_TASK LOCALE_COUNTRY LOCALE_LANGUAGE LOCALE_VARIANT |
IKM SQL to Oracle BAM (looksert natural) | An integration knowledge module that can insert rows into Oracle BAM data objects from heterogeneous data sources. It differs from IKM SQL to Oracle BAM (insert) by also inserting new entries in dimension tables (that is, the data object to which the lookup column refers) if it does not yet exist. Looksert integration knowledge modules do an insert into an Oracle BAM target based on a lookup field. Typically, this is used to load a fact table in a star schema. (A star schema is characterized by one or more very large fact tables that contain the primary information in the data warehouse, and some much smaller dimension tables (or lookup tables), each of which contains information about the entries for a particular attribute in the fact table.) This integration knowledge module is provided for better performance. It has the following options: BATCH_SIZE COMMIT_SIZE DATETIME_PATTERN LAST_BAM_TASK LOCALE_COUNTRY LOCALE_LANGUAGE LOCALE_VARIANT NON_KEY_MATCHING |
IKM SQL to Oracle BAM (looksert surrogate) | An integration knowledge module that can insert rows into Oracle BAM data objects from heterogeneous data sources. It is similar to IKM SQL to Oracle BAM (looksert natural) and differs in using a surrogate key instead of a natural key between a fact data object and dimension object. Looksert integration knowledge modules do an insert into an Oracle BAM data object based on a lookup field. Typically, this used to load a fact table in a star schema. (A star schema is characterized by one or more very large fact tables that contain the primary information in the data warehouse, and some much smaller dimension tables (or lookup tables), each of which contains information about the entries for a particular attribute in the fact table.) If the value for a lookup field does not exist in the relevant dimension table, the value is automatically inserted. This integration knowledge module must be used with LKM Get Source Metadata and CKM Get Oracle BAM Metadata. This knowledge module has the following options: BATCH_SIZE COMMIT_SIZE DATETIME_PATTERN LAST_BAM_TASK LOCALE_COUNTRY LOCALE_LANGUAGE LOCALE_VARIANT NON_KEY_MATCHING |
IKM SQL to Oracle BAM (update) | An integration knowledge module that can update rows in Oracle BAM data objects from heterogeneous data sources. It has the following options: BATCH_SIZE COMMIT_SIZE DATETIME_PATTERN LAST_BAM_TASK LOCALE_COUNTRY LOCALE_LANGUAGE LOCALE_VARIANT |
IKM SQL to Oracle BAM (upsert) | An integration knowledge module that can merge (upsert) rows (that is, update a data object if matching row exists or insert data object if a new row) to Oracle BAM data objects from heterogeneous data sources. It has the following options: BATCH_SIZE COMMIT_SIZE DATETIME_PATTERN LAST_BAM_TASK LOCALE_COUNTRY LOCALE_LANGUAGE LOCALE_VARIANT Note: During execution, the number of upsert operations are reported in the No. of Updates field, because the Oracle Data Integrator Operator user interface does not have a No. of Upserts field. Furthermore, the count for all of the inserts and updates to the Oracle BAM database are reported in the Updates field, and are not reported separately. |
LKM Get Source Metadata | A loading knowledge module. This is not a traditional loading knowledge module because it does not load any data from the source to staging area. Instead it simply gathers the metadata that is required by the integration knowledge module IKM SQL to Oracle BAM (looksert surrogate). IKM ORACLE to BAM (looksert surrogate) performs the task of loading directly from a SQL source into the Oracle BAM target. In doing so, it uses the metadata provided by LKM Get Source Metadata. This knowledge module has no options. |
LKM Oracle BAM to SQL | A loading knowledge module that allows client applications to load data from Oracle BAM. If using an Oracle BAM loading knowledge module as a source in an interface (for example LKM Oracle BAM to SQL), the user must change the default execute on button for each mapped field in the target to staging area. If left at the default source, erroneous results may occur. Technologies that do not allow for a staging area, such as Oracle BAM, should not have transformations performed on them. It has the following options: DELETE_TEMPORARY_OBJECTS DROP_PURGE LAST_BAM_TASK |
RKM Oracle BAM | A customized reverse engineering knowledge module for Oracle BAM. It has the following options: GET_COLUMNS GET_FOREIGN_KEYS GET_INDEXES GET_PRIMARY_KEYS LOG_FILE_NAME USE_LOG |
Table 57-4 describes the parameters used in Oracle BAM knowledge modules.
Table 57-4 Oracle BAM Knowledge Module Parameters
Parameter | Description |
---|---|
BATCH_SIZE | The maximum number of records which are sent as a batch across from the client to the server. The batch size that is used to send batches from the client to the server. As larger hosts are used with bigger Java Virtual Machine sizes, this parameter can be increased to improve performance. Default value: 1024 |
COMMIT_SIZE | The maximum number of records in a single transaction. The default, 0, means commit all input records in one transaction. A positive, nonzero, value denotes that the maximum number of records to be committed at a time.Negative values for this option are invalid. Default value: 0 |
CREATE_TARG_TABLE | Select this option to create the target data object on Oracle BAM Server. |
DATETIME_PATTERN | This option and Locale specifications (for example, LOCALE_LANGUAGE, LOCALE_COUNTRY, and LOCALE_VARIANT) are used to construct a Java SimpleDateFormat object which is used in parsing the date and time data strings. See Section 56.2.2, "How to Configure DateTime Specification" for information about SimpleDateFormat. |
DELETE_TEMPORARY_OBJECTS | Set this option to |
DROP_PURGE | Set this option to |
GET_COLUMNS | Set to |
GET_FOREIGN_KEYS | Set to |
GET_INDEXES | Set to |
GET_PRIMARY_KEYS | Set to |
KEY_CONDITION | Set this option to match one or more corresponding rows from source to target. Use the following operators: *, =, !=, <, <=, >, >=. The match value (that is, the When the * operator is chosen as the KEY_CONDITION option value, all rows are deleted from the target data store, regardless of its key field's mapping value. |
LAST_BAM_TASK | Use this option to manage the life cycle of the Oracle BAM JDBC connection. If this task is the last Oracle BAM task in the work flow, it closes the JDBC connection; otherwise, it leaves the connection open. |
LOCALE_COUNTRY | The country option is a valid ISO Country Code. These codes are the upper-case, two-letter codes as defined by ISO-3166. This option plus |
LOCALE_LANGUAGE | The language option is a valid ISO Language Code. These codes are the lower-case, two-letter codes as defined by ISO-639. This option plus |
LOCALE_VARIANT | The variant option is a vendor or browser-specific code. For example, use This option plus LOCALE_LANGUAGE and LOCALE_COUNTRY are used to construct a Java Locale object. |
LOG_FILE_NAME | Specify when |
NON_KEY_MATCHING | Determines if the incoming non-key column values are to be compared to the non-key column values in the dimension table. If If |
USE_LOG | Set to |
This section details the steps for creating an Oracle BAM target using the Oracle Data Integrator Topology Manager.
For more information about using Oracle Data Integrator, see the Oracle Data Integrator documentation located on the Oracle Technology Network web site at:
To create an Oracle BAM Target in Oracle Data Integrator:
instance1:
hostname
:
port_number
The instance1
string can be any string.
The hostname
value must be the same as the ServerName
property value in the BAMCommonConfig.xml
file, and the port_number
value must be the same as the ServerPort
property value in the BAMCommonConfig.xml
file.
%OBJECT
. Global
. For that row, the Logical Schema value is initially <Undefined>
. You must select the <Undefined>
text and replace it with the display name for Oracle BAM.
BAM_TARGET
as the name of a new Logical Schema. Oracle Data Integrator automatically creates the logical schema. You must be able to see the Oracle BAM schema in Oracle Data Integrator before you can do any operations on a particular Oracle BAM data object. To accomplish this goal, the Oracle BAM schema (that is, all of the data objects in Oracle BAM) must be reverse engineered using the RKM Oracle BAM knowledge module described in Table 57-3.
To reverse engineer the Oracle BAM schema:
Note: Because this reverse engineering is not done using a JDBC driver, it is not possible to right-click a data store and view its data. |
You can monitor the reverse engineering process by viewing its progress in Oracle Data Integrator Operator.
The reverse engineering produces a reverse.log
file. The name and location of the log file can be changed in the LOG_FILE_NAME
option.
Any of the knowledge module options can be changed on this tab (they are described in Table 57-4).
When you install the Oracle BAM integration files for Oracle Data Integrator with a correctly populated properties file, you are not required to do any other configuration in Oracle BAM. Two external data source (EDS) definitions are created during the installation process, and they are populated with the correct values to connect Oracle BAM Server with the ODI_Master and ODI_Work repositories in Oracle Data Integrator. These Oracle Data Integrator-specific EDS definitions must never be deleted.
There are cases in which you must update the Oracle Data Integrator EDS definitions:
To update the Oracle Data Integrator external data source definitions:
Figure 57-1 Opening External Data Source Page in Oracle BAM Architect
Figure 57-2 Editing the ODI_Master External Data Source
Alerts created in Oracle BAM can launch Oracle Data Integrator scenarios when specified conditions are met. See Section F.3.10, "Run an Oracle Data Integrator Scenario" for more information.
There are several ways to run Oracle Data Integrator scenarios in which Oracle BAM functionality has been embedded. This section provides information about configuring Oracle BAM if you run the Oracle Data Integrator agent as a daemon or a Microsoft Windows Service.
ORACLE_HOME\bam\ODI\tools\wrapper\conf
directory. snpsagent.conf.bam
and readme.txt
) to the host on which the Oracle Data Integrator agent runs as a daemon or service, in the ODI_HOME\tools\wrapper\conf
directory. readme.txt
file in that directory to configure the Oracle Data Integrator agent to run with Oracle BAM. The agent.bat
(or agent.sh
) file picks up the same environment variables as do the other Oracle Data Integrator applications (such as Designer, Topology, Operator). As long as the Oracle Data Integrator integration installation has been performed on the Oracle Data Integrator directory in which the agent
script runs, no additional steps are needed to run the Oracle Data Integrator agent as a standalone application or as a daemon or service.
This chapter describes how to create and manage External Data Sources (EDS) in Oracle Business Activity Monitoring (Oracle BAM) Architect. It describes how to create a data object using an EDS and how to configure an EDS definition to work with Oracle Business Intelligence Enterprise Edition.
This chapter contains the following topics:
An External Data Source (EDS) is a connection to an external database. An EDS usually contains data that does not change very much or data that is too large to bring into the Oracle BAM Active Data Cache (ADC).
The EDS definition in Oracle BAM acts as a pointer to the external data. For example, looking up the customer name based on a customer code in a customer management system. The customer name-code mapping is fairly static so that bringing that external data into Oracle BAM is not required.
EDS definitions can be exported and imported using ICommand, but you cannot import or edit the contents using ICommand or Oracle BAM Architect.
Passwords are entered in clear text. You cannot use DSNs (data source names).
To view the existing EDS:
Figure 58-1 Oracle BAM Architect Function List
Oracle BAM external data sources are created, edited, and deleted using Oracle BAM Architect.
To define an EDS:
Caution: A single or double quotation mark in an Oracle BAM object name, such as a data object, report, or enterprise message source name, causes a runtime error. Do not include single or double quotation marks in an Oracle BAM object name. |
oracle.jdbc.driver.OracleDriver
for Oracle. If you install the integration files for Oracle BAM and Oracle Data Integrator, two EDS definitions are created in Oracle BAM Architect: ODI_Master and ODI_Work. These EDS definitions cannot be deleted from Oracle BAM Architect, and their configuration should not be changed unless you are updating your Oracle Data Integrator host.
To edit an EDS:
The EDS properties display.
Note: If the EDS definitions ODI_Master and ODI_Work appear in Oracle BAM Architect, do not delete them. These EDS definitions are used by the integration between Oracle BAM and Oracle Data Integrator |
To delete an EDS:
The data source properties display.
The data source is deleted.
This example uses the sample SCOTT user account and the EMP table in the Oracle database. You may need to unlock the account before proceeding with this example.
Step 1: Create an EDS
myDataSource
in the External Data Source Name field. My Example External Data Source
in the Description field. Microsoft ODBC for Oracle
in the Driver field. scott
in the Login field and tiger in the Password field. This sample account comes with your Oracle database installation. If you do not have this sample account you can create a new account and use it for this example.
server=
net_service_name
in the Connection string/URL. This entry must be a Net Service Name defined in your tnsnames.ora file.
The EDS information is displayed on the screen.
Step 2: Create a Data Object using the EDS
Employees
in the Name for new Data Object field. The data object appears in the top level Data Objects folder.
Oracle Database Sample EMP Table
in the Description field. emp
in the External Table Name field. Table 58-1 Fields in Employees Data Object
Field | External Field Name | Field Type |
---|---|---|
ename | ename | String |
empno | empno | Integer |
job | job | String |
mgr | mgr | Integer |
hiredate | hiredate | DateTime |
sal | sal | Decimal |
comm | comm | Decimal |
deptno | deptno | Integer |
Keep default settings for field attributes not specified in the table.
The data in the Employees data object should match the data in the Oracle database sample EMP table.
The following are the steps to configure an EDS definition in Oracle BAM Architect to work with Oracle Business Intelligence Enterprise Edition.
bijdbc.jar
file and add it to the Oracle WebLogic Server class path. Add the JAR to WEBLOGIC_CLASSPATH
in
Driver: oracle.bi.jdbc.AnaJdbcDriver
Login: User name for the Oracle Business Intelligence Server
Password: Password for the Oracle Business Intelligence Server
Connection String/URL:
jdbc:oraclebi://
host_name
:port_number
/catalog=
catalog_name
;
For example: jdbc:oraclebi://bihost:9703/catalog=Paint;
See "Step 1: Create an EDS" for an example EDS configuration.
This chapter describes how to use Oracle Business Activity Monitoring (Oracle BAM) web services such as DataObjectOperations, DataObjectDefinition, and ManualRuleFire to build applications that publish data to the Oracle BAM Server for use in real-time charts and dashboards.
This chapter includes the following sections:
The Oracle BAM web services allow users to build applications that publish data to the Oracle BAM Server for use in real-time charts and dashboards. Any client that can talk to standard web services can use these APIs to publish data to Oracle BAM. The Oracle BAM web services interfaces allow integration of Oracle BAM with other components such as Oracle BPEL Process Manager and Oracle Mediator, and they facilitate SOA composite application development.
Note: This option cannot be used for complex processing of messages, performing lookups in Oracle BAM Active Data Cache to augment the data, or initial bulk uploads to set up a star schema. |
The data objects in the Oracle BAM Server are available using the Oracle BAM web services. There are several other meta objects that are available using the ICommand web service.
External web services can be called by an Oracle BAM alert rule. See Section 60.2, "Creating Alert Rules" for more information.
Oracle BAM provides the following static untyped web service APIs:
These services can be discovered within an Oracle BAM Server using a WSIL interface.
The DataObjectOperations web service allows users to manipulate the Data Objects in the Oracle BAM Server by inserting, updating, deleting and upserting rows into the Data Objects.
The following operations are supported by the DataObjectOperations web service interfaces.
The request and response messages vary depending on the operation used. See Section E.1, "DataObjectOperations10131," Section E.2, "DataObjectOperationsByName," and Section E.3, "DataObjectOperationsByID" for information about using the operations supported by each of the web services.
To use the DataObjectOperations web service, create a web service proxy in your application in Oracle JDeveloper.
The Web Services Description Language (WSDL) files for the DataObjectOperations web services are available at the following URLs on the system where Oracle BAM web services are installed.
Note: The default port for Oracle BAM web services on the Administration Server is 7001. On managed servers the default port number is 9001. |
When the web service proxy is created, you see it in the Application Navigator under the Application Sources folder in your project as shown in Figure 59-1.
Figure 59-1 DataObjectOperations Web service proxy in Application Sources
The DataObjectDefinition web service allows a web service client to create, update, delete, and get data object definitions.
The following operations are supported by DataObjectDefinition web service.
The request and response messages vary depending on the operation used. See Section E.4, "DataObjectDefinition Operations" for more information.
To use the DataObjectDefinition web service you create a web service proxy in your application in Oracle JDeveloper.
The WSDL file for the DataObjectDefinition web service is available at the following URL on the system where Oracle BAM web services are installed.
Note: The default port for Oracle BAM web services on the Administration Server is 7001. On managed servers the default port number is 9001. |
When the web service proxy is created, you see it in the Application Navigator under the Application Sources folder in your project as shown in Figure 59-2.
Figure 59-2 DataObjectDefinition Web service proxy in Application Sources
The ManualRuleFire web service allows users to launch rules in the Oracle BAM Server. FireRuleByName is the available operation. See Section E.5, "ManualRuleFire Operations" for details.
To use the ManualRuleFire web service, you create a web service proxy in your application in Oracle JDeveloper.
The WSDL file for the ManualRuleFire web service is available at the following URL on the system where Oracle BAM web services are installed.
Note: The default port for Oracle BAM web services on the Administration Server is 7001. On managed servers the default port number is 9001. |
When the web service proxy is created, you see it in the Application Navigator under the Application Sources folder in your project.
ICommand is available as a web service for application developers who want to interact with ICommand features over HTTP.
The ICommand web service includes most of the same features as the command-line utility. For example, you can use it to:
The key differences revolve around the fact that the web service cannot access files on the remote system. Therefore, you cannot pass in a file name when using the import
command or the export
command.
Instead, you must pass in the import
content inline. Similarly, you receive the export
content inline.
Commands other than import
and export
generally work the same as with the command-line utility.
For more information about the commands and parameters provided by ICommand, see Appendix G, "Oracle BAM ICommand Operations and File Formats."
The ICommand web service has a single method, called Batch
. It takes a single input parameter, which is a string containing a set of commands in the syntax described in Section G.3, "Format of Command File." The return value is a string containing the results of executing each command, in the log syntax described in Section G.4, "Format of Log File."
The WSDL file for the ICommand web service is available on the system where Report Server has been installed. It is available at the following URL:
Note: The default port for Oracle BAM web services on the Administration Server is 7001. On managed servers the default port number is 9001. |
Example 59-1 Deleting a Data Object (Input)
This chapter describes how to create and use alerts in Oracle Business Activity Monitoring (Oracle BAM). It describes how to define rules that specify the events and conditions under which an alert fires, include messages with alert rules, manage nested rules with dependent rules, and create custom actions for rules using external actions.
This chapter contains the following topics:
Alerts are launched by a set of specified events and conditions, known as a rule. Alerts can be launched by data changing in a report or can send a report to users daily, hourly, or at set intervals. Events in an alert rule can be an amount of time, a specific time, or a change in a specific report. Conditions restrict the alert rule to an event occurring between two specific times or dates. As a result of events and conditions, reports can be sent to users through email.
Alerts can be created and viewed in both the Oracle BAM Architect and Oracle BAM Active Studio web applications: In Oracle BAM Architect, select Alerts from the function list as shown in Figure 60-1. In Oracle BAM Active Studio, select the Alerts tab as shown in Figure 60-2.
Figure 60-1 Oracle BAM Architect Function List
Figure 60-2 Oracle BAM Active Studio Function Tabs
In Oracle BAM Architect, alerts are displayed in a table, which may include an Alert Owner column that shows the users who created the alerts, as shown in Figure 60-3. The Alert Owner column displays only if the current user is a member of the administrative role (that is, an admin user). Admin users are able to see alerts they have created and alerts created by other users (admin and non-admin).
Figure 60-3 Alerts Table with Alert Owner Column
In Oracle BAM Active Studio, alerts are shown in the Alert Rules table (Figure 60-4), which includes a Last Launched column that indicates the last time the alert rule was fired. As in Oracle BAM Architect, each alert name is accompanied by an icon indicating its status as described in Table 60-1, and non-admin users only see the alerts they have created. If the current user is an admin user, the table displays all alerts and includes the Alert Owner column that shows the users who created the alerts.
Figure 60-4 Alert Rules Table in Oracle BAM Active Studio
Table 60-1 Alert Rule Icons
Icon | Description |
---|---|
| Normal indicates that the alert is active and fires under the conditions specified in the rule. |
| Invalid indicates that an alert has become orphaned or broken due to some error. This icon is displayed when an alert cannot be loaded properly into the Event Engine. The rule might require correction. For example, when a report is deleted and an alert based on this report still exists, that alert cannot be loaded properly. This icon appears only when rules are loaded into the Event Engine (on restarts). Alerts displayed with this icon do not fire again until they are edited and corrected. |
| Expired means that the alert does not fire again. This icon is seen in time based alerts which fire only one time, after the alert has fired. However, these alerts can be edited and reused, resetting the state to Normal. |
Inactive and expired alerts behave differently. An alert can be deactivated only if it is running. This behavior is a benefit to users who do not want to receive alerts for some time interval, but want to retain the ability to activate the alert at a convenient time. Alerts that are not active, but still valid (displayed with the Normal icon) can be activated again.
Those alerts that are expired have run for the specified condition and do not run again. They cannot be activated to run again. However, to reuse an expired alert, double click the alert, update the definition to make it a valid rule, and save the alert rule definition. The alert is reloaded and is ready to fire again.
Note: If any changes to the time or time zone are made on the Oracle BAM Server system, the Oracle BAM Server application must be restarted or time-based alerts misfire. |
A rule specifies the events and conditions under which an alert fires.
Note: An alert fires only if its triggering event conditions are met from the point in time the alert is defined (or reenabled) and forward. An alert does not fire if its conditions were met before it was defined, or while it was disabled. |
The procedure to create Oracle BAM alert rules in Oracle BAM Architect and Oracle BAM Active Studio is the same.
To create a rule:
In Oracle BAM Active Studio, select the Alerts tab.
The Rule Creation and Edit dialog opens.
Caution: A single or double quotation mark in an Oracle BAM object name, such as a data object, report, or enterprise message source name, causes a runtime error. Do not include single or double quotation marks in an Oracle BAM object name. |
See Section F.1, "Events" for descriptions of each event.
See Section F.2, "Conditions" for descriptions of each condition.
For example, click select report, and choose a report in the dialog box that opens. Other values you define include user names receiving reports, dates and times, time intervals, and filter expressions for a specific field. To continue adding conditions or actions, click the last line in the expression and then select another condition or action.
You can click the Back and Next buttons to go between the events page and the page containing actions and conditions, and make changes to those parts of the rule expression you have constructed.
The default frequency constraint for alerts is five seconds. Type a number and select a time measurement such as seconds, minutes, or hours, and click OK. To turn off the frequency constraint, uncheck the Constraint Enabled checkbox. For more information about frequency constraint see Section F.4, "Frequency Constraint."
The alert rule is added to list and is active.
When you create an alert rule, it is automatically active. If you want an alert to be temporarily inactive but you do not want to delete it, you can turn it off by deselecting the Activate checkbox.
Administrative role users can change the activity status of their own alerts and alerts created by other admin and non-admin users.
To change the activity status of an alert rule:
A checked box means the alert rule is active.
An unchecked box means the alert rule is inactive.
Selecting the Activate checkbox does not cause an alert to launch, it only enables the rule so that if the specified event occurs, the alert launches.
An exclamation mark on the alert icon indicates it has launched and is not valid again, or because items that it references are missing and it cannot launch.
When you modify alert rules created from a template, you can add new lines and select conditions and actions the same as when you build alert rules without templates.
If an administrative role user modifies an alert created by another user, the alert is only saved in the name of the original alert owner.
To modify an alert rule:
The Rule Creation and Edit dialog box opens.
Administrative role users can delete their own alerts and alerts created by other admin and non-admin users.
To delete an alert:
A dialog box opens to confirm alert deletion.
The alert is deleted.
Administrative role users are able to activate or deactivate, edit, and delete all alerts, that is, alerts that they own and alerts created by other admin users and non-admin users.
When admin users edit a non-admin user's alert that involves selecting a report, they are able to see and select only the reports of the alert owner (and not their own reports) in the Select Report dialog. In Oracle BAM Architect and Oracle BAM Active Studio, the option to select a report appears when editing an alert that involves any of the following events, conditions or actions:
For example, when admin users edit a non-admin user's alert that uses the When a report changes event, they are able to see and select only the reports of the alert owner (and not their own reports) in the Select Report dialog (Figure 60-5). Similarly, when editing a message in the Alert Message - WebPage dialog, admin users are able to add a link to a report of the alert owner only, to send in the message body (Figure 60-6).
Figure 60-6 Alert Message - WebPage Dialog
Also, when editing a non-admin user's alert in the Rule Creation and Edit dialog, admin users are not able to add the "run as <user name>" option and other admin-specific options in the Rule Expression box (Figure 60-7).
Figure 60-7 Rule Creation and Edit Dialog
Alert rule templates are a convenient preselected group of events and conditions based on some common use cases.
The procedure to create Oracle BAM alert rules from templates in Oracle BAM Architect and Oracle BAM Active Studio is the same.
To create an alert rule from a template:
The Rule Creation and Edit dialog opens.
The alert rule is added to list and is active.
You can create alert rules that send messages. The messages can contain information such as report names, links to reports, and user names. Messages can also include variables that are set when the alert is launched, such as the time that an event occurred and the data that launched the event. To use data variables, the event must be based on data.
You can create alert rules that send messages. The messages can contain information such as report names, links to reports, and user names. Messages can also include variables that are set when the alert is launched, such as the time that an event occurred and the data that launched the event. To use data variables, the event must be based on data.
To create an alert rule that includes a message:
The Alert Message dialog box opens.
Special fields are listed in the box in the lower left corner of the Alert Message dialog box. The special fields listed change when reports are selected on the right side of the dialog box.
To insert a special field into the message:
You can insert multiple values of the same type, for example, multiple links to different reports.
You can create nested rules with many actions and chained rules that launch other rules.
You can chain rules by creating two types of rules:
To create dependent rules:
The Select Dependent Rule dialog box opens.
To handle a failing action, add the action Launch rule if an action fails. For example, if a rule is supposed to send a message, and for some reason the message does not send, you could launch another rule to notify you.
The Alerts History table is available in Oracle BAM Active Studio. It provides a list of alert rules triggered and their status messages.
You can view a recent history of alert activity on the Alerts tab in Oracle BAM Active Studio. The Alerts History list displays the 25 most recent alerts launched.
In the Alerts History list, you can view the names of recently launched alerts, any messages associated with the alerts, the users who created the alerts, and the time and date that the alert rules were triggered.
In the case of alert rules that send e-mail, the Alerts History list only displays the alert if the user currently logged in is an alert e-mail recipient. It is not listed in the Alerts History list--even if the user is the creator of the alert--if the user is not a recipient of the alert.
However, if an alert fails to send a message to an alert recipient, the message is logged with the alert owner's name, so that the owner can see the error message in the Alerts History pane and take corrective action if necessary. A non-existing name cannot be logged as the alert recipient's name.
Alerts History Messages
The Message column of the Alerts History list provides information about the success or failure of alert delivery. The successful alert is shown with a green checkmark next to the message. The unsuccessful alert is displayed with a red x icon and a message indicating how the alert failed at the time of loading or processing. Click the x icon for additional information about the error.
If a report is deleted that is referenced by an alert, there is no warning to the user. When the alert is triggered, the error message Error
occurred
while
sending
e-mail
is given with no specific error regarding broken references to the deleted report. When deleting reports, it is important to verify that the report is not referenced by an alert, or this error occurs.
When many alerts are actively launching and the alerts history list becomes long, you might want to clear your list.
To clear the alerts history list:
A message is displayed to confirm to clear the alerts history list.
The alerts history list is deleted. New alerts launched after clearing appear in the alerts history list.
You can use the alerts web service to manually launch alerts. For more information, refer to:
You define the rule name using the format:
Note: Oracle BAM Active Studio URLs used in alerts and report links contain a virtual directory using the product build number for caching and performance purposes. This directory must be included in links, and it is not recommended to edit these links. Links created with a previous version of Oracle BAM do not work after a product upgrade. The alert requires editing or the report shortcut must be copied again. |
Call an External Action is used to develop a custom action. For users whose requirements cannot be fulfilled by the actions provided by Oracle BAM, this feature is used to extend the action set.
External actional actions are not seen in the Oracle BAM Alerts user interface by default. They must be registered with Oracle BAM before they are seen in the user interface.
To do this task, the EventEngine
interface must be implemented and you must develop an action around it. That means you must write Java code, bundle the compiled code in a JAR file. Then register it in Oracle BAM Architect as an action in the System/Alerts/External Actions data object.
Call an External Action action is not required to invoke Web services. The action was used in this way in pre 11g releases, but was replaced by Call a Web Service action in Oracle BAM 11g. Call a Web Service action has a more sophisticated Web services client, which is dynamic and can invoke any service by reading WSDLs at runtime.
Alerts from Oracle BAM can be sent to e-mail accounts that are unknown to Oracle BAM if a property is set in the Oracle BAM common configuration file.
This feature is available only for the actions Send a report via email and Send a message via email.
To send alerts to external e-mail accounts:
AlertActionAllowExternalEmail
to true in the BAMCommonConfig.xml
configuration file. See "Configuring Advanced Properties" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for information about editing Oracle BAM configuration files.
This chapter describes how to use the ICommand command-line utility to perform operations on items in the Active Data Cache, such as exporting, importing, and renaming. It also describes how to run ICommand from a remote system and execute the commands on a server located remotely.
This chapter includes the following sections:
ICommand is a command-line utility (and web service) that provides a set of commands that perform various operations on items in the Active Data Cache. You can use ICommand to export, import, rename, clear, and delete items from Active Data Cache. The commands can be contained in an input XML file, or a single command can be entered on the command line. Informational and error messages may be output to either the command window or to an XML file.
For more information about using the ICommand web service, see Section 59.5, "Using the ICommand Web Service."
For information about individual commands and their parameters see Appendix G, "Oracle BAM ICommand Operations and File Formats."
ICommand can be executed using the ORACLE_HOME
\bam\bin\icommand.bat
file on the Microsoft Windows platform and ORACLE_HOME
\bam\bin\icommand.sh
shell script on UNIX platforms.
Just entering icommand
on the command line provides the user with a summary of the ICommand operations and parameters.
Before attempting to execute ICommand, the JAVA_HOME
environment variable must be set to point to the root directory of the supported version of Java Development Kit (see the Oracle BAM support matrix on Oracle Technology Network web site for supported JDK versions).
Note: When Oracle BAM is installed, ICommand looks for the Oracle BAM Server on port 9001 by default. If the Oracle BAM Server port number is changed from the default during the setup and configuration of Oracle BAM, then the user must manually change the port number from 9001 to the new port number in the file The property to change is
The |
The basic structure of the ICommand command line entry is as follows:
All parameters given on the command line are in the following form:
The parameter
portion is not case sensitive. If the value
portion contains spaces or other special characters, it must be enclosed in double quotation marks. For example
It is required to use quotation marks around report names and file names that contain spaces and other special characters.
For some parameters, the value
may be omitted. See Section G.2, "Detailed Operation Descriptions," for information about individual parameter values.
ICommand requires users to provide security credentials when running operations. If no security credentials have been specified in the configuration file, ICommand securely prompts for a user name and password.
To use default credentials, add the ICommand_Default_User_Name
and ICommand_Default_Password
properties to the WLS_HOME
/user_projects/domains/base_domain/config/fmwconfig/servers/bam_server1/applications/oracle-bam_11.1.1/config/
BAMICommandConfig.xml
file. For example:
However, command line entries always override the properties specified in the configuration file.
The user name and password for running ICommand operations can come from the configuration file, command line prompts, or command line options as follows:
-username
parameter is not used in the command line), then the ICommand_Default_User_Name
and ICommand_Default_Password
values in the configuration file are used. On the command line, commands are specified by the value of the cmd
parameter. Options for the command are specified by additional parameters. For example
In an XML command file, commands are specified by the XML tag. Options for the command are given as XML attribute values of the command tag, in the form parametername=
value
.
Command names and parameter values (except for Active Data Cache item names) are not case sensitive.
For information about individual commands and their parameters see Appendix G, "Oracle BAM ICommand Operations and File Formats."
Whenever an object name is specified in a command, the following rules apply.
General rules
When specified on a command line, if the name contains spaces or characters that have special meaning to DOS or UNIX, the name must be quoted according to the rules for command lines.
When specified in an XML command file, if the name contains characters that have special meaning within XML, the standard XML escaping must be used.
Data Objects
If the Data Object is not at the root, the full path name must be given, as in the following example:
If the Data Object is at the root, the leading slash (/) is optional. The following two examples are equivalent:
Data Object Folders
To specify a folder in Data Objects you must include the prefix /public/DataObject/
at the beginning of the path to the folder.
Reports and Report Folders
The full path name plus the appropriate prefix must be specified as in the following examples.
For shared reports the /public/Report/
prefix must be included as shown here:
For private reports the /private:
user_name
/Report/
prefix must be included:
The /private:
user_name
/
part of the prefix may be omitted if the user running ICommand is the user that owns the report.
The path information without the public
or private
prefix is saved in the export file.
Similarly, a report folder can be specified using the appropriate prefix.
Alert Rules
Either the name of the Alert, or the full name of the Alert may be specified. The following two examples are equivalent for Alerts if the user running ICommand is the user that owns Alert1:
If the user running ICommand is not the owner of Alert1, then only the second form may be used.
All other object types
Specify the full name of the object.
Instead of creating a separate command line for each Active Data Cache object type, such as Dataobject, Folder, Report, and Rule, on which to execute a particular command, ICommand enables you to pass parameter values to several object types in the same command line.
For example:
In this example, while exporting all of the objects in the system, the command passes owner = 1 to the report, rule, and folder Active Data Cache object types. The command also passes permissions = 1 to the dataobject and folder object types. The comma (,) separates the object types and the parameter is listed after a colon (:).
Supplying multiple values in the example single command line gives the same results as the following three commands:
The following parameters can appear only on the command line:
Cmd
Optional parameter that specifies a single command to be executed. Any parameters needed for the command must also be on the command line.
The Cmdfile
and cmd
parameters are mutually exclusive. Exactly one of them must be present.
Cmdfile
Optional parameter that specifies the name of the file that contains commands to be processed. Because this is an XML file, it would usually have the XML extension, although that is not required.
The Cmdfile
and cmd
parameters are mutually exclusive. Exactly one of them must be present.
Debug
Optional parameter that indicates whether extra debugging information is to be output if there is an error. Any value other than 0
(zero), or the absence of any value, indicates that debugging information is to be output. If this parameter is not present, no debugging information is output.
Domain
Optional parameter that specifies the domain name to use to login to the Active Data Cache (the name of the computer on which the Active Data Cache server is running).
If this parameter is omitted, main
is used, which means the server information is obtained from the ServerName
property in the ICommand.exe.config
file.
If the reserved value ADCInProcServer
is used, then ICommand directly accesses the Active Data Cache database (which must be local on the same system on which ICommand is running) rather than contacting the Active Data Cache server. This option is necessary only when the Active Data Cache server is not running; otherwise corruption of the database could occur. The information about the location and structure of the Active Data Cache database is obtained from various keys in the ICommand.exe.config file.
Logfile
Optional parameter that specifies the name of the file to which results and errors are logged. If the file does not exist, it is created. If the file does exist, any contents are overwritten. Because this is an XML file, it would usually have the XML extension, although that is not required.
If this parameter is not present, results and errors are output to the console.
See Section G.4, "Format of Log File" for more information about the log file format.
Logmode
Optional parameter that indicates whether an existing log file is to be overwritten or appended to. The possible values for this parameter are append
or overwrite
. In either case, if the log file does not exist it is created.
If this parameter is not present, overwrite
is assumed.
Because it is XML that is being added to the log file, if the append
option is used the XML produced may not be strictly legal, as there is no top level root tag in the XML produced by successive appends (ICommand appends the same tag each time it is run). It is left up to the user to handle this.
Username
Optional parameter that specifies the username that the command should run as. There is no password parameter.
ICommand requires users to specify security credentials when running commands. ICommand securely prompts for a user name and password. If the -username
parameter is specified on the command line, ICommand prompts the user for the password only.
You can run ICommand from a remote system (where Oracle BAM is installed) and execute the commands on a server located remotely. To run ICommand remotely, add the properties ServerName and ServerPort in WLS_HOME
/user_projects/domains/base_domain/config/fmwconfig/servers/bam_server1/applications/oracle-bam_11.1.1/config/
BAMICommandConfig.xml
, as shown below.
The Oracle BAM version installed on the remote system should be same as the Oracle BAM Server version (that is, both servers should be from the same label).
This part describes how to use Oracle User Messaging Service.
This part contains the following chapters:
This chapter describes the features and architecture of Oracle User Messaging Service (UMS).
This chapter includes the following section:
Oracle User Messaging Service enables two-way communication between users and deployed applications. Key features include:
There are three types of components that comprise the Oracle User Messaging Service. These components are standard Java EE applications, making it easy to deploy and manage them using the standard tools provided with Oracle WebLogic Server.
In addition to the components that comprise UMS itself, the other key entities in a messaging environment are the external gateways required for each messaging channel. These gateways are not a part of UMS or Oracle WebLogic Server. Since UMS Drivers support widely-adopted messaging protocols, UMS can be integrated with existing infrastructures such as a corporate email servers or XMPP (Jabber) servers. Alternatively, UMS can connect to outside providers of SMS or text-to-speech services that support SMPP or VoiceXML, respectively.
The system architecture of Oracle User Messaging Service is shown in Figure 62-1.
For maximum flexibility, the components of UMS are separate Java EE applications. This allows them to be deployed and managed independently of one another. For example, a particular driver can be stopped and reconfigured without affecting message delivery on all other channels.
Exchanges between UMS client applications and the UMS Server occur as SOAP/HTTP web service requests for web service clients, or through Remote EJB and JMS calls for BPEL messaging activities. Exchanges between the UMS Server and UMS Drivers occur through JMS queues.
Oracle UMS server and drivers are installed alongside SOA or BAM in their respective WebLogic Server instances. An Oracle WebCenter Portal installation includes the necessary libraries to act as a UMS client application, invoking a server deployed in a SOA instance.
This chapter describes how to use the User Messaging Service (UMS) EJB API to develop applications, and describes how to build two sample applications, usermessagingsample-ejb.ear
and usermessagingsample-echo-ejb.ear
.
Note: The User Messaging Service EJB API (described in this chapter) is deprecated. Use the User Messaging Service Java API instead, as described in Chapter 64, "Sending and Receiving Messages using the User Messaging Service Java API". |
This chapter includes the following sections:
Note: To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, see the samples at:
|
The UMS Java API supports developing applications for Enterprise JavaBeans clients. It consists of packages grouped as follows:
oracle.sdp.messaging
oracle.sdp.messaging.filter
: A MessageFilter is used by an application to exercise greater control over what messages are delivered to it. oracle.sdp.messaging.userprefs
oracle.sdp.messaging.userprefs.tools
There are two choices for a Java EE application module that uses the UMS Enterprise JavaBeans Client API:
Whichever application module is selected uses the UMS Client API to register the application with the UMS Server and subsequently invoke operations to send or retrieve messages, status, and register or unregister access points. For a complete list of operations refer to the UMS Javadoc.
The samples with source code are available on Oracle Technology Network (OTN).
This section describes the requirements for creating a UMS Enterprise JavaBeans Client. You can create a MessagingEJBClient
instance by using the code in the MessagingClientFactory class.
When creating an application using the UMS Enterprise JavaBeans Client, the application must be packaged as an EAR file, and the usermessagingclient-ejb.jar
module bundled as an Enterprise JavaBeans module.
Example 63-1 shows code for creating a MessagingEJBClient
instance using the programmatic approach:
Example 63-1 Programmatic Approach to Creating a MessagingEJBClient Instance
You can also create a MessagingEJBClient
instance using a declarative approach. The declarative approach is normally the preferred approach since it enables you to make changes at deployment time.
You must specify all the required Application Info properties as environment entries in your Java EE module's descriptor (ejb-jar.xml
or web.xml
).
Example 63-2 shows code for creating a MessagingEJBClient
instance using the declarative approach:
You can create a message by using the code in the MessageFactory
class and Message
interface of oracle.sdp.messaging
.
The types of messages that can be created include plaintext messages, multipart messages that can consist of text/plain and text/html parts, and messages that include the creation of delivery channel (DeliveryType
) specific payloads in a single message for recipients with different delivery types.
This section describes the various types of messages that can be created.
Example 63-3 shows how to create a plain text message using the UMS Java API.
Example 63-4 shows how to create a multipart or alternative message using the UMS Java API.
Example 63-4 Creating a Multipart or Alternative Message Using the UMS Java API
When sending a message to a destination address, there can be multiple channels involved. Oracle UMS application developers are required to specify the correct multipart format for each channel.
Example 63-5 shows how to create delivery channel (DeliveryType
) specific payloads in a single message for recipients with different delivery types.
Each top-level part of a multiple payload multipart/alternative message should contain one or more values of this header. The value of this header should be the name of a valid delivery type. Refer to the available values for DeliveryType in the enum DeliveryType.
Example 63-5 Creating Delivery Channel-specific Payloads in a Single Message for Recipients with Different Delivery Types
The API reference for class MessageFactory
can be accessed from the Javadoc.
The API reference for interface Message
can be accessed from the Javadoc.
The API reference for enum DeliveryType
can be accessed from the Javadoc.
This section describes type of addresses and how to create address objects.
There are two types of addresses, device addresses and user addresses. A device address can be of various types, such as email addresses, instant messaging addresses, and telephone numbers. User addresses are user IDs in a user repository.
You can address senders and recipients of messages by using the class AddressFactory
to create Address
objects defined by the Address
interface.
Example 63-6 shows code for creating a single Address
object:
Example 63-7 shows code for creating multiple Address
objects in a batch:
Example 63-8 shows code for adding sender or recipient addresses to a message:
Example 63-8 Adding Sender or Recipient Addresses to a Message
Example 63-9 shows code for creating a recipient with a failover address:
You can use Oracle UMS to retrieve message status either synchronously or asynchronously.
To perform a synchronous retrieval of current status, use the following flow from the MessagingClient
API:
or,
To retrieve an asynchronous notification of message status, perform the following:
messagingClient.send(message);
) onStatus(status)
callback of the status listener. This section describes how an application receives messages. To receive a message you must first register an access point. From the application perspective there are two modes for receiving a message, synchronous and asynchronous.
AccessPoint
represents one or more device addresses to receive incoming messages. An application that wants to receive incoming messages must register one or more access points that represent the recipient addresses of the messages. The server matches the recipient address of an incoming message against the set of registered access points, and routes the incoming message to the application that registered the matching access point.
You can use AccessPointFactory.createAccessPoint
to create an access point and MessagingClient.registerAccessPoint
to register it for receiving messages.
To register an SMS access point for the number 9000
:
To register SMS access points in the number range 9000
to 9999
:
You can use the method MessagingClient.receive
to synchronously receive messages. This is a convenient polling method for light-weight clients that do not want the configuration overhead associated with receiving messages asynchronously. This method returns a list of messages that are immediately available in the application inbound queue.It performs a nonblocking call, so if no message is currently available, the method returns null.
Note: A single invocation does not guarantee retrieval of all available messages. You must poll to ensure receiving all available messages. |
Asynchronous receiving involves many tasks, including configuring MDBs and writing a Stateless Session Bean message listener. See the sample application usermessagingsample-echo for detailed instructions.
A MessageFilter
is used by an application to exercise greater control over what messages are delivered to it. A MessageFilter
contains a matching criterion and an action. An application can register a series of message filters; they are applied in order against an incoming (received) message; if the criterion matches the message, the action is taken. For example, an application can use MessageFilters
to implement necessary blacklists, by rejecting all messages from a given sender address.
You can use MessageFilterFactory.createMessageFilter
to create a message filter, and MessagingClient.registerMessageFilter
to register it. The filter is added to the end of the current filter chain for the application. When a message is received, it is passed through the filter chain in order; if the message matches a filter's criterion, the filter's action is taken immediately. If no filters match the message, the default action is to accept the message and deliver it to the application.For example, to reject a message with the subject "spam"
:
To reject messages from email address spammer@foo.com
:
This section describes how to create an application called usermessagingsample, a web client application that uses the UMS Enterprise JavaBeans Client API for both outbound messaging and the synchronous retrieval of message status. usermessagingsample also supports inbound messaging. Once you have deployed and configured usermessagingsample, you can use it to send a message to an email client.
Note: To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, see the Oracle SOA Suite samples. Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search. |
Of the two application modules choices described in Section 63.1.1, "Creating a Java EE Application Module," this sample focuses on the Web Application Module (WAR), which defines some HTML forms and servlets. You can examine the code and corresponding XML files for the web application module from the provided usermessagingsample-src.zip
source. The servlets uses the UMS Enterprise JavaBeans Client API to create an UMS Enterprise JavaBeans Client instance (which in turn registers the application's info) and sends messages.
This application, which is packaged as an Enterprise Archive file (EAR) called usermessagingsample-ejb.ear, has the following structure:
usermessagingsample-ejb.ear
META-INF
application.xml
-- Descriptor file for all of the application modules. weblogic-application.xml
-- Descriptor file that contains the import
of the oracle.sdp.messaging
shared library. usermessagingclient-ejb.jar
-- Contains the Message Enterprise JavaBeans Client deployment descriptors. META-INF
ejb-jar.xml
weblogic-ejb-jar.xml
usermessagingsample-web.ear
-- Contains the web-based front-end and servlets. WEB-INF
web.xml
weblogic.xml
The prebuilt sample application, and the source code (usermessagingsample-src.zip) are available on OTN.
The following steps describe the process of building an application capable of outbound messaging using usermessagingsample-ejb.ear
as an example:
To enable the Oracle User Messaging Service's email driver to perform outbound messaging and status retrieval, configure the email driver as follows:
OutgoingMailServer
property. Note: This sample application is generic and can support outbound messaging through other channels when the appropriate messaging drivers are deployed and configured. |
This section describes using a Windows-based build of JDeveloper to build, compile, and deploy usermessagingsample through the following steps:
usermessagingsample.jws
(contained in the .zip file) in Oracle JDeveloper. Figure 63-1 Oracle JDeveloper Main Window
In the Oracle JDeveloper main window, the project appears.
SampleUtils.java
in the project (Example 63-10). Perform the following steps to deploy the application:
Build Successful
appears in the log. Deployment Finished
appears in the deployment log. You have successfully deployed the application.
Before you can run the sample, you must configure any additional drivers in Oracle User Messaging Service and optionally configure a default device for the user receiving the message in User Messaging Preferences.
Note: Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information. |
Once usermessagingsample has been deployed to a running instance of Oracle WebLogic Server, perform the following:
http://
host
:http-port
/usermessagingsample/
. For example, enter http://localhost:7001/usermessagingsample/
into the browser's navigation bar. When prompted, enter login credentials. For example, username weblogic
. The browser page for testing messaging samples appears (Figure 63-4).
Figure 63-4 Testing the Sample Application
Email:
sender_address
.
For example, enter Email:sender@oracle.com
.
Email:recipient@oracle.com
. Enter multiple addresses as a comma-separated list as follows: Email:
recipient_address1
,
Email:
recipient_address2
.
If you have configured user messaging preferences, you can address the message simply to User:
username
. For example, User:weblogic
.
This section describes how to create an application called usermessagingsample-echo, a demo client application that uses the UMS Enterprise JavaBeans Client API to asynchronously receive messages from an email address and echo a reply back to the sender.
Note: To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, see the Oracle SOA Suite samples. Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search. |
This application, which is packaged as a Enterprise Archive file (EAR) called usermessagingsample-echo-ejb.ear, has the following structure:
usermessagingsample-echo-ejb.ear
META-INF
application.xml
-- Descriptor file for all of the application modules. weblogic-application.xml
-- Descriptor file that contains the import
of the oracle.sdp.messaging
shared library. usermessagingclient-ejb.jar
-- Contains the Message Enterprise JavaBeans Client deployment descriptors. META-INF
ejb-jar.xml
weblogic-ejb-jar.xml
usermessagingsample-echo-ejb.jar
-- Contains the application session beans (ClientSenderBean, ClientReceiverBean) that process a received message and return an echo response. META-INF
ejb-jar.xml
weblogic-ejb-jar.xml
usermessagingsample-echo-web.war
-- Contains the web-based front-end and servlets. WEB-INF
web.xml
weblogic.xml
The prebuilt sample application, and the source code (usermessagingsample-echo-src.zip
) are available on OTN.
The following steps describe the process of building an application capable of asynchronous inbound and outbound messaging using usermessagingsample-echo-ejb.ear
as an example:
To enable the Oracle User Messaging Service's email driver to perform inbound and outbound messaging and status retrieval, configure the email driver as follows:
Note: This sample application is generic and can support inbound and outbound messaging through other channels when the appropriate messaging drivers are deployed and configured. |
This section describes using a Windows-based build of JDeveloper to build, compile, and deploy usermessagingsample-echo through the following steps:
usermessagingsample.echo-src.zip
, to the JDEV_HOME
/communications/
samples/
directory. This directory must be used for the shared library references to be valid in the project. Note: If you choose to use a different directory, you must update the oracle.sdp.messaging library source path to |
usermessagingsample-echo.jws
(contained in the .zip file) in Oracle JDeveloper. In the Oracle JDeveloper main window, the project appears (Figure 63-7).
Figure 63-7 Oracle JDeveloper Main Window
usermessagingsample-echo-web
and usermessagingsample-echo-ejb
modules. JDEV_HOME
/communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar
. This is the Java library used by UMS and applications that use UMS to send and receive messages. Perform the following steps for each module:
ClientReceiverBean
), and send messages (ClientSenderBean
). ejb-jar.xml
file. (Example 63-11). Example 63-11 Application Information
UMSEchoApp
) and Application Instance Name (UMSEchoAppInstance
) are also used in the Message Selector for the MessageDispatcherBean
MDB, which is used for asynchronous receiving of messages and statuses placed in the application receiving queue (Example 63-12). Example 63-12 Application Information
Note: If you chose a different Application Name and Application Instance Name for your own application, remember to update this message selector. Asynchronous receiving does not work, otherwise. |
Perform the following steps to deploy the application:
Build Successful
appears in the log. Deployment Finished
appears in the deployment log. You have successfully deployed the application.
Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and optionally configure a default device for the user receiving the message in User Messaging Preferences.
Note: Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information. |
Once usermessagingsample-echo has been deployed to a running instance of Oracle WebLogic Server, perform the following:
http://
host
:
http-port
/usermessagingsample-echo/
. For example, enter http://localhost:7001/usermessagingsample-echo/
into the browser's navigation bar. When prompted, enter login credentials. For example, username weblogic
. The browser page for testing messaging samples appears (Figure 63-10).
Figure 63-10 Testing the Sample Application
EMAIL:
server_address
.
For example, enter EMAIL:myserver@example.com
.
Figure 63-12 Access Point Registration Status
If the UMS messaging driver for that channel is configured correctly, you should expect to receive an echo message back from the usermessagingsample-echo application.
Perform the following steps to create an Application Server Connection.
Figure 63-13 New Application Server Connection
SOA_server
and click Next (Figure 63-14). Figure 63-14 New Application Server Connection
weblogic
. Success!
appears. The Application Server Connection has been created.
This chapter describes how to use the User Messaging Service (UMS) client API to develop applications. This API serves as a programmatic entry point for Fusion Middleware application developers to incorporate messaging features within their enterprise applications.
Because the API provides a plain old java (POJO/POJI) programming model, this eliminates the needs for application developers to package and implement various Java EE modules (such as an EJB module) in an application to access UMS features. This reduces application development time because developers can create applications to run in a Java EE container without performing any additional packaging of modules, or obtaining specialized tools to perform such packaging tasks.
Consumers of the UMS Java API are not required to use any Java EE mechanism such as environment entries or other Java EE deployment descriptor artifacts. Besides the overhead involved in maintaining Java EE descriptors, many client applications already have a configuration framework that does not rely on Java EE descriptors.
This chapter includes the following sections:
Note: To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, refer to the samples at:
|
The UMS Java API is exposed as a POJO/POJI API. Consumers of the API can get an instance of a MessagingClient
object using a factory method. The consumers do not need to deploy any EJB or other Java EE modules in their applications, but must ensure that the UMS libraries are available in an application' s runtime class path. The deployment is as a shared library, "oracle.sdp.client".
The UMS Java API consists of packages grouped as follows:
oracle.sdp.messaging
oracle.sdp.messaging.filter
: A MessageFilter is used by an application to exercise greater control over what messages are delivered to it. The samples with source code are available on Oracle Technology Network (OTN).
This section describes the requirements for creating a UMS Client. You can create a MessagingClient
instance by using the code in the MessagingClientFactory class. Specifically, use the MessagingClientFactory.createMessagingClient()
method to create the instance.
Client applications can specify a set of parameters at runtime when instantiating a client object. For example, you configure a MessagingClient
instance by specifying parameters as a map of key-value pairs in a java.util.Map<String, Object>
. Among other things, the configuration parameters serve to identify the client application, point to the UMS server, and establish security credentials. Client applications are responsible for storing and loading the configuration parameters using any available mechanism.
Table 64-1 lists some configuration parameters that may be set for the Java API. In typical use cases, most of the parameters do not need to be provided and the API implementation uses sensible default values.
Table 64-1 Configuration Parameters Specified at Runtime
Parameter | Notes |
---|---|
| Optional. By default, the client is identified by its deployment name. This identifier can be overridden by specifying a value for key |
| Optional. Only required for certain clustered use cases or to take advantage of session-based routing. |
| Optional. By default, the client's resources are available to any application with the same application name and any security principal. This behavior can be overridden by specifying a value for key |
| Optional. When listeners are used to receive messages or statuses asynchronously, the number of listener worker threads can be controlled by specifying values for the MessagingConstants. |
| Optional. When receiving messages, you can control the reliability mode by specifying values for the |
A MessagingClient
cannot be reconfigured after it is instantiated. Instead, a new instance of the MessagingClient
class must be created using the new configuration.
To release resources used by the MessagingClient
instance when it is no longer needed, call MessagingClientFactory.remove(client)
. If you do not call this method, some resources such as worker threads and JMS listeners may remain active.
Example 64-1 shows code for creating a MessagingClient
instance using the programmatic approach:
Example 64-1 Programmatic Approach to Creating a MessagingClient Instance
A MessagingClient
cannot be reconfigured after it is instantiated. Instead, you must create a new instance of the MessagingClient
class using the desired configuration.
The client application can create a message object using the MessagingFactory
class of oracle.sdp.messaging
. MessagingFactory
. You can use other methods in this class to create Addresses
, AccessPoints
, MessageFilters
, and MessageQueries
. See the Javadoc for more information about these methods.
The client application can then send the message. The API returns a String identifier that the client application can later use to retrieve message delivery status. The status returned is the latest known status based on UMS internal processing and delivery notifications received from external gateways.
The types of messages that can be created include plaintext messages, multipart messages that can consist of text/plain and text/html parts, and messages that include the creation of delivery channel (DeliveryType
) specific payloads in a single message for recipients with different delivery types.
The section includes the following topics:
This section describes the various types of messages that can be created.
Example 64-2 shows how to create a plaintext message using the UMS Java API.
Example 64-3 shows how to create a multipart or alternative message using the UMS Java API.
Example 64-3 Creating a Multipart or Alternative Message Using the UMS Java API
When sending a message to a destination address, there could be multiple channels involved. Oracle UMS application developers are required to specify the correct multipart format for each channel.
Example 64-4 shows how to create delivery channel (DeliveryType
) specific payloads in a single message for recipients with different delivery types.
Each top-level part of a multiple payload multipart/alternative message should contain one or more values of this header. The value of this header should be the name of a valid delivery type. Refer to the available values for DeliveryType in the enum DeliveryType
.
Example 64-4 Creating Delivery Channel-specific Payloads in a Single Message for Recipients with Different Delivery Types
The API reference for class MessagingFactory
can be accessed from the Javadoc.
The API reference for interface Message can be accessed from the Javadoc.
The API reference for enum DeliveryType
can be accessed from the Javadoc.
This section describes type of addresses and how to create address objects.
There are two types of addresses, device addresses and user addresses. A device address can be of various types, such as email addresses, instant messaging addresses, and telephone numbers. User addresses are user IDs in a user repository.
You can address senders and recipients of messages by using the class MessagingFactory
to create Address
objects defined by the Address
interface.
Example 64-5 shows code for creating a single Address
object:
Example 64-6 shows code for creating multiple Address
objects in a batch:
Example 64-7 shows code for adding sender or recipient addresses to a message:
Example 64-8 shows code for creating a recipient with a failover address:
When sending a message to a user recipient (to leverage the user's messaging preferences), you can pass current values for various business terms in the message as metadata. The UMS server matches the supplied facts in the message against conditions for business terms specified in the user's messaging filters.
Note: All facts must be added as metadata in the |
Example 64-9 shows how to specify a user recipient and supply facts for business terms for the user preferences in a message. For a complete list of supported business terms, refer to Chapter 67, "User Messaging Preferences."
Example 64-9 User Preference Based Messaging
After sending a message, you can use Oracle UMS to retrieve the message status either synchronously or asynchronously.
To perform a synchronous retrieval of current status, use the following flow from the MessagingClient
API:
or,
When asynchronously receiving status, the client application specifies a Listener
object and an optional correlator object. When incoming status arrives, the listener' s onStatus
callback is invoked. The originally-specified correlator object is also passed to the callback method.
Listeners are purely programmatic. You create a listener by implementing the oracle.sdp.messaging.Listener
interface. You can implement it as any concrete class - one of your existing classes, a new class, or an anonymous or inner class.
The following code example shows how to implement a status listener:
You pass a reference to the Listener
object to the setStatusListener
or send
methods, as described in "Default Status Listener" and "Per Message Status Listener". When a status arrives for your message, the UMS infrastructure invokes the Listener's onStatus
method as appropriate.
The client application typically sets a default status listener (Example 64-10). When the client application sends a message, delivery status callbacks for the message invoke the default listener's onStatus
method.
In this approach, the client application sends a message and specifies a Listener object and an optional correlator object (Example 64-11). When delivery status callbacks are available for that message, the specified listener's onStatus
method is invoked. The originally-specified correlator object is also passed to the callback method.
This section describes how an application receives messages. To receive a message you must first register an access point. From the application perspective there are two modes for receiving a message, synchronous and asynchronous.
The client application can create and register an access point, specifying that it wants to receive incoming messages sent to a particular address. Since the client application has not specified any message listeners, any received messages are held by UMS. The client application can then invoke the receive method to fetch the pending messages. When receiving messages without specifying an access point, the application receives messages for any of the access points that it has registered. Otherwise, if an access point is specified, the application receives messages sent to that access point.
AccessPoint
represents one or more device addresses to receive incoming messages. An application that wants to receive incoming messages must register one or more access points that represent the recipient addresses of the messages. The server matches the recipient address of an incoming message against the set of registered access points, and routes the incoming message to the application that registered the matching access point.
You can use MessagingFactory.createAccessPoint
to create an access point and MessagingClient.registerAccessPoint
to register it for receiving messages.
To register an SMS access point for the number 9000
:
To register SMS access points in the number range 9000
to 9999
:
A receive is a nonblocking operation. If there are no pending messages for the application or access point, the call returns immediately with an empty list. Receive is not guaranteed to return all available messages, but may return only a subset of available messages for efficiency reasons.
You can use the method MessagingClient.receive
to synchronously receive messages. This is a convenient polling method for light-weight clients that do not want the configuration overhead associated with receiving messages asynchronously. This method returns a list of messages that are immediately available in the application inbound queue.
It performs a nonblocking call, so if no message is currently available, the method returns null.
Note: A single invocation does not guarantee retrieval of all available messages. You must poll to ensure receiving all available messages. |
When asynchronously receiving messages, the client application registers an access point and specifies a Listener
object and an optional correlator object. When incoming messages arrive at the specified access point address, the listener' s onMessage
callback is invoked. The originally-specified correlator object is also passed to the callback method.
Listeners are purely programmatic. You create a listener by implementing the oracle.sdp.messaging.Listener
interface. You can implement it as any concrete class - one of your existing classes, a new class, or an anonymous or inner class.
The following code example shows how to implement a message listener:
You pass a reference to the Listener object to the setMessageListener
or registerAccessPoint
methods, as described in "Default Message Listener" and "Per Access Point Message Listener". When a message arrives for your application, the UMS infrastructure invokes the Listener's onMessage
method.
The client application typically sets a default message listener (Example 64-12). This listener is invoked for any delivery statuses for messages sent by this client application that do not have an associated listener. When Oracle UMS receives messages addressed to any access points registered by this client application, it invokes the onMessage
callback for the client application's default listener.
To remove a default listener, call this method with a null argument.
See the sample application usermessagingsample-echo
for detailed instructions on asynchronous receiving.
The client application can also register an access point and specify a Listener
object and an optional correlator object (Example 64-13). When incoming messages arrive at the specified access point address, the specified listener' s onMessage
method is invoked. The originally-specified correlator object is also passed to the callback method.
A MessageFilter
is used by an application to exercise greater control over what messages are delivered to it. A MessageFilter
contains a matching criterion and an action. An application can register a series of message filters; they are applied in order against an incoming (received) message; if the criterion matches the message, the action is taken. For example, an application can use MessageFilters
to implement necessary blacklists, by rejecting all messages from a given sender address.
You can use MessagingFactory.createMessageFilter
to create a message filter, and MessagingClient.registerMessageFilter
to register it. The filter is added to the end of the current filter chain for the application. When a message is received, it is passed through the filter chain in order; if the message matches a filter's criterion, the filter's action is taken immediately. If no filters match the message, the default action is to accept the message and deliver it to the application.For example, to reject a message with the subject "spam"
:
To reject messages from email address spammer@foo.com
:
The API supports an environment where client applications and the UMS server are deployed in a cluster environment. For a clustered deployment to function as expected, client applications must be configured correctly. The following rules apply:
ApplicationName
configuration parameter. Typically this parameter is synthesized by the API implementation and does not need to be populated by the application developer. Access
Points and Message Filters that are registered by one instance are shared by all instances. ApplicationInstanceName
configuration parameter enables you to distinguish instances from one another. Typically this parameter is synthesized by the API implementation and does not need to be populated by the application developer. Refer to the Javadoc for cases in which this value must be populated. Client applications may need to specify one or more additional configuration parameters (described in Table 64-1) to establish a secure listener.
Client applications that use the UMS Java API are usually multithreaded. Typical scenarios include a pool of EJB instances, each of which uses a MessagingClient
instance; and a servlet instance that is serviced by multiple threads in a web container. The UMS Java API supports the following thread model:
MessagingClientFactory.createMessagingClient
returns a new MessagingClient
instance. MessagingClient
instances are created by passing parameter maps that are equal to MessagingClientFactory.createMessagingClient
, they are instances of the same client. Instances created by passing different parameter maps are instances of separate clients. MessagingClient
is not thread safe when it has been obtained using MessagingClientFactory.createMessagingClient
. Client applications must ensure that a given instance is used by only one thread at a time. They may do so by ensuring that an instance is only visible to one thread at a time, or by synchronizing access to the MessagingClient
instance. setMessageListener()
, and then instance B calls setMessageListener()
, then B's listener is the active default message listener. The following are typical use cases:
MessagingClient
instance in the bean' s ejbCreate
(or equivalent @PostConstruct
) method, and store the MessagingClient
in an instance variable in the bean class. The EJB container ensures that only one thread at a time uses a given EJB instance, which ensures that only one thread at a time accesses the bean' s MessagingClient
instance. MessagingClient
instance is created and stored in a servlet instance variable, then access to the instance must be synchronized. Another approach is to create a pool of MessagingClient
instances that are shared among servlet threads.
Finally, you can associate individual MessagingClient
instances with individual HTTP Sessions. This approach allows increased concurrency compared to having a single MessagingClient
for all servlet requests. However, it is possible for multiple threads to access an HTTP Session at the same time due to concurrent client requests, so synchronization is still required in this case.
You can achieve asynchronous listening by spawning one or more worker threads that listen to the configured JMS queues for incoming messages and statuses. By default, one worker thread is spawned for incoming messages, and one worker thread is spawned for incoming status notifications (assuming at least one message or status listener is registered, respectively). Client applications can increase the concurrency of asynchronous processing by configuring additional worker threads. This is done by specifying integer values for the MessagingConstants.MESSAGE_LISTENER_THREADS
and MessagingConstants.STATUS_LISTENER_THREAD
S
keys, settings these values to the desired number of worker threads in the configuration parameters used when creating a MessagingClient
instance.
This section describes how to create an application called usermessagingsample, a web client application that uses the UMS Client API for both outbound messaging and the synchronous retrieval of message status. usermessagingsample also supports inbound messaging. Once you have deployed and configured usermessagingsample, you can use it to send a message to an email client.
Note: To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, refer to the Oracle SOA Suite samples. Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search. |
This sample focuses on a Web Application Module (WAR), which defines some HTML forms and servlets. You can examine the code and corresponding XML files for the web application module from the provided usermessagingsample-src.zip
source. The servlets uses the UMS Client API to create an UMS Client instance (which in turn registers the application's information) and sends messages.
This application, which is packaged as a Enterprise ARchive file (EAR) called usermessagingsample.ear, has the following structure:
usermessagingsample.ear
META-INF
application.xml
-- Descriptor file for all of the application modules. weblogic-application.xml
-- Descriptor file that contains the import
of the oracle.sdp.messaging
shared library. usermessagingsample-web.ear
-- Contains the web-based front-end and servlets. WEB-INF
web.xml
weblogic.xml
The prebuilt sample application, and the source code (usermessagingsample-src.zip) are available on OTN.
The following steps describe the process of building an application capable of outbound messaging using usermessagingsample.ear
as an example:
To enable the Oracle User Messaging Service's email driver to perform outbound messaging and status retrieval, configure the email driver as follows:
OutgoingMailServer
property. Note: This sample application is generic and can support outbound messaging through other channels when the appropriate messaging drivers are deployed and configured. |
This section describes using a Windows-based build of JDeveloper to build, compile, and deploy usermessagingsample through the following steps:
usermessagingsample.jws
(contained in the .zip file) in Oracle JDeveloper. Figure 64-1 Oracle JDeveloper Open Application Window
In the Oracle JDeveloper main window, the project appears.
Figure 64-2 Oracle JDeveloper Main Window
SampleUtils.java
in the project. Perform the following steps to deploy the application:
Build Successful
appears in the log. Deployment Finished
appears in the deployment log. You have successfully deployed the application.
Before you can run the sample, you must configure any additional drivers in Oracle User Messaging Service and optionally configure a default device for the user receiving the message in User Messaging Preferences.
Note: Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information. |
Once usermessagingsample has been deployed to a running instance of Oracle WebLogic Server, perform the following:
http://
host
:http-port
/usermessagingsample/
. For example, enter http://localhost:7001/usermessagingsample/
into the browser's navigation bar. When prompted, enter login credentials. For example, username weblogic
. The browser page for testing messaging samples appears (Figure 64-5).
Figure 64-5 Testing the Sample Application
Email:
sender_address
.
For example, enter Email:sender@oracle.com
.
Email:recipient@oracle.com
. Enter multiple addresses as a comma-separated list as follows: Email:
recipient_address1
,
Email:
recipient_address2
.
If you have configured user messaging preferences, you can address the message simply to User:
username
. For example, User:weblogic
.
This section describes how to create an application called usermessagingsample-echo, a demo client application that uses the UMS Client API to asynchronously receive messages from an email address and echo a reply back to the sender.
Note: To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, refer to the Oracle SOA Suite samples. Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search. |
This application, which is packaged as a Enterprise Archive file (EAR) called usermessagingsample-echo.ear, has the following structure:
usermessagingsample-echo.ear
META-INF
application.xml
-- Descriptor file for all of the application modules. weblogic-application.xml
-- Descriptor file that contains the import
of the oracle.sdp.messaging
shared library. usermessagingsample-echo-web.war
-- Contains the web-based front-end and servlets. It also contains the listener that processes a received message and returns an echo response WEB-INF
web.xml
weblogic.xml
The prebuilt sample application, and the source code (usermessagingsample-echo-src.zip
) are available on OTN.
The following steps describe the process of building an application capable of asynchronous inbound and outbound messaging using usermessagingsample-echo.ear
as an example:
To enable the Oracle User Messaging Service's email driver to perform inbound and outbound messaging and status retrieval, configure the email driver as follows:
Note: This sample application is generic and can support inbound and outbound messaging through other channels when the appropriate messaging drivers are deployed and configured. |
This section describes using a Windows-based build of JDeveloper to build, compile, and deploy usermessagingsample-echo through the following steps:
usermessagingsample-echo-src.zip
, to the JDEV_HOME
/communications/
samples/
directory. This directory must be used for the shared library references to be valid in the project. Note: If you choose to use a different directory, you must update the oracle.sdp.messaging library source path to |
usermessagingsample-echo.jws
(contained in the .zip file) in Oracle JDeveloper (Figure 64-9). In the Oracle JDeveloper main window the project appears (Figure 64-10).
Figure 64-10 Oracle JDeveloper Main Window
usermessagingsample-echo-web
module. JDEV_HOME
/communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar
. This is the Java library used by UMS and applications that use UMS to send and receive messages. Perform the following steps for each module:
EchoListener
is used to asynchronously receive messages. Perform the following steps to deploy the application:
Build Successful
appears in the log. Deployment Finished
appears in the deployment log. You have successfully deployed the application.
Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and optionally configure a default device for the user receiving the message in User Messaging Preferences.
Note: Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information. |
Once usermessagingsample-echo has been deployed to a running instance of Oracle WebLogic Server, perform the following:
http://
host
:
http-port
/usermessagingsample-echo/
. For example, enter http://localhost:7001/usermessagingsample-echo/
into the browser's navigation bar. When prompted, enter login credentials. For example, username weblogic
. The browser page for testing messaging samples appears (Figure 64-13).
Figure 64-13 Testing the Sample Application
EMAIL:
server_address
.
For example, enter EMAIL:myserver@example.com
.
Figure 64-15 Access Point Registration Status
If the UMS messaging driver for that channel is configured correctly, you should expect to receive an echo message back from the usermessagingsample-echo application.
Perform the following steps to create an Application Server Connection.
Figure 64-16 New Application Server Connection
SOA_server
and click Next (Figure 64-17). Figure 64-17 New Application Server Connection
weblogic
. Success!
appears. The Application Server Connection has been created.
This chapter describes how to use the User Messaging Service (UMS) Web Service API to develop applications. This API serves as a programmatic entry point for Fusion Middleware application developers to implement UMS messaging applications that run in a remote container relative to the UMS server.
This chapter includes the following sections:
Note: To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, see the samples at:
|
The UMS Web Service API is functionally identical to the Java API. The JAX-WS and JAXB bindings of the web service types and interfaces are named similarly to the corresponding Java API classes, but are in their own package space. Classes from the two APIs are not interoperable.
Consumers of the API can get an instance of a MessagingClient
object using a factory method. The deployment is as a shared library, "oracle.sdp.client".
The UMS Web Service API consists of packages grouped as follows:
oracle.ucs.messaging.ws
oracle.ucs.messaging.ws.types
messaging.wsdl
: defines the operations invoked by a web service client. listener.wsdl
: defines the callback operations that a client must implement to receive asynchronous message or status notifications. The samples with source code are available on Oracle Technology Network (OTN).
This section describes the requirements for creating a UMS Client. You can create a instance of oracle.ucs.messaging.ws.MessagingClient
by using the public constructor. Client applications can specify a set of parameters at runtime when instantiating a client object. For example, you configure a MessagingClient
instance by specifying parameters as a map of key-value pairs in a java.util.Map<String, Object>
. Among other things, the configuration parameters serve to identify the web service endpoint URL identifying the UMS server to communicate with, and other web service-related information such as security policies. Client applications are responsible for storing and loading the configuration parameters using any available mechanism.
You are responsible for mapping the parameters to/from whatever configuration storage mechanism is appropriate for your deployment. The MessagingClient
class uses the specified key/value pairs for configuration, and passes through all parameters to the underlying JAX-WS service. Any parameters recognized by JAX-WS are valid. Table 65-1 lists the most common configuration parameters:
Table 65-1 Configuration Parameters Specified at Runtime
Key | Use |
---|---|
| Endpoint URL for the remote UMS WS. This is typically "http://<host>:<port>/ucs/messaging/webservice". |
| Username to be asserted in WS-Security headers when relevant |
| Set of OWSM WS-Security policies to attach to the client's requests. These must match the policies specified on the server side. |
oracle.wsm.security.util.SecurityConstants.Config.KEYSTORE_RECIPIENT_ALIAS_PROPERTY | Used for OWSM policy attachment. Specifies an alternate alias to use for looking up encryption and signing keys from the credential store. |
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_CSF_KEY | Used for OWSM policy attachment. Specifies a credential store key to use for looking up remote username/password information from the Oracle Web Services Management credential store map. |
A MessagingClient
cannot be reconfigured after it is instantiated. Instead, a new instance of the MessagingClient
class must be created using the new configuration.
Example 65-1 shows code for creating a MessagingClient
instance using username/token security, using the programmatic approach:
Example 65-1 Programmatic Approach to Creating a MessagingClient Instance, Username/Token Security
Example 65-2 shows code for creating a MessagingClient
instance using SAML token security, using the programmatic approach:
Example 65-2 Programmatic Approach to Creating a MessagingClient Instance, SAML Token Security
A MessagingClient
cannot be reconfigured after it is instantiated. Instead, you must create a new instance of the MessagingClient
class using the desired configuration.
Factory methods are provided for creating Web Service API types in the class "oracle.ucs.messaging.ws.MessagingFactory
".
Invoking the send
method causes the message to be delivered to UMS and processed accordingly. The send
method returns a String message
identifier that the client application can later use to retrieve message delivery status, or to correlate with asynchronous status notifications that are delivered to a Listener. The status returned is the latest known status based on UMS internal processing and delivery notifications received from external gateways.
The types of messages that can be created include plaintext messages, multipart messages that can consist of text/plain and text/html parts, and messages that include the creation of delivery channel (DeliveryType
) specific payloads in a single message for recipients with different delivery types.
This section describes the various types of messages that can be created.
Example 65-3 shows how to create a plaintext message using the UMS Web Service API.
Example 65-3 Creating a Plaintext Message Using the UMS Web Service API
Example 65-4 shows how to create a multipart/mixed message using the UMS Web Service API.
Example 65-4 Creating a Multipart/Mixed Message Using the UMS Web Service API
Example 65-5 shows how to create a multipart/alternative message using the UMS Web Service API.
Example 65-5 Creating a Multipart/Alternative Message Using the UMS Web Service API
When sending a message to a destination address, there could be multiple channels involved. Oracle UMS application developers are required to specify the correct multipart format for each channel.
Example 65-6 shows how to create delivery channel (DeliveryType
) specific payloads in a single message for recipients with different delivery types.
Each top-level part of a multiple payload multipart/alternative message should contain one or more values of this header. The value of this header should be the name of a valid delivery type. Refer to the available values for DeliveryType in the enum DeliveryType
.
Example 65-6 Creating Delivery Channel-specific Payloads in a Single Message for Recipients with Different Delivery Types
The API reference for interface Message can be accessed from the Javadoc.
The API reference for enum DeliveryType
can be accessed from the Javadoc.
This section describes type of addresses and how to create address objects.
There are two types of addresses, device addresses and user addresses. A device address can be of various types, such as email addresses, instant messaging addresses, and telephone numbers. User addresses are user IDs in a user repository.
You can address senders and recipients of messages by using the class MessagingFactory
to create Address
objects defined by the Address
interface.
Example 65-7 shows code for creating a single Address
object:
Example 65-8 shows code for creating multiple Address
objects in a batch:
Example 65-9 shows code for adding sender or recipient addresses to a message:
Example 65-10 shows code for creating a recipient with a failover address:
The WS API provides support for sending and receiving messages with To/Cc/Bcc recipients for use with the email driver:
oracle.ucs.messaging.ws.Address
object using oracle.ucs.messaging.ws.MessagingFactory.buildAddress
method. The arguments are the address value (for example, user@domain.com), delivery type (for example, DeliveryType.EMAIL
), and email mode (for example, "Cc" or "Bcc"). oracle.ucs.messaging.ws.MessagingFactory.getRecipientType
method, passing it the Address object. It returns a string indicating the recipient type. When sending a message to a user recipient (to leverage the user's messaging preferences), you can pass facts (current values) for various business terms in the message as metadata. The UMS server matches the supplied facts in the message against conditions for business terms specified in the user's messaging filters.
Note: All facts must be added as metadata in the |
Example 65-11 shows how to specify a user recipient and supply facts for business terms for the user preferences in a message. For a complete list of supported business terms, refer to Chapter 67, "User Messaging Preferences."
Example 65-11 User Preference Based Messaging
After sending a message, you can use Oracle UMS to retrieve the message status either synchronously or asynchronously.
To perform a synchronous retrieval of current status, use the following flow from the MessagingClient
API:
or,
To receive statuses asynchronously, a client application must implement the listener web service as described in listener.wsdl
. There is no constraint on how the listener endpoint must be implemented. For example, one method is to use the javax.xml.ws.Endpoint
JAX-WS Service API to publish a web service endpoint. This mechanism is available in Java SE 6 and does not require the consumer to explicitly define a Java EE servlet module.
However, a servlet-based listener implementation is acceptable as well.
When sending a message, the client application can provide a reference to the listener endpoint, consisting of the endpoint URL and a SOAP interface name. As statuses are generated during the processing of the message, the UMS server invokes the listener endpoint' s onStatus
method to notify the client application.
Listeners are purely programmatic. You create a listener by implementing the oracle.ucs.messaging.ws.Listener
interface. You can implement it as any concrete class - one of your existing classes, a new class, or an anonymous or inner class.
The following code example shows how to implement a status listener:
When the To publish the callback service, you can either declare a servlet in web.xml in a web module within your application, or use the JAX-WS javax.xml.ws.Endpoint class's publish method to programmatically publish a WS endpoint (Example 65-12):
To stop a dynamically published endpoint, call the stop()
method on the Endpoint object returned from Endpoint.publish()
(Example 65-13).
Once the listener web service is published, you must register the fact that your client has such an endpoint. There are the following relevant methods in the MessagingClient API:
setStatusListener(ListenerReference listener)
send(Message message, ListenerReference listener, byte[] correlator)
setStatusListener()
registers a "default" status listener whose callback is invoked for any incoming status messages. A listener passed to send()
is only invoked for status updates related to the corresponding message.
This section describes how an application receives messages. To receive a message you must first register an access point. From the application perspective there are two modes for receiving a message, synchronous and asynchronous.
The client application can create and register an access point, specifying that it wants to receive incoming messages sent to a particular address. When registering an access point, the client application can provide a reference to the listener endpoint, consisting of the endpoint URL and a SOAP interface name. As messages arrive, the UMS server invokes the listener endpoint' s onMessage
method to notify the client application.
The client application can then invoke the receive method to fetch the pending messages. When receiving messages without specifying an access point, the application receives messages for any of the access points that it has registered. Otherwise, if an access point is specified, the application receives messages sent to that access point.
AccessPoint
represents one or more device addresses to receive incoming messages. An application that wants to receive incoming messages must register one or more access points that represent the recipient addresses of the messages. The server matches the recipient address of an incoming message against the set of registered access points, and routes the incoming message to the application that registered the matching access point.
You can use MessagingFactory.createAccessPoint
to create an access point and MessagingClient.registerAccessPoint
to register it for receiving messages.
To register an SMS access point for the number 9000
:
To register SMS access points in the number range 9000
to 9999
:
Receive is a nonblocking operation. If there are no pending messages for the application or access point, the call returns immediately with an empty list. Receive is not guaranteed to return all available messages, but may return only a subset of available messages for efficiency reasons.
You can use the method MessagingClient.receive
to synchronously receive messages. This is a convenient polling method for light-weight clients that do not want the configuration overhead associated with receiving messages asynchronously. This method returns a list of messages that are immediately available in the application inbound queue.
It performs a nonblocking call, so if no message is currently available, the method returns null.
Note: A single invocation does not guarantee retrieval of all available messages. You must poll to ensure receiving all available messages. |
To receive messages asynchronously, a client application must implement the Listener
web service as described in listener.wsdl
. There is no constraint on how the listener endpoint must be implemented. For example, one mechanism is using the javax.xml.ws.Endpoint
JAX-WS Service API to publish a web service endpoint. This mechanism is available in Java SE 6 and does not require the consumer to explicitly define a Java EE servlet module. However, a servlet-based listener implementation is also acceptable.
Listeners are purely programmatic. You create a listener by implementing the oracle.ucs.messaging.ws.Listener
interface. You can implement it as any concrete class - one of your existing classes, a new class, or an anonymous or inner class.
The following code example shows how to implement a message listener:
You pass a reference to the Listener object to the setMessageListener
or registerAccessPoint
methods, as described in "Default Message Listener" and "Per Access Point Message Listener". When a message arrives for your application, the UMS infrastructure invokes the Listener's onMessage
method.
The client application typically sets a default message listener (Example 65-14). This listener is invoked for any delivery statuses for messages sent by this client application that do not have an associated listener. When Oracle UMS receives messages addressed to any access points registered by this client application, it invokes the onMessage
callback for the client application's default listener.
To remove a default listener, call this method with a null argument.
The client application can also register an access point and specify a Listener
object and an optional correlator object (Example 65-15). When incoming messages arrive at the specified access point address, the specified listener' s onMessage
method is invoked. The originally-specified correlator object is also passed to the callback method.
Example 65-15 Per Access Point Message Listener
url_to_your_webservice_message_listener
");A MessageFilter
is used by an application to exercise greater control over what messages are delivered to it. A MessageFilter
contains a matching criterion and an action. An application can register a series of message filters; they are applied in order against an incoming (received) message; if the criterion matches the message, the action is taken. For example, an application can use MessageFilters
to implement necessary blacklists, by rejecting all messages from a given sender address.
You can use MessagingFactory.createMessageFilter
to create a message filter, and MessagingClient.registerMessageFilter
to register it. The filter is added to the end of the current filter chain for the application. When a message is received, it is passed through the filter chain in order; if the message matches a filter's criterion, the filter's action is taken immediately. If no filters match the message, the default action is to accept the message and deliver it to the application.For example, to reject a message with the subject "spam"
:
To reject messages from email address spammer@foo.com
:
The API supports an environment where client applications and the UMS server are deployed in a cluster environment. For a clustered deployment to function as expected, client applications must be configured correctly. The following rules apply:
ApplicationName
configuration parameter. ApplicationInstanceName
configuration parameter enables you to distinguish instances from one another. The following sections discuss security considerations:
There are two supported security modes for the UMS Web Service: Security Assertions Markup Language (SAML) tokens and username tokens.
The supported SAML-based policy is "oracle/wss11_saml_token_with_message_protection_client_policy". This policy establishes a trust relationship between the client application and the UMS server based on the exchange of cryptographic keys. The client application is then allowed to assert a user identity that is respected by the UMS server. To use SAML tokens for WS-Security, some keystore configuration is required for both the client and the server. See Example 65-2 for more details about configuring SAML security in a UMS web service client.
The supported username token policy is "oracle/wss11_username_token_with_message_protection_client_policy". This policy passes an encrypted username/password token in the WS-Security headers, and the server authenticates the supplied credentials. It is highly recommended that the username and password be stored in the Credential Store, in which case only a Credential Store key must be passed to the MessagingClient constructor, ensuring that credentials are not hard-coded or stored in an unsecure manner. See Example 65-1 for more details about configuring SAML security in a UMS web service client.
Username token and SAML token security are also supported for the Listener callback web services. When registering a listener, the client application must supply additional parameters specifying the security policy and any key or credential lookup information that the server requires to establish a secure connection.
Example 65-16 illustrates how to establish a secure callback endpoint using username token security:
Example 65-16 Establishing a Secure Callback Endpoint Using Username Token Security
Instances of the WS MessagingClient class are not thread-safe due to the underlying services provided by the JAX-WS stack. You are responsible for ensuring that each instance is used by only one thread at a time.
This chapter describes how to create, deploy and run the sample chat application with the Web Services APIs provided with Oracle User Messaging Service on OTN.
Note: To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, see the Oracle SOA Suite samples. Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search. |
Note: To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite. |
This chapter contains the following sections:
This sample demonstrates how to create a web-based chat application to send and receive messages through email, SMS, or IM. The sample uses the Web Service APIs to interact with a User Messaging server. You define an application server connection in Oracle JDeveloper, and deploy and run the application.The application is provided as a pre-built Oracle JDeveloper project that includes a simple web chat interface.
Perform the following steps to run and deploy the pre-built sample application:
Figure 65-1 Opening the Project in Oracle JDeveloper
In the Oracle JDeveloper main window the project appears.
Figure 65-2 Oracle JDeveloper Main Window
The application contains one web module. All of the source code for the application is in place.
Build Successful
appears in the log. Deployment Finished
appears in the deployment log. You have successfully deployed the application.
Perform the following steps to run and test the sample:
http://
host
:
port
/usermessagingsample-ws/
The Messaging Web Services Sample web page appears (Figure 65-5). This page contains navigation tabs and instructions for the application.
Figure 65-5 Messaging Web Services Sample Web Page
http://example.com:8001/ucs/messaging/webservice
Figure 65-6 Configuring the Web Service Endpoints and Credentials
Verify that the message Registration operation succeeded
appears.
Figure 65-9 New Application Server Connection
SOA_server
and click Next (Figure 65-10). Figure 65-10 New Application Server Connection
weblogic
. Success!
appears. The Application Server Connection has been created.
This chapter describes the Parlay X Multimedia Messaging web service that is available with Oracle User Messaging Service and how to use the Parlay X Web Services Multimedia Messaging API to send and receive messages through Oracle User Messaging Service.
Note: To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite. |
This chapter includes the following sections:
Note: To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, see the samples at:
|
Note: Oracle User Messaging Service also ships with a Java client library that implements the Parlay X API. |
The following sections describe the semantics of each of the supported operations along with implementation-specific details for the Parlay X Gateway. The following tables, describing input/output message parameters for each operation, are taken directly from the Parlay X specification.
Oracle User Messaging Service implements a subset of the Parlay X 2.1 Multimedia Messaging specification. Specifically Oracle User Messaging Service supports the SendMessage and ReceiveMessage interfaces. The MessageNotification and MessageNotificationManager interfaces are not supported.
The SendMessage interface enables you to send a message to one or more recipient addresses by using the sendMessage
operation, or get the delivery status for a previously sent message by using the getMessageDeliveryStatus operation. The following requirements apply:
delivery_type
:
protocol_specific_address
, such as email:user@domain
, sms:5551212
or im:user@jabberdomain
. java.net.URI
for details on how to create a properly encoded URI. Table 66-1 describes message descriptions for the sendMessageRequest
input in the sendMessage
operation.
Table 66-1 sendMessage Input Message Descriptions
Part Name | Part Type | Optional | Description |
---|---|---|---|
addresses | xsd:anyURI[0..unbounded] | No | Destination address for this Message. |
senderAddress | xsd:string | Yes | Message sender address. This parameter is not allowed for all 3rd party providers. The Parlay X server must handle this according to a SLA for the specific application and its use can therefore result in a PolicyException. |
subject | xsd:string | Yes | Message subject. If mapped to SMS, this parameter is used as the senderAddress, even if a separate senderAddress is provided. |
priority | MessagePriority | Yes | Priority of the message. If not present, the network assigns a priority based on the operator policy.Charging to apply to this message. |
charging | common: | Yes | Charging to apply to this message. |
receiptRequest | common:SimpleReference | Yes | Defines the application endpoint, interface name and correlator that is used to notify the application when the message has been delivered to a terminal or if delivery is impossible. |
Table 66-2 describes sendMessageResponse
output messages for the sendMessage
operation.
The getMessageDeliveryStatus
operation gets the delivery status for a previously sent message. The input "requestIdentifier" is the "result" value from a sendMessage operation. This is the same identifier that is referred to as a Message ID in other Messaging documentation.
Table 66-3 describes the getMessageDeliveryStatusRequest
input messages for the getMessageDeliveryStatus
operation.
Table 66-3 getMessageDeliveryStatusRequest Input Message Descriptions
Part Name | Part Type | Optional | Description |
---|---|---|---|
registrationIdentifier | xsd:string | No | Identifier related to the delivery status request. |
Table 66-4 describes the getMessageDeliveryStatusResponse output messages for the getMessageDeliveryStatus
operation.
Table 66-4 getMessageDeliveryStatusResponse Output Message Descriptions
Part Name | Part Type | Optional | Description |
---|---|---|---|
result | DeliveryInformation | Yes | An array of status of the messages that were previously sent. Each array element represents a sent message, its destination address and its delivery status. |
The ReceiveMessage interface has three operations. The getReceivedMessages
operation polls the server for any messages received since the last invocation of getReceivedMessages
. Note that getReceivedMessages
does not necessarily return any message content; it generally only returns message metadata.
The other two operations, getMessage
and getMessageURIs
, are used to retrieve message content.
This operation polls the server for any received messages. Note the following requirements:
Table 66-5 describes the getReceivedMessagesRequest
input messages for the getReceivedMessages
operation.
Table 66-5 getReceivedMessagesRequest Input Message Descriptions
Part Name | Part Type | Optional | Description |
---|---|---|---|
registrationIdentifier | xsd:string | No | Identifies the off-line provisioning step that enables the application to receive notification of Message reception according to the specified criteria. |
priority | MessagePriority | Yes | The priority of the messages to poll from the Parlay X gateway. All messages of the specified priority and higher are retrieved. If not specified, all messages shall be returned, that is, the same as specifying "Low." |
Table 66-6 describes the getReceivedMessagesResponse
output messages for the getReceivedMessages
operation.
Table 66-6 getReceivedMessagesResponse Output Message Descriptions
Part Name | Part Type | Optional | Description |
---|---|---|---|
registrationIdentifier | xsd:string | No | Identifies the off-line provisioning step that enables the application to receive notification of Message reception according to the specified criteria. |
priority | MessagePriority | Yes | The priority of the messages to poll from the Parlay X gateway. All messages of the specified priority and higher are retrieved. If not specified, all messages shall be returned. This is equal to specifying Low. |
The getMessage
operation retrieves message content, using a message ID from a previous invocation of getReceivedMessages. There is no SOAP body in the response message; the content is returned as a single SOAP attachment.
Table 66-7 describes the getMessageRequest
input messages for the getMessage
operation.
Table 66-7 getMessageRequest Input Message Descriptions
Part Name | Part Type | Optional | Description |
---|---|---|---|
messageRefIdentifier | xsd:string | No | The identity of the message. |
There are no getMessageResponse
output messages for the getMessage
operation.
The getMessageURIs
retrieves message content as a list of URIs. Note the following requirements:
Table 66-8 describes the getMessageURIsRequest
input messages for the getMessageURIs
operation.
Table 66-8 getMessageURIsRequest Input Message Descriptions
Part Name | Part Type | Optional | Description |
---|---|---|---|
messageRefIdentifier | xsd:string | No | The identity of the message to retrieve. |
Table 66-9 describes the getMessageURIsResponse
output messages for the getMessageURIs
operation.
The Parlay X Messaging specification leaves certain parts of the messaging flow undefined. The main area that is left undefined is the process for binding a client to an address for synchronous receiving (through the ReceiveMessage interface).
Oracle User Messaging Service includes an extension interface to Parlay X to support this process. The extension is implemented as a separate WSDL in an Oracle XML namespace to indicate that it is not an official part of Parlay X. Clients can choose to not use this additional interface or use it in some modular way such that their core messaging logic remains fully compliant with the Parlay X specification.
ReceiveMessageManager is the Oracle-specific interface for managing client registrations for receiving messages. Clients use this interface to start and stop receiving messages at a particular address. (This is analogous to the concept of registering/unregistering access points in the Messaging API).
Invoking this operation allows a client to bind itself to a given endpoint for receiving messages. Note the following requirements:
stopReceiveMessage
and getReceivedMessages
operations. IM:jabber|user@example.com
, however the pipe (|
) character is not allowed in URIs, and must be escaped before submitting to the server. The startReceiveMessage
operation has the following inputs and outputs:
Table 66-10 describes the startReceiveMessageRequest
input messages for the startReceiveMessage
operation.
Table 66-10 startReceiveMessageRequest Input Message Descriptions
Part Name | Part Type | Optional | Description |
---|---|---|---|
registrationIdentifier | xsd:string | No | A registration identifier. |
messageService | xsd:anyURI | No | Message Service Activation Number. |
criteria | xsd:string | Yes | Descriptive string. |
There are no startReceiveMessageResponse
output messages for the startReceiveMessage
operation.
Invoking this operation removes the previously-established binding between a client and a receiving endpoint. The client specifies the same registration ID that was supplied when startReceiveMessage
was called to identify the endpoint binding that is being broken. If there is no corresponding registration ID binding known to the server for this application, a Policy Error results.
Table 66-11 describes the stopReceiveMessageRequest
input messages for the stopReceiveMessage
operation.
Table 66-11 stopReceiveMessageRequest Input Message Descriptions
Part Name | Part Type | Optional | Description |
---|---|---|---|
registrationIdentifier | xsd:string | No | A registration identifier. |
There are no stopReceiveMessageResponse
output messages for the stopReceiveMessage
operation.
While it is possible to assemble a Parlay X Messaging Client using only the Parlay X WSDL files and a web service assembly tool, prebuilt web service stubs and interfaces are provided for the supported Parlay X Messaging interfaces. Due to difficulty in assembling a web service with SOAP attachments in the style mandated by Parlay X, Oracle recommends the use of the provided API rather than starting from WSDL.
For a complete listing of the classes available in the Parlay X Messaging API, see the Messaging JavaDoc. The main entry points for the API are through the following client classes:
oracle.sdp.parlayx.multimedia_messaging.send.SendMessageClient
oracle.sdp.parlayx.multimedia_messaging.receive.ReceiveMessageClient
oracle.sdp.parlayx.multimedia_messaging.extension.receive_manager.
ReceiveMessageManager
Each client class allows a client application to invoke the operations in the corresponding interface. Additional web service parameters such as the remote gateway URL and any required security credentials, are provided when an instance of the client class is constructed. See the Javadoc for more details. The security credentials are propagated to the server using standard WS-Security headers, as mandated by the Parlay X specification.
The general process for a client application is to create one of the client classes above, set the necessary configuration items (endpoint, username, password), then invoke one of the business methods (for example, SendMessageClient.sendMessage()
, and so on). For examples of how to use this API, see the Messaging samples on Oracle Technology Network (OTN), and specifically usermessagingsample-parlayx-src.zip
.
This chapter describes how to create, deploy and run the sample chat application with Parlay X APIs provided with Oracle User Messaging Service on OTN.
Note: To learn more about the code samples for Oracle User Messaging Service, or to run the samples yourself, see the Oracle SOA Suite samples. Once you have navigated to this page, you can find code samples for Oracle User Messaging Service by entering the search term "UMS" and clicking Search. |
Note: To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite. |
This chapter contains the following sections:
This sample demonstrates how to create a web-based chat application to send and receive messages through email, SMS, or IM. The sample uses standards-based Parlay X Web Service APIs to interact with a User Messaging server. The sample application includes web service proxy code for each of three web service interfaces: the SendMessage and ReceiveMessage services defined by Parlay X, and the ReceiveMessageManager service which is an Oracle extension to Parlay X. You define an application server connection in Oracle JDeveloper, and deploy and run the application.The application is provided as a pre-built Oracle JDeveloper project that includes a simple web chat interface.
Perform the following steps to run and deploy the pre-built sample application:
In the Oracle JDeveloper main window the project appears.
Figure 66-1 Oracle JDeveloper Main Window
This opens the precreated JDeveloper application for the Parlay X sample application. The application contains one web module. All of the source code for the application is in place. You must configure the parameters that are specific to your installation.
Build Successful
appears in the log. Deployment Finished
appears in the deployment log. You have successfully deployed the application.
Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and configure a default device for the user receiving the message in User Messaging Preferences, as described in the following sections.
Note: Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information. |
Perform the following steps to run and test the sample:
http://
host
:
port
/usermessagingsample-parlayx/
The Messaging Parlay X Sample web page appears (Figure 66-4). This page contains navigation tabs and instructions for the application.
Figure 66-4 Messaging Parlay X Sample Web Page
http://localhost:port/sdpmessaging/parlayx/SendMessageService
http://localhost:port/sdpmessaging/parlayx/ReceiveMessageService
http://localhost:port/sdpmessaging/parlayx/ReceiveMessageMessageService
Figure 66-5 Configuring the Web Service Endpoints and Credentials
Verify that the message Registration operation succeeded
appears.
Figure 66-8 New Application Server Connection
SOA_server
and click Next (Figure 66-9). Figure 66-9 New Application Server Connection
weblogic
. Success!
appears. The Application Server Connection has been created.
This chapter describes the User Messaging Preferences that are packaged with Oracle User Messaging Service. It describes how to work with messaging channels and to create contact rules using messaging filters.
Note: To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite. |
This chapter includes the following sections:
User Messaging Preferences allows a user who has access to multiple channels (delivery types) to control how, when, and where they receive messages. Users define filters, or delivery preferences, that specify which channel a message should be delivered to, and under what circumstances. Information about a user's devices and filters are stored in any database supported for use with Oracle Fusion Middleware.
For an application developer, User Messaging Preferences provide increased flexibility. Rather than an application needing business logic to decide whether to send an email or SMS message, the application can just send to the user, and the message is delivered according to the user's preferences.
Since preferences are stored in a database, this information is shared across all instances of User Messaging Preferences in a domain.
The oracle.sdp.messaging.userprefs
package contains the User Messaging Preferences API classes. For more information, refer to the Javadoc.
User Messaging Preferences defines the following terminology:
User Messaging Preferences allows configuration of notification delivery preferences based on the following:
One use case for notification delivery preference is for bugs entered into a bug tracking system. For example, user Alex wants to be notified through SMS and EMAIL channels for bugs filed against his product with priority = 1 by a customer type = Premium. For all other bugs with priority > 1, he only wants to be notified by EMAIL. Alex's preferences can be stated as follows:
Example 67-1 Notification Delivery Preferences
A runtime service, the Oracle Rules Engine, evaluates the filters to process the notification delivery of user requests.
A delivery preference rule consists of rule comparisons and rule actions. A rule comparison consists of a rule term (a system term or a business term) and the associated comparison operators. A rule action is the action to be taken if the specified conditions in a rule are true.
Table 67-2 lists data types supported by User Messaging Preferences. Each system term and business term must have an associated data type, and each data type has a set of pre-defined comparison operators. Administrators cannot extend these operators.
Table 67-1 Data Types Supported by User Messaging Preferences
Data Type | Comparison Operators | Supported Values |
---|---|---|
Date | isEqual, isNotEqual, isGreaterThan, isGreaterThanOrEqual, isLessThan, isLessThanOrEqual, Between, isWeekday, isWeekend | Date is accepted as a |
Time | isEqual, isNotEqual, Between | A 4-digit integer to represent time of the day in HHMM format. First 2-digit is the hour in 24-hour format. Last 2-digit is minutes. |
Number (Decimal) | isEqual, isNotEqual, Between, isGreaterThan, isGreaterThanOrEqual, isLessThan, isLessThanOrEqual, isMultipleOf, isNotMultipleOf | A |
String | isEqual, isNotEqual, contains, not contains | Any arbitrary string. |
Note: The String data type does not support regular expressions. The Time data type is only available to System Terms. |
Table 67-2 lists system terms, which are pre-defined business terms. Administrators cannot extend the system terms.
Table 67-2 System Terms Supported by User Messaging Preferences
System Term | Data Type | Supported Values |
---|---|---|
Date | Date | Date is accepted as a |
Time | Time | A 4-digit integer to represent time of the day in HHMM format. First 2-digit is the hour in 24-hour format. Last 2-digit is minutes. |
Business terms are rule terms defined and managed by the system administrator through Oracle Application Server 11g Enterprise Manager. For more information on adding, defining, and deleting business terms, refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite. A business term consists of a key, a data type, an optional description, and an optional List of Values (LOV).
Table 67-3 lists the pre-defined business terms supported by User Messaging Preferences.
Table 67-3 Pre-defined Business Terms for User Messaging Preferences
Business Term | Data Type |
---|---|
Service Name | String |
Process Name | String |
System Code | String |
Error Code | String |
Occurrence Count | Number (Decimal) |
Organization | String |
Priority | String |
Application | String |
Application Type | String |
Expiration Date | Date |
From | String |
To | String |
Customer Name | String |
Customer Type | String |
Status | String |
Amount | Number (Decimal) |
Due Date | Date |
Process Type | String |
Expense Type | String |
Total Cost | Number (Decimal) |
Processing Time | Number (Decimal) |
Order Type | String |
Service Request Type | String |
Group Name | String |
Source | String |
Classification | String |
Duration | Number (Decimal) |
User | String |
Role | String |
For a given rule, a User Messaging Preferences user can define one of the following actions:
Tip: User Messaging Preferences does not provide a filter action that instructs "do not send to a specified channel." A best practice is to specify only positive actions, and not negative actions in rules. |
Any channel that a user creates is associated with that user's system ID. In Oracle User Messaging Service, channels represent both physical channels, such as mobile phones, and also email client applications running on desktops, and are configurable on the The Messaging Channels tab (Figure 67-1).
Notes: |
|
The Messaging Channels tab enables users to perform the following tasks:
To create a channel:
To edit a channel, select it from the Channels list and click Edit (Figure 67-4). The editing page appears for the channel, which enables you to change the channel properties described in Section 67.2.1, "Creating a Channel".
Certain channels are based on information retrieved from your user profile in the identity store, and this address cannot be modified by User Messaging Preferences (Figure 67-5). The only operation that can be performed on such as channel is to make it the default.
Figure 67-5 Edit a Identity Store-Backed Channel
You can configure one or more channels as default channels. Email is preconfigured as a default for receiving notifications. You can add or remove a channel as a default channel.
To set an additional channel as a default, select it, click Edit, and then click Set as default channel. A checkmark (Figure 67-7) appears next to the selected channel, designating it as a default means of receiving notifications. Repeat this procedure to add additional default channels, if required.
The Messaging Filters tab (Figure 67-8) enables users to build filters that specify not only the type of notifications they want to receive, but also the channel through which to receive these notifications through a combination of comparison operators (such as is equal to, is not equal to), business terms that describe the notification type, content or source, and finally, the notification actions, which send the notifications to all channels, block channels from receiving notifications, or send notifications to the first available channel.
Figure 67-9 illustrates the creation of a filter called Travel Filter, by a user named weblogic, for handling notifications regarding Customers during his travel. Notifications that match all of the filter conditions are first directed to his "Business Mobile" channel. Should this channel become unavailable, Oracle User Messaging Service transmits the notifications as e-mails since the next available channel selected is Business Email.
To create a filter:
For instance, if you select the Date attribute, select one of the comparison operators and then select the appropriate dates from the date chooser.
To edit a filter, first select it and then click Edit (Figure 67-9). The editing page appears for the filter, which enables you to add or change the filter properties described in Section 67.3.1, "Creating Filters".
The Settings tab (Figure 67-10), accessed from the upper right area, enables users to set the following parameters:
This part describes Oracle SOA Suite appendixes.
This part contains the following appendixes:
This appendix describes the BPEL process activities and services that you use when designing a BPEL process in a SOA composite application. It also describes how to publish and browse the Oracle Service Registry and how the Oracle Enterprise Repository provides design-time governance.
This appendix includes the following sections:
When you expand SOA Components in the Component Palette of Oracle BPEL Designer, service components are displayed. Figure A-1 shows the components that display for a BPEL 1.1 process. A BPEL 2.0 process also shows the same components.
See the following sections for additional details.
This section provides a brief overview of BPEL activities and provides references to other documentation that describes how to use these activities.
Oracle BPEL Designer includes BPEL 1.1 and BPEL 2.0 activities that are available for adding in a BPEL process. These activities enable you to perform specific tasks within a process. Some activities are available in both BPEL 1.1 and BPEL 2.0. Others are available in only BPEL 1.1 or BPEL 2.0.
To access these activities, go to the Component Palette of Oracle BPEL Designer. The activities display under either of two categories:
Table A-1 lists the available activities.
Table A-1 BPEL 1.1 and 2.0 Constructions and Extensions
Activity | Display Under... | Supported in BPEL 1.1 | Supported in BPEL 2.0 | For More Information |
---|---|---|---|---|
Assign | BPEL Constructs | Yes | Yes | Section A.2.3, "Assign Activity" |
Assert | Oracle Extensions | Yes | Yes | Section A.2.4, "Assert Activity" |
Bind Entity | Oracle Extensions | Yes | No | Section A.2.5, "Bind Entity Activity" |
Compensate | BPEL Constructs | Yes | Yes | Section A.2.6, "Compensate Activity" |
CompensateScope | BPEL Constructs | No | Yes | Section A.2.7, "CompensateScope Activity" |
Create Entity | Oracle Extensions | Yes | No | Section A.2.8, "Create Entity Activity" |
Dehydrate | Oracle Extensions | Yes | Yes | Section A.2.9, "Dehydrate Activity" |
| Oracle Extensions | Yes | Yes | Section A.2.10, "Email Activity" |
Empty | BPEL Constructs | Yes | Yes | Section A.2.11, "Empty Activity" |
Exit | BPEL Constructs | No | Yes | Section A.2.12, "Exit Activity" |
Flow | BPEL Constructs | Yes | Yes | Section A.2.13, "Flow Activity" |
FlowN | Oracle Extensions | Yes | No | Section A.2.14, "FlowN Activity" |
forEach | BPEL Constructs | No | Yes | Section A.2.15, "forEach Activity" |
If | BPEL Constructs | No | Yes | |
IM | Oracle Extensions | Yes | Yes | |
Invoke | BPEL Constructs | Yes | Yes | Section A.2.18, "Invoke Activity" |
Java Embedding | Oracle Extensions | Yes | Yes | Section A.2.19, "Java Embedding Activity" |
Partner Link | BPEL Constructs | Yes | Yes | Section A.2.20, "Partner Link Activity" |
Phase | Oracle Extensions | Yes | Yes | Section A.2.21, "Phase Activity" |
Pick | BPEL Constructs | Yes | Yes | Section A.2.22, "Pick Activity" |
Receive | BPEL Constructs | Yes | Yes | Section A.2.23, "Receive Activity" |
Receive Signal | Oracle Extensions | Yes | Yes | Section A.2.24, "Receive Signal Activity" |
Remove Entity | Oracle Extensions | Yes | No | Section A.2.25, "Remove Entity Activity" |
RepeatUntil | BPEL Constructs | No | Yes | Section A.2.26, "RepeatUntil Activity" |
Replay | Oracle Extensions | Yes | Yes | Section A.2.27, "Replay Activity" |
Reply | BPEL Constructs | Yes | Yes | Section A.2.28, "Reply Activity" |
Rethrow | BPEL Constructs | No | Yes | Section A.2.29, "Rethrow Activity" |
Scope | BPEL Constructs | Yes | Yes | Section A.2.30, "Scope Activity" |
Sequence | BPEL Constructs | Yes | Yes | Section A.2.31, "Sequence Activity" |
Signal | Oracle Extensions | Yes | Yes | Section A.2.32, "Signal Activity" |
SMS | Oracle Extensions | Yes | Yes | Section A.2.33, "SMS Activity" |
Switch | BPEL Constructs | Yes | No | Section A.2.34, "Switch Activity" |
Terminate | BPEL Constructs | Yes | No | Section A.2.35, "Terminate Activity" |
Throw | BPEL Constructs | Yes | Yes | Section A.2.36, "Throw Activity" |
Transform | Oracle Extensions | Yes | Yes | Section A.2.37, "Transform Activity" |
User Notification | Oracle Extensions | Yes | Yes | Section A.2.38, "User Notification Activity" |
Validate | Oracle Extensions (in BPEL 1.1) BPEL Constructs (in BPEL 2.0) | Yes | Yes | Section A.2.39, "Validate Activity" |
Voice | Oracle Extensions | Yes | Yes | Section A.2.40, "Voice Activity" |
Wait | BPEL Constructs | Yes | Yes | Section A.2.41, "Wait Activity" |
While | BPEL Constructs | Yes | Yes | Section A.2.42, "While Activity" |
For more information about activities, see the Business Process Execution Language for Web Services Specification or the Web Services Business Process Execution Language Specification Version 2.0 by visiting the following URL:
While each activity performs specific tasks, many activities include tabs that enable you to perform similar tasks. This section describes these common tabs.
The Annotations tab displays on all activities and enables you to provide descriptions in activities in the form of code comments and name and pair value assignments.
The Annotations tab does not provide a method for changing the order of annotations. As a work around, change the order of annotations in the Source view of the project's BPEL file in Oracle BPEL Designer.
The Assertions tab displays in invoke, receive, reply, and the onMessage branches of pick and scope activities. A set of assertions are executed upon receipt of a callback message at a request-response operation in these activities. The assertions specify an XPath expression that, when evaluated to false, causes a BPEL fault to be thrown from the activity. This provides an alternative to using a potentially large number of switch, assign, and throw activities after a partner callback.
You can select when to execute a condition:
For more information, see the online help for this tab and Section 12.14, "Throwing Faults with Assertion Conditions."
The Correlations tab displays in invoke, receive, and reply activities, the onMessage branch of pick activities, and the OnMessage branch of scope activities. Correlation sets address complex interactions between a process and its partners by providing a method for explicitly specifying correlated groups of operations within a service instance. A set of correlation tokens is defined as a set of properties shared by all messages in the correlated group.
For more information, see the online help for this tab and Section 9.1, "Using Correlation Sets in an Asynchronous Service."
The Documentation tab enables you to embed human documentation in the activities of a BPEL file. These comments only display in the source code of the BPEL file. Example A-1 provides details.
Example A-1 Documentation Tab
Note: This tab is only available in BPEL 2.0 projects. |
The Headers tab displays in invoke, receive, and reply activities, and the onMessage branch of pick and scope (for BPEL 1.1) activities. You create header variables for use with the Advanced Queuing (AQ), File, FTP, MQ, and Java Message Service (JMS) adapters.
For more information, see the online help for this tab and Oracle Fusion Middleware User's Guide for Technology Adapters
The Properties tab displays in invoke, receive, and reply activities, and the onMessage branch of pick and scope activities.You can define normalized message header properties for Oracle BPEL Process Manager, Oracle Mediator, Oracle JCA adapters, and Oracle B2B.
For more information, see the online help for this tab and Appendix H, "Normalized Message Properties."
The Skip Condition tab displays in most activities and enables you to specify an XPath expression that, when evaluated to true, causes the activity to be skipped. This extension provides an alternative to the case pattern of a switch activity that you use to make an activity conditional.
For more information, see the online help for this tab and Section 11.5, "Specifying XPath Expressions to Bypass Activity Execution."
The Sources and Targets tabs enable you to define the source and target activities to execute in a flow activity. This feature enables you to synchronize the execution of activities within a flow activity to ensure that a target activity only executes after a source activity have completed.
For more information, see the online help for this tab and Section 10.2.3, "Synchronizing the Execution of Activities in a Flow Activity."
The Timeout tab displays in receive activities and provides a timeout setting for request-response operations. This provides an alternative to the onMessage and onAlarm branches of a pick activity that you must use when you want to specify a time out duration for partner callbacks.
For more information, see the online help for this tab and Section 15.3, "Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities."
You can copy and paste activities in the same BPEL project or between BPEL projects. This prevents you from having to create similar activities from start to finish multiple times. You can design an activity once and use it in multiple places, editing it as necessary.
Note: You can copy an individual OnAlarm activity from one scope activity and paste it into another scope activity. You can also copy an individual OnAlarm activity from one pick activity and paste it into another pick activity. |
Note the following restrictions:
To copy and paste activities:
or
The activity is pasted at the top of the BPEL process.
This activity provides a method for data manipulation, such as copying the contents of one variable to another. Copy operations enable you to transfer information between variables, expressions, endpoints, and other elements.
Figure A-3 shows the Copy Rules tab of the Assign dialog for BPEL 1.1. You drag the source node to the target node to create a BPEL copy rule from the source to the target node. This action creates a line that connects the source and target types. The copy rule is displayed in the From and To sections at the bottom of the dialog.
Figure A-3 Copy Rules Tab of Assign Activity Dialog
The Select Insertion Mode list above the source node section enables you to insert the next copy rule you create either after or before the rule selected at the bottom of the dialog.
Icons display above the target node that enable you to perform the following tasks (from left to right) on target nodes.
bpelx:remove
extension rule. bpelx:rename
extension rule with an elementTo
attribute. bpelx:rename
extension rule with a typeCastTo
attribute. This results in an xsi:type
attribute in the XML output. You can also change a selected copy rule to a bpelx
extension type (bpelx:copyList
, bpelx:insertAfter
, bpelx:insertBefore
, or bpelx:append
).
The method of selection differs between BPEL 1.1 and BPEL 2.0.
Figure A-4 shows how you select an extension type in BPEL 1.1. You select a copy rule, select the Copy dropdown list, and then select the appropriate extension.
Figure A-4 Copy Rule Converted to bpelx Extension in BPEL 1.1
Figure A-5 shows how you select an extension type in BPEL 2.0. You right-click a copy rule, select Change rule type, and then select the appropriate extension.
Figure A-5 Copy Rule Converted to bpelx Extension in BPEL 2.0
For more information about manipulating XML data with bpelx
extensions, see Section 6.14, "Manipulating XML Data with bpelx Extensions."
In the From and To XPath fields, you can also place your cursor over the icon to the left of the source type to display the operation being performed (for example, copy, append, and so on). Each operation type is represented by a different icon. You can also right-click a copy rule to display a list of actions to perform:
ignoreMissingFromData
attribute on the copy rule on and off. When toggled on, this suppresses any bpel:selectionFailure
standard faults. insertMissingToData
attribute on the copy rule on and off. keepSrcElementName
attribute on the copy rule on and off. This option enables you to replace the element name of the destination (as selected by the to-spec
) with the element name of the source. bpelx:copyList
, bpelx:insertAfter
, bpelx:insertBefore
, or bpelx:append
. For more information about the ignoreMissingFromData, insertMissingToData, and keepSrcElementName attributes, see Section 6.14.7, "How to Use Assign Extension Attributes."
The icons above the To section enable you to delete, move up, and move down a selected copy rule.
For more information about the assign activity, see the online Help for the Copy Rules dialog and Chapter 6, "Manipulating XML Data in a BPEL Process."
This activity enables you to perform an assertion on a specified expression.
This is a standalone activity in which to specify assertions. This activity can be placed anywhere in the BPEL process flow. You can also specify assertions in message exchange activities from the Assertions tab in invoke activities, reply activities, receive activities, and the onMessage branch of pick and scope activities.
Figure A-6 shows the Assert dialog.
For more information about the standalone assert activity, see Section 12.14.1.7, "Assertion Conditions in a Standalone Assert Activity" and Section 12.14.4, "What Happens When You Create Assertion Conditions."
This activity enables you to select the entity variable to act as the data handle to access and plug in different data provider service technologies.
The entity variable can be used with an Oracle Application Development Framework (ADF) Business Component data provider service using service data object (SDO)-based data. The entity variable enables you to specify BPEL data operations to be performed by an underlying data provider service. The data provider service performs the data operations in a data store behind the scenes and without use of other data store-related features provided by Oracle BPEL Process Manager (for example, the database adapter). This action enhances Oracle BPEL Process Manager runtime performance and incorporates native features of the underlying data provider service during compilation and runtime.
Note: This activity is only supported in BPEL 1.1 projects. |
Figure A-7 shows the Bind Entity dialog.
This activity invokes compensation on an inner scope activity that has successfully completed. This activity can be invoked only from within a fault handler or another compensation handler. Compensation occurs when a process cannot complete several operations after completing others. The process must return and undo the previously completed operations. For example, assume a process is designed to book a rental car, a hotel, and a flight. The process books the car and the hotel, but cannot book a flight for the correct day. In this case, the process performs compensation by unbooking the car and the hotel.The compensation handler is invoked with the compensate activity, which names the scope on which the compensation handler is to be invoked.
Figure A-8 shows the Compensate dialog in BPEL 1.1. You can perform the following tasks:
In BPEL 2.0, the Compensate dialog includes a Documentation tab.
For more information about the compensate activity, see Section 12.12, "Using Compensation After Undoing a Series of Operations."
This activity enables you to start compensation on a specified inner scope that has already completed successfully. This activity must only be used from within a fault handler, another compensation handler, or a termination handler.
Note: This activity is only supported in BPEL 2.0 projects. |
Figure A-9 shows the CompensateScope dialog.
For more information about the compensateScope activity, see Section 12.12, "Using Compensation After Undoing a Series of Operations"
This activity enables you to create an entity variable. The entity variable can be used with an Oracle ADF Business Component data provider service using SDO-based data.
Note: This activity is only supported in BPEL 1.1 projects. |
Figure A-10 shows the Create Entity dialog.
For more information, see Section 6.2, "Delegating XML Data Operations to Data Provider Services."
By default, dehydration points are set on activities such as a wait and a receive. The dehydrate activity enables you to explicitly specify a dehydration point. This activity acts as a dehydration point to automatically maintain long-running asynchronous processes and their current state information in a database while they wait for asynchronous callbacks. Storing the process in a database preserves the process and prevents any loss of state or reliability if a system shuts down or a network problem occurs. This feature increases both BPEL process reliability and scalability.
The bpelx:dehydrate
extension implements dehydration. For BPEL projects that support BPEL version 1.1, the syntax is as follows:
For BPEL projects that support BPEL version 2.0, the syntax is as shown in Example A-2.
Example A-2 bpelx:dehydrate Extension in BPEL 2.0
Figure A-11 shows the Dehydrate dialog in BPEL 2.0.
This activity enables you to send an email notification about an event.
For example, an online shopping business process of an online bookstore sends a courtesy email message to you after the items are shipped. The business process calls the notification service with your user ID and notification message. The notification service gets the email address from Oracle Internet Directory.
Figure A-12 shows the Email dialog in BPEL 1.1.
In BPEL 2.0, the Email dialog includes a Skip Condition tab.
For more information about the email activity, see Section 17.3.1, "How To Configure the Email Notification Channel."
This activity enables you to insert a no-operation instruction into a process. This activity is useful when you must use an activity that does nothing (for example, when a fault must be caught and suppressed).
Figure A-13 shows the Empty dialog in BPEL 1.1.
In BPEL 2.0, the Empty dialog includes a Documentation tab.
For more information about the empty activity, see Section 12.10.8, "How to Create an Empty Activity to Insert No-Op Instructions into a Business Process."
This activity enables you to immediately end all currently running activities on all parallel branches without involving any termination handling, fault handling, or compensation handling mechanisms.
Note: This activity replaces the terminate activity in BPEL 2.0 projects. |
Figure A-14 shows the Exit dialog.
For more information about the exit activity, see Section 12.13.2, "Immediately Ending a Business Process Instance with the Exit Activity in BPEL 2.0"
This activity enables you to specify one or more activities to be performed concurrently. A flow activity completes when all activities in the flow have finished processing. Completion of a flow activity includes the possibility that it can be skipped if its enabling condition is false.
For example, assume you use a flow activity to enable two loan offer providers (United Loan service and Star Loan service) to start in parallel. In this case, the flow activity contains two parallel activities – the sequence to invoke the United Loan service and the sequence to invoke the Star Loan service. Each service can take an arbitrary amount of time to complete their loan processes.
Figure A-15 shows an initial flow activity with its two panels for parallel processing. You drag activities into both panels to create parallel processing. When complete, a flow activity looks like that shown in Figure A-16.
Figure A-15 Flow Dialog (At Time of Creation)
Figure A-16 Flow Dialog (After Design Completion)
You can also synchronize the execution of activities within a flow activity. This ensures that certain actives only execute after other activities have completed.
Note: Oracle's BPEL implementation executes flows in the same, single execution thread of the BPEL process and not in separate threads. |
For more information about the flow activity, see Section 10.2, "Creating a Parallel Flow."
This activity enables you to create multiple flows equal to the value of N
, which is defined at runtime based on the data available and logic within the process. An index variable increments each time a new branch is created, until the index variable reaches the value of N
.
Note: This activity is replaced by the forEach activity in BPEL 2.0 projects. |
Figure A-17 shows the FlowN dialog.
For more information about the flowN activity, see Section 10.3.1, "Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1."
This activity enables you to process multiple sets of activities sequentially or in parallel. The forEach activity executes its contained (child) scope activity exactly N+1 times, where N equals the final counter value minus the starting counter value that you specify in the Counter Values tab of the For Each dialog. While other structured activities such as a flow activity can have any type of activity as its contained activity, the forEach activity can only use a scope activity.
Note: This activity replaces the flowN activity in BPEL 2.0 projects. |
Figure A-18 shows a forEach activity with its contained scope.
For more information about the forEach activity, see Section 10.3.2, "Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0."
This activity enables you to define conditional behavior for specific activities to decide between two or more branches. Only one activity is selected for execution from a set of branches.
Note: This activity replaces the switch activity in BPEL 2.0 projects. |
Figure A-19 shows an if activity with the following defined if, elseif, and else branches.
For more information about the if activity, see Section 11.2.2, "Defining Conditional Branching with the If Activity in BPEL 2.0."
This activity enables you to send an automatic, asynchronous instant message (IM) notification to a user, group, or destination address. Figure A-20 shows the IM dialog in BPEL 1.1.
For more information, see Section 17.3.2, "How to Configure the IM Notification Channel."
This activity enables you to specify an operation you want to invoke for the service (identified by its partner link). The operation can be one-way or request-response on a port provided by the service. You can also automatically create variables in an invoke activity. An invoke activity invokes a synchronous web service or initiates an asynchronous web service.
The invoke activity opens a port in the process to send and receive data. It uses this port to submit required data and receive a response. For synchronous callbacks, only one port is needed for both the send and the receive functions.
The invoke activity supports the bpelx:inputProperty
and bpelx:outputProperty
that facilitate the passing of properties through the SOAP header and the obtaining of SOA runtime system properties for useful information such as the tracking.compositeInstanceId and tracking.conversationId.
Figure A-21 shows the Invoke dialog in BPEL 1.1. You can perform the following tasks:
In BPEL 2.0, the Invoke dialog includes the Documentation, Targets, and Sources tabs. For more information about the invoke activity, see the following:
This activity enables you to add custom Java code to a BPEL process using the Java BPEL exec
extension bpelx:exec
. This is useful when you have Java code that can perform a function, and want to use this existing code instead of starting over. In BPEL 2.0 projects, the bpelx:exec
extension and Java code are wrapped in an <extensionActivity>
element.
Figure A-22 shows the Edit Java Embedding dialog in BPEL 1.1.
For more information about the Java embedding activity, see Chapter 14, "Incorporating Java and Java EE Code in a BPEL Process."
This service enables you to define the external services with which your process interacts. A partner link type characterizes the conversational relationship between two services by defining the roles played by each service in the conversation and specifying the port type provided by each service to receive messages within the conversation. For example, if you are creating a process to interact with a Credit Rating Service and two loan provider services (United Loan and Star Loan), you create partner links for all three services.
Figure A-23 shows the Partner Link dialog in BPEL 1.1. You provide the following details:
In BPEL 2.0, the Partner Link dialog also includes the Documentation tab.
For more information about partner links, see Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process."
This activity creates Oracle Mediator and business rules service components for integration with a BPEL process. You create message request input and message response output variables and design business rules for evaluating variable content for the BPEL process.
When you complete these tasks, the following activities and service components are created:
Figure A-24 shows Phase dialog in BPEL 1.1.
In BPEL 2.0, the Phase dialog includes the Documentation tab.
For more information, see Chapter 51, "Using Two-Layer Business Process Management (BPM)."
This activity waits for the occurrence of one event in a set of events and performs the activity associated with that event. The occurrence of the events is often mutually exclusive (the process either receives an acceptance or rejection message, but not both). If multiple events occur, the selection of the activity to perform depends on which event occurred first. If the events occur nearly simultaneously, there is a race and the choice of activity to be performed is dependent on both timing and implementation.
The pick activity provides an OnMessage branch. When you double-click the OnMessage icon in BPEL 1.1, the dialog shown in Figure A-25 appears.
In BPEL 2.0, the OnMessage dialog includes a Documentation tab.
The two branches of the pick activity are as follows:
Contains the code for receiving a reply, for example, from a loan service.
Contains the code for a timeout, for example, after one minute.
Whichever branch completes first is executed; the other branch is not executed. The branch that has its condition satisfied first is executed.
Figure A-26 shows the OnAlarm dialog of the pick activity in BPEL 1.1.
Figure A-26 OnAlarm Branch Dialog of a Pick Activity
In BPEL 2.0, the OnAlarm dialog includes a Documentation tab.
If you add correlations to an OnMessage branch, the correlations syntax is placed after the assign activity syntax. The correlation syntax must go before the assign activity.
As a work around, perform the following steps:
For more information about the pick activity, see the following:
This activity specifies the partner link from which to receive information and the port type and operation for the partner link to invoke. This activity waits for an asynchronous callback response message from a service, such as a loan application approver service. While the BPEL process is waiting, it is dehydrated (compressed and stored) until the callback message arrives. The contents of this response are stored in a response variable in the process.
The receive activity supports the bpelx:property
extensions that facilitate the passing of properties through the SOAP header, and the obtaining of SOA runtime system properties for useful information such as tracking.compositeInstanceId and tracking.conversationId.
Figure A-27 shows the Receive dialog in BPEL 1.1. You can perform the following tasks:
In BPEL 2.0, the Receive dialog includes the Documentation, Targets, and Sources tabs.
For more information about the receive activity, see the following:
Use this activity in detail processes to wait for the notification signal from the master process to begin processing and use in a master process to wait for the notification signal from all detail processes indicating that processing has completed.
Figure A-28 shows the Receive Signal dialog in BPEL 1.1.
In BPEL 2.0, the Receive Signal dialog includes a Skip Condition tab.
For more information, see Chapter 16, "Coordinating Master and Detail Processes."
This activity enables you to remove an entity variable. This action removes the row.
Note: This activity is only supported in BPEL 1.1 projects. |
Figure A-29 shows the Remove Entity dialog.
Use this activity if the body of an activity must be performed at least once. The XPath expression condition in the repeatUntil activity is evaluated after the body of the activity completes. The condition is evaluated repeatedly (and the body of the activity processed) until the provided boolean condition is true. Figure A-30 shows the Remove Entity dialog.
Note: This activity is only supported in BPEL 2.0 projects. |
For more information about the repeatUntil activity, see, Section 11.4, "Creating a repeatUntil Activity to Define Conditional Branching."
This activity enables you to re-execute the activities inside a selected scope.
Figure A-31 shows the Replay dialog in BPEL 2.0.
In BPEL 1.1, the Replay dialog does not include a Documentation tab, Targets tab, or Sources tab. For more information about the replay activity, see Section 12.11, "Re-executing Activities in a Scope Activity with the Replay Activity."
This activity allows the process to send a message in reply to a message that was received through a receive activity. The combination of a receive activity and a reply activity forms a request-response operation on the WSDL port type for the process.
Figure A-32 shows the Reply dialog in BPEL 1.1.
In BPEL 2.0, the Reply dialog includes the Documentation, Targets, and Sources tabs.
For more information about the reply activity, see the following:
This activity enables you to rethrow a fault originally captured by the immediately enclosing fault handler.
Note: This activity is only supported in BPEL 2.0 projects. |
Figure A-33 shows a rethrow activity within a fault handler (catch activity).
For more information about rethrowing faults, see Section 12.8, "Rethrowing Faults with the Rethrow Activity."
This activity consists of a collection of nested activities that can have their own local variables, fault handlers, compensation handlers, and so on. A scope activity is analogous to a {
}
block in a programming language.
Each scope has a primary activity that defines its behavior. The primary activity can be a complex structured activity, with many nested activities within it to arbitrary depth. The scope is shared by all the nested activities.
Figure A-34 shows the Scope dialog in BPEL 1.1. Define appropriate activities inside the scope activity.
In BPEL 2.0, the Scope dialog includes the Documentation, Targets, and Sources tabs.
Fault handling is associated with a scope activity. The goal is to undo the incomplete and unsuccessful work of a scope activity in which a fault has occurred. You define catch activities in a scope activity to create a set of custom fault-handling activities. Each catch activity is defined to intercept a specific type of fault.
Figure A-35 shows the Add Catch icon inside a scope activity. Figure A-36 shows the catch activity area that appears when you click the Add Catch icon. Within the area defined as Drop Activity Here, you drag additional activities to create fault handling logic to catch and manage exceptions.
For example, a client provides a social security number to a Credit Rating service when applying for a loan. This number is used to perform a credit check. If a bad credit history is identified or the social security number is identified as invalid, an assign activity inside the catch activity notifies the client of the loan offer rejection. The entire loan application process is terminated with a terminate activity.
For more information about the scope activity and fault handling, see the following:
This activity enables you to define a collection of activities to be performed in sequential order. For example, you may want the following activities performed in a specific order:
A sequence activity makes the assumption that the request can be processed in a reasonable amount of time, justifying the requirement that the invoker wait for a synchronous response (because this service is offered as a request-response operation).
When this assumption cannot be made, it is better to define the customer interaction as a pair of asynchronous message exchanges.
When you double-click the Sequence icon, the activity area shown in Figure A-37 appears. Drag and define appropriate activities inside the sequence activity.
For more information about the sequence activity, see the following:
This activity is used in a master process to notify detail processes to perform processing at runtime and used in detail processes to notify a master process that processing has completed. Figure A-38 shows the Signal dialog in BPEL 1.1.
In BPEL 2.0, the Signal dialog includes a Skip Condition tab. For more information, see Chapter 16, "Coordinating Master and Detail Processes."
This activity enables you to send a short message system (SMS) notification about an event.
Figure A-39 shows the SMS dialog in BPEL 1.1 and BPEL 2.0.
For more information about the SMS activity, see Section 17.3.3, "How to Configure the SMS Notification Channel."
Note: The fax and pager activities are not supported in 11g. |
This activity consists of an ordered list of one or more conditional branches defined in a case branch, followed optionally by an otherwise branch. The branches are considered in the order in which they appear. The first branch whose condition is true is taken and provides the activity performed for the switch. If no branch with a condition is taken, then the otherwise branch is taken. If the otherwise branch is not explicitly specified, then an otherwise branch with an empty activity is assumed to be available. The switch activity is complete when the activity of the selected branch completes.
A switch activity differs in functionality from a flow activity. For example, a flow activity enables a process to gather two loan offers at the same time, but does not compare their values. To compare and make decisions on the values of the two offers, a switch activity is used. The first branch is executed if a defined condition (inside the case branch) is met. If it is not met, the otherwise branch is executed.
Note: This activity is replaced by the if activity in BPEL 2.0 projects. |
Figure A-40 shows a switch activity with the following defined branches.
For more information about the switch activity, see the following:
A terminate activity enables you to end the tasks of an activity (for example, the fault handling tasks in a catch branch). For example, if a client's bad credit history is identified or a social security number is identified as invalid, a loan application process is terminated, and the client's loan application document is never submitted to the service loan providers.
Note: This activity is replaced by the exit activity in BPEL 2.0 projects. |
Figure A-41 shows several terminate activities in the otherwise branch of a switch activity.
For more information about the terminate activity, see Section 12.13.1, "Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1."
This activity generates a fault from inside the business process.
Figure A-42 shows the Throw dialog.
In BPEL 2.0, the Throw dialog includes the Documentation, Targets, and Sources tabs.
For more information about the throw activity, see Section 12.7, "Throwing Internal Faults."
This activity enables you to create a transformation that maps source elements to target elements (for example, incoming purchase order data into outgoing purchase order acknowledgment data).
Figure A-43 shows the Transform dialog in BPEL 1.1. This dialog enables you to perform the following tasks:
In BPEL 2.0, the Transform dialog includes the Documentation, Targets, and Sources tabs.
For more information about the transform activity, see Chapter 40, "Creating Transformations with the XSLT Mapper."
This activity enables you to design a BPEL process in which you do not explicitly select a notification channel during design time, but simply indicate that a notification must be sent. The channel to use for sending notifications is resolved at runtime based on preferences defined by the end user in the User Messaging Preferences user interface of the Oracle User Messaging Service. This moves the responsibility of notification channel selection from Oracle BPEL Designer to the end user. If the end user does not select a preferred channel or rule, email is used by default for sending notifications to that user. Figure A-44 shows the User Notification dialog in BPEL 1.1.
For more information, see Section 17.4, "Allowing the End User to Select Notification Channels."
This activity enables you to validate variables in the list. The variables are validated against their XML schema.
Figure A-45 shows the Validate dialog in BPEL 1.1.
In BPEL 2.0, the Validate dialog includes the Documentation, Targets, and Sources tabs
For more information about the validate activity, see Section 6.15, "Validating XML Data."
This activity enables you to send a telephone voice notification about an event.
Figure A-46 shows the Voice dialog in BPEL 1.1.
For more information about the voice activity, see Section 17.3.4, "How to Configure the Voice Notification Channel."
This activity allows a process to specify a delay for a certain period or until a certain deadline is reached. A typical use of this activity is to invoke an operation at a certain time. This activity enables you to wait for a given time period or until a certain time has passed. Exactly one of the expiration criteria must be specified.
Figure A-47 shows the Wait dialog in BPEL 1.1.
In BPEL 2.0, the Wait dialog includes the Documentation, Targets, and Sources tabs.
For more information about the wait activity, see Section 15.4, "Creating a Wait Activity to Set an Expiration Time."
This activity supports repeated performance of a specified iterative activity. The iterative activity is repeated until the given while
condition is no longer true.
Figure A-48 shows the While dialog in BPEL 1.1. You can enter expressions in this dialog.
In BPEL 2.0, the While dialog includes the Documentation, Targets, and Sources tabs.
For more information about the while activity, see Section 11.3, "Creating a While Activity to Define Conditional Branching."
BPEL processes can communicate with web-based applications and clients through web services, Oracle Application Development Framework (ADF)-business component (BC) services, JCA adapters, Oracle B2B services, Oracle Business Activity Monitoring, HTTP binding, direct binding, EJB services, Oracle E-Business Suite, and partner links.
To access BPEL services:
Table A-2 BPEL Services
The Oracle Service Registry (OSR) provides a common standard for publishing and discovering information about web services. This section describes how to configure OSR against a separately installed Oracle SOA Suite environment.
You can use Oracle SOA Suite with the following versions of OSR:
For more information about OSR, visit the following URL:
Notes:
|
This section provides an overview of how to publish a business service. For specific instructions, see the documentation at the following URL:
You can also access the documentation by clicking the Registry Documentation icon in the upper right corner of the page.
To publish a business service:
Note: If you later change your endpoint location, you must also update the WSDL location in the Registry Control. Otherwise, UDDI invocation fails during runtime. See section Section A.4.4.1, "Changing Endpoint Locations in the Registry Control." |
To create a connection to the registry:
To configure a SOA project to invoke a service from the registry:
The Create Web Service dialog appears.
The UDDI Deployment Options dialog appears.
Figure A-50 provides details.
Figure A-50 UDDI Deployment Options Dialog
You are returned to the Create Web Service dialog.
The Create Web Service dialog looks as shown in Figure A-51.
Figure A-51 Create Web Service Dialog - SOAP Endpoint Location
The composite.xml
file shows the serviceKey
. The property dynamically resolves the endpoint binding location at runtime.
oracle.soa.uddi.servicekey
property in the Property Inspector. This action dynamically resolves the SOAP endpoint location at runtime for any external reference to a web service. Figure A-52 provides details. composite.xml
file. The Create Web Service dialog looks as shown in Figure A-53.
Figure A-53 Create Web Service Dialog - WSDL Endpoint Location
The composite.xml
file shows that the WSDL location is an abstract URL of orauddi:/
uddi_service_key
instead of a concrete URL (such as a HTTP URL). The orauddi
protocol dynamically resolves the WSDL location at runtime.
Oracle SOA Suite invokes a service for resolving an endpoint. Examples and descriptions are shown in Table A-3.
Table A-3 Resolving Endpoints
Endpoint Resolutions | Description | Example |
---|---|---|
Normalized message UDDI | The OSR UDDI | For example, with Oracle Mediator: <copy target="$out.property.oracle.soa.uddi.serviceKey" value="uddi:10a55fa0-99e8-11df-9edf-7d5e3ef09eda"/> |
Normalized message | The normalized message | For example, with Oracle Mediator: <copy target="$out.property.endpointURI" value="http://hostname:8001/soa-infra/services /partition/Project/endpoint_ep"/> |
| The OSR UDDI Note: This can be overwritten in Oracle Enterprise Manager Fusion Middleware Control. | <binding.ws port="http://xmlns.oracle.com/UDDIPublishApplication /Proj/BPELProcess1#wsdl.endpoint(bpelprocess1_client _ep/BPELProcess1_pt)" . . .> <property name="oracle.soa.uddi.serviceKey" type="xs:string" many="false">uddi:31040650-9ce7-11df-9ee1-7d5e3e f09eda</property> </binding.ws> |
| The Note: This can be overwritten in Oracle Enterprise Manager Fusion Middleware Control. | <binding.ws port="http://xmlns.oracle.com/UDDIPublishApplica tion/Project/BPELProcess1#wsdl.endpoint(bpelproc ess1_client_ep/BPELProcess1_pt)" . . . > <property name="oracle.soa.uddi.endpointURI" value="http://hostname:8001/soa-infra/services/ Partition/Project/bpelprocess1_client_ep"</property> </binding.ws> |
| The endpoint location is specified in the concrete WSDL in the binding component section of | <binding.ws port="http://xmlns.oracle.com/UDDIPublishApplication /Project/BPELProcess1#wsdl.endpoint(bpelprocess1_ client_ep/BPELProcess1_pt)" location="http://hostname:8001/soa-infra/services /Partition/Project/bpelprocess1_client_ep?wsdl" soapVersion="1.1"> |
The failover scenario for resolving endpoints is as follows.
serviceKey
endpointURI
composite.xml
UDDI serviceKey
composite.xml
endpointURI
if it is coded serviceKey
in the connection composite.xml
endpointURI
if it is coded composite.xml
endpointURI
composite.xml
endpointURI
composite.xml
concrete WSDL endpoint location composite.xml
concrete WSDL endpoint location You can set the inquiry URL, UDDI service key, and endpoint address during runtime in Oracle Enterprise Manager Fusion Middleware Control.
To configure the inquiry URL, service key, and endpoint reference for runtime:
Caching of WSDL URLs occurs by default during runtime. If a WSDL URL is resolved using the orauddi protocol, subsequent invocations retrieve the WSDL URLs from cache, and not from OSR. When an endpoint WSDL obtained from cache is no longer reachable, the cache is refreshed and OSR is contacted to retrieve the new endpoint WSDL location. As a best practice, Oracle recommends that you undeploy services that are no longer required in Oracle Enterprise Manager Fusion Middleware Control and used by the SOA Infrastructure. Endpoint services that are shut down or retired (but not undeployed) are still reachable. Therefore, the cache is not refreshed.
If you move the business service WSDL from one host to another, ensure that you change the location in the Registry Control. No change is required in Oracle JDeveloper or Oracle Enterprise Manager Fusion Middleware Control.
You can optionally increase the amount of time that the WSDL URL is available in cache for inquiry by the service key. For more information, see "Configuring Service and Reference Binding Component Properties" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Note: In 11g, caching occurs automatically. If you are using Oracle SOA Suite 10.1.3, caching is supported by setting the |
The Registry Control provides an option for changing the endpoint location. This is a two-step process. The following steps provide an overview. For more specific details, see the Oracle Service Registry documentation:
To update WSDL bindings:
Oracle Service Registry is now in edit mode for bindings.
To update WSDL binding overview documentation:
Follow these steps to publish WSDLs from multiple SOA partitions using the Registry Control, and access them using a separate serviceKey
and bindings.
To publish WSDLs from multiple SOA partitions:
The following limitations exist for publishing WSDL services from Oracle Enterprise Manager Fusion Middleware Control.
Instead, use the Registry Console to publish the same WSDL service deployed to different partitions to OSR.
To publish WSDLs to UDDI for multiple partitions:
This creates two separate services in OSR.
The Oracle Enterprise Repository provides design-time governance in support of the service life cycle, delivering capabilities for the storage and management of metadata for composites, services, business processes, and other IT-related assets.
Oracle Enterprise Repository acts as the central source of Oracle SOA Suite information, providing all participants in the service life cycle with a human-centric discovery environment for planned, existing, and retired services.
Oracle Enterprise Repository provides role-based links to the artifact stores of the assets that it describes and links to design documents, justification documents, test plans, support plans, policies, and other forms of documentation.
From an integrated development environment (IDE) such as Oracle JDeveloper, you can perform the following tasks:
For more information about these tasks and how to configure and use Oracle Enterprise Repository with an IDE, see the Oracle Fusion Middleware Integration Guide for Oracle Enterprise Repository.
For more information about harvesting from Oracle JDeveloper, see the Oracle Fusion Middleware Configuration Guide for Oracle Enterprise Repository.
You may see an icon (a yellow triangle with an exclamation point) indicating invalid settings as you create and open activities such as a scope or an assign for the first time. The settings are invalid because you have not yet entered details.
To turn this option off for the current project, do the following:
This appendix describes the XPath extension functions for Oracle SOA Suite, Oracle BPEL Process Manager, Oracle Mediator, and human workflow. It also describes advanced XPath functions, how to build XPath expressions in Oracle JDeveloper, and how to create user-defined XPath extension functions. Oracle provides XPath functions that use the capabilities built into Oracle SOA Suite and XPath standards for adding new functions.
This appendix includes the following sections:
For additional information about XPath functions, visit the following URL:
This section describes the following types of SOA XPath extension functions:
This section describes the following database functions:
This function returns a string based on the SQL query generated from the parameters.
The string is obtained by executing:
against the data source that can be either a JDBC connect string (jdbc:oracle:thin:
username
/
password
@
host
:
port
:
sid
) or a data source JNDI identifier. Only the Oracle thin driver is supported if the JDBC connect string is used.
Example: oraext:lookup-table('employee','id','1234','last_name','jdbc:oracle:thin:xyz/xyz@localhost:1521:ORCL')
Signature:
oraext:lookup-table(table, inputColumn, key, outputColumn, data source)
Arguments:
table
- The table from which to draw the data. inputColumn
- The column within the table. key
- The key value of the input column. outputColumn
- The column to output the data. data source
- The source of the data. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function returns a node set by executing the SQL query against the specified database.
Signature:
oraext:query-database(sqlquery as string, rowset as boolean, row as boolean, data source as string)
Arguments:
sqlquery
- The SQL query to perform. rowset
- Indicates if the rows should be enclosed in an element. row
- Indicates if each row should be enclosed in an element. data source
- Either a JDBC connect string (jdbc:oracle:thin:
username
/
password
@
host
:
port
:
sid
) or a JNDI name for the database. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
Returns the next value of an Oracle sequence.
The next value is obtained by executing the following:
against a data source that can be either a JDBC connect string (jdbc:oracle:thin:
username
/
password
@
host
:
port
:
sid
) or a data source JNDI identifier. Only the Oracle thin driver is supported if a JDBC connect string is used.
Example: oraext:sequence-next-val('employee_id_sequence','jdbc:oracle:thin:xyz/xyz@localhost:1521:ORCL')
Signature:
oraext:sequence-next-val(sequence as string, data source as string)
Arguments:
sequence
- The sequence number in the database. data source
- Either a JDBC connect string or a data source JNDI identifier. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This section describes the following functions:
This function returns a new date time value adding dateTime
to the given duration.
If the duration value is negative, then the resulting value precedes dateTime
.
Signature:
xpath20:add-dayTimeDuration-from-dateTime(dateTime as string, duration as string)
Arguments:
dateTime as string
- The dateTime
to which the function adds the duration, in string format. duration as string
- The duration to add to the dateTime
, or subtract if the duration is negative, in string format. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the current date in the ISO format of YYYY-MM-DD
.
Signature:
xpath20:current-date(object)
Arguments:
Object
- The time in standard format. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the current datetime value in the ISO format of CCYY-MM-DDThh:mm:ssTZD
.
Signature:
xpath20:current-dateTime(object)
Arguments:
object
- The time in standard format. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the current time in ISO format. The format is hh:mm:ssTZD
.
Signature:
xpath20:current-time(object)
Arguments:
object
- The time in standard format. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the day from dateTime
. The default day is 1
.
Signature:
xpath20:day-from-dateTime(object)
Arguments:
object
- The time in standard format as a string. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the formatted string of dateTime
using the format provided.
Signature:
xpath20:format-dateTime(dateTime as string, format as string)
Arguments:
dateTime
- The dateTime
to be formatted. format
- The format for the output. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the hour from dateTime
. The default hour is 0
.
Signature:
xpath20:hours-from-dateTime(dateTime as string)
Arguments:
dateTime
- The string with the date and time. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the current time zone in the ISO format of +/- hh:mm
, indicating a deviation from Coordinated Universal Timezone (UTC).
Signature:
xpath20:implicit-timezone
Arguments:
This function does not take any arguments.
Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the minute from dateTime
. The default minute is 0
.
Signature:
xpath20:minutes-from-dateTime(dateTime as string)
Arguments:
dateTime as string
- The date and time. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the month from dateTime
. The default month is 1
(January).
Signature:
xpath20:month-from-dateTime(dateTime as string)
Arguments:
dateTime as string
- The dateTime
to be formatted. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the second from dateTime
. The default second is 0
.
Signature:
xpath20:seconds-from-dateTime(dateTime as string)
Arguments:
dateTime as a string
- The dateTime
as a string. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns a new dateTime
value after subtracting the duration from dateTime
.
If the duration value is negative, then the resulting dateTime
value follows input-dateTime
value.
Signature:
xpath20:subtract-dayTimeDuration-from-dateTime(dateTime as string, duration as string)
Arguments:
dateTime as string
- The dateTime
from which the function subtracts the duration, in string format. duration as string
- The duration to subtract from the dateTime
, or to add if the duration is negative, in string format. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xp20
This function returns the time zone from dateTime
. The default time zone is GMT+00:00
.
Signature:
xpath20:timezone-from-dateTime(dateTime as string)
Arguments:
dateTime as string
- The dateTime
for which this function returns a time zone. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the year from dateTime
.
Signature:
xpath20:year-from-dateTime(dateTime as string)
Arguments:
dateTime
- The dateTime
as a string. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This section describes the following function.
This function returns the absolute value of inputNumber
.If the inputNumber
is not negative, the inputNumber
is returned. If the inputNumber
is negative, the negation of inputNumber
is returned.
Example: abs(-1)
returns 1
.
Signature:
xpath20:abs(inputNumber as number)
Arguments:
inputNumber as number
- The number for which the function returns an absolute value. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This section describes the string functions.
This function returns the lexicographical difference between inputString
and compareString
by comparing the unicode value of each character of both the strings.
This function returns -1
if inputString
lexicographically precedes the compareString
.
This function returns 0
if both inputString
and compareString
are equal.
This function returns 1
if inputString
lexicographically follows the compareString
.
Example: xpath20:compare('Audi', 'BMW')
returns -1
Signature:
xpath20:compare(inputString as string, compareString as string)
Arguments:
variableName
- The source variable for the data. propertyName
- The qualified name (QName) of the property. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the lexicographical difference between inputString
and compareString
while ignoring case and comparing the unicode value of each character of both the strings.
This function returns -1
if inputString
lexicographically precedes the compareString
.
This function returns 0
if both inputString
and compareString
are equal.
This function returns 1
if inputString
lexicographically follows the compareString
.
Example: xpath20:compare-ignore-case('Audi','bmw')
returns -1
Signature:
xp:compare-ignore-case(inputString as string, compareString as string)
Arguments:
inputString
- The string of data to be searched. CompareString
- The string to compare against the input string. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns a delimited string created from nodeSet
delimited by a delimiter.
Signature:
oraext:create-delimited-string(nodeSet as node-set, delimiter as string)
Arguments:
nodeSet
- The node set to convert into a delimited string. delimiter
- The character that separates the items in the output string; for example, a comma or a semicolon. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function returns true
if inputString
ends with searchString
.
Example: xpath20:ends-with('XSL Map','Map')
returns true
Signature:
xpath20:ends-with(inputString as string, searchString as string)
Arguments:
inputString
- The string of data to be searched. searchString
- The string for which the function searches. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the message formatted with the arguments passed. At least one argument is required and supports up to a maximum of 10
arguments.
Example: oraext:format-string('{0} + {1} = {2}','2','2','4')
returns '2 + 2 = 4'
Signature:
oraext:format-string(string,string,string...)
Arguments:
string
- One of the strings to be used in the formatted output. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function returns the XML representation of the input element.
Signature:
oraext:get-content-as-string(element as node-set)
Arguments:
element as node-set
- The input element that the function returns as an XML representation. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function returns the content of the file.
Signature:
oraext:get-content-from-file-function(object)
Arguments:
Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function returns the locale-specific string for the key. This function uses language, country, variant, and resource bundle to identify the correct resource bundle. All parameters must be in string format. Use the string()
function to convert any parameter values to strings before sending them to get-localized-string
.
The resource bundle is obtained by resolving resourceLocation
against the resourceBaseURL
. The URL is assumed to be a directory only if it ends with /
.
Usage: oraext:get-localized-string(resourceBaseURL as string, resourceLocation as string, resource bundle as string, language as string, country as string, variant as string, key as string)
Example: oraext:get-localized-string('file:/c:/','','MyResourceBundle','en','US','','MSG_KEY')
returns a locale-specific string from a resource bundle 'MyResourceBundle'
in the C:\
directory
Signature:
oraext:get-localized-string(resourceURL,resourceLocation,resourceBundleName,language,country,variant,messageKey)
Arguments:
resourceURL
- The URL of the resource. resourceLocation
- The subdirectory location of the resource. resourceBundleName
- The name of the ZIP file containing the resource bundle. language
- The language of the localized output. country
- The country of the localized output. variant
- The language variant of the localized output. messageKey
- The message key in the resource bundle. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function returns the zero-based index of the first occurrence of searchString
within the inputString
.
This function returns -1
if searchString
is not found.
Example: oraext:index-within-string('ABCABC, 'B')
returns 1
Signature:
oraext:index-within-string(inputString as string, searchString as string)
Arguments:
inputString
- The string of data to be searched. inputString
. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function returns the zero-based index of the last occurrence of searchString
within inputString
.
This function returns -1
if searchString
is not found.
Example: oraext:last-index-within-string('ABCABC', 'B')
returns 4
Signature:
oraext:last-index-within-string(inputString as string, searchString as string)
Arguments:
inputString
- The string of data to be searched. inputString
. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function returns the value of inputString
after removing all the leading white spaces.
Example: oraext:left-trim(' account ') returns 'account '
Signature:
oraext:left-trim(inputString)
Arguments:
inputString
- The string to be left-trimmed. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function returns the value of inputString
after translating every character to its lower-case correspondent.
Example: xpath20:lower-case('ABc!D')
returns 'abc!d'
Signature:
xpath20:lower-case(inputString)
Arguments:
inputString
- The string of data that is in lowercase. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns true
if intputString
matches the regular expression pattern regexPattern
.
Example: xpath20:matches('abracadabra', '^a.*a$')
returns true
Signature:
xpath20:matches(intputString, regexPattern)
Arguments:
inputString
- The string of data that must be matched. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This function returns the value inputString
after removing all the trailing white spaces.
Example: oraext:right-trim(' account ')
returns ' account'
Signature:
oraext:right-trim(inputString as string)
Arguments:
inputString
- The input string to be right-trimmed. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function returns the value of inputString
after translating every character to its uppercase correspondent.
Example: xpath20:upper-case('abCd0')
returns 'ABCD0'
Signature:
xpath20:upper-case(inputString as string)
Arguments:
inputString
- The string of data that is in uppercase. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20
namespace-prefix
: xpath20
This section describes the following BPEL XPath extension functions.
This function returns the content of a string
with single quotes added.
Signature:
ora:addQuotes(string)
Arguments:
string
- The string to which this function adds quotes. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function authenticates an LDAP user and returns true
or false
.
The authenticate
, listUsers
, lookupUser
, and search
XPath functions provide the lookup and search functionality to obtain information from the LDAP server (typically, the LDAP user details).
These XPath functions use a configuration file to obtain server access information for the JNDI (for example, context factory, LDAP server provider URL, authenticate type, and so on). The configuration file is named directories.xml
and must be placed in the same directory in which the .bpel
file for the BPEL project is located. To call these XPath functions, you must provide this file.
Example B-1 shows the format of the directories.xml
file:
Example B-1 directories.xml File Format
Example B-2 shows an example of the directories.xml
file.
Example B-2 directories.xml File Example
directoryName
- The directory name specified in the directories.xml
file. userId
- The LDAP server login user ID. password
- The LDAP server login password. true
or false
Example:
For this XPath function, only two properties must be specified in the directories.xml
file:
java.naming.provider.url
java.naming.factory.initial
This function appends to a node list. The node list with which to append should not be null or empty.
Signature:
ora:appendToList('variableName', 'partName'?, 'locationPath'?, Object)
Arguments:
variableName
- The source variable for the data. partName
- The part to select from the variable (optional). locationPath
- Provides an absolute location path (with /
meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part (optional). Object
- The object can be either a list or a single item. If the object is a list, this function appends each item in the list. Each appended item is either an element, or an element with the string value of the node created. Property IDs:
deprecated
Use the bpelx:copyList
or bpelx:append
extension activity to append to a list.
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
Note: While the |
This function copies a node list or a node. The node list to be copied to should not be null or empty.
Signature:
ora:copyList('variableName', 'partName'?, 'locationPath'?, Object)
Arguments:
variableName
- The source variable for the data. partName
- The part to select from the variable (optional). locationPath
- Provides an absolute location path (with /
meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part (optional). Object
- The object can be either a list or a single item. If the object is a list, each item in the list is copied. Each item to be copied is either an element, or an element with the string value of the node created. Property IDs:
deprecated
Use the bpelx:copyList
extension activity to append to a list.
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
Note: While the |
This function returns the size of the elements as an integer.
Signature:
ora:countNodes('variableName', 'partName'?, 'locationPath'?)
Arguments:
variableName
- The source variable for the data. partName
- The part to select from the variable (optional). locationPath
- Provides an absolute location path (with /
meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part (optional). Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the content of an XML file.
Signature:
ora:doc('fileName','xpath'?)
Arguments:
fileName
- The name of the XML file. xpath
- A part of an XML file (for example, the node set, node list, or leaf node). Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function translates using the streaming XPath APIs. It uses a unique concept called batching so that the transformation engine does not materialize the result of a transformation into memory. Therefore, it can handle arbitrarily large payloads of the order of gigabytes. However, it can only handle forward-only XSL constructs such as for-each
. The targetType
can be SDOM
or ATTACHMENT
.
Signature:
ora:doStreamingTranslate('input SDOM or attachment element', 'streaming xpath context', 'SDOM or ATTACHMENT', 'attachment element?')
Arguments:
input SDOM or attachment element
streaming xpath context
SDOM or ATTACHMENT
attachment element
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function translates the input data to XML, where the input can be a string, attachment, or element that contains Base64-encoded data. The targetType
can be DOM
, ATTACHMENT
or SDOM
.
Signature:
ora:doTranslateFromNative('input','nxsdTemplate','nxsdRoot','targetType','attachment element?')
Arguments:
input
- The input data of the XPath function. nxsdTemplate
- The NXSD schema to use to translate the input data to XML format. nxsdRoot
- The root element in the native XSD (NXSD) schema. targetType
- Decides how the XPath function translates the native data into XML. attachment element
- This is the attachment for the returned XML. This parameter is optional. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function translates the input DOM to a string or attachment. The targetType
can be STRING
or ATTACHMENT
Signature:
ora:doTranslateToNative('input','nxsdTemplate','nxsdRoot','targetType','attachment element?')
Arguments:
input
- The input data of the XPath function. The data can either be DOM or SDOM data that must be translated to a native format such as comma-separated values (CSV). The input node is usually the root element of the incoming DOM. Example B-3 provides details.
Example B-3 doTranslateToNative Function
However, the input node can be a subelement and not the root element of the incoming DOM. Example B-4 provides details.
Example B-4 doTranslateToNative Function
In these situations, you must set the following property in the schema node of the NXSD for this function to execute properly.
This setting can adversely impact the performance of this function for very large inputs (in which case, use the dostreamingxlate
function).
nxsdTemplate
- The NXSD schema to use to translate the input data to XML format. nxsdRoot
- The root element in the NXSD schema. targetType
- Decides how the XPath function translates the native data into XML. attachment element
- This is the attachment for the returned XML. This parameter is optional. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function implements WS-BPEL 2.0's doXSLTransform
function that supports multiple parameters of XSLT. When using this function, the XSL template match must not be set to root (which is /
). It must be the root element.
Signature:
ora:doXSLTransform('url_to_xslt',input,['paramQname',paramValue]*)
Arguments:
url_to_xslt
- Specifies the XSL style sheet URL. input
- Specifies the input variable name. paramQname
- Specifies the parameter QName. paramValue
- Specifies the value of the parameter. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function is a complement XPath function to doXSLTransform()
. It aims to perform the transformation when the XSLT template matches the document.
Example B-5 shows the doXSLTransformForDoc
function.
Example B-5 doXSLTransformForDoc Functions
Signature:
ora:doXSLTransformForDoc('url_to_xslt',input,['paramQname',paramValue]*)
Arguments:
url_to_xslt
- Specifies the XSL style sheet URL. input
- Specifies the input variable name. paramQname
- Specifies the parameter QName. paramValue
- Specifies the value of the parameter. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
You can use the ora:doXSLTransformForDoc
function to write the results of large XSLT/XQuery operations to a temporary file in a directory system. The document is then loaded from the temporary file when needed. This eliminates the need for caching an entire document as binary XML in memory.
For more information, see Section 45.1.3.9, "Using XPath Functions to Write Large XSLT/XQuery Output to a File System."
This function converts standard XSD date formats to characters suitable for output.
Signature:
ora:formatDate('dateTime','format')
Arguments:
dateTime
- Contains a date-related value in XSD format. For nonstring arguments, this function behaves as if a string()
function were applied. If the argument is not a date, the output is an empty string. If it is a valid XSD date and some fields are empty, this function attempts to fill unspecified fields. For example, 2003-06-10T15:56:00
. format
- Contains a string formatted according to java.text.SimpleDateFormat
format. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
Generates a unique GUID.
Signature:
ora:generateGUID()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the application name.
Signature:
ora:getApplicationName()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function gets the attachment content from an href
function.
Signature:
ora:getAttachmentContent(varName[, partName[, query]])
Arguments:
varName
- Specifies the source variable for the data. partName
- (Optional) Specifies the part to select from the variable. query
- (Optional) Specifies an absolute location path (with /
meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the component name.
Signature:
ora:getComponentName()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the component instance ID.
Signature:
ora:getComponentInstanceID()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the composite name.
Signature:
ora:getCompositeName()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the BPEL process composite instance ID.
Signature:
ora:getCompositeInstanceID()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the composite URL.
Signature:
ora:getCompositeURL()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri: http://schemas.oracle.com/xpath/extension
namespace-prefix: ora
This function returns the content of an element as an XML string.
Signature:
ora:getContentAsString(element elementAsNodeList)
Arguments:
element
- The element (source of the data). elementAsNodeList
- The element as the node list. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the conversation ID.
Signature:
ora:getConversationId()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the instance creator.
Signature:
ora:getCreator()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the current date as a string.
Signature:
ora:getCurrentDate('format'?)
Argument:
format
- (Optional) Specifies a string formatted according to java.text.SimpleDateFormat
format (optional). Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
For more information, see Section 6.12.1, "How to Assign a Date or Time."
This function returns the current date time as a string.
Signature:
ora:getCurrentDateTime('format'?)
Argument:
format
- (Optional) Specifies a string formatted according to java.text.SimpleDateFormat
format (optional). Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the current time as a string.
Signature:
ora:getCurrentTime('format'?)
Argument:
format
- (Optional) Specifies a string formatted according to java.text.SimpleDateFormat
format (optional). Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the execution context ID (ECID).
Signature:
ora:getECID()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns an element using index
from the array of elements.
Signature:
ora:getElement('variableName', 'partName', 'locationPath', index)
Arguments:
variableName
- The source variable for the data. partName
- The part to select from the variable (required). locationPath
- Provides an absolute location path (with /
meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part (required). index
- Dynamic index value. The index of the first node is 1
. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the fault as a string value.
Signature:
ora:getFaultAsString()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the fault name.
Signature:
ora:getFaultName()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns a List
of user IDs for a group alias specified in the TaskServiceAliases
section of the BPEL suitcase descriptor.
Signature:
ora:getGroupIdsFromGroupAlias(String aliasName)
Arguments:
aliasName
- The alias for a list of users or groups. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the instance ID.
Signature:
ora:getInstanceId()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the value of a DOM node as a string.
Signature:
ora:getNodeValue(node)
Arguments:
node
- The DOM node. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function gets a node list. This is implemented as an alternate to bpws:getVariableData
, which does not return a node list.
Signature:
ora:getNodes('variableName', 'partName'?, 'locationPath'?)
Arguments:
variableName
- The source variable for the data. partName
- The part to select from the variable (optional). locationPath
- Provides an absolute location path (with /
meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part (optional). Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the document object associated with the node.
Signature:
ora:getOwnerDocument(node)
Arguments:
node
- Specifies the XML node. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the BPEL process instance parent component instance ID.
Signature:
ora:getParentComponentInstanceID()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the value of a property specified in the preferences section of the BPEL suitcase descriptor.
Signature:
ora:getPreference(preferenceName)
Arguments:
preferenceName
- The name of the preference as specified in the BPEL suitcase descriptor. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the ID of the current BPEL process.
Signature:
ora:getProcessId()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the ID of the user who owns the process, if specified in the TaskServiceAliases
section of the BPEL suitcase descriptor.
Signature:
ora:getProcessOwnerId()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the root URL of the current BPEL process.
Signature:
ora:getProcessURL()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the current process version.
Signature:
ora:getProcessVersion()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the user ID for an alias specified in the TaskServiceAliases
section of the BPEL suitcase descriptor.
Signature:
ora:getUserAliasId (String aliasName)
Arguments:
aliasName
- The alias for a list of users or groups. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns a List
of user IDs for a group alias specified in the TaskServiceAliases
section of the BPEL suitcase descriptor.
Signature:
ora:getUserIdsFromGroupAlias(String aliasName)
Arguments:
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function sets a title to the composite instance that can later be used as one of the criteria in searching the instances. This function returns the same string that is passed as the argument.
Signature:
med:setCompositeInstanceTitle(title)
Arguments:
title
- Specifies the composite instance title. This can be specified as an XPath expression on the message payload. Property IDs:
namespace-uri: http://schemas.oracle.com/xpath/extension
namespace-prefix: ora
This function extracts arbitrary values from BPEL variables.
Signature:
ora:instanceOf(an_xpath_expression, 'typeQName')
Arguments:
an_xpath_expressio
n - An XPath expression that returns an element. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the content of the node as an integer.
Signature:
ora:integer(node)
Arguments:
node
- The input node. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns a list of LDAP users.
directoryName
- The directory name specified in the directories.xml
file. For information about the directories.xml
file, see Section B.2.2, "authenticate." filter
- The filter expression to use for the search; this value cannot be null
. An XML element that contains a list of users.For this XPath function, all properties must be specified in the directories.xml
file.Example:
Example B-6 provides an example of the output:
Example B-6 listUsers Output
This function returns LDAP user information.
directoryName
: The directory name specified in the directories.xml
file. For information about the directories.xml
file, see Section B.2.2, "authenticate." userId
: The user ID to be searched. An XML element that contains the user information.
For this XPath function, all properties must be specified in the directories.xml
file:
Example:
Example B-7 provides an example of the output:
This function parses a string to DOM.
Signature:
oraext:parseEscapedXML(contentString)
Arguments:
contentString
- The string that this function parses to a DOM. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: oraext
This function parses a string to a DOM element.
Signature:
oraext:parseXML(contentString)
Arguments:
contentString
- The string that this function parses to a DOM element. Property IDs:
namespace-uri
: http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function returns the result of an XQuery transformation.
Signature:
ora:processXQuery('template','context'?)
Arguments:
template
- The XSLT template. input
- The input data to be transformed. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the result of an XSLT transformation using the Oracle XDK XSLT processor.
Example B-8 shows the 11g version of processXSLT
.
Example B-8 11g Version of processXSLT
Example B-9 shows the 10g version of processXSLT
, which is provided for backward compatiblity.
Example B-9 10g Version of processXSLT
Signature:
11g version of the signature:
ora:processXSLT('template','input','properties'?)
10g version of the signature:
xdk:processXSLT('template','input','properties'?)
Arguments:
template
- The XSLT template. Both HTTP and file URLs are supported. input
- The input data to be transformed. properties
- The properties that translate to XSL parameters that can be accessed within the XSL map using the construct <xsl:param name="
paramName
"/>
. The properties are defined as follows: params.xsd
file to define the name-value pair (every property is a name-value pair). For example: SetParams.xsl
file to populate the properties. Within the XSLT, the parameters are accessible through their names. For this example, the parameter names are userName
and location
, and the values are jsmith
and CA
, respectively. SetParams.xsl
from the .bpel
file. For example: initializeXSLParameters
, you initialize the parameter variable from the specific BPEL variable whose information you want to access from within the XSLT. executeXSLT
, you invoke the XSLT with the parameters as the properties
(third) argument of the function processXSLT
. For example:
Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
(for 11g) namespace-prefix
: xdk
(for 10g) You can use the ora:processXSLT
function to write the results of large XSLT/XQuery operations to a temporary file in a directory system. The document is then loaded from the temporary file when needed. This eliminates the need for caching an entire document as binary XML in memory.
For more information, see Section 45.1.3.9, "Using XPath Functions to Write Large XSLT/XQuery Output to a File System."
This function reads data from a file.
Signature:
ora:readBinaryFromFile(fileName)
Arguments:
fileName
- The file name from which to read data. Property IDs:
namespace-uri
:http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the content of the file.
Signature:
ora:readFile('fileName','nxsdTemplate'?,'nxsdRoot'?)
Arguments:
fileName
- The name of the file. This argument can also be an HTTP URL. This function by default reads files relative to the suitcase JAR file for the process. If the file to read is located in a different directory path, you must specify an extra directory slash (/
) to indicate that this is an absolute path. For example:
If you specify only two directory slashes (//
), you receive an error similar to that shown in Example B-10:
nxsdTemplate
- The NXSD template for the output. nxsdRoot
-The NXSD root. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns a list of LDAP entries.
directoryName
: The directory name specified in the directories.xml
file. For information about the directories.xml
file, see Section B.2.2, "authenticate." filter
: The filter expression to use for the search; this value cannot be null
. scope
: The scope of the search. It must be one of the following values: 1
: one level, 2
: subtree, or 0
: named object. This parameter is optional. By default, its value is 2
. An XML element that contains the list of entries.For this XPath function, all properties must be specified in the directories.xml
file.Example
Example B-11 provides an example of the output:
Example B-11 search Output
This function writes the binary bytes of a variable (or part of the variable) to a file of the given file name.
Signature:
ora:writeBinaryToFile(varName[, partName[, query]])
Arguments:
varName
- The name of the variable. partName
- The name of the part in the messageType
variable. query
- The query string to a child of the root element. Property IDs:
namespace-uri
:http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This section describes BPEL extension functions.
Table B-1 lists the BPEL extension functions supported by either version 1.1 or version 2.0 of the BPEL specification. If a function is supported by a specific version, it displays for selection in the BPEL Extension Functions list of the Expression Builder dialog in Oracle JDeveloper. Otherwise, it does not appear. BPEL version 1.1 functions use the namespace prefix bpws
. BPEL version 1.1 functions use the namespace prefix bpel
.
Table B-1 BPEL Extension Functions Supported in BPEL 1.1 or BPEL 2.0
Function | Supported in BPEL 1.1? | Supported in BPEL 2.0? |
---|---|---|
| Yes | No |
| Yes | No |
| Yes | No |
| No | Yes |
This function returns a boolean value indicating the status of the link. If the status of the link is positive, the value is true
. Otherwise, the value is false
. This function can only be used in a join
condition.
The linkName
argument refers to the name of an incoming link for the activity associated with the join
condition.
Signature:
bpws:getLinkStatus ('linkName')
Arguments:
variableName
- The source variable for the data. propertyName
- The QName of the property. Property IDs:
namespace-uri
: http://schemas.xmlsoap.org/ws/2003/03/business-process/
namespace-prefix
: bpws
This function extracts arbitrary values from BPEL variables.
When only the first argument is present, the function extracts the value of the variable, which in this case must be defined using an XML schema simple type or element. Otherwise, the return value of this function is a node set containing the single node representing either an entire part of a message type (if the second argument is present and the third argument is absent) or the result of the selection based on the locationPath
(if both optional arguments are present).
Signature:
bpws:getVariableData ('variableName', 'partName'?, 'locationPath'?)
Arguments:
variableName
- The source variable for the data. partName
- The part to select from the variable (optional). locationPath
- Provides an absolute location path (with /
meaning the root of the document fragment representing the entire part) to identify the root of a subtree within the document fragment representing the part (optional). Property IDs:
namespace-uri
: http://schemas.xmlsoap.org/ws/2003/03/business-process/
namespace-prefix
: bpws
According to the Business Process Execution Language for Web Services Specification, if the locationPath
argument selects a node set of a size other than one during execution, the standard fault bpws:selectionFailure
must be thrown by a compliant implementation.
For example, the count()
function shown in Example B-12 does not work if there are multiple entries of product
elements under StoreRequest
; this causes a selectionFailure
fault to be thrown.
Example B-12 count() Function Error
To make this work, change the syntax to the following:
This function extracts arbitrary values from BPEL variables. The first argument specifies the source variable for the data and the second argument identifies the QName of the property to select from that variable. If the given property selects a node set of a size other than one during execution, the standard fault bpws:selectionFailure
is thrown.
Signature:
bpws:getVariableProperty ('variableName', 'propertyname')
Arguments:
variableName
- The source variable for the data. propertyName
- The QName of the property. Property IDs:
namespace-uri
: http://schemas.xmlsoap.org/ws/2003/03/business-process/
namespace-prefix
: bpws
This function extracts arbitrary values from BPEL variables. The first argument specifies the source variable for the data and the second argument identifies the QName of the property to select from that variable. If the given property selects a node set of a size other than one during execution, the standard fault bpws:selectionFailure
is thrown.
Signature:
bpel:getVariableProperty ('variableName', 'propertyname')
Arguments:
variableName
- The source variable for the data. propertyName
- The QName of the property. If the given property selects a node set of a size other than one during execution, the standard fault selectionFailure
is thrown. Property IDs:
namespace-uri
: http://schemas.xmlsoap.org/ws/2003/03/business-process/
namespace-prefix
: bpel
This section describes the utility functions.
This function returns the number of active processes in the batch.
Signature:
ora:batchProcessActive(String rootId, String processId)
Arguments:
rootId
- The ID of the root. processId
- The ID of the process. Property IDs:
namespace-uri
:http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the number of completed processes in the batch.
Signature:
ora:batchProcessCompleted(String rootId, String processId)
Arguments:
rootId
- The ID of the root. processId
- The ID of the process. Property IDs:
namespace-uri
:http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function formats a message using Java's message format.
Signature:
ora:format(formatStrings, args+)
Arguments:
formatStrings
- The string of data to be formatted. args+
- The arguments referenced by the format specifiers in the format string. If there are more arguments than format specifiers, the extra arguments are ignored. The number of arguments is variable and may be zero. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function generates a list of empty elements for the given QName.
Signature:
ora:genEmptyElem('ElemQName',size?, 'TypeQName'?, xsiNil?)
Arguments:
ElemQName
- The first argument is the QName of the empty elements. size
- The second optional integer argument for the number of empty elements. If missing, the default size is 1
. TypeQName
- The third optional argument is the QName, which is the xsi:type
of the generated empty name. This xsi:type
pattern matches SOAPENC:Array
. If missing or an empty string, the xsi:type
attribute is not generated. xsiNil
- The fourth optional boolean argument is to specify whether the generated empty elements are XSI - nil
, provided the element is XSD-nillable. The default is false
. If missing or false
, xsi:nil
is not generated. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function gets a child element for the given element.
Signature:
ora:getChildElement(element, index)
Arguments:
element
- The source for the data. index
- The integer value of the child element index. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function gets a message based on the arguments.
Signature:
ora:getMessage(locale, relativeLocation, resourceName, resourceKey, resourceLocation?)
Arguments:
locale
- The locale of the message. relativeLocation
- The subdirectory or message. resourceName
- The name of the message resource. resourceKey
- The key of the resource. resourceLocation
- The location of the resource. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: ora
This function returns the maximum value from a list of input numbers, the node set inputNumber
.
The node set inputNumber
can be a collection of text nodes or elements containing text nodes.
In the case of elements, the first text node's value is considered.
Signature:
oraext:max-value-among-nodeset(inputNumber as node-set)
Arguments:
inputNumber
- The node set of input numbers. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function returns the minimum value from a list of input numbers, the node set inputNumbers
.The node set can be a collection of text nodes or elements containing text nodes.In the case of elements, the first text node's value is considered.
Signature:
oraext:min-value-among-nodeset(inputNumbers as node-set)
Arguments:
inputNumber
- The node set of input numbers. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function returns the square root of inputNumber
.
Example: oraext:square-root(25)
returns 5
Signature:
oraext:square-root(inputNumber as number)
Arguments:
inputNumber
- The input number for which the function calculates the square root. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This section describes the Oracle Mediator XPath extension functions.
This function translates using the streaming XPath APIs. It uses a unique concept called batching so that the transformation engine does not materialize the result of transformation into memory. Therefore, it can handle arbitrarily large payloads of the order of gigabytes. However, it can only handle forward-only XSL constructs such as for-each
. The targetType
can be SDOM
or ATTACHMENT
.
Signature:
med:doStreamingTranslate('input','streaming xpath context','targetType','attachment element'?)
Arguments:
input
- The input data of the XPath function. This can be an SDOM or attachment element. streaming xpath context
targetType
- Determines how the XPath function translates the native data into XML. attachment element
- The attachment for the returned XML. This parameter is optional. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: med
Example:
med.doStreamingTranslate($in.request/inp1:request/inp1:sourceAttachmentElement,$in.request/inp1:request/inp1:streamingcontext, 'ATTACHMENT', $in.request/inp1:request/inp1:targetAttachmentElement)
This function translates the input data to XML, where the input can be a string to translate, a file or FTP adapter attachment, an attachment, or an element that contains Base64-encoded data. The targetType
can be DOM
, ATTACHMENT
or SDOM
.
Signature:
med:doTranslateFromNative('input','nxsdTemplate','nxsdRoot','targetType','attachment element'?)
Arguments:
input
- The input data of the XPath function. The data is in a native format, such as comma-separated values (CSV). nxsdTemplate
- The NXSD schema to use to translate the input data to XML format. nxsdRoot
- The root element in the NXSD schema. targetType
- Determines how the XPath function translates the native data into XML. attachment element
- The attachment for the returned XML. This parameter is optional. Property IDs:
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: med
Example:
med:doTranslateFromNative(string($in.request/inp1:request/inp1:source),'xsd/address_csv.xsd','Root-Element','DOM')
This function translates the input DOM to a string or attachment. The targetType
can be STRING
or ATTACHMENT
.
Signature:
med:doTranslateToNative('input','nxsdTemplate','nxsdRoot','targetType','attachment element'?)
Arguments:
input
- The input data of the XPath function. The data can either be DOM
or SDOM
data that must be translated to a native format such as comma-separated values (CSV). The input node is usually the root element of the incoming DOM, as shown in Example B-13.
Example B-13 Input Node as Root Element in doTranslateToNative Function
However, the input node can also be a subelement and not the root element of the incoming DOM, as shown in Example B-14.
Example B-14 Input Node as Subelement in doTranslateToNative Function
In this case, you must set the useArrayIdenitifer
property to true
in the schema node of the NXSD, as shown below.
This setting can adversely impact the performance of this function for very large inputs. You can use the dostreamingxlate
function in this case.
nxsdTemplate
- The NXSD schema to use to translate the input data to XML format. nxsdRoot
- The root element in the NXSD schema. targetType
- Determines how the XPath function translates the native data into XML. attachment element
- The attachment for the returned XML. This parameter is optional. Property IDs::
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: med
Example:
med:doTranslateToNative($in.request/inp1:Root-Element,'xsd/address_csv.xsd','Root-Element','STRING')
This function gets the attachment content and encodes the data into Base64 format.
Signature:
med:getAttachmentContent(xpathExpr)
Arguments:
xpathExpr
- The XPath expression that references the incoming attachment. Property IDs::
namespace-uri
: http://schemas.oracle.com/xpath/extension
namespace-prefix
: med
Example:
med:getAttachmentContent($in.bin/bin)
This function returns the component instance ID.
Signature:
mdhr:getComponentInstanceId()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri: http://schemas.oracle.com/xpath/extension
namespace-prefix: mdhr
This function returns the component name.
Signature:
mdhr:getComponentName()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri: http://schemas.oracle.com/xpath/extension
namespace-prefix: mdhr
This function returns the composite instance ID.
Signature:
mdhr:getComponentInstanceId()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri: http://schemas.oracle.com/xpath/extension
namespace-prefix: mdhr
This function returns the composite name.
Signature:
mdhr:getCompositeName()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri: http://schemas.oracle.com/xpath/extension
namespace-prefix: mdhr
This function returns the value of an XPath expression from the Oracle Mediator message header.
Note: The |
Signature:
mdhr:getHeader(xpath as string, namespaces as string)
Arguments:
xpath
: Refers to the path you traverse from the schema. namespaces
: Refers to the abstract container that contains the context of the XPath expression. This argument is not optional. Namespace declarations are in the following form: Note the semicolon after the namespace declaration. For example:
In the XSLT Mapper in Oracle JDeveloper, drag the getHeader
function into the mapper. In the Edit Function - getHeader dialog, click Add. The namespaces
argument is added for you to enter the required information.
Property IDs:
namespace-uri: http://schemas.oracle.com/xpath/extension
namespace-prefix:mdhr
This function returns the ECID.
Signature:
mdhr:getECID()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri: http://schemas.oracle.com/xpath/extension
namespace-prefix: mdhr
This function returns the Oracle Mediator instance parent component instance ID.
Signature:
mdhr:getParentComponentInstanceId()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri: http://schemas.oracle.com/xpath/extension
namespace-prefix: mdhr
This function creates an attachment by reading binary data from the given file name. It returns the element that holds the created attachment.
Signature:
med:readBinaryFromFile(location)
Arguments:
location
- The path and file name from which to read data. Property IDs:
namespace-uri: http://schemas.oracle.com/xpath/extension
namespace-prefix: mdhr
This function sets a title to the composite instance that can later be used as one of the criteria in searching the instances. This function returns the same string that is passed as the argument.
Signature:
mdhr:setCompositeInstanceTitle(title)
Arguments:
title
- Specifies the composite instance title. This can be specified as an XPath expression on the message payload. Property IDs:
namespace-uri: http://schemas.oracle.com/xpath/extension
namespace-prefix: mdhr
This section describes the advanced functions.
This function takes a delimited string and returns a nodeSet
.
Signature:
oraext:create-nodeset-from-delimited-string(qname, delimited-string, delimiter)
Arguments:
qname
- The qualified name in which each node in the node set must be created. The QName can be represented in two forms: task:assignee
{http://mytask/task}assignee
delimited-string
- The sting of elements separated by the delimiter. delimiter
- The character that separates the items in the input string; for example, a comma or a semicolon. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function generates a unique GUID.
Signature:
oraext:generate-guid()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function looks up a cross-reference column for a single value or multiple values corresponding to a value in a reference column.
Signature:
xref:lookupPopulatedColumns(tableName,columnName,value,needAnException)
Arguments:
xrefTableName
: The name of the reference table. xrefColumnName
: The name of the reference column. xrefValue
: The value corresponding to the reference column name. needAnException
: If this value is set to true
, then an exception is thrown when no value is found in the referenced column. Otherwise, an empty node set is returned. Property IDs:
namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions
namespace-prefix: xref
This function returns a string by looking up the value for the target column in a domain value map, where the source column contains the given source value.
Signature:
dvm:lookupValue(dvmLocation,sourceColumnName,sourceValue,targetColumnName,defaultValue)
Arguments:
dvmLocation
: The domain value map URI. sourceColumnName
: The source column name. sourceValue
: The source value (an XPath expression bound to the source document of the XSLT transformation). targetColumnName
: The target column name. defaultValue
: If the value is not found, then the default value is returned. QualifierSourceColumn
: The name of the qualifier column. QualifierSourceValue
: The value of the qualifier. Property IDs:
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue
namespace-prefix: dvm
For more information, see Section 47.4.1.1, "dvm:lookupValue."
This function returns an XML document fragment containing values for multiple target columns of a domain value map, where the value for the source column equals the source value.
Signature:
dvm:lookupValue1M(dvmLocation,sourceColumnName,sourceValue,targetColumnName1,targetColumnName2...)
Arguments:
dvmMetadataURI
- The domain value map URI. SourceColumnName
- The source column name. SourceValue
- The source value (an XPath expression bound to the source document of the XSLT transformation). TargetColumnName
- The name of the target columns. You must specify at least one column name. The question mark symbol (?) indicates that you can specify multiple target column names. Property IDs:
namespace-uri: http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue
namespace-prefix:dvm
For more information, see Section 47.4.1.2, "dvm:lookupValue1M."
This function looks up a cross-reference column for a value that corresponds to a value in a reference column.
Signature:
xref:lookupXRef(tableName,referenceColumnName,referenceValue,columnName,needAnException)
Arguments:
xrefLocation
: The cross-reference URI. xrefReferenceColumnName
: The name of the reference column. xrefReferenceValue
: The value corresponding to the reference column name. xrefColumnName
: The name of the column to be looked up for the value. needAnException
: When the value is set to true
, an exception is thrown if the value is not found. Otherwise, an empty value is returned. Property IDs:
namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions
namespace-prefix: xref
For more information, see Section 49.6.1, "About the xref:lookupXRef Function."
This function looks up a cross-reference column for multiple values corresponding to a value in a reference column.
Signature:
xref:lookupXRef1M(tableName,referenceColumnName,referenceValue,columnName,needAnException)
Arguments:
xrefLocation
: The cross-reference URI. xrefReferenceColumnName
: The name of the reference column. xrefReferenceValue
: The value corresponding to the reference column name. xrefColumnName
: The name of the column to be looked up for the value. needAnException
: If this value is set to true
, then an exception is thrown when the referenced value is not found. Otherwise, an empty node set is returned. Property IDs:
namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions
namespace-prefix: xref
For more information, see Section 49.6.2, "About the xref:lookupXRef1M Function."
This function returns the string value of an element defined by lookupXPath
in an XML file (docURL
) given its parent XPath (parentXPath
), the key XPath (keyXPath
), and the value of the key (key
).
Example:
oraext:lookup-xml('file:/d:/country_data.xml', '/Countries/Country', 'Abbreviation', 'FullName', 'UK')
returns the value of the element FullName
child of /Countries/Country
, where Abbreviation = 'UK'
is in the file D:\country_data.xml
.
Signature:
oraext:lookup-xml(docURL, parentXPath, keyXPath, lookupXPath, key)
Arguments:
docURL
- The XML file. parentXPath
- The parent XPath. keyXPath
- The key XPath. lookupXPath
- The lookup XPath. key
- The key value. Property IDs:
namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc
namespace-prefix
: oraext
This function deletes a value in a cross-reference table. The value in the column is marked as deleted. This function returns true
if the deletion is successful. Otherwise, it returns false
.
Signature:
xref:markForDelete(tableName,columnName,value)
Arguments:
xrefTableName
: The cross-reference table name. xrefColumnName
: The name of the column from which you want to delete a value. xrefValueToDelete
: The value to be deleted. Property IDs:
namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions
namespace-prefix: xref
For more information, see Section 49.7.1, "How to Delete a Cross Reference Table Value."
This function populates the column name in the cross-reference table (XREF) in which the reference column has the reference value.
Signature:
xref:populateXRefRow(tableName,referenceColumnName,referenceValue,columnName,value,mode)
Arguments:
xrefLocation
: The cross-reference URI. xrefReferenceColumnName
: The name of the reference column. xrefReferenceValue
: The value corresponding to the reference column name. xrefColumnName
: The name of the column to be looked up for the value. xrefvalue
: The value corresponding to the reference column name. xrefmode
: The name of the XREF population mode. Property IDs:
namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions
namespace-prefix: xref
For more information, see Section 49.5.1, "About the xref:populateXRefRow Function."
This function populates the column with multiple values in the cross-reference table (XREF) in which the reference column has the reference value.
Signature:
xref:populateXRefRow1M(tableName,referenceColumnName,referenceValue,columnName,value,mode)
Arguments:
xrefLocation
: The cross-reference URI. xrefReferenceColumnName
: The name of the reference column. xrefReferenceValue
: The value corresponding to the reference column name. xrefColumnName
: The name of the column to be looked up for the value. xrefvalue
: The value corresponding to the reference column name. xrefmode
: The name of the XREF population mode. Property IDs:
namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRefXPathFunctions
namespace-prefix: xref
For more information, see Section 49.5.3, "About the xref:populateXRefRow1M Function."
This section describes the workflow service functions.
This function clears the current task assignees.
Signature:
hwf:clearTaskAssignees(taskID)
Arguments:
task
- The task ID of the task. Property IDs:
namespace-uri:
http://xmlns.oracle.com/bpel/workflow/xpath
namespace-prefix
: hwf
This function creates a Microsoft Word ML document as a base 64-encoded string.
Signature:
hwf:createWordMLDocument(node, xsltURI)
Arguments:
node
- The node is an XML node that is an input to the transformation. xsltURI
- The XSLT used to transform the node (the first argument) to Microsoft Word ML. Property IDs:
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
namespace-prefix
: hwf
This function retrieves a notification property. This function evaluates to corresponding values for each notification. Only use this function in the notification content XPath expression. If used elsewhere, it returns null
.
Signature:
hwf:getNotificationProperty(propertyName)
Arguments:
propertyName
- The name of the notification property. It can be one of the following values: recipient
- The recipient of the notification. recipientDisplay
- The display name of the recipient. taskAssignees
- The task assignees. taskAssigneesDisplay
- The display names of the task assignees. locale
- The locale of the recipient. taskId
- The task ID of the task for which the notification is meant. taskNumber
- The task number of the task for which the notification is meant. appLink
- The HTML link to the Oracle BPM Worklist task details page. Property IDs:
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
namespace-prefix
: hwf
This function computes the number of times the task was approved.
Signature:
hwf:getNumberOfTaskApprovals(taskId)
Arguments:
taskId
- The ID of the task. Property IDs:
namespace-uri
: http://xmlns.oracle.com/bpel/workflow/xpath
namespace-prefix
: hwf
This function retrieves the previous task approver.
Signature:
hwf:getPreviousTaskApprover(taskId)
Arguments:
taskId
- The ID of the task. Property IDs:
namespace-uri
: http://xmlns.oracle.com/bpel/workflow/xpath
namespace-prefix
: hwf
This function retrieves the task attachment at the specified index.
Signature:
hwf:getTaskAttachmentByIndex(taskId, attachmentIndex)
Arguments:
taskId
- The task ID of the task. attachmentIndex
- The index of the attachment. The index begins at 1
. The attachmentIndex
argument can be a node whose value evaluates to the index number as a string (all node values are strings). If specified statically, it can be specified as '1'
. Property IDs:
namespace-uri
: http://xmlns.oracle.com/bpel/workflow/xpath
namespace-prefix
: hwf
This function retrieves the task attachment by the attachment name.
Signature:
hwf:getTaskAttachmentByName(taskId, attachmentName)
Arguments:
taskId
- The task ID of the task. attachmentName
- The name of the attachment. Property IDs:
namespace-uri
: http://xmlns.oracle.com/bpel/workflow/xpath
namespace-prefix
: hwf
This function retrieves the task attachment contents by the attachment name.
Signature:
hwf:getTaskAttachmentContents(taskId, attachmentName)
Arguments:
taskId
- The task ID of the task. attachmentName
- The name of the attachment. Property IDs:
namespace-uri
:http://xmlns.oracle.com/bpel/workflow/xpath
namespace-prefix
: hwf
This function retrieves the number of task attachments.
Signature:
hwf:getTaskAttachmentsCount(taskId)
Arguments:
taskId
- The task ID of the task. Property IDs:
namespace-uri
: http://xmlns.oracle.com/bpel/workflow/xpath
namespace-prefix
: hwf
This function returns the internationalized resource value from the resource bundle associated with a task definition.
Signature:
hwf:getTaskResourceBundleString(taskId, key, locale?)
Arguments:
taskId
- The task ID of the task. key
- The key to the resource. locale
- (Optional) The locale. This value defaults to system locale. This returns a resourceString
XML element in the namespace http://xmlns.oracle.com/bpel/services/taskService
, which contains the string from the resource bundle. Property IDs:
namespace-uri:
http:
//xmlns.oracle.com/bpel/workflow/xpath
namespace-prefix
: hwf
This function gets the name of an identity service group, selected according to the specified assignment pattern. The group is selected from either the subordinate groups of the specified group (if a single group name is supplied), or from the list of groups (if a list of user names is supplied). If the identity service is configured with multiple realms, the realm name for the group and groups must also be supplied. Additional assignment pattern-specific parameters can be supplied. These additional parameters are optional, depending on the details of the specific assignment pattern used.
There are two signatures of this function.
Signature 1:
hwf:wfDynamicGroupAssign('patternName','groupName','realmName'?,'patternParam1'?,'patternParam2'?,...,'patternParamN'?)
Argument 1:
patternName
- The name of the assignment pattern (for example, ROUND_ROBIN
). groupName
- The name of the group from which to select a subordinate group. realmName
- The name of the identity service realm to which the group belongs. patternParam1
...patternParamN
- Any additional parameters required by the assignment pattern implementation (may be optional, depending on pattern). Signature 2:
hwf:wfDynamicGroupAssign('patternName','groupList','realmName'?,'patternParam1'?,'patternParam2'?,...,'patternParamN'?)
Argument 2:
patternName
- The name of the assignment pattern (for example, ROUND_ROBIN
). groupList
- The list of groups from which to select a group. realmName
- The name of the identity service realm to which the groups belong. patternParam1
...patternParamN
- Any additional parameters required by the assignment pattern implementation (may be optional, depending on the pattern). Property IDs:
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
namespace-prefix: hwf
This function returns the name of an identity service user, selected according to the specified assignment pattern. The user is selected from either the subordinate users of the specified group (if a single group name is supplied), or from the list of users (if a list of user names is supplied). If the identity service is configured with multiple realms, the realm name for the group and users must also be supplied. Additional assignment pattern-specific parameters can be supplied. These additional parameters are optional, depending on the details of the specific assignment pattern used.
There are two signatures for this function.
Signature 1:
hwf:wfDynamicUserAssign('patternName','groupName','realmName'?,'patternParam1'?,....,'patternParam2'?,...,'patternParamN'?)
Arguments 1:
patternName
- The name of the assignment pattern (for example, ROUND_ROBIN
). groupName
- The name of the group from which to select a subordinate user. realmName
- The name of the identity service realm to which the group belongs. patternParam1
... patternParamN
- Any additional parameters required by the assignment pattern implementation (may be optional, depending on the pattern). Signature 2:
hwf:wfDynamicUserAssign(patternName,userList,realmName?,patternParam1?,patternParam2?,...,patternParamN?)
Arguments 2:
patternName
- The name of the assignment pattern (for example, ROUND_ROBIN
). userList
- The list of users from which to select a user. realmName
- The name of the identity service realm to which the users belong. patternParam1...patternParamN
- Any additional parameters required by the assignment pattern implementation (may be optional, depending on the pattern). Property IDs:
namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath
namespace-prefix: hwf
This section describes the identity service functions.
This function returns the default realm name.
Signature:
ids:getDefaultRealmName()
Arguments: There are no arguments for this function.
Property IDs:
namespace-uri
: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
namespace-prefix
: ids
This function returns the property value for the given group. If the group or attribute does not exist, it returns null
.
Signature:
ids:getGroupProperty(groupName, attributeName, realmName)
Arguments:
groupName
- String or element containing the group whose attribute must be retrieved. attributeName
- String or element containing the name of the group attribute. The name is one of the following values: displayName
email
If the identity service uses the LDAP providerType
or JAZN LDAP-based providers, configure the LDAP server to enable searching by those attributes.
realmName
- The realm name. This is optional. If not specified, the default realm is assumed. Property IDs:
namespace-uri
: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
namespace-prefix
: ids
This function gets the manager of a given user. If the user does not exist or there is no manager for this user, it returns null
.
Signature:
ids:getManager(userName, realmName)
Arguments:
userName
- The user name. realmName
- The realm name. This is optional. If not specified, the default realm is assumed. Property IDs:
namespace-uri
:http://xmlns.oracle.com/bpel/services/IdentityService/xpath
namespace-prefix
: ids
This function gets the reportees of the user. If the user does not exist, it returns null
. This function returns a list of nodes. Each node in the list is called user.
Signature:
ids:getReportees(userName, upToLevel, realmName)
Arguments:
userName
- The user name. upToLevel
- Defines the levels of indirect reportees to be included in the result. If the value is 1
, it returns only direct reportees. If the value is -1
, it returns all levels of reportees. It can be either an element with value xsd:number
or a string, for example '1
'. realmName
- The realm name. This is optional and if not specified, the default realm is assumed. Property IDs:
namespace-uri
:http://xmlns.oracle.com/bpel/services/IdentityService/xpath
namespace-prefix
: ids
This function returns the supported realm names.
Signature:
ids:getSupportedRealms()
Property IDs:
namespace-uri
: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
namespace-prefix
: ids
This function returns the property of the user. If the user or attribute does not exist, it returns null
.
Signature:
ids:getUserProperty(userName, attributeName, realmName)
Arguments:
userName
- String or element containing the user whose attribute must be retrieved. attributeName
- The name of the user
attribute. The attribute name is one of the following values: givenName
middleName
sn
displayName
mail
telephoneNumber
homephone
mobile
facsimile
pager
preferredlanguage
title
manager
If the identity service uses the LDAP providerType
or JAZN LDAP-based providers, configure the LDAP server to enable searching by those attributes.
realmName
- The realm name. This is optional. If not specified, the default realm name is assumed. Property IDs:
namespace-uri
: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
namespace-prefix
: ids
This function gets the user roles. This function returns a list of objects, either application roles or groups, depending on the roleType
. If the user or role does not exist, it returns null
.
Signature:
ids:getUserRoles(userName, roleType, direct)
Arguments:
userName
- String or element containing the user whose roles are to be retrieved. roleType
- The role type that takes one of three values: ApplicationRole
, EnterpriseRole
, or AnyRole
. direct
- A string or element indicating if direct or indirect roles must be fetched. This is optional. If not specified, only direct roles are fetched. This is either xsd:boolean
or string true/false
. Property IDs:
namespace-uri
:http://xmlns.oracle.com/bpel/services/IdentityService
namespace-prefix
: ids
This function returns the list of users who are granted this application role. If either the application role name or the application name provided as input is null, then it returns null.
Signature: ids:getUsersInAppRole(appRoleName, appName, direct, realmName)
Arguments:
appRoleName
- String or element containing the application role whose members should be retrieved. appName
- Application name within which the application role is created. direct
- String or element indicating if only direct grantees or all users should be fetched. realmName
- String or element containing the realm name. This is optional and, if not specified, the default realm is used. This function gets the users in a group. If the group does not exist, it returns null
. This function returns a list of nodes. Each node in the list is called user
.
Signature:
ids:getUsersInGroup(groupName, direct, realmName)
Arguments:
groupName
- The group name. direct
- A boolean flag. If true
, this function returns direct user grantees; otherwise, all user grantees are returned. It can be either an element with value xsd:boolean
or string 'true'/'false
'. realmName
- The realm name. This is optional. If not specified, the default realm name is assumed. Property IDs:
namespace-uri
: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
namespace-prefix
: ids
This function verifies if a user has a given role.
Signature:
ids:isUserInRole(userID, roleName, realmName)
Arguments:
userID
- A string or element containing the user whose participation in the role must be verified. roleName
- The role name. realmName
- The realm name. This is optional. If not specified, the default realm name is assumed. Property IDs:
namespace-uri
:http://xmlns.oracle.com/bpel/services/IdentityService/xpath
namespace-prefix
: ids
This function gets the group. If the group does not exist, it returns null
.
Signature:
ids:lookupGroup(groupName, realmName)
Arguments:
groupName
- The group name. realmName
- The realm name. This is optional. If not specified, the default realm name is assumed. Property IDs:
namespace-uri
:http://xmlns.oracle.com/bpel/services/IdentityService/xpath
namespace-prefix
: ids
This function gets the user object. If the user does not exist, it returns null
.
Signature:
ids:lookupUser(userName, realmName)
Arguments:
userName
- The user name. realmName
- The realm name. This is optional. If not specified, the default realm name is assumed. Property IDs:
namespace-uri
: http://xmlns.oracle.com/bpel/services/IdentityService/xpath
namespace-prefix
: ids
You can use the Expression Builder dialog and the XPath Building Assistant to create XPath expressions. You can visually design XPath expressions in a BPEL process or Oracle Mediator service component in the Expression Builder dialog.
To use the Expression Builder:
This inserts the function into the Expression field at the top.
The expression is inserted into the function, as shown in Figure B-4.
Several dialogs enable you to specify XPath expressions with the XPath Building Assistant, including:
Manually specifying long and complex expressions is supported, but can be a cumbersome and error-prone process. The XPath Building Assistant provides the following set of features that simplify this process:
This section provides an example of using the XPath Building Assistant to build an expression in the Expression field of the Expression Builder dialog.
To use the XPath Building Assistant:
c
) to display only items starting with that letter and double-click the appropriate function. Figure B-5 provides details.
Figure B-5 List of Values for Building an Expression
This value is added to the Expression field. The list automatically displays again with different options and prompts you to enter the next portion of the XPath expression.
Figure B-6 Invocation of Next Portion of Function
This value is added to the Expression field. The list automatically displays again and prompts you to enter the next portion of the XPath expression.
Note: Instead of double-clicking selections in the XPath Building Assistant popups, you can also use the Enter key to make the selection. If your expression is complete, but you are still being prompted to enter information, press Esc. This closes the list. |
This section provides an example of using the XPath Building Assistant to build an expression in the Edit XPath Expression dialog of the XSLT Mapper.
To use the XPath Building Assistant in the XSLT Mapper:
Figure B-9 List of Values for Building an Expression
c
to display only items starting with that letter, then select and double-click concat(String) as String. Figure B-10 provides details.
This selection is added to the XPath Expression field. The list automatically displays again with different options and prompts you to enter the next portion of the XPath expression.
Function parameter tool tips display the expected arguments of a chosen XPath function. For example, if you manually enter the function concat
, and then enter (
, the parameter tool tip appears and displays the expected arguments of the concat
function. The current argument name of the function is highlighted in bold. Figure B-11 provides details.
Figure B-11 Current Argument Name of the Function
Once you finish specifying one argument, and enter a comma to move to the next argument, the tool tip updates itself to highlight the second argument name in bold, and so on. While editing existing XPaths that contain functions, you can re-invoke parameter tool tips by positioning the cursor within the function and then pressing a combination of the Ctrl, Shift, and space bar keys.
Within Oracle JDeveloper, an XPath expression is considered syntactically valid if it conforms to the XPath 1.0 specification. The XPath Building Assistant warns you about syntactically incorrect XPaths (for example, a missing parenthesis or apostrophe) by underlining the erroneous area in red. Drag the mouse pointer over this area. The error message displays as a tool tip. The red underlining error disappears after you make corrections. Figure B-12 provides details.
Figure B-12 Syntactically Incorrect XPaths
Syntactically valid XPaths may be semantically invalid. This can cause unexpected errors at runtime. For example, you can misspell the name of an element, variable, function, or part. The XPath Building Assistant warns you about semantic errors by underlining the erroneous area in blue. Drag the mouse pointer over this area. The error message displays as a tool tip. The blue underlining error disappears after you make corrections. Figure B-13 provides details.
Figure B-13 Semantically Incorrect XPaths
You can mix free form text with XPath expressions in some dialogs.
Figure B-14 Functionality Description Menu
'Hello, your telephone number'
). Figure B-15 provides details. <%
when you are ready to invoke the XPath Building Assistant. Figure B-16 provides details. Figure B-16 XPath Building Assistant Invocation Preparation
A red underline appears, which indicates that you are being prompted to add information.
Figure B-17 XPath Building Assistant Invocation
You can create user-defined (custom) XPath extension functions for use in Oracle SOA Suite. These functions can be created for the following components:
XPath extension functions in Oracle SOA Suite adhere to the following standards:
As a best practice, follow these conventions for creating functions:
ext-soa-xpath-functions-config.xml
. You must implement XSLT Mapper functions differently than Oracle BPEL Process Manager, Oracle Mediator, and human workflow functions. For more information about description of these implementation differences, see Section B.7.1, "How to Implement User-Defined XPath Extension Functions."
ext-bpel-xpath-functions-config.xml
. Example B-15 shows the function schema used by system and user-defined functions.
Example B-15 Function Schema
This section describes how to implement user-defined XPath extension functions for Oracle SOA Suite components.
Implementation of user-defined XPath extension functions for the XSLT Mapper is different than for other components:
http://www.oracle.com/XSL/Transform/java/mypackage.MyFunctionClass
, where mypackage.MyFunctionClass
is the fully qualified class name of the public static class containing the public static methods for the functions. For additional details about creating a user-defined XPath extension function for the XSLT Mapper, see Section 40.3.4.4, "Importing User-Defined Functions."
For Oracle BPEL Process Manager, Oracle Mediator, and human workflow functions, you must implement either the oracle.fabric.common.xml.xpath.IXPathFunction
interface (defined in the fabric-runtime.jar
file) or javax.xml.xpath.XPathFunction
.
To implement functions for all other components:
oracle.fabric.common.xml.xpath.IXPathFunction
interface for your XPath function. The IXPathFunction
interface has one method named call(context, args)
. The signature of this method is as shown in Example B-16: Example B-16 Implementation of oracle.fabric.common.xml.xpath.IXPathFunction
where:
context
- The context at the point in the expression when the function is called. args
- The list of arguments provided during the call of the function. For the example shown in Example B-17, a function named getNodeValue(
arg1
)
is implemented that gets a value of w3c
node
:
Example B-17 Implementation of getNodeValue(arg1) Function
This section describes how to configure user-defined XPath extension functions.
To configure user-defined XPath extension functions:
mf:myFunction1
and mf:myFunction2
. Example B-18 Sample XML Extension Configuration File
Table B-2 describes the elements of the configuration file. Each function configuration file uses soa-xpath-functions
as its root element. The root element has an optional resourceBundle
attribute. The resourceBundle
value is the fully qualified class name of the resource bundle class providing NLS support for all function configurations.
Table B-2 Function Schema Elements
Element | Description |
---|---|
| The fully qualified class name of the function implementation class. |
| The return type of the function. This can be one of the following types supported by XPath and XSLT: string, number, boolean, node set, and tree. |
| The parameters of the function. A function can have no parameters. A parameter has the following attributes:
|
| An optional description of the function. If the |
| An optional longer (detailed) description of the function. If the |
| An optional icon URL of the function. If the |
| An optional help HTML URL of the function. If the |
| An optional group name of the function. If the |
| The fully qualified class name of the wizard class for all parameters that are wizard-enabled. This is to support a user interface in which parameter values must be entered. This wizard class is invoked by wizard launch buttons to help you enter parameter values. If there is no wizard-enabled parameter, this element must be absent. Note: This element is not supported for user-defined functions. Only system functions currently support this feature. |
Name your user-defined XPath extension configuration file based on the component type with which to use the function. Table B-3 describes the naming conventions to use for user-defined configuration files.
Table B-3 User-Defined Configuration Files
To Use with This Component... | Use This Configuration File Name... |
---|---|
Oracle BPEL Process Manager |
|
Oracle Mediator |
|
XSLT Mapper |
|
Human workflow |
|
All components |
|
META-INF
directory. The JAR file does not need to reside in a specific directory. Note: The |
The JAR file is automatically added to the JVM's class path to make it available for use.
The soa/modules/
oracle.soa.ext_11.1.1 directory is provided for adding custom JAR files and classes. For information, see Section 14.3, "Adding Custom Classes and JAR Files."
This appendix describes how to define deployment descriptor configuration and partner link properties for BPEL process service components used at runtime by Oracle WebLogic Server, Oracle Enterprise Manager, or both.
This appendix includes the following sections:
Note: You cannot specify deployment descriptor properties at runtime. |
For more information about deployment descriptor properties, see Chapter "Oracle BPEL Process Manager Performance Tuning" of Oracle Fusion Middleware Performance and Tuning Guide.
Deployment descriptors are BPEL process service component properties used at runtime by Oracle WebLogic Server, Oracle Enterprise Manager, or both. There are two types of properties:
Table C-1 lists the configuration deployment descriptor properties.
When you define configuration properties, you must add a prefix of bpel.config
to the property name. For example, the property inMemoryOptimization
must be defined as bpel.config.inMemoryOptimization
. For information on defining properties in the Property Inspector in Oracle JDeveloper, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector."
Table C-1 Properties for the configurations Deployment Descriptors
Property Name | Description |
---|---|
This property configures how the instance data is saved. It can only be set at the BPEL service component level. The following values are available:
For more information, see Section "completionPersistPolicy" of Oracle Fusion Middleware Performance and Tuning Guide. | |
This property, when set to | |
If using outbound adapters in an asynchronous BPEL process, specify the maximum number of retries for a remote fault. | |
If using outbound adapters in an asynchronous BPEL process, specify the time interval in milliseconds between retries for a remote fault. | |
Default value is For more information, see Section "inMemoryOptimization" of Oracle Fusion Middleware Performance and Tuning Guide. | |
Specify whether the server can keep global variable values in the instance store when the instance completes:
| |
This property sets the persistence policy of the process in the delivery layer. The possible values are:
For information about setting this property during BPEL process creation, see Section 4.1.1, "How to Add a BPEL Process Service Component." For more information, see Section "OneWayDeliveryPolicy" of Oracle Fusion Middleware Performance and Tuning Guide. | |
This property controls the number of instances to create and use to route messages. The possible values are:
For more information, see Section 9.2, "Routing Messages to the Same Instance." | |
The location of the sensor action XML file. The sensor action XML file configures the action rule for the events. | |
The location of the sensor XML file. The sensor XML file defines the list of sensors into which events are logged. | |
This property configures the transaction behavior of the BPEL instance for initiating calls.
Note: This property does not apply for midprocess receive activities. In those cases, another thread in another transaction is used to process the message. This is because a correlation is needed and it is always done asynchronously. For information about setting this property during BPEL process creation, see Section 4.1.1, "How to Add a BPEL Process Service Component." |
Table C-2 lists the partner link binding deployment descriptor properties.
When you define partner link binding properties, you must add a prefix of bpel.partnerLink.
partner_link_name
to the property name. For example, the property nonBlockingInvoke
must be defined as bpel.partnerLink.
partner_link_name
.nonBlockingInvoke
. For information on defining properties in the Property Inspector in Oracle JDeveloper, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector."
Table C-2 Properties for the partnerLinkBinding Deployment Descriptors
Property Name | Description |
---|---|
An idempotent activity is an activity that can be retried (for example, an assign activity or an invoke activity). The instance is saved after a nonidempotent activity. This property is applicable to both durable and transient processes.
For more information, see Section "idempotent" of Oracle Fusion Middleware Performance and Tuning Guide. | |
Default value is For more information, see Section 10.1.1, "What You May Need to Know About the Execution of Parallel Flow Branches in a Single Thread" and Section "nonBlockingInvoke" of Oracle Fusion Middleware Performance and Tuning Guide. | |
Enables message boundary validation. When set to <partnerLinkBinding name="StarLoanService"> <property name="wsdlLocation"> http://<hostname>:9700/orabpel/default/StarLoan/Sta rLoan?wsdl</property> <property name="validateXML">true</property> </partnerLinkBinding> For more information, see Section "validateXML" of Oracle Fusion Middleware Performance and Tuning Guide. |
You define configuration and partner link binding deployment descriptor properties and values in the Property Inspector of Oracle JDeveloper. When complete, the properties are displayed in the BPEL process service component section of the composite.xml
file.
Figure C-1 Selected BPEL Process Service Component
For this example, the oneWayDeliveryPolicy property is already defined because the Delivery option was selected in the Create BPEL Process dialog during BPEL process creation. For more information about setting this property during BPEL process creation, see Section 4.1.1, "How to Add a BPEL Process Service Component."
The Create Property dialog is displayed.
inMemoryOptimization
is defined. Therefore, a prefix of bpel.config
is required. For more information about configuration deployment descriptor properties, see Table C-1. If you instead add a partner link binding property, a prefix of bpel.partnerLink.
partner_link_name
is required, where partner_link_name
is the name of the partner link (for example, LoanService
). For more information about partner link binding deployment descriptor properties, see Table C-2.
true
). Figure C-3 shows the completed Create Property dialog.
The Property Inspector displays the added deployment descriptor property.
Figure C-4 Property Inspector with Deployment Descriptor Property
The inMemoryOptimization
configuration property with the bpel.config
prefix is displayed in the composite.xml
file, as shown in Example C-1.
Example C-1 Configuration Property Definition in composite.xml
If you instead define a partner link binding deployment descriptor property in the Property Inspector (for example, the nonBlockingInvoke
partner link binding property), it is displayed in the composite.xml
file, as shown in Example C-2. Note the prefix of bpel.partnerLink.
partner_link_name
, which is required for this type of property.
The value of a property can be read by a BPEL process using the XPath extension function ora:getPreference(myPref)
. This gets the value of bpel.preference.myPref
.
This function can be used as part of a simple assign statement, used in condition expressions, or used as part of a more complex XPath expression.
Table C-3 lists deprecated properties that can no longer be used.
Table C-3 Deprecated Properties
Property | Deployment Descriptor Type | Deprecated for Release... |
---|---|---|
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 10.1.3.4 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 10.1.3 |
|
| Deprecated by the fault policy feature in 10.1.3.3 |
|
| Deprecated by the fault policy feature in 10.1.3.3 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
|
| 11g Release 1 |
This appendix describes the available sensor public views and the sensor actions XSD file that you can import into Oracle BPEL Designer.
This appendix includes the following sections:
For more information, see Chapter 18, "Using Oracle BPEL Process Manager Sensors."
A set of public views is exposed to allow SQL access to sensor values from literally any application interested in the data. In addition, a sample sensor action schema is provided for importing into Oracle BPEL Designer.
The sensor framework of Oracle BPEL Process Manager provides the functionality to persist sensor values created by processing BPEL instances in a relational schema stored in the dehydration store of Oracle BPEL Process Manager. The data is used to display the sensor values of a process instance in Oracle Enterprise Manager Fusion Middleware Control.
The database publisher persists the sensor data in a predefined relational schema in the database. The following public views can be used from a client (Oracle Warehouse, portals, and so on) to query the sensor values using SQL.
Note: In Table D-1 through Table D-4, the Indexed or Unique? column provides unique index names and the order of the attributes. For example, U1,2 means that the attribute is the second one in a unique index named U1. PK means primary key. |
Table D-1 provides an overview of all the process instances of Oracle BPEL Process Manager.
Table D-1 BPEL_PROCESS_INSTANCES View
Attribute Name | SQL Type | Attribute Size | Indexed or Unique? | Null? | Comment |
---|---|---|---|---|---|
|
| -- | PK | N | Unique instance ID |
|
| 500 | -- | N | User-defined application name |
|
| 500 | -- | N | User-defined composite name |
|
| 50 | -- | N | User-defined revision number |
|
| 500 | -- | N | User-defined label |
|
| 500 | -- | N | User-defined component name |
|
| 200 | -- | Y | User-defined title of the BPEL process |
|
| -- | -- | Y | State of the BPEL process instance |
|
| 21 | -- | Y | Text presentation of the state attribute |
|
| -- | -- | Y | User-defined priority of the BPEL process instance |
|
| 200 | -- | Y | User-defined status of the BPEL process |
|
| 100 | -- | Y | User-defined stage property of a BPEL process |
|
| 256 | -- | Y | User-defined conversation ID of a BPEL process |
|
| 6 | -- | N | Creation time stamp of the process instance |
|
| 6 | -- | Y | Time stamp when the process instance was modified |
|
| -- | -- | Y | Date portion of |
|
| -- | -- | Y | Hour portion of |
|
| -- | -- | Y | Evaluation time of the process instance in milliseconds |
Table D-2 contains all the activity sensor values of the monitored BPEL processes.
Table D-2 BPEL_ACTIVITY_SENSOR_VALUES View
Attribute Name | SQL Type | Attribute Size | Indexed or Unique? | Null? | Comment |
---|---|---|---|---|---|
|
| 200 | U1,2 | N | The name of the sensor that fired |
|
| 512 | -- | N | The target of the fired sensor |
|
| 200 | U1,3 | N | The name of the sensor action |
|
| 512 | -- | Y | The filter of the action |
|
| 6 | -- | N | The creation date of the activity sensor value |
|
| 6 | -- | Y | The time stamp of last modification |
|
| -- | -- | Y | Date portion of |
|
| -- | -- | Y | Hour portion of |
|
| 1 | -- | Y |
|
|
| 200 | -- | N | The name of the BPEL activity |
|
| 30 | -- | N | The type of the BPEL activity |
|
| 30 | -- | Y | The state of the BPEL activity |
|
| 30 | -- | N | The evaluation point of the activity sensor |
|
| -- | -- | Y | An error message |
|
| -- | -- | Y | The number of retries of the activity |
|
| -- | -- | Y | Evaluation time of the activity in milliseconds |
|
| -- | PK | N | Unique ID |
|
| -- | U1,1 | N | BPEL process ID |
|
| 500 | -- | N | User-defined application name |
|
| 500 | -- | N | User-defined composite name |
|
| 50 | -- | N | User-defined revision number |
|
| 500 | -- | N | User-defined label |
|
| 500 | -- | N | User-defined component name |
Table D-3 contains all the fault sensor values.
Table D-3 BPEL_FAULT_SENSOR_VALUES View
Attribute Name | SQL Type | Attribute Size | Indexed or Unique? | Null? | Comment |
---|---|---|---|---|---|
|
| -- | PK | N | Unique ID |
|
| -- | U1,1 | N | BPEL process ID |
|
| 500 | -- | N | User-defined application name |
|
| 500 | -- | N | User-defined composite name |
|
| 50 | -- | N | User-defined revision number |
|
| 500 | -- | N | User-defined label |
|
| 500 | -- | N | User-defined component name |
|
| 200 | U1,2 | N | The name of the sensor that fired |
|
| 512 | -- | N | The target of the fired sensor |
|
| 200 | U1,3 | N | The name of the sensor action |
|
| 512 | -- | Y | The filter of the action |
|
| 6 | -- | N | The creation date of the activity sensor value |
|
| 6 | -- | Y | The time stamp of last modification |
|
| -- | -- | Y | Date portion of |
|
| -- | -- | Y | Hour portion of |
|
| 1 | -- | Y |
|
|
| 200 | -- | N | The name of the BPEL activity |
|
| 30 | -- | N | The type of the BPEL activity |
|
| -- | -- | Y | The fault message |
Table D-4 contains all the variable sensor values.
Table D-4 BPEL_VARIABLE_SENSOR_VALUES View
Attribute Name | SQL Type | Attribute Size | Indexed or Unique? | Null? | Comment |
---|---|---|---|---|---|
|
| -- | PK | N | Unique ID |
|
| -- | U1,1 | N | BPEL process ID |
|
| 500 | -- | N | User-defined application name |
|
| 500 | -- | N | User-defined composite name |
|
| 50 | -- | N | User-defined revision number |
|
| 500 | -- | N | User-defined label |
|
| 500 | -- | N | User-defined component name |
|
| 200 | U1,2 | N | Name of the sensor that fired |
|
| 512 | -- | N | Target of the sensor |
|
| 200 | U1,3 | N | Name of the action |
|
| 512 | -- | Y | Filter of the action |
|
| -- | -- | Y | ID of the corresponding activity sensor value |
|
| 6 | -- | N | Creation date |
|
| -- | -- | N | Date portion of |
|
| -- | -- | N | Hour portion of |
|
| 512 | -- | N | The name of the BPEL variable |
|
| 30 | -- | Y | Evaluation point of the corresponding activity sensor |
|
| 1 | -- | Y |
|
|
| 512 | -- | -- | -- |
|
| 200 | -- | N | The name of the activity or event that updated the variable |
|
| 200 | -- | N | The type of the BPEL activity or event |
|
| 512 | -- | Y | Namespace of variable sensor value |
|
| 512 | -- | Y | Data type of the variable sensor value |
|
| -- | -- | N | The value type of the variable (corresponds to |
|
| 4000 | -- | Y | The value of string-like variables |
|
| -- | -- | Y | |
|
| 6 | -- | Y | User-defined date |
|
| 10 | -- | Y | User-defined time zone |
|
| -- | -- | Y | |
|
| -- | -- | Y |
Example D-1 provides a sample sensor action schema that you can import into Oracle BPEL Designer. This schema is also relevant to custom data publishers.
Example D-1 Sample Sensor Action Schema
This appendix describes reference information for the operations provided by the Oracle Business Activity Monitoring (Oracle BAM) DataObjectOperations, DataObjectDefinition, and ManualRuleFire web services.
This appendix includes the following sections:
More information about the Oracle BAM web services is available in Chapter 59, "Using Oracle BAM Web Services."
The following operations are supported by the DataObjectOperations10131 web service:
Batch performs batch operations on a data object.
The request message contains the following parameters.
dataObject (xsd:string)
Full relative path and name of the data object, for example:
xmlPayload (xsd:string)
Contains the batch payload for any operations to be performed. For example:
Delete removes a row from the data object.
The request message contains the following parameters.
dataObject (xsd:string)
Full relative path and name of the data object, for example:
/Samples/Employees
keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:
_Sales_Number,_Sales_Area
xmlPayload (xsd:string)
Payload for the where
clause to delete rows in a data object. For example:
Insert adds rows to the specified data object.
The request message contains the following parameters.
dataObject (xsd:string)
Full relative path and name of the data object, for example:
xmlPayload (xsd:string)
The payload is specific to each data object.
Update operation updates existing data with new data in a data object.
The request message contains the following parameters.
dataObject (xsd:string)
Full relative path and name of the data object, for example:
keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:
xmlPayload (xsd:string)
Payload for the update statement and where clause to update rows in a data object. For example:
Upsert operation updates existing data with new data in an existing row in a data object. If the row does not exist a new row is created.
The request message contains the following parameters.
dataObject (xsd:string)
Full relative path and name of the data object, for example:
keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:
xmlPayload (xsd:string)
Payload for the insert or update statement and where clause to upsert rows in a data object. For example:
The following operations are supported by the DataObjectOperations10131, DataObjectOperationsByName, and DataObjectOperationsByID web services.
Delete removes a row from the data object.
The request message contains the following parameters.
keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:
xmlPayload (xsd:string)
Payload for the where clause to delete rows in a data object. For example:
Get fetches the details from a data object per the specifications in the XML payload
Get is only available in DataObjectOperationsByName web service.
The request message contains the following parameters.
keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:
xmlPayload (xsd:string)
The payload specifies what to get from the data object.
For the DataObjectOperationsByName web service the data object name is specified in the payload, for example:
Insert adds rows to the specified data object.
The request message contains the following parameters.
xmlPayload (xsd:string)
The payload is specific to each data object.
Update operation updates existing data with new data in a data object.
The request message contains the following parameters.
keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:
xmlPayload (xsd:string)
Payload for the update statement and where clause to update rows in a data object. For example:
Upsert operation updates existing data with new data in an existing row in a data object. If the row does not exist a new row is created.
The request message contains the following parameters.
keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:
xmlPayload (xsd:string)
Payload for the insert or update statement and where clause to upsert rows in a data object. For example:
The following operations are supported by the DataObjectOperations10131, DataObjectOperationsByName, and DataObjectOperationsByID web services.
Batch performs batch operations on a data object.
The request message contains the following parameters.
dataObject (xsd:string)
Full relative path and name of the data object, for example:
xmlPayload (xsd:string)
Contains the batch payload for any operations to be performed. For example:
Delete removes a row from the data object.
The request message contains the following parameters.
dataObject (xsd:string)
This parameter is not required by the DataObjectOperationsByName web service because the data object name and path are part of the payload.
Full relative path and name of the data object, for example:
keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:
xmlPayload (xsd:string)
Payload for the where clause to delete rows in a data object. For example:
Insert adds rows to the specified data object.
The request message contains the following parameters.
dataObject (xsd:string)
Full relative path and name of the data object, for example:
xmlPayload (xsd:string)
The payload is specific to each data object.
For the DataObjectOperationsByName web service the data object name is specified in the payload, for example:
Update operation updates existing data with new data in a data object.
The request message contains the following parameters.
dataObject (xsd:string)
Full relative path and name of the data object, for example:
keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:
xmlPayload (xsd:string)
Payload for the update statement and where clause to update rows in a data object. For example:
Upsert operation updates existing data with new data in an existing row in a data object. If the row does not exist a new row is created.
The request message contains the following parameters.
dataObject (xsd:string)
Full relative path and name of the data object, for example:
keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:
xmlPayload (xsd:string)
Payload for the insert or update statement and where clause to upsert rows in a data object. For example:
The following operations are supported by DataObjectDefinition web service.
Create creates a new data object. By specifying columnar elements, you can create calculated and lookup fields in addition to regular fields ass show in the examples.
The request message contains the following parameter.
xmlPayload (xsd:string)
Contains the payload to create a data object.
Table E-1 xmlPayload Elements and Descriptions and Valid Values
Element | Description and Values |
---|---|
/DataObject/@External | 0 (zero) indicates that the data object is not from an external data source (default). 1 indicates that the data object is from an external data source. |
/DataObject/@Name | Name of the data object to be created not including the directory path. |
/DataObject/@Path | Directory path in which to create the data object. |
/DataObject/@Version | Data objects can be versioned 0 (default) through 14. |
/DataObject/@TipText | Description of the data object to be created. |
/DataObject/Layout/Column/@Name | Name of the column (field) in the data object. |
/DataObject/Layout/Column/@Type | The following values are valid for column type: |
/DataObject/Layout/Column/@Nullable | 1 (default) indicates that the column supports null values. 0 (zero) indicates that the column does not support null values. |
/DataObject/Layout/Column/@Public | 1 (default) indicates that the column is public. 0 (zero) indicates that the column is not public. |
/DataObject/Layout/Column/@MaxSize | For string type columns, this attribute specifies the maximum permissible string size. Default value is 30. |
/DataObject/Layout/Column/@Precision | For decimal type columns, this attribute specifies the precision of the decimal value. |
/DataObject/Layout/Column/@Scale | For decimal type columns, this attribute specifies the scale of the decimal value. |
/DataObject/Layout/Column/@TipText | Column description |
Example E-1 xmlPayload to Create Data Object With Regular Columns
Example E-2 xmlPayload to Create Data Object With Lookup Field
When you construct the XML payload for the Create operation, and the data object version is lower than 12, use PrimaryKey instead of PrimaryKeyID, ForeignKey instead of ForeignKeyID, LookupField instead of LookupFieldID, and provide name values instead of IDs for those fields.
Example E-3 xmlPayload to Create Data Object With Calculated Field
Delete removes a data object definition and its contents.
Get retrieves an existing data object definition.
The request message contains the following parameters.
dataObjectFullName (xsd:string)
Full relative path and name of the data object, for example:
The response message contains the following parameter.
xmlPayload (xsd:string)
An XML description of the data object is returned. The schema used is the same definition as described for the Create and Update operations. You can use this operation to find the ID values of the data object and any columns.
Example E-4 xmlPayload for Get Operation
Update updates the definition of an existing data object. If a specified column exists in the original definition, the new column definition overwrites the old one. If columns in the existing definition are not specified in the new definition, their definitions are removed. The data object index definition can be updated as well.
The request message contains the following parameters.
xmlPayload (xsd:string)
Payload for the Update operation is similar to the Create payload with one additional attribute. For example:
The following operation is supported by ManualRuleFire web service.
Use this operation to manually launch a rule.
This web service takes a string parameter, which should have user name, followed by a period (.), followed by the alert name. For example:
The period is used as a separator between the user name and the alert name. The web service always treats last period in the string as the separator, allowing the user name to contain periods. For example
It follows then that the alert names cannot contain a period. If you must use the ManualRuleFire web service with an alert containing a period in its name, the alert must be renamed so that it does not contain any periods.
This appendix describes the events, conditions, and actions that are used in defining Oracle Business Activity Monitoring (Oracle BAM) alert rules.
This appendix includes the following sections:
For information about modifying alerts when the user is a member of the administrative role, see Section 60.2.5, "What You May Need to Know About Modifying Alerts."
Events launch the rule and trigger the action. Each rule contains only one event. Oracle BAM provides the following events:
When you select the event In a specific amount of time, you must complete the rule expression by selecting a time interval in seconds, minutes, or hours.
When you select the event At a specific time today, you must complete the rule expression by selecting the time at which to launch the alert.
When you select the event On a certain day at a specific time, you must complete the rule expression by selecting both the date and the time at which to launch the alert.
When you select the event Every interval between two times, you must complete the rule expression by configuring the following settings.
Set the number of minutes, hours, or days between each alert launch.
Set the times of day between which the rule is valid and the alert is launched.
When you select the event Every date interval starting on a certain date at a specific time, you must complete the rule expression by configuring the following settings.
Set the alert to launch every Day, Week, Month, or Year.
Set the date on which the rule is valid and the alert is launched.
Set the time of day at which the rule is valid and the alert is launched.
When a report changes is launched when runtime changes in a report occur (not changes in the report definition), that is every time a change list is delivered to the report from the Oracle BAM Server. Report changes can include changes to data in data objects and changes due to Active Now settings.
When you select the event When a report changes, you must complete the rule expression by configuring the following settings.
Select the report to monitor for changes.
Select the Oracle BAM user who the selected report runs as. You can select only one run as user. The default run as user is the logged in Oracle BAM user who is creating the alert.
Only recipients who have security permissions that are the same or higher than the run as user receive the notification for report changes, honoring row level security as implemented by the Oracle BAM Architect in the data objects used in the report.
Names that are preceded with a hash (#) are distribution lists.
If there are changes in a report's data object rows that none of the alert recipients have permissions to access, no recipients are notified.
When you select the event When a data field changes in a data object, you must complete the rule expression by configuring the following settings.
Note: The event When a data field in a data object meets specified conditions responds only to row inserts and row updates, but it does not respond to row deletes; however, the event When a data field changes in a data object responds to row deletes. |
Select the data object field to monitor for changes. In the Field Selection dialog box, locate the data object in the top left section of the dialog box, then select the field in the top right section of the dialog box. Finally, select one or more fields to group by and an aggregate function for the selected field.
Select the Oracle BAM user who the selected report runs as. You can select only one run as user. The default run as user is the logged in Oracle BAM user who is creating the alert.
Only recipients who have security permissions that are the same or higher than the run as user receive the notification for report changes, honoring row level security as implemented by the Oracle BAM Architect in the data objects used in the report.
Names that are preceded with a hash (#) are distribution lists.
If there are changes in a report's data object rows that none of the alert recipients have permissions to access, no recipients are notified.
When you select the event When a data field changes in a data object, you must complete the rule expression by configuring the following settings.
Select the report to monitor for changes.
In the Alert Rule Editor dialog box, select the data object to monitor. Then you can set the condition under which the alert should fire.
Select the Oracle BAM user who the selected report runs as. You can select only one run as user. The default run as user is the logged in Oracle BAM user who is creating the alert.
Only recipients who have security permissions that are the same or higher than the run as user receive the notification for report changes, honoring row level security as implemented by the Oracle BAM Architect in the data objects used in the report.
Names that are preceded with a hash (#) are distribution lists.
If there are changes in a report's data object rows that none of the alert recipients have permissions to access, no recipients are notified.
When you select the event When a data field in a data object meets specified condition, you must complete the rule expression by configuring the following settings.
Note: The event When a data field in a data object meets specified conditions responds only to row inserts and row updates, but it does not respond to row deletes; however, the event When a data field changes in a data object responds to row deletes. |
In the Alert Rule Editor dialog box, select the data object to monitor. Then you can set the condition under which the alert should fire.
Select the Oracle BAM user who the selected report runs as. You can select only one run as user. The default run as user is the logged in Oracle BAM user who is creating the alert.
Names that are preceded with a hash (#) are distribution lists.
Only recipients who have security permissions that are the same or higher than the run as user receive the notification for report changes, honoring row level security as implemented by the Oracle BAM Architect in the data objects used in the report.
If there are changes in a report's data object rows that none of the alert recipients have permissions to access, no recipients are notified.
The event When this rule is launched is used to create a rule dependent on another rule which uses the Launch a rule action. Several rules can be created using When this rule is launched in a hierarchy.
Conditions are optional settings for constraining the time period in which the alert is fired. You can select any number and combination of conditions. Oracle BAM provides the following conditions:
Select two times between which the rule should launch.
Select two dates between which the rule should launch.
Select a day of the week on which the rule should launch.
Actions are the results of the conditions and events of the rule expression having been met. You can configure any number and combination of actions. Oracle BAM provides the following actions:
Select a report, select to send the report as a report link or as a rendered report, and select a recipient.
Recipients can be selected from Oracle BAM users, or, if a property is set in Oracle BAM, external e-mail accounts. See Section 60.9, "Sending Alerts to External E-mail Accounts" for more information.
Create an email message to send and select a recipient.
Recipients can be selected from Oracle BAM users, or, if a property is set in Oracle BAM, external e-mail accounts. See Section 60.9, "Sending Alerts to External E-mail Accounts" for more information.
Select a report to send to the specified user. Select a secondary recipient to receive the message if the first recipient does not respond within the specified time period. The secondary recipient can be a single user or a distribution list.
When the condition of the alert rule is met, a report link is sent to the recipient. To respond to this alert, the recipient must click the report link and view the report. If the recipient does not view the report, it is escalated to the secondary user (or distribution list).
Recipients can be selected from Oracle BAM users, or, if a property is set in Oracle BAM, external e-mail accounts. See Section 60.9, "Sending Alerts to External E-mail Accounts" for more information.
This option enables you to email reports that require parameter inputs to Oracle BAM users. This action enables you to create a fully configurable email message and the parameter values that are passed to the report.
For information about creating prompts and parameters in Oracle BAM dashboards see "Using Prompts and Parameters" in Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.
You can use this option to send reports to other users under the conditions specified in the alert message. This action is available for the events When a data field changes in data object and When a data field in a data object meets specified conditions.
There are two properties that must be configured in this alert action: create message and set parameters.
To create the message:
To configure the parameter values that are passed to the report when it is opened by the recipient:
Figure F-2 Alert Action Parameter Creation and Edit dialog box
If you populate this field using the Select User button, the recipients are selected from Oracle BAM users listed in Oracle BAM Administrator as shown in Figure F-3.
If you populate this field with the Select Report button, the value that appears in this field is the display name of the report.
If you populate this field from a Data Object, the value must be the report ID of that report, and not the display name. To get the report ID, click the report and click the Copy Shortcut link. A window opens with a link such as:
In this link the ReportDef value, 1
, is the report ID of the report Emp_Report
. Every report in Oracle Business Activity Monitoring has a unique report ID.
Enter all of the parameters required by the report.
Click New in the Report Parameter Values list to configure the parameter.
Enter the parameter name in the Name field, and click Select Field to select the field on which the parameter acts.
Key in the parameter value, or select the field from the Field Selection dialog box, and click OK.
For special values use the underscore (_), for example, _ALL_, _BLANK_, and _NULL_.
The selected field ID appears in the Value text box. Click OK to confirm and return to the parameters list.
This action can pick up recipients, message content, and the message subject from rows of a static data object. You can specify filter conditions in the configuration screen to choose data object rows for conditional notification. This action can be configured with any event, condition, or action.
When this action is invoked, the rows in the data object that match the filter criteria are used to construct an e-mail message (using the data object parameters specified in the action) which is sent out to the recipients. Message creation is similar to that in Section F.3.4, "Send a parameterized message."
To configure the action:
Note: The data object and filter conditions must be selected first so that the data object fields appear. |
Select a dependent rule that includes the when this rule is launched event. For an example of constructing a dependent rule see Section 60.5, "Creating Complex Alerts."
Select a dependent rule to launch if any of the actions included in the rule fail. For an example of constructing a dependent rule see Section 60.5, "Creating Complex Alerts"
Select the data object, and construct a filter entry such that when the filter condition is met the row is removed from the data object.
If the data being deleted is more than 10,000 rows, be aware of the following items:
When this action is selected, do the following steps to configure the web service:
For example:
If it is a secure web service select the box and enter the required credentials.
Note: Oracle BAM cannot determine if the web service is hosted on a server which is behind a secure server. It is your responsibility to indicate whether the web service is behind an HTTP basic authentication based server, and you must enter valid credentials if they are required. To accomplish one-way SSL, the alert web service client must be pointed to a trust store in which it can look up, to determine if the certificate presented to it exists in it or not. This can be done by setting properties in |
It is populated with the endpoint URL defined in the WSDL file of the web service. If you find this endpoint URL outdated (for example, the web service implementation moved to a different endpoint but you do not have the new WSDL, but know the new endpoint URL) or incorrect, or want to override it, you can edit this URL. When the web service is invoked by Oracle BAM Event Engine, the configured endpoint URL is used to invoke the web service.
When the event is based on a data object change (for example, When a data field changes in data object, When a data field in a report meets specified conditions, When a data field in a data object meets specified conditions), a selection list of fields to which the parameter can be mapped is displayed.
To map the parameters choose the Data Object Field option, and select a data object field from the list next to each web service parameter listed in the Alert Web Service - Parameter Mapping dialog box.
When the event is not based on a data object change, the value is entered in a text box.
See Section F.3.9.1, "How to Use Call a Web Service: An Example" for a specific example.
Note: If the web service does not respond to the call, then there are no logs available pertaining to the non-response or failure. |
The following procedure details the steps to create a alert which invokes a web service, using the sample Employees data object to insert a row in a data object.
To use Call a Web Service:
The Alert Web Service Configuration dialog opens.
where host_name
and port_number
are substituted with your Oracle BAM instance's host name and port number.
This populates the endpoint URL of your web service. If the endpoint your of your web service has changed, or you want to override it with some other implementation, provide the new endpoint URL, otherwise, leave it as it is.
The web service operation in this example requires a value for only one parameter, an XML payload containing the row to insert in the data object.
Enter the following text in the xmlpayload
value and click.
Use this action to trigger a scenario in Oracle Data Integrator. This action is only available if the integration files for Oracle Data Integrator have been installed. See "Installing the Oracle Data Integrator Integration Files" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite for more information.
Ensure that the Oracle Data Integrator agent is running and that the agent host, port, and login credentials are properly configured in Oracle Enterprise Manager Fusion Middleware Control. Oracle BAM cannot verify that the Oracle Data Integrator agent is running, and if it is not running, the alert fires, but the action is not carried out as expected. Also, Oracle BAM alerts that trigger Oracle Data Integrator scenarios do not track the success or failure of the Oracle Data Integrator scenario call, and it is not logged on the Oracle BAM side. See "Configuring Oracle Data Integrator Properties," in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information.
In the alert creation dialog box, select the Oracle Data Integrator scenario to invoke by selecting the scenario name and version from the dropdown list.
If the scenario uses variables in it, choose the values (type in a value or choose a field value from the data object) to pass to Scenario Variables in the same screen.
Call an External Action is used to develop a custom action. For users whose requirements cannot be fulfilled by the actions provided by Oracle BAM, this feature is used to extend the action set.
See Section 60.8, "Calling an External Action" for details on how to configure this action.
The Frequency Constraint feature prevents a user's email inbox from being flooded with alerts by limiting the number of alert messages that can be sent out during a given time interval.
Frequency Constraint can be edited only if it is appropriate for the event selected. otherwise it is disabled. It can be set to a value of time which could be in seconds, minutes, or hours.
This limits the number of times the rule launches in a given time period. With real-time data, transactions can occur every millisecond, so alerting frequency must be controlled.
This appendix describes in detail each operation and parameter available in the ICommand command-line utility and web service.
This appendix includes the following sections:
For more information about ICommand see the following topics:
This section summarizes the parameters that can be used with each ICommand operation. You can also see a summary of these operations in the command window by entering icommand
(without any parameters) at the command prompt.
Table G-1 summarizes the commands available in ICommand.
Table G-1 ICommand Command Summary
Command | Parameters |
---|---|
|
[For more information about |
| [[
[[[[For more information about |
|
[[
[[[[[[[[[[[[[For more information about |
|
[[[[[
For more information about |
|
[
For more information about |
This section details each of the ICommand commands, their parameters, and gives examples. It includes the following topics:
Clears the contents of an item in the Active Data Cache.
What it means to be cleared depends upon the item type:
Table G-2 Clear Command Parameters
Parameter | Description |
---|---|
| The name of the item to be cleared. Required. |
| The type of the item to be cleared. The following are valid:
|
Deletes an item from the Active Data Cache.
Table G-3 Delete Command Parameters
Parameter | Description |
---|---|
| Controls whether all items of the specified type are deleted (see Example G-5). A nonzero or omitted value means delete all items of the specified type, a zero (0) value means only delete the named (or matched) items. Zero is assumed if this parameter is omitted. |
| A DOS-style pattern matching string, using the asterisk (*) and question mark (?) characters. The items whose names match the pattern are deleted. |
| The name of the item to be deleted. |
| A regular expression pattern matching string. The items whose names match the pattern are deleted. See Section G.6, "Regular Expressions" for more information. |
| Controls whether data objects in the |
| The type of the item to be deleted. The following are valid:
|
Example G-2 Deleting a Data Object
This command deletes a data object named TestDO
. Note that dataobject type is assumed if the type parameter is not specified.
Example G-3 Deleting an Alert Rule
For any ICommand operation on alerts, the value of the type
parameter is rule
. This command deletes a rule named MyAlert
.
Example G-4 Deleting security filter defined on a data object
To delete security filters defined on a data object, the name of the data object must be specified, instead of name of the security filter. This command deletes all security filters defined on the data object MyDataObject
.
Exports information about one or more objects in the Active Data Cache to an XML file. See Section G.5, "Sample Export File" for an example of an exported data object.
Table G-4 Export Command Parameters
Parameter | Description |
---|---|
| Controls whether all items of the specified type are exported. A nonzero or omitted value means export all items of the specified type, a zero value means only export the named (or matched) items. Zero (0) is assumed if this parameter is omitted. For Reports, Folders, and Rules, only the items owned by the user running ICommand are exported, unless the user running ICommand is an administrator. When an administrator runs ICommand, any user's items may be exported. See Example G-14, "Exporting All of the Reports in the System" |
| Controls whether the exported information is appended to any existing file. A nonzero value means append. Zero (0) means overwrite the contents of any existing files. Zero is assumed if this parameter is omitted, or if the value is omitted. The Append parameter must be used with the Header and Footer parameters as described in Example G-22, "Using Append Parameter in Export". When the Append parameter is used, the Header and Footer parameters must be defined. If they are not, ICommand includes XML header information and closing XML </OracleBAMExport> tags after each append to the export file. The file is unusable for importing into Oracle BAM, because the import stops when it finds the first </OracleBAMExport> closing tag and ignores the rest of the objects. |
| Controls whether content information (row, column values) is to be exported. Applies only to Data Objects. Cannot be used with the A nonzero value means export content information. Zero (0) means do not export content information. A nonzero value is assumed if this parameter is omitted, or if the value is omitted. In addition, can only be used when:
|
| Applies to only to Data Objects. Controls whether other Data Objects that the exported Data Objects depend on in the lookup columns are exported. A nonzero value or the parameter present with no value specifies that if the Data Objects being exported contain lookup columns, then the Data Objects that are looked up are exported. Zero is assumed if this parameter is omitted, or if the value is omitted. |
| The name of the file to export to. Required. If the file does not exist, it is created. If the file does exist, any contents are overwritten, unless the |
| Controls whether closing XML information is written to the end of the export file. This can allow successive executions of ICommand to assemble one XML file by repeatedly appending to the same file. A nonzero value means write the closing information. Zero (0) means do not write the closing information. nonzero is assumed if this parameter is omitted, or if the value is omitted. When used with the Append parameter, you must set the Footer value appropriately, or the file cannot be used with ICommand Import. If Footer is not defined, each append includes closing </OracleBAMExport> tags and the import stops when the first closing tag is read and does not import the remaining objects defined in the file. See Example G-22, "Using Append Parameter in Export" for a sample using this parameter. |
| Controls whether XML header information is written to the front of the export file. This can allow successive executions of ICommand to assemble one XML file by repeatedly appending to the same file. A nonzero value means write the header. Zero(0) means do not write the header. nonzero is assumed if this parameter is omitted, or if the value is omitted. See Example G-22, "Using Append Parameter in Export" for a sample using this parameter. |
| Applies only to Data Objects. Controls whether layout information is to be exported. A nonzero value means export layout information. Zero (0) means do not export layout information. nonzero is assumed if this parameter is omitted, or if the value is omitted. |
| A DOS-style pattern matching string, using the asterisk (*) and question mark (?) characters. The items whose names match the pattern are exported (see Example G-21, "Exporting a Data Object Using the Match Parameter"). |
| The name of the item to be exported. |
| Applies only to Folders, Reports, and Rules. Controls whether the information about the owner of the items being exported is included in the export. A nonzero value means export the owner information. Zero (0) means do not export the owner information. nonzero is assumed if this parameter is omitted, or if the value is omitted. |
| Applies only to Data Objects and Folders. Controls whether permissions information is to be exported. A nonzero value means export information about the permission settings of the exported Data Objects or Folders. Zero (0) means do not export permission information. Zero is assumed if this parameter is omitted, or if the value is omitted. For Data Objects, only the permissions of the Data Object itself are exported. Any permissions that might be on the folders or subfolders that the Data Objects are contained within are not included. For Folders, the permissions reflect the cumulative permissions of all parent Folders of the Folders being exported. |
| In A nonzero value means preview mode. nonzero is assumed if the value is omitted. Zero (0) is assumed if the parameter is omitted. |
| A regular expression pattern matching string. The items whose names match the pattern are exported. See Section G.6, "Regular Expressions" for more information. |
| Controls whether Data Objects in the System folder are included when the |
| The type of the item to be exported. The following are valid:
|
Example G-7 Exporting a Data Object in a Folder
The type
parameter was not included in this example. By default dataobject
is assigned to type
if it is not specified.
Example G-8 Exporting a Data Object at the Root
The data object name was not preceded by the slash (/). When a Data Object is in the root Data Objects folder, a slash is not required.
Example G-9 Exporting a Folder from My Reports
In the first case, the private:
owner
/Report
prefix is used in the name
parameter because the user exporting the folder is not the folder owner.
In the second case, the private:
owner
/Report
prefix was not used in the name
parameter because the user exporting the folder is the folder owner.
Example G-10 Exporting a Folder from Shared Reports
The public
prefix is added to the name
parameter.
Example G-11 Exporting a Folder from Data Objects
Example G-12 Exporting a Private Report
As in Example G-9, there are two methods of exporting private reports.
Example G-13 Exporting a Shared Report
Example G-14 Exporting All of the Reports in the System
Example G-15 Exporting an Alert Rule
Example G-16 Exporting a Security Filter
In the name
parameter, the name of the Data Object is specified rather than the name of the security filter.
Example G-17 Exporting a Distribution List
Example G-18 Exporting an Enterprise Message Source
Example G-19 Exporting an External Data Source
Example G-20 Exporting All Oracle BAM Objects in the System
Example G-21 Exporting a Data Object Using the Match Parameter
Example G-22 Using Append Parameter in Export
In the first case (the incorrect example), Append is used without setting the Header and Footer parameters (by default Header and Footer are set to 1).
The output from these commands is as follows. Notice that an XML header and closing tags are included with each append to the file. If this file is used for importing data into Oracle BAM, only the first object is imported. As soon as the first </OracleBAMExport> is read at line 4, the import stops.
In the second case (the correct example), The Header and Footer parameters are specified to produce the necessary output.
The output file produced by these commands can import the objects into Oracle BAM Server.
Imports the information from an XML file to an object in the Active Data Cache. The object may be created, replaced, or updated.
If the object does not exist, it is created if possible. For Data Objects, the input file must contain layout information to create the Data Object, and if the file contains no content information, then an empty Data Object is created.
If the user running ICommand is not an administrator, Reports are always imported to the private folders of the user running ICommand. If the path information in the import file exactly matches existing private folders of the user running ICommand, the imported report is placed in that location. Otherwise, it is placed into the root of that user's private folders.
If the user running ICommand is an administrator, then the preserveowner
option may be used to allow Folders, Reports and Rules to be imported with their original ownership and to their original location.
Table G-5 Import Command Parameters
Parameter | Description |
---|---|
| While importing objects from a file, by default, ICommand stops whenever an error is encountered. If you are importing several objects and do not want to stop when an error is found in one, use the continueonerror parameter to continue importing the rest of the objects specified in the command. Specify a one (1) to ignore errors and continue importing other objects (see Example G-23). |
| Applies only to Data Objects. A value that specifies a delay that is to occur between each row insertion or update. This can simulate active data at a specified rate. The number is the number of milliseconds to wait between each row. It must be greater than zero. If this parameter is omitted, there is no delay. |
| The name of the file to import from. Required. This would usually be a file that was created through the export command. |
| Applies only to Folders, Reports, and Rules. Controls whether, when the item is imported, the ownership of the item is set as specified in the import file. This setting of ownership can only be done if the ownership was included in the file during export, and if the user running ICommand is an administrator. A nonzero value means set the ownership as specified in the import file. Zero (0) means the imported items remain owned by the user running ICommand. Zero is assumed if this parameter is omitted, or if the value is omitted. |
| In A nonzero value means preview mode. nonzero is assumed if the value is omitted. Zero (0) is assumed if the parameter is omitted. This parameter is supported for the following objects: Rule, Distribution list, EDS, EMS, Report, Folder, and Security Filters. |
| By default, if the mode parameter is not specified, the value Error is assumed for objects of type Folder, Report, EDS, EMS, and Distribution List. The following mode values are valid for Folders, Reports, EMS, and EDS objects:
The following values are valid for Distribution List objects:
The following value is supported for Data Objects or Reports:
|
| Only the following value is valid for Data Objects:
For Security Filters, the only value supported is This parameter is not supported for Rules. |
| Allows override of column values from the command line during import, including setting to current date/time.
|
| Applies only to Data Objects. Controls whether, if the Data Object being imported exists, the layout (schema) of the Data Object is updated according to the layout information in the import file. True if parameter is present; false if parameter is not present. |
Renames an item in the Active Data Cache.
Table G-6 Rename Command Parameters
Parameter | Description |
---|---|
| The name of the item to be renamed. Required. The full folder path must be given when renaming objects of type Folder (see Example G-26, "Renaming Folders"). |
| The new name for the item. Required. The full folder path must be given when renaming objects of type Folder (see Example G-26, "Renaming Folders"). For Data Objects and Reports, only the new base name should be given, with no path (for example -newname "MyReport"). |
| The type of object to be renamed. The following are valid:
|
Example G-25 Renaming a Data Object in a Folder
Example G-26 Renaming Folders
Renaming a data object folder:
Renaming a private report folder:
Renaming a shared report folder
Example G-27 Renaming a Report in a Private Folder
Example G-28 Renaming a Distribution List
Example G-29 Renaming an Alert Rule
For any ICommand operation on alerts, the value of the type
parameter is rule
. This command renames a rule named MyAlert
.
This section contains the following topics:
The command file contains the root tag OracleBAMCommands
.
Within the root tag is a tag for every command to be executed. The tag name is the command name, and the parameters for the command are attributes.
Sample command file:
The output of this sample command file is shown in Section G.4, "Format of Log File."
When using a command file to import, the inline
option enables you to include the import content inside the command file, rather than in a separate import file. Here is an example:
This feature is only used when output is being sent to a log file. To make the parsing of log results easier, each command can be given an ID. This ID is included in the Result or Error elements of any output related to that command.
Sample Input:
Sample Output Log File:
Ordinarily, ICommand executes commands in a command file until a failure occurs, or until they all complete successfully. In other words, if a command file contains 20 commands, and the second command fails for any reason, then no further commands are executed. This behavior can be changed by using the continueonerror
attribute at either a global level or for each command.
Example G-30 shows how to use the continueonerror
attribute so that all commands are executed regardless of if any failures occur
Example G-30 Enabling Global ContinueOnError Mode
In Example G-31, continueonerror
only applies to the command that deletes Data Object A. If this command fails, then ICommand outputs the error and continues. But if any other command fails, ICommand stops immediately.
Example G-31 Enabling Command-Level ContinueOnError Mode
The log file contains the root tag ICommandLog
.
Within the root tag is an entry for every error or informational message logged.
Errors are logged with the tag Error
.
Informational messages are logged with the tag Results
.
Both Results
and Error
tags optionally contain an attribute of the form Command=
cmdname
, if appropriate, that contains the name of the command that generated the error or informational message.
This sample log file is output of command file given in Section G.3, "Format of Command File":
The following example shows a sample file resulting from exporting a Data Object.
The export
and delete
commands optionally accept a regular expression with the regex
parameter.
A regular expression is a pattern of text that consists of ordinary characters (for example, letters a through z) and special characters, known as metacharacters. The pattern describes one or more strings to match when searching for items by name.
Note: The behavior of ICommand -regex is exactly like the java.util.regex package for matching character sequences against patterns specified by regular expressions. |
Table G-7 contains the complete list of metacharacters and their behavior in the context of regular expressions.
Table G-7 Metacharacters for Regular Expressions
Character | Description |
---|---|
\ | Marks the next character as a special character, a literal, a backreference, or an octal escape. For example, 'n' matches the character "n". '\n' matches a newline character. The sequence '\\' matches "\" and "\(" matches "(". |
^ | Matches the position at the beginning of the input string. If the RegExp object's |
$ | Matches the position at the end of the input string. If the RegExp object's |
* | Matches the preceding character or subexpression zero or more times. For example, zo* matches "z" and "zoo". * is equivalent to {0,}. |
+ | Matches the preceding character or subexpression one or more times. For example, 'zo+' matches "zo" and "zoo", but not "z". + is equivalent to {1,}. |
? | Matches the preceding character or subexpression zero or one time. For example, "do(es)?" matches the "do" in "do" or "does". ? is equivalent to {0,1} |
{n} | n is a nonnegative integer. Matches exactly n times. For example, 'o{2}' does not match the 'o' in "Bob," but matches the two o's in "food". |
{n,} | n is a nonnegative integer. Matches at least n times. For example, 'o{2,}' does not match the "o" in "Bob" and matches all the o's in "foooood". 'o{1,}' is equivalent to 'o+'. 'o{0,}' is equivalent to 'o*'. |
{n,m} | M and n are nonnegative integers, where n <= m. Matches at least n and at most m times. For example, "o{1,3}" matches the first three o's in "fooooood". 'o{0,1}' is equivalent to 'o?'. You cannot put a space between the comma and the numbers. |
? | When this character immediately follows any of the other quantifiers (*, +, ?, {n}, {n,}, {n,m}), the matching pattern is non-greedy. A non-greedy pattern matches as little of the searched string as possible, whereas the default greedy pattern matches as much of the searched string as possible. For example, in the string "oooo", 'o+?' matches a single "o", while 'o+' matches all 'o's. |
. | Matches any single character except "\n". To match any character including the '\n', use a pattern such as '[\s\S]'. |
(pattern) | A subexpression that matches pattern and captures the match. The captured match can be retrieved from the resulting Matches collection using the |
(?:pattern) | A subexpression that matches pattern but does not capture the match, that is, it is a non-capturing match that is not stored for possible later use. This is useful for combining parts of a pattern with the "or" character (|). For example, 'industr(?:y|ies) is a more economical expression than 'industry|industries'. |
(?=pattern) | A subexpression that performs a positive lookahead search, which matches the string at any point where a string matching pattern begins. This is a non-capturing match, that is, the match is not captured for possible later use. For example 'Windows (?=95|98|NT|2000)' matches "Windows" in "Windows 2000" but not "Windows" in "Windows 3.1". Lookaheads do not consume characters, that is, after a match occurs, the search for the next match begins immediately following the last match, not after the characters that comprised the lookahead. |
(?!pattern) | A subexpression that performs a negative lookahead search, which matches the search string at any point where a string not matching pattern begins. This is a non-capturing match, that is, the match is not captured for possible later use. For example 'Windows (?!95|98|NT|2000)' matches "Windows" in "Windows 3.1" but does not match "Windows" in "Windows 2000". Lookaheads do not consume characters, that is, after a match occurs, the search for the next match begins immediately following the last match, not after the characters that comprised the lookahead. |
x|y | Matches either x or y. For example, 'z|food' matches "z" or "food". '(z|f)ood' matches "zood" or "food". |
[xyz] | A character set. Matches any of the enclosed characters. For example, '[abc]' matches the 'a' in "plain". |
[^xyz] | A negative character set. Matches any character not enclosed. For example, '[^abc]' matches the 'p' in "plain". |
[a-z] | A range of characters. Matches any character in the specified range. For example, '[a-z]' matches any lowercase alphabetic character in the range 'a' through 'z'. |
[^a-z] | A negative range characters. Matches any character not in the specified range. For example, '[^a-z]' matches any character not in the range 'a' through 'z'. |
\b | Matches a word boundary, that is, the position between a word and a space. For example, 'er\b' matches the 'er' in "never" but not the 'er' in "verb". |
\B | Matches a nonword boundary. 'er\B' matches the 'er' in "verb" but not the 'er' in "never". |
\cx | Matches the control character indicated by x. For example, \cM matches a Control-M or carriage return character. The value of x must be in the range of A-Z or a-z. If not, c is assumed to be a literal 'c' character. |
\d | Matches a digit character. Equivalent to [0-9]. |
\D | Matches a nondigit character. Equivalent to [^0-9]. |
\f | Matches a form-feed character. Equivalent to \x0c and \cL. |
\n | Matches a newline character. Equivalent to \x0a and \cJ. |
\r | Matches a carriage return character. Equivalent to \x0d and \cM. |
\s | Matches any white space character including space, tab, form-feed, and so on. Equivalent to [\f\n\r\t\v]. |
\S | Matches any non-white space character. Equivalent to [^ \f\n\r\t\v]. |
\t | Matches a tab character. Equivalent to \x09 and \cI. |
\v | Matches a vertical tab character. Equivalent to \x0b and \cK. |
\w | Matches any word character including underscore. Equivalent to '[A-Za-z0-9_]'. |
\W | Matches any nonword character. Equivalent to '[^A-Za-z0-9_]'. |
\xn | Matches n, where n is a hexadecimal escape value. Hexadecimal escape values must be exactly two digits long. For example, '\x41' matches "A". '\x041' is equivalent to '\x04' & "1". Allows ASCII codes to be used in regular expressions. |
\num | Matches num, where num is a positive integer. A reference back to captured matches. For example, '(.)\1' matches two consecutive identical characters. |
\n | Identifies either an octal escape value or a backreference. If \n is preceded by at least n captured subexpressions, n is a backreference. Otherwise, n is an octal escape value if n is an octal digit (0-7). |
\nm | Identifies either an octal escape value or a backreference. If \nm is preceded by at least nm captured subexpressions, nm is a backreference. If \nm is preceded by at least n captures, n is a backreference followed by literal m. If neither of the preceding conditions exists, \nm matches octal escape value nm when n and m are octal digits (0-7). |
\nml | Matches octal escape value nml when n is an octal digit (0-3) and m and l are octal digits (0-7). |
\un | Matches n, where n is a Unicode character expressed as four hexadecimal digits. For example, \u00A9 matches the copyright symbol (©). |
This appendix describes how to set normalized message properties that enable you to propagate these properties through message headers.
This appendix includes the following sections:
Header manipulation and propagation is a key business integration messaging requirement. Oracle BPEL Process Manager, Oracle Mediator, Oracle JCA adapters, and Oracle B2B rely extensively on header support to solve customers' integration needs. For example, you can preserve a file name from the source directory to the target directory by propagating it through message headers. In Oracle BPEL Process Manager and Oracle Mediator, you can access, manipulate, and set headers with varying degrees of user interface support.
Figure H-1 provides details.
Figure H-1 Properties Tab for Normalized Messages Header Properties
A normalized message is simplified to have only two parts, properties and payload.
Typically, properties are name-value pairs of scalar types. To fit the existing complex headers into properties, properties are flattened into scalar types.
The user experience is simplified while manipulating headers in design time, because the complex properties are predetermined. In the Mediator Editor or Oracle BPEL Designer, you can manipulate the headers with some reserved key words.
However, this method does not address the properties that are dynamically generated based on your input. Based on your choice, the header definitions are defined. These definitions are not predetermined and therefore cannot be accounted for in the list of predetermined property definitions. You cannot design header manipulation of the dynamic properties before they are defined. To address this limitation, you must generate all the necessary services (composite entry points) and references. This restriction applies to services that are expected to generate dynamic properties. Once dynamic properties are generated, they must be stored for each composite. Only then can you manipulate the dynamic properties in the Mediator Editor or Oracle BPEL Designer.
For more information on normalized message properties, see Oracle Fusion Middleware User's Guide for Technology Adapters and Oracle Fusion Middleware User's Guide for Oracle B2B.
Table H-1 lists all the predetermined properties of a normalized message for Oracle BPEL Process Manager.
Table H-1 Properties for Oracle BPEL Process Manager
Property Name | Propagatable (Yes/No) | Direction (Inbound /Outbound) | Data Type | Range of Valid Values | Description |
---|---|---|---|---|---|
| Yes | Both | String | Any string, size limit: 1000 | This contains extra information with which you want to associate the BPEL instance. Whatever was passed in is stored in the metadata column of the |
| Yes | Inbound | String that can be read into an integer | (1-10). 1 being the highest priority | Goes into the |
| No | Inbound | String | Any string, size limit: 100 | Goes into the |
| No | Inbound | String | Any string, size limit: 100 | This goes into the |
| No | Inbound | String | Any string, size limit: 100 | This goes into the |
| No | Inbound | String | Any string, size limit: 100 | This goes into the |
Table H-2 lists all the predetermined properties of a normalized message for Web Services Addressing (WS-Addressing).
Table H-2 Properties for Oracle Web Services Addressing
Property Name | Propagatable (Yes/No) | Direction (Inbound /Outbound) | Data Type | Range of Valid Values | Description |
---|---|---|---|---|---|
| No | Both | String | URI format | This property specifies the identifier for the message and the endpoint to which replies to this message should be sent as an endpoint reference. |
| No | Both | String | URI format | This optional (repeating) element information item contributes one abstract relationship property value, in the form of an |
| No | Both | String | URI format | Is a contract between two components communicating asynchronously. |
| No | Both | QName | Any QName | This value is passed to the web service to configure the |
| No | Both | QName | Any QName | This value is passed to the web service to configure service on the service's callback. It is translated to the WS-Addressing callback endpoint reference's |
| No | Both | String | URI format | This required element (whose content is of type |
| No | Both | String | URI format | This optional element (whose content is of type |
Oracle BPEL Process Manager uses bpelx
extensions to manipulate normalized message properties in message exchange operations. The syntax is different based on whether your BPEL project supports BPEL version 1.1 or 2.0.
Example H-1 shows bpelx
extensions syntax in BPEL 1.1.
Example H-1 bpelx Extensions Syntax in Normalized Message Headers in BPEL 1.1
Example H-2 shows bpelx
extensions syntax in BPEL 2.0.
Example H-2 bpelx Extensions Syntax in Normalized Message Headers in BPEL 2.0
Note the following details:
toProperty
is a from-spec
. This copies a value from the from-spec
to the property of the given name. fromProperty
is a to-spec
. This copies a value from the property to the to-spec
. This appendix describes the Oracle Business Rules Dictionary Editor Task Flow, which implements the MetadataDetails
and NLSPrefrences
interfaces when creating an ADF-based Web application. The interfaces are defined in the soaComposerTemplates.jar
file.
This appendix includes the following sections:
The MetadataDetails
interface is a part of the oracle.integration.console.metadata.model.share
package and is defined in the soaComposerTemplates.jar
file.
The MetadataDetails
interface defines three methods, as shown in Example I-1:
Example I-1 MetadataDetails Interface
This method is used to retrieve the rules file in a string format. For doing this action, you must connect to the Oracle Metadata Repository (MDS) or a file system, and return the rules file in a string format.
Example I-2 shows how to get the file from a local file system:
Example I-2 getDocument Method
This method is required when you work with linked dictionaries. You must connect to MDS, find the related dictionary file, and then return it in a string format. Example I-3 shows how to find the path of the linked dictionaries that are stored within the ../oracle/rules
directory in a local file system:
Example I-3 getRelatedDocument Method
This method is used to store the rules file. It returns a String doc
value, which is the name of the updated dictionary based on user edits performed by using Rules Dictionary Editor Task Flow. You must store the rules file in MDS or a file system. Example I-4 shows how to save the document in the local file system:
Example I-4 setDocument Method
The NLSPrefrences
interface defines four methods as shown in Example I-5:
Example I-5 NLSPreferences Interface
Example I-6 is a sample implementation of the NLSPreferences
interface:
Example I-6 Sample Implementation of the NLSPreferences Interface
This appendix describes how to create your own Oracle User Messaging Service applications using the procedures and code provided.
This appendix includes the following sections:
Note: You can find the application code samples at the following URL: |
The installation of SOA and User Messaging Service has already been performed on your hosted instance, and the sample users have already been seeded. Perform the following steps to enable notifications in soa-infra, if not already done:
weblogic
by using the JXplorer LDAP browser. Refer to "Updating Addresses in Your LDAP User Profile". Perform the following steps to set the email address for user weblogic
by using the JXplorer LDAP browser:
weblogic
). The following example uses the user weblogic
. You may create and use additional users.
This section describes how to build and run the SendMessage application provided with Oracle User Messaging Service.
Before building and running the application, you must install and configure SOA and User Messaging Service as described in Section J.1, "Installing and Configuring SOA and User Messaging Service".
Note: To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite. |
This section contains the following subsections:
The SendMessage application demonstrates a BPEL process that allows a message to be sent to a user through a messaging channel specified in User Messaging Preferences. After you have configured a device and messaging channel addresses for each supported channel and the default device, Oracle User Messaging Service routes the message to the user based on the preferred channel setting that you configured.
Performing the following procedure of building the sample from the start enables you to learn how to add messaging to your SOA Composite Applications, and use User Messaging Preferences.
Note: In order to create and deploy SOA composite applications and projects, you must have installed the Oracle SOA Suite extension. For instructions on installing this extension for Oracle JDeveloper, see the Oracle Fusion Middleware Installation Guide for Oracle JDeveloper. |
Figure J-1 Creating a New Application and Project (1 of 3)
Figure J-2 Creating a New Application and Project (2 of 3)
Figure J-3 Creating a New Application and Project (3 of 3)
SendMessage
(Figure J-4). Click OK. In the Oracle JDeveloper main window you can view the following components of the application under the Composite.xml tab.
Note: You later create the messaging service resource that is used to send the message when you create the User Notification BPEL process (steps 13 - 19). |
Figure J-5 Empty and Default BPEL Application
In the generated file, SendMessage.xsd, in the xsd folder in the Application Navigator under projects, the following input
element definition is created by default:
This XSD element defines the input for the BPEL process.
Select the Source tab (Figure J-6), and replace the line above with the following three lines:
Figure J-6 Modifying the Inputs in the SendMessage.xsd File
Figure J-7 Viewing the Expanded Process Element
Figure J-8 Dragging and Dropping User Notification Icon from the Component Palette
The User Notification activity appears (Figure J-9).
Figure J-9 User Notification Activity Before Configuring the Inputs
Figure J-10 Defining the Recipient ("to") Expression
Figure J-11 Defining the Subject Expression
Figure J-13 Confirming the Changes to the Inputs
The changes to the inputs are saved and the configuration of the User Notification Activity is complete. You can now see the User Notification activity in the BPEL application (Figure J-14). The SOA Composite is complete.
Figure J-14 User Notification Activity After Configuration of Inputs
Perform the following steps to create an Application Server Connection.
Figure J-15 New Application Server Connection
SOA_managed_server
as shown in Figure J-16). Figure J-16 New Application Server Connection
weblogic
. Success!
appears. The application server connection has been created.
Perform the following steps to deploy the project:
The value for project_name is the SOA project name.
The Deployment Action page of the Deploy Project_Name wizard appears.
SOA_managed_server
that was created as described in Section J.2.3, "Creating a New Application Server Connection"). Build Successful
appears in the log. Deployment Finished
appears in the deployment log (Figure J-17). Figure J-17 Verifying that the Deployment is Successful
You have successfully deployed the application.
Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and configure a default device for the user receiving the message in User Messaging Preferences, as described in the following sections.
Note: Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information. |
For users to receive the notifications, they must register the devices that they use to access messages through User Messaging Preferences. Perform the following steps:
http://
server
:
port
/sdpmessaging/userprefs-ui
http://
server
:
port
/integration/worklistapp
The User Messaging Preferences application appears.
You are prompted for login credentials.
A check mark appears next to the selected channel, designating it as the default means of receiving notifications. All messages sent to that user are sent to that channel.
The following steps describe how to perform a test message transmission through Oracle Enterprise Manager Fusion Middleware Control.
Perform the following steps to run and test the sample:
http://
host
:
port
/em
. Enter the following values:
Log in to the Human Workflow Engine. Verify the outgoing notifications and their statuses from the Notification Management tab. (Figure J-19).
Figure J-19 Viewing Outgoing Notifications
This section describes how to build and run the Send Email with Attachments application provided with Oracle User Messaging Service.
Note: To learn about the architecture and components of Oracle User Messaging Service, see Oracle Fusion Middleware Getting Started with Oracle SOA Suite. |
This section contains the following subsections:
The "SendEmailWithAttachment" application demonstrates a BPEL process that sends an email with an attached file. A BPEL process looks up a user's email address from the identity store, reads a file from the file system, creates email content and then sends an email to the user.Section J.3.4, "Building the Sample" shows you how to add an email with attachments to your SOA composite application, allowing your applications to be enabled with messaging.If you want to model the application from the start, go to the section titled Building the Sample. Or, you can directly use the pre-built project provided with this tutorial.Before you run the pre-built sample or build the application from the start, you must install and configure the server as described in Section J.1, "Installing and Configuring SOA and User Messaging Service". By default, soa-infra does not send out notifications. The following steps describe installing and configuring the email drivers needed to communicate with the email server.
Perform the following steps to run and deploy the prebuilt sample application.
Before building and running the application, you must install and configure SOA and User Messaging Service as described in Section J.1, "Installing and Configuring SOA and User Messaging Service".
In the Oracle JDeveloper main window you can view the following components of the sample application under the Composite.xml tab.
Figure J-20 Oracle JDeveloper Main Window
Build Successful
appears in the log. Deployment Finished
appears in the deployment log. You have successfully deployed the application.
Before you can run the sample you must configure any additional drivers in Oracle User Messaging Service and configure a default device for the user receiving the message in User Messaging Preferences, as described in the following sections.
Note: Refer to Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information. |
The following steps describe how to perform a test message transmission through Oracle Enterprise Manager.
Perform the following steps to run and test the sample:
http://
host
:
port
/em
. Enter the following values:
To send binary files such as PDF, DOC, GIF, or JPEG files, the following values can be used for the attachmentMimeType entry:
To send text files such as HTML, XML, or plain text files, the following values can be used for the attachmentMimeType entry:
Note: For text files that contain non-ASCII characters that are encoded in UTF-8, the attachmentMimeType must specify the charset attribute, for example, "text/plain;charset=UTF-8". Also, the content itself must be sent using base64 encoding; this procedure is described in "Sending Text Content with base64 Encoding". |
Performing the following procedure of building the sample from the start enables you to learn how to add messaging to your SOA Composite Applications, and use User Messaging Preferences.
Figure J-21 Creating a New Application and Project (1 of 3)
Figure J-22 Creating a New Application and Project (2 of 3)
Figure J-23 Creating a New Application and Project (3 of 3)
SendEmailWithAttachments
(Figure J-24). Click OK. In the Oracle JDeveloper main window you can view the following components of the sample application under the Composite.xml tab.
Note: You later create the messaging service resource that is used to send the message when you create the User Notification BPEL process (steps 13-19). |
Figure J-25 Accessing the SendEmailWithAttachments.xsd File
In the generated file, SendEmailWithAttachments.xsd, in the xsd folder in the Application Navigator under projects, the following process
element definition is created by default:
Select the Source tab, and replace the lines above with the following:
This xsd element defines the input for the BPEL process.
mail
manually. This expression (as shown in Figure J-28) takes the data from the web service and maps it to the business email of the local SOA user.
Figure J-28 Expression Builder for the To Path
The expression should appear as follows:
The expression should appear as follows:
The expression should appear as follows:
When an email has multiple parts, the attachment count includes the body that is set with the Wizard above. The body specified by the Wizard above is set as the first body part. For example, to represent a multipart mail with one (1) attached file, specify two
body parts. When there is one attachment, specify one body part.
Each attachment has three elements: Name, MIME Type, and Value. You must set the expression for all three elements for each attachment.
The expression should appear as follows:
The expression should appear as follows:
The expression should appear as follows:
The BPEL fragment with an assign activity with multiple copy rules is generated. One of the copy rules copies the attachment.
To view the default copy rules that were generated, and create new copy rules to transform the data, perform the following:
To send text file attachments with non-ASCII characters (such as UTF-8 encoded), you must send the text content with base64 encoding. Perform the following additional steps:
<BodyPart>
tag within the <MultiPart>
): Example J-1 Adding the ContentEncoding tag to MultiPart
<copy>
element: You can now deploy and run the application as described in Section J.3.2, "Running the Pre-Built Sample."
This appendix describes Oracle SOA Suite design time and runtime configuration properties and provides references to documentation that describes how to configure these properties.
This appendix includes the following sections:
Deployment descriptors are BPEL process service component properties used at runtime by Oracle WebLogic Server, Oracle Enterprise Manager, or both. You set these properties during design time in the composite.xml
file of the SOA composite application. The types of properties shown in Table K-1 can be set:
Table K-1 Properties for the configurations Deployment Descriptors
Property Name | Description |
---|---|
How to save instance data | |
Whether to disable assertions in BPEL 1.1 projects | |
The maximum number of retries for a remote fault | |
The time interval in milliseconds between retries for a remote fault | |
In-memory optimization on the instances of a process | |
The number of instances to create and use to route messages in a BPEL process. | |
Whether the server can keep global variable values in the instance store when the instance completes | |
The persistence policy of the process in the delivery layer | |
The location of the sensor action XML file | |
The location of the sensor XML file | |
The transaction behavior of the BPEL instance for initiating calls | |
An idempotent activity is an activity that can be retried (for example, an assign activity or an invoke activity). The instance is saved after a nonidempotent activity. This property is applicable to both durable and transient processes. | |
Whether to spawn a separate thread to do invocations so that the invoke activity does not block the instance | |
The enabling of message boundary validation |
For more information about available deployment descriptor properties, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector" and Chapter 13, "Transaction and Fault Propagation Semantics in BPEL Processes."
Header manipulation and propagation are key business integration messaging requirements. You can set normalized message header properties during design time in the Properties tab of receive activities, invoke activities, OnMessage branches of pick and (for BPEL 1.1) scope activities, and reply activities. You can set properties for the following components:
For more information, see Appendix H, "Normalized Message Properties."
Oracle JCA adapters expose the underlying back-end operation-specific properties as header elements and allow for manipulation of these elements within a business process.
For more information about available Oracle JCA adapter message header properties, see the following guides:
Oracle BPEL Process Manager and Oracle Web Services Addressing rely extensively on header support to solve customers' integration needs.
For more information about available Oracle BPEL Process Manager and Oracle Web Services Addressing message header properties, see Appendix H, "Normalized Message Properties."
In B2B, you can manipulate headers with reserved key words.
For more information about available Oracle B2B message header properties, see Appendix C, “Back-End Applications Interface" of Oracle Fusion Middleware User's Guide for Oracle B2B.
While most updates you make to the composite.xml
file are performed from within the dialogs of the SOA Composite Editor during design time, other properties must be added manually to this file from within Source view. Table K-2 lists these properties and provides references to documentation that describes how to configure these properties.
Table K-2 Oracle SOA Suite Properties
Property | Description | See... |
---|---|---|
Specifies multiple partner link endpoint locations. This capability is useful for failover purposes if the first endpoint is down. | Section 8.2.2.8, "Multiple Runtime Endpoint Locations" | |
Specifies the location of the fault policy file if it is different from the default location. This option is useful if a fault policy must be used by multiple SOA composite applications. | Section 12.4, "Using the Fault Management Framework" | |
Specifies the location of the fault binding file if it is different from the default location. This option is useful if a fault policy must be used by multiple SOA composite applications. | Section 12.4, "Using the Fault Management Framework" | |
By default, SOAP headers are not passed through by Oracle Mediator. To pass SOAP headers, add this property to the corresponding Oracle Mediator routing service. | Section 20.3.2.10, "How to Assign Values" Section 20.3.2.12, "How to Access Headers for Filters and Assignments" | |
Specifies role names required to invoke SOA composite applications from any Java EE application. | Section 38.5, "Specifying Enterprise JavaBeans Roles" | |
and | Specify these properties to stream attachments with SOAP. | Section 45.1.1.2.1, "SOAP with Attachments" |
Specifies to override a local optimization setting for a policy. | Section 45.1.1.2.1, "SOAP with Attachments" and | |
Controls how faults and one-way messages are handled for one-way interface SOAP calls. | Section 24.1, "One-way Message Exchange Patterns" | |
| Specifies the attachment size in bytes. | Section 45.1.1.3, "Adding MTOM Attachments to Web Services" |
A fault policy file defines fault conditions and their corresponding fault recovery actions. Each fault condition specifies a particular fault or group of faults, which it attempts to handle, and the corresponding action for it.
You can also enter additional properties in a fault policy framework file. Table K-3 lists these properties and provides references to documentation that describes how to configure these properties.
Table K-3 Oracle SOA Suite Fault Policy Properties
Property | Description | See... |
---|---|---|
Provides a delay between retries of an activity (in seconds). | Section 12.4.1.2, "Creating a Fault Policy File for Automated Fault Recovery" | |
Retries an activity a specified number of times. | Section 12.4.1.2, "Creating a Fault Policy File for Automated Fault Recovery" | |
Specifies a time in seconds for the scheduler to wait before retrying. | |
You can also enter adapter rejected message properties in the fault policy framework file during design time.
For more information, see Section "Error Handling" of Oracle Fusion Middleware User's Guide for Technology Adapters.
You can set most B2B properties on the Configuration tab of the Oracle B2B interface. These settings override property settings performed at Oracle Enterprise Manager Fusion Middleware Control.
For more information about available Oracle B2B properties, see Chapter 15, "Configuring B2B System Parameters" of Oracle Fusion Middleware User's Guide for Oracle B2B.
You can configure properties for the following components during runtime in the property pages of Oracle Enterprise Manager Fusion Middleware Control:
You can configure properties for the SOA Infrastructure. These property settings can apply to all SOA composite applications running in the SOA Infrastructure. The following types of properties can be set:
For more information about available SOA Infrastructure properties, see Chapter 3, "Configuring the SOA Infrastructure" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can configure BPEL process service engine properties. These properties are used by the BPEL process service engine during processing of BPEL service components. The following types of properties can be set:
For more information about available Oracle BPEL Process Manager properties, see Chapter 9, "Configuring BPEL Process Service Components and Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can configure human workflow notification and task service properties. These properties are used by the human workflow service engine during processing of human workflow service components. The following types of properties can be set:
For more information about available human workflow notification and task service properties, see Chapter 18, "Configuring Human Workflow Service Components and Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can configure Oracle Mediator properties. These properties are used by the Oracle Mediator service engine during processing of Oracle Mediator service components. The following types of properties can be set:
For more information about available Oracle Mediator properties, see Chapter 14, "Configuring Oracle Mediator Service Components and Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can configure cross references to dynamically map values for equivalent entities created in different applications.
For more information about available cross reference properties, see Chapter 15, "Managing Cross-References" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can enable Oracle B2B Dynamic Monitoring Service (DMS) metrics.
For more information about available Oracle B2B properties, see Chapter 30, "Configuring Oracle B2B" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can configure the following service and reference binding component properties:
For more information about available service and reference binding component properties, see Chapter 33, "Configuring Service and Reference Binding Components" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
The System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control enables you to modify advanced properties that do not display in the property pages described in Section K.6, "Oracle Enterprise Manager Fusion Middleware Control Property Pages." These advanced properties display beneath a link at the bottom of properties pages for the following components:
Note: In addition to advanced properties, the same properties that display for modifying in the property pages described in Section K.6, "Oracle Enterprise Manager Fusion Middleware Control Property Pages" also display for modifying in the System MBean Browser. |
Click the More SOA Infra Advanced Configuration Properties link at the bottom of the SOA Infrastructure Common Properties page to immediately display System MBean Browser properties for the SOA Infrastructure. Properties that display for modifying include the following:
For more information about available SOA Infrastructure System MBean Browser properties, see Chapter 3, "Configuring the SOA Infrastructure" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Click the More BPEL Configuration Properties link at the bottom of the BPEL Service Engine Properties page to display System MBean Browser properties for the BPEL process. Properties that display for modifying include the following:
For more information about available Oracle BPEL Process Manager System MBean Browser properties, see Chapter 9, "Configuring BPEL Process Service Components and Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Click the More Mediator Configuration Properties link at the bottom of the Mediator Service Engine Properties page to display System MBean Browser properties for Oracle Mediator. Most of the System MBean Browser properties that display for Oracle Mediator can also be modified on the Mediator Service Engine Properties page.
For more information about available Oracle Mediator System MBean Browser properties, see Chapter 14, "Configuring Oracle Mediator Service Components and Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Click the More Workflow Notification Configuration Properties link at the bottom of the Workflow Notification Properties page or click the More Workflow Taskservice Configuration Properties link at the bottom of the Workflow Task Service Properties page to display System MBean Browser properties for human workflow. Properties that display for modifying include the following:
For more information about available human workflow notification and task service System MBean Browser properties, see Chapter 18, "Configuring Human Workflow Service Components and Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can increase the amount of time that the endpoint WSDL URL is available in cache for inquiry by the service key with the UddiCacheLifetime property.
For more information about the UddiCacheLifetime property, see Chapter 33, "Configuring Service and Reference Binding Components" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
 Copyright © 2005, 2012, Oracle and/or its affiliates. All rights reserved. |