Reference Guide for Oracle Business Intelligence Applications
11g Release 1 (11.1.1)
E16816-03
March 2012
Explains various topics related to Oracle Business Intelligence Applications, including how domains are used in Oracle Business Intelligence Applications, how multiple languages are supported in the Oracle Business Analytics Warehouse, and how security functions across Oracle Business Intelligence Applications and related components.
Oracle Fusion Middleware Reference Guide for Oracle Business Intelligence Applications 11g Release 1 (11.1.1)
E16816-03
Copyright © 2010, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Jill Arehart, Peter Brownbridge, Nick Fry, Stefanie Rhone
Contributors: Oracle Business Intelligence development, product management, and quality assurance teams
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle Business Intelligence Applications are comprehensive prebuilt solutions that deliver pervasive intelligence across an organization, empowering users at all levels — from front line operational users to senior management — with the key information they need to maximize effectiveness. Intuitive and role-based, these solutions transform and integrate data from a range of enterprise sources and corporate data warehouses into actionable insight that enables more effective actions, decisions, and processes.
Oracle BI Applications is built on Oracle Business Intelligence Enterprise Edition, a comprehensive next-generation business intelligence and analytics platform.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
This document is intended for managers and implementors of Oracle BI Applications.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
For more information, see the following Oracle Business Intelligence Applications 11g Release 1 (11.1.1) documents:
http://docs.oracle.com/cd/E23943_01/relnotes.htm
Also see the following documents in the Oracle Business Intelligence Enterprise Edition 11g Release 1 (11.1.1) documentation set:
This chapter describes the new features in Oracle Business Intelligence Applications 11g Release 1 (11.1.1) that are documented in this guide, Oracle Fusion Middleware Reference Guide for Oracle Business Intelligence Applications.
This chapter contains the following topics:
For additional new features related to Oracle BI Applications 11g Release 1 (11.1.1) that are documented in other guides, see the What's New sections in:
New features in Oracle BI Applications 11g Release 1 (11.1.1) that are documented in Oracle Fusion Middleware Reference Guide for Oracle Business Intelligence Applications include the following:
New Security Architecture
Oracle BI Applications 11g is tightly integrated with the Oracle Fusion Middleware Security architecture, and delegates core security functionality to components of that architecture. Chapter 1, "Oracle BI Applications Security," provides detailed information about how security is implemented in Oracle BI Applications 11g Release 1 (11.1.1).
New Multi-Language Support
Oracle BI Applications provides multi-language support for metadata level objects exposed in Oracle BI Enterprise Edition dashboards and reports, as well as for data, which enables users to see records translated in their preferred language. Chapter 2, "About Multi-Language Support," explains how multi-language support is implemented in Oracle BI Applications 11g Release 1 (11.1.1).
New Oracle BI Applications Patching Support
Oracle BI Applications 11g Release 1 (11.1.1) supports patching, which can include bug fixes, metadata, and binary file updates. Chapter 4, "Oracle BI Applications Patching," describes the Oracle BI Applications patching process and provides instructions for applying and rolling back patches as well as diagnosing errors in the patch application process. Chapter 4 supplements the information provided in Oracle Fusion Middleware Patching Guide for patching Oracle Fusion Middleware products.
Section 5.4.1.1 'How to Apply Changes to JAZN Settings' also explains how to apply an Oracle BI Applications patch that contains changes to JAZN settings (that is, in the biapps_policystore.xml file).
Information About Configuring Oracle BI Repository for Use With Oracle BI Applications
Chapter 6, "Configuring the Oracle BI Repository," provides instructions for configuring the Oracle BI Repository for use with Oracle BI Applications.
Revision 3 of Oracle Fusion Middleware Reference Guide for Oracle Business Intelligence Applications (11.1.1) contains the following updates:
Refer to the system requirements and certification documentation for information about hardware and software requirements, platforms, databases, and other information. Both of these documents are available on Oracle Technology Network (OTN).
The system requirements document covers information such as hardware and software requirements, minimum disk space and memory requirements, and required system libraries, packages, or patches:
http://www.oracle.com/technology/software/products/ias/files/fusion_requirements.htm
The certification document covers supported installation types, platforms, operating systems, databases, JDKs, and third-party products:
http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html
This chapter describes how to set up and maintain security for Oracle BI Applications.
This chapter contains the following topics:
Tip: To set up security for new deployment of Oracle BI Applications, follow the steps in Section 1.1.1, "High Level Steps for Setting Up Security in Oracle BI Applications". |
Oracle BI Applications 11g is tightly integrated with the Oracle Fusion Middleware Security architecture, and delegates core security functionality to components of that architecture.
Oracle BI Applications 11g is built on the Oracle BI EE platform, and security is configured using tools available to the Oracle BI EE platform.
For more information about the background and context of security for the Oracle BI EE platform, see Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition.
You should be thoroughly familiar with the security features of Oracle BI Enterprise Edition before you begin working with Oracle BI Applications.
This section contains the following topics:
To set up security in Oracle BI Applications, you must do the following:
For background information about security in the Oracle Business Intelligence Enterprise Edition platform, see Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition.
Note: Job Roles, Data Roles, and Abstract Roles are sometimes collectively referred to as Enterprise Roles.
For more information, see Section 1.2.1, "Using Oracle Identity Management to Manage Users and Enterprise Roles".
If you need to manually map Users to Enterprise Roles, follow the steps in Section 1.3.1, "Creating Users and Assigning Them to Job Roles".
For background information about Oracle APM to manage Duty Roles, see Section 1.2.2, "Using Oracle Authorization Policy Manager to Configure Roles and Privileges".
If you want to change the default role mappings, follow the steps in Section 1.3.2, "Assigning Enterprise Roles (or Job Roles) to Duty Roles".
This task is performed as step 'Grant User Access to Oracle BI Applications Components', in the post-installation steps for Oracle BI Applications. For more information, see the topic 'Grant User Access to Oracle BI Applications Components' in Chapter 4 of Oracle Fusion Middleware Installation and Configuration Guide for Oracle Business Intelligence Applications.
When determining your user requirements, read Section 1.1.10, "Security Overview of Oracle BI Applications Configuration Manager and Functional Setup Manager".
The figure below summarizes the tools used to configure security in a default installation of Oracle BI Applications using OID as the LDAP Server.
Figure 1-1 Summary of Tools for Configuring Security in a Default Installation
Use these Security configuration tools as follows:
Use Oracle Identity Management to manage Users and Job Roles (referred to as Groups in OID) in the LDAP directory. For more information about using OID tools, see Section 1.2.1, "Using Oracle Identity Management to Manage Users and Enterprise Roles".
For detailed information about deploying OID, see Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management (Oracle Fusion Applications Edition).
Use Oracle Authorization Policy Manager (Oracle APM) to manage Duty Roles (also known as Application Roles), and permissions for determining functional access. For more information about using Oracle APM, see Section 1.2.2, "Using Oracle Authorization Policy Manager to Configure Roles and Privileges".
For detailed information about Oracle APM, see Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications Edition).
Use the Oracle BI Administration Tool to perform tasks such as setting permissions for business models, tables, columns, and subject areas; specifying filters to limit data accessibility; and setting authentication options. For more information about using Oracle BI Administration Tool, see Section 1.2.3, "Using Administration Tool to Configure Duty Role Permissions in the Oracle BI Repository".
For detailed information, see Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).
Use Oracle BI Presentation Services Administration to perform tasks such as setting permissions for Presentation Catalog objects, including dashboards and dashboard pages. For more information about using Oracle BI EE Administration Page, see Section 1.2.4, "Using the Oracle BI EE Administration Page to Configure Duty Role Privileges in the Oracle BI EE Presentation Server".
For detailed information, see Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition.
For detailed information about using these tools, see Section 1.2, "About Security Configuration Tools in Oracle BI Applications".
Security in Oracle BI Applications can be classified broadly into the following three levels:
Oracle BI Applications uses the following security providers:
For more information, see Section 1.2.1, "Using Oracle Identity Management to Manage Users and Enterprise Roles".
For more information about roles, see Section 1.1.6, "Controlling User Access Using Roles".
A security policy comprises a number of access privileges that are associated with user roles. In Oracle BI Applications release 11g, the security policy definition is split across the following components:
For more information, see Section 1.2.4, "Using the Oracle BI EE Administration Page to Configure Duty Role Privileges in the Oracle BI EE Presentation Server".
For more information, see Section 1.2.3, "Using Administration Tool to Configure Duty Role Permissions in the Oracle BI Repository"
For more information, see Section 1.2.1, "Using Oracle Identity Management to Manage Users and Enterprise Roles".
For more information about configuring these components, see Section 1.2, "About Security Configuration Tools in Oracle BI Applications".
This topic describes how Oracle BI Applications controls user access using roles, and contains the following sections:
After a user has been authenticated, the next critical aspect of security is to ensure that the user can do and see what they are authorized to do and see. Authorization for Oracle BI Applications release 11g is controlled by security policies (Oracle BI Applications privileges) defined for users using a role-based model (for more information, see Section 1.1.5, "What Is a Security Policy and Where Is it Maintained?").
Every Oracle Applications user is hired by their company to do a job in the organization. For example, Payroll Manager, AP Manager. Each job involves one or more duties. For example, a Software Development V.P. might hire people, carry out appraisals, make salary changes and stock grants to people in the group, manage project plans, approve expense reports, fill out vacation time, expense reports and update other personal details. Similarly an AP Manager might involve payable invoice approval, payable invoice processing, payables period closing, and some personal duties like filling out vacation time and submitting expenses. Thus job and duties form a hierarchy where a job has multiple duties and a person is hired to do a job. A job is represented by a Job Role. A duty is represented by Duty Role. A Job Role has access to one or more Duty Roles.
An Oracle Applications user is granted a Job Role and thus inherits one or more Duty Roles that were granted to the Job Role.
It is possible that a Job Role is built using other Job Roles, that is, Job Roles can form their own hierarchy. Similarly, Duty Roles can form a hierarchy.
It is possible to grant multiple Job Roles to a user; however Oracle recommends that Job Roles are defined in such a way that need to grant multiple Job Roles to user should be minimized.
Roles in Oracle BI Applications fall into two classes, application-wide roles (Duty Roles), and enterprise-wide roles (Job Roles, Data Roles, and Abstract Roles).
Application-wide roles are defined in terms of the tasks that are needed to perform a job, and are held in the policy store with associated Oracle BI Applications privileges.
Enterprise-wide roles are defined in terms of an occupation within an enterprise, and are held in the identity store with associated users.
Four common role types are used in Oracle BI Applications:
A Job Role represents the job definition of a person in your organization, for example, AP manager, HR specialist. Users are assigned to Job Roles. A Job Role inherits one or more Duty Roles, and therefore, users inherit Duty Roles through Job Roles.
For example, the Job Role AP_ACCOUNTS_PAYABLE_MANAGER_JOB might be associated with the Duty Role OBIA_ACCOUNTS_PAYABLE_MANAGERIAL_ANALYSIS_DUTY.
For more information about the Oracle BI Applications Job Role hierarchy, see Section 1.3.5, "Understanding Oracle BI Applications Job Role Hierarchies".
For more information about managing Job Roles, see Section 1.2.1, "Using Oracle Identity Management to Manage Users and Enterprise Roles").
A Duty Role represents a specific task needed to do a job, and comprises the privileges required to perform that job. For example, the Duty Role BIA_ADMINISTRATOR_DUTY enables a user to administer and manage Oracle BI Applications, providing access to Oracle BI Applications Configuration Manager, and the Oracle BI Data Warehouse Administration Console.
The privileges assigned to a Duty Role are defined in application policies within the policy store. For more information, see Section 1.2.2, "Using Oracle Authorization Policy Manager to Configure Roles and Privileges".
A Data Role is implemented as Job Roles for a defined set of data. This role describes the job a user does within that defined set of data. The Data Role will inherit a Job Role and will be granted applicable data security privileges.
An Accounts Payables Specialist might be assigned the Data Role 'Accounts Payables Specialist - US Business Unit'. This Data Role inherits the Job Role 'Accounts Payable Specialist' and grants access to transactions in the US Business Unit.
A Benefits Administrator is assigned the Data Role 'Benefits Administrator - Surname A-E'. This Data Role inherits the Job Role 'Benefits Administrator' and grants access to Employees with the Surname starting from A to E. Typically, a person is hired into a job, which might trigger an event to automatically assign a Job Role without being assigned a defined set of data. A person in a functional department might at a later point in time assign his staff a Data Role that describes the job of that person within that defined set of data.
Data roles can be provisioned to a user on request. Data Roles can be formed by declaring child Duty, Abstract, and Job Roles.
For example, the Data Role OBIA_COSTING_ORGANIZATION_DATA_SECURITY might be associated with the Job Role OBIA_COST_ACCOUNTING_ANALYSIS_JOB.
These roles are associated with a user irrespective of their job or job function, and are not associated with a job or duty. For example, Employee (Human Resources), Manager (Human Resources), Customer, Supplier etc. Abstract Roles are normally assigned by the system (based on user attributes) but can be provisioned to a user on request.
An example of an Abstract Role is ASM_APPLICATION_IMPLEMENTATION_ADMIN_ABSTRACT.
Figure 1-2 illustrates the relationship between Users, Job Roles, Duty Roles, and Oracle BI Applications privileges.
Figure 1-2 illustrates the following:
Object-level security is the specification of Duty Role permissions on Oracle BI Repository objects such as subject areas, tables, and columns, and Oracle BI Presentation Services objects, such as dashboard pages.
You secure these objects using Duty Roles and their associated policies and privileges, defined for Oracle BI Applications.
Duty Roles are stored in the Fusion Policy Store, which is accessed by the Oracle BI Repository and the Oracle BI Presentation Catalog.
For more information about default role mapping, see Section 1.5, "Mapping Roles to Secure Objects in the Oracle BI Repository and Oracle BI Presentation Catalog".
You implement object level security using:
To configure Users and Job Roles.
To configure Oracle BI Repository Duty Role object permissions (for example, read, write against a subject area, table or column).
To configure Oracle BI Presentation Services Duty Role object privileges (for example, access, view, or edit, a dashboard page).
For more information, see Section 1.2, "About Security Configuration Tools in Oracle BI Applications"
The Extract Transform and Load (ETL) process must be run by a user with appropriate data security privileges granted on the Fusion Application tables from which data is extracted into Oracle Business Analytics Warehouse. For this purpose, the Group named FUSION_APPS_OBIA_BIEE_APPID is provisioned during install with the appropriate ETL security privileges (by default, this Group is mapped to the Duty Role named OBIA_EXTRACT_TRANSFORM_LOAD_DUTY).
To create a user for ETL, use Oracle Identity Management (or an appropriate security tool) to create a new user and password. For example, you might create a new user named OBIA_ETL_USER. Then, make the user a member of the Group FUSION_APPS_OBIA_BIEE_APPID. For example, you might assign the user OBIA_ETL_USER to the Group FUSION_APPS_OBIA_BIEE_APPID. Finally, make a note of the user's credentials. This process is described in the post-installation setup steps in the topic 'Create a User for ETL' in Oracle Fusion Middleware Installation and Configuration Guide for Oracle Business Intelligence Applications".
Note: The ETL user password is stored with the DAC connection details, and is not automatically synchronized with the LDAP version. Therefore, if you change the LDAP password of the ETL user is changed later, then you must also make the same changes to the DAC connection information. If the ETL user password expires, then you must reset it in LDAP, in the DAC connection details, and in Informatica > Relational Connections. To avoid this issue you can choose not to set an expiry date for the ETL user password (if your security best practices allow).
Oracle BI Applications content can be authenticated as follows:
User credentials are authenticated in the Reporting Pane login.
The BI Presentation Server passes an authentication request to the BI Server, which uses the Identity Store.
In this scenario the user is already in Fusion Applications and therefore has already been authenticated.
To access Oracle BI Applications Configuration Manager or Functional Setup Manager (for Oracle BI Applications), a user must be granted one of the following Duty Roles:
Users with the BI Applications Administrator Duty Role have access to all Configuration Manager User Interfaces and all Functional Setup Manager User Interfaces. For Configuration Manager, only users with this Duty Role are able to perform system setup tasks.
Users with the BI Applications Implementation Manager Duty Role have access to Configuration Manager Overview page and the Export and Import of Setup Data. In Functional Setup Manager, these users have access to Configure Offerings and Manage Implementation Projects User Interfaces but cannot execute a setup task.
Users with the BI Applications Functional Developer Duty Role have access to Configuration Manager User Interfaces, except for the System Setup screens. In Functional Setup Manager, these users have access to the list of functional setup tasks assigned to them and have the ability to execute the setup tasks.
Assigning these Duty Roles to appropriate Users and Job Roles is performed as Step 8: 'Grant User Access to Oracle BI Applications Components', in the post-installation steps for Oracle BI Applications. For more information, see section 4.3.8 'Grant User Access to Oracle BI Applications Components' in Oracle Fusion Middleware Installation and Configuration Guide for Oracle Business Intelligence Applications.
This section describes permissions in DAC, Configuration Manager and Functional Setup Manager, and contains the following sections.
For Oracle BI Applications, DAC permissions are granted through the Oracle BI Applications Duty Roles as follows:
- Read DAC Repository
- Administer DAC Repository
- Read DAC Repository
- Manage DAC ETL
- Read DAC Repository
- Design DAC Metadata
You login to DAC using the 'BI' connection type, because the DAC Server will run in Web mode. User authentication is handled by the LDAP directory where the DAC Server is deployed.
DAC permissions are as follows:
resourceType=bi.dac.permission,resourceName=oracle.bi.dac.readDACRepository
resourceType=bi.dac.permission,resourceName=oracle.bi.dac.manageDACETL
resourceType=bi.dac.permission,resourceName=oracle.bi.dac.designDACMetadata
resourceType=bi.dac.permission,resourceName=oracle.bi.dac.administerDACRepository
Table 1-1 shows the list of Configuration Manager screens visible to each of the Oracle BI Applications Duty Roles.
Table 1-1 List of Configuration Manager Screens Visible to Each Oracle BI Applications Duty Role
Oracle BI Applications Duty Role | Oracle BI Applications Configuration Manager screen | Associated Privilege |
---|---|---|
BI Applications Administrator | Overview | BIA_OVERVIEW_PRIV |
BI Applications Administrator | System Setups - Define Oracle BI Applications Instance | BIA_DEFINE_INSTANCE_PRIV |
BI Applications Administrator | System Setups - Manage Oracle BI Applications | BIA_MANAGE_INSTANCE_PRIV |
BI Applications Administrator | System Setups - Manage Preferred Currencies | BIA_MANAGE_INSTANCE_PRIV |
BI Applications Administrator | Functional Configurations - "Perform Functional Configurations" link to launch Functional Setup Manager | BIA_FUNCTIONAL_SETUPS_PRIV |
BI Applications Administrator | Setup Data Maintenance and Administration - Manage Domains and Mappings | BIA_CONFIGURE_DOMAINS_PRIV |
BI Applications Administrator | Setup Data Maintenance and Administration - Manage Data Load Parameters | BIA_CONFIGURE_DATALOAD_PARAMS_PRIV |
BI Applications Administrator | Setup Data Maintenance and Administration - Manage Reporting Parameters | BIA_CONFIGURE_RPD_PARAMS_PRIV |
BI Applications Administrator | Setup Data Export and Import - Export Setup Data | BIA_EXPORT_SETUPS_PRIV |
BI Applications Administrator | Setup Data Export and Import - Import Setup Data | BIA_IMPORT_SETUPS_PRIV |
BI Applications Functional Developer | Overview | BIA_OVERVIEW_PRIV |
BI Applications Functional Developer | Functional Configurations - "Perform Functional Configurations" link to launch Functional Setup Manager | BIA_FUNCTIONAL_SETUPS_PRIV |
BI Applications Functional Developer | Setup Data Maintenance and Administration - Manage Domains and Mappings | BIA_CONFIGURE_DOMAINS_PRIV |
BI Applications Functional Developer | Setup Data Maintenance and Administration - Manage Data Load Parameters | BIA_CONFIGURE_DATALOAD_PARAMS_PRIV |
BI Applications Functional Developer | Setup Data Maintenance and Administration - Manage Reporting Parameters | BIA_CONFIGURE_RPD_PARAMS_PRIV |
BI Applications Functional Developer | Setup Data Export and Import - Export Setup Data | BIA_EXPORT_SETUPS_PRIV |
BI Applications Functional Developer | Setup Data Export and Import - Import Setup Data | BIA_IMPORT_SETUPS_PRIV |
BI Applications Implementation Manager | Overview | BIA_OVERVIEW_PRIV |
BI Applications Implementation Manager | Setup Data Export and Import - Export Setup Data | BIA_EXPORT_SETUPS_PRIV |
BI Applications Implementation Manager | Setup Data Export and Import - Import Setup Data | BIA_IMPORT_SETUPS_PRIV |
Functional Setup Manager Duty Roles are associated with Oracle BI Applications Duty Roles as follows:
When configuring security in Oracle BI Applications, in some circumstances you might need to refer to security in other areas, as follows:
For more information, see:
For more information, see:
For information about Oracle BI EE platform integration with VOs, see the section 'Working with ADF Business Component Data Sources'.
To configure security in Oracle BI Applications, you typically use the following tools:
Oracle Identity Management enables you to manage authenticated users, Job Roles, and Data Roles in the LDAP directory.
Note: If you use an alternative authentication provider (for example, Active Directory) you must use the console provided with the alternative authentication provider to create Users, Job Roles, and Data Roles. Oracle WebLogic Server Administration Console will also display this information.
For more information about managing Users and Groups (Job Roles, Abstract Roles, Data Roles), see:
Oracle Authorization Policy Manager (APM) enables you to create and manage Duty Roles that control access privileges to Oracle Business Intelligence resources (for Oracle BI Applications Configuration Manager, FSM, DAC, and dashboards and data in Oracle BI EE platform).
Figure 1-3 Oracle Authorization Policy Manager Main Screen
Job Roles (or Fusion Applications Enterprise Roles) in the LDAP directory are mapped by default to the pre-configured Duty Roles that are installed with Oracle BI Applications. For detailed steps on mapping Enterprise Roles to Duty Roles, see Section 1.3.2, "Assigning Enterprise Roles (or Job Roles) to Duty Roles".
The screenshot below shows default Duty Roles in the Oracle APM Role Catalog.
Note: Fusion Middleware Control also enables you to manage Duty Roles for the BI Platform, but Oracle recommends using Oracle APM to create and manage Duty Roles.
For a detailed list of the default mapping between roles, see Section 1.5, "Mapping Roles to Secure Objects in the Oracle BI Repository and Oracle BI Presentation Catalog".
For more information about configuring roles and privileges, see:
Oracle BI Administration Tool enables you to configure Duty Role permissions (for example, Read or Write), for business models, tables, columns, and subject areas in the Oracle BI Repository.
Figure 1-4 Oracle BI Administration Tool - Identity Manager
For more information, see Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).
Note: You use Fusion Middleware Control to manage the Oracle BI Repository (RPD) password (for more information, see Changing the Repository Password in Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition)).
To configure Duty Role permissions on subject areas and tables in the Oracle BI Repository using the Oracle BI Administration Tool:
Note: If you log in to the Administration Tool in online mode, then you can view all users from the LDAP directory. If you log in to Administration Tool in offline mode, then you can only view users that are stored in the repository.
The Application Roles tab displays, Application Roles, and Duty Roles.
Use the radio buttons (Read, Read Write, No Access) to set permissions for a Duty Role, on Oracle BI Repository objects.
Oracle BI EE Administration Page enables you to configure Oracle BI Presentation Catalog Duty Role privileges. For example, for dashboard and other content. For more information, see Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition.
Figure 1-5 Oracle BI EE Administration Page
You can use this page to grant specific privileges, for example to:
To configure Oracle BI Presentation Catalog Duty Role privileges:
http://<hostname>:7001/analytics
The following screenshot shows components, privileges and associated roles.
The following screenshot shows another view of the Manage Privileges page with subject area folders, privileges and associated roles.
The following screenshot shows the available Duty Roles, which can be assigned to this privilege.
For example, select the Workforce Deployment dashboard under the Human Capital Management shared folder.
Note: Similar steps can be taken to configure security for other objects in the Oracle BI Presentation Catalog.
This section describes how to set up security in Oracle BI Applications using the pre-configured Job Roles and Duty Roles that are installed. The setup process involves the following key tasks:
If you want to change the default Users and Enterprise Roles in the LDAP directory, then follow the steps in Section 1.3.1, "Creating Users and Assigning Them to Job Roles".
If you want to change the default mappings for Duty Roles and Enterprise Roles in the Role Catalog, then follow the steps in Section 1.3.2, "Assigning Enterprise Roles (or Job Roles) to Duty Roles".
After you have installed Oracle BI Applications, you typically evaluate the product using the pre-configured users and roles. This section also describes how to create and develop your own modifications iteratively to meet your business requirements.
This topic contains the following sections:
For information about configuring security for Oracle Business Intelligence, see the Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition.
When you create a new user you must assign them to one or more Job Roles or Data Roles using Oracle Identity Management. The new user inherits appropriate privileges from the Duty Roles that are associated with the Job Role or Data Role. New users are automatically added to the Fusion Applications Identity Store.
For more information, see Section 1.3.5, "Understanding Oracle BI Applications Job Role Hierarchies".
For Fusion Business Intelligence, Oracle Business Intelligence authenticates against Fusion Applications Identity Store at runtime.
To create a new user and assign the user to a Job Role or Data Role:
For more information about creating users, and assigning to Job Roles and Data Roles), see "Role-Based Access Control" in Oracle Fusion Applications Security Guide.
If the default Job Roles or Data Roles do not meet your business requirements, then create your own Job Roles or Data Roles.
For more information, see Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Identity Management (Oracle Fusion Applications Edition)'
Note: When you create a new User (or Job Role), at a minimum you must assign membership to two roles:
|
Oracle BI Applications is installed with a set of pre-configured Duty Roles that are mapped by default to appropriate Fusion Applications Enterprise Roles. For example, for Oracle HR Analytics, the Duty Role 'Workforce Deployment Analysis Duty' (OBIA_WORKFORCE_DEPLOYMENT_ANALYSIS_DUTY) is mapped to the Enterprise Role PER_LINE_MANAGER_ABSTRACT.
If the default security settings meet your business needs, then you do not need to alter the mappings. If the default security settings do not meet your needs, then you might:
Follow the steps below to map an Enterprise Role to a Duty Role.
Prerequisite: Before you start, the Enterprise Role must already exist in the LDAP directory, and the Duty Role must already exist in the Role Catalog. You can either use one of the pre-configured Enterprise Roles that are installed with Oracle BI Applications, or you can use OID to create your own Enterprise Roles.
To map an Enterprise Role to a Duty Role:
Click Add to display the External Role Search dialog.
For example, the OBIA_WORKFORCE_DEPLOYMENT_ANALYSIS_DUTY Duty Role must be mapped to the PER_LINE_MANAGER_ABSTRACT Enterprise Role and the PER_HUMAN_RESOURCES_VP_JOB Enterprise Role.
Oracle BI Applications is installed with a set of pre-configured Duty Roles. For example, for Oracle HR Analytics, the Duty Role 'Workforce Deployment Analysis Duty' (OBIA_WORKFORCE_DEPLOYMENT_ANALYSIS_DUTY) provides users with the required BI security privileges for that functional area.
If the default Duty Roles meet your business needs, then you do not need to change them. If the default Duty Roles do not meet your needs, then you might create new Duty Roles and map them to Job Roles.
Follow the steps below to create a Duty Role.
For example, for the Duty Role named 'Workforce Deployment Analysis Duty', specify 'OBIA_WORKFORCE_DEPLOYMENT_ANALYSIS_DUTY'.
Leave the Role Category field blank.
The other tabs only become active after you click Save.
At this point, you might want to map Job Roles to the new Duty Role now by following the steps in Section 1.3.2, "Assigning Enterprise Roles (or Job Roles) to Duty Roles", or you might want to map Job Roles to the new Duty Role at a later date.
Oracle BI Applications is installed with fully configured Enterprise Roles and Duty Roles that enable users to access BI dashboards. A user assigned to an Enterprise Role (also known as a Job Role) can access all BI dashboards and data that are appropriate to that role. The following examples illustrate how to provide access to BI dashboards using appropriate Enterprise Roles and Duty Roles.
The following examples describe granting a user access to a BI Applications dashboard:
In this scenario you would identify the appropriate Job Role assigned to the user, and check whether the appropriate Duty Role is assigned to that Job Role. If it is not, you assign the appropriate Duty Role to the Job Role to grant access to the Oracle BI Applications AP dashboard (for more information, see Section 1.2.2, "Using Oracle Authorization Policy Manager to Configure Roles and Privileges").
In this scenario you would identify the appropriate Job Role assigned to the user, and check whether the appropriate Duty Role is assigned to that Job Role, if it is not, you would assign the appropriate Duty Role to the AP Manager Job Role to grant access to the Oracle BI Applications AP dashboard. For more information, see Section 1.2.2, "Using Oracle Authorization Policy Manager to Configure Roles and Privileges".
If suitable Oracle BI Repository permissions are not granted to a Duty Role, you can modify them for example, to enable or disable read/write permissions on a subject area or sub-folder. For more information, see:
If suitable Oracle BI Presentation Catalog privileges are not granted to a Duty Role, you can modify them for example, to enable or disable access to Dashboards, or view catalog objects. For more information, see:
Oracle BI Applications provides pre-built Job Role hierarchies for security to enable access to Oracle BI EE.
When you create a new role you must comply with the pre-built role hierarchies and naming convention that applies to Oracle BI Applications and OLTP roles:
Every Job Role must be assigned to two types of roles:
For example, to run reports and ad-hoc queries.
For example, an Oracle BI Applications Job Role must be assigned to OBIA_BUSINESS_INTELLIGENCE_APPLICATIONS_WORKER Abstract Role for access to Oracle Business Intelligence View Objects.
Figure 1-6 illustrates the Oracle BI Applications pre-built role hierarchy and naming convention that applies to Job Roles and Abstract Roles.
Key to the Figure 1-6, "Oracle BI Applications Pre-Built Role Hierarchy Sample":
There will be many inherited OLTP roles.
For example, OBIA_ACCOUNTS_PAYABLE_MANAGERIAL_ANALYSIS_DUTY.
Note: There is only one Oracle BI Applications Abstract Role - OBIA_BUSINESS_INTELLIGENCE_APPLICATION_WORKER.
For example, OBIA_PAYABLE_BUSINESS_UNIT_DATA_SECURITY.
For example, OBIA_FINANCIAL_CURRENCY_PREFERENCES.
You grant Duty Role permissions to a Oracle BI Repository subject area or table to enable users associated with different Duty Roles to be granted different permissions in repository subject areas, and tables.
To assign Duty Role permissions to Oracle BI Repository subject areas and tables:
Edit the Oracle BI Repository, and set up permissions for a Duty Role as described in Section 1.2.3, "Using Administration Tool to Configure Duty Role Permissions in the Oracle BI Repository".
You assign a data security filter to a Duty Role to enable users associated with that Duty Role to view different data from a user associated with another Duty Role.
For more information, see Section 1.7.2, "Implementing Data-Level Security in the Oracle BI Repository"
You assign Duty Role privileges to Oracle BI Presentation Catalog objects to enable users associated with that Duty Role to be granted specific query permissions (for example, dashboard and other content).
To assign Duty Role Privileges to Oracle BI Presentation Catalog objects:
For more information, see Section 1.2.4, "Using the Oracle BI EE Administration Page to Configure Duty Role Privileges in the Oracle BI EE Presentation Server".
Secure Sockets Layer (SSL) for Oracle BI Applications enables secure communication between its components. Oracle BI Applications SSL is an extension of the Oracle BI EE platform SSL (SSL Everywhere), and must be manually configured after an Oracle BI Applications installation.
This topic references topics in other books that explain how to configure SSL for the Oracle BI EE platform and Oracle BI Applications, and contains the following sections:
You must configure SSL for the Oracle BI EE platform components before you can configure SSL for Oracle BI Applications components.
For information about configuring SSL for the Oracle BI EE platform components, see Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition.
If Oracle Content Server and the WebCenter application in which you intend to create a repository connection are not on the same system or the same trusted private network, then identity propagation is not secure. To ensure secure identity propagation you must also configure SSL on Oracle Content Server.
For more information, see Securing the WebCenter Spaces Connection to Oracle Content Server with SSL in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.
You must also secure the connection between Oracle BI Applications Configuration Manager and Functional Setup Manager, as WebCenter portlet provider and consumer.
For more information, see Securing the WebCenter Spaces Connection to Portlet Producers with SSL in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.
For information about default mappings for Duty Roles, Job Roles, and Data Roles, to secure objects in the Oracle BI Repository and Oracle BI Presentation Catalog, see Document 1333454.1 Oracle Business Intelligence Applications Duty Role Assignments for Fusion Applications on My Oracle Support:
This topic describes how to implement GL segment security in Oracle BI Applications with a Fusion Applications source system, and contains the following sections:
Oracle Financial Analytics supports a combination of the following security mechanisms for GL subject areas:
Data Access Set security is configured during installation and does not require additional configuration. This section gives an overview of the segment security, and describes how to configure security using GL Accounting Segments.
One or more value sets define the accounting segments in your OLTP. You can set up these value sets as a tree value set or non-tree value set. Users can have different types of access for each value set:
For example in the following illustration, if the user is granted "is-descendant of" node C, then the user has access to nodes C, D, E, F and G.
Prior to configuring the segment security in the Oracle BI Repository, you should have completed configuring the segment dimensions in the Oracle BI Repository by mapping the segment VOs to the appropriate logical dimensions using BI Extender. Then perform the following tasks for each of the segment that you are securing. Based on the value sets used for those segments, the segment can be a tree enabled segment or a non-tree segment. The security implementation is different for these cases.
Perform the following steps when the segment on which security to be applied is a tree-based segment.
Turn ON the "Allow deferred execution" option for this initialization block.
Use the appropriate segment label code for the particular segment and any suitable prefix for the variable name, which are highlighted in bold text. In the above example, the segment label code used is "FA_COST_CTR" and the variable prefix used is "COST_CENTER_". This SQL will give (a) the value set codes the user has been granted full access to and/or (b) specific parent nodes within a tree the user has been granted access to using "is-descendant of" operator.
Create two session variables for the initialization block with names <prefix>_FULLACCESS and <prefix>_FILTEREDACCESS, where <prefix> is the variable prefix used in the initialization block SQL. For example, in the above case you will define two session variables with the name COST_CENTER_FULLACCESS and COST_CENTER_FILTEREDACCESS. Default them with a value '-1' (Varchar).
When the user has filtered access, we need to determine the hierarchy level in the hierarchy/tree where the node falls. For this you will need to create another row wise session initialization block. A sample SQL for this would be as follows. You will need to use the FILTEREDACCESS variable created in the previous step.
Turn ON the "Allow deferred execution" option for this initialization block.
Please use "<prefix>_LEVELS" for the variable name in the select clause, where <prefix> is the same variable prefix used in steps 2 and 3. Please note the variable name used (in the where clause), should be the same as defined in the previous initialization block.
Each segment dimension in the Oracle BI Repository (Dim - Cost Center, Dim - Balancing Segment, Dim - Natural Account Segment and Dim - GL Segment 1-10) can be either a tree or non-tree segment based on your requirements. In case you have configured them to be tree segments, perform the steps below after creating the initialization blocks and variables mentioned in Task 1.
After completing Task 2, filters need to be added to the appropriate Data Role for data security predicates to be applied to queries. For more information, see Section 1.3.5, "Understanding Oracle BI Applications Job Role Hierarchies".
For each of the logical facts secured under this role, you will see some existing filters, which are handling data access security. You will need to append the segment security filters to this with an 'AND' condition. A snippet of the segment security filters to be appended for a given segment dimension is given below, assuming the security is on "Dim - GL Segment3" and the session variable prefix used in the previous steps was "SEGMENT3".
Note: When a tree has more than one version, the security filters are always applied on the current version for that tree (CURRENT_FLG='Y'). However, you can navigate through any other version of the tree in the reports but security will always be applied on the current version.
Perform the following steps when the segment on which security to be applied is not a tree based segment.
A sample SQL statement might be:
Use an appropriate prefix for the variable name, highlighted above. This initialization block gives a concatenation of value set code and values the user has access to.
After you have completed Task 1, filters need to be added to the appropriate Data Role for data security predicates to be applied to queries.
Data-level security defines what a user with a particular Duty Role in an OLTP application can access inside a report. The same report, when run by two different users (associated with different Duty Roles), can return different data. This is similar to how the My Opportunities view in an operational application displays different data for different users. However, the structure of the report is the same for all users, unless a user does not have access to a column in a report, in which case the column is not displayed for that user.
Data-level security works by granting a privilege conditionally to a user using initialization blocks that determine what data is available on log in (for example, the hierarchy level in the organization hierarchy, or responsibilities of a role).
BI session variables store information specifying the rows that a logged in user is permitted to see, and are used inside initialization blocks. Session variable initialization blocks are initialized using ADF BC View Objects (VOs).
This topic contains the following sections:
For more information about:
See 'Working with ADF Business Component Data Sources' in Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition)
Dimensions in the Oracle BI Repository, can be secured using the following methods:
This method obtains a list of rows that the logged in user is allowed to see. For example, for organization-based security, this method might obtain a list of organization IDs. This list is obtained when the user logs into Oracle Business Intelligence, and is stored in an Oracle Business Intelligence session variable.
This method is used for a hierarchical dimension, and obtains the top node to which the user has access, and stores it in the session variable. When querying the warehouse facts, the cached top node can be used along with flattened hierarchy tables within the warehouse to apply security on Oracle BI Applications tables.
This method requires ETL to the data warehouse of all data in Sales Resource dimension, Sales Resource Hierarchy dimension, and (Fact - Sale Resource/Sales Resource Hierarchy) helper tables. When querying a fact table, the login user's Party ID (session variable USER_PARTY_ID, initialized by querying UserPVO) determines what rows in the Resource dimension, and/or Resource Hierarchy dimension, and/or the helper table that the user can access, which then determines what data the user can access in the fact table.
Note: Installed dimension security configuration for "In List" and "Top Node" is obtained from Fusion OLTP at runtime. If the dimension security gets into the data warehouse through ETL, then it is obtained from OLTP during ETL time, not runtime.
Data-level security in Oracle BI Applications is implemented in three major steps, as described below. For detailed information about this security feature, see 'Applying Data Access Security to Repository Objects' Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).
To implement data-level security in the Oracle BI Repository:
For detailed information about this security feature, see Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).
For detailed information about this security feature, see 'Setting Up Row-Level Security' in Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).
Some initialization blocks for obtaining a given user's primary position, primary organization, and the owner ID, are preconfigured in the Oracle BI Repository. For more information, see the Oracle Business Intelligence Administration Tool.
For more information about setting up and managing initialization blocks, see Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).
As discussed in the preceding sections, Oracle BI Applications maintains data-level security Duty Roles that are assigned dynamically to every user at the session level. Each Duty Role has a set of filters associated with it that determines the data each user is allowed to see. A user is assigned a Duty Role through the Authorization initialization block, as discussed in Section 1.7.3, "About Pre-Configured Initialization Blocks Used for Data-Level Security in Oracle BI Applications."
The data security design has the following features:
then by drilling down on a value of MyPosition in the TopLevelPosition hierarchy, the report will become:
For example, if a report is defined as:
the logical query for the user at the top level of the hierarchy will be:
The logical query for the user at the next level of the hierarchy will be:
This chapter provides information about multi-language support in Oracle Business Intelligence Applications.
This chapter contains the following topics:
Oracle BI Applications provides multi-language support for metadata level objects exposed in Oracle BI Enterprise Edition dashboards and reports, as well as for data, which enables users to see records translated in their preferred language.
Configuring Base and Installed Data Warehouse Languages
After installing Oracle BI Applications, you use the Oracle BI Applications Configuration Manager (Configuration Manager) to configure which languages you want to support in the Oracle Business Analytics Warehouse. You must configure one "Base" language, and you can also configure any number of "Installed" languages. Typically, the Base language specified for the data warehouse should match the Base language of the source system. The Installed languages that you specify for the data warehouse do not have to match the languages that are installed in the source system. The data warehouse can have more, fewer, or completely different Installed languages compared to the source system. Note that for languages that match between the transactional system and the data warehouse, the corresponding record is extracted from the transactional system; languages that do not match will have a pseudo-translated record generated.
Note: You should only install the languages that you expect to use, because each installed language can significantly increase the number of records stored in the data warehouse and can affect overall database performance.
For information about how to configure data warehouse languages, see Oracle Fusion Middleware Installation and Configuration Guide for Oracle Business Intelligence Applications.
Translation Tables
There are two types of translation tables: the Domains translation table and Dimension translation tables. There is a single Domain translation table which holds a translated value in each supported language for a domain. Dimension translation tables are extension tables associated with a given dimension. Depending on certain characteristics of a translatable attribute, it will be found in either the domain or a dimension translation table.
The user's session language is captured in an Oracle BI Enterprise Edition session variable named USER_LANGUAGE_CODE. This is set when users log in from Answers, where they select their preferred language. If users decide to change their preferred language in the middle of a session by using the Administration option to change the current language, this session variable will detect this change. Records returned from a translation table are filtered to those records with a LANGUAGE_CODE value that matches this session variable.
The ETL process extracts translation records from the source system that correspond to the languages installed in the data warehouse. If a record cannot be found in the source system that corresponds to a language that has been installed in the data warehouse, a pseudo-translated record will be generated. Without a pseudo-translated record, a user that logs in with the missing language as their preferred language will not see any records.
A pseudo-translated record is generated by copying the translation record that corresponds to the data warehouse Base language and flagging it with the missing record's language by populating the LANGUAGE_CODE column with the language value. SRC_LANGUAGE_CODE stores the language from which the pseudo-translated record was generated; this will always match the data warehouse Base language.
In the future, if a translation record is created in the source system, it will be extracted and the pseudo-translated record will be overwritten to reflect the actual translated value. Table 2-1 provides an example in which "US" is the data warehouse Base language, and "IT" and "SP" are the Installed languages. The source system only had translated records for "US" and "IT" but did not have a translated record for "SP". The "US" and "IT" records are extracted and loaded into the data warehouse. Because there is no translation record in the source system for the "SP" language, a pseudo-translated record is generated by copying the "US" record and flagging LANGUAGE_CODE as if it were an "SP" record. The pseudo-translated record can be identified because SRC_LANGUAGE_CODE is different from LANGUAGE_CODE, matching the Base Language.
A domain refers to the possible, unique values of a table column in a relational database. In transactional systems, domains are often referred to as list of values (LOVs), which present attribute selections in the user's session language. The storage of the transaction is independent of the user's language; and, therefore, the field is stored using a language independent identifier. This identifier is typically a character code but can also be a numeric ID. The LOV or domain is then based on an ID-value pair, referred to as a member, and the LOV presents the values in the user's session language. At run time, the IDs are resolved to the value for the user's session language.
In the Oracle Business Analytics Warehouse, the number of unique values in any particular domain is relatively small and can have a low cardinality relative to the dimension it is associated with. For example, the Person dimension may have the domain 'Gender' associated with. The dimension may have millions of records but the domain will generally have two or three members (M, F and possibly U). In the Oracle Business Analytics Warehouse, the Gender Code is stored in the Person dimension which acts as a foreign key to the Domains Translation table which stores the translated values. When a query is run, the user-friendly text associated with the code value is returned in the user's session language.
Depending on certain properties associated with a domain, domains can be configured in the Configuration Manager. In addition to serving as a mechanism for supporting translations, domains can be used to conform disparate source data into a common set of data.
Data Model
BI Applications domains are associated with dimensions as fields in the dimension table that follow the %_CODE naming convention. For example, the Person dimension W_PARTY_PER_D would store the Gender domain in the GENDER_CODE column.
BI Applications domains are stored in the domain translation table W_DOMAIN_MEMBER_LKP_TL. This table stores the translated values for each domain member code. Translated values are usually either a Name or a Description value which are stored in the NAME and DESCR columns of this table. The DOMAIN_MEMBER_CODE column acts as a key column when joining with the %_CODE column in the dimension table. As domains come from various systems, a DATSOURCE_NUM_ID column is used to identify which system the translated value comes from and is used as part of the join key with the dimension table. A LANGUAGE_CODE column is used to identify the language the translated values are associated with. Note that the LANGUAGE_CODE column follows the %_CODE naming convention. Language is considered a domain with a given set of unique values.
ETL Process
The W_DOMAIN_MEMBER_LKP_TL table stores both domains that are extracted from the source system as well as internally defined domains that are seeded in the Configuration Manager. For each of the %_CODE columns that have translated values available in the source system, an ETL process extracts the domain members from the transactional system and loads them into W_DOMAIN_MEMBER_LKP_TL. Internally defined domains—usually domains specific to the Oracle Business Analytics Warehouse and known as conformed domains but can also include source domains—are stored in the Configuration Manager schema and are similarly extracted and loaded into the W_DOMAIN_MEMBER_LKP_TL table through ETL processes.
Only those translation records that match one of the languages that have been installed in the data warehouse are extracted from the transactional system. If translated records are not found in the transactional system matching an installed language, the ETL will generate a 'pseudo-translated' record for that language.
Some source applications store translations that can be extracted and loaded into the translation table. Some source applications do not maintain translations for an entity that corresponds to a dimension table. In these cases, whatever record is available is extracted and used as the Base language record to generate pseudo-translations for all other installed languages.
Figure 2-1 shows an overview of the BI Applications domain ETL process.
About BI Applications Domains and Oracle BI Enterprise Edition
The exact mechanism used to retrieve the translated value in Oracle BI Enterprise Edition is the LOOKUP() function. When the LOOKUP() function is used, Oracle BI Enterprise Edition performs all aggregations before joining to the lookup table. The aggregated result set is then joined to the lookup table. Low-cardinality attributes tend to be involved in several aggregations, so it is useful to be joined after results are aggregated rather than before.
In a logical dimension, a Name or Description attribute will use the LOOKUP() function, passing the value in the %_CODE column associated with that Name or Description to the Domain Lookup Table. The LOOKUP() function includes the Domain Name to be used when looking up values. The results from the Domain Lookup table are filtered to match the user's session language and returned as part of the query results.
Domains can be either source or conformed (internally defined warehouse domains). Source domains can come from a variety of transactional systems and so must include a Datasource_Num_Id value to resolve. Conformed domains are defined as part of the Oracle BI Applications and do not require a Datasource_Num_Id to resolve. As a result, there are two lookup tables implemented in the Oracle BI Repository that are aliases of W_DOMAIN_MEMBER_LKP_TL. When resolving a source domain, the source domain lookup requires Datasource_Num_Id to be passed as part of the LOOKUP() function while the conformed domain lookup does not.
As mentioned in Section 2.3, "About BI Applications Domains,", domains are dimensional attributes that have a relatively small number of distinct members, have a low cardinality relative to the number of records in the dimension, and are often used in aggregations. Dimensions have other attributes that require translation that may not fit one or more of these criteria. Dimensions may have translatable attributes that have a high cardinality relative to the dimension or may have a large number of members, and, thus, are not likely candidates for aggregation. If the domains ETL process was implemented in such cases, performance would be very poor. As a result, these particular attributes are implemented using dimension translation tables.
Data Model
If a dimension has such high-cardinality attributes that cannot be treated as domains, the dimension will have an extension table that follows the _TL naming convention. If the _TL table has a one-to-one relationship with the dimension table (after filtering for languages), the _TL table name will match the dimension table name. For example, W_JOB_D_TL is the translation table associated with the W_JOB_D dimension table. If the _TL table does not have a one-to-one relationship with any dimension table, its name will reflect content.
The dimension and dimension translation table are joined on the translation table's INTEGRATION_ID + DATASOURCE_NUM_ID. If the translation and dimension tables have a one-to-one relationship (after filtering for language), the join to the dimension table is on its INTEGRATION_ID + DATASOURCE_NUM_ID. Otherwise, there will be a %_ID column in the dimension table that is used to join to the translation table.
ETL Process
Similar to the BI Applications domain ETL process, when using dimension translation tables, ETL tasks extract the translated values from the transactional system. Rather than the domain staging table being loaded, the dimension's translation staging table is loaded. The ETL process then moves these records into the dimension translation table.
Only those translation records that match one of the languages that have been installed in the data warehouse are extracted from the transactional system. If translated records are not found in the transactional system matching a data warehouse Installed language, the ETL will generate a 'pseudo-translated' record for that language by copying the record that corresponds to the data warehouse Base language.
Some source applications store translations that can be extracted and loaded into the translation table. Some source applications do not maintain translations for an entity that corresponds to a dimension table. In these cases, whatever record is available is extracted and used as the Base language record, which is then used to generate pseudo-translations for all other Installed languages.
Oracle BI Applications does not support Type 2 SCD tracking of dimension translation attributes when the dimension and translation tables have a one-to-one relationship with each other. These tables are joined on INTEGRATION_ID + DATASOURCE_NUM_ID, and, therefore, can be joined to a single record in the translation table. Attributes in the dimension table can be Type 2-enabled, but the current and prior records will always have the same translated value. Figure 2-2 describes the ETL domain process.
Oracle BI Enterprise Edition
In Oracle BI Enterprise Edition, joins are created between the dimension and translation tables as normal. The translation table is brought in as another supporting table in the logical table source. If a user selects an attribute from the translation table, it will be included as a joined table in the SQL that Oracle BI Enterprise Edition generates. If the user does not select a translation attribute, the translation table will not be included in the generated SQL.
To ensure this behavior, the physical join between the dimension and translation tables is configured as one-to-many with the dimension table on the many side.
An important consideration is filtering on a user's language. If the language filter is included in the logical table source as a content filter, the translation table will always be joined whether a user selects a translation attribute or not. To avoid this behavior, opaque views are created in the physical layer that include a WHERE clause on the user's session language. Filtering on the user's language is still possible, but as the filter criteria is not implemented as a logical table source content filter, it is ensured that the translation table is only joined when necessary.
This chapter includes information on the types of tables and columns in the Oracle Business Analytics Warehouse, including the naming conventions used.
Note: This chapter contains naming conventions used for database tables and columns in the Oracle Business Analytics Warehouse. This information does not apply to objects in the Oracle Business Intelligence repository. |
This chapter contains the following topics:
Oracle Business Analytics Warehouse tables use a three-part naming convention: PREFIX_NAME_SUFFIX, as shown in Table 3-1.
Table 3-1 Naming Conventions for Oracle Business Analytics Data Warehouse Tables
Part | Meaning | Table Type |
---|---|---|
PREFIX | Shows Oracle Business Analytics-specific data warehouse application tables. | W_ = Warehouse |
NAME | Unique table name. | All tables. |
SUFFIX | Indicates the table type. | _A = Aggregate _D = Dimension _DEL = Delete _DH = Dimension Hierarchy _DHL = Dimension Helper _DHLS = Staging for Dimension Helper _DHS = Staging for Dimension Hierarchy _DS = Staging for Dimension _F = Fact _FS = Staging for Fact _G, _GS = Internal _H = Helper _HS = Staging for Helper _MD = Mini Dimension _PE = Primary Extract _PS = Persisted Staging _RH = Row Flattened Hierarchy _TL = Translation Staging (supports multi-language support) _TMP = Pre-staging or post-staging temporary table _UD = Unbounded Dimension _WS = Staging for Usage Accelerator |
Table 3-2 lists the types of tables used in the Oracle Business Analytics Warehouse.
Table 3-2 Table Types Used in the Oracle Business Analytics Warehouse
Table Type | Description |
---|---|
Aggregate tables (_A) | Contain summed (aggregated) data. |
Dimension tables (_D) | Star analysis dimensions. |
Delete tables (_DEL) | Tables that store IDs of the entities that were physically deleted from the source system and should be flagged as deleted from the data warehouse. Note that there are two types of delete tables: _DEL and _PE. For more information about the _PE table type, see the row for Primary extract tables (_PE) in this table. |
Dimension Hierarchy tables (_DH) | Tables that store the dimension's hierarchical structure. |
Dimension Helper tables (_DHL) | Tables that store many-to-many relationships between two joining dimension tables. |
Staging tables for Dimension Helper (_DHLS) | Staging tables for storing many-to-many relationships between two joining dimension tables. |
Dimension Hierarchy Staging table | Staging tables for storing the hierarchy structures of dimensions that have not been through the final extract-transform-load (ETL) transformations. |
Dimension Staging tables (_DS) | Tables used to hold information about dimensions that have not been through the final ETL transformations. |
Fact tables (_F) | Contain the metrics being analyzed by dimensions. |
Fact Staging tables (_FS) | Staging tables used to hold the metrics being analyzed by dimensions that have not been through the final ETL transformations. |
Internal tables (_G, _GS) | General tables used to support ETL processing. |
Helper tables (_H) | Inserted between the fact and dimension tables to support a many-to-many relationship between fact and dimension records. |
Helper Staging tables (_HS) | Tables used to hold information about helper tables that have not been through the final ETL transformations. |
Mini dimension tables (_MD) | Include combinations of the most queried attributes of their parent dimensions. The database joins these small tables to the fact tables. |
Primary extract tables (_PE) | Tables used to support the soft delete feature. The table includes all the primary key columns (integration ID column) from the source system. When a delete event happens, the full extract from the source compares the data previously extracted in the primary extract table to determine if a physical deletion was done in the Siebel application. The soft delete feature is disabled by default. Therefore, the primary extract tables are not populated until you enable the soft delete feature. Note that there are two types of delete tables: _DEL and _PE. For more information about the _DEL table type, see the row for Delete table (_DEL) in this table. |
Persisted Staging table (_PS) | Tables that source multiple data extracts from the same source table. These tables perform some common transformations required by multiple target objects. They also simplify the source object to a form that is consumable by the warehouse needed for multiple target objects. These tables are never truncated during the life of the data warehouse. These are truncated only during full load, and therefore, persist the data throughout. |
Row Flattened Hierarchy Table (_RH) | Tables that record a node in the hierarchy by a set of ancestor-child relationships (parent-child for all parent levels). |
Translation Staging tables (_TL) | Tables store names and descriptions in the languages supported by Oracle BI Applications. |
Pre-staging or post-staging Temporary table (_TMP) | Source-specific tables used as part of the ETL processes to conform the data to fit the universal staging tables (table types_DS and _FS). These tables contain intermediate results that are created as part of the conforming process. |
Unbounded dimension (_UD) | Tables containing information that is not bounded in transactional database data but should be treated as bounded data in the Oracle Business Analytics Warehouse. |
Staging tables for Usage Accelerator (_WS) | Tables containing the necessary columns for the ETL transformations. |
One of the main uses of a data warehouse is to sum up fact data with respect to a given dimension, for example, by date or by sales region. Performing this summation on-demand is resource-intensive, and slows down response time. The Oracle Business Analytics Warehouse precalculates some of these sums and stores the information in aggregate tables. In the Oracle Business Analytics Warehouse, the aggregate tables have been suffixed with _A.
A class table is a single physical table that can store multiple logical entities that have similar business attributes. Various logical dimensions are separated by a separator column, such as, type or category. W_XACT_TYPE_D is an example of a dimension class table. Different transaction types, such as, sales order types, sales invoice types, purchase order types, and so on, can be housed in the same physical table.
You can add additional transaction types to an existing physical table and so reduce the effort of designing and maintaining new physical tables. However, while doing so, you should consider that attributes specific to a particular logical dimension cannot be defined in this physical table. Also, if a particular logical dimension has a large number of records, it might be a good design practice to define a separate physical table for that particular logical entity.
The unique numeric key (ROW_WID) for each dimension table is generated during the load process. This key is used to join each dimension table with its corresponding fact table or tables. It is also used to join the dimension with any associated hierarchy table or extension table. The ROW_WID columns in the Oracle Business Analytics Warehouse tables are numeric. In every dimension table, the ROW_WID value of zero is reserved for Unspecified. If one or more dimensions for a given record in a fact table is unspecified, the corresponding key fields in that record are set to zero.
This design approach is used when the entity is logically the same but participates as different roles in the business process. As an example, an employee could participate in a Human Resources business process as an employee, in the sales process as a sales representative, in the receivables process as a collector, and in the purchase process as a buyer. However, the employee is still the same. For such logical entities, flags have been provided in the corresponding physical table (for example, W_EMPLOYEE_D) to describe the record's participation in business as different roles.
While configuring the presentation layer, the same physical table can be used as a specific logical entity by flag-based filters. For example, if a particular star schema requires Buyer as a dimension, the Employee table can be used with a filter where the Buyer flag is set to Y.
Each fact table contains one or more numeric foreign key columns to link it to various dimension tables.
Helper tables are used by the Oracle Business Analytics Warehouse to solve complex problems that cannot be resolved by simple dimensional schemas.
In a typical dimensional schema, fact records join to dimension records with a many-to-one relationship. To support a many-to-many relationship between fact and dimension records, a helper table is inserted between the fact and dimension tables.
The helper table can have multiple records for each fact and dimension key combination. This allows queries to retrieve facts for any given dimension value. It should be noted that any aggregation of fact records over a set of dimension values might contain overlaps (due to a many-to-many relationship) and can result in double counting.
At times there is a requirement to query facts related to the children of a given parent in the dimension by only specifying the parent value (example: manager's sales fact that includes sales facts of the manager's subordinates). In this situation, one helper table containing multiple records for each parent-child dimension key combination is inserted between the fact and the dimension. This allows queries to be run for all subordinates by specifying only the parent in the dimension.
Some dimension tables have hierarchies into which each record rolls. This hierarchy information is stored in a separate table, with one record for each record in the corresponding dimension table. This information allows users to drill up and down through the hierarchy in reports.
There are two types of hierarchies in the Oracle Business Analytics Warehouse: a structured hierarchy in which there are fixed levels, and a hierarchy with parent-child relationships. Structured hierarchies are simple to model, since each child has a fixed number of parents and a child cannot be a parent. The second hierarchy, with unstructured parent-child relationships is difficult to model because each child record can potentially be a parent and the number of levels of parent-child relationships is not fixed. Hierarchy tables have a suffix of _DH.
Mini-dimension tables include combinations of the most queried attributes of their parent dimensions. They improve query performance because the database does not need to join the fact tables to the big parent dimensions but can join these small tables to the fact tables instead.
Table 3-3 lists the mini-dimension tables in the Oracle Business Analytics Warehouse.
Table 3-3 Mini-Dimension Tables in Oracle Business Analytics Warehouse
Table Name | Parent Dimension |
---|---|
W_RESPONSE_MD | Parent W_RESPONSE_D |
W_AGREE_MD | Parent W_AGREE_D |
W_ASSET_MD | Parent W_ASSET_D |
W_OPTY_MD | Parent W_OPTY_D |
W_ORDER_MD | Parent W_ORDER_D |
W_QUOTE_MD | Parent W_QUOTE_D |
W_SRVREQ_MD | Parent W_SRVREQ_D |
Staging tables are used primarily to stage incremental data from the transactional database. When the ETL process runs, staging tables are truncated before they are populated with change capture data. During the initial full ETL load, these staging tables hold the entire source data set for a defined period of history, but they hold only a much smaller volume during subsequent refresh ETL runs.
This staging data (list of values translations, computations, currency conversions) is transformed and loaded to the dimension and fact staging tables. These tables are typically tagged as <TableName>_DS or <TableName>_FS. The staging tables for the Usage Accelerator are tagged as WS_<TableName>.
The staging table structure is independent of source data structures and resembles the structure of data warehouse tables. This resemblance allows staging tables to also be used as interface tables between the transactional database sources and data warehouse target tables.
Translation tables provide multi-language support by storing names and descriptions in each language that Oracle Business Analytics Warehouse supports. There are two types of translation tables:
Domains and their associated translated values are stored in a single table named W_DOMAIN_MEMBER_LKP_TL. Each dimension requiring multi-language support that cannot be achieved with domains has an associated _TL table. These tables have a one-to-many relationship with the dimension table. For each record in the dimension table, you will see multiple records in the associated translation table (one record for each supported language).
Internal tables are used primarily by ETL mappings for data transformation and for controlling ETL runs. These tables are not queried by end users and are not directly managed by the Oracle Data Warehouse Administration Console (DAC). These tables are described in Table 3-4.
Table 3-4 Oracle Business Analytics Warehouse Internal Tables
Name | Purpose | Location |
---|---|---|
W_DUAL_G | Used to generate records for the Day dimension. | Data warehouse |
W_COSTLST_G | Stores cost lists. | Data warehouse |
W_EXCH_RATE_G | Stores exchange rates. | Data warehouse |
W_LOV_EXCPT_G | Stores the list of values for the list of values types in which the ETL process finds exceptions. | Data warehouse |
W_UOM_CONVERSION_G | Stores a list of From and To UOM codes and their conversion rates. | Data warehouse |
W_DOMAIN_MEMBER_G | Staging table for populating incremental changes into W_DOMAIN_MEMBER_G and W_DOMAIN_MEMBER_G_TL. | Data warehouse |
W_DOMAIN_MEMBER_G_TL | Stores translated values for each installed language corresponding to the domain member codes in W_DOMAIN_MEMBER_G_TL. | Data warehouse |
W_DOMAIN_MEMBER_GS | Stores all the domain members and value for each installed language. | Data warehouse |
W_DOMAIN_MEMBER_MAP_G | Used at ETL run time to resolve at target domain code base on the value of a source domain code. | Data warehouse |
W_DOMAIN_MAP_NUM_G | Used at ETL run time to resolve a target domain code based on the comparison of a numeric value within the source numeric range. | Data warehouse |
The Oracle Business Analytics Warehouse uses a standard prefix to indicate fields that must contain specific values, as shown in Table 3-5.
The Oracle Business Analytics Warehouse uses suffixes to indicate fields that must contain specific values, as shown in Table 3-6.
Table 3-6 Standard Column Suffixes
Suffix | Description | In Table Types |
---|---|---|
_CODE | Code field. | _D, _DS, _FS, _G, _GS |
_DT | Date field. | _D, _DS, _FS, _G, _DHL, |
_ID | Correspond to the _WID columns of the corresponding _F table. | _FS, _DS |
_FLG | Indicator or Flag. | _D, _DHL, _DS, _FS, _F, _G, _DHLS |
_WID | Identifier generated by Oracle Business Intelligence linking dimension and fact tables, except for ROW_WID. | _F, _A, _DHL |
_NAME | A multi-language support column that holds the name associated with an attribute in all languages supported by the data warehouse. | _TL |
_DESCR | A multi-language support column that holds the description associated with an attribute in all languages supported by the data warehouse | _TL |
Oracle Business Analytics Warehouse tables contain system fields. These system fields are populated automatically and should not be modified by the user. Table 3-7 lists the system columns used in data warehouse dimension tables.
Table 3-7 System Columns Used in Data Warehouse Tables
System Column | Description |
---|---|
ROW_WID | Surrogate key to identify a record uniquely. |
CREATED_BY_WID | Foreign key to the W_USER_D dimension that specifies the user who created the record in the source system. |
CHANGED_BY_WID | Foreign key to the W_USER_D dimension that specifies the user who last modified the record in the source system. |
CREATED_ON_DT | The date and time when the record was initially created in the source system. |
CHANGED_ON_DT | The date and time when the record was last modified in the source system. |
AUX1_CHANGED_ON_DT | System field. This column identifies the last modified date and time of the auxiliary table's record that acts as a source for the current table. |
AUX2_CHANGED_ON_DT | System field. This column identifies the last modified date and time of the auxiliary table's record that acts as a source for the current table. |
AUX3_CHANGED_ON_DT | System field. This column identifies the last modified date and time of the auxiliary table's record that acts as a source for the current table. |
AUX4_CHANGED_ON_DT | System field. This column identifies the last modified date and time of the auxiliary table's record that acts as a source for the current table. |
DELETE_FLG | This flag indicates the deletion status of the record in the source system. A value of Y indicates the record is deleted from the source system and logically deleted from the data warehouse. A value of N indicates that the record is active. |
W_INSERT_DT | Stores the date on which the record was inserted in the data warehouse table. |
W_UPDATE_DT | Stores the date on which the record was last updated in the data warehouse table. |
DATASOURCE_NUM_ID | Unique identifier of the source system from which data was extracted. In order to be able to trace the data back to its source, it is recommended that you define separate unique source IDs for each of your different source instances. |
ETL_PROC_WID | System field. This column is the unique identifier for the specific ETL process used to create or update this data. |
INTEGRATION_ID | Unique identifier of a dimension or fact entity in its source system. In case of composite keys, the value in this column can consist of concatenated parts. |
TENANT_ID | Unique identifier for a tenant in a multi-tenant environment. This column is typically be used in an Application Service Provider (ASP)/Software as a Service (SaaS) model. |
X_CUSTOM | Column used as a generic field for customer extensions. |
CURRENT_FLG | This is a flag for marking dimension records as "Y" in order to represent the current state of a dimension entity. This flag is typically critical for Type II slowly changing dimensions, as records in a Type II situation tend to be numerous. |
EFFECTIVE_FROM_DT | This column stores the date from which the dimension record is effective. A value is either assigned by Oracle BI Applications or extracted from the source. |
EFFECTIVE_TO_DT | This column stores the date up to which the dimension record is effective. A value is either assigned by Oracle BI Applications or extracted from the source. |
SRC_EFF_FROM_DT | This column stores the date from which the source record (in the Source system) is effective. The value is extracted from the source (whenever available). |
STC_EFF_TO_DT | This column stores the date up to which the source record (in the Source system) is effective. The value is extracted from the source (whenever available). |
Table 3-8 lists the currency codes and rates for related system columns.
Table 3-8 Currency Codes and Rates for Related System Columns
System Column | Description |
---|---|
DOC_CURR_CODE | Code for the currency in which the document was created in the source system. |
LOC_CURR_CODE | Usually the reporting currency code for the financial company in which the document was created. |
GRP_CURR_CODE | The primary group reporting currency code for the group of companies or organizations in which the document was created. |
LOC_EXCHANGE_RATE | Currency conversion rate from the document currency code to the local currency code. |
GLOBAL1_EXCHANGE_RATE | Currency conversion rate from the document currency code to the Global1 currency code. |
GLOBAL2_EXCHANGE_RATE | Currency conversion rate from the document currency code to the GLOBAL2 currency code. |
GLOBAL3_EXCHANGE_RATE | Currency conversion rate from document currency code to the GLOBAL3 currency code. |
PROJ_CURR_CODE | Code used in Project Analytics that corresponds to the project currency in the OLTP system. |
It is possible for various dimensions to have one-to-many and many-to-many relationships with each other. These kinds of relationships can introduce problems in analyses. For example, an Opportunity can be associated with many Sales Representatives and a Sales Representative can be associated with many Opportunities. If your analysis includes both Opportunities and Sales Representatives, a count of Opportunities would not be accurate because the same Opportunity would be counted for each Sales Representative with which it is associated.
To avoid these kinds of problems, the Oracle Business Analytics Warehouse reflects the primary member in the "many" part of the relationship. In the example where an Opportunity can be associated with many Sales Representatives, only the Primary Sales Representative is associated with that Opportunity. In an analysis that includes both Opportunity and Sales Representative, only a single Opportunity will display and a count of Opportunities returns the correct result.
There are a few important exceptions to this rule. The Person star schema supports a many-to-many relationship between Contacts and Accounts. Therefore, when querying the Person star schema on both Accounts and Contacts, every combination of Account and Contact is returned. The Opportunity-Competitor star schema supports a many-to-many relationship between Opportunities and Competitor Accounts, and the Campaign-Opportunity star schema supports a many-to-many relationship between Campaigns and Opportunities. In other star schemas, however, querying returns only the primary account for a given contact.
Oracle BI Applications provides multi-language support for metadata level objects exposed in Oracle BI Enterprise Edition dashboards and reports, as well as data, which enables users to see records translated in their preferred language. For more information about multi-language support, see Chapter 2, "About Multi-Language Support."
For information about setting up currencies, refer to the following task in Functional Setup Manager: Common Areas and Dimensions Configurations\ Configure Global Currencies.
The Oracle Business Analytics Warehouse supports the following currency preferences.
This chapter describes how to apply Oracle BI Applications patches.
This chapter contains the following topics:
For Oracle Fusion Applications source systems, this chapter supplements the information provided in Oracle Fusion Applications Patching Guide.
This chapter also supplements information provided in Oracle Fusion Middleware Patching Guide for patching Oracle Fusion Middleware products.
Patching involves using OPatch to copy a small collection of files over an existing installation. A patch is normally associated with a particular version of an Oracle product. A patch set contains a collection of patches that are designed to be applied at the same time.
Oracle Fusion Middleware Patching Guide provides a full description of the types of patches available and the instructions to apply them. Before applying a patch to an Oracle Business Intelligence Applications system, make sure to review Oracle Fusion Middleware Patching Guide, as well as the readme.txt file provided with the patch. The readme file will describe the content of the patch and may contain additional information and instructions.
An Oracle BI Applications patch can include bug fixes, metadata, and binary file updates. The exact updates made will depend on the patch contents, and can include any of the following:
system-jazn-data.xml
file). Note: An Oracle BI Applications patch does not include the following:
For information about patching the Oracle Business Intelligence platform, see 'Patching Oracle Business Intelligence Systems' in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
Patches to Informatica PowerCenter binary files are available as hot fixes from Informatica Corporation.
The exact updates made by a patch depends on what is in that particular patch, but it can consist of a combination of the content types described in Section 4.2.
If the content of the patch contains just binary updates, then these updates are made directly to the Oracle home, and only to the Oracle home.
If the content of the patch contains metadata updates it is important to note that it is not only the Oracle home that will be updated. For each metadata type that can be patched (for more information, see Section 4.2), one copy is kept in the Oracle home and another is deployed for use at runtime. A patch containing metadata updates will update both the Oracle home content as well as the runtime, or deployed content.
For example, patch updates to the Oracle BI Presentation Catalog will be copied to the Oracle home location that keeps track of the version of the Oracle BI Presentation Catalog last delivered by Oracle, and will also update the Oracle BI Presentation Catalog that has been deployed for use at runtime.
You can apply a patch to Oracle BI Applications or Oracle BI Applications Configuration Manager using the following procedure:
To apply an Oracle BI Applications patch:
Copy or download the OPatch archive.
For example, you might copy a downloaded archive called 1234567.zip, to the folder /scratch/patchBase.
For information about what is included in the patch:
opatch query 123456789.zip
) to list bugs fixed, and the contents of the patch. To apply changes to the metadata types being patched, you specify values in the apply-patch.properties file for the different metadata types. For example, the location of the runtime Oracle BI Presentation Catalog.
A sample properties file described in Section 4.8, "Sample Patch Properties File", lists each metadata type. You only need to supply values that correspond to the metadata types being patched.
Once the property values are completed, save this to: /scratch/patchBase/apply-patch.properties
Note: If you do not specify this file in the OPatch command, properties that are required will be requested when you are applying the patch.
Back up all metadata.
Metadata must be backed up using your normal backup mechanisms.
Stop the Oracle Business Intelligence components.
Since the patch will make updates to the runtime metadata, you must do this to avoid locking issues; the patch might fail if you do not do this. In addition, not all metadata updates will be visible until Oracle Business Intelligence is restarted.
Use Fusion Middleware Control to stop Oracle Business Intelligence components. For more information, see 'Starting and Stopping Oracle Business Intelligence' in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
Note: If the patch contains RPD updates only, you need stop only the BI Server component. If the patch contains Oracle BI Presentation Catalog updates only, you need stop only the BI Presentation Services component.
Apply the patch using the copy of OPatch in the Oracle home, as follows:
For UNIX use the following syntax:
./opatch apply -pre <path to patch properties file> -opatch_pre_end <path to unzipped patch dir>
For example, if you copied your patch archive to /scratch/patchBase/1234567.zip, and your properties file is in /scratch/patchBase/apply-patch.properties, enter the following command:
./opatch apply -pre /scratch/patchBase/apply-patch.properties -opatch_pre_end /scratch/patchBase/1234567.zip
The task described in Section 4.4.1.1, "How to Apply Changes to JAZN Settings" must be performed using a copy of system-jazn-data.xml that is made before the patch is applied in Step 5 above.
Tip: To determine whether a patch includes changes to JAZN settings, look for a biapps_policystore.xml
file in the patch file, or look in the readme file that accompanies the patch for changes to JAZN settings.
For more information, see 'Uploading and Sharing the Oracle BI Repository' in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
For more information, see 'Starting and Stopping Oracle Business Intelligence' in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
Note: If the patch contained only RPD updates, and you stopped only the BI Server in step 4, then you need only restart the BI Server. If the patch contained only Oracle BI Presentation Catalog updates, and you stopped the BI Presentation Services in step 4, then you need only restart the BI Presentation Services.
Note: This task forms part of Step 6 in Section 4.4.1, "Applying an Oracle BI Applications Patch". After completing this task, continue from Step 7 in Section 4.4.1, "Applying an Oracle BI Applications Patch".
If you are applying an Oracle BI Applications patch that contains changes to JAZN settings (that is, in the biapps_policystore.xml
file), then you must follow the steps below.
Notes:
- the WLST script patchPolicyStore() - see Steps 5, 6, and 7 in the task below.
- Oracle Authorization Policy Manager (Oracle APM). If you use Oracle APM to apply JAZN changes to the production JAZN policy store, then you can omit Steps 5, 6, and 7 in the task below.
How to Apply Changes to JAZN Settings:
For example, you might use the following command:
For example:
Where <truststore> is the location of the truststore. For example: /scratch/aime1/APPTOP/fusionapps/wlserver_10.3/server/lib/fusion_trust.jks.
And where <password> is the truststore password.
Where:
Opatch stores the copy of the biapps_policystore.xml file at:
${ORACLE_HOME}/.patch_storage/<patch_number>_<date>/backup/bifoundation/admin/provisioning/biapps_policystore.xml
For more information, refer to OPSS Patching Tool documentation.
To apply an Oracle BI Applications Configuration Manager patch:
For example, you might copy a downloaded archive called 1234567.zip, to the folder /scratch/patchBase.
Metadata must be backed up using your normal backup mechanisms.
Since the patch will make updates to the runtime metadata you must do this to avoid locking issues; the patch might fail if you do not do this. In addition, not all metadata updates will be visible until Oracle Business Intelligence is restarted.
Use Fusion Middleware Control to stop Oracle Business Intelligence components. For more information, see 'Using Fusion Middleware Control to Start and Stop Oracle Business Intelligence System Components and Java Components' in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
If the patch contains BI Applications Configuration Manager binary updates, you must also stop the Admin server.
Use Oracle WebLogic Server Administration Console to stop the Admin server. For more information, see 'Using Oracle WebLogic Server Administration Console to Start and Stop Java Components ' in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
You apply a BI Applications Configuration Manager patch using the copy of OPatch in the Oracle home.
Note: A data warehouse schema must have already been created using the Repository Creation Utility (RCU).
For UNIX use the following syntax:
./opatch apply -post <hostname:port:servicename/SID> <data_warehouse_schema_username> <data_warehouse_schema_password> -opatch_post_end <path to unzipped patch dir>
For example, if you copied your patch archive to /scratch/patchBase/456789.zip, enter the following command:
./opatch apply -post mycomputer.mycompany.com:1521:mydatabase mydbusername mydbpassword -opatch_post_end /scratch/patchBase/456789.zip
For more information, see 'Using Fusion Middleware Control to Start and Stop Oracle Business Intelligence System Components and Java Components' in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
For more information, see 'Using Oracle WebLogic Server Administration Console to Start and Stop Java Components' in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
During the application of a patch, OPatch will output status results to the command window. If the patch was applied correctly, the last statement will be "OPatch succeeded". If there are any errors, these will be reported and captured in the log file located in <ORACLE_HOME>/cfgtoollogs/opatch/opatch<timestamp>.log.
If you roll back a patch with metadata updates, different steps are required compared to if you roll back a patch with just binary file updates.
To rollback a failed Oracle BI Applications patch:
This step removes the OPatch inventory metadata, allowing the patch to be applied again in the future. However, it does not update the changes made to the metadata (see next step).
./opatch rollback -ID 1234567
Where 1234567 is the patch id.
Only complete this step if the patch contains metadata updates to the Oracle Business Intelligence Repository (RPD), Oracle BI Presentation Catalog, Informatica Repository, or DAC.
In order to get the metadata that was updated by the patch to be as it was before the patch, you need to manually copy the metadata from your backup area (see step 3 of the 'apply' flow above). You must copy this to both the Oracle home and the runtime locations.
Warning: If you roll back, you will lose any customizations made since the patch was applied.
For DAC and Informatica PowerCenter metadata patches, the updates included in the patch will replace metadata in customer repositories. If customers have made any changes to the metadata since the initial install, these changes are lost, and will need to be reapplied after the patch. For this reason there are no conflicts during the patch apply cycle itself for these metadata types.
When you patch the Oracle BI Repository (RPD) and Oracle BI Presentation Catalog, updates are merged into the existing customer runtime repositories. However, there will be cases where the metadata included in the patch cannot be merged without user intervention, that is, a choice needs to be made.
Where such a conflict occurs the patch will fail to apply, and details of the conflicts will be given in the log file. These conflicts need to be resolved first and then the patch re-applied.
In order to resolve the conflicts customers can use the standard Oracle Business Intelligence platform tools appropriate for the metadata type in questions. For example, for conflicts in the Oracle Business Intelligence Repository (RPD) use the Oracle BI Administration Tool, and for conflicts in the Oracle BI Presentation Catalog use the Catalog Manager. Using these tools customers need to resolve the conflicts, re-apply the patch, and then apply their customizations on top of the patched metadata.
Follow the instructions outlined here to resolve conflicts for the Oracle BI Presentation Catalog updates.
For more information, see 'Configuring and Managing the Oracle BI Presentation Catalog' in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
To resolve conflicts for Oracle BI Presentation Catalog updates:
For instructions, see "Archiving and Unarchiving Using Catalog Manager," in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
For more information about copying and pasting objects, see "Copying and Pasting Objects" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
The runtime Oracle BI Presentation Catalog now has its conflicting objects reset to the Oracle home equivalent.
Follow the instructions outlined here to resolve conflicts for Oracle BI Repository (RPD) updates.
For more information, see 'Applying a Repository Patch' in Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).
To resolve conflicts for Oracle BI Repository (RPD) updates:
The location for this file is specified in the patch apply logs.
You can modify the example apply-patch.properties file described in this section, to reference in the OPatch apply command.
The OPatch command must include the full file path, for example if the file is in: /scratch/biapps/mwhome/Oracle_BI1/apply-patch.properties, then you would enter the following opatch command:
./OPatch/opatch apply -pre /scratch/biapps/mwhome/Oracle_BI1/apply-patch.properties -opatch_pre_end 1234567.zip
Note: The latest version of this file is available in the patch archive at custom/ patch.properties.
The contents of the apply-patch.properties file is as follows:
This chapter provides information about moving Oracle BI Applications from one environment to another.
This chapter contains the following sections:
You can move Oracle BI Applications components from one environment to another using different movement scenarios. This chapter focuses on the following scenarios:
In this scenario, the target Oracle BI Applications environment, such as a production environment, does not exist. First, the source environment (development or test) is created, configured, customized, and tested. Then, the target environment is created by moving all the components along with their configurations from the source environment.
For example, suppose you deployed Oracle BI Applications along with Oracle Fusion Applications in a development or test environment. You could move the components and configurations of the deployment into production using the full-movement scenario.
For instructions on moving Oracle BI Applications using the full-movement scenario, see Section 5.2, "Moving Oracle BI Applications Using the Full-Movement Scenario".
In this scenario, a target (production) environment exists but Oracle BI Applications has not been deployed.
For example, suppose you deployed Oracle Fusion Applications, including Oracle Transactional Business Intelligence (which requires an Oracle BI metadata repository and presentation catalog) in a production environment, but you did not deploy Oracle BI Applications. You can deploy Oracle BI Applications in an Oracle Fusion Applications production environment at a later time by using the incremental-movement scenario.
For instructions on deploying Oracle BI Applications into an existing environment, see Section 5.3, "Moving Oracle BI Applications Using the Incremental-Movement Scenario".
When performing a full movement of Oracle BI Applications, you create a target (production) environment by moving all the components and configurations of the source (development or test) environment using movement scripts.
If you are replicating an Oracle BI Applications environment that is part of an Oracle Fusion Applications deployment, you will use the Oracle Fusion Applications movement scripts to move the components and configurations of both Oracle Fusion Applications and Oracle BI Applications at the same time.
For instructions on moving an Oracle BI Applications environment along with an Oracle Fusion Applications environment, see the chapter "Moving Components for Oracle Fusion Applications Across Environments" in Oracle Fusion Applications Administrator's Guide.
After completing the Oracle Fusion Applications movement process, additional tasks are required to complete the Oracle BI Applications move. For instructions on completing the required tasks, see the following sections:
The following preconditions must be met before moving an Oracle BI Applications environment.
Note: Make sure you have installed and set up Informatica PowerCenter Client and Services in the target environment according to the instructions in the section "Install and Set Up Informatica PowerCenter" in Oracle Fusion Middleware Installation and Configuration Guide for Oracle Business Intelligence Applications. The high-level set up requirements include the following:
This section contains instructions for moving the Informatica Repository from one environment to another.
If you are moving Oracle BI Applications in the context of an Oracle Fusion Applications movement, you must perform this additional procedure for moving the Informatica Repository after you perform the steps for moving Oracle Fusion Applications, as described in the chapter "Moving Components for Oracle Fusion Applications Across Environments" in Oracle Fusion Applications Administrator's Guide.
Use the Informatica Backup and Restore functionality to move the Informatica Repository if the Informatica domain in the source and target environments is different from one another. See Section 5.2.2.1 for instructions.
Use the Informatica Copy Repository functionality to move the Informatica Repository if the Informatica domain in the source and target environments is the same. See Section 5.2.2.2 for instructions.
When you back up a repository, the Repository Service saves the repository in a binary file (.rep), including the repository objects, connection information, and code page information. You can restore metadata from a repository binary backup file. When you restore a repository, you must have a database available for the repository. You can restore the repository in a database that has a compatible code page with the original database.
Before you back up a repository and restore a repository into a different domain, verify that users and groups with privileges for the source Repository Service exist in the target domain. The Service Manager periodically synchronizes the list of users and groups in the repository with the users and groups in the domain configuration database. During synchronization, users and groups that do not exist in the target domain are deleted from the repository. You can use infacmd to export users and groups from the source domain and import them into the target domain.
To back up and restore the Informatica Repository:
You can use the Informatica Copy functionality to copy content into a repository when no content exists for the repository and you want to use the content from a different repository. Copying repository content provides a quick way to copy the metadata that you want to use as a basis for a new repository. To copy repository content, you must create the Repository Service for the target repository. When you create the Repository Service, set the creation mode to create the Repository Service without content. If a repository exists in the target database, the copy operation fails. You must back up the existing repository and delete it from the target database before copying the repository content.
To copy the Informatica Repository:
You cannot copy content to a repository that already contains content.
The page displays the options for the Copy Contents From operation.
The source Repository Service and the Repository Service to which you want to add copied content (target) must be in the same domain and must be of the same service version.
The activity log displays the results of the copy operation.
This section contains instructions for moving Oracle BI Applications Configuration Manager components from one environment to another.
If you are moving Oracle BI Applications in the context of an Oracle Fusion Applications movement, you must perform this additional procedure for moving Configuration Manager components after you perform the steps for moving Oracle Fusion Applications, as described in the chapter "Moving Components for Oracle Fusion Applications Across Environments" in Oracle Fusion Applications Administrator's Guide.
To move Oracle BI Applications Configuration Manager components:
The Oracle BI Applications incremental-movement scenario is meant for situations in which you have already deployed a source system, such as Oracle Fusion Applications, in a development, test, or production environment, and you want to later deploy Oracle BI Applications.
This section provides information about first deploying Oracle BI Applications in a pre-production environment, such as a development or test environment, and then moving this deployment to a production environment.
This section contains the following topics:
This section provides information about deploying Oracle BI Applications into an existing pre-production source system environment, such as a development or test environment, for example, if you have an existing Oracle Fusion Applications development environment and you want to deploy Oracle BI Applications.
After you create, configure, customize, and test the Oracle BI Applications deployment in a pre-production environment, you can then move it into a production environment by following the instructions in Section 5.3.2, "Moving Oracle BI Applications Into an Existing Production Environment".
For Oracle Fusion Applications deployments, the Oracle Fusion Applications installation and provisioning process installs the Oracle BI Applications software components in the Business Intelligence Oracle Home but does no further setup. You can deploy Oracle BI Applications at any time. To do so, you must follow the instructions in the chapter "Setting Up Oracle Business Intelligence Applications" in the Oracle Fusion Middleware Installation and Configuration Guide for Oracle Business Intelligence Applications.
After you complete setting up Oracle BI Applications, you then need to perform the functional configuration, using Oracle BI Applications Configuration Manager and Functional Setup Manager. For instructions, see "Functional Configuration for Oracle Business Intelligence Applications" in Oracle Fusion Middleware Installation and Configuration Guide for Oracle Business Intelligence Applications.
After functional configuration is complete, your environment is then ready for loading data into the Oracle Business Analytics Warehouse. The Oracle BI Applications ETL process is accomplished using Oracle Business Intelligence Data Warehouse Administration Console (DAC) and Informatica PowerCenter. For more information about configuring, running, and monitoring ETL processes, see Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Data Warehouse Administration Console.
In addition, after Oracle BI Applications reports and dashboards have been tested and the data validated, the Oracle BI Applications system administrator will need to inform the Fusion Applications administrator to enable the appropriate embedded reports and dashboard (ADR) regions in Fusion Applications. The ADR regions are enabled using Functional Setup Manager for Fusion Applications.
Moving Oracle BI Applications from a pre-production environment into an existing production source system environment, such as an Oracle Fusion Applications environment, involves two major processes:
For an Oracle Fusion Applications deployment, the move plan process that would have been carried out when Oracle Fusion Applications was moved from a pre-production environment into the production environment also would have moved the Oracle BI Applications binary component files. In this process, you set up and configure these binary components.
For instructions, see Section 5.3.2.1, "Setting Up the Oracle BI Applications Binary Components in Production".
If you made changes to any of the metadata components, you need to migrate the customized metadata into the production environment.
In this process, you migrate the customized metadata for the following components:
For instructions on migrating the metadata components, see Section 5.3.2.2, "Moving Oracle BI Applications Metadata Components Into Production".
Follow this procedure to set up the Oracle BI Applications binary components in a production environment when the binary components have been installed but not deployed.
Note: The process for setting up the Oracle BI Applications binary components differs based on the operating system platform. For Windows, the setup process is manual. For UNIX and Linux, the setup process is partially automated by the Warehouse Configuration Deployment Assistant (WCA).
Note: You must complete the steps in the order they are listed.
To set up the binary components in a production environment:
Note: When you run the RCU, deselect the Create/Upgrade Schema option. In this step you will run the Oracle BI Applications RCU in order to create Configuration Manger and Function Setup Manager tables. You will create the data warehouse schema using DAC in a later step.
Note: The WCA is not supported on Windows.
Note: This step is optional. You do not have to install the DAC Client in the production environment.
This section provides instructions for moving metadata components into a production environment. Follow these procedures for any metadata component for which you made metadata changes.
If you did not change the metadata for a particular component, you do not need to perform the move procedure.
This section contains the following topics:
The DAC metadata is stored in a repository database and is used to configure the schema definition, index definition, ETL process names (task names), subject areas, and execution plans.
When you move the DAC metadata from one environment to another, the data in the source environment (for example, a development or test environment) is exported as serialized XML files and then imported into the target environment (for example, a production environment).
To export DAC metadata from the source environment:
Note: The first time you migrate the DAC metadata into a production environment export only the Logical and System data categories (as indicated by check boxes in the Export dialog). For subsequent data migration moves, you should only export the Logical data category. If you export the System data category for subsequent migrations, you will overwrite the configurations.
To import DAC metadata into the target environment:
Note: You can also use a command line to export and import DAC metadata. For instructions, see "DAC Repository Command Line Parameters" in Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Data Warehouse Administration Console. |
Note: If you need to move a subset of DAC metadata from one environment to another, you can use the DAC patching feature, which enables you to export a subset of data as an XML file from one environment and then import the data into another environment. For more information about the DAC patching feature, see "Working With DAC Metadata Patches" in Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Data Warehouse Administration Console. |
Data warehouse schema information for the following objects is stored in the DAC repository:
In a pre-production environment, typically, changes are made to the data warehouse schema in the database using database client utilities, such as SQL Developer or SQL*Plus. Schema changes made in the database should then be imported into the DAC repository. You can then use DAC functionality to create the schema in the production environment.
To use DAC to create the data warehouse schema in a production environment:
For instructions on moving an Informatica Repository from one environment to another, see Section 5.2.2, "Moving the Informatica Repository".
For instructions on moving Configuration Manager and Functional Setup Manager metadata, see Section 5.2.3, "Moving Oracle BI Applications Configuration Manager Components".
This section provides instructions for applying Oracle BI repository customizations in a pre-production environment to an existing Oracle BI repository in a production environment as well as re-applying objects from the default repository that may have been trimmed.
This procedure uses the Oracle BI Administration Tool to perform a three-way merge of the following repositories:
To move the Oracle BI repository into a production environment:
For instructions, see the section "Equalizing Objects," in Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition.
The Define Merge Strategy dialog displays a list of conflicts.
For detailed information about merging repositories using the Oracle BI Administration Tool, see "Merging Repositories," in Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition.
The process for moving the Oracle BI Presentation Catalog involves copying the customized objects in the source catalog and pasting them into the target catalog. For instructions, see the section titled "Copying and Pasting Objects" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
This chapter describes how to configure the Oracle BI Repository for use with Oracle BI Applications.
This chapter contains the following topics:
The time dimension in the Oracle BI Repository for Oracle Business Analytics Warehouse is a standard or canonical time dimension that links to the most important time role in each star schema. The Physical table alias used as a canonical time dimension is W_DAY_D_Common.
If a fact table contains a distinct set of metrics that needs to be reported by different dates, the metadata is organized so that each metric is reported by its causal date.
For example, the Invoice fact table has three metrics called Invoice Amount, Fulfill Amount, and Paid Amount, and each of these metrics need to be reported by the corresponding date—Invoice Date, Fulfill Date, and Payment Date. Additional dates in a fact table that a metric could be queried by are known as Secondary dates. These are available to the end users inside a detailed presentation folder. The detailed presentation folder is typically called the Details folder.
In Table 6-1 each of the metrics reflect the activity related to that event for the entire period, for example, Invoice Amount by Invoice Date, Fulfill Amount by Fulfill date, and Payment Amount by Payment Date.
Table 6-1 Invoice Fact Table Example
Date | Invoice Amount | Fulfill Amount | Payment Amount |
---|---|---|---|
January | 4000 | 5000 | 4500 |
To implement date-specific metrics
The Join to the date dimension is changed to use the date role in question.
The grain of the fact table is the same as the base fact table.
Note: You need to map each metric to one logical table source at the Detail Level. |
The Oracle BI Repository provides a framework to add Period Ago metrics. The Oracle Business Analytics Warehouse is pre-configured with pre-mapped period ago metrics; however, you can map other metrics by using the following procedure.
To set up additional time series metrics
For example, Quarter Ago, Year Ago, and so on.
These aliases need to have the same joins as the base fact table, except for the date join, which you can change in the next step. Setting up this alias is easier to accomplish by copying the base table.
These settings are the same as the base fact table.
Oracle Business Analytics Warehouse is pre-configured to map dimension tables required for analysis. The Physical layer in the Oracle BI Repository provides several other dimension table keys that can be used for certain specific analysis. If you need to set up any of the additional dimensions tables to the Physical layer, perform the following procedure.
To set up additional dimension tables
In Oracle Business Intelligence Applications, the following three hierarchies are supplied out-of-the-box:
To customize Product Category Hierarchies:
The Period Ago Key fields are used to set up the time series metrics like Year Ago, Quarter Ago, and so on. The Period Ago Key fields represent metrics for a prior period, for example, Quarter Ago Revenue, Year Ago Revenue, and so on. Oracle Business Analytics Warehouse is pre-configured with a set of fields in the W_DAY_D table. These fields are:
These fields are used in joins to Oracle Business Analytics Warehouse fact tables to achieve the period ago metrics. The joins in Oracle Business Analytics Warehouse uses the Period Ago fields in the W_DAY_D table.
The Oracle BI Repository is pre-configured with variables that are used for both reporting and internal usage.
Table 6-2 lists some example Oracle BI repository date variables and their descriptions. For a full list of variables, in Oracle BI Administration Tool, choose Manage, then Variables, to display the Variable Manager, and refer to the Description fields for a brief description.
Note: Repository variables with _OTBI and _OBIA should not be directly used. They are only used to switch between Oracle Business Intelligence Applications and Oracle Transactional Business Intelligence sourcing.
Table 6-2 Oracle BI Repository Date Variables
Variable Name | Description |
---|---|
CAL_MONTH_YEAR_AGO | Returns the value of Previous Year Month in the YYYY/MM format. |
CURRENT_BALANCE_DK_AP | Returns the value of the last date key for the available Accounts Payable balance. It is used in Accounts Payable Account Balance Computation. |
CURRENT_BALANCE_DK_AR | Returns the value of the last date key for the available Accounts Receivables balance. It is used in Accounts Receivable Account Balance Computation. |
CURRENT_BALANCE_DK_GL | Returns the value of the last date key for the available General Ledger balance. It is used in General Ledger Account Balance Computation. |
CURRENT_DAY | Returns the value of Current Date in the MM/DD/YYYY format. |
CURRENT_FSCL_MONTH | Returns the value of Current Fiscal Month in the YYYY/MM format. |
CURRENT_FSCL_QUARTER | Returns the value of Current Quarter in the YYYY Q n format. |
CURRENT_FSCL_WEEK | Returns the value of Current Fiscal Week in the YYYY Week nn format. |
CURRENT_FSCL_YEAR | Returns the value of Current Fiscal Year in the FYYYYY format. |
CURRENT_JULIAN_DAY_NUM | Returns the value of Current Julian Date Number. |
CURRENT_MONTH | Returns the value of Current Month in the YYYY/MM format. |
CURRENT_QTR | Returns the value of Current Quarter in YYYY Q n format. |
CURRENT_WEEK | Returns the value of Current Week in the YYYY Week nn format. |
CURRENT_YEAR | Returns the value of Current Year in the YYYY format. |
FSCL_MONTH_YEAR_AGO | Returns the value of Previous Year Fiscal Month in YYYY/MM format. |
FSCL_QTR_YEAR_AGO | Returns the value of Previous Year Quarter in YYYY Q n format. |
NEXT_FSCL_MONTH | Returns the value of Next Fiscal Month in the YYYY / MM format. |
NEXT_FSCL_QUARTER | Returns the value of Next Quarter in the YYYY Q n. |
NEXT_FSCL_WEEK | Returns the value of Next Fiscal Week in the YYYY Weeknn format. |
NEXT_FSCL_YEAR | Returns the value of Next Fiscal Year in the FYYYYY format. |
NEXT_MONTH | Returns the value of Next Month in the YYYY / MM format. |
NEXT_QUARTER | Returns the value of Next Quarter in the YYYY Q n. |
NEXT_WEEK | Returns the value of Next Week in the YYYY Weeknn format. |
NEXT_YEAR | Returns the value of Next Year in the YYYY format. |
PREVIOUS_FSCL_MONTH | Returns the value of Previous Fiscal Month in the YYYY/MM format. |
PREVIOUS_FSCL_QUARTER | Returns the value of Previous Quarter in the YYYY Q n format. |
PREVIOUS_FSCL_WEEK | Returns the value of Previous Fiscal Week in the YYYY Weeknn format. |
PREVIOUS_FSCL_YEAR | Returns the value of Previous Fiscal Year in the FYYYYY format. |
PREVIOUS_MONTH | Returns the value of Previous Month in the YYYY/MM format. |
PREVIOUS_QUARTER | Returns the value of Previous Quarter in the YYYY Q n. |
PREVIOUS_WEEK | Returns the value of Previous Week in the YYYY Weeknn format. |
PREVIOUS_YEAR | Returns the value of Previous Year in the YYYY format. |
REF_JULIAN_DATE | Stores the start date of the Julian calendar and should not be changed. |
REF_JULIAN_DATE_NUM | Stores the Julian number for the start of the Julian calendar and should not be changed. |
TIME_OFFSET | Returns the difference between the current date and a given number of days value. It is primarily used for testing to simulate an earlier or later date. You could set the variable to the number of days you want the preceding date variables to be moved back. |
YEAR_AGO_DAY | Returns the value of year ago date in the mm/dd/yyyy format. |
Oracle Business Analytics Warehouse supports the accumulation of usage tracking statistics. For more information on the Usage Tracking application, see Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) .
Oracle BI Applications consists of various application families, for example, Supplier Performance Analytics, Contact Center Telephony Analytics, General Ledger and Profitability Analytics, and so on. You can purchase these applications at different times. You can customize functionality and incrementally add new applications.
This section describes the procedure for deploying multiple applications. You can repeat the procedure to add applications incrementally.
The figure below shows a single Oracle BI Applications environment. During installation, you will be asked to specify the application module(s) you have licensed, and the installer will extract the metadata corresponding to this module into one repository file. You can then modify the Oracle BI Repository to suit your business needs.
Figure 6-1 Oracle Business Analytics Warehouse Environment
When you purchase another Oracle BI Applications application, you need to extract new metadata for all the modules that you have licensed. Use the merge utility in Oracle BI Administration Tool to perform a three-way merge of the original repository, the modified repository, and the combined repository. For more information on merging repositories, see Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).
The merged repository preserves your modifications from the original Oracle BI Repository and appends the information with the new Oracle BI Repository, as shown in the figure below.
Figure 6-2 Merging with an Oracle BI Repository
You can repeat this merging procedure to add more Oracle BI applications to the Oracle BI Repository.
Copyright © 2010, 2012, Oracle and/or its affiliates. All rights reserved. |