Connectivity and Knowledge Modules Guide for Oracle Data Integrator
11g Release 1 (11.1.1)
E12644-06
November 2011
Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator, 11g Release 1 (11.1.1)
E12644-06
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Laura Hofman Miquel
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This book describes how work with different technologies in Oracle Data Integrator.
This preface contains the following topics:
This document is intended for developers who want to work with Knowledge Modules for their integration processes in Oracle Data Integrator.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following Oracle resources:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This book describes how work with different technologies in Oracle Data Integrator. This book contains the following parts:	
Application Adapters are covered in a separate guide. See the Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator for more information.	
This chapter provides an introduction to the terminology used in the Oracle Data Integrator documentation and describes the basic steps of how to use Knowledge Modules in Oracle Data Integrator.	
This chapter contains the following sections:	
This section defines some common terms that are used in this document and throughout the related documents mentioned in the Preface.	
Knowledge Module	
Knowledge Modules (KMs) are components of Oracle Data Integrator that are used to generate the code to perform specific actions against certain technologies.	
Combined with a connectivity layer such as, for example, JDBC, JMS, or JCA, Knowledge Modules allow running defined tasks against a technology, such as connecting to this technology, extracting data from it, transforming the data, checking it, integrating it, etc.	
Application Adapter	
Oracle Application Adapters for Data Integration provide specific software components for integrating enterprise applications data. Enterprise applications suported by Oracle Data Integrator include Oracle E-Business Suite, Siebel, SAP, etc.	
An adapter is a group of Knowledge Modules. In some cases, this group also contains an attached technology definition for Oracle Data Integrator.	
Application Adapters are covered in a separate guide. See the Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator for more information.	
This guide provides conceptual information and processes for working with knowledge modules and technologies supported in Oracle Data Integrator.	
Each chapter explains how to configure a given technology, set up a project and use the technology-specific knowledge modules to perform integration operations.	
Some knowledge modules are not technology-specific and require a technology that support an industry standard. These knowledge modules are referred to as Generic knowledge modules. For example the knowledge modules listed in Chapter 4, "Generic SQL" and in Chapter 24, "JMS" are designed to work respectively with any ANSI SQL-92 compliant database and any JMS compliant message provider.	
When these generic knowledge module can be used with a technology, the technology chapter will mention it. However, we recommend using technology-specific knowledge modules for better performances and enhanced technology-specific feature coverage.	
Before using a knowledge module, it is recommended to review the knowledge module description in Oracle Data Integrator Studio for usage details, limitations and requirements. In addition, although knowledge modules options are pre-configured with default values to work out of the box, it is also recommended to review these options and their description.	
The chapters in this guide will provide you with the important usage, options, limitation and requirement information attached to the technologies and knowledge modules.	
This part describes how to work with databases, files, and XML files in Oracle Data Integrator.	
Part I contains the following chapters:	
This chapter describes how to work with Oracle Database in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator (ODI) seamlessly integrates data in an Oracle Database. All Oracle Data Integrator features are designed to work best with the Oracle Database engine, including reverse-engineering, changed data capture, data quality, and integration interfaces.	
The Oracle Database concepts map the Oracle Data Integrator concepts as follows: An Oracle Instance corresponds to a data server in Oracle Data Integrator. Within this instance, a schema maps to an Oracle Data Integrator physical schema. A set of related objects within one schema corresponds to a data model, and each table, view or synonym will appear as an ODI datastore, with its attributes, columns and constraints.	
Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Oracle database instance.	
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 2-1 for handling Oracle data. The KMs use Oracle specific features. It is also possible to use the generic SQL KMs with the Oracle Database. See Chapter 4, "Generic SQL" for more information.	
Table 2-1 Oracle Database Knowledge Modules	
Knowledge Module	Description
---	---
RKM Oracle	Reverse-engineers tables, views, columns, primary keys, non unique indexes and foreign keys.
JKM Oracle 10g Consistent (Streams)	Creates the journalizing infrastructure for consistent set journalizing on Oracle 10g tables, using Oracle Streams.
JKM Oracle 11g Consistent (Streams)	Creates the journalizing infrastructure for consistent set journalizing on Oracle 11g tables, using Oracle Streams.
JKM Oracle Consistent	Creates the journalizing infrastructure for consistent set journalizing on Oracle tables using triggers.
JKM Oracle Consistent (Update Date)	Creates the journalizing infrastructure for consistent set journalizing on Oracle tables using triggers based on a Last Update Date column on the source tables.
JKM Oracle Simple	Creates the journalizing infrastructure for simple journalizing on Oracle tables using triggers.
JKM Oracle to Oracle Consistent (OGG)	Creates and manages the ODI CDC framework infrastructure when using Oracle GoldenGate for CDC. See Chapter 29, "Oracle GoldenGate" for more information.
CKM Oracle	Checks data integrity against constraints defined on an Oracle table.
LKM File to Oracle (EXTERNAL TABLE)	Loads data from a file to an Oracle staging area using the EXTERNAL TABLE SQL Command.
LKM File to Oracle (SQLLDR)	Loads data from a file to an Oracle staging area using the SQL*Loader command line utility.
LKM MSSQL to Oracle (BCP SQLLDR)	Loads data from a Microsoft SQL Server to Oracle database (staging area) using the BCP and SQL*Loader utilities.
LKM Oracle BI to Oracle (DBLINK)	Loads data from any Oracle BI physical layer to an Oracle target database using database links. See Chapter 18, "Oracle Business Intelligence Enterprise Edition" for more information.
LKM Oracle to Oracle (DBLINK)	Loads data from an Oracle source database to an Oracle staging area database using database links.
LKM Oracle to Oracle (datapump)	Loads data from an Oracle source database to an Oracle staging area database using external tables in the datapump format.
LKM SQL to Oracle	Loads data from any ANSI SQL-92 source database to an Oracle staging area.
LKM SAP BW to Oracle (SQLLDR)	Loads data from SAP BW systems to an Oracle staging using SQL*Loader utilities. See the Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator for more information.
LKM SAP ERP to Oracle (SQLLDR)	Loads data from SAP ERP systems to an Oracle staging using SQL*Loader utilities. See the Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator for more information.
IKM Oracle AW Incremental Update	Integrates data in an Oracle target table in incremental update mode and is able to refresh a Cube in an Analytical Workspace. See Chapter 23, "Oracle OLAP" for more information.
IKM Oracle Incremental Update	Integrates data in an Oracle target table in incremental update mode.
IKM Oracle Incremental Update (MERGE)	Integrates data in an Oracle target table in incremental update mode, using a MERGE statement.
IKM Oracle Incremental Update (PL SQL)	Integrates data in an Oracle target table in incremental update mode using PL/SQL.
IKM Oracle Multi Table Insert	Integrates data from one source into one or many Oracle target tables in append mode, using a multi-table insert statement (MTI).
IKM Oracle Slowly Changing Dimension	Integrates data in an Oracle target table used as a Type II Slowly Changing Dimension.
IKM Oracle Spatial Incremental Update	Integrates data into an Oracle (9i or above) target table in incremental update mode using the MERGE DML statement. This module supports the SDO_GEOMETRY datatype.
IKM Oracle to Oracle Control Append (DBLINK)	Integrates data from one Oracle instance into an Oracle target table on another Oracle instance in control append mode. This IKM is typically used for ETL configurations: source and target tables are on different Oracle instances and the interface's staging area is set to the logical schema of the source tables or a third schema.
SKM Oracle	Generates data access Web services for Oracle databases. See "Working with Data Services" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for information about how to use this SKM.
Make sure you have read the information in this section before you start using the Oracle Knowledge Modules:	
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.	
The list of supported platforms and versions is available on Oracle Technical Network (OTN):	
http://www.oracle.com/technology/products/oracle-data-integrator/index.html	
.	
Some of the Knowledge Modules for Oracle use specific features of this database. This section lists the requirements related to these features.	
This section describes the requirements that must be met before using the SQL*Loader utility with Oracle database.	
This section describes the requirements that must be met before using external tables in Oracle database.	
This section describes the requirements for using Oracle Streams Journalizing knowledge modules.	
Note: It is recommended to review first the "Changed Data Capture" chapter in the Oracle Database Data Warehousing Guide, which contains the comprehensive list of requirements for Oracle Streams.	
The following requirements must be met before setting up changed data capture using Oracle Streams:	
In order to run this KM without AUTO_CONFIGURATION knowledge module option, the following system privileges must be granted:	
For detailed information on all other prerequisites, see the "Change Data Capture" chapter in the Oracle Database Data Warehousing Guide.	
This section lists the requirements for connecting to an Oracle Database.	
JDBC Driver	
Oracle Data Integrator is installed with a default version of the Oracle Type 4 JDBC driver. This drivers directly uses the TCP/IP network layer and requires no other installed component or configuration.	
It is possible to connect an Oracle Server through the Oracle JDBC OCI Driver, or even using ODBC. For performance reasons, it is recommended to use the Type 4 driver.	
Connection Information	
You must ask the Oracle DBA the following information:	
Setting up the Topology consists of:	
An Oracle data server corresponds to an Oracle Database Instance connected with a specific Oracle user account. This user will have access to several schemas in this instance, corresponding to the physical schemas in Oracle Data Integrator created under the data server.	
Create a data server for the Oracle technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining an Oracle data server:	
oracle.jdbc.driver.OracleDriver	
jdbc:oracle:thin:@<network name or ip address of the Oracle machine>:<port of the Oracle listener (1521)>:<name of the Oracle instance>	
To connect an Oracle RAC instance with the Oracle JDBC thin driver, use an Oracle RAC database URL as shown in the following example:	
Create an Oracle physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.	
Setting up a project using the Oracle Database follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
It is recommended to import the following knowledge modules into your project for getting started with Oracle Database:	
This section contains the following topics:	
Create an Oracle Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Oracle supports both Standard reverse-engineering - which uses only the abilities of the JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve the structure of the objects directly from the Oracle dictionary.	
In most of the cases, consider using the standard JDBC reverse engineering for starting. Standard reverse-engineering with Oracle retrieves tables, views, columns, primary keys, and references.	
Consider switching to customized reverse-engineering for retrieving more metadata. Oracle customized reverse-engineering retrieves the table and view structures, including columns, primary keys, alternate keys, indexes, check constraints, synonyms, and references.	
Standard Reverse-Engineering	
To perform a Standard Reverse-Engineering on Oracle use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Customized Reverse-Engineering	
To perform a Customized Reverse-Engineering on Oracle with a RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields specific to the Oracle technology:	
In the Reverse tab of the Oracle Model, select the KM: RKM Oracle.<project name>	
.	
The ODI Oracle Knowledge Modules support the Changed Data Capture feature. See Chapter "Working with Changed Data Capture" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for details on how to set up journalizing and how to use captured changes.	
Oracle Journalizing Knowledge Modules support Simple Journalizing and Consistent Set Journalizing. The Oracle JKMs use either triggers or Oracle Streams to capture data changes on the source tables.	
Oracle Data Integrator provides the Knowledge Modules listed in Table 2-2 for journalizing Oracle tables.	
Table 2-2 Oracle Journalizing Knowledge Modules	
KM	Notes
---	---
JKM Oracle 10g Consistent (Streams)	Creates the journalizing infrastructure for consistent set journalizing on Oracle 10g tables, using Oracle Streams.
JKM Oracle 11g Consistent (Streams)	Creates the journalizing infrastructure for consistent set journalizing on Oracle 11g tables, using Oracle Streams.
JKM Oracle Consistent	Creates the journalizing infrastructure for consistent set journalizing on Oracle tables using triggers.
JKM Oracle Consistent (Update Date)	Creates the journalizing infrastructure for consistent set journalizing on Oracle tables using triggers based on a Last Update Date column on the source tables.
JKM Oracle Simple	Creates the journalizing infrastructure for simple journalizing on Oracle tables using triggers.
Note that it is also possible to use Oracle GoldenGate to consume changed records from an Oracle database. See Chapter 29, "Oracle GoldenGate" for more information.	
Using the Streams JKMs	
The Streams KMs work with the default values. The following are the recommended settings:	
Low Activity	
. Leave this option if your database is having a low transactional activity. Set this option to Standalone	
for installation on a standalone database such as a development database or on a laptop.	
Set this option to High Activity	
if the database is intensively used for transactional processing.	
CDC	
. The value entered is used to generate object names that can be shared across multiple CDC sets journalized with this JKM. If the value of this option is CDC, the naming rules listed in Table 2-3 will be applied. Note that this option can only take upper case ASCII characters and must not exceed 15 characters.	
By default, this option is set to Yes in order to provide an easier use of this complex KM out of the box	
Using the Update Date JKM	
This JKM assumes that a column containing the last update date exists in all the journalized tables. This column name is provided in the UPDATE_DATE_COL_NAME knowledge module option.	
Oracle Data Integrator provides the CKM Oracle for checking data integrity against constraints defined on an Oracle table. See "Set up Flow Control and Post-Integration Control" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for details.	
Oracle Data Integrator provides the Knowledge Module listed in Table 2-4 to perform a check on Oracle. It is also possible to use the generic SQL KMs. See Chapter 4, "Generic SQL" for more information.	
You can use Oracle as a source, staging area or a target of an integration interface. It is also possible to create ETL-style integration interfaces based on the Oracle technology.	
The KM choice for an interface or a check determines the abilities and performance of this interface or check. The recommendations in this section help in the selection of the KM for different situations concerning an Oracle data server.	
Oracle can be used as a source, target or staging area of an interface. The LKM choice in the Interface Flow tab to load data between Oracle and another type of data server is essential for the performance of an interface.	
The following KMs implement optimized methods for loading data from an Oracle database to a target or staging area database. In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to the other technology involved.	
Target or Staging Area Technology	KM
---	---
Oracle	LKM Oracle to Oracle (dblink)
Oracle	LKM Oracle to Oracle (datapump)
The following KMs implement optimized methods for loading data from a source or staging area into an Oracle database. In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to the other technology involved.	
Source or Staging Area Technology	KM
---	---
Oracle	LKM Oracle to Oracle (dblink)
SAP BW	LKM SAP BW to Oracle (SQLLDR)
SAP ERP	LKM SAP ERP to Oracle (SQLLDR)
Files	LKM File to Oracle (EXTERNAL TABLE)
Files	LKM File to Oracle (SQLLDR)
Oracle	LKM Oracle to Oracle (datapump)
Oracle BI	LKM Oracle BI to Oracle (DBLINK)
MSSQL	LKM MSSQL to Oracle (BCP/SQLLDR)
All	LKM SQL to Oracle
The data integration strategies in Oracle are numerous and cover several modes. The IKM choice in the Interface Flow tab determines the performances and possibilities for integrating.	
The following KMs implement optimized methods for integrating data into an Oracle target. In addition to these KMs, you can also use the Generic SQL KMs.	
Mode	KM
---	---
Update	IKM Oracle Incremental Update
Update	IKM Oracle Spatial Incremental Update
Update	IKM Oracle Incremental Update (MERGE)
Update	IKM Oracle Incremental Update (PL SQL)
Specific	IKM Oracle Slowly Changing Dimension
Specific	IKM Oracle Multi Table Insert
Append	IKM Oracle to Oracle Control Append (DBLINK)
Using Slowly Changing Dimensions	
For using slowly changing dimensions, make sure to set the Slowly Changing Dimension value for each column of the Target datastore. This value is used by the IKM Oracle Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or Insert Column, Current Record Flag and Start/End Timestamps columns.	
Using Multi Table Insert	
The IKM Oracle Multi Table Insert is used to integrate data from one source into one to many Oracle target tables with a multi-table insert statement. This IKM must be used in integration interfaces that are sequenced in a Package. This Package must meet the following conditions:	
YES	
. This first interface defines the structure of the SELECT clause of the multi-table insert statement (that is the source flow).	
YES	
. YES	
in order to run the multi-table insert statement. true	
on any of the interfaces. If large amounts of data are appended, consider to set the KM option OPTIMIZER_HINT to /*+ APPEND *	
/.	
Using Spatial Datatypes	
To perform incremental update operations on Oracle Spatial datatypes, you need to declare the SDO_GEOMETRY datatype in the Topology and use the IKM Oracle Spatial Incremental Update. When comparing two columns of SDO_GEOMETREY datatype, the GEOMETRY_TOLERANCE option is used to define the error margin inside which the geometries are considered to be equal.See the Oracle Spatial User's Guide and Reference for more information.	
See "Working with Integration Interface" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for generic information on how to design integration interfaces. This section describes how to design an ETL-style interface where the staging area is Oracle database or any ANSI-92 compliant database and the target on Oracle database.	
In an ETL-style interface, ODI processes the data in a staging area, which is different from the target. Oracle Data Integrator provides two ways for loading the data from an Oracle staging area to an Oracle target:	
Depending on the KM strategy that is used, flow and static control are supported.	
Using a Multi-connection IKM	
A multi-connection IKM allows updating a target where the staging area and sources are on different data servers.	
Oracle Data Integrator provides the following multi-connection IKM for handling Oracle data: IKM Oracle to Oracle Control Append (DBLINK). You can also use the generic SQL multi-connection IKMs. See Chapter 4, "Generic SQL" for more information.	
See Table 2-5 for more information on when to use a multi-connection IKM.	
To use a multi-connection IKM in an ETL-style interface:	
In the Property Inspector, select an ETL multi-connection IKM from the IKM Selector list to load the data from the staging area to the target. See Table 2-5 to determine the IKM you can use.	
Note the following when setting the KM options:	
/*+ APPEND */	
. true	
to create automatically db link on the target schema. If AUTO_CREATE_DB_LINK is set to false	
(default), the link with this name should exist in the target schema. Using an LKM and a mono-connection IKM	
If there is no dedicated multi-connection IKM, use a standard exporting LKM in combination with a standard mono-connection IKM. The exporting LKM is used to load the flow table from the staging area to the target. The mono-connection IKM is used to integrate the data flow into the target table.	
Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a source of an ETL-style interface. Staging area and the target are Oracle.	
See Table 2-5 for more information on when to use the combination of a standard exporting LKM and a mono-connection IKM.	
To use an LKM and a mono-connection IKM in an ETL-style interface:	
In the Property Inspector, select a standard mono-connection IKM from the IKM Selector list to update the target. See Table 2-5 to determine the IKM you can use.	
Table 2-5 KM Guidelines for ETL-Style Interfaces with Oracle Data	
Source	Staging Area
---	---
ANSI SQL-92 standard compliant	Oracle
Supports flow and static control.	
ANSI SQL-92 standard compliant	Oracle or any ANSI SQL-92 standard compliant database
Oracle	Oracle
Oracle	Oracle
Oracle	Oracle
This section provides information on how to troubleshoot problems that you might encounter when using Oracle Knowledge Modules. It contains the following topics:	
Errors appear often in Oracle Data Integrator in the following way:	
the java.sql.SQLExceptioncode	
simply indicates that a query was made to the database through the JDBC driver, which has returned an error. This error is frequently a database or driver error, and must be interpreted in this direction.	
Only the part of text in bold must first be taken in account. It must be searched in the Oracle documentation. If its contains an error code specific to Oracle, like here (in red), the error can be immediately identified.	
If such an error is identified in the execution log, it is necessary to analyze the SQL code send to the database to find the source of the error. The code is displayed in the description tab of the erroneous task.	
This section describes common problems and solutions.	
ORA-12154 TNS:could not resolve service name	
TNS alias resolution. This problem may occur when using the OCI driver, or a KM using database links. Check the configuration of the TNS aliases on the machines.	
ORA-02019 connection description for remote database not found	
You use a KM using non existing database links. Check the KM options for creating the database links.	
ORA-00900 invalid SQL statement	
ORA-00923 FROM Keyword not found where expected	
The code generated by the interface, or typed in a procedure is invalid for Oracle. This is usually related to an input error in the mapping, filter of join. The typical case is a missing quote or an unclosed bracket.	
A frequent cause is also the call made to a non SQL syntax, like the call to an Oracle stored procedure using the syntax	
The valid SQL call for a stored procedure is:	
The syntax EXECUTE SCHEMA.PACKAGE.PROC(PARAM1, PARAM2)	
is specific to SQL*PLUS, and do not work with JDBC.	
ORA-00904 invalid column name	
Keying error in a mapping/join/filter. A string which is not a column name is interpreted as a column name, or a column name is misspelled.	
This error may also appear when accessing an error table associated to a datastore with a recently modified structure. It is necessary to impact in the error table the modification, or drop the error tables and let Oracle Data Integrator recreate it in the next execution.	
ORA-00903 invalid table name	
The table used (source or target) does not exist in the Oracle schema. Check the mapping logical/physical schema for the context, and check that the table physically exists on the schema accessed for this context.	
ORA-00972 Identifier is too Long	
There is a limit in the object identifier in Oracle (usually 30 characters). When going over this limit, this error appears. A table created during the execution of the interface went over this limit. and caused this error (see the execution log for more details).	
Check in the topology for the oracle technology, that the maximum lengths for the object names (tables and columns) correspond to your Oracle configuration.	
ORA-01790 expression must have same datatype as corresponding expression	
You are trying to connect two different values that can not be implicitly converted (in a mapping, a join...). Use the explicit conversion functions on these values.	
This chapter describes how to work with Files in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator supports fixed or delimited files containing ASCII or EBCDIC data.	
The File technology concepts map the Oracle Data Integrator concepts as follows: A File server corresponds to an Oracle Data Integrator data server. In this File server, a directory containing files corresponds to a physical schema. A group of flat files within a directory corresponds to an Oracle Data Integrator model, in which each file corresponds to a datastore. The fields in the files correspond to the datastore columns.	
Oracle Data Integrator provides a built-in driver for Files and knowledge modules for integrating Files using this driver, using the metadata declared in the File data model and in the topology.	
Most technologies also have specific features for interacting with flat files, such as database loaders, utilities, and external tables. Oracle Data Integrator can also benefit from these features by using technology-specific Knowledge Modules. In terms of performance, it is most of the time recommended to use database utilities when handling flat files.	
Note that the File technology concerns flat files (fixed and delimited). XML files are covered in Chapter 5, "XML Files".	
Oracle Data Integrator provides the knowledge modules (KM) listed in this section for handling File data using the File driver.	
Note that the KMs listed in Table 3-1 are generic and can be used with any technology. Technology-specific KMs, using features such as loaders or external tables, are listed in the corresponding technology chapter.	
Table 3-1 Knowledge Modules to read from a File	
Knowledge Module	Description
---	---
LKM File to SQL	Loads data from an ASCII or EBCDIC File to any ANSI SQL-92 compliant database used as a staging area.
IKM SQL to File Append	Integrates data in a target file from any ANSI SQL-92 compliant staging area in replace mode.
RKM File (FROM EXCEL)	Retrieves file metadata from a Microsoft Excel spreadsheet. Consider using this KM if you plan to maintain the definition of your files structure in a dedicated Excel spreadsheet.
Make sure you have read the information in this section before you start working with the File technology:	
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.	
The list of supported platforms and versions is available on Oracle Technical Network (OTN):	
http://www.oracle.com/technology/products/oracle-data-integrator/index.html	
.	
Some of the knowledge modules for File data use specific features of the database. This section lists the requirements related to these features.	
Database Utilities	
Most database technologies have their own utilities for interacting with flat files. All require that the database client software is accessible from the Agent that runs the interface that is using the utility. Some examples are:	
You can benefit from these utilities in Oracle Data Integrator by using the technology-specific knowledge modules. See the technology-specific chapter in this guide for more information about the knowledge modules and the requirements for using the database utilities.	
This section lists the requirements for connecting to flat files.	
JDBC Driver	
Oracle Data Integrator includes a built-in driver for flat files. This driver is installed with Oracle Data Integrator and does not require additional configuration.	
Setting up the topology consists in:	
A File data server is a container for a set of file folders (each file folder corresponding to a physical schema).	
Oracle Data Integrator provides the default FILE_GENERIC data server. This data server suits most of the needs. In most cases, it is not required to create a File data server, and you only need to create a physical schema under the FILE_GENERIC data server.	
Create a data server for the File technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a File data server:	
com.sunopsis.jdbc.driver.file.FileDriver	
jdbc:snps:dbfile?<property=value>&<property=value>&...	
You can use in the URL the properties listed in Table 3-2.	
Table 3-2 JDBC File Driver Properties	
Property	Value
---	---
ENCODING	
File encoding. The list of supported encoding is available at	
TRUNC_FIXED_STRINGS	
Truncates strings to the field size for fixed files. Default value is	
TRUNC_DEL_STRINGS	
Truncates strings to the field size for delimited files. Default value is	
OPT	
Optimizes file access on multiprocessor machines for better performance. Using this option on single processor machines may actually decrease performance. Default value is	
JDBC URL example:	
jdbc:snps:dbfile?ENCODING=ISO8859_1&TRUNC_FIXED_STRINGS=FALSE&OPT=TRUE	
Create a File physical schema using the standard procedure, as described in "Creating a physical schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
In your physical schema, you must set a pair of directories:	
Notes:	
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.	
Setting up a project using the File database follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
It is recommended to import the following knowledge modules into your project for getting started:	
In addition to these knowledge modules, you can also import file knowledge modules specific to the other technologies involved in your product.	
This section contains the following topics:	
An File model is a set of datastores, corresponding to files stored in a directory. A model is always based on a logical schema. In a given context, the logical schema corresponds to one physical schema. The data schema of this physical schema is the directory containing all the files (eventually in sub-directories) described in the model.	
Create a File model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Oracle Data Integrator provides specific methods for reverse-engineering files. File database supports four types of reverse-engineering:	
Note: The built-in file driver uses metadata from the Oracle Data Integrator models (field data type or length, number of header rows, etc.). Driver-specific tags are generated by Oracle Data Integrator and passed to the driver along with regular SQL commands. These tags control how the driver reads or writes the file.Similarly, when Oracle Data Integrator uses database loaders and utilities, it uses the model metadata to control these loaders and utilities. It is important to pay close attention to the file definition after a reverse-engineering process, as discrepancy between the file definition and file content is a source of issues at run-time.	
To perform a delimited file reverse-engineering:	
Oracle Data Integrator provides a wizard to graphically define the columns of a fixed file.	
To reverse-engineer a fixed file using the wizard:	
COBOL Copybook reverse-engineering allows you to retrieve a legacy file structure from its description contained in a COBOL Copybook file.	
To reverse-engineer a fixed file using a COBOL Copybook:	
EBCDIC	
ASCII	
): Copybook file format EBCDIC	
ASCII	
): Data file format The columns described in the Copybook are reverse-engineered and appear in the column list.	
Note: If a field has a data type declared in the Copybook with no corresponding datatype in Oracle Data Integrator File technology, then this column will appear with no data type.	
In this reverse-engineering method, Oracle Data Integrator uses a Microsoft Excel spreadsheet that contains the description of the group of files. This file has a specific format. A sample file (file_repository.xls	
) is provided in the Oracle Data Integrator demo in the /demo/excel	
sub-directory.	
The following steps assume that you have modified this file with the description of the structure of your flat files.	
To perform a customized reverse-engineering, perform the following steps:	
Create an ODBC Datasource for the Excel Spreadsheet	
ODI_EXCEL_FILE_REPO	
and select the file /demo/excel/file_repository.xls	
. Define the Data Server, Physical and Logical Schema for the Microsoft Excel Spreadsheet	
sun.jdbc.odbc.JdbcOdbcDriver	
jdbc:odbc:ODI_EXCEL_FILE_REPO	
EXCEL_FILE_REPOSITORY	
. This name is mandatory. Run the customized reverse-engineering	
Note:	
You can use a file as a source or a target of an integration interface, but NOT as a staging area.	
The KM choice for an interface or a check determines the abilities and performances of this interface or check. The recommendations below help in the selection of the KM for different situations concerning a File data server.	
Files can be used as a source of an interface. The LKM choice in the Interface Flow tab to load a File to the staging area is essential for the interface performance.	
The LKM File to SQL uses the built-in file driver for loading data from a File database to a staging area. In addition to this KM, you can also use KMs that are specific to the technology of the staging area or target. Such KMs support technology-specific optimizations and use methods such as loaders or external tables.	
This knowledge module, as well as other KMs relying on the built-in driver, support the following two features attached to the driver:	
Erroneous Records Handling	
Oracle Data Integrator built-in driver provides error handling at column level for the File technology. When loading a File, Oracle Data Integrator performs several controls. One of them verifies if the data in the file is consistent with the datastore definition. If one value from the row is inconsistent with the column description, the On Error option - on the Control tab of the Column Editor - defines the action to perform. The On Error option can take the following values:	
The .BAD and .ERROR files are located in the same directory as the file being read and are named after this file, with a .BAD and .ERROR extension.	
Multi-Record Files Support	
Oracle Data Integrator is able to handle files that contain multiple record formats. For example, a file may contain records representing orders (these records have 5 columns) and other records representing order lines (these records having 8 columns with different datatypes).	
The approach in Oracle Data Integrator consists in considering each specific record format as a different datastore.	
Example 3-1 Multi Record File	
This example uses the multi record file orders.txt	
. It contains two different record types: orders and order lines.	
Order records have the following format:	
REC_CODE,ORDER_ID,CUSTOMER_ID,ORDER_DATE	
Order lines records have the following format	
REC_CODE,ORDER_ID,LINE_ID,PRODUCT_ID,QTY	
Order records are identified by REC_CODE=ORD	
Order lines are identified by REC_CODE=LIN	
To handle multi record files as a source interface of an integration interface:	
For Example 3-1 create two datastores.	
For Example 3-1 you can use ORDERS	
and ORDER_LINES	
as the name of your datastores. Enter orders.txt	
in the Resource Name field for both datastores.	
In the Column Editor, assign a record code for each record type in the Record Codes field.	
In Example 3-1, enter ORD	
in the Record Codes field of the CODE_REC column of the ORDERS datastore and enter LIN	
in the Record Codes field of the CODE_REC column of the ORDER_LINES datastore.	
With such definition, when reading data from the ORDERS datastore, the file driver will filter only those of the records where the first column contains the value ORD. The same applies to the ORDER_LINES datastore (only the records with the first column containing the value LIN will be returned).	
Files can be used as a target of an interface. The data integration strategies in Files concern loading from the staging area to Files. The IKM choice in the Interface Flow tab determines the performances and possibilities for integrating.	
The IKM SQL to File Append uses the file driver for integrating data into a Files target from a staging area in truncate-insert mode.	
This KM has the following options:	
In addition to this KM, you can also use IKMs that are specific to the technology of the staging area. Such KMs support technology-specific optimizations and use methods such as loaders or external tables.	
This chapter describes how to work with technologies supporting the ANSI SQL-92 syntax in Oracle Data Integrator.	
Note: This is a generic chapter. The information described in this chapter can be applied to technologies supporting the ANSI SQL-92 syntax, including Oracle, Microsoft SQL Server, Sybase ASE, IBM DB2, Teradata, PostgreSQL, MySQL, Derby and so forth.Some of the ANSI SQL-92 compliant technologies are covered in a separate chapter in this guide. Refer to the dedicated technology chapter for specific information on how to leverage the ODI optimizations and database utilities of the given technology.	
This chapter includes the following sections:	
Oracle Data Integrator supports ANSI SQL-92 standard compliant technologies.	
The mapping of the concepts that are used in ANSI SQL-92 standard compliant technologies and the Oracle Data Integrator concepts are as follows: a data server in Oracle Data Integrator corresponds to a data processing resource that stores and serves data in the form of tables. Depending on the technology, this resource can be named for example, database, instance, server and so forth. Within this resource, a sub-division maps to an Oracle Data Integrator physical schema. This sub-division can be named schema, database, catalog, library and so forth. A set of related objects within one schema corresponds to a data model, and each table, view or synonym will appear as an ODI datastore, with its attributes, columns, and constraints	
Oracle Data Integrator provides a wide range of Knowledge Modules for handling data stored in ANSI SQL-92 standard compliant technologies. The Knowledge Modules listed in Table 4-1 are generic SQL Knowledge Modules and apply to the most popular ANSI SQL-92 standard compliant databases.	
Oracle Data Integrator also provides specific Knowledge Modules for some particular databases to leverage the specific utilities. Technology-specific KMs, using features such as loaders or external tables, are listed in the corresponding technology chapter.	
Table 4-1 Generic SQL Knowledge Modules	
Knowledge Module	Description
---	---
CKM SQL	Checks data integrity against constraints defined on a Datastore. Rejects invalid records in the error table created dynamically. Can be used for static controls as well as for flow controls. Consider using this KM if you plan to check data integrity on an ANSI SQL-92 compliant database. Use specific CKMs instead if available for your database.
IKM SQL Control Append	Integrates data in an ANSI SQL-92 compliant target table in replace/append mode. When flow data needs to be checked using a CKM, this IKM creates a temporary staging table before invoking the CKM. Consider using this IKM if you plan to load your SQL compliant target table in replace mode, with or without data integrity check. To use this IKM, the staging area must be on the same data server as the target.
IKM SQL Incremental Update	Integrates data in an ANSI SQL-92 compliant target table in incremental update mode. This KM creates a temporary staging table to stage the data flow. It then compares its content to the target table to idetinfythe records to insert and the records to update. It also allows performing data integrity check by invoking the CKM. This KM is therefore not recommended for large volumes of data. Consider using this KM if you plan to load your ANSI SQL-92 compliant target table to insert missing records and to update existing ones. Use technology-specific incremental update IKMs whenever possible as they are more optimized for performance. To use this IKM, the staging area must be on the same data server as the target.
IKM SQL to File Append	Integrates data in a target file from an ANSI SQL-92 compliant staging area in replace mode. Consider using this IKM if you plan to transform and export data to a target file. If your source datastores are located on the same data server, we recommend using this data server as staging area to avoid extra loading phases (LKMs) To use this IKM, the staging area must be different from the target.
IKM SQL to SQL Control Append	Integrates data into a ANSI-SQL92 target database from any ANSI-SQL92 compliant staging area. This IKM is typically used for ETL configurations: source and target tables are on different databases and the interface's staging area is set to the logical schema of the source tables or a third schema.
IKM SQL to SQL Incremental Update	Integrates data from any AINSI-SQL92 compliant database into any any AINSI-SQL92 compliant database target table in incremental update mode. This IKM is typically used for ETL configurations: source and target tables are on different databases and the interface's staging area is set to the logical schema of the source tables or a third schema.
LKM File to SQL	Loads data from an ASCII or EBCDIC File to an ANSI SQL-92 compliant database used as a staging area. This LKM uses the Agent to read selected data from the source file and write the result in the staging temporary table created dynamically. Consider using this LKM if one of your source datastores is an ASCII or EBCDIC file. Use technology-specific LKMs for your target staging area whenever possible as they are more optimized for performance. For example, if you are loading to an Oracle database, use the LKM File to Oracle (SQLLDR) or the LKM File to Oracle (EXTERNAL TABLE) instead.
LKM SQL to SQL	Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92 compliant staging area. This LKM uses the Agent to read selected data from the source database and write the result into the staging temporary table created dynamically. Consider using this LKM if your source datastores are located on a SQL compliant database different from your staging area. Use technology-specific LKMs for your source and target staging area whenever possible as they are more optimized for performance. For example, if you are loading from an Oracle source server to an Oracle staging area, use the LKM Oracle to Oracle (dblink) instead.
LKM SQL to SQL (row by row)	Loads data from any ISO-92 database to any ISO-92 compliant target database. This LKM uses a Jython script to read selected data from the database and write the result into the target temporary table, which is created dynamically. It loads data from a staging area to a target and indicates the state of each processed row. The following options are used for the logging mechanism:
This Knowledge Module is NOT RECOMMENDED when using LARGE VOLUMES. Other specific modules using Bulk utilities (SQL*LOADER, BULK INSERT...) or direct links (DBLINKS, Linked Servers...) are usually more efficient.	
LKM SQL to SQL (JYTHON)	Loads data from an ANSI SQL-92 compliant database to an ANSI SQL-92 compliant staging area. This LKM uses Jython scripting to read selected data from the source database and write the result into the staging temporary table created dynamically. This LKM allows you to modify the default JDBC data type binding between the source database and the target staging area by editing the underlying Jython code provided. Consider using this LKM if your source datastores are located on an ANSI SQL-92 compliant database different from your staging area and if you plan to specify your own data type binding method. Use technology-specific LKMs for your source and target staging area whenever possible as they are more optimized for performance. For example, if you are loading from an Oracle source server to an Oracle staging area, use the LKM Oracle to Oracle (dblink) instead.
RKM SQL (JYTHON)	Retrieves JDBC metadata for tables, views, system tables and columns from an ANSI SQL-92 compliant database. This RKM may be used to specify your own strategy to convert JDBC metadata into Oracle Data Integrator metadata. Consider using this RKM if you encounter problems with the standard JDBC reverse-engineering process due to some specificities of your JDBC driver. This RKM allows you to edit the underlying Jython code to make it match the specificities of your JDBC driver.
SKM SQL	Generates data access Web services for ANSI SQL-92 compliant databases. Data access services include data manipulation operations such as adding, removing, updating or filtering records as well as changed data capture operations such as retrieving changed data. Data manipulation operations are subject to integrity check as defined by the constraints of your datastores. Consider using this SKM if you plan to generate and deploy data manipulation or changed data capture web services to your Service Oriented Architecture infrastructure. Use specific SKMs instead if available for your database
Make sure you have read the information in this section before you start using the generic SQL Knowledge Modules:	
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.	
The list of supported platforms and versions is available on Oracle Technical Network (OTN):	
http://www.oracle.com/technology/products/oracle-data-integrator/index.html	
.	
See the Technology Specific Requirements section of the specific technology chapter for more information.	
If your technology does not have a dedicated chapter in this guide, see the documentation of your technology for any technology-specific requirements.	
See the Connectivity Requirements section of the specific technology chapter for more information.	
The Java Database Connectivity (JDBC) is the standard for connecting to a database and other data sources. If your technology does not have a dedicated chapter in this guide, see the documentation of your technology for the JDBC configuration information, including the required driver files, the driver name, and the JDBC URL format.	
Setting up the Topology consists in:	
Create a data server under the ANSI SQL-92 compliant technology listed in the Physical Architecture accordion using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
If your technology has a dedicated chapter in this guide, see this chapter for more information. For other technologies, see the documentation of your technology for the JDBC driver name and JDBC URL format.	
Create a Physical Schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
If your technology has a dedicated chapter in this guide, see this chapter for more information.	
Setting up a Project using an ANSI SQL-92 compliant database follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
The recommended knowledge modules to import into your project for getting started depend on the corresponding technology. If your technology has a dedicated chapter in this guide, see this chapter for more information.	
This section contains the following topics:	
Create a data model based on the ANSI SQL-92 compliant technology using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
If your technology has a dedicated chapter in this guide, see this chapter for more information.	
ANSI SQL-92 standard compliant technologies support both types of reverse-engineering, the Standard reverse-engineering, which uses only the abilities of the JDBC driver, and the Customized reverse-engineering, which uses a RKM which provides logging features.	
In most of the cases, consider using the standard JDBC reverse engineering instead of the RKM SQL (Jython). However, you can use this RKM as a starter if you plan to enhance it by adding your own metadata reverse-engineering behavior.	
Standard Reverse-Engineering	
To perform a Standard Reverse- Engineering on ANSI SQL-92 technologies use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
If your technology has a dedicated chapter in this guide, see this chapter for more information.	
Customized Reverse-Engineering	
To perform a Customized Reverse-Engineering on ANSI SQL-92 technologies with a RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields specific to the usage of the RKM SQL (Jython):	
This RKM provides two logging options:	
Oracle Data Integrator does not provide journalizing Knowledge Modules for ANSI SQL-92 compliant technologies.	
Oracle Data Integrator provides the CKM SQL for checking data integrity against constraints defined on an ANSI SQL-92 compliant table. See "Set up Flow Control and Post-Integration Control" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for details.	
You can use ANSI SQL-92 compliant technologies as a source, staging area or a target of an integration interface. It is also possible to create ETL-style integration interfaces based on an ANSI SQL-92 compliant technology.	
The KM choice for an interface or a check determines the abilities and performances of this interface or check. The recommendations below help in the selection of the KM for different situations concerning a data server based on an ANSI SQL-92 compliant technology.	
ANSI SQL-92 compliant technologies can be used as a source, target or staging area of an interface. The LKM choice in the Interface Flow tab to load data between an ANSI SQL-92 compliant technology and another type of data server is essential for the performance of an interface.	
The generic KMs that are listed in Table 4-2 implement methods for loading data from an ANSI SQL-92 compliant database to a target or staging area database. In addition to these KMS, Oracle Data Integrator provides KMs specific to the target or staging area database. If your technology has a dedicated chapter in this guide, see this chapter for more information.	
Table 4-2 KMs to Load from an ANSI SQL-92 Compliant Technology	
Source or Staging Area	KM
---	---
ANSI SQL-92 compliant technology	LKM SQL to SQL
ANSI SQL-92 compliant technology	LMK SQL to SQL (Jython)
ANSI SQL-92 compliant technology	LMK SQL to SQL (row by row)
The generic KMs that are listed in Table 4-3 implement methods for loading data from a source or staging area into an ANSI SQL-92 compliant database. In addition to these KMs, Oracle Data Integrator provides KMs specific to the source or staging area database. If your technology has a dedicated chapter in this guide, see this chapter for more information.	
Table 4-3 KMs to Load to an ANSI SQL-92 Compliant Technology	
Source or Staging Area	KM
---	---
File	LKM File to SQL
ANSI SQL-92 compliant technology	LKM SQL to SQL
ANSI SQL-92 compliant technology	LMK SQL to SQL (Jython)
ANSI SQL-92 compliant technology	LMK SQL to SQL (row by row)
An ANSI SQL-92 compliant technology can be used as a target of an interface. The IKM choice in the Interface Flow tab determines the performance and possibilities for integrating.	
The KMs listed in Table 4-4 implement methods for integrating data into an ANSI SQL-92 compliant target. In addition to these KMs, Oracle Data Integrator provides KMs specific to the source or staging area database. See the corresponding technology chapter for more information.	
Table 4-4 KMs to Integrate Data in an ANSI SQL-92 Compliant Technology	
Source or Staging Area	KM
---	---
ANSI SQL-92 compliant technology	IKM SQL Control Append
ANSI SQL-92 compliant technology	IKM SQL Incremental Update
ANSI SQL-92 compliant technology	IKM SQL to File Append
ANSI SQL-92 compliant technology	IKM SQL to SQL Incremental Update
ANSI SQL-92 compliant technology	IKM SQL to SQL Control Append
See "Working with Integration Interface" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for generic information on how to design integration interfaces. This section describes how to design an ETL-style interface where the staging area and target are ANSI SQL-92 compliant.	
In an ETL-style interface, ODI processes the data in a staging area, which is different from the target. Oracle Data Integrator provides two ways for loading the data from an ANSI SQL-92 compliant staging area to an ANSI SQL-92 compliant target:	
Depending on the KM strategy that is used, flow and static control are supported.	
Using a Multi-connection IKM	
A multi-connection IKM allows updating a target where the staging area and sources are on different data servers.	
Oracle Data Integrator provides the following multi-connection IKMs for ANSI SQL-92 compliant technologies: IKM SQL to SQL Incremental Update and IKM SQL to SQL Control Append.	
See Table 4-5 for more information on when to use a multi-connection IKM.	
To use a multi-connection IKM in an ETL-style interface:	
In the Property Inspector, select an ETL multi-connection IKM from the IKM Selector list to load the data from the staging area to the target. See Table 4-5 to determine the IKM you can use.	
Note the following when setting the KM options:	
FLOW_CONTROL=false	
and FLOW_TABLE_LOCATION=STAGING	
. Please note that this will lead to row-by-row processing and therefore significantly lower performance.	
true	
, select a CKM in the Controls tab. Note that if FLOW_CONTROL is set to true	
, the flow table is created on the target, regardless of the value of FLOW_TABLE_LOCATION. Value	Description
---	---
TARGET	Objects are created on the target.
STAGING	Objects are created only on the staging area, not on the target.
NONE	No objects are created on staging area nor target.
Using a LKM and a mono-connection IKM	
If there is no dedicated multi-connection IKM, use a standard exporting LKM in combination with a standard mono-connection IKM. The exporting LKM is used to load the flow table from the staging area to the target. The mono-connection IKM is used to integrate the data flow into the target table.	
Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a source, staging area, and target of an ETL-style interface.	
See Table 4-5 for more information on when to use the combionation of a standard LKM and a mono-connection IKM.	
To use an LKM and a mono-connection IKM in an ETL-style interface:	
In the Property Inspector, select a standard mono-connection IKM from the IKM Selector list to update the target. See Table 4-5 to determine the IKM you can use.	
Table 4-5 KM Guidelines for ETL-Style Interfaces based on an ANSI SQL-92 standard compliant technology	
Source	Staging Area
---	---
ANSI SQL-92 standard compliant	ANSI SQL-92 standard compliant database
ANSI SQL-92 standard compliant	ANSI SQL-92 standard compliant database
ANSI SQL-92 standard compliant	ANSI SQL-92 standard compliant database
This chapter describes how to work with XML files in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator supports XML files integration through the Oracle Data Integrator Driver for XML.	
The XML concepts map the Oracle Data Integrator concepts as follows: An XML file corresponds to a data server in Oracle Data Integrator. Within this data server, a single schema maps the content of the XML file.The Oracle Data Integrator Driver for XML (XML driver) loads the hierarchical structure of the XML file into a relational schema. This relational schema is a set of tables located in the schema that can be queried or modified using SQL. The XML driver is also able to unload the relational schema back in the XML file.The relational schema is reverse-engineered as a data model in ODI, with tables, columns, and constraints. This model is used like a normal relational data model in ODI. If the modified data within the relational schema needs to be written back to the XML file, the XML driver provides the capability to synchronize the relational schema into the file.	
See Appendix B, "Oracle Data Integrator Driver for XML Reference" for more information on this driver.	
Oracle Data Integrator provides the IKM XML Control Append for handling XML data. This Knowledge Module is a specific XML Knowledge Module. It has a specific option to synchronize the data from the relational schema to the file.	
In addition to this KM, you can also use an XML data server as any SQL data server. XML data servers support both the technology-specific KMs sourcing or targeting SQL data servers, as well as the generic KMs. See Chapter 4, "Generic SQL" or the technology chapters for more information on these KMs.	
Make sure you have read the information in this section before you start using the XML Knowledge Module:	
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.	
The list of supported platforms and versions is available on Oracle Technical Network (OTN):	
http://www.oracle.com/technology/products/oracle-data-integrator/index.html	
.	
There are no technology-specific requirements for using XML Files in Oracle Data Integrator.	
This section lists the requirements for connecting to XML database.	
Oracle Data Integrator Driver for XML	
XML files are accessed through the Oracle Data Integrator Driver for XML. This JDBC driver is installed with Oracle Data Integrator and requires no other installed component or configuration.	
You must ask the system administrator for the following connection information:	
Setting up the topology consists in:	
An XML data server corresponds to one XML file that is accessible to Oracle Data Integrator.	
Create a data server for the XML technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a File data server:	
com.sunopsis.jdbc.driver.xml.SnpsXmlDriver	
jdbc:snps:xml?[property=value&property=value...]	
Table 5-1 lists the key properties of the Oracle Data Integrator Driver for XML. These properties can be specified in the JDBC URL.	
See Appendix B, "Oracle Data Integrator Driver for XML Reference" for a detailed description of these properties and for a comprehensive list of all properties.	
Table 5-1 JDBC Driver Properties	
Property	Value
---	---
f	<XML File location>
d	<DTD/XSD File location>
re	<Root element>
ro	true
s	<schema name>
cs	true
The following examples illustrate these properties:	
Connects to the PROD20100125_001.xml	
file described by products.xsd	
in the PRODUCTS schema.	
Connects in read-only mode to the staff_internal.xml	
file described by staff_internal.dtd	
in read-only mode. The schema name will be staff	
.	
Create an XML physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
The schema name that you have set on the URL will be preset. Select this schema for both the Data Schema and Work Schema.	
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.	
Setting up a Project using the XML database follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
The recommended knowledge modules to import into your project for getting started with XML are the following:	
This section contains the following topics:	
An XML file model groups a set of datastores. Each datastore typically represents an element in the XML file.	
Create an XML Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. Select the XML technology and the XML logical schema created when configuring the topology.	
XML supports standard reverse-engineering, which uses only the abilities of the XML driver.	
It is recommended to reference a DTD or XSD file in the dtd or d parameters of the URL to reverse-engineer the structure from a generic description of the XML file structure. Reverse-engineering can use an XML instance file if no XSD or DTD is available. In this case, the relational schema structure will be inferred from the data contained in the XML file.	
Standard Reverse-Engineering	
To perform a Standard Reverse- Engineering on XML use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
The standard reverse-engineering process will automatically reverse-engineer the table from the relational schema generated by the XML driver. Note that these tables automatically include:	
These extra columns enable the mapping of the hierarchical XML structure into the relational schema. See XML to SQL Mapping in the Appendix B, "Oracle Data Integrator Driver for XML Reference" for more information.	
You can use XML as a source or a target of an integration interface.	
The KM choice for an interface or a check determines the abilities and performances of this interface or check. The recommendations in this section help in the selection of the KM for different situations concerning an XML data server.	
Read carefully these notes before working with XML in integration interfaces.	
When using a datastore of an XML model as a target of an interface, you must make sure to load the driver-generated columns that are used for preserving the parent-child relationships and the order in the XML hierarchy. For example, if filling records for the region	
element into an XML structure as shown in Example 5-1, that correspond to a REGION table in the relational schema, you should load the columns REGION_ID and REGION_NAME of the REGION table. These two columns correspond to XML attributes.	
In Example 5-1 you must also load the following additional columns that are automatically created by the XML Driver in the REGION table:	
<region>	
element. <region>	
elements in the XML file (records are not ordered in a relational schema, whereas XML elements are ordered). <region>	
element in relation with the <country>	
parent element. This value is equal to the COUNTRY.COUNTRYPK value for the Australia record in the COUNTRY table. To ensure a perfect synchronization of the data in an XML file and the data in the XML schema, the following commands have to be called:	
SYNCHRONIZE FROM FILE	
command on the XML logical schema. This operation reloads the XML hierarchical data in the relational XML schema. The schema is loaded in the built-in or external database storage when first accessed. Subsequent changes made to the file are not automatically synchronized into the schema unless you issue this command. SYNCHRONIZE ALL	
or SYNCHRONIZE FROM DATABASE	
commands on the XML Logical Schema. The IKM XML Control Append implements this synchronize command. These commands must be executed in procedures in the packages before (and after) the interfaces and procedures manipulating the XML schema.	
See Appendix B, "Oracle Data Integrator Driver for XML Reference" for more information on these commands.	
Large XML files can be handled with high performance with Oracle Data Integrator.	
The default driver configuration stores the relational schema in a built-in engine in memory. It is recommended to consider the use of external database storage for handling large XML files.	
See Section B.2.3.1, "Schema Storage" for more information on these commands.	
An XML file can be used as an interface's source or target. The LKM choice in the Interface Flow tab that is used to load data between XML files and other types of data servers is essential for the performance of the interface.	
Use the Generic SQL KMs or the KMs specific to the other technology involved to load data from an XML database to a target or staging area database.	
Table 5-2 lists some examples of KMs that you can use to load from an XML source to a staging area:	
Table 5-2 KMs to Load from XML to a Staging Area	
Staging Area	KM
---	---
Microsoft SQL Server	LKM SQL to MSSQL (BULK)
Oracle	LKM SQL to Oracle
Sybase	LKM SQL to Sybase ASE (BCP)
All	LKM SQL to SQL
It is not advised to use an XML schema as a staging area, except if XML is the target of the interface and you wish to use the target as a staging area. In this case, it might be required to load data to an XML schema.	
Use the Generic SQL KMs or the KMs specific to the other technology involved to load data from a source or staging area into an XML schema.	
Table 5-3 lists some examples of KMs that you can use to load from a source to an XML staging area.	
XML can be used as a target of an interface. The data integration strategies in XML concern loading from the staging area to XML. The IKM choice in the Interface Flow tab determines the performances and possibilities for integrating.	
The IKM XML Control Append integrates data into the XML schema and has an option to synchronize the data to the file. In addition to this KM, you can also use the Generic SQL KMs or the KMs specific to the other technology involved. Note that if using generic or technology-specific KMs, you must manually perform the synchronize operation to write the changes made in the schema to the XML file.	
Table 5-4 lists some examples of KMs that you can use to integrate data:	
This section provides information on how to troubleshoot problems that you might encounter when using XML in Oracle Data Integrator. It contains the following topics:	
Errors appear often in Oracle Data Integrator in the following way:	
the java.sql.SQLExceptioncode	
simply indicates that a query was made through the JDBC driver, which has returned an error. This error is frequently a database or driver error, and must be interpreted in this direction.	
Only the part of text in bold must first be taken in account. It must be searched in the XML driver documentation. If it contains a specific error code, like here, the error can be immediately identified.	
If such an error is identified in the execution log, it is necessary to analyze the SQL code send to the database to find the source of the error. The code is displayed in the description tab of the task in error.	
This section describes the most common errors with XML along with the principal causes. It contains the following topics:	
No suitable driver	
The JDBC URL is incorrect. Check that the URL syntax is valid.	
File <XML file> is already locked by another instance of the XML driver	
. The XML file is locked by another user/application. Close all application that might be using the XML file. If such an application has crashed, then remove the .lck file remaining in the XML file's directory.	
The DTD file "xxxxxxx.dtd" doesn't exist	
This exception may occur when trying to load an XML file by the command LOAD FILE. The error message can have two causes:	
Table not found: S0002 Table not found: <table name> in statement [<SQL statement>]	
The table you are trying to access does not exist in the schema.	
Column not found: S0022 Column not found: <column name> in statement [<SQL statement>]	
The column you are trying to access does not exist in the tables specified in the statement.	
This chapter describes how to work with Complex Files in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator supports several files types. This chapter describes how to work with the Complex (or native) File format. See Chapter 3, "Files" for information about simple fixed or delimited files containing ASCII or EBCDIC data.	
For complex files it is possible to build a Native Schema description file that describes the file structure. Using this Native Schema (nXSD) description and the Oracle Data Integrator Driver for Complex Files, Oracle Data Integrator is able to reverse-engineer, read and write information from complex files.	
See "Native Format Builder Wizard" in the Oracle Fusion Middleware User's Guide for Technology Adapters for more information on the Native Schema format, and Appendix C, "Oracle Data Integrator Driver for Complex Files Reference" for reference information on the Complex File driver.	
The Oracle Data Integrator Driver for Complex Files (Complex File driver) converts native format to a relational structure and exposes this relational structure as a data model in Oracle Data Integrator.	
The Complex File driver translates internally the native file into an XML structure, as defined in the Native Schema (nXSD) description and from this XML file it generates a relational schema that is consumed by Oracle Data Integrator. The overall mechanism is shown in Figure 6-1.	
Most concepts and processes that are used for Complex Files are equivalent to those used for XML files. The main difference is the step that transparently translates the Native File into an XML structure that is used internally by the driver but never persisted.	
The Complex File technology concepts map the Oracle Data Integrator concepts as follows: A Complex File corresponds to an Oracle Data Integrator data server. Within this data server, a single schema maps the content of the complex file.	
The Oracle Data Integrator Driver for Complex File (Complex File driver) loads the complex structure of the native file into a relational schema. This relational schema is a set of tables located in the schema that can be queried or modified using SQL. The Complex File driver is also able to unload the relational schema back into the complex file.The relational schema is reverse-engineered as a data model in ODI, with tables, columns, and constraints. This model is used like a standard relational data model in ODI. If the modified data within the relational schema needs to be written back to the complex file, the driver provides the capability to synchronize the relational schema into the file.	
Note that for simple flat files formats (fixed and delimited), it is recommended to use the File technology, and for XML files, the XML technology. See Chapter 3, "Files" and Chapter 5, "XML Files" for more information.	
You can use a Complex File data server as any SQL data server. Complex File data servers support both the technology-specific KMs sourcing or targeting SQL data servers, as well as the generic KMs. See Chapter 4, "Generic SQL" or the technology chapters for more information on these KMs.	
You can also use the IKM XML Control Append when writing to a Complex File data server. This Knowledge Module implements specific option to synchronize the data from the relational schema to the file, which is supported by the Complex File driver.	
Make sure you have read the information in this section before you start working with the Complex File technology:	
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.	
The list of supported platforms and versions is available on Oracle Technical Network (OTN):	
http://www.oracle.com/technology/products/oracle-data-integrator/index.html	
.	
There are no technology-specific requirements for using Complex Files in Oracle Data Integrator.	
This section lists the requirements for connecting to complex files.	
Oracle Data Integrator Driver for Complex Files	
Complex files are accessed through the Oracle Data Integrator Driver for Complex File. This JDBC driver is installed with Oracle Data Integrator and requires no other installed component or configuration.	
You must ask the system administrator for the following connection information:	
Setting up the topology consists in:	
A Complex File data server corresponds to one native file that is accessible to Oracle Data Integrator.	
Create a data server for the Complex File technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a Complex File data server:	
oracle.odi.jdbc.driver.file.complex.ComplexFileDriver	
jdbc:snps:complexfile?f=<native file location>&d=<native schema>&re=<root element name>&s=<schema name>[&<property>=<value>...]	
Table 6-1 lists the key properties of the Oracle Data Integrator Driver for Complex Files. These properties can be specified in the JDBC URL.	
See Appendix C, "Oracle Data Integrator Driver for Complex Files Reference" for a detailed description of these properties and for a comprehensive list of all properties.	
Table 6-1 Complex File Driver Properties	
Property	Value
---	---
f	<native file name>
d	<native schema>
re	<root element>
s	<schema name>
The following example illustrates these properties:	
Connects to the PROD20100125_001.csv	
file described by products.nxsd	
and expose this file as a relational structure in the PRODUCT Schema.	
Create a Complex File physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
The schema name that you have set on the URL will be preset. Select this schema for both the Data Schema and Work Schema.	
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.	
Setting up a project using the Complex File technology follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
It is recommended to import the following knowledge modules into your project for getting started:	
In addition to these knowledge modules, you can also import file knowledge modules specific to the other technologies involved in your product.	
This section contains the following topics:	
A Complex File model groups a set of datastores. Each datastore typically represents an element in the intermediate XML file generated from the native file using the native schema.	
Create a Complex File model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
The Complex File technology supports standard reverse-engineering, which uses only the abilities of the Complex File driver.	
Standard Reverse-Engineering	
To perform a Standard Reverse- Engineering with a Complex File model use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
This reverse-engineering uses the same process as the reverse-engineering of XML Files. The native schema (nXSD) provided in the data server URL is used as the XSD file to describe the XML structure. See Section 5.5.2, "Reverse-Engineering an XML Model" and XML to SQL Mapping for more information.	
You can use a complex file as a source or a target of an integration interface.	
The KM choice for an interface or a check determines the abilities and performances of this interface or check. The recommendations below help in the selection of the KM for different situations concerning a Complex File data server.	
Complex File data models are handled in interfaces similarly to XML structures. For example, the Synchronization model is the same for complex files and XML files and the same knowledge modules can be used for both technologies.	
See Section 5.6, "Designing an Interface" in Chapter 5, "XML Files" for more information.	
This chapter describes how to work with Microsoft SQL Server in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator (ODI) seamlessly integrates data in Microsoft SQL Server. Oracle Data Integrator features are designed to work best with Microsoft SQL Server, including reverse-engineering, changed data capture, data integrity check, and integration interfaces.	
The Microsoft SQL Server concepts map the Oracle Data Integrator concepts as follows: A Microsoft SQL Server server corresponds to a data server in Oracle Data Integrator. Within this server, a database/owner pair maps to an Oracle Data Integrator physical schema. A set of related objects within one database corresponds to a data model, and each table, view or synonym will appear as an ODI datastore, with its attributes, columns and constraints.	
Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Microsoft SQL Server.	
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 7-1 for handling Microsoft SQL Server data. In addition to these specific Microsoft SQL Server Knowledge Modules, it is also possible to use the generic SQL KMs with Microsoft SQL Server. See Chapter 4, "Generic SQL" for more information.	
Table 7-1 Microsoft SQL Server Knowledge Modules	
Knowledge Module	Description
---	---
IKM MSSQL Incremental Update	Integrates data in a Microsoft SQL Server target table in incremental update mode.
IKM MSSQL Slowly Changing Dimension	Integrates data in a Microsoft SQL Server target table used as a Type II Slowly Changing Dimension in your Data Warehouse.
JKM MSSQL Consistent	Creates the journalizing infrastructure for consistent journalizing on Microsoft SQL Server tables using triggers.
JKM MSSQL Simple	Creates the journalizing infrastructure for simple journalizing on Microsoft SQL Server tables using triggers.
LKM File to MSSQL (BULK)	Loads data from a File to a Microsoft SQL Server staging area database using the BULK INSERT SQL command.
LKM MSSQL to MSSQL (BCP)	Loads data from a Microsoft SQL Server source database to a Microsoft SQL Server staging area database using the native BCP out/BCP in commands.
LKM MSSQL to MSSQL (LINKED SERVERS)	Loads data from a Microsoft SQL Server source database to a Microsoft SQL Server staging area database using the native linked servers feature.
LKM MSSQL to ORACLE (BCP SQLLDR)	Loads data from a Microsoft SQL Server to an Oracle database (staging area) using the BCP and SQLLDR utilities.
LKM SQL to MSSQL (BULK)	Loads data from any ANSI SQL-92 source database to a Microsoft SQL Server staging area database using the native BULK INSERT SQL command.
LKM SQL to MSSQL	Loads data from any ANSI SQL-92 source database to a Microsoft SQL Server staging area. This LKM is similar to the standard LKM SQL to SQL described in Chapter 4, "Generic SQL" except that you can specify some additional specific Microsoft SQL Server parameters.
RKM MSSQL	Retrieves metadata for Microsoft SQL Server objects: tables, views and synonyms, as well as columns and constraints.
Make sure you have read the information in this section before you start working with the Microsoft SQL Server technology:	
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.	
The list of supported platforms and versions is available on Oracle Technical Network (OTN):	
http://www.oracle.com/technology/products/oracle-data-integrator/index.html	
.	
Some of the Knowledge Modules for Microsoft SQL Server use specific features of this database. The following restrictions apply when using these Knowledge Modules. See the Microsoft SQL Server documentation for additional information on these topics.	
This section describes the requirements that must be met before using the BULK INSERT command with Microsoft SQL Server:	
This section describes the requirements that must be met before using the BCP command with Microsoft SQL Server:	
This section describes the requirements that must be met before using linked servers with Microsoft SQL Server:	
See the following links for more information about configuring the MSDTC Service:	
This section lists the requirements for connecting to a Microsoft SQL Server database.	
JDBC Driver	
Oracle Data Integrator is installed with a default Microsoft SQL Server Datadirect Driver. This drivers directly uses the TCP/IP network layer and requires no other installed component or configuration. You can alternatively use the drivers provided by Microsoft for SQL Server.	
Setting up the Topology consists of:	
A Microsoft SQL Server data server corresponds to a Microsoft SQL Server server connected with a specific user account. This user will have access to several databases in this server, corresponding to the physical schemas in Oracle Data Integrator created under the data server.	
Create a data server for the Microsoft SQL Server technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a Microsoft SQL data server:	
weblogic.jdbc.sqlserver.SQLServerDriver	
Create a Microsoft SQL Server physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
The work schema and data schema in this physical schema correspond each to a database/owner pair. The work schema should point to a temporary database and the data schema should point to the database hosting the data to integrate.	
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.	
Setting up a project using the Microsoft SQL Server database follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
It is recommended to import the following knowledge modules into your project for getting started with Microsoft SQL Server:	
This section contains the following topics:	
Create a Microsoft SQL Server Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Microsoft SQL Server supports both Standard reverse-engineering - which uses only the abilities of the JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve the metadata.	
In most of the cases, consider using the standard JDBC reverse engineering for starting. Standard reverse-engineering with Microsoft SQL Server retrieves tables, views, and columns.	
Consider switching to customized reverse-engineering for retrieving more metadata. Microsoft SQL Server customized reverse-engineering retrieves the tables, views, and synonyms. The RKM MSSQL also reverse-engineers columns that have a user defined data type and translates the user defined data type to the native data type.	
Standard Reverse-Engineering	
To perform a Standard Reverse-Engineering on Microsoft SQL Server use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Customized Reverse-Engineering	
To perform a Customized Reverse-Engineering on Microsoft SQL Server with a RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields specific to the Microsoft SQL Server technology:	
KM: RKM MSSQL.<project name>	
. Note the following information when using this RKM:	
The ODI Microsoft SQL Server Knowledge Modules support the Changed Data Capture feature. See Chapter "Working with Changed Data Capture" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for details on how to set up journalizing and how to use captured changes.	
Microsoft SQL Server Journalizing Knowledge Modules support Simple Journalizing and Consistent Set Journalizing. The Microsoft SQL Server JKMs use triggers to capture data changes on the source tables.	
Oracle Data Integrator provides the Knowledge Modules listed in Table 7-2 for journalizing Microsoft SQL Server tables.	
Table 7-2 Microsoft SQL Server Journalizing Knowledge Modules	
KM	Notes
---	---
JKM MSSQL Consistent	Creates the journalizing infrastructure for consistent journalizing on Microsoft SQL Server tables using triggers.
JKM MSSQL Simple	Creates the journalizing infrastructure for simple journalizing on Microsoft SQL Server tables using triggers.
Log-based changed data capture is possible with Microsoft SQL Server using the Oracle Changed Data Capture Adapters. See Chapter 28, "Oracle Changed Data Capture Adapters" for more information.	
Oracle Data Integrator provides the generic CKM SQL for checking data integrity against constraints defined on a Microsoft SQL Server table. See "Set up Flow Control and Post-Integration Control" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for details.	
See Chapter 4, "Generic SQL" for more information.	
You can use Microsoft SQL Server as a source, staging area or a target of an integration interface.	
The KM choice for an interface or a check determines the abilities and performance of this interface or check. The recommendations in this section help in the selection of the KM for different situations concerning a Microsoft SQL Server data server.	
Microsoft SQL Server can be used as a source, target or staging area of an interface. The LKM choice in the Interface Flow tab to load data between Microsoft SQL Server and another type of data server is essential for the performance of an interface.	
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for loading data from Microsoft SQL Server to a target or staging area database. These optimized Microsoft SQL Server KMs are listed in Table 7-3.	
In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to the other technology involved to load data from Microsoft SQL Server to a target or staging area database.	
Table 7-3 KMs for loading data from Microsoft SQL Server	
Source or Staging Area Technology	KM
---	---
Microsoft SQL Server	LKM MSSQL to MSSQL (BCP)
Microsoft SQL Server	LKM MSSQL to MSSQL (LINKED SERVERS)
Oracle	LKM MSSQL to ORACLE (BCP SQLLDR)
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for loading data from a source or staging area into a Microsoft SQL Server database. These optimized Microsoft SQL Server KMs are listed in Table 7-4.	
In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to the other technology involved.	
Table 7-4 KMs for loading data to Microsoft SQL Server	
Source or Staging Area Technology	KM
---	---
File	LKM File to MSSQL (BULK)
Microsoft SQL Server	LKM MSSQL to MSSQL (BCP)
Microsoft SQL Server	LKM MSSQL to MSSQL (LINKED SERVERS)
SQL	LKM SQL to MSSQL (BULK)
SQL	LKM SQL to MSSQL
Oracle Data Integrator provides Knowledge Modules that implement optimized data integration strategies for Microsoft SQL Server. These optimized Microsoft SQL Server KMs are listed in Table 7-5. I	
In addition to these KMs, you can also use the Generic SQL KMs.	
The IKM choice in the Interface Flow tab determines the performances and possibilities for integrating.	
Table 7-5 KMs for integrating data to Microsoft SQL Server	
KM	Notes
---	---
IKM MSSQL Incremental Update	Integrates data in a Microsoft SQL Server target table in incremental update mode.
IKM MSSQL Slowly Changing Dimension	Integrates data in a Microsoft SQL Server target table used as a Type II Slowly Changing Dimension in your Data Warehouse
Using Slowly Changing Dimensions	
For using slowly changing dimensions, make sure to set the Slowly Changing Dimension value for each column of the target datastore. This value is used by the IKM MSSQL Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or Insert Column, Current Record Flag and Start/End Timestamps columns.	
This chapter describes how to work with Microsoft Excel in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator (ODI) integrates data stored into Microsoft Excel workbooks. It allows reverse-engineering as well as read and write operations on spreadsheets.	
Oracle Data Integrator uses Open Database Connectivity (ODBC) to connect to a Microsoft Excel data server. See Section 8.2.3, "Connectivity Requirements" for more details.	
A Microsoft Excel data server corresponds to one Microsoft Excel workbook (.xls	
file) that is accessible through your local network. A single physical schema is created under this data server.	
Within this schema, a spreadsheet or a given named zone of the workbook appears as a datastore in Oracle Data Integrator.	
Oracle Data Integrator provides no Knowledge Module (KM) specific to the Microsoft Excel technology. You can use the generic SQL KMs to perform the data integration and transformation operations of Microsoft Excel data. See Chapter 4, "Generic SQL" for more information.	
Note: Excel technology cannot be used as the staging area, does not support incremental update or flow/static check. As a consequence, the following KMs will not work with the Excel technology:	
Make sure you have read the information in this section before you start using the Microsoft Excel Knowledge Module:	
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.	
The list of supported platforms and versions is available on Oracle Technical Network (OTN):	
http://www.oracle.com/technology/products/oracle-data-integrator/index.html	
.	
There are no technology-specific requirements for using Microsoft Excel files in Oracle Data Integrator.	
This section lists the requirements for connecting to a Microsoft Excel workbook.	
To be able to access Microsoft Excel data, you need to:	
Install the Microsoft Excel ODBC Driver	
Microsoft Excel workbooks can only be accessed through ODBC connectivity. The ODBC Driver for Excel must be installed on your system.	
Declare a Microsoft Excel ODBC Data Source	
An ODBC data source must be defined for each Microsoft Excel workbook (.xls	
file) that will be accessed from ODI. ODBC datasources are created with the Microsoft ODBC Data Source Administrator. Refer to your Microsoft Windows operating system documentation for more information on datasource creation.	
Setting up the Topology consists in:	
A Microsoft Excel data server corresponds to one Microsoft Excel workbook (.xls	
file) that is accessible through your local network.	
Create a data server for the Microsoft Excel technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a Microsoft Excel Data Server:	
1	
1	
sun.jdbc.odbc.JdbcOdbcDriver	
jdbc:odbc:<odbc_dsn_alias>	
where <odbc_dsn_alias> is the name of your ODBC data source.	
WARNING: To access a Microsoft Excel workbook via ODBC, you must first ensure that this workbook is not currently open in a Microsoft Excel session. This can lead to unexpected results.	
Create a Microsoft Excel Physical Schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Note that Oracle Data Integrator needs only one physical schema for each Microsoft Excel data server. If you wish to connect a different workbook, a different data server must be created to connect a ODBC datasource corresponding to this other workbook.	
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.	
Note: An Excel physical schema only has a data schema, and no work schema. Microsoft Excel cannot be used as the staging area of an interface.	
Setting up a Project using the Microsoft Excel follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Import the following generic SQL KMs into your project for getting started with Microsoft Excel:	
See Chapter 4, "Generic SQL" for more information about these KMs.	
This section contains the following topics:	
A Microsoft Excel Model is a set of datastores that correspond to the tables contained in a Microsoft Excel workbook.	
Create a Microsoft Excel Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Microsoft Excel supports only the Standard reverse-engineering, which uses only the abilities of the ODBC driver.	
Oracle Data Integrator reverse-engineers:	
<spreadsheet_name>$<zone_name>	
). The columns for such a table are named after the first line of the cell range. Note that new records are added automatically below the named cell. It is possible to create a blank named cell range that will be loaded using ODI by naming a cell range that contains only the first header line. In most Microsoft Excel versions, you can simply select a cell range and use the Name a Range... popup menu to name this range. See the Microsoft Excel documentation for conceptual information about Names and how to define a cell range in a spreadsheet.	
Standard Reverse-Engineering	
To perform a Standard Reverse-Engineering on Microsoft Excel use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Note: On the Reverse Engineer tab of your Model, select in the Types of objects to reverse-engineer section Table and System Table to reverse-engineer spreadsheets and named cell ranges.	
You can use a Microsoft Excel file as a source or a target of an integration interface, but NOT as the staging area	
The KM choice for an interface or a check determines the abilities and performances of this interface or check. The recommendations below help in the selection of the KM for different situations concerning a Microsoft Excel server.	
Microsoft Excel can be used as a source or a target of an interface. The LKM choice in the Interface Flow tab to load data between Microsoft Excel and another type of data server is essential for the performance of an interface.	
Oracle Data Integrator does not provide specific knowledge modules for Microsoft Excel. Use the Generic SQL KMs or the KMs specific to the technology used as the staging area. The following table lists some generic SQL KMs that can be used for loading data from Microsoft Excel to any staging area.	
Table 8-1 KMs to Load from Microsoft Excel	
Target or Staging Area	KM
---	---
Oracle	LKM SQL to Oracle
SQL	LKM SQL to SQL
Sybase	LKM SQL to Sybase (bcp)
Microsoft SQL Server	LKM SQL to MSSQL (bulk)
Because Microsoft Excel cannot be used as staging area you cannot use a LKM to load data into Microsoft Excel. See Section 8.6.2, "Integrating Data in Microsoft Excel" for more information on how to integrate data into Microsoft Excel.	
Oracle Data Integrator does not provide specific knowledge modules for Microsoft Excel. Use the Generic SQL KMs or the KMs specific to the technology used as the staging area. For integrating data from a staging area to Microsoft Excel, you can use, for example the IKM SQL to SQL Append.	
This section provides information on how to troubleshoot problems that you might encounter when using the Microsoft Excel technology in Oracle Data Integrator. It contains the following topics:	
Errors appear often in Oracle Data Integrator in the following way:	
the java.sql.SQLException code simply indicates that a query was made through the JDBC-ODBC bridge, which has returned an error. This error is frequently a database or driver error, and must be interpreted in this direction.	
Only the part of text in italic must first be taken in account. It must be searched in the ODBC driver or Excel documentation. If its contains a specific error code, like here in bold italic, the error can be immediately identified.	
If such an error is identified in the execution log, it is necessary to analyze the SQL code to find the source of the error. The code is displayed in the description tab of the task in error.	
The most common errors with Excel are detailed below, with their principal causes.	
This section describes common problems and solutions.	
UnknownDriverException	
The JDBC driver is incorrect. Check the name of the driver.	
[Microsoft][ODBC Driver Manager] Data source name not found and no default driver specified RC=0xb Datasource not found or driver name not specified	
The ODBC Datasource specified in the JDBC URL is incorrect.	
The Microsoft Jet Database engine could not find the object <object name>	
The table you are trying to access does not exist or is not defined in the Excel spreadsheet.	
Too few parameters. Expected 1.	
You are trying to access an nonexisting column in the Excel spreadsheet.	
Operation must use an updateable query.	
This error is probably due to the fact that you have not unchecked the "read only" option when defined the Excel DSN. Unselect this option and re-execute your interface.	
This error is due to the fact that the JDBC-ODBC Bridge of the Java machine does not support UTF-16 data. This is a known issue in the Sun JVM that is solved in the later releases (1.7).	
This chapter describes how to work with Microsoft Access in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator (ODI) seamlessly integrates data in a Microsoft Access database. Oracle Data Integrator features are designed to work best with Microsoft Access, including integration interfaces.	
The Microsoft Access concepts map the Oracle Data Integrator concepts as follows: An Microsoft Access database corresponds to a data server in Oracle Data Integrator. Within this server, a schema maps to an Oracle Data Integrator physical schema.	
Oracle Data Integrator uses Oracle Data Integrator uses Open Database Connectivity (ODBC) to connect to connect to a Microsoft Access database.	
Oracle Data Integrator provides the IKM Access Incremental Update for handling Microsoft Access data. This IKM integrates data in a Microsoft Access target table in incremental update mode.	
The IKM Access Incremental Update creates a temporary staging table to stage the data flow and compares its content to the target table to identify the records to insert and the records to update. It also allows performing data integrity check by invoking the CKM.	
Consider using this KM if you plan to load your Microsoft Access target table to insert missing records and to update existing ones.	
To use this IKM, the staging area must be on the same data server as the target.	
This KM uses Microsoft Access specific features. It is also possible to use the generic SQL KMs with the Microsoft Access database. See Chapter 4, "Generic SQL" for more information.	
There are no specific requirements for using Microsoft Access in Oracle Data Integrator.	
This chapter describes how to work with Netezza in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator (ODI) seamlessly integrates data in a Netezza database. Oracle Data Integrator features are designed to work best with Netezza, including reverse-engineering, data integrity check, and integration interfaces.	
The Netezza database concepts map the Oracle Data Integrator concepts as follows: A Netezza cluster corresponds to a data server in Oracle Data Integrator. Within this server, a database/owner pair maps to an Oracle Data Integrator physical schema.	
Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to a Netezza database.	
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 10-1 for handling Netezza data. These KMs use Netezza specific features. It is also possible to use the generic SQL KMs with the Netezza database. See Chapter 4, "Generic SQL" for more information.	
Table 10-1 Netezza Knowledge Modules	
Knowledge Module	Description
---	---
CKM Netezza	Checks data integrity against constraints defined on a Netezza table. Rejects invalid records in the error table created dynamically. Can be used for static controls as well as flow controls.
IKM Netezza Control Append	Integrates data in a Netezza target table in replace/append mode. When flow data needs to be checked using a CKM, this IKM creates a temporary staging table before invoking the CKM.
IKM Netezza Incremental Update	Integrates data in a Netezza target table in incremental update mode.
IKM Netezza To File (EXTERNAL TABLE)	Integrates data in a target file from a Netezza staging area. It uses the native EXTERNAL TABLE feature of Netezza.
LKM File to Netezza (EXTERNAL TABLE)	Loads data from a File to a Netezza Server staging area using the EXTERNAL TABLE feature (dataobject).
LKM File to Netezza (NZLOAD)	Loads data from a File to a Netezza Server staging area using NZLOAD.
RKM Netezza	Retrieves JDBC metadata from a Netezza database. This RKM may be used to specify your own strategy to convert Netezza JDBC metadata into Oracle Data Integrator metadata. Consider using this RKM if you encounter problems with the standard JDBC reverse-engineering process due to some specificities of the Netezza JDBC driver.
Make sure you have read the information in this section before you start using the Netezza Knowledge Modules:	
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.	
The list of supported platforms and versions is available on Oracle Technical Network (OTN):	
http://www.oracle.com/technology/products/oracle-data-integrator/index.html	
.	
Some of the Knowledge Modules for Netezza use the NZLOAD utility.	
The following requirements and restrictions apply for these Knowledge Modules:	
For KMs using the EXTERNAL TABLE feature: Make sure that the file is accessible by the Netezza Server.	
This section lists the requirements for connecting to a Netezza database.	
JDBC Driver	
Oracle Data Integrator uses the Netezza JDBC to connect to a NCR Netezza database. This driver must be installed in your Oracle Data Integrator drivers directory.	
Setting up the Topology consists of:	
A Netezza data server corresponds to a Netezza cluster connected with a specific Netezza user account. This user will have access to several databases in this cluster, corresponding to the physical schemas in Oracle Data Integrator created under the data server.	
Create a data server for the Netezza technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a Netezza data server:	
org.netezza.Driver	
jdbc:Netezza://<host>:<port>/<database>	
Note: Note that Oracle Data Integrator will have write access only on the database specified in the URL.	
Create a Netezza physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Note: When performing this configuration, the work and data databases names must match. Note also that the dollar sign ($) is an invalid character for names in Netezza. Remove the dollar sign ($) from work table and journalizing elements prefixes.	
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.	
Setting up a project using the Netezza database follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
It is recommended to import the following knowledge modules into your project for getting started with Netezza:	
This section contains the following topics:	
Create a Netezza Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Netezza supports both Standard reverse-engineering - which uses only the abilities of the JDBC driver - and Customized reverse-engineering.	
In most of the cases, consider using the standard JDBC reverse engineering for starting.	
Consider switching to customized reverse-engineering if you encounter problems with the standard JDBC reverse-engineering process due to some specificities of the Netezza JDBC driver.	
Standard Reverse-Engineering	
To perform a Standard Reverse-Engineering on Netezza use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Customized Reverse-Engineering	
To perform a Customized Reverse-Engineering on Netezza with a RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields specific to the Netezza technology:	
KM: RKM Netezza.<project name>	
. The reverse-engineering process returns tables, views, columns, Keys and Foreign Keys.	
Oracle Data Integrator provides the CKM Netezza for checking data integrity against constraints defined on a Netezza table. See "Set up Flow Control and Post-Integration Control" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for details.	
You can use Netezza as a source, staging area, or a target of an integration interface.	
The KM choice for an interface or a check determines the abilities and performance of this interface or check. The recommendations in this section help in the selection of the KM for different situations concerning a Netezza data server.	
Netezza can be used as a source, target or staging area of an interface. The LKM choice in the Interface Flow tab to load data between Netezza and another type of data server is essential for the performance of an interface.	
Use the Generic SQL KMs or the KMs specific to the other technology involved to load data from a Netezza database to a target or staging area database.	
For extracting data from a Netezza staging area to a file, use the IKM Netezza to File (EXTERNAL TABLE). See Section 10.7.2, "Integrating Data in Netezza" for more information.	
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for loading data from a source or staging area into a Netezza database. These optimized Netezza KMs are listed in Table 10-2. In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to the other technology involved.	
Table 10-2 KMs for loading data to Netezza	
Source or Staging Area Technology	KM
---	---
File	LKM File to Netezza (EXTERNAL TABLE)
File	LKM File to Netezza (NZLOAD)
Oracle Data Integrator provides Knowledge Modules that implement optimized data integration strategies for Netezza. These optimized Netezza KMs are listed in Table 10-3. In addition to these KMs, you can also use the Generic SQL KMs.	
The IKM choice in the Interface Flow tab determines the performances and possibilities for integrating.	
Table 10-3 KMs for integrating data to Netezza	
KM	Notes
---	---
IKM Netezza Control Append	Integrates data in a Netezza target table in replace/append mode.
IKM Netezza Incremental Update	Integrates data in a Netezza target table in incremental update mode. This KM implements a DISTRIBUTE_ON option to define the processing distribution. It is important that the chosen column has a high cardinality (many distinct values) to ensure evenly spread data to allow maximum processing performance. Please follow Netezza's recommendations on choosing a such a column.Valid options are:
If no value is set (empty), no index will be created. This KM also uses an ANALYZE_TARGET option to generate statistics on the target after integration.	
IKM Netezza to File (EXTERNAL TABLE)	Integrates data from a Netezza staging area to a file using external tables. This KM implements an optional BASE_TABLE option to specify the name of a table that will be used as a template for the external table.
This chapter describes how to work with Teradata in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator (ODI) seamlessly integrates data in an Teradata database. Oracle Data Integrator features are designed to work best with Teradata, including reverse-engineering, data integrity check, and integration interfaces.	
The Teradata database concepts map the Oracle Data Integrator concepts as follows: A Teradata server corresponds to a data server in Oracle Data Integrator. Within this server, a database maps to an Oracle Data Integrator physical schema.	
Oracle Data Integrator uses Java Database Connectivity (JDBC) and Teradata Utilities to connect to Teradata database.	
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 11-1 for handling Teradata data. These KMs use Teradata specific features. It is also possible to use the generic SQL KMs with the Teradata database. See Chapter 4, "Generic SQL" for more information.	
Table 11-1 Teradata Knowledge Modules	
Knowledge Module	Description
---	---
CKM Teradata	Checks data integrity against constraints defined on a Teradata table. Rejects invalid records in the error table created dynamically. Can be used for static controls as well as flow controls.
IKM File to Teradata (TTU)	This IKM is designed to leverage the power of the Teradata utilities for loading files directly to the target. See Section 11.8.2, "Support for Teradata Utilities" for more information.
IKM SQL to Teradata (TTU)	Integrates data from a SQL compliant database to a Teradata database target table using Teradata Utilities FastLoad, MultiLoad, TPump or Parallel Transporter. See Section 11.8.2, "Support for Teradata Utilities" for more information.
IKM Teradata Control Append	Integrates data in a Teradata target table in replace/append mode.
IKM Teradata Incremental Update	Integrates data in a Teradata target table in incremental update mode.
IKM Teradata Slowly Changing Dimension	Integrates data in a Teradata target table used as a Type II Slowly Changing Dimension in your Data Warehouse.
IKM Teradata to File (TTU)	Integrates data in a target file from a Teradata staging area in replace mode. See Section 11.8.2, "Support for Teradata Utilities" for more information.
IKM Teradata Multi Statement	Integrates data in Teradata database target table using multi statement requests, managed in one SQL transaction. See Using Multi Statement Requests for more information.
IKM SQL to Teradata Control Append	Integrates data from an ANSI-92 compliant source database into Teradata target table in truncate / insert (append) mode. This IKM is typically used for ETL configurations: source and target tables are on different databases and the interface's staging area is set to the logical schema of the source tables or a third schema.
LKM File to Teradata (TTU)	Loads data from a File to a Teradata staging area database using the Teradata bulk utilities. See Section 11.8.2, "Support for Teradata Utilities" for more information.
LKM SQL to Teradata (TTU)	Loads data from a SQL compliant source database to a Teradata staging area database using a native Teradata bulk utility. See Section 11.8.2, "Support for Teradata Utilities" for more information.
RKM Teradata	Retrieves metadata from the Teradata database using the DBC system views. This RKM supports UNICODE columns.
Make sure you have read the information in this section before you start using the Teradata Knowledge Modules:	
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.	
The list of supported platforms and versions is available on Oracle Technical Network (OTN):	
http://www.oracle.com/technology/products/oracle-data-integrator/index.html	
.	
Some of the Knowledge Modules for Teradata use the following Teradata Tools and Utilities (TTU):	
The following requirements and restrictions apply for these Knowledge Modules:	
COP_n	
postfix). See the Teradata documentation for more information.	
This section lists the requirements for connecting to a Teradata Database.	
JDBC Driver	
Oracle Data Integrator uses the Teradata JDBC Driver to connect to a Teradata Database. The Teradata Gateway for JDBC must be running, and this driver must be installed in your Oracle Data Integrator installation. You can find this driver at:	
Setting up the Topology consists of:	
A Teradata data server corresponds to a Teradata Database connected with a specific Teradata user account. This user will have access to several databases in this Teradata system, corresponding to the physical schemas in Oracle Data Integrator created under the data server.	
Create a data server for the Teradata technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a Teradata data server:	
com.teradata.jdbc.TeraDriver	
jdbc:teradata://<host>:<port>/<server>	
The URL parameters are:	
<host>	
: Teradata gateway for JDBC machine network name or IP address. <port>	
: gateway port number (usually 7060) <server>	
: name of the Teradata server to connect Create a Teradata physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.	
Setting up a project using the Teradata database follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
It is recommended to import the following knowledge modules into your project for getting started with Teradata:	
This section contains the following topics:	
Create a Teradata Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Teradata supports both Standard reverse-engineering - which uses only the abilities of the JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve the metadata from Teradata database using the DBC system views.	
In most of the cases, consider using the standard JDBC reverse engineering for starting. Standard reverse-engineering with Teradata retrieves tables and columns.	
Preferably use customized reverse-engineering for retrieving more metadata. Teradata customized reverse-engineering retrieves the tables, views, columns, keys (primary indexes and secondary indexes) and foreign keys. Descriptive information (column titles and short descriptions) are also reverse-engineered.	
Standard Reverse-Engineering	
To perform a Standard Reverse-Engineering on Teradata use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Customized Reverse-Engineering	
To perform a Customized Reverse-Engineering on Teradata with a RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields specific to the Teradata technology:	
KM: RKM Teradata.<project name>	
. true	
if you want to reverse-engineer existing FK constraints in the database. true	
if you want to reverse-engineer table constrains. true	
if you want to reverse-engineer VARCHAR and CHAR for a Unicode database as CHAR()CHARACTER SET UNICODE or VARCHAR()CHARACTER SET UNICODE respectively, regardless of the use of CHARACTER SET UNICODE clause at table creation. The reverse-engineering process returns tables, views, columns, Keys (primary indexes and secondary indexes) and Foreign Keys. Descriptive information (Column titles and short descriptions) are also reverse-engineered	
Note that Unique Indexes are reversed as follows:	
You can use this RKM to retrieve specific Teradata metadata that is not supported by the standard JDBC interface (such as primary indexes).	
Oracle Data Integrator provides the CKM Teradata for checking data integrity against constraints defined on a Teradata table. See "Set up Flow Control and Post-Integration Control" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for details.	
Oracle Data Integrator provides the Knowledge Module listed in Table 11-2 to perform a check on Teradata.	
Table 11-2 Check Knowledge Modules for Teradata Database	
Recommended KM	Notes
---	---
CKM Teradata	Checks data integrity against constraints defined on a Teradata table. Rejects invalid records in the error table created dynamically. Can be used for static controls as well as flow controls. This KM supports the following Teradata optimizations:
You can use Teradata as a source, staging area or a target of an integration interface. It is also possible to create ETL-style integration interfaces based on the Teradata technology.	
The KM choice for an interface or a check determines the abilities and performance of this interface or check. The recommendations in this section help in the selection of the KM for different situations concerning a Teradata data server.	
Teradata can be used as a source, target or staging area of an interface. The LKM choice in the Interface Flow tab to load data between Teradata and another type of data server is essential for the performance of an interface.	
Use the Generic SQL KMs or the KMs specific to the other technology involved to load data from a Teradata database to a target or staging area database.	
For extracting data from a Teradata staging area to a file, use the IKM File to Teradata (TTU). See Section 11.7.2, "Integrating Data in Teradata" for more information.	
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for loading data from a source or staging area into a Teradata database. These optimized Teradata KMs are listed in Table 11-3. In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to the other technology involved.	
Table 11-3 KMs for loading data to Teradata	
Source or Staging Area Technology	KM
---	---
File	LKM File to Teradata (TTU)
SQL	LKM SQL to Teradata (TTU)
This KM support the following Teradata optimizations:	
Oracle Data Integrator provides Knowledge Modules that implement optimized data integration strategies for Teradata. These optimized Teradata KMs are listed in Table 11-4. In addition to these KMs, you can also use the Generic SQL KMs.	
The IKM choice in the Interface Flow tab determines the performances and possibilities for integrating.	
Table 11-4 KMs for integrating data to Teradata	
KM	Notes
---	---
IKM Teradata Control Append	Integrates data in a Teradata target table in replace/append mode. When flow data needs to be checked using a CKM, this IKM creates a temporary staging table before invoking the CKM. Consider using this IKM if you plan to load your Teradata target table in replace mode, with or without data integrity check. To use this IKM, the staging area must be on the same data server as the target Teradata table. This KM support the following Teradata optimizations:
IKM Teradata Incremental Update	Integrates data in a Teradata target table in incremental update mode. This IKM creates a temporary staging table to stage the data flow. It then compares its content to the target table to guess which records should be inserted and which others should be updated. It also allows performing data integrity check by invoking the CKM. Inserts and updates are done in bulk set-based processing to maximize performance. Therefore, this IKM is optimized for large volumes of data. Consider using this IKM if you plan to load your Teradata target table to insert missing records and to update existing ones. To use this IKM, the staging area must be on the same data server as the target. This KM support the following Teradata optimizations:
IKM Teradata Multi Statement	Integrates data in Teradata database target table using multi statement requests, managed in one SQL transaction
IKM Teradata Slowly Changing Dimension	Integrates data in a Teradata target table used as a Type II Slowly Changing Dimension in your Data Warehouse. This IKM relies on the Slowly Changing Dimension metadata set on the target datastore to figure out which records should be inserted as new versions or updated as existing versions. Because inserts and updates are done in bulk set-based processing, this IKM is optimized for large volumes of data. Consider using this IKM if you plan to load your Teradata target table as a Type II Slowly Changing Dimension. To use this IKM, the staging area must be on the same data server as the target and the appropriate Slowly Changing Dimension metadata needs to be set on the target datastore. This KM support the following Teradata optimizations:
This KM also includes a COMPATIBLE option. This option corresponds to the Teradata engine major version number. If this version is 12 or above, then a MERGE statement will be used instead of the standard INSERT then UPDATE statements to merge the incoming data flow into the target table.	
IKM Teradata to File (TTU)	Integrates data in a target file from a Teradata staging area in replace mode. This IKM requires the staging area to be on Teradata. It uses the native Teradata utilities to export the data to the target file. Consider using this IKM if you plan to transform and export data to a target file from your Teradata server. To use this IKM, the staging area must be different from the target. It should be set to a Teradata location. This KM support the following Teradata optimizations:
IKM File to Teradata (TTU)	This IKM is designed to leverage the power of the Teradata utilities for loading files directly to the target. It is restricted to one file as source and one Teradata table as target. Depending on the utility you choose, you'll have the ability to integrate the data in either replace or incremental update mode. Consider using this IKM if you plan to load a single flat file to your target table. Because it uses the Teradata utilities, this IKM is recommended for very large volumes. To use this IKM, you have to set the staging area to the source file's schema. This KM support the following Teradata optimizations:
IKM SQL to Teradata (TTU)	Integrates data from a SQL compliant database to a Teradata database target table using Teradata Utilities TPUMP, FASTLOAD OR MULTILOAD. This IKM is designed to leverage the power of the Teradata utilities for loading source data directly to the target. It can only be used when all source tables belong to the same data server and when this data server is used as a staging area (staging area on source). Source data can be unloaded into a file or Named Pipe and then loaded by the selected Teradata utility directly in the target table. Using named pipes avoids landing the data in a file. This IKM is recommended for very large volumes. Depending on the utility you choose, you'll have the ability to integrate the data in replace or incremental update mode. Consider using this IKM when:
To use this IKM, you have to set the staging area to the source data server's schema. This KM support the following Teradata optimizations:	
IKM SQL to Teradata Control Append	Integrates data from an ANSI-92 compliant source database into Teradata target table in truncate / insert (append) mode. This IKM is typically used for ETL configurations: source and target tables are on different databases and the interface's staging area is set to the logical schema of the source tables or a third schema. See Section 11.7.3, "Designing an ETL-Style Interface" for more information.
Using Slowly Changing Dimensions	
For using slowly changing dimensions, make sure to set the Slowly Changing Dimension value for each column of the target datastore. This value is used by the IKM Teradata Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or Insert Column, Current Record Flag, and Start/End Timestamps columns.	
Using Multi Statement Requests	
Multi statement requests are typically enable the parallel execution of simple interfaces. The Teradata performance is improved by synchronized scans and by avoiding transient journal.	
Set the KM options as follows:	
YES	
. NO	
. YES	
in order to run the generated multi-statement. Note the following limitations concerning multi-statements:	
See "Working with Integration Interface" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for generic information on how to design integration interfaces. This section describes how to design an ETL-style interface where the staging area is on a Teradata database or any ANSI-92 compliant database and the target on Teradata.	
In an ETL-style interface, ODI processes the data in a staging area, which is different from the target. Oracle Data Integrator provides two ways for loading the data from a Teradata or an ANSI-92 compliant staging area to a Teradata target:	
Depending on the KM strategy that is used, flow and static control are supported.	
Using a Multi-connection IKM	
A multi-connection IKM allows integrating data into a target when the staging area and sources are on different data servers.	
Oracle Data Integrator provides the following multi-connection IKM for handling Teradata data: IKM SQL to Teradata Control Append. You can also use the generic SQL multi-connection IKMs. See Chapter 4, "Generic SQL" for more information.	
See Table 11-5 for more information on when to use a multi-connection IKM.	
To use a multi-connection IKM in an ETL-style interface:	
In the Property Inspector, select an ETL multi-connection IKM from the IKM Selector list to load the data from the staging area to the target. See Table 11-5 to determine the IKM you can use.	
Note the following when setting the KM options of the IKM SQL to Teradata Control Append:	
FLOW_CONTROL=false	
. If FLOW_CONTROL=false	
, the data is inserted directly into the target table. FLOW_CONTROL=true	
, the flow table is created on the target or on the staging area. RECYCLE_ERROR=true	
and set an update key for your interface. Using an LKM and a mono-connection IKM	
If there is no dedicated multi-connection IKM, use a standard exporting LKM in combination with a standard mono-connection IKM. The exporting LKM is used to load the flow table from the staging area to the target. The mono-connection IKM is used to integrate the data flow into the target table.	
Oracle Data Integrator supports any ANSI SQL-92 standard compliant technology as a source and staging area of an ETL-style interface. The target is Teradata.	
See Table 11-5 for more information on when to use the combination of a standard LKM and a mono-connection IKM.	
To use an LKM and a mono-connection IKM in an ETL-style interface:	
In the Property Inspector, select a standard mono-connection IKM from the IKM Selector list to update the target. See Table 11-5 to determine the IKM you can use.	
Table 11-5 KM Guidelines for ETL-Style Interfaces with Teradata Data	
Source	Staging Area
---	---
ANSI SQL-92 standard compliant	ANSI SQL-92 standard compliant
ANSI SQL-92 standard compliant	Teradata or any ANSI SQL-92 standard compliant database
ANSI SQL-92 standard compliant	Teradata or ANSI SQL-92 standard compliant
ANSI SQL-92 standard compliant	Teradata
ANSI SQL-92 standard compliant	ANSI SQL-92 standard compliant
This section describes the specific optimizations for Teradata that are included in the Oracle Data Integrator Knowledge Modules.	
This section includes the following topics:	
Teradata performance heavily relies on primary indexes. The Teradata KMs support customized primary indexes (PI) for temporary and target tables. This applies to Teradata LKMs, IKMs and CKMs. The primary index for the temporary and target tables can be defined in these KMs using the PRIMARY_INDEX KM option, which takes the following values:	
[PK]	
: The PI will be the primary key of each temporary or target table. This is the default value. [NOPI]	
: Do not specify primary index (Teradata 13.0 & above only). [UK]	
: The PI will be the update key of the interface. This is the default value. Teradata MultiColumnStatistics should optionally be gathered for selected PI columns. This is controlled by COLLECT_STATS KM option, which is set to true by default.	
Teradata Utilities (TTU) provide an efficient method for transferring data from and to the Teradata engine. When using a LKM or IKM supporting TTUs, it is possible to set the method for loading data using the TERADATA_UTILITY option.	
This option takes the following values when pushing data to a Teradata target (IKM) or staging area (LKM):	
FASTLOAD	
: use Teradata FastLoad MLOAD	
: use Teradata MultiLoad TPUMP	
: use Teradata TPump TPT-LOAD	
: use Teradata Parallel Transporter (Load Operator) TPT-SQL-INSERT	
: use Teradata Parallel Transporter (SQL Insert Operator) This option takes the following values when pushing data FROM Teradata to a file:	
FEXP	
: use Teradata FastExport TPT	
: use Teradata Parallel Transporter When using TTU KMs, you should also take into account the following KM parameters:	
INSERT	
, UPSERT	
and DELETE	
. For UPSERT	
and DELETE	
an update key is required in the interface. For details and appropriate choice of utility and load operator, refer to the Teradata documentation.	
When using TTU KMs to move data between a SQL source and Teradata, it is possible to increase the performances by using Named Pipes instead of files between the unload/load processes. Named Pipes can be activated by setting the NP_USE_NAMED_PIPE option to YES	
. The following options should also be taken into account for using Named Pipes:	
YES	
if the run-time agent runs on a windows platform. Creating and dropping Data Integrator temporary staging tables can be a resource consuming process on a Teradata engine. The ODI_DDL KM option provides a mean to control these DDL operations. It takes the following values:	
This chapter describes how to work with Hypersonic SQL in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator (ODI) seamlessly integrates data in an Hypersonic SQL database. Oracle Data Integrator features are designed to work best with Hypersonic SQL, including reverse-engineering, data integrity check, and integration interfaces.	
The Hypersonic SQL database concepts map the Oracle Data Integrator concepts as follows: A Hypersonic SQL server corresponds to a data server in Oracle Data Integrator. Within this server, one single Oracle Data Integrator physical schema maps to the database.	
Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to Hypersonic SQL.	
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 12-1 for handling Hypersonic SQL data. These KMs use Hypersonic SQL specific features. It is also possible to use the generic SQL KMs with the Hypersonic SQL database. See Chapter 4, "Generic SQL" for more information.	
Table 12-1 Hypersonic SQL Knowledge Modules	
Knowledge Module	Description
---	---
CKM HSQL	Checks data integrity against constraints defined on a Hypersonic SQL table. Rejects invalid records in the error table created dynamically. Can be used for static controls as well as flow controls.
JKM HSQL Consistent	Creates the journalizing infrastructure for consistent journalizing on Hypersonic SQL tables using triggers. Enables consistent Changed Data Capture on Hypersonic SQL.
JKM HSQL Simple	Creates the journalizing infrastructure for simple journalizing on Hypersonic SQL tables using triggers.
SKM HSQL	Generates data access Web services for Hypersonic SQL databases.
Make sure you have read the information in this section before you start using the Hypersonic SQL Knowledge Modules:	
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.	
The list of supported platforms and versions is available on Oracle Technical Network (OTN):	
http://www.oracle.com/technology/products/oracle-data-integrator/index.html	
.	
There are no technology-specific requirements for using Hypersonic SQL in Oracle Data Integrator.	
This section lists the requirements for connecting to a Hypersonic SQL Database.	
JDBC Driver	
Oracle Data Integrator is installed with a JDBC driver for Hypersonic SQL. This driver directly uses the TCP/IP network layer and requires no other installed component or configuration.	
Setting up the Topology consists of:	
A Hypersonic SQL data server corresponds to an Hypersonic SQL Database connected with a specific Hypersonic SQL user account. This user will have access to the database via a physical schema in Oracle Data Integrator created under the data server.	
Create a data server for the Hypersonic SQL technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a Hypersonic SQL data server:	
sa	
) org.hsqldb.jdbcDriver	
jdbc:hsqldb:hsql://<host>:<port>	
The URL parameters are:	
<host>	
: Hypersonic SQL machine network name or IP address <port>	
: Port number Create a physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.	
Setting up a project using the Hypersonic SQL database follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
It is recommended to import the following knowledge modules into your project for getting started with Hypersonic SQL:	
Import also the Generic SQL KMs into your project. See Chapter 4, "Generic SQL" for more information about these KMs.	
This section contains the following topics:	
Create a Hypersonic SQL Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Hypersonic SQL supports Standard reverse-engineering - which uses only the abilities of the JDBC driver.	
To perform a Standard Reverse- Engineering on Hypersonic SQL use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
The ODI Hypersonic SQL Knowledge Modules support the Changed Data Capture feature. See Chapter "Working with Changed Data Capture" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for details on how to set up journalizing and how to use captured changes.	
Hypersonic SQL Journalizing Knowledge Modules support Simple Journalizing and Consistent Set Journalizing. The JKMs use triggers to capture data changes on the source tables.	
Oracle Data Integrator provides the Knowledge Modules listed in Table 12-2 for journalizing Hypersonic SQL tables.	
Table 12-2 Hypersonic SQL Journalizing Knowledge Modules	
KM	Notes
---	---
JKM HSQL Consistent	Creates the journalizing infrastructure for consistent journalizing on Hypersonic SQL tables using triggers. Enables consistent Changed Data Capture on Hypersonic SQL.
JKM HSQL Simple	Creates the journalizing infrastructure for simple journalizing on Hypersonic SQL tables using triggers.
Oracle Data Integrator provides the CKM HSQL for checking data integrity against constraints defined on a Hypersonic SQL table. See "Set up Flow Control and Post-Integration Control" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for details.	
Oracle Data Integrator provides the Knowledge Module listed in Table 12-3 to perform a check on Hypersonic SQL.	
You can use Hypersonic SQL as a source, staging area or a target of an integration interface.	
The KM choice for an interface or a check determines the abilities and performance of this interface or check. The recommendations in this section help in the selection of the KM for different situations concerning a Hypersonic SQL data server.	
Oracle Data Integrator does not provide specific loading or integration knowledge modules for Hypersonic SQL. Use the Generic SQL KMs or the KMs specific to the other technologies used as source, target, or staging area.	
This chapter describes how to work with IBM Informix in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator (ODI) seamlessly integrates data in an IBM Informix database. Oracle Data Integrator features are designed to work best with IBM Informix, including reverse-engineering, journalizing, and integration interfaces.	
The IBM Informix concepts map the Oracle Data Integrator concepts as follows: An IBM Informix Server corresponds to a data server in Oracle Data Integrator. Within this server, an Owner maps to an Oracle Data Integrator physical schema.	
Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an IBM Informix database.	
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 13-1 for handling IBM Informix data. These KMs use IBM Informix specific features. It is also possible to use the generic SQL KMs with the IBM Informix database. See Chapter 4, "Generic SQL" for more information.	
Table 13-1 IBM Informix Knowledge Modules	
Knowledge Module	Description
---	---
IKM Informix Incremental Update	Integrates data in an IBM Informix target table in incremental update mode. This IKM creates a temporary staging table to stage the data flow. It then compares its content to the target table to guess which records should be inserted and which others should be updated. It also allows performing data integrity check by invoking the CKM. Inserts and updates are done in bulk set-based processing to maximize performance. Therefore, this IKM is optimized for large volumes of data. Consider using this IKM if you plan to load your IBM Informix target table to insert missing records and to update existing ones. To use this IKM, the staging area must be on the same data server as the target.
JKM Informix Consistent	Creates the journalizing infrastructure for consistent journalizing on IBM Informix tables using triggers. Enables Consistent Set Changed Data Capture on IBM Informix.
JKM Informix Simple	Creates the journalizing infrastructure for simple journalizing on IBM Informix tables using triggers. Enables Simple Changed Data Capture on IBM Informix.
LKM Informix to Informix (SAME SERVER)	Loads data from a source Informix database to a target Informix staging area located inside the same server. This LKM creates a view in the source database and a synonym in the staging area database. This method if often more efficient than the standard "LKM SQL to SQL" when dealing with large volumes of data. Consider using this LKM if your source tables are located on an IBM Informix database and your staging area is on an IBM Informix database located in the same Informix server.
RKM Informix	Retrieves IBM Informix specific metadata for tables, views, columns, primary keys and non unique indexes. This RKM accesses the underlying Informix catalog tables to retrieve metadata. Consider using this RKM if you plan to extract additional metadata from your Informix catalog when it is not provided by the default JDBC reverse-engineering process.
RKM Informix SE	Retrieves IBM Informix SE specific metadata for tables, views, columns, primary keys and non unique indexes. This RKM accesses the underlying Informix SE catalog tables to retrieve metadata. Consider using this RKM if you plan to extract additional metadata from your Informix SE catalog when it is not provided by the default JDBC reverse-engineering process.
SKM Informix	Generates data access Web services for IBM Informix databases. See SKM SQL in Chapter 4, "Generic SQL" for more details.
There are no specific requirements for using IBM Informix in Oracle Data Integrator.	
This chapter describes how to work with IBM DB2 for iSeries in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator (ODI) seamlessly integrates data in IBM DB2 for iSeries. Oracle Data Integrator features are designed to work best with IBM DB2 for iSeries, including reverse-engineering, changed data capture, data integrity check, and integration interfaces.	
The IBM DB2 for iSeries concepts map the Oracle Data Integrator concepts as follows: An IBM DB2 for iSeries server corresponds to a data server in Oracle Data Integrator. Within this server, a collection or schema maps to an Oracle Data Integrator physical schema. A set of related objects within one schema corresponds to a data model, and each table, view or synonym will appear as an ODI datastore, with its attributes, columns and constraints.	
Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to IBM DB2 for iSeries.	
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 14-1 for handling IBM DB2 for iSeries data. In addition to these specific IBM DB2 for iSeries Knowledge Modules, it is also possible to use the generic SQL KMs with IBM DB2 for iSeries. See Chapter 4, "Generic SQL" for more information.	
Table 14-1 IBM DB2 for iSeries Knowledge Modules	
Knowledge Module	Description
---	---
IKM DB2 400 Incremental Update	Integrates data in an IBM DB2 for iSeries target table in incremental update mode.
IKM DB2 400 Incremental Update (CPYF)	Integrates data in an IBM DB2 for iSeries target table in incremental update mode. This IKM is similar to the "IKM DB2 400 Incremental Update" except that it uses the CPYF native OS/400 command to write to the target table, instead of set-based SQL operations.
IKM DB2 400 Slowly Changing Dimension	Integrates data in an IBM DB2 for iSeries target table used as a Type II Slowly Changing Dimension in your Data Warehouse.
JKM DB2 400 Consistent	Creates the journalizing infrastructure for consistent journalizing on IBM DB2 for iSeries tables using triggers.
JKM DB2 400 Simple	Creates the journalizing infrastructure for simple journalizing on IBM DB2 for iSeries tables using triggers.
JKM DB2 400 Simple (Journal)	Creates the journalizing infrastructure for simple journalizing on IBM DB2 for iSeries tables using the journals.
LKM DB2 400 Journal to SQL	Loads data from an IBM DB2 for iSeries source to a ANSI SQL-92 compliant staging area database. This LKM can source from tables journalized with the JKM DB2 400 Simple (Journal) as it refreshes the CDC infrastructure from the journals.
LKM DB2 400 to DB2 400	Loads data from an IBM DB2 for iSeries source database to an IBM DB2 for iSeries staging area database using CRTDDMF to create a DDM file on the target and transfer data from the source to this DDM file using CPYF.
LKM SQL to DB2 400 (CPYFRMIMPF)	Loads data from an ANSI SQL-92 compliant source database to an IBM DB2 for iSeries staging area database using a temporary file loaded into the DB2 staging area with CPYFRMIPF.
RKM DB2 400	Retrieves metadata for IBM DB2 for iSeries: physical files, tables, views, foreign keys, unique keys.
Make sure you have read the information in this section before you start working with the IBM DB2 for iSeries technology:	
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.	
The list of supported platforms and versions is available on Oracle Technical Network (OTN):	
http://www.oracle.com/technology/products/oracle-data-integrator/index.html	
.	
Some of the Knowledge Modules for IBM DB2 for iSeries use specific features of this database. The following restrictions apply when using these Knowledge Modules.	
See the IBM DB2 for iSeries documentation for additional information on these topics.	
Using System commands	
This section describes the requirements that must be met before using iSeries specific commands in the knowledge modules for IBM DB2 for iSeries:	
Using CDC with Journals	
This section describes the requirements that must be met before using the Journal-based Change Data Capture with IBM DB2 for iSeries:	
This section lists the requirements for connecting to an IBM DB2 for iSeries system.	
JDBC Driver	
Oracle Data Integrator is installed with a default IBM DB2 Datadirect Driver. This drivers directly uses the TCP/IP network layer and requires no other installed component or configuration. You can alternatively use the drivers provided by IBM, such as the Native Driver when installing the agent on iSeries.	
Setting up the Topology consists of:	
An IBM DB2/400 data server corresponds to an iSeries server connected with a specific user account. This user will have access to several databases in this server, corresponding to the physical schemas in Oracle Data Integrator created under the data server.	
Create a data server for the IBM DB2/400 technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining an IBM DB2/400 data server:	
weblogic.jdbc.db2.DB2Driver	
jdbc:weblogic:db2://hostname:port[;property=value[;...]]	
Create an IBM DB2/400 physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
The work schema and data schema in this physical schema correspond each to a schema (collection or library). The work schema should point to a temporary schema and the data schema should point to the schema hosting the data to integrate.	
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.	
Setting up a project using the IBM DB2 for iSeries database follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
It is recommended to import the following knowledge modules into your project for getting started with IBM DB2 for iSeries:	
This section contains the following topics:	
Create an IBM DB2/400 Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
IBM DB2 for iSeries supports both Standard reverse-engineering - which uses only the abilities of the JDBC driver - and Customized reverse-engineering, which uses a RKM to retrieve the metadata.	
In most of the cases, consider using the standard JDBC reverse engineering for starting.	
Consider switching to customized reverse-engineering for retrieving more metadata. IBM DB2 for iSeries customized reverse-engineering retrieves the physical files, database tables, database views, columns, foreign keys and primary and alternate keys.	
Standard Reverse-Engineering	
To perform a Standard Reverse-Engineering on IBM DB2 for iSeries use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Customized Reverse-Engineering	
To perform a Customized Reverse-Engineering on IBM DB2 for iSeries with a RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields specific to the IBM DB2/400 technology:	
In the Reverse tab of the IBM DB2/400 Model, select the KM: RKM DB2 400.<project name>	
.	
Oracle Data Integrator handles Changed Data Capture on iSeries with two methods:	
This method support Simple Journalizing and Consistent Set Journalizing. The IBM DB2 for iSeries JKMs use triggers to capture data changes on the source tables.	
Oracle Data Integrator provides the Knowledge Modules listed in Table 14-2 for journalizing IBM DB2 for iSeries tables using triggers.	
See Chapter "Working with Changed Data Capture" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for details on how to set up journalizing and how to use captured changes.	
Table 14-2 IBM DB2 for iSeries Journalizing Knowledge Modules	
KM	Notes
---	---
JKM DB2 400 Consistent	Creates the journalizing infrastructure for consistent journalizing on IBM DB2 for iSeries tables using triggers.
JKM DB2 400 Simple	Creates the journalizing infrastructure for simple journalizing on IBM DB2 for iSeries tables using triggers.
This method is set up with the JKM DB2/400 Journal Simple and used by the LKM DB2/400 Journal to SQL. It uses also an RPG program to retrieve the journal content.	
A iSeries transaction journal contains the entire history of the data changes for a given period. It is handled by the iSeries system for tables that are journaled. A journaled table is either a table from a collection, or a table for which a journal receiver and a journal have been created and journaling started.	
Reading the transaction journal is performed by the a journal retriever CDCRTVJRN RPG program provided with Oracle Data Integrator. This program loads on demand the tables of the Oracle Data Integrator CDC infrastructure (J$ tables) with the contents from the transaction journal.	
This program can be either scheduled on the iSeries system or called by the KMs through a stored procedure also called CDCRTVJRN. This stored procedure is automatically created by the JKM DB2/400 Journal Simple and invoked by the LKM DB2/400 Journal to SQL when data extraction is needed.	
This program connects to the native iSeries journal for a given table, and captures changed data information into the Oracle Data Integrator Journal (J$).	
The program works as follows:	
QSYS.QADBXREF	
system table. QADBRTVFD()	
API. QSYS.QADBIFLD	
system table. QUSLFLD()	
API. QJoRetrieveJournalEntries()	
API. This program accepts the parameters listed in Table 14-3.	
Table 14-3 CDCRTVJRN Program Parameters	
Parameter	RPG Type
---	---
SbsTName	A138
JrnTName	A138
JrnSubscriber	A50
LogMessages	A1
There are two major components installed on the iSeries system to enable native journal reading:	
Note: The program must be set up in a library defined in the Topology as the default work library for this iSeries data server. In the examples below, this library is calledODILIB .	
Installing the CDCRTVJRN Program	
To install the CDCRTVJRN program:	
ODI_HOME/setup/manual/cdc-iseries	
directory, and is also available on the Oracle Data Integrator Companion CD. An FTP command sequence performing the upload is given below as an example.	
CDCRTVJRN	
. Use the following command below to view it:	
The CDCRTVJRN Stored Procedure	
This procedure is used to call the CDCRTVJRN program. It is automatically created by the JKM DB2/400 Journal Simple KM when journalizing is started. Journalizing startup is described in the Change Data Capture topic.	
The syntax for the stored procedure is provided below for reference:	
Note: The stored procedure and the program are installed in a library defined in the Topology as the default work library for this iSeries data server	
Once the program is installed and the CDC is setup, using the native journals consists in using the LKM DB2/400 Journal to SQL to extract journalized data from the iSeries system. The retrieval process is triggered if the RETRIEVE_JOURNAL_ENTRIES option is set to true	
for the LKM.	
This section list the possibly issues when using this changed data capture method.	
CDCRTVJRN Program Limits	
The following limits exist for the CDCRTVJRN program:	
Troubleshooting the CDCRTVJRN Program	
The journal reading process can be put in trace mode:	
The reading process logs are stored in a spool file which can be reviewed using the WRKSPLF command.	
You can also review the raw contents of the iSeries journal using the DSPJRN command.	
Oracle Data Integrator provides the generic CKM SQL for checking data integrity against constraints defined in DB2/400. See "Set up Flow Control and Post-Integration Control" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for details.	
See Chapter 4, "Generic SQL" for more information.	
You can use IBM DB2 for iSeries as a source, staging area or a target of an integration interface.	
The KM choice for an interface or a check determines the abilities and performance of this interface or check. The recommendations in this section help in the selection of the KM for different situations concerning an IBM DB2 for iSeries data server.	
IBM DB2 for iSeries can be used as a source, target or staging area of an interface. The LKM choice in the Interface Flow tab to load data between IBM DB2 for iSeries and another type of data server is essential for the performance of an interface.	
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for loading data from IBM DB2 for iSeries to a target or staging area database. These optimized IBM DB2 for iSeries KMs are listed in Table 14-4.	
In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to the other technology involved to load data from IBM DB2 for iSeries to a target or staging area database.	
Table 14-4 KMs for loading data from IBM DB2 for iSeries	
Source or Staging Area Technology	KM
---	---
IBM DB2 for iSeries	LKM DB2 400 to DB2 400
IBM DB2 for iSeries	LKM DB2 400 Journal to SQL
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for loading data from a source or staging area into an IBM DB2 for iSeries database. These optimized IBM DB2 for iSeries KMs are listed in Table 14-5.	
In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to the other technology involved.	
Table 14-5 KMs for loading data to IBM DB2 for iSeries	
Source or Staging Area Technology	KM
---	---
IBM DB2 for iSeries	LKM DB2 400 to DB2 400
SQL	LKM SQL to DB2 400 (CPYFRMIMPF)
Oracle Data Integrator provides Knowledge Modules that implement optimized data integration strategies for IBM DB2 for iSeries. These optimized IBM DB2 for iSeries KMs are listed in Table 14-6. I	
In addition to these KMs, you can also use the Generic SQL KMs.	
The IKM choice in the Interface Flow tab determines the performances and possibilities for integrating.	
Table 14-6 KMs for integrating data to IBM DB2 for iSeries	
KM	Notes
---	---
IKM DB2 400 Incremental Update	Integrates data in an IBM DB2 for iSeries target table in incremental update mode.
IKM DB2 400 Incremental Update (CPYF)	Integrates data in an IBM DB2 for iSeries target table in incremental update mode. This IKM is similar to the "IKM DB2 400 Incremental Update" except that it uses the CPYF native OS/400 command to write to the target table, instead of set-based SQL operations.
IKM DB2 400 Slowly Changing Dimension	Integrates data in an IBM DB2 for iSeries target table used as a Type II Slowly Changing Dimension in your Data Warehouse.
Using Slowly Changing Dimensions	
For using slowly changing dimensions, make sure to set the Slowly Changing Dimension value for each column of the target datastore. This value is used by the IKM DB2 400 Slowly Changing Dimension to identify the Surrogate Key, Natural Key, Overwrite or Insert Column, Current Record Flag and Start/End Timestamps columns.	
This section provides specific considerations when using Oracle Data Integrator in an iSeries environment.	
The Oracle Data Integrator Standalone Agent can be installed on iSeries.	
See the Oracle Fusion Middleware Installation Guide for Oracle Data Integrator for more information.	
It is preferable to use the built-in IBM DB2 Datadirect driver in most cases. This driver directly use the TCP/IP network layer and require no other components installed on the client machine. Other methods exist to connect DB2 on iSeries.	
It is also possible to connect through ODBC with the IBM Client Access component installed on the machine. This method does not have very good performance and does not support the reverse engineering and some other features. It is therefore not recommended.	
This driver appears as a jt400.zip	
file you must copy into your Oracle Data Integrator installation drivers directory.	
To connect DB2 for iSeries with a Java application installed on the iSeries machine, IBM recommends that you use the JT/400 Native driver (jt400native.jar	
) instead of the JT/400 driver (jt400.jar	
). The Native driver provides optimized access to the DB2 system, but works only from the iSeries machine.	
To support seamlessly both drivers with one connection, Oracle Data Integrator has a built-in Driver Wrapper for AS/400. This wrapper connects through the Native driver if possible, otherwise it uses the JT/400 driver. It is recommended that you use this wrapper if running agents installed on AS/400 systems.	
To configure a data server with the driver wrapper:	
com.sunopsis.jdbc.driver.wrapper.SnpsDriverWrapper	
jdbc:snps400:<machine_name>[;param1=value1[;param2=value2...]]	
HOST_NAME	
: comma separated list of host names identifying the current machine. HOST_IP	
: IP Address of the current machine. The value allow the wrapper to identify whether this data server is accessed on the iSeries machine or from a remote machine.	
This section provides information on how to troubleshoot problems that you might encounter when using Oracle Knowledge Modules. It contains the following topics:	
Errors in Oracle Data Integrator appear often in the following way:	
the java.sql.SQLExceptioncode	
simply indicates that a query was made to the database through the JDBC driver, which has returned an error. This error is frequently a database or driver error, and must be interpreted in this direction.	
Only the part of text in bold must first be taken in account. It must be searched in the DB2 or iSeries documentation. If its contains sometimes an error code specific to your system, with which the error can be immediately identified.	
If such an error is identified in the execution log, it is necessary to analyze the SQL code send to the database to find the source of the error. The code is displayed in the description tab of the erroneous task.	
This section describes common problems and solutions.	
UnknownDriverException	
The JDBC driver is incorrect. Check the name of the driver.	
The application requester cannot establish the connection.(<name or IP address>) Cannot open a socket on host: <name or IP address>, port: 8471 (Exception: java.net.UnknownHostException:<name or IP address>)	
Oracle Data Integrator cannot connect to the database. Either the machine name or IP address is invalid, the DB2/400 Services are not started or the TCP/IP interface on AS/400 is not started. Try to ping the AS/400 machine using the same machine name or IP address, and check with the system administrator that the appropriate services are started.	
Datasource not found or driver name not specified	
The ODBC Datasource specified in the JDBC URL is incorrect.	
The application server rejected the connection.(Signon was canceled.) Database login failed, please verify userid and password. Communication Link Failure. Comm RC=8001 - CWBSY0001 - ...	
The user profile used is not valid. This error occurs when typing an invalid user name or an incorrect password.	
Communication Link Failure	
An error occurred with the ODBC connectivity. Refer to the Client Access documentation for more information.	
SQL5001 - Column qualifier or table &2 undefined. SQL5016 - Object name &1 not valid for naming convention	
Your JDBC connection or ODBC Datasource is configured to use the wrong naming convention. Use the ODBC Administrator to change your datasource to use the proper (*SQL or *SYS) naming convention, or use the appropriate option in the JDBC URL to force the naming conversion (for instance jdbc:as400://195.10.10.13;naming=system) . Note that if using the system naming convention in the Local Object Mask of the Physical Schema, you must enter %SCHEMA/%OBJECT instead of %SCHEMA.%OBJECT.	
"*SQL" should always be used unless your application is specifically designed for *SYS. Oracle Data Integrator uses the *SQL naming convention by default.	
SQL0204 &1 in &2 type *&3 not found	
The table you are trying to access does not exist. This may be linked to an error in the context choice, or in the sequence of operations (E.g.: The table is a temporary table which must be created by another interface).	
Hexadecimal characters appear in the target tables. Accentuated characters are incorrectly transferred	
. The iSeries computer attaches a language identifier or CCSID to files, tables and even fields (columns). CCSID 65535 is a generic code that identifies a file or field as being language independent: i.e. hexadecimal data. By definition, no translation is performed by the drivers. If you do not wish to update the CCSID of the file, then translation can be forced, in the JDBC URL, thanks to the flags ccsid=<ccsid code> and convert _ccsid_65535=yes	no. See the driver's documentation for more information.
SQL0901 SQL system error	
This error is an internal error of the DB2/400 system.	
SQL0206 Column &1 not in specified tables	
Keying error in a mapping/join/filter	
. A string which is not a column name is interpreted as a column name, or a column name is misspelled.	
This error may also appear when accessing an error table associated to a datastore with a structure recently modified. It is necessary to impact in the error table the modification, or drop the error tables and let Oracle Data Integrator recreate it in the next execution.	
This chapter describes how to work with IBM DB2 UDB in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator (ODI) seamlessly integrates data in an IBM DB2 UDB database. Oracle Data Integrator features are designed to work best with IBM DB2 UDB, including journalizing, data integrity checks, and integration interfaces.	
The IBM DB2 UDB concepts map the Oracle Data Integrator concepts as follows: An IBM DB2 UDB database corresponds to a data server in Oracle Data Integrator. Within this server, a schema maps to an Oracle Data Integrator physical schema.	
Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an IBM DB2 UDB database.	
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 15-1 for handling IBM DB2 UDB data. These KMs use IBM DB2 UDB specific features. It is also possible to use the generic SQL KMs with the IBM DB2 UDB database. See Chapter 4, "Generic SQL" for more information	
Table 15-1 IBM DB2 UDB Knowledge Modules	
Knowledge Module	Description
---	---
IKM DB2 UDB Incremental Update	Integrates data in an IBM DB2 UDB target table in incremental update mode. This IKM creates a temporary staging table to stage the data flow. It then compares its content to the target table to identify which records should be inserted and which others should be updated. It also allows performing data integrity check by invoking the CKM. Inserts and updates are done in bulk set-based processing to maximize performance. Therefore, this IKM is optimized for large volumes of data. Consider using this IKM if you plan to load your IBM DB2 UDB target table to insert missing records and to update existing ones. To use this IKM, the staging area must be on the same data server as the target.
IKM DB2 UDB Slowly Changing Dimension	Integrates data in an IBM DB2 UDB target table used as a Type II Slowly Changing Dimension in your Data Warehouse. This IKM relies on the Slowly Changing Dimension metadata set on the target datastore to figure out which records should be inserted as new versions or updated as existing versions. Because inserts and updates are done in bulk set-based processing, this IKM is optimized for large volumes of data. Consider using this IKM if you plan to load your IBM DB2 UDB target table as a Type II Slowly Changing Dimension. To use this IKM, the staging area must be on the same data server as the target and the appropriate Slowly Changing Dimension metadata needs to be set on the target datastore.
JKM DB2 UDB Consistent	Creates the journalizing infrastructure for consistent journalizing on IBM DB2 UDB tables using triggers. Enables Consistent Changed Data Capture on IBM DB2 UDB.
JKM DB2 UDB Simple	Creates the journalizing infrastructure for simple journalizing on IBM DB2 UDB tables using triggers. Enables Simple Changed Data Capture on IBM DB2 UDB.
LKM DB2 UDB to DB2 UDB (EXPORT_IMPORT)	Loads data from an IBM DB2 UDB source database to an IBM DB2 UDB staging area database using the native EXPORT / IMPORT commands. This module uses the EXPORT CLP command to extract data in a temporary file. Data is then loaded in the target staging DB2 UDB table using the IMPORT CLP command. This method if often more efficient than the standard LKM SQL to SQL when dealing with large volumes of data. Consider using this LKM if your source tables are located on a DB2 UDB database and your staging area is on a different DB2 UDB database.
LKM File to DB2 UDB (LOAD)	Loads data from a File to a DB2 UDB staging area database using the native CLP LOAD Command. Depending on the file type (Fixed or Delimited) this LKM will generate the appropriate LOAD script in a temporary directory. This script is then executed by the CLP and automatically deleted at the end of the execution. Because this method uses the native IBM DB2 loaders, it is more efficient than the standard LKM File to SQL when dealing with large volumes of data. Consider using this LKM if your source is a large flat file and your staging area is an IBM DB2 UDB database.
LKM SQL to DB2 UDB	Loads data from any ANSI SQL-92 standard compliant source database to an IBM DB2 UDB staging area. This LKM is similar to the standard LKM SQL to SQL described in Chapter 4, "Generic SQL" except that you can specify some additional specific IBM DB2 UDB parameters.
LKM SQL to DB2 UDB (LOAD)	Loads data from any ANSI SQL-92 standard compliant source database to an IBM DB2 UDB staging area using the CLP LOAD command. This LKM unloads the source data in a temporary file and calls the IBM DB2 native loader using the CLP LOAD command to populate the staging table. Because this method uses the native IBM DB2 loader, it is often more efficient than the LKM SQL to SQL or LKM SQL to DB2 UDB methods when dealing with large volumes of data. Consider using this LKM if your source data located on a generic database is large, and when your staging area is an IBM DB2 UDB database.
SKM IBM UDB	Generates data access Web services for IBM DB2 UDB databases. See SKM SQL in Chapter 4, "Generic SQL" for more information.
Some of the Knowledge Modules for IBM DB2 UDB use operating system calls to invoke the IBM CLP command processor to perform efficient loads. The following restrictions apply when using such Knowledge Modules:	
See the IBM DB2 documentation for more information.	
This chapter describes how to work with Sybase AS Enterprise in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator (ODI) seamlessly integrates data in a Sybase AS Enterprise database. Oracle Data Integrator features are designed to work best with Sybase AS Enterprise, including journalizing and integration interfaces.	
The Sybase AS Enterprise concepts map the Oracle Data Integrator concepts as follows: An Sybase AS Enterprise database corresponds to a data server in Oracle Data Integrator. Within this server, a database/owner pair maps to an Oracle Data Integrator physical schema.	
Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to a Sybase AS Enterprise database.	
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 16-1 for handling Sybase AS Enterprise data. These KMs use Sybase AS Enterprise specific features. It is also possible to use the generic SQL KMs with the Sybase AS Enterprise database. See Chapter 4, "Generic SQL" for more information.	
Table 16-1 Sybase ASE Knowledge Modules	
Knowledge Module	Description
---	---
IKM Sybase ASE Incremental Update	Integrates data in a Sybase Adaptive Server Enterprise target table in incremental update mode. This IKM creates a temporary staging table to stage the data flow. It then compares its content to the target table to guess which records should be inserted and which others should be updated. It also allows performing data integrity check by invoking the CKM. Inserts and updates are done in bulk set-based processing to maximize performance. Therefore, this IKM is optimized for large volumes of data. Consider using this IKM if you plan to load your Sybase Adaptive Server Enterprise target table to insert missing records and to update existing ones. To use this IKM, the staging area must be on the same data server as the target.
IKM Sybase ASE Slowly Changing Dimension	Integrates data in a Sybase Adaptive Server Enterprise target table used as a Type II Slowly Changing Dimension in your Data Warehouse. This IKM relies on the Slowly Changing Dimension metadata set on the target datastore to figure out which records should be inserted as new versions or updated as existing versions. Because inserts and updates are done in bulk set-based processing, this IKM is optimized for large volumes of data. Consider using this IKM if you plan to load your Sybase Adaptive Server Enterprise target table as a Type II Slowly Changing Dimension. To use this IKM, the staging area must be on the same data server as the target and the appropriate Slowly Changing Dimension metadata needs to be set on the target datastore.
JKM Sybase ASE Consistent	Creates the journalizing infrastructure for consistent journalizing on Sybase Adaptive Server Enterprise tables using triggers. Enables Consistent Set Changed Data Capture on Sybase Adaptive Server Enterprise.
JKM Sybase ASE Simple	Creates the journalizing infrastructure for simple journalizing on Sybase Adaptive Server Enterprise tables using triggers. Enables Simple Changed Data Capture on Sybase Adaptive Server Enterprise.
LKM SQL to Sybase ASE	Loads data from any SQL compliant database to Sybase Adaptive Server Enterprise. This KM uses the ODI Agent to read selected data from the database and write the result into the target temporary table created dynamically.When using this KM on a journalized source table, the Journalizing table is first updated to flag the records consumed and then cleaned from these records at the end of the interface.This Knowledge Module is NOT RECOMMENDED when using LARGE VOLUMES. Other specific modules using Bulk utilities (SQL*LOADER, BULK INSERT...) or direct links (DBLINKS, Linked Servers...) are usually more efficient.
LKM SQL to Sybase ASE (BCP)	Loads data from any SQL compliant database to a Sybase Adaptive Server Enterprise staging area database using the BCP (Bulk Copy Program) utility. This LKM unloads the source data in a temporary file and calls the Sybase BCP utility to populate the staging table. Because this method uses the native BCP utility, it is often more efficient than the "LKM SQL to SQL" method when dealing with large volumes of data. Consider using this LKM if your source data located on a generic database is large, and when your staging area is a Sybase Adaptive Server Enterprise database.
LKM Sybase ASE to Sybase ASE (BCP)	Loads data from a Sybase Adaptive Server Enterprise source database to a Sybase Adaptive Server Enterprise staging area database using the native BCP out/BCP in commands. This module uses the native BCP (Bulk Copy Program) command to extract data in a temporary file. Data is then loaded in the target staging Sybase Adaptive Server Enterprise table using the native BCP command again. This method if often more efficient than the standard "LKM SQL to SQL" when dealing with large volumes of data. Consider using this LKM if your source tables are located on a Sybase Adaptive Server Enterprise instance and your staging area is on a different Sybase Adaptive Server Enterprise instance.
Some of the Knowledge Modules for Sybase Adaptive Server Enterprise use the BCP specific loading utility. The following restrictions apply when using such Knowledge Modules:	
See the Sybase Adaptive Server Enterprise documentation for more information.	
This chapter describes how to work with Sybase IQ in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator (ODI) seamlessly integrates data in a Sybase IQ database. Oracle Data Integrator features are designed to work best with Sybase IQ, including data integrity check and integration interfaces.	
The Sybase IQ concepts map the Oracle Data Integrator concepts as follows: A Sybase IQ server corresponds to a data server in Oracle Data Integrator. Within this server, a schema maps to an Oracle Data Integrator physical schema.	
Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to a Sybase IQ database.	
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 17-1 for handling Sybase IQ data. These KMs use Sybase IQ specific features. It is also possible to use the generic SQL KMs with the Sybase IQ database. See Chapter 4, "Generic SQL" for more information.	
Table 17-1 Sybase IQ Knowledge Modules	
Knowledge Module	Description
---	---
CKM Sybase IQ	Checks data integrity against constraints defined on a Sybase IQ table. Rejects invalid records in the error table created dynamically. Can be used for static controls as well as flow controls. Consider using this KM if you plan to check data integrity on a Sybase IQ database.
IKM Sybase IQ Incremental Update	Integrates data in a Sybase IQ target table in incremental update mode. This IKM creates a temporary staging table to stage the data flow. It then compares its content to the target table to guess which records should be inserted and which others should be updated. It also allows performing data integrity check by invoking the CKM. Inserts and updates are done in bulk set-based processing to maximize performance. Therefore, this IKM is optimized for large volumes of data. Consider using this IKM if you plan to load your Sybase IQ target table to insert missing records and to update existing ones. To use this IKM, the staging area must be on the same data server as the target.
IKM Sybase IQ Slowly Changing Dimension	Integrates data in a Sybase IQ target table used as a Type II Slowly Changing Dimension in your Data Warehouse. This IKM relies on the Slowly Changing Dimension metadata set on the target datastore to figure out which records should be inserted as new versions or updated as existing versions. Because inserts and updates are done in bulk set-based processing, this IKM is optimized for large volumes of data. Consider using this IKM if you plan to load your Sybase IQ target table as a Type II Slowly Changing Dimension. To use this IKM, the staging area must be on the same data server as the target and the appropriate Slowly Changing Dimension metadata needs to be set on the target datastore.
LKM File to Sybase IQ (LOAD TABLE)	Loads data from a File to a Sybase IQ staging area database using the LOAD TABLE SQL command. Because this method uses the native LOAD TABLE command, it is more efficient than the standard "LKM File to SQL" when dealing with large volumes of data. However, the loaded file must be accessible from the Sybase IQ machine. Consider using this LKM if your source is a large flat file and your staging area is a Sybase IQ database.
LKM SQL to Sybase IQ (LOAD TABLE)	Loads data from any ANSI SQL-92 standard compliant source database to a Sybase IQ staging area database using the native LOAD TABLE SQL command. This LKM unloads the source data in a temporary file and calls the Sybase IQ LOAD TABLE SQL command to populate the staging table. Because this method uses the native LOAD TABLE, it is often more efficient than the LKM SQL to SQL method when dealing with large volumes of data. Consider using this LKM if your source data located on a generic database is large, and when your staging area is a Sybase IQ database.
Some of the Knowledge Modules for Sybase IQ use the LOAD TABLE specific command. The following restrictions apply when using such Knowledge Modules.	
See the Sybase IQ documentation for more information.	
This part describes how to work with Business Intelligence in Oracle Data Integrator.	
Part II contains the following chapters:	
This chapter describes how to work with Oracle Business Intelligence Enterprise Edition in Oracle Data Integrator.	
This chapter includes the following sections:	
Oracle Data Integrator (ODI) seamlessly integrates data from Oracle Business Intelligence Enterprise Edition (Oracle BI).	
Oracle Data Integrator provides specific methods for reverse-engineering and extracting data from ADF View Objects (ADF-VOs) via the Oracle BI Physical Layer using integration interfaces.	
The Oracle Business Intelligence Enterprise Edition concepts map the Oracle Data Integrator concepts as follows: An Oracle BI Server corresponds to a data server in Oracle Data Integrator. Within this server, a catalog/owner pair maps to an Oracle Data Integrator physical schema.	
Oracle Data Integrator connects to this server to access, via a bypass connection pool, the physical sources that support ADF View Objects.	
Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an Oracle BI Server.	
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 18-1 for handling Oracle BI data. These KMs use Oracle BI specific features.	
Table 18-1 Oracle BI Knowledge Modules	
Knowledge Module	Description
---	---
RKM Oracle BI (Jython)	Retrieves the table structure in Oracle BI (columns and primary keys).
LKM Oracle BI to Oracle (DBLink)	Loads data from an Oracle BI source to an Oracle database area using dblinks.
LKM Oracle BI to SQL	Loads data from an Oracle BI source to any ANSI SQL-92 compliant database.
IKM Oracle BI to SQL Append	Integrates data into a ANSI-SQL92 target database from an Oracle BI source.
Make sure you have read the information in this section before you start using the Oracle BI Knowledge Modules:	
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.	
The list of supported platforms and versions is available on Oracle Technical Network (OTN):	
http://www.oracle.com/technology/products/oracle-data-integrator/index.html	
.	
There are no technology-specific requirements for using Oracle BI in Oracle Data Integrator.	
This section lists the requirements for connecting to an Oracle BI Server.	
JDBC Driver	
Oracle Data Integrator uses the Oracle BI native driver to connect to the Oracle BI Server. This driver must be installed in your Oracle Data Integrator drivers directory.	
Bypass Connection Pool	
In Oracle BI, a sqlbypass database connection must be setup to bypass the ADF layer and directly fetch data from the underlying database. The name of this connection pool is required for creating the Oracle BI data server in Oracle Data Integrator.	
Setting up the Topology consists of:	
A data server corresponds to a Oracle BI Server. Oracle Data Integrator connects to this server to access, via a bypass connection pool, the physical sources that support ADF View Objects. These physical objects are located under the view objects that are exposed in this server. This server is connected with a user who has access to several catalogs/schemas. Catalog/schemas pairs correspond to the physical schemas that are created under the data server.	
Create a data server for the Oracle BI technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a Oracle BI data server:	
oracle.bi.jdbc.AnaJdbcDriver	
jddbc:oraclebi://<host>:<port>	
<host>	
is the server on which Oracle BI server is installed. By default the <port>	
number is 9703	
.	
NQ_SESSION.SELECTPHYSICAL	
Yes	
Note: This option is required for accessing the physical data. Using this option makes the Oracle BI connection read-only.	
CONNECTION_POOL	
<connection pool name>	
Note: Note this bypass connection pool must also be defined in the Oracle BI server itself.	
Create a Oracle BI physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
In the physical schema the Data and Work Schemas correspond each to an Oracle BI Catalog/schema pair.	
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.	
Setting up a project using an Oracle BI Server follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
It is recommended to import the following knowledge modules into your project for getting started with Oracle BI:	
Import also the knowledge modules (IKM, CKM) required for the other technologies involved in your project.	
This section contains the following topics:	
Create an Oracle BI Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.	
Oracle BI supports Customized reverse-engineering.	
To perform a Customized Reverse-Engineering on Oracle BI with a RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields specific to the Oracle BI technology:	
KM: RKM Oracle BI (Jython).<project name>	
. This KM implements the USE_LOG and LOG_FILE_NAME logging options to trace the reverse-engineering process.	
Data integrity check is not supported in an Oracle BI Server. You can check data extracted Oracle BI in a staging area using another technology.	
You can use Oracle BI as a source of an integration interface.	
The KM choice for an interface determines the abilities and performance of this interface. The recommendations in this section help in the selection of the KM for different situations concerning an Oracle BI server.	
The LKM choice in the Interface Flow tab to load data between Oracle BI and another type of data server is essential for the performance of an interface.	
Use the knowledge modules listed in Table 18-2 to load data from an Oracle BI server to a target or staging area database.	
Table 18-2 KMs for loading data From Oracle BI	
Staging Area/Target Technology	KM
---	---
Oracle	LKM Oracle BI to Oracle (Dblink)
SQL	LKM Oracle BI to SQL
SQL	IKM Oracle BI to SQL Append
This chapter describes how to integrate Oracle Business Intelligence Enterprise Edition (OBIEE) and Oracle Data Integrator (ODI) metadata to build report-to-source data lineage.	
This chapter includes the following sections:	
OBIEE users need to know the origin of the data displayed on their reports. When this data is loaded from source systems into the data warehouse using ODI, it is possible to use the Oracle Data Integrator Lineage for Oracle Business Intelligence feature to consolidate Oracle Data Integrator (ODI) metadata with Oracle Business Intelligence Enterprise Edition (OBIEE) and expose this metadata in a report-to-source data lineage dashboards in OBIEE.	
The OBIEE Lineage is made up of the following components:	
This section describes the different phases of using OBIEE Lineage and the persons involved in these phases.	
OBIEE or ODI administrators set up the lineage process. Setting up this process is required once and consists of the following tasks:	
OBIEE or ODI project managers refresh the lineage when either ODI or OBIEE metadata has changed, to synchronize the lineage tables content with their active OBIEE and ODI systems' metadata. This refresh process:	
During this phase, a correspondence between the ODI Data Models and the OBIEE Physical Databases must be provided. By doing this mapping, you indicate that an existing model definition in Oracle Data Integrator corresponds to an existing database in OBIEE. These two should contain the same tables. By providing this mapping information, you enable the lineage to consolidate the OBIEE and ODI metadata and build an end-to-end lineage.	
The lineage is used to extend existing dashboards. You can create specific links in these dashboards to browse the data lineage and view the execution statistics of the ODI sessions.	
You can also customize your own dashboards using the pre-packaged Lineage Artifacts for OBIEE.	
Figure 19-1 describes the Lineage lifecycle after the initial setup.	
The BIEE metadata is extracted (1) and consolidated with the ODI Metadata in the lineage tables (2). The lineage tables are accessed from the end-user's dashboard (3) through the Lineage Artifacts deployed in the BIEE Server.	
This section contains information and instructions for installing OBIEE Lineage:	
Installing Lineage in an OBIEE Server deploys the required OBIEE artifacts in the OBIEE Repository and Web Catalog. The OBIEE Lineage artifacts are the Lineage RPD, the Lineage Web Catalog Requests, and the dashboard images. These artifacts are used to access the lineage content from your reports and dashboards.	
The installation is performed using the OBIEE Lineage Wizard. This wizard guides you through the installation, and also through the configuration and refresh of the Oracle Data Integrator (ODI) Lineage for Oracle Business Intelligence Enterprise edition (OBIEE).	
After installation and configuration are complete, there are some post-installation tasks you need to perform, depending on your OBIEE version.	
The complete installation flow is as follows:	
Installation Flow when Using OBIEE 10g	
When using OBIEE 10g, the OBIEE Lineage wizard installs only the Lineage RPD. To install the Lineage Web Catalog Requests and the dashboard images, you have to perform some additional tasks. The following installation flow describes the complete installation instructions, including the deployment of the Web Catalog Requests and Images:	
Note that you can also use the install lineage script instead of the OBIEE Lineage wizard. See Section 19.5.2, "Automating Lineage Deployment" for more information.	
Installation Flow when Using OBIEE 11g	
When using OBIEE 11g, the OBIEE Lineage wizard installs only the Lineage RPD and the Web catalog Requests. To install the dashboard images, you have to perform some additional tasks. The following installation flow describes the complete installation instructions, including the deployment Images:	
Note that you can also use the install lineage script instead of the OBIEE Lineage wizard. See Section 19.5.2, "Automating Lineage Deployment" for more information.	
Before installing OBIEE Lineage, you should review the following requirements:	
This section provides the installation instructions and contains the following topics:	
Note: After performing the installation instructions, please perform the required post-installation tasks describes in Section 19.2.4, "Post-Installation Tasks".	
The OBIEE Lineage wizard is included in the odiobilineage.zip	
file in the ODI Companion CD in the /misc/biee-lineage/	
folder.	
Perform the following steps to start the OBIEE Lineage wizard:	
C:\biee_lineage\	
folder. /bin	
sub-folder: ./refreshlineage.sh	
refreshlineage.bat	
You can also use the installlineage.bat	
script to start the wizard. When one of these scripts is started with no parameter, it opens the OBIEE Lineage Wizard	
Note: You can also use the install lineage script instead of the OBIEE Lineage wizard for installing the Lineage Artifacts from a command line. The install and export options are supported only on Windows. The refresh lineage option is supported both on Windows and Unix. See Section 19.5.2, "Automating Lineage Deployment" for more information.	
This section describes how to install OBIEE Lineage in OBIEE Server and how to deploy the required OBIEE Lineage artifacts in the OBIEE Repository and Web Catalog using the OBIEE Lineage wizard.	
To install Lineage in OBIEE Server and deploy the required artifacts:	
The wizard displays a sequence of screens, in the order listed in Table 19-1.	
If you need additional help with any of the installation screens, click Help to access the online help.	
Table 19-1 Instructions for Deploying the OBIEE Lineage Artifacts	
No.	Screen
---	---
1	Welcome Screen
2	Select Action Screen
3	OBIEE Repository Connection Information Screen
Click Next to continue.	
4	OBIEE Web Catalog Connection Information Screen
Click Next to continue and deploy the lineage artifacts.	
5	Action Complete Screen
After installing the Lineage on the OBIEE Server, you should deploy the OBIEE Lineage Artifacts. See Section 19.2.4, "Post-Installation Tasks" for more information.	
This section describes the post-installation tasks. Theses tasks depend on your OBIEE Server version.	
For OBIEE 10g, you need to perform the following post-installation tasks:	
For OBIEE 11g, you need to perform the following post-installation tasks:	
Deploy the Web Catalog Requests in the OBIEE 10g Web Catalog	
Note: This procedure is required for OBIEE 10g only.	
The OBIEE/ODI Lineage comes with a Web Catalog for building your reports on top of the Lineage and ODI Repository tables.To import the Web Catalog requests, perform the following steps:	
To connect to your Web Catalog:	
To make a backup copy:	
webcatalog_backup.cat	
. /artifacts/10g	
sub-folder of the Lineage installation folder. artifacts/10godi_catalog_archive_10g.cat	
artifacts/10g/odi_catalog_archive_10_1_3_4.cat	
A new folder called ODI	
appears in the catalog folder.	
Deploy the Dashboard Images	
The prepackaged requests use images that should be deployed into the application server that hosts the analytic application. Theses tasks depend on your OBIEE Server version:	
hie.gif	
and lin.gif	
, located in the in the /artifacts/images	
sub-folder of the Lineage installation folder) to the res	
folder under the deployment directory of the BI analytics application. For example:	
<OC4J_HOME>\j2ee\home\applications\analytics\analytics\res	
hie.gif	
and lin.gif	
, located in the in the /artifacts/images	
sub-folder of the Lineage installation folder) to the res	
folder under the deployment directory of the BI analytics application. For example:	
<DOMAIN_HOME>\servers\<SERVER_NAME>\tmp_WL_user\analytics_11.1.1\7dezjl\war\res	
Update the BI Physical Layer Connection to the ODI Work Repository	
.rpd	
) used by the BI Server. This section describes how to export metadata from the OBIEE Repository and Web Catalog and how to consolidate it with ODI Metadata into the Lineage.	
To export metadata from OBIEE and Refresh Lineage:	
Note: With OBIEE 10g it is not possible to automatically export the web catalog content; As a consequence, you need to perform manually an export of the web catalog content. See Section 19.4.2, "Exporting the OBIEE Web Catalog Report to a Text File" for more information.You will provide the location of this export file to the wizard.	
Note: You can also use the refresh lineage script instead of the OBIEE Lineage wizard. See Section 19.5.3, "Automating Lineage Refresh" for more information.	
The wizard displays a sequence of screens, in the order listed in Table 19-2.	
If you need additional help with any of the installation screens, click Help to access the online help.	
Table 19-2 Instructions for Exporting Metadata from OBIEE and Refreshing Lineage	
No.	Screen
---	---
1	Welcome Screen
2	Select Action Screen
3	OBIEE Repository Connection Information Screen
Click Next to continue.	
4	OBIEE Web Catalog Connection Information Screen
Click Next to continue and install the lineage artifacts.	
5	ODI Repository Connection Information Screen
Database Connection (Master Repository)	
Work Repository	
Click Next to continue.	
6	Mapping Information
Click Next to continue.	
7	Action Complete Screen
This section describes how to refresh the OBIEE Lineage from existing exports. This operation consolidates OBIEE Repository and Web Catalog exports manually created with ODI Repository metadata into the Lineage. This section also describes how to export the OBIEE Repository and the Web Catalog.	
This section contains the following topics:	
This section explains how to manually export the OBIEE Repository metadata for consolidating it in the OBIEE Lineage.	
To export the OBIEE Repository documentation to a text file:	
c:\temp\repo_doc.txt	
. Make sure to save this repository documentation as Tab-separated values (*.txt) file type	
This section explains how to manually export the OBIEE Web Catalog metadata for consolidating it in the OBIEE Lineage.	
To export the OBIEE Web Catalog report to a text file:	
/shared/Paint Demo	
or /shared/ODI	
. M ake sure to include these columns in this precise order.	
c:\temp\webcat_doc.txt	
. This section describes how to refresh the OBIEE Lineage from existing OBIEE Repository and Web Catalog exports created manually.	
To refresh the OBIEE Lineage:	
Note: You can also use the refresh lineage script instead of the OBIEE Lineage wizard. See Section 19.5.3, "Automating Lineage Refresh" for more information.	
The wizard displays a sequence of screens, in the order listed in Table 19-3.	
If you need additional help with any of the installation screens, click Help to access the online help.	
Table 19-3 Instructions for Refreshing the OBIEE Lineage Artifacts	
No.	Screen
---	---
1	Welcome Screen
2	Select Action Screen
3	OBIEE Export Location Screen
Click Next to continue.	
4	ODI Repository Connection Information Screen
Database Connection (Master Repository)	
Work Repository	
Click Next to continue.	
5	Mapping Information
Click Next to continue.	
6	Action Complete Screen
Scripts are also provided to automate the lineage tasks. These scripts can be used instead of the wizard and require that option values are provided in a property file instead.	
The scripts for automating the lineage tasks are in the /bin	
sub-folder of the Lineage installation folder.	
This section describes how to automate lineage tasks with scripts and contains the following topics:	
Before starting any of the scripts, you need to provide the configuration information in a property file. This property file contains the values provided via the wizard user interface.	
Note: When running the wizard, a property file is automatically generated in the/tmp sub-folder of the Lineage installation folder. You can re-use this property file as a starting point for working with the command line scripts.	
Figure 19-4 lists the properties defined in the property file.	
Table 19-4 Properties	
Property	Values
---	---
OBIEE_VERSION	
install	export
OBIEE_RPD	
install	export
OBIEE_WEBCAT	
install	export Required only for OBIEE 11g
OBIEE_RPD_PASS	
install	export
OBIEE_RPD_USER	
install	export Required only for OBIEE 10g
OBIEE_RPD_EXPORT_FILE	
refresh	Location of the OBIEE Repository Documentation export file used for refreshing the lineage.
OBIEE_WEBCAT_EXPORT_FILE	
refresh	Location of the OBIEE Web catalog report used for refreshing the lineage.
OBIEE_ORACLE_HOME	
install	export
OBIEE_INSTANCE_HOME	
install	export Required only for OBIEE 11g.
ODI_MASTER_URL	
export	refresh
ODI_MASTER_DRIVER	
export	refresh
ODI_SUPERVISOR_PASS	
export	refresh
ODI_SUPERVISOR_USER	
export	refresh
ODI_MASTER_USER	
export	refresh
ODI_MASTER_PASS	
export	refresh
ODI_SECU_WORK_REP	
export	refresh
OBIEE_WEBCAT_FOLDER_TO_EXPORT	
install	export
INSTALL_ODI_LINEAGE	
only used in script	Set to
EXPORT_OBIEE_METADATA	
only used in script	Set to
Example 19-1 shows a sample property file:
Example 19-1 Property File
Encoding Passwords
To avoid storing the passwords in plain text, use the encode.[sh|bat] <password>
command to encode and store the passwords in the property file. If the password are encoded, the property names will change to ODI_MASTER_REPO_ENCODED_PASS, ODI_SUPERVISOR_ENCODED_PASS, and OBIEE_RPD_ENCODED_PASS.
The install lineage script deploys the following ODI Artifacts in the OBIEE Server:
The script uses the OBIEE tools to merge the Lineage RPD and Lineage Web Catalog with the BIEE Server components.
Note: After running this script, you have to perform the tasks described in Section 19.2.4, "Post-Installation Tasks". |
Syntax
The script syntax is as follows:
where:
propertyfile
represents the Property File that contains all the required properties to install the lineage artifacts. See Section 19.5.1, "Configuring the Scripts" for more information. If no value is specified, the User Wizard will be launched to gather the required information from the User. All the properties in the property file can be overridden by specifying the property value in the command line option -propName=propValue
. prop_name
represents the property that can be specified. The value specified in prop_value
will override the value specified in the property file (if any). prop_value
represents the value for the prop_name
property. It will override the value specified in the property file (if any). usage
prints the detailed usage information The refresh lineage script performs one of the following operations, depending on the value set in the EXPORT_OBIEE_METADATA option defined in the property file:
Yes
No
Note that in order to use refreshlineage.sh
you need to manually copy the repo_doc.text
and the webcat_doc.txt
files to the target Linux machine.
Syntax
The script syntax is as follows:
where:
propertyfile
represents the Property File that contains all the required properties to export and consolidate lineage metadata. See Section 19.5.1, "Configuring the Scripts" for more information. If no value is specified, the User Wizard will be launched to gather the required information from the User. All the properties in the property file can be overridden by specifying the property value in the command line option -prop_name=prop_value
. mappingfile
represents the mapping of the Model code to BI_PHYSICAL_DB, BI_PHYSICAL_SCHEMA and BI_PHYSICAL_CATALOG. This mapping must be provided in the form of a comma separated values (.csv
) file. Note: If the propertyFile and mappingFile options are not specified, the UI wizard will be shown to take user input. Otherwise the script will be run from command line itself taking the values from the property file and mapping file to refresh lineage and the UI wizard will not be shown. |
Example 19-2 shows a sample mapping file.
Example 19-2 Mapping File
The OBIEE Lineage Artifact deployed in the BIEE Server allow for many usage scenarios. The most common usage scenarios are listed in this section:
In this scenario, we want to display the execution statistics of ODI within a OBI-EE dashboard.
To add ODI statistics, insert the RuntimeStats request from the Lineage Web Catalog into your dashboard. The statistics appear as shown in Figure 19-2.
In this scenario, you want to view the lineage data and filter the results.
To create such a dashboard, add the Prompt Lineage dashboard prompt and the LineageRequestColumns request on a dashboard. Both objects are in the lineage web catalog as shown in Figure 19-3.
Figure 19-4 shows the resulting dashboard.
In this dashboard, you can filter using:
Click Go to display the filtered list of columns.
From this request, you can display the Lineage and Hierarchy for each column by clicking one of the following buttons:
 | Lineage |
 | Hierarchy |
Using the Lineage
The Lineage icon allows you to drill down into a column lineage. The lineage goes down the following path:
> The OBIEE Presentation Column(s) used in a request's column
> The OBIEE Logical Column(s) used in a Presentation Column
> The OBIEE Physical Column(s) used in a Presentation Column
> The ODI Column(s) corresponding to OBIEE Physical Column(s)
> The ODI source columns used to load a given ODI target column via an ODI interface. This path can recurse if the source columns are targets for other ODI interfaces.
For each level of the lineage, the dashboard displays:
Figure 19-5 shows one lineage level displayed in a dashboard.
Using the Hierarchy
The Hierarchy displays the entire lineage of a given request column in a hierarchical view. Figure 19-6 shows the hierarchical column lineage.
You can create contextual lineage link using the LineageRequestColumns on any dashboard. This contextual lineage link will open a dashboard showing the lineage for a given request.
To create contextual lineage:
<lineage_requests_folder>
/LineageRequestColumns','','Target Column','Catalog','<your_request_folder>
','Target Column','Table Name','<your_request_name>
');"> Metadata LineageIn this code, you must set the following items according to your configuration:
<lineage_requests_folder>
is the folder containing the LineageRequestColumns request. This folder is the folder into which the OBIEE Lineage Requests have been deployed. <your_request_folder>
is the folder containing the request for which you want to display the lineage. <your_request_name>
is the name of the request for which you want to display the lineage. For example, if the lineage requests are installed in the /shared/ODI
folder, and you want to view lineage for the /shared/ODI Customer Demo/Customer Per Countries Chart
request, the code will be:
shared/ODI
/LineageRequestColumns','','Target Column','Catalog','/shared/ODI Customer Demo
','Target Column','Table Name','Customer Per Countries Chart
');"> Metadata LineageThis text will create a link on the dashboard that opens the column lineage for the given request.
The Metadata Lineage object is added to the dashboard as shown in Figure 19-8.
Clicking Metadata Lineage displays the dashboard shown in Figure 19-9.
This chapter describes how to work with Oracle Hyperion Essbase in Oracle Data Integrator.
This chapter includes the following sections:
Oracle Data Integrator Adapter for Oracle's Hyperion Essbase enables you to connect and integrate Essbase with virtually any source or target using Oracle Data Integrator. The adapter provides a set of Oracle Data Integrator Knowledge Modules (KMs) for loading and extracting metadata and data and calculating data in Essbase applications.
You can use Oracle Data Integrator Adapter for Essbase to perform these data integration tasks on an Essbase application:
Using the adapter to load or extract metadata or data involves the following tasks:
See Section 20.4, "Creating and Reverse-Engineering an Essbase Model".
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 20-1 for handling Hyperion Essbase data. These KMs use Hyperion Essbase specific features. It is also possible to use the generic SQL KMs with the Hyperion Essbase database. See Chapter 4, "Generic SQL" for more information.
Table 20-1 Hyperion Essbase Knowledge Modules
Knowledge Module | Description |
---|---|
RKM Hyperion Essbase | Reverse-engineers Essbase applications and creates data models to use as targets or sources in Oracle Data Integrator interfaces |
IKM SQL to Hyperion Essbase (DATA) | Integrates data into Essbase applications. |
IKM SQL to Hyperion Essbase (METADATA) | Integrates metadata into Essbase applications |
LKM Hyperion Essbase DATA to SQL | Loads data from an Essbase application to any SQL compliant database used as a staging area. |
LKM Hyperion Essbase METADATA to SQL | Loads metadata from an Essbase application to any SQL compliant database used as a staging area. |
Make sure you have read the information in this section before you start using the Oracle Data Integrator Adapter for Essbase:
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.
The list of supported platforms and versions is available on Oracle Technical Network (OTN):
http://www.oracle.com/technology/products/oracle-data-integrator/index.html
.
There are no technology-specifc requirements for using the Oracle Data Integrator Adapter for Essbase.
There are no connectivity-specific requirements for using the Oracle Data Integrator Adapter for Essbase.
Setting up the Topology consists of:
Create a data server for the Hyperion Essbase technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a Hyperion Essbase data server:
Note: If the Essbase server is running on a port other than the default port (1423), then provide the Essbase server details in this format,<Essbase Server hostname>:<port> . |
Note: The Test button does not work for an Essbase data server connection. This button works only for relational technologies that have a JDBC Driver. |
Create a Hyperion Essbase physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Under Application (Catalog) and Application (Work Catalog), specify an Essbase application and under Database (Schema) and Database (Work Schema), specify an Essbase database associated with the application you selected.
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.
This section contains the following topics:
Create an Essbase Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator
Reverse-engineering an Essbase application creates an Oracle Data Integrator model that includes a datastore for each dimension in the application and a datastore for data.
To perform a Customized Reverse-Engineering on Hyperion Essbase with a RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields specific to the Hyperion Essbase technology.
Table 20-2 RKM Hyperion Essbase Options
Option | Possible Values | Description |
---|---|---|
MULTIPLE_DATA_COLUMNS |
| If this option is set to |
DATA_COLUMN_DIMENSION | Account | This option is only applicable if MULTIPLE_DATA_COLUMNS is set to Specify the data column dimension name. For example, data columns are spread across the dimension Account or Time, and so on. |
DATA_COLUMN_MEMBERS | Account | This option is only applicable if MULTIPLE_DATA_COLUMNS is set to Separate the required data column members with, (Comma). For example, if the data column dimension is set to Account and members are set to
|
EXTRACT_ATTRIBUTE_MEMBERS |
| If this option is set to If this option is set to
|
The RKM connects to the application (which is determined by the logical schema and the context) and imports some or all of these datastores, according to the dimensions in the application.
After reverse-engineering an Essbase application as a model, you can use the datastores in this model in these ways:
The KM choice for an interface determines the abilities and performance of this interface. The recommendations in this section help in the selection of the KM for different situations concerning Hyperion Essbase.
This section contains the following topics:
Oracle Data Integrator provides the IKM SQL to Hyperion Essbase (METADATA) for loading metadata into an Essbase application.
Metadata consists of dimension members. You must load members, or metadata, before you load data values for the members.
You can load members only to dimensions that exist in Essbase. You must use a separate interface for each dimension that you load. You can chain interfaces to load metadata into several dimensions at once.
Note: The metadata datastore can also be modified by adding or delete columns to match the dimension build rule that will be used to perform the metadata load. For example, the default datastore would have columns for ParentName and ChildName, if the rule is a generational dimension build rule, you can modify the metadata datastore to match the columns within your generational dimension build rule. The loadMarkets interface within the samples is an example of performing a metadata load using a generational dimension build rule. |
Table 20-3 IKM SQL to Hyperion Essbase (METADATA) Options
Option | Values | Description |
---|---|---|
| Blank (Default) | Specify the rules file for loading or building metadata. If the rules file is present on the Essbase server, then, only specify the file name, otherwise, specify the fully qualified file name with respect to the Oracle Data Integrator Agent. |
| , (Default) | (Optional) Specify a rule separator in the rules file. These are the valid values:
|
|
| Restructure database after loading metadata in the Essbasecube. These are the valid values:
Note: This option is applicable for the Essbase Release 9.3 and later. For the Essbase releases prior to 9.3, this option is ignored. |
| Blank (Default) | Enable this option to execute a MAXL script before loading metadata to the Essbase cube. Specify a fully qualified path name (without blank spaces) for the MAXL script file. Note: To successfully execute this option, the Essbase client must be installed and configured on the machine where the Oracle Data Integrator Agent is running. |
| Blank (Default) | Enable this option to execute a MAXL script after loading metadata to the Essbase cube. Specify a fully qualified path name (without blank spaces) for the MAXL script file. Note: To successfully execute this option, the Essbase client must be installed and configured on the machine where the Oracle Data Integrator Agent is running. |
|
| This option is only applicable if you are enabling the PRE_LOAD_MAXL_SCRIPT option. If you set the ABORT_ON_PRE_MAXL_ERROR option to Yes, then the load process is aborted on encountering any error while executing the pre-MAXL script. |
|
| If this option is set to Yes, during the IKM process, logging is done to the file specified in the LOG_FILE_NAME option. |
| <?=java.lang.System.getProperty (“java.io.tmpdir”)?>/Extract_<% =snpRef.getFrom()%>.log (Default) | Specify a file name to log events of the IKM process. |
| <?=java.lang.System.getProperty (“java.io.tmpdir”)?>/Extract_<% =snpRef.getFrom()%>.log (Default) | Specify a file name to log the error records of the IKM process. |
Oracle Data Integrator provides the IKM SQL to Hyperion Essbase (DATA) for loading data into an Essbase application.
You can load data into selected dimension members that are already created in Essbase. For a successful data load, all the standard dimension members are required and they should be valid members. You must set up the Essbase application before you can load data into it.
You can also create a custom target to match a load rule.
Before loading data, ensure that the members (metadata) exist in the Essbase dimension. The data load fails for records that have missing members and this information is logged (if logging is enabled) as an error record and the data load process will continue until the maximum error threshold is reached.
Note: The data datastore can also be modified by adding or delete columns to match the data load rule that will be used to perform the data load. |
Table 20-4 lists the options of the IKM SQL to Hyperion Essbase (DATA). These options define how the adapter loads and consolidates data in an Essbase application.
Table 20-4 IKM SQL to Hyperion Essbase (DATA)
Option | Values | Description |
---|---|---|
| Blank (Default) | (Optional) Specify a rules file to enhance the performance of data loading. Specify a fully qualified file name if the rules file is not present on the Essbase server. If the rules file option is not specified, then the API-based data load is used. However, you cannot specify the API. |
| , (Default) | (Optional) Specify a rule separator in the rules file. These are the valid values:
|
| Integer | When performing multiple data loads in parallel, many interfaces can be set to use the same GROUP_ID. This GROUP _ID is used to manage parallel loads allowing the data load to be committed when the final interface for the GROUP_ID is complete. For more information on loading to parallel ASO cubes, refer to the Essbase Database Administrators guide. |
| 1–1000000 | Multiple data load buffers can exist on an aggregate storage database. To save time, you can load data into multiple data load buffers at the same time. Although only one data load commit operation on a database can be active at any time, you can commit multiple data load buffers in the same commit operation, which is faster than committing buffers individually. For more information on loading to parallel ASO cubes, refer to the Essbase Database Administrators guide. |
| 0-100 | When performing an incremental data load, Essbase uses the aggregate storage cache for sorting data. You can control how much of the cache a data load buffer can use by specifying the percentage (between 0 and 100% inclusive). By default, the resource usage of a data load buffer is set to 100, and the total resource usage of all data load buffers created on a database cannot exceed 100. For example, if a buffer of 90 exists, you cannot create another buffer of a size greater than 10. A value of 0 indicates to Essbase to use a self-determined, default load buffer size. |
|
| Enable this option to clear data from the Essbase cube before loading data into it. These are the valid values:
Note: For ASO applications, the Upper Blocks and Non-Input Blocks options will not be applicable. |
| Blank (Default) | (Optional) Specify the calculation script that you want to run after loading data in the Essbase cube. Provide a fully qualified file name if the calculation script is not present on the Essbase server. |
|
| This option is only applicable if you have specified a calculation script in the CALCULATION_SCRIPT option. If you set the RUN_CALC_SCRIPT_ONLY option to Yes, then only the calculation script is executed without loading the data into the target Essbase cube. |
| Blank (Default) | Enable this option to execute a MAXL script before loading data to the Essbase cube. Specify a fully qualified path name (without blank spaces) for the MAXL script file. Note: Essbase client must be installed and configured on the machine where the Oracle Data Integrator Agent is running. |
| Blank (Default) | Enable this option to execute a MAXL script after loading data to the Essbase cube. Specify a fully qualified path name (without blank spaces) for the MAXL script file. Note: Essbase client must be installed and configured on the machine where the Oracle Data Integrator Agent is running. |
|
| This option is only applicable if you are enabling the PRE_LOAD_MAXL_SCRIPT option. If you set the ABORT_ON_PRE_MAXL_ERROR option to Yes, then the load process is aborted on encountering any error while executing pre-MAXL script. |
| 1 (Default) | Enable this option to set the maximum number of errors to be ignored before stopping a data load. The value that you specify here is the threshold limit for error records encountered during a data load process. If the threshold limit is reached, then the data load process is aborted. For example, the default value 1 means that the data load process stops on encountering a single error record. If value 5 is specified, then data load process stops on encountering the fifth error record. If value 0 (== infinity) is specified, then the data load process continues even after error records are encountered. |
| 1000 (Default) | Commit Interval is the chunk size of records that are loaded in the Essbase cube in a complete batch. Enable this option to set the Commit Interval for the records in the Essbase cube. Changing the Commit Interval can increase performance of data load based on design of the Essbase database. |
|
| If this option is set to Yes, during the IKM process, logging is done to the file specified in the LOG_FILENAME option. |
| <?=java.lang.System.getProperty(“java.io.tmpdir”)?/<%=snpRef.getTargetTable("RES_NAME")%>.log (Default) | Specify a file name to log events of the IKM process. |
|
| If this option is set to Yes, during the IKM process, details of error records are logged to the file specified in the ERROR_LOG_FILENAME option. |
| <?=java.lang.System.getProperty(java.io.tmpdir”)?>/<%=snpRef.getTargetTable("RES_NAME")%>.err | Specify a file name to log error record details of the IKM process. |
|
| If this option is set to Yes, then the header row containing the column names are logged to the error records file. |
| , (Default) | Specify the column delimiter to be used for the error records file. |
| \r\n (Default) | Specify the row delimiter to be used for the error records file. |
| ' (Default) | Specify the text delimiter to be used for the column data in the error records file. For example, if the text delimiter is set as ' " ' (double quote), then all the columns in the error records file will be delimited by double quotes. |
This section includes the following topics:
The Oracle Data Integrator Adapter for Essbase supports querying and scripting for data extraction. To extract data, as a general process, create an extraction query and provide the extraction query to the adapter. Before the adapter parses the output of the extraction query and populates the staging area, a column validation is done. The adapter executes the extraction query based on the results of the metadata output query during the validation. The adapter does the actual parsing of the output query only when the results of the column validation are successful.
After the extraction is complete, validate the results—make sure that the extraction query has extracted data for all the output columns.
You can extract data with these Essbase-supported query and scripts:
Data Extraction Using Report Scripts
Data can be extracted by parsing the reports generated by report scripts. The report scripts can exist on the client computer as well as server, where Oracle Data Integrator is running on the client computer and Essbase is running on the server. The column validation is not performed when extracting data using report scripts. So, the output columns of a report script is directly mapped to the corresponding connected column in the source model. However, before you begin data extract using report scripts, you must complete these tasks:
Data Extraction Using MDX Queries
An MDX query is an XML-based data-extraction mechanism. You can specify the MDX query to extract data from an Essbase application. However, before you begin data extract using MDX queries, you must complete these tasks:
Data Extraction Using Calculation Scripts
Calculation scripts provide a faster option to extract data from an Essbase application. However, before you extract data using the calculation scripts, take note of these restrictions:
Oracle Data Integrator provides the LKM Hyperion Essbase DATA to SQL for extracting data from an Essbase application.
You can extract data for selected dimension members that exist in Essbase. You must set up the Essbase application before you can extract data from it.
Table 20-5 provides the options of the LKM Hyperion Essbase Data to SQL. These options define how Oracle Data Integrator Adapter for Essbase extracts data.
Table 20-5 LKM Hyperion Essbase DATA to SQL Options
Option | Values | Description |
---|---|---|
| Blank (Default) | (Optional) Specify the calculation script that you want to run before extracting data from the Essbase cube. |
|
| Specify an extraction query type—report script, MDX query, or calculation script. Provide a valid extraction query, which fetches all the data to fill the output columns. The first record (first two records in case of calculation script) contains the meta information of the extracted data. |
| Blank (Default) | Specify a fully qualified file name of the extraction query. |
| \t (Default) | Specify the column delimiter for the extraction query. If no value is specified for this option, then space (“ “) is considered as column delimiter. |
| Blank (Default) | This option is only applicable if the query type in the EXTRACTION_QUERY_TYPE option is specified as CalcScript. Specify a fully qualified file location where the data is extracted through the calculation script.. |
| Blank (Default) | Enable this option to execute a MAXL script before extracting data from the Essbase cube. |
| Blank (Default) | Enable this option to execute a MAXL script after extracting data from the Essbase cube. |
|
| This option is only applicable if the PRE_EXTRACT_MAXL option is enabled. If the ABORT_ON_PRE_MAXL_ERROR option is set to Yes, while executing pre-MAXL script, the load process is aborted on encountering any error. |
|
| If this option is set to Yes, during the LKM process, logging is done to the file specified in the LOG_FILE_NAME option. |
| <?=java.lang.System.getProperty (“java.io.tmpdir”)?/<% =snpRef.getTargetTable("RES_NAME")%>.log (Default) | Specify a file name to log events of the LKM process. |
| 1 (Default | Enable this option to set the maximum number of errors to be ignored before stopping extract. |
|
| If this option is set to Yes, during the LKM process, details of error records are logged to the file specified in the ERROR_LOG_FILENAME option. |
| <?=java.lang.System.getProperty(java.io.tmpdir”)?>/<%=snpRef.getTargetTable("RES_NAME")%>.err | Specify a file name to log error record details of the LKM process. |
|
| If this option is set to Yes, then the header row containing the column names are logged to the error records file. |
| , (Default) | Specify the column delimiter to be used for the error records file. |
| \r\n (Default) | Specify the row delimiter to be used for the error records file. |
| ' (Default) | Specify the text delimiter to be used for the column data in the error records file. For example, if the text delimiter is set as ' " ' (double quote), then all the columns in the error records file are delimited by double quotes. |
|
| Set this option to No, in order to retain temporary objects (tables, files, and scripts) after integration. This option is useful for debugging. |
Oracle Data Integrator provides the LKM Hyperion Essbase METADATA to SQL for extracting members from a dimension in an Essbase application.
To extract members from selected dimensions in an Essbase application, you must set up the Essbase application and load metadata into it before you can extract members from a dimension.Before extracting members from a dimension, ensure that the dimension exists in the Essbase database. No records are extracted if the top member does not exist in the dimension.
Table 20-6 lists the options of the LKM Hyperion Essbase METADATA to SQL. These options define how Oracle Data Integrator Adapter for Oracle's Hyperion Essbase extracts dimension members.
Table 20-6 LKM Hyperion Essbase METADATA to SQL
Option | Values | Description |
---|---|---|
| IDescendants, (Default) | Enable this option to select members from the dimension hierarchy for extraction. You can specify these selection criteria:
|
| Blank (Default) | Enable this option to provide the member name for applying the specified filter criteria. If no member is specified, then the filter criteria is applied on the root dimension member.If the MEMBER_FILTER_CRITERIA value is MEMBER_ONLY or UDA, then the MEMBER_FILTER_VALUE option is mandatory and cannot be an empty string. |
|
| If this option is set to Yes, during the LKM process, logging is done to the file specified by the LOG_FILE_NAME option. |
| <?=java.lang.System.getProperty(java.io.tmpdir”)?>/Extract_<%=snpRef.getFrom()%>.log | Specify a file name to log events of the LKM process. |
| 1 (Default) | Enable this option to set the maximum number of errors to be ignored before stopping extract. |
|
| If this option is set to Yes, during the LKM process, details of error records are logged to the file specified in the ERROR_LOG_FILENAME option. |
| <?=java.lang.System.getProperty(java.io.tmpdir”)?>/Extract_<%=snpRef.getFrom()%>.err | Specify a file name to log error record details of the LKM process. |
|
| If this option is set to Yes, then the header row containing the column names are logged to the error records file. |
| , (Default) | Specify the column delimiter to be used for the error records file. |
| \r\n (Default) | Specify the row delimiter to be used for the error records file. |
|
| Specify the text delimiter to be used for the data column in the error records file. For example, if the text delimiter is set as ' " ' (double quote), then all the columns in the error records file are delimited by double quotes. |
|
| Set this option to No, in order to retain temporary objects (tables, files, and scripts) after integration. This option is useful for debugging. |
This chapter describes how to work with Oracle Hyperion Financial Management in Oracle Data Integrator.
This chapter includes the following sections:
Oracle Data Integrator Adapter for Hyperion Financial Management enables you to connect and integrate Hyperion Financial Management with any database through Oracle Data Integrator. The adapter provides a set of Oracle Data Integrator Knowledge Modules (KMs) for loading and extracting metadata and data and consolidating data in Financial Management applications.
You can use Oracle Data Integrator Adapter for Hyperion Financial Management to perform these data integration tasks on a Financial Management application:
Using the adapter to load or extract data involves these tasks:
See Section 21.4, "Creating and Reverse-Engineering a Financial Management Model".
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 21-1 for handling Hyperion Financial Management data. These KMs use Hyperion Financial Management specific features. It is also possible to use the generic SQL KMs with the Financial Management database. See Chapter 4, "Generic SQL" for more information.
Table 21-1 Hyperion Financial Management Knowledge Modules
Knowledge Module | Description |
---|---|
RKM Hyperion Financial Management | Reverse-engineers Financial Management applications and creates data models to use as targets or sources in Oracle Data Integrator interfaces. |
IKM SQL to Hyperion Financial Management Data | Integrates data into Financial Management applications. |
IKM SQL to Hyperion Financial Management Dimension | Integrates metadata into Financial Management applications. |
LKM Hyperion Financial Management Data to SQL | Loads data from a Financial Management application to any SQL compliant database used as a staging area. This knowledge module will not work if you change the column names of the HFMData data store reverse engineered by the RKM Hyperion Financial Management knowledge module. |
LKM Hyperion Financial Management Members To SQL | Loads member lists from a Financial Management application to any SQL compliant database used as a staging area. |
Make sure you have read the information in this section before you start using the Oracle Data Integrator Adapter for Financial Management:
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.
The list of supported platforms and versions is available on Oracle Technical Network (OTN):
http://www.oracle.com/technology/products/oracle-data-integrator/index.html
.
There are no technology-specifc requirements for using the Oracle Data Integrator Adapter for Financial Management.
This section lists the requirements for connecting to Hyperion Financial Management application.
Use the default 32-bit HFM driver for 32-bit Windows platforms.
For 64-bit Windows platforms, the 64-bit version of HFM driver must be used. To use the 64-bit HFM driver:
HFMDriver.dll
to HFMDriver32.dll
. HFMDriver64.dll
) and rename the copy to HFMDriver.dll
HFMDriver64_11.1.2.dll
HFMDriver64_11.1.1.2.dll
HFMDriver.dll
. Setting up the Topology consists of:
Create a data server for the Hyperion Financial Management technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a Hyperion Financial Management data server:
Note: The Test button does not work for a Hyperion Financial Management data server connection; it works only for relational technologies that have a JDBC driver. |
Create a Hyperion Financial Management physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Under Application (Catalog), specify a FinancialManagement application.
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.
This section contains the following topics:
Create an Financial Management Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Reverse-engineering a Financial Management application creates an Oracle Data Integrator model that includes a data store for each dimension in the application, a data store for data, an optional data store for data with multiple periods, and an EnumMemberList data store.
To perform a Customized Reverse-Engineering on Hyperion Financial Management with a RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields specific to the Hyperion Financial Management technology.
Yes
to create an additional data store for data with multiple periods. The number of periods for that model is specified by the MULTIPERIOD_COUNT option. Default is No
.
The RKM connects to the application (which is determined by the logical schema and the context) and imports some or all of these data stores, according to the dimensions in the application:
Note: This data store is imported only if the CREATE_HFMDATA_MULTIPLEPERIODS option is set to Yes in the model definition. |
See Section 21.6, "Data Store Tables" for more information about these tables.
After reverse-engineering a Financial Management application as a model, you can use the data stores in this model in these ways:
The KM choice for an interface determines the abilities and performance of this interface. The recommendations in this section help in the selection of the KM for different situations concerning Hyperion Financial Management.
This section contains the following topics:
Oracle Data Integrator provides the IKM SQL to Hyperion Financial Management Dimension for loading metadata into a Finanacial Management application.
Metadata comprises dimension members. You must load members, or metadata, before you load data values for the members.
You can load members only to existing Financial Management dimensions. You must use a separate interface for each dimension that you load. You can chain interfaces to load metadata into several dimensions at once.
The IKM SQL to Hyperion Financial Management Dimension supports the following options for defining how the adapter loads metadata into a Financial Management application:
Yes
, metadata is replaced in the application (Replace); if set to No, metadata is overwritten in the application (Merge). Valid values: Yes or No
(default). Yes
, all metadata is cleared before loading. Valid values: Yes
or No
(default). Caution: If you set this option to Yes, you lose any active data or journals in the application. |
Yes
, logging is done during the load process to the file specified by theLOG_FILE_NAME option. Valid values: Yes
or No
(default). Java temp folder/dimension.log
Oracle Data Integrator provides the IKM SQL to Hyperion Financial Management Data for loading data into a Financial Management application.
You can load data into selected dimension members that are already created in Financial Management. You must set up the Financial Management application before you can load data into it.
Before loading data, ensure that the members (metadata) exist in the Financial Management relational database. A data load fails if the members do not exist.
Note: Use the HFMData or HFMData_MultiplePeriods data stores from a Hyperion Financial Management model as the target data store of your integration interface. |
The IKM SQL to Hyperion Financial Management Data supports the following options for defining how the adapter loads and consolidates data in a Financial Management application:
Merge
(default): For each unique point of view that exists in the load data and in the application, the load data overwrites the data in the application. For each unique point of view that is in the load data but not in the application, the load data is loaded into the application. Replace
: For each unique point of view in the load data, the system clearscorresponding values from the application, and then the data is loaded. Note: Unless the connected user has full access rights to all specified cells, no data is changed. |
Replace by Security
: For each unique point of view in the load data to which the user has full access rights, the system clears corresponding values from the application, and then the data is loaded. Cells to which the user lacks full access are ignored. Accumulate
:For each unique point of view that exists in the load data and in the application, the value from the load data is added to the value in the application. Yes
, multiple values for the same cells in the load data are added before they are loaded into the application. Valid values: Yes
or No
(default). Yes
if the load file contains ownership data, such as shares owned. Valid values: Yes
or No
(default). Caution: If ownership data is included in the file and this option is set to No, an error occurs when you load the file. |
Yes
, data is consolidated after being loaded. Valid values: Yes or No (default). Yes
, data is consolidated but not loaded. Valid values: Yes
and No
. Valid Type parameter settings:
Example: Actual,1999,2,EastRegion.EastSales,A
Yes
, logging is done during the load process to the file specified by the LOG_FILE_NAME option. Valid values: Yes
or No
(default) Java temp folder/HFMData.logor HFMData_MultiplePeriod.log.
You can extract data for selected dimension members that exist in Financial Management. You must set up the Financial Management application before you can extract data from it.
Before extracting data, ensure that the members (metadata) exist in the Financial Management relational database; no records are extracted for members that do not exist (including the driver member and the members specified in the point of view.)
This section includes the following topics:
Oracle Data Integrator provides the LKM Hyperion Financial Management Data to SQL for extracting data from an Essbase application.
Use as a source the source data store (HFMData) from a Hyperion Financial Management model.
LKM Hyperion Financial Management Data to SQL supports the following options for defining how Oracle Data Integrator Adapter for Hyperion Financial Management extracts data:
You can specify comma-delimited Scenario members or one scenario. If you do not specify scenarios, the system exports data for all scenarios.
You can specify comma-delimited years or one year. If you do not specify years, the system exports data for all years.
Specify a range of members using the ~ character between start and end period numbers; for example, 1~12. If you do not specify periods, the system exports data for only the first period.
You can specify comma-delimited entities or one entity. To specify the parent and child, separate them with a period; for example, I.Connecticut
. If you do not specify entities, the system exports data for all entities.
You can specify comma-delimited accounts or one account. If you do not specify accounts, the system exports data for all accounts.
Periodic, YTD, or <Scenario_View> (default)
Yes
, logging is done during the extract process to the file specified inLOG_FILE_NAME Yes
(default), tables, files, and scripts are deleted after integration. Tip: Temporary objects can be useful for resolving issues. |
Oracle Data Integrator provides the LKM Hyperion Financial Management Members to SQL for extracting members from a dimension in an Essbase application.
You can extract members fromselected member lists and dimensions in a Financial Management application. You must set up the Financial Management application and load member lists into it before you can extract members from a member list for a dimension.
Before extracting members from a member list for a dimension, ensure that the member list and dimension exist in the Financial Management relational database. No records are extracted if the top member does not exist in the dimension.
Use as a source the source data store (EnumMembersList) from a Hyperion Financial Management model.
The LKM Hyperion Financial Management Members to SQL supports the following options for defining how Oracle Data Integrator Adapter for Hyperion Financial Management extracts members of member lists:
Yes
, logging is done during the extract process to the file specified by the LOG_FILE_NAME option. Valid values: Yes
and No
(default) . Yes
(default), tables, files, and scripts are deleted after integration. Tip: Temporary objects can be useful for resolving issues. |
The IKM SQL to Hyperion Financial Management loads columns in tables to create data stores. The following tables describe the columns in each data store:
Note: In the following tables, the column types are String unless the column descriptions specify otherwise. |
For Table 21-2 note that if custom dimensions have aliases, the aliases (rather than CustomN) are displayed as column names.
Table 21-2 HFMData
Column | Description |
---|---|
Scenario | A Scenario dimension member; example: |
Year | A Year dimension member; example: |
Entity | An Entity dimension member, in |
Account | An Account dimension member; example: |
Value | A Value dimension member; example: |
ICP | An Intercompany Partner dimension member; example: |
Custom1 | A Custom1 dimension member; example: |
Custom2 | A Custom2 dimension member |
Custom3 | A Custom3 dimension member |
Custom4 | A Custom4 dimension member |
Period | A Period dimension member |
Data Value | The value associated with the intersection. This value is passed as a Double. |
Description | A description of the data value |
For Table 21-3 note that if custom dimensions have aliases, the aliases (rather than CustomN) are displayed as column names.
Table 21-3 HFMData_MultiplePeriods
Column | Description |
---|---|
Scenario | A Scenario dimension member; example: |
Year | A Year dimension member; example: |
Entity | An Entity dimension member, in |
Account | An Account dimension member; example: |
Value | A Value dimension member; example: |
ICP | An Intercompany Partner dimension member; example: |
Custom1 | A Custom1 dimension member; example: |
Custom2 | A Custom2 dimension member |
Custom3 | A Custom3 dimension member |
Custom4 | A Custom4 dimension member |
Period1..n | For every data value being loaded, a period must be specified. The number of periods to be loaded for each intersection is specified when the Hyperion Financial Management model is reversed. A period column is created for each specified period. |
Data Value1..n | Data values to be loaded. The number of periods to be loaded for each intersection is specified when the Hyperion Financial Management model is reversed. A data value column is created for each specified period. This value is passed as a Double. |
Description1..n | A description for each data value |
Table 21-4 Account
Column | Description |
---|---|
Member | An account table; required |
Description | A description for the account; required |
Parent Member | The parent account member |
Account Type | Required; Valid account types:
|
Is Calculated | Whether the account is calculated. Valid values: |
Is Consolidated | Whether the account is consolidated into a parent account Valid values: Y if the account is consolidated into a parent, or N (default) if it is not. |
Is ICP | Whether intercompany transactions are allowed for this account. Valid values:
If you specify Y or R, enter the name of the ICP TopMember. If you do not enter the top member, the default, [ICP TOP], is used. |
Plug Account | The name of the account used for identifying discrepancies in intercompany transactions; required if intercompany transactions are allowed for this account. |
Custom 1...4 TopMember | The top member in the hierarchy of a Custom dimension that is valid for the account. The specified member, including all of its parents and descendants, is valid for the account. All other members of the Custom dimension are not valid for the account. These columns required if intercompany transactions are allowed for this account. |
Number of Decimal Places | The number of digits to display to the right of the decimal point for the account values; required. Specify an integer from 0 (default) to 9. |
Use Line Items | Whether the account can have line items.Valid values: Y if the account uses line items, or N (default) if it does not. |
Aggr Custom 1...4 | Whether aggregation is enabled for intersections of the account and the Customdimensions. This column is used for special totals, not summing. Valid values: Y (default) if the account is allowed to aggregate with Custom dimensions, or N if it is not . |
User Defined 1...3 | Optional custom text for the account |
XBRL Tag | Optional XBRL tag for the account |
Security Class | The name of the security class that defines users who can access the account data. Default: DEFAULT security class. |
ICP Top Member | The top member of the ICP group assigned to the account |
Enable Data Audit | Whether data auditing is enabled for the account. Valid values: Y (default) to enable auditing, or N to disable auditing |
Description 2...10 | Optional additional descriptions for the account |
Table 21-5 Entity
Column | Description |
---|---|
Member | An entity label; required |
Description | A description for the entity; required |
Parent Member | The parent entity member |
Default Currency | The default currency for the entity; required. |
Allow Adj | Valid values: Y if journal postings are permitted, or N (default) if journal entries are not permitted. |
Is ICP | Valid values: Y if the entity is an intercompany entity, or N (default) if it is not. Note: An intercompany entity is displayed in the POV in the ICP dimensions under [ICP Entities]. |
Allow Adj From Child | Valid values: Y if journal postings from children of this parent entity are permitted, or N (default) if they are not. |
Security Class | The name of the security class that defines users who can access the entity's data. Default: |
User Defined 1...3 | Optional custom text for the entity |
Holding Company | The holding company for the entity. Valid values: Any valid entity or blank (default). |
Description 2...10 | Optional additional descriptions for the entity |
Table 21-6 Scenario
Column | Description |
---|---|
Member | A scenario label; required |
Description | A description for the scenario; required |
Parent Member | The parent Scenario member |
Default Frequency | Period types for which data input is valid for the scenario; required. |
Default View | Whether the view is YTD or Periodic; required. |
Zero View Non Adj | Whether the view is YTD or Periodic when missing, nonadjusted data values exist; required. |
Zero View Adj | Whether the view is YTD or Periodic when missing, adjusted data values exist; required. |
Consol YTD | The view for consolidations; required Valid values: Y for YTD, or N for Periodic |
Support PM | Whether Process Management command is enabled in Data Explorer; required. Valid values: Y to enable Process Management, or N to disable Process Management |
Security Class | The name of the security class that defines users who can access the scenario data. Default: |
Maximum Review Level | The maximum process management review level for the scenario. Enter an integer from 1 to 10. |
Use Line Items | Valid values: Y if the scenario can accept line items, or N (default) if it cannot. |
Enable Data Audit | Valid values: Y to enable auditing, or N (default) to disable auditing. |
Def Freq For IC Trans | The default frequency for intercompany transactions. Enter a string that identifies a valid frequency for the application. The default value is an empty string, representing no default frequency. |
User Defined 1...3 | Optional custom text for the scenario |
Description 2...10 | Optional additional descriptions for the scenario |
Table 21-7 Currency
Column | Description |
---|---|
Member | A currency label; required |
Description | A description for the currency; required |
Scale | The unit in which amounts are displayed and stored for the currency, which identifies where the decimal point is placed; required Must be one of the following valid integer values:
|
Translation Operator | Whether conversions for the currency are calculated by multiplying or dividing the translation rate. Valid values: |
Description 2...10 | Optional additional descriptions for the currency |
Table 21-8 Custom1-4
Column | Description |
---|---|
Member | The label of a custom dimension member; required |
Description | A description for the custom dimension member; required |
Parent Member | The parent custom member; required |
Is Calculated | Whether the base-level custom account is calculated.If a base-level custom account is calculated, you cannot manually enter values.Valid values: Y if the account is calculated, N if it is not calculated. |
Switch Sign | Whether the sign is changed (Debit/Credit) for FLOW accounts using the following rules:
Valid values: |
Switch Type | The account type change for FLOW accounts, following these rules:
Valid values: |
Security Class | The name of the security class that defines users who can access the custom dimension member data. Default: |
User Defined 1...3 | Optional custom text for the custom dimension member |
Aggr Weight | The aggregation weight for the custom dimensions; passed as Double Default: 1 |
Description 2...10 | Optional additional descriptions for the custom dimension member |
This chapter describes how to work with Oracle Hyperion Planning in Oracle Data Integrator.
This chapter includes the following sections:
Oracle Data Integrator Adapter for Hyperion Planning enables you to connect and integrate Oracle's Hyperion Planning with any database through Oracle Data Integrator. The adapter provides a set of Oracle Data Integrator Knowledge Modules (KMs) for loading metadata and data into Planning, Oracle's Hyperion Workforce Planning, and Oracle's Hyperion Capital Expense Planning applications.
Loading a Planning application with metadata and data using Oracle Data Integrator Adapter for Hyperion Planning involves these tasks:
See Section 22.4, "Creating and Reverse-Engineering a Planning Model".
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 22-1 for handling Hyperion Planning data. These KMs use Hyperion Planning specific features. It is also possible to use the generic SQL KMs with the Hyperion Planning database. See Chapter 4, "Generic SQL" for more information.
Table 22-1 Hyperion Planning Knowledge Modules
Knowledge Module | Description |
---|---|
RKM Hyperion Planning | Reverse-engineers Planning applications and creates data models to use as targets in Oracle Data Integrator interfaces. Each dimension (standard dimension and attribute dimension) is reversed as a datastore with the same name as the dimension with appropriate columns. Creates a datastore named "UDA" for loading UDA's. |
IKM SQL to Hyperion Planning | Loads metadata and data into Planning applications. |
Make sure you have read the information in this section before you start using the Oracle Data Integrator Adapter for Planning:
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.
The list of supported platforms and versions is available on Oracle Technical Network (OTN):
http://www.oracle.com/technology/products/oracle-data-integrator/index.html
.
There are no technology-specifc requirements for using the Oracle Data Integrator Adapter for Planning.
There are no connectivity-specific requirements for using the Oracle Data Integrator Adapter for Planning.
Setting up the Topology consists of:
Create a data server for the Hyperion Planning technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a Hyperion Planning data server:
<host>:<port>
. Note: The Test button does not work for a Hyperion Planning data server connection. This button works only for relational technologies that have a JDBC Driver. |
Create a Hyperion Planning physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Under a data server, you can define a physical schema corresponding to an application and the logical schemas on which models are based.
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.
This section contains the following topics:
Create a Planning Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator
Reverse-engineering a Planning application creates an Oracle Data Integrator model that includes a datastore for each dimension in the application. Note that the Year/Period/Version/Scenario are not reverse-engineered.
To perform a Customized Reverse-Engineering on Hyperion Planning with a RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields specific to the Hyperion Planning technology.
The RKM connects to the application (which is determined by the logical schema and the context) and imports the following items:
After reverse-engineering a Planning application as a model, you can use the datastores in this model as targets of interfaces for loading data and metadata into the application.
The KM choice for an interface determines the abilities and performance of this interface. The recommendations in this section help in the selection of the KM for different situations concerning Hyperion Planning.
This section contains the following topics:
Oracle Data Integrator provides the IKM SQL to Hyperion Planning for loading metadata into a Planning application.
Metadata consists of dimension members. You must load members, or metadata, before you load data values for the members. For example, before loading salary data for five new employees, you load the employees (as members) to the Planning relational database before you load the data to the Oracle's Hyperion Essbase database.
You can load members only to dimensions that exist in Planning. You must use a separate interface for each dimension that you load. You can chain interfaces to load metadata into several dimensions at once.
Note: You must refresh the Essbase database after loading the dimension members in the application. The Essbase database is refreshed if you set the REFRESH_DATABASE option in IKM SQL to Hyperion Planning to Yes. See "Load Options" on page 18. |
To load metadata into a Planning application:
Oracle Data Integrator provides the IKM SQL to Hyperion Planning for loading data into a Planning application.
You can load data into selected dimension members that are already created in Planning. You must set up the Planning, Workforce Planning, or Capital Expense Planning application before you can load data into it.
Before loading data, ensure that the members (metadata) exist in the Planning relational database and the Essbase database. A data load fails if the members do not exist. (This includes the driver member and the members specified in the point of view.) If necessary, load metadata and refresh the Essbase database to synchronize the members.
Before loading data into a Planning, Workforce Planning, or Capital Expense Planning application, you must set up the relevant data load and driver dimensions in Planning. After you set up the data load and driver dimensions in Planning, you must determine the point of view for the members whose data you are loading.
To load data into a Planning application:
After the Hyperion Planning data load is set up, use Hyperion Planning RKM to perform the reverse-engineering process. Reverse-engineering retrieves and updates the datastore for the data load dimension with additional columns (fields) required for the data load.
Note: You can use the same interface for loading metadata and data. Section 22.5.3, "Load Options" lists the options of the IKM SQL to Hyperion Planning |
IKM SQL to Hyperion Planning supports these options for defining how Oracle Data Integrator Adapter for Hyperion Planning loads data:
Possible values: Yes or No; default: No If set to Yes, members are loaded in the same order as in the input records.
Possible values: Yes or No; default: No If set to Yes, incoming records are sorted so that all parents are inserted before children.
Possible values: Yes or No; default: No If set to Yes, logging is done during the load process to the file specified by the LOG_FILE_NAME option.
The name of the file where logs are saved; default value:Java temp folder/ dimension.log
Maximum number of errors before the load process is stopped; default value: 0
If set to 0 or a negative number, the load process is not stopped regardless of the number of errors.
Possible values: Yes or No; default: No
If set to Yes, error records are loggedto the file specified by the ERROR_LOG_FILE property.
The name of the file where error records are logged; default value: Java temp folder/ dimension.err
The column delimiter used for the error record file; default value: comma (,)
The row delimiter used for the error record file; default value: \r\n
Note: Row and column delimiters values can also be specified in hexadecimal. A value that starts with 0x is treated as hexadecimal; for example, 0x0041 is treated as the letter A. |
The text delimiter to be used for the column values in the error record file
Possible values: Yes or No; default: Yes
If set to Yes, the row header (with all column names) is logged in the error records file.
If set to Yes, completion of the load operation invokes a cube refresh.
Possible values: Yes or No; default: No
IKM SQL to Hyperion Planning loads columns in tables to create datastores. The following topics describe the columns in each datastore:
Data Load Columns are columns used for loading data into dimensions.
Table 22-2 describes the columns of the Accounts table. See Section 22.6.7, "Data Load Columns" for descriptions of additional columns that are displayed for loading Account dimension data if the application has been set up for data load in Planning.
Table 22-2 Accounts
Column | Description |
---|---|
Account | Takes the name of the account member you are loading. If this member exists, its properties are modified; otherwise, the record is added. This field is required. The value for this field must meet these requirements:
|
Parent | Takes the name of the parent of the member you are loading. It is used to create the hierarchy in the dimension. When you load data for a member and specify a different parent member that from the parent member in the application, the member is updated with the parent value that you specify. Example: If Member 1 has a parent value of Member A in your Planning application and you load Member 1 with a parent value of Member B, your application is updated, and Member B becomes the parent of Member 1. Member 1 and its descendants are moved from Member A to Member B. If the column is left blank, it is ignored during the load. The record is not loaded if one of the following situations occurs:
|
Default Alias | Takes an alternate name for the member being loaded. If you are modifying properties and do not specify a value, the alias is not changed in the Planning application. If you specify <NONE> or <none> as the value, the alias in the Planning application is deleted. The value for this column must meet the following requirements for a successful load:
This value is passed as a string; default value: a null string. |
Additional Alias | Can take an alternate name for the member being loaded. There will be as many Alias columns as there are Alias tables defined in Planning. The value for multiple alias columns must conform to the same requirements as those listed for the default alias column. |
Data Storage | Takes the storage attribute for the member being loaded. Valid values:
This value is passed as a string. |
Two Pass Calculation | Boolean value to indicate whether the member being loaded has the Two-Pass Calculation associated attribute. Valid values: 0 for False (default), or any other number for True. Values are valid only when the Data Storage value is Dynamic Calc or Dynamic Calc and Store; otherwise, the record is rejected. |
Account Type | Takes the account type of the member that is being loaded. Valid values: Revenue, Expense, Asset, Liability, Equity, and Saved Assumption. The default is taken from the parent of the member that is being loaded, or it is Expense if the member is being added to the root dimension. |
Time Balance | Takes a type for members with an account type of Saved Assumption only or when the record is rejected. Valid values: Flow, First, Balance, Average, and two averaging options, Actual_365 and Actual_Actual. (Actual_365 assumes the actual number of days in each month and 28 days in February; Actual_Actual accounts for 29 days in February during leap years.) The default is taken from the parent of the member being loaded or is Flow if the member is being added to the root dimension. This value is passed as a string. Default values of Time Balance for Account types:
Note: When Time Balance is Flow, records with any valid Skip Values are loaded, but Skip Value is disabled for all account types. |
Skip Value | Skip ValueTakes the skip option that is set for the Time Balance property. When the Time Balance property is set to First, Balance, or Average, these Skip options are available:
Note: When Time Balance is Flow, records with any valid Skip Values are loaded, but Skip Value is disabled for all Account types. |
Data Type | Takes the data storage value. Valid values:
The default value is taken from the parent of the member being loaded or is Currency if the member is being added to the root dimension. |
Exchange Rate Type | Takes the exchange rate. This column is dependent on the value specified for the Data Type column. Valid values:
|
Use 445 | Indicates the distribution selected in the Planning application. If the application has no distribution, this column is not displayed. Valid values are 0 and 1 (or any number other than 0); default value: 1. |
Variance Reporting | Takes a value for account members with an account type of Saved Assumption or if the record is rejected. Valid values:
This value is passed as a string. The default value is taken from the parent of the member being loaded or, if the member is being added to the root dimension, is based on the value of the count type. For Account types, the value is set to the following:
|
Source Plan Type | Takes a plan type name for the plan type assigned to the member being loaded. Valid values are any plan types specified in Planning application. This value is passed as a string. The default is taken from the parent of the member being loaded. If the source plan of the parent is not valid for the member, the specified plan type is not selected for the member in the application, and the first plan type that the member is used in is used. If the member is being loaded to the root dimension, the first plan type the member is used in is used. When you update or save the parent of a member, the system verifies if the Source Plan Type associated with the member being loaded is valid for the new parent. If the member's source plan type is not a valid plan type of its parent member, you receive the error message, "The source plan type is not in the subset of valid plan types." If the source plan type of a member is valid for the parent member but not for the member itself, the member is saved but its source plan type is set to the first valid plan type (in the order Plan 1, Plan 2, Plan 3, Wrkforce, Capex). Note: If a Source Plan Type is specified in the adapter but is not valid for the parent, the record is rejected. |
Plan Type (Plan1) | Boolean value that indicates if the member being loaded is used in Plan1. Valid values are 0 for False and any other number for True. The default value is True. The name of the column varies depending on the name of the plan type in the Planning application. |
Aggregation (Plan1) | Takes the aggregation option for the member being loaded as related to Plan1. This column is available only ifthe Planning application is valid for this plan type. The name of the column varies depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Plan Type (Plan 2) | Boolean value that indicates if the member being loaded is used in Plan2. Valid values are 0 for False and any other number for True. The default value is True. The name of the column varies depending on the name of the plan type in the Planning application. |
Aggregation (Plan2) | Takes the aggregation option for the member being loaded as related to Plan2. This column is available only ifthe Planning application is valid for this plan type. The name of the column varies depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Plan Type (Plan3) | Boolean value that indicates if the member being loaded is used in Plan3. Valid values: 0 for False or any other number for True; default value: True. The name of the column varies depending on the name of the plan type in the Planning application. |
Aggregation (Plan3) | Takes the aggregation option for the member being loaded as related to Plan3. This column is available only ifthe Planning application is valid for this plan type. The name of the column varies depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Plan Type (Wrkforce) | For Workforce Planning: The Plan Type (Wrkforce) column is a Boolean value that indicates if the member being loaded is used in Workforce Planning. Valid values are 0 for False and any other number for True. The default is True. The actual name of the column varies, depending on by the name of the plan type in the Planning application. |
Aggregation (Wrkforce) | For Workforce Planning: The Aggregation (Wrkforce) column takes the aggregation option for the member being loaded as related to Workforce Planning. This column is available only if the Planning application is valid for this plan type. The name of the column varies, depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Plan Type (Capex) | For Capital Expense Planning: The Plan Type (Capex) column is a Boolean value that indicates if the member being loaded is used in Capital Expense Planning. Valid values are 0 for False and any other number for True. The default is True. The actual name of the column varies, depending on by the name of the plan type in the Planning application. |
Aggregation (Capex) | For Capital Expense Planning: Takes the aggregation option for the member being loaded as related to Capital Expense Planning. This column is available only if the Planning application is valid for this plan type. The name of the column varies, depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Custom Attribute | Takes the custom attribute member values. The name of the column is determined by the name of the custom attribute in the Planning application. The number of custom attribute columns varies depending on the number of attributes defined for the Account dimension. If you modify properties and do not specify a value, the custom attribute is not changed in the Planning application. If you specify <NONE> or <none> as the value, then the custom attribute in the Planning application is deleted. This value is passed as a string. |
Member Formula | Takes the member formula values defined for the dimension member. By default, there is no member formula associated with a dimension or dimension member. You cannot load member formulas for dimension members that are Shared or Label Only. |
UDA | Specifies a list of user-defined attributes to be updated.Note: You must define the UDA for the dimension members within Planning or by way of the UDA target. |
Smart Lists | Takes the name of a user-defined Smart List defined in the Planning application. This value is passed as a string. The default for Smart Lists is <None>. Smart Lists are used in a metadata or dimension load (not a data load) allowing you to define the association of the Smart List name (not the values) with a given dimension member. You can have multiple Smart Listsassociatedwith a dimension but only one Smart Listassociated witha dimension member. These predefined Smart Lists are available in a Workforce Planning application:
|
Description | Takes a description for the member that is being loaded. By default, the Description column is empty. Note: If you do not enter a value for this column or do not connect the column, a new member is loaded without a description, and the description of an existing member is unchanged. If you enter <NONE> as the value for this column, any existing description for the member is deleted and is not loaded with the member. |
Operation | Takes any of these values:
Note: If you delete a member, that member, its data, and any associated planning units are permanently removed and cannot be restored. |
Table 22-3 describes the columns of the Employee table. See Section 22.6.7, "Data Load Columns" for descriptions of additional columns that are displayed for loading Employee dimension data if the application has been set up for data load in Planning.
Table 22-3 Employee
Column | Description |
---|---|
Employee | Takes the name of the account member you are loading. If this member exists, its properties are modified; otherwise, the record is added. This field is required. The value for this field must meet these requirements:
This value is passed as a string. |
Parent | Takes the name of the parent of the member you are loading. It is used to create the hierarchy in the dimension. When you load data for a member and specify a different parent member that from the parent member in the application, the member is updated with the parent value that you specify. Example: If Member 1 has a parent value of Member A in your Planning application and you load Member 1 with a parent value of Member B, your application is updated, and Member B becomes the parent of Member 1. Member 1 and its descendants are moved from Member A to Member B. If the column is left blank, it is ignored during the load. The record is not loaded if one of the following situations occurs:
|
Default Alias | Takes an alternate name for the member being loaded. If you are modifying properties and do not specify a value, the alias is not changed in the Planning application. If you specify <NONE> or <none> as the value, the alias in the Planning application is deleted. The value for this column must meet the following requirements for a successful load:
This value is passed as a string; default value: a null string. |
Additional Alias | Can take an alternate name for the member being loaded. There will be as many Alias columns as there are Alias tables defined in Planning. The value for multiple alias columns must conform to the same requirements as those listed for the default alias column. |
Data Storage | Takes the storage attribute for the member being loaded. Valid values:
This value is passed as a string. |
Valid for Consolidation | The column is ignored. |
Two Pass Calculation | Boolean value to indicate whether the member being loaded has the Two-Pass Calculation associated attribute. Valid values: 0 for False (default), or any other number for True. Values are valid only when the Data Storage value is Dynamic Calc or Dynamic Calc and Store; otherwise, the record is rejected. |
Data Type | Takes the data storage value. Valid values:
The default value is taken from the parent of the member being loaded or is Currency if the member is being added to the root dimension. |
Custom Attribute | Takes the custom attribute member values. The name of the column is determined by the name of the custom attribute in the Planning application. The number of custom attribute columns varies depending on the number of attributes defined for the Employee dimension. If you modify properties and do not specify a value, the custom attribute is not changed in the Planning application. If you specify <NONE> or <none> as the value, then the custom attribute in the Planning application is deleted. This value is passed as a string. |
Aggregation (Plan1) | Takes the aggregation option for the member being loaded as related to Plan1. This column is available only ifthe Planning application is valid for this plan type. The name of the column varies depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Aggregation (Plan2) | Takes the aggregation option for the member being loaded as related to Plan2. This column is available only ifthe Planning application is valid for this plan type. The name of the column varies depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Aggregation (Plan3) | Takes the aggregation option for the member being loaded as related to Plan3. This column is available only ifthe Planning application is valid for this plan type. The name of the column varies depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Aggregation (Wrkforce) | For Workforce Planning: The Aggregation (Wrkforce) column takes the aggregation option for the member being loaded as related to Workforce Planning. This column is available only if the Planning application is valid for this plan type. The name of the column varies, depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Aggregation (Capex) | For Capital Expense Planning: Takes the aggregation option for the member being loaded as related to Capital Expense Planning. This column is available only if the Planning application is valid for this plan type. The name of the column varies, depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Member Formula | Takes the member formula values defined for the dimension member. By default, there is no member formula associated with a dimension or dimension member. You cannot load member formulas for dimension members that are Shared or Label Only. |
UDA | Specifies a list of user-defined attributes to be updated.Note: You must define the UDA for the dimension members within Planning or by way of the UDA target. |
Smart Lists | Takes the name of a user-defined Smart List defined in the Planning application. This value is passed as a string. The default for Smart Lists is <None>. Smart Lists are used in a metadata or dimension load (not a data load) allowing you to define the association of the Smart List name (not the values) with a given dimension member. You can have multiple Smart Lists associatedwith a dimension but only one Smart List associated with a dimension member. These predefined Smart Lists are available in a Workforce Planning application:
|
Description | Takes a description for the member that is being loaded; empty by default. Note: If you do not enter a value for this column or do not connect the column, a new member is loaded without a description, and the description of an existing member is unchanged. If you enter <NONE> as the value for this column, any existing description for the member is deleted and is not loaded with the member. |
Operation | Takes any of these values:
Note: If you delete a member, that member, its data, and any associated planning units are permanently removed and cannot be restored. |
Table 22-4 describes the columns of the Entities table. See Section 22.6.7, "Data Load Columns" for descriptions of additional columns that are displayed for loading Entities data if the application has been set up for data load in Planning.
Table 22-4 Entities
Column | Description |
---|---|
Entity | Takes the name of the member you are loading. If this member exists, its properties are modified. If the member does not exist, then the record is added. This column is required. The value for this column must meet the following requirements for a successful load: The value for this field must meet these requirements:
This value is passed as a string. |
Parent | Takes the name of the parent of the member you are loading. It is used to create the hierarchy in the dimension. When you update a member of an application using the Load method and specify a parent member that is different than the parent member in the application, the member is updated with the new parent value specified in your flow diagram. For example, if Member 1 has a parent value of Member A in your Planning application and you load Member 1 with a parent value of Member B, the system updates your application and makes Member B the parent of Member 1. Member 1 and its descendants are moved from Member A to Member B. If the column is left blank, it is ignored during the load. The record is not loaded if one of the following situations occurs:
|
Default Alias | Takes an alternate name for the member being loaded. If you are modifying properties and do not specify a value, the alias is not changed in the Planning application. If you specify <NONE> or <none> as the value, the alias in the Planning application is deleted. The value for this column must meet the following requirements for a successful load:
This value is passed as a string; default value: a null string. |
Additional Alias | Additional Alias columns can take alternate names for the member being loaded. There are as many Alias columns as there are Alias tables defined in Planning. The value for multiple alias columns must conform to the same requirements as those listed for the default alias column. |
Data Storage | Takes the storage attribute for the member being loaded. Valid values:
This value is passed as a string. |
Two Pass Calculation | Boolean value to indicate if the member being loaded has the Two-Pass Calculation attribute associated in the Planningapplication. Valid values: 0 for False (default), or any other number for True. Values are valid only when the Data Storage value is Dynamic Calc or Dynamic Calc and Store; otherwise, the record is rejected. |
Data Type | Takes the data storage value. Valid values:
The default value is taken from the parent of the member being loaded or is Currency if the member is being added to the root dimension. |
Base Currency | Takes the base currency for the entity being loaded. It takes the code of the currency as defined in your Planning application. The default value is USD. This column is displayed only when the application is defined to be multi-currency. |
Plan Type (Plan1) | Boolean value that indicates if the member being loaded is used in Plan1. Valid values: 0 for False or any other number for True (default). The name of the column varies depending on the name of the plan type in the Planning application. |
Aggregation (Plan1) | Takes the aggregation option for the member being loaded as related to Plan1. This column is available only ifthe Planning application is valid for this plan type. The name of the column varies depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Plan Type (Plan2) | Boolean value that indicates if the member being loaded is used in Plan2. Valid values are 0 for False and any other number for True. The default value is True. The name of the column varies depending on the name of the plan type in the Planning application. |
Aggregation (Plan2) | Takes the aggregation option for the member being loaded as related to Plan2. This column is available only ifthe Planning application is valid for this plan type. The name of the column varies depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Plan Type (Plan 3) | Boolean value that indicates if the member being loaded is used in Plan3. Valid values: 0 for False or any other number for True; default value: True. The name of the column varies depending on the name of the plan type in the Planning application. |
Aggregation (Plan3) | Takes the aggregation option for the member being loaded as related to Plan3. This column is available only ifthe Planning application is valid for this plan type. The name of the column varies depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Aggregation (Wrkforce) | For Workforce Planning: The Aggregation (Wrkforce) column takes the aggregation option for the member being loaded as related to Workforce Planning. This column is available only if the Planning application is valid for this plan type. The name of the column varies, depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Aggregation (Capex) | For Capital Expense Planning: Takes the aggregation option for the member being loaded as related to Capital Expense Planning. This column is available only if the Planning application is valid for this plan type. The name of the column varies, depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Custom Attribute | Takes the custom attribute member values. The name of the column is determined by the name of the custom attribute in the Planning application. The number of custom attribute columns varies depending on the number of attributes defined for the Entity dimension. If you modify properties and do not specify a value, the custom attribute is not changed in the Planning application. If you specify <NONE> or <none> as the value, then the custom attribute in the Planning application is deleted. This value is passed as a string. |
Member Formula | Takes the member formula values defined for the dimension member. By default, there is no member formula associated with a dimension or dimension member. You cannot load member formulas for dimension members that are Shared or Label Only. |
UDA | Specifies a list of user-defined attributes to be updated.Note: You must define the UDA for the dimension members within Planning or by way of the UDA target. |
Smart Lists | Takes the name of a user-defined Smart List defined in the Planning application. This value is passed as a string. The default for Smart Lists is <None>. Smart Lists are used in a metadata or dimension load (not a data load) allowing you to define the association of the Smart List name (not the values) with a given dimension member. You can have multiple Smart Lists associatedwith a dimension but only one Smart List associated with a dimension member. These predefined Smart Lists are available in a Workforce Planning application:
|
Description | Takes a description for the member that is being loaded; empty by default. Note: If you do not enter a value for this column or do not connect the column, a new member is loaded without a description, and the description of an existing member is unchanged. If you enter <NONE> as the value for this column, any existing description for the member is deleted and is not loaded with the member. |
Operation | Takes any of these values:
Note: If you delete a member, that member, its data, and any associated planning units are permanently removed and cannot be restored. |
Table 22-5 describes the columns of the User-Defined Dimensions table.
Table 22-5 User-Defined Dimensions
Column | Description |
---|---|
Entity | Takes the name of the member you are loading. If this member exists, its properties are modified. If the member does not exist, then the record is added. This column is required. The value for this column must meet the following requirements for a successful load: The value for this field must meet these requirements:
This value is passed as a string. |
Parent | Takes the name of the parent of the member you are loading. It is used to create the hierarchy in the dimension. When you update a member of an application using the Load method and specify a parent member that is different than the parent member in the application, the member is updated with the new parent value specified in your flow diagram. For example, if Member 1 has a parent value of Member A in your Planning application and you load Member 1 with a parent value of Member B, the system updates your application and makes Member B the parent of Member 1. Member 1 and its descendants are moved from Member A to Member B. If the column is left blank, it is ignored during the load. The record is not loaded if one of the following situations occurs:
|
Default Alias | Takes an alternate name for the member being loaded. If you are modifying properties and do not specify a value, the alias is not changed in the Planning application. If you specify <NONE> or <none> as the value, the alias in the Planning application is deleted. The value for this column must meet the following requirements for a successful load:
This value is passed as a string; default value: a null string. |
Additional Alias | Additional Alias columns can take alternate names for the member being loaded. There are as many Alias columns as there are Alias tables defined in Planning. The value for multiple alias columns must conform to the same requirements as those listed for the default alias column. |
Data Storage | Takes the storage attribute for the member being loaded. Valid values:
This value is passed as a string. |
Two Pass Calculation | Boolean value to indicate if the member being loaded has the Two-Pass Calculation attribute associated in the Planningapplication. Valid values: 0 for False (default), or any other number for True. Values are valid only when the Data Storage value is Dynamic Calc or Dynamic Calc and Store; otherwise, the record is rejected. |
Data Type | Takes the data storage value. Valid values:
The default value is taken from the parent of the member being loaded or is Currency if the member is being added to the root dimension. |
Aggregation (Plan1) | Takes the aggregation option for the member being loaded as related to Plan1. This column is available only ifthe Planning application is valid for this plan type. The name of the column varies depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Aggregation (Plan2) | Takes the aggregation option for the member being loaded as related to Plan2. This column is available only ifthe Planning application is valid for this plan type. The name of the column varies depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Aggregation (Plan3) | Takes the aggregation option for the member being loaded as related to Plan3. This column is available only ifthe Planning application is valid for this plan type. The name of the column varies depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Aggregation (Wrkforce) | For Workforce Planning: The Aggregation (Wrkforce) column takes the aggregation option for the member being loaded as related to Workforce Planning. This column is available only if the Planning application is valid for this plan type. The name of the column varies, depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Aggregation (Capex) | For Capital Expense Planning: Takes the aggregation option for the member being loaded as related to Capital Expense Planning. This column is available only if the Planning application is valid for this plan type. The name of the column varies, depending on the name of the plan type in the Planning application. This value is passed as a string. Valid values:
|
Custom Attribute | Takes the custom attribute member values. The name of the column is determined by the name of the custom attribute in the Planning application. The number of custom attribute columns varies depending on the number of attributes defined for the Entity dimension. If you modify properties and do not specify a value, the custom attribute is not changed in the Planning application. If you specify <NONE> or <none> as the value, then the custom attribute in the Planning application is deleted. This value is passed as a string. |
Member Formula | Takes the member formula values defined for the dimension member. By default, there is no member formula associated with a dimension or dimension member. You cannot load member formulas for dimension members that are Shared or Label Only. |
UDA | Specifies a list of user-defined attributes to be updated.Note: You must define the UDA for the dimension members within Planning or by way of the UDA target. |
Smart Lists | Takes the name of a user-defined Smart List defined in the Planning application. This value is passed as a string. The default for Smart Lists is <None>. Smart Lists are used in a metadata or dimension load (not a data load) allowing you to define the association of the Smart List name (not the values) with a given dimension member. You can have multiple Smart Lists associatedwith a dimension but only one Smart List associated with a dimension member. These predefined Smart Lists are available in a Workforce Planning application:
|
Description | Takes a description for the member that is being loaded; empty by default. Note: If you do not enter a value for this column or do not connect the column, a new member is loaded without a description, and the description of an existing member is unchanged. If you enter <NONE> as the value for this column, any existing description for the member is deleted and is not loaded with the member. |
Operation | Takes any of these values:
Note: If you delete a member, that member, its data, and any associated planning units are permanently removed and cannot be restored. |
Table 22-6 describes the columns of the Attribute Dimensions table.
Note: The Parent, Default Alias, and Additional Alias columns are available only in Planning 9.3.1 and later. |
Table 22-6 Attribute Dimensions
Column | Description |
---|---|
Entity | Takes the name of the member you are loading. If this member exists, its properties are modified. If the member does not exist, then the record is added. This column is required. The value for this column must meet the following requirements for a successful load: The value for this field must meet these requirements:
This value is passed as a string. |
Parent | Takes the name of the parent of the member you are loading. It is used to create the hierarchy in the dimension. When you update a member of an application using the Load method and specify a parent member that is different than the parent member in the application, the member is updated with the new parent value specified in your flow diagram. For example, if Member 1 has a parent value of Member A in your Planning application and you load Member 1 with a parent value of Member B, the system updates your application and makes Member B the parent of Member 1. Member 1 and its descendants are moved from Member A to Member B. If the column is left blank, it is ignored during the load. The record is not loaded if one of the following situations occurs:
|
Default Alias | Takes an alternate name for the member being loaded. If you are modifying properties and do not specify a value, the alias is not changed in the Planning application. If you specify <NONE> or <none> as the value, the alias in the Planning application is deleted. The value for this column must meet the following requirements for a successful load:
This value is passed as a string; default value: a null string. |
Additional Alias | Additional Alias columns can take alternate names for the member being loaded. There are as many Alias columns as there are Alias tables defined in Planning. The value for multiple alias columns must conform to the same requirements as those listed for the default alias column. |
Operation | Takes any of these values:
Note: If you delete a member, that member, its data, and any associated planning units are permanently removed and cannot be restored. |
Table 22-7 describes the columns of the UDA table.
Table 22-7 UDA
Column | Description |
---|---|
Dimension | Takes the dimension name for the UDA. You can associate UDAs only with dimensions that exist in the Planning application. If the UDA exists, its properties are modified; otherwise, the record is added. This column is required. |
UDA | Takes the values of the UDA that you are loading. |
Dimension | Takes the values of the UDA you are loading. The value for this column must meet the following requirements for a successful load: The value for this column must meet the following requirements for a successful load:
This value is passed as a string; default value: a null string. |
Operation | Takes any of these values:
Note: If you delete a member, that member, its data, and any associated planning units are permanently removed and cannot be restored. |
These columns for loading data into Account, Employee, Entities, and user-defined dimensions are displayed if the application has been set up for data load in Planning.
Table 22-8 Data Load Columns
Columns | Description |
---|---|
Data Load Cube Name | Takes the name of the plan type to which data is being loaded. The value is passed as a string. Valid values are any plan types specified in the Planning application. For example:
|
Driver Member | Takes the name of the driver member that is selected when the Planning, Oracle's Hyperion® Workforce Planning, or Oracle's Hyperion® Capital Expense Planning application is set up for loading data. You can have one driver dimension per load. The Driver Dimension and Driver Dimension Members are defined in the Data Load Administration page in Planning. The driver members are the members into which the data is loaded. The number of driver member columns depends on the number of driver members you select in Oracle's Hyperion® Planning - System 9. The value is passed as a string representing a numeric value or, if a Smart List is bound to the member represented on this column, a Smart List value. Note: The Smart List field on this load method does not affect this column. |
Point-of-View | Takes the names of all the other dimensions that are required to determine the intersection to load the data. The value is passed as a string. The data load automatically performs cross-product record creations based on dimension parameters defined in the POV. For example, an employee's Smart List attribute values that are constant over time such as full time status for all twelve months need only be supplied once in the data feed and the load file will create and load that data record for each relevant cell intersection. |
Column | Description |
---|---|
Data Load Cube Name | Takes the name of the plan type to which data is being loaded. The value is passed as a string. Valid values are any plan types specified in the Planning application. For example:
|
Driver Member | Takes the name of the driver member that is selected when the Planning, Oracle's Hyperion® Workforce Planning, or Oracle's Hyperion® Capital Expense Planning application is set up for loading data. You can have one driver dimension per load. The Driver Dimension and Driver Dimension Members are defined in the Data Load Administration page in Planning. The driver members are the members into which the data is loaded. The number of driver member columns depends on the number of driver members you select in Oracle's Hyperion® Planning - System 9. The value is passed as a string representing a numeric value or, if a Smart List is bound to the member represented on this column, a Smart List value. Note: The Smart List field on this load method does not affect this column. |
Point-of-View | Takes the names of all the other dimensions that are required to determine the intersection to load the data. The value is passed as a string. The data load automatically performs cross-product record creations based on dimension parameters defined in the POV. For example, an employee's Smart List attribute values that are constant over time such as full time status for all twelve months need only be supplied once in the data feed and the load file will create and load that data record for each relevant cell intersection. |
This chapter describes how to work with Oracle OLAP in Oracle Data Integrator.
This chapter includes the following sections:
Oracle Data Integrator (ODI) seamlessly integrates data in an Oracle OLAP. All Oracle Data Integrator features are designed to work best with the Oracle OLAP cubes, including reverse-engineering and integration interfaces.
Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to the Oracle database instance containing the Oracle OLAP cubes.
The Oracle Data Integrator Knowledge Modules for Oracle OLAP provide integration and connectivity between Oracle Data Integrator and Oracle OLAP cubes. Oracle Data Integrator is able to handle two different types of cubes with the Oracle OLAP KMs, depending on the storage mode of these cubes:
Note: Only Analytic Workspaces containing OLAP 10g Cubes are supported. Relational OLAP (ROLAP) support is limited to CWM 1 only. |
The Oracle Data Integrator KMs for Oracle OLAP use mature integration methods for Oracle OLAP in order to:
Note: The Oracle Data Integrator Oracle OLAP KMs are similar to the standard Oracle Database KMs. This chapter describes the Oracle OLAP specificities. See Chapter 2, "Oracle Database" for a description of the Oracle Database KMs. |
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 23-1 for handling Oracle OLAP data. The KMs use Oracle OLAP specific features. It is also possible to use the generic SQL KMs and Oracle Database KMs with the Oracle OLAP. See Chapter 4, "Generic SQL" and Chapter 2, "Oracle Database" for more information.
Table 23-1 Oracle OLAP Knowledge Modules
Knowledge Module | Description |
---|---|
RKM Oracle OLAP (Jython) | Reverse-engineering knowledge module to retrieve the tables, views, columns, Primary Keys, Unique Keys and Foreign keys from Oracle Database, which are used by a ROLAP or a MOLAP Cube. This KM provides logging (Use Log & Log File Name) options. |
IKM Oracle AW Incremental Update | This KM is similar to the IKM Oracle Incremental Update. It has additional options for handling MOLAP cubes. |
Make sure you have read the information in this section before you start using the Oracle OLAP Knowledge Modules:
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.
The list of supported platforms and versions is available on Oracle Technical Network (OTN):
http://www.oracle.com/technology/products/oracle-data-integrator/index.html
.
There are no connectivity requirements for using Oracle OLAP data in Oracle Data Integrator. The requirements for the Oracle Database apply also to Oracle OLAP. See Chapter 2, "Oracle Database" for more information.
The RKM Oracle OLAP (Jython) uses in addition Oracle OLAP libraries. Copy the awxml.jar and olap_api.jar from the ORACLE_HOME/olap/api/lib
folder into the additional drivers folder for ODI.
There are no connectivity requirements for using Oracle OLAP data in Oracle Data Integrator. The requirements for the Oracle Database apply also to Oracle OLAP. See Chapter 2, "Oracle Database" for more information.
Setting up the Topology consists of:
This step consists in declaring in Oracle Data Integrator the data server, as well as the physical and logical schemas that store the Oracle OLAP cubes.
Create a data server for the Oracle technology as described in Section 2.3.1, "Creating an Oracle Data Server".
Create an Oracle physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.
Setting up a project using the Oracle OLAP features follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
It is recommended to import the following knowledge modules into your project for getting started with Oracle OLAP:
Import also the Oracle Database knowledge modules recommended in Chapter 2, "Oracle Database".
This section contains the following topics:
Create an Oracle Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Oracle OLAP supports Customized reverse-engineering. The RKM Oracle OLAP (Jython) retrieves the metadata from the Oracle tables used by an Oracle OLAP cube.
Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on Oracle OLAP, use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields specific to the Oracle technology:
KM: RKM Oracle OLAP (Jython).<project name>
. YES
to reverse an Analytic Workspace. If this option is set to YES
, the following options are mandatory: YES
to reverse tables from a ROLAP schema. YES
to write the log details of the reverse-engineering process into a log file. The reverse-engineering process returns the tables used by a cube as datastores. You can then use these datastores as a source or a target of your interfaces.
You can use the Oracle Data Integrator Oracle OLAP KMs as well as the standard Oracle Database KMs. The Oracle OLAP KM specific steps are detailed in the following sections.
After performing a reverse-engineering using the RKM Oracle OLAP (Jython), you can use Oracle OLAP data tables as a source of an integration interface to extract data from the Oracle OLAP database and integrate them into another system (Data warehouse, other database...). Using Oracle OLAP as a source in these conditions is identical to using an Oracle datastore as a source in an integration interface. The Generic SQL and Oracle Database KMs can be used for this purpose.
See the following chapters for more information:
After performing a reverse-engineering using the RKM Oracle OLAP (Jython), you can use Oracle ROLAP data tables as a target of an integration interface to load data from any system to the Oracle ROLAP database. Using Oracle ROLAP as a target in these conditions is identical to using an Oracle datastore as a target in an integration interface. The Generic SQL and Oracle Database KMs can be used for this purpose.
See the following chapters for more information:
Using Oracle MOLAP as a Target in an integration interface is similar to using Oracle ROLAP as a target with the difference that, in addition to the standard features of the integration process, you can refresh the MOLAP cube at the execution of the integration interface by using the IKM Oracle AW Incremental Update.
This IKM is similar to the IKM Oracle Incremental Update. See Chapter 2, "Oracle Database"for more information. It has four additional options for handling MOLAP cubes:
YES
to refresh the cube for an Analytical Workspace. In order to avoid refreshing the cube at every integration interface step, use the IKM Oracle AW Incremental Update with the refresh cube options only in the last integration interface of the package.
In the last integration interface set the options to refresh the cube as follows:
YES
. This part describes how to work with other technologies in Oracle Data Integrator.
Part III contains the following chapters:
This chapter describes how to work with Java Message Services (JMS) in Oracle Data Integrator.
This chapter includes the following sections:
Oracle Data Integrator provides a simple and transparent method to integrate JMS destinations. This chapter focuses on processing JMS messages with a text payload in batch mode. For XML payload processing, refer to Chapter 25, "JMS XML".
The JMS Knowledge Modules apply to most popular JMS compliant middleware, including Oracle Service Bus, Sonic MQ, IBM Websphere MQ, and so forth. Most of these Knowledge Modules include transaction handling to ensure message delivery.
This section describes the structure of a message in a JMS destination.
A JMS Message consists of three sections:
Header
The header contains in the header fields standard metadata concerning the message, including the destination (JMSDestination), Message ID (JMSMessageID), Message Type (JMSType), and so forth.
Properties
The properties section contains additional metadata concerning the message. These metadata are properties, that can be separated in three groups:
The Header and Properties sections provide a set of header fields and properties that:
Payload
The payload section contains the message content. This content can be anything (text, XML, binary, and so forth).
Oracle Data Integrator is able to process JMS Text and Byte messages that are delivered by a JMS destination. Each message is considered as a container for rows of data and is handled through the JMS Queue or JMS Topic technology.
With JMS Queue/JMS Topic technologies, each JMS destination is defined similarly to a flat file datastore. Each message in the destination is a record in the datastore.
In the topology, each JMS router is defined as a JMS Topic/Queue data server, with a single physical schema. A JMS router may be defined therefore twice to access its topics using one data server, and its queues using another one.
Each JMS destination (Topic of Queue) is defined as a JMS datastore which resource name matches the name of the JMS destination (name of the queue or topic as defined in the router). A model groups message structures related to different topics or queues.
The JMS datastore structure is defined similarly to a flat file (delimited or fixed width). The properties or header fields of the message can be declared with JMS-specific data types as additional pseudo-columns in this flat file structure. Each message in the destination is processed as a record of a JMS datastore.
Processing Messages
JMS destinations are handled as regular file datastores and messages as rows from these datastores. With these technologies, entire message sets are produced and consumed within each interface.
Message publishing as well consumption requires a commit action to finalize removing/posting the message from/to the JMS destination. Committing is particularly important when reading. Without a commit, the message is read but not consumed. It remains in the JMS Topic/Queue and will be re-read at a later time.
Both the message content and pseudo-columns can be used as regular columns in the integration interfaces (for mapping, filter, etc.). Certain pseudo-columns (such as the one representing the MESSAGE_ID property) are read-only, and some properties of header fields are used (or set) through the Knowledge Module options.
Using Data Integrator you can transfer information either through the message payload - the columns - , or through the properties - pseudo-columns - (application properties, for example).
Using the properties to carry information is restricted by third-party applications producing or consuming the messages.
Filtering Messages
It is possible to filter messages from a JMS destination in two ways:
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 24-1 for handling JMS messages.
Table 24-1 JMS Knowledge Modules
Knowledge Module | Description |
---|---|
IKM SQL to JMS Append | Integrates data into a JMS compliant message queue or topic in text or binary format from any SQL compliant staging area. Consider using this IKM if you plan to transform and export data to a target JMS queue or topic. If most of your source datastores are located on the same data server, we recommend using this data server as staging area to avoid extra loading phases (LKMs). To use this IKM, the staging area must be different from the target. |
LKM JMS to SQL | Loads data from a text or binary JMS compliant message queue or topic to any SQL compliant database used as a staging area. This LKM uses the Agent to read selected messages from the source queue/topic and write the result in the staging temporary table created dynamically. To ensure message delivery, the message consumer (or subscriber) does not commit the read until the data is actually integrated into the target by the IKM. Consider using this LKM if one of your source datastores is a text or binary JMS message. |
Make sure you have read the information in this section before you start using the JMS Knowledge Modules:
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.
The list of supported platforms and versions is available on Oracle Technical Network (OTN):
http://www.oracle.com/technology/products/oracle-data-integrator/index.html
.
The JMS destinations are usually accessed via a JNDI service. The configuration and specific requirements for JNDI and JMS depends on the JMS Provider you are connecting to. Refer to the JMS Provider specific documentation for more details.
Oracle Data Integrator does not include specific drivers for JMS providers. Refer to the JMS Provider documentation for the connectivity requirement of this provider.
Setting up the Topology consists of:
A JMS data server corresponds to one JMS provider/router that is accessible through your local network.
It exists two types of JMS data servers: JMS Queue and JMS Topic.
Create a data server either for the JMS Queue technology or for the JMS Topic technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a JMS Queue or JMS Topic data server.
None
. com.sun.jndi.ldap.LdapCtxFactory
for LDAP <JMS_RESOURCE>
, for example ldap://<host>:<port>/<dn>
for LDAP For example, specify QueueConnectionFactory
if you want to access a message queue and TopicConnectionFactory
if you want to access a topic. Note that these parameters are specific to the JNDI directory and the provider.
Create a JMS physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Note: Only one physical schema is required per JMS data server. |
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.
Setting up a project using JMS follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
It is recommended to import the following knowledge modules into your project for getting started with JMS:
This section contains the following topics:
Note: It is not possible to reverse-engineer a JMS model. To create a datastore you have to create a JMS model and define the JMS datastores. |
Create a JMS Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
A JMS Model is a set of datastores corresponding to the Topics or Queues of a router. Each datastore corresponds to a specific Queue or Topic. The datastore structure defines the message structure for this queue or topic. A model is always based on a Logical Schema. In a given Context, the Logical Schema corresponds to one JMS Physical Schema. The Data Schema corresponding to this Physical Schema contains the Topics or Queues.
In Oracle Data Integrator, each datastore is a JMS Topic or Queue. Each message in this topic or queue is a row of the datastore.
A JMS message may carry any type of information and there is no metadata retrieval method available. Therefore reverse-engineering is not possible.
To define the datastore structure, do one of the following:
Important: The datastores' resource names must be identical to the name of JMS destinations (this is the logical JNDI name) that will carry the message corresponding to their data. Note that these names are frequently case-sensitive. |
Declaring JMS Properties as Pseudo-Columns
The property pseudo-columns represent properties or header fields of a message. These pseudo-columns are defined in the Oracle Data Integrator model as columns in the JMS datastore, with JMS-specific datatypes. The JMS-specific datatypes are called JMS_xxx (for example: JMS String, JMS Long, JMS Int, and so forth).
To define these property pseudo-columns, simply declare additional columns named identically to the properties and specified with the appropriate JMS-specific datatypes.
If you define pseudo-columns that are named like standard, provider-specific or application-specific properties, they will be consumed or published with the message as such. If a pseudo-column is not listed in the standard or provider-specific set of JMS properties, It is considered as additional application-specific property.
For example, to use or set in interfaces the JMSPriority default property on messages consumed from or pushed to a JMS queue called CUSTOMER, you would add a column called JMSPriority (with this exact case) to the CUSTOMER datastore. This column would have the JMS Int datatype available for the JMS Queue technology.
Warning:
|
You can use JMS as a source or a target of an integration interface. It cannot be used as the staging area.
The KM choice for an interface or a check determines the abilities and performance of this interface or check. The recommendations in this section help in the selection of the KM for different situations concerning JMS messages.
JMS can be used as a source or a target in an interface. Data from a JMS message Queue or Topic can be loaded to any SQL compliant database used as a staging area. The LKM choice in the Interface Flow tab to load data between JMS and another type of data server is essential for the performance of an interface.
Oracle Data Integrator provides the LKM JMS to SQL for loading data from a JMS source to a Staging Area. This LKM loads data from a text or binary JMS compliant message queue or topic to any SQL compliant database used as a staging area.
Table 24-2 lists the JMS specific options.
Oracle Data Integrator provides the IKM SQL to JMS Append that implements optimized data integration strategies for JMS. This IKM integrates data into a JMS compliant message queue or topic in text or binary format from any SQL compliant staging area. Table 24-2 lists the JMS specific KM options of this IKM.
The IKM choice in the Interface Flow tab determines the performances and possibilities for integrating.
JMS Knowledge Modules Options
Table 24-2 lists the JMS specific KM options of the JMS IKM and LKM.
The JMS specific options of this LKM are similar to the options of the IKM SQL to JMS Append. There are only two differences:
Table 24-2 JMS Specific KM Options
Option | Used to | Description |
---|---|---|
PUBLISH | Write | Check this option if you want to publish new messages in the destination. This option is set to Yes by default. |
JMS_COMMIT | Read/Write | Commit the publication or consumption of a message. Uncheck this option if you don't want to commit your publication/consumption on your router. This option is set to Yes by default. |
JMSDELIVERYMODE | Write | JMS delivery mode (1: Non Persistent, 2: Persistent). A persistent message remains on the server and is recovered on server crash. |
JMSEXPIRATION | Write | Expiration delay in milliseconds for the message on the server [0..4 000 000 000]. 0 signifies that the message never expires. Warning! After this delay, a message is considered as expired, and is no longer available in the topic or queue. When developing interfaces it is advised to set this parameter to zero. |
JMSPRIORITY | Write | Relative Priority of the message: 0 (lowest) to 9 (highest). |
SENDMESSAGETYPE | Write | Type of message to send (1 -> BytesMessage, 2 ->TextMessage). |
JMSTYPE | Write | Optional name of the message. |
CLIENTID | Read | Subscriber identification string. This option is described only for JMS compatibility. Not used for publication. |
DURABLE | Read | D: Session is durable. Indicates that the subscriber definition remains on the router after disconnection. |
MESSAGEMAXNUMBER | Read | Maximum number of messages retrieved [0 .. 4 000 000 000]. 0: All messages are retrieved. |
MESSAGETIMEOUT | Read | Time to wait for the first message in milliseconds [0 .. 4 000 000 000]. if MESSAGETIMEOUT is equal to 0, then there is no timeout. MESSAGETIMEOUT and MESSAGEMAXNUMBER cannot be both equal to zero. if MESSAGETIMEOUT= 0 and MESSAGEMAXNUMBER =0, then MESSAGETIMEOUT takes the value 1. Warning! An interface may retrieve no message if this timeout value is too small. |
NEXTMESSAGETIMEOUT | Read | Time to wait for each subsequent message in milliseconds [0 .. 4 000 000 000]. The default value is 1000. Warning! An interface may retrieve only part of the messages available in the topic or the queue if this value is too small. |
MESSAGESELECTOR | Read | Message selector in ISO SQL syntax. See Section 24.7.1, "Using JMS Properties" for more information on message selectors. |
This section describes the JMS properties contained in the message header and how to use them.
In Oracle Data Integrator, pseudo-columns corresponding to the JMS Standard properties should be declared in accordance with the descriptions provided in Table 24-3.
The JMS type and access mode columns refer to the use of these properties in Oracle Data Integrator or in Java programs. In Oracle Data Integrator, some of these properties are used through the IKM options, and the pseudo-column values should not be set by the interfaces.
For more details on using these properties in a Java program, see http://java.sun.com/products/jms/
.
Table 24-3 Standard JMS Properties of Message Headers
Property | JMS Type | Access (Read/Write) | Description |
---|---|---|---|
JMSDestination | JMS String | R | Name of the destination (topic or queue) of the message. |
JMSDeliveryMode | JMS Integer | R/W (set by IKM option) | Distribution mode: 1 = Not Persistent or 2 = Persistent. A persistent message is never lost, even if a router crashes. When sending messages, this property is set by the JMSDELIVERYMODE KM option. |
JMSMessageID | JMS String | R | Unique Identifier for a message. This identifier is used internally by the router. |
JMSTimestamp | JMS Long | R | Date and time of the message sending operation. This time is stored in a UTC standard format (1). |
JMSExpiration | JMS Long | R/W (set by IKM option) | Message expiration date and time. This time is stored in a UTC standard format (1). To set this property the JMSEXPIRATION KM option must be used. |
JMSRedelivered | JMS Boolean | R | Indicates if the message was resent. This occurs when a message consumer fails to acknowledge the message reception. |
JMSPriority | JMS Int | R/W | Name of the destination (topic or queue) the message replies should be sent to. |
JMSCorrelationID | JMS String | R/W | Correlation ID for the message. This may be the JMSMessageID of the message this message generating this reply. It may also be an application-specific identifier. |
JMSType | JMS String | R/W (set by IKM option) | Message type label. This type is a string value describing the message in a functional manner (for example To set this property the JMSTYPE KM option must be used. |
Table 24-4 lists the optional JMS-defined properties in the JMS standard.
Table 24-4 Standard JMS Properties of Message Headers
Property | JMS Type | Access (Read/Write) | Description |
---|---|---|---|
JMSXUserID | JMS String | R | Client User ID. |
JMSXAppID | JMS String | R | Client Application ID. |
JMSSXProducerTXID | JMS String | R | Transaction ID for the production session. This ID is the same for all the messages sent to a destination by a producer between two JMS commit operations. |
JMSSXConsumerTXID | JMS String | R | Transaction ID for current consumption session. This ID is the same of a batch of message read from a destination by a consumer between two JMS commit read operations. |
JMSXRcvTimestamp | JMS Long | R | Message reception date and time. This time is stored in a UTC standard format (1). |
JMSXDeliveryCount | JMS Int | R | Number of times a message is received. Always set to 1. |
JMSXState | JMS Int | R | Message state. Always set to 2 (Ready). |
JMSXGroupID | JMS String | R/W | ID of the group to which the message belongs. |
JMSXGroupSeq | JMS Int | R/W | Sequence number of the message in the group of messages. |
(1): The UTC (Universal Time Coordinated) standard is the number of milliseconds that have elapsed since January 1st, 1970
In addition to their contents, messages have a set of properties attached to them. These may be provider-specific, application-specific (user defined) or JMS Standard Properties.
JMS properties are used in Oracle Data Integrator as complementary information to the message, and are used, for example, to filter the messages.
When Defining the JMS Datastores, you must append pseudo-columns corresponding to the JMS properties that you want to use in your interfaces. See Declaring JMS Properties as Pseudo-Columns for more information.
With this type of filtering, the filter is specified when sending the JMS read query. Only messages matching the message selector filter are retrieved. The message selector is specified in Oracle Data Integrator using the MESSAGE_SELECTOR KM option
Note: Router filtering is not a JMS mandatory feature. It may be unavailable. Please confirm that it is available by reviewing the JMS provider documentation. |
The MESSAGE_SELECTOR is programmed in an SQL WHERE syntax. Comparison, boolean and mathematical operators are supported:
+, -, *, /, =, >, <, <>, >=, <=, OR, AND, BETWEEN, IN, NOT, LIKE, IS NULL
.
Notes:
|
Examples
Filter all messages with priority greater than 5
JMSPriority > 5
Filter all messages with priority not less than 6 and with the type Sales_Event.
NOT JMSPriority < 6 AND JMSType = 'Sales_Event'
Filtering is performed after receiving the messages, and is setup by creating a standard Oracle Data Integrator interface filter which must be executed on the staging area. A filter uses pseudo-columns from the source JMS datastore. The pseudo-columns defined in the Oracle Data Integrator datastore represent the JMS properties. See Declaring JMS Properties as Pseudo-Columns for more information. Note that messages filtered this way are considered as consumed from the queue or topic.
It is possible to use the values of JMS properties as source data in an interface. This is carried out by specifying the pseudo-columns of the source JMS datastore in the mapping. See Declaring JMS Properties as Pseudo-Columns for more information.
When sending messages it is possible to specify JMS properties by mapping values of the pseudo-columns in an interface targeting a JMS datastore. Certain properties may be set using KM options. See Section 24.7, "JMS Standard Properties" for more information.
This chapter describes how to work with Java Message Services (JMS) with a XML payload in Oracle Data Integrator.
This chapter includes the following sections:
Oracle Data Integrator provides a simple and transparent method to integrate JMS destinations. This chapter focuses on processing JMS messages with a XML payload. For text payload processing in batch mode, refer to Chapter 24, "JMS".
The JMS XML Knowledge Modules apply to most popular JMS compliant middleware, including Oracle Service Bus, Sonic MQ, IBM Websphere MQ, and so forth. Most of these Knowledge Modules include transaction handling to ensure message delivery.
See Section 24.1.1.1, "JMS Message Structure" for information about the JMS message structure.
Oracle Data Integrator is able to process XML messages that are delivered by a JMS destination. Each message is considered as a container for XML data and is handled through the JMS XML Queue or JMS XML Topic technology.
With JMS XML Queue/JMS XML Topic technologies, each messages payload contains a complete XML data structure. This structure is mapped into a relational schema (XML Schema) that appears as a model, using the Oracle Data Integrator XML Driver.
Note: This method is extremely similar to XML files processing. In JMS XML, the message payload is the XML file. See Chapter 5, "XML Files" and Appendix B, "Oracle Data Integrator Driver for XML Reference" for more information about XML Files processing and the XML Driver. |
In the topology, each JMS destination is defined as a JMS XML Topic/Queue data server with a single physical schema. A data server/physical schema pair will be declared for each topic or queue delivering message in the XML format.
The structure of the XML message mapped into a relational structure (called the XML schema) appears as a data model. Each datastore in this model represents a portion (typically, an element type) in the XML file.
Processing Messages
As each XML message corresponds to an Oracle Data Integrator model, the entire model must be used and loaded as one single unit when a JMS XML message is consumed or produced. The processing unit for an XML message is the package.
It is not possible to declare the properties or header fields of the message in the model or use them as columns in an interface. They still can be used in message selectors, or be set through KM options.
Consuming an XML message
Processing an incoming XML message is performed in packages as follows:
Producing an XML message
To produce an XML message, a package must be designed to perform the following tasks:
Filtering Messages
It is possible to filter messages from a JMS XML destination by defining a Message Selector (MESSAGE_SELECTOR KM option) to filter messages on the server. This type of filter can use only the properties or header fields of the message. The filter is processed by the server, reducing the amount of information read by Data Integrator. It is also possible to filter data in the interface using data extracted from the XML schema. These filters are processed in Data Integrator, after the message is synchronized to the XML schema.
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 25-1 for handling XML messages.
Table 25-1 JMS XML Knowledge Modules
Knowledge Module | Description |
---|---|
IKM SQL to JMS XML Append | Integrates data into a JMS compliant message queue or topic in XML format from any ANSI SQL-92 standard compliant staging area. |
LKM JMS XML to SQL | Loads data from a JMS compliant message queue or topic in XML to any ANSI SQL-92 standard compliant database used as a staging area. |
Make sure you have read the information in this section before you start using the JMS Knowledge Modules:
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.
The list of supported platforms and versions is available on Oracle Technical Network (OTN):
http://www.oracle.com/technology/products/oracle-data-integrator/index.html
.
The JMS destinations are usually accessed via a JNDI service. The configuration and specific requirements for JNDI and JMS depends on the JMS Provider you are connecting to. Refer to the JMS Provider specific documentation for more details.
This section lists the requirements for connecting to a JMS XML database.
Oracle Data Integrator does not include specific drivers for JMS providers. Refer to the JMS Provider documentation for the connectivity requirement of this provider.
XML Configuration
XML content is accessed through the Oracle Data Integrator JDBC for XML driver. The driver is installed with Oracle Data Integrator.
Ask your system administrator for the location of the DTD file describing the XML content.
Setting up the Topology consists of:
An JMS XML data server corresponds to one JMS provider/router that is accessible through your local network.
There are two types of JMS XML data servers: JMS Queue XML and JMS Topic XML.
The Oracle Data Integrator JMS driver loads the messages that contains the XML content into a relational schema in memory. This schema represents the hierarchical structure of the XML message and enables unloading the relational structure back to the JMS messages.
Create a data server either for the JMS Queue XML technology or for the JMS Topic XML technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
The creation process for a JMS XML Queue or JMS Topic XML data server is identical to the creation process of an XML data server except that you need to define a JNDI connection with JMS XML specific information in the JNDI URL. See Section 5.3.1, "Creating an XML Data Server" for more information.
This section details only the fields required or specific for defining a JMS Queue XML or JMS Topic XML data server.
com.sun.jndi.ldap.LdapCtxFactory
<JMS_RESOURCE>?d=<DTD_FILE>&s=<SCHEMA>&JMS_DESTINATION=<JMS_DESTINATION_NAME>
. The JNDI URL properties are described inTable 25-2.
Note: SpecifyQueueConnectionFactory if you want to access a message queue and TopicConnectionFactory if you want to access a topic. Note that these parameters are specific to the JNDI directory. |
Table 25-2 JNDI URL Properties
Parameter | Value | Notes |
---|---|---|
d | <DTD File location> | DTD File location (relative or absolute) in UNC format. Use slash “/” in the path name and not backslash “\” in the file path. This parameter is mandatory. |
re | <Root element> | Name of the element to take as the root table of the schema. This value is case sensitive. This parameter can be used for reverse-engineering a specific message definition from a WSDL file, or when several possible root elements exist in a XSD file. |
ro | true | false | If true, the XML file is opened in read only mode. |
s | <schema name> | Name of the relational schema where the XML file will be loaded.This value must match the one set for the physical schema attached to this data server. This parameter is mandatory. |
cs | true | false | Load the XML file in case sensitive or insensitive mode. For case insensitive mode, all element names in the DTD file should be distinct (Ex: Abc and abc in the same file are banned). The case sensitive parameter is a permanent parameter for the schema. It CANNOT be changed after schema creation. Please note that when opening the XML file in insensitive mode, case will be preserved for the XML file. |
JMSXML_ROWSEPARATOR | 5B23245D | Hexadecimal code of the string used as a line separator (line break) for different XML contents. Default value is 5B23245D which corresponds to the string [#$]. |
JMS_DESTINATION | JNDI Queue name or Topic name | JNDI Name of the JMS Queue or Topic. This parameter is mandatory. |
tna | boolean (true|false | Transform Non Ascii. Set to false to keep non-ascii characters. Default is true. This parameter is not mandatory. |
Example
If using an LDAP directory as the JNDI provider, you should use the following parameters:
com.sun.jndi.ldap.LdapCtxFactory
ldap://<ldap_host>:<port>/<dn>?d=<DTD_FILE>&s=<SCHEMA>&JMS_DESTINATION=<JMS_DESTINATION_NAME>
<Name of the connection factory>
Create a JMS XML physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Note: For the name of the Schema and Work Schema use the schema name defined in thes=<schema name> property of the JNDI URL of the JMS Queue XML or JMS Topic XML data server. |
Note: Only one physical schema is required per JMS XML data server. |
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.
Setting up a project using JMS XML follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
It is recommended to import the following knowledge modules into your project for getting started with JMS XML:
This section contains the following topics:
Create a JMS Queue XML or JMS Topic XML Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
A JMS Queue XML or JMS Topic XML Model corresponds to a set of datastores, with each datastore representing an entry level in the XML file. The models contain datastores describing the structure of the JMS messages. A model contains the message structure of one topic or one queue. This model's structure is reverse-engineered from the DTD or the XML file specified in the data server definition, using standard reverse-engineering.
JMS XML supports Standard reverse-engineering - which uses only the abilities of the XML driver.
To perform a Standard Reverse-Engineering on JMS Queue XML or JMS Topic XML use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Oracle Data Integrator will automatically add the following columns to the tables generated from the XML data:
These extra columns enable the hierarchical XML structure's mapping in a relational structure stored in the schema. See d Appendix B, "Oracle Data Integrator Driver for XML Reference" for more information.
The KM choice for an interface or a check determines the abilities and performance of this interface or check. The recommendations in this section help in the selection of the KM for different situations concerning XML messages.
JMS XML can be used as a source or a target in an interface. Data from an XML message Queue or Topic can be loaded to any ANSI SQL-92 standard compliant database used as a staging area. The LKM choice in the Interface Flow tab to load data between JMS XML and another type of data server is essential for successful data extraction.
Oracle Data Integrator provides the LKM JMS XML to SQL for loading data from a JMS compliant message queue or topic in XML to any ANSI SQL-92 standard compliant database used as a staging area. This LKM uses the Agent to read selected messages from the source queue/topic and write the result in the staging temporary table created dynamically.To ensure message delivery, the message consumer (or subscriber) does not commit the read until the data is actually integrated into the target by the IKM.Consider using this LKM if one of your source datastores is an XML JMS message.
In order to load XML messages from a JMS provider, the following steps must be followed:
Yes
. This option creates and loads the XML schema from the message retrieved from the queue or topic. Yes
. Table 25-3 lists the JMS specific options of this knowledge module.
Oracle Data Integrator provides the IKM SQL to JMS XML Append that implements optimized data integration strategies for JMS XML. This IKM integrates data into a JMS compliant message queue or topic in XML format from any ANSI SQL-92 standard compliant staging area.
To use this IKM, the staging area must be different from the target.
In order to integrate XML data into a JMS XML target, the following steps must be followed:
Yes
. Note: The root table of the XML schema usually corresponds to the datastore at the top of the hierarchy tree view of the JMS XML model. Therefore the ROOT_TABLE parameter should take the value of the resource name for this datastore. |
For example, when loading the second level of the hierarchy (the one under the root table), the foreign key column should be set to '0
' (Zero), as it is the value that is set by the IKM in the root table primary key when the root table is initialized.
Yes
. Example
An XML file format generates a schema with the following hierarchy of datastores:
In this hierarchy, GEOGRAPHY_DIM is the root table, and its GEOGRAPHY_DIMPK column is set to '0
' at initialization time. The tables should be loaded in the GEOGRAPHY_DIM, COUNTRY, REGION sequence.
0
'. In the model above, when loading COUNTRY, we must load the COUNTRY.GEOGRAPHY_DIMFK set to '0
'. REGION.COUNTRYFK = COUNTRY.COUNTRYPK
). For more information on loading data to XML schemas, see Appendix B, "Oracle Data Integrator Driver for XML Reference".
Table 25-3 lists the JMS specific KM options of this IKM. Options that are specific to XML messages are in bold.
JMS XML Knowledge Modules Options
Table 25-3 lists the KM options for the LKM and IKM for JMS XML. Options that are specific to XML messages are in bold.
Although most options are the same for the LKM and IKM, there are only few differences:
Yes
to commit the message consumption on the Router (JMS XML). Table 25-3 JMS Specific KM Options
Option | Used to | Description |
---|---|---|
CLIENTID | Read | Subscriber identification string. Not used for publication. |
DURABLE | Read | D: Session is durable. Indicates that the subscriber definition remains on the router after disconnection. |
INITIALIZE_XML_SCHEMA | Write | Initializes an empty XML schema. This option must be set to |
JMSDELIVERYMODE | Write | JMS delivery mode (1: Non Persistent, 2: Persistent). A persistent message remains on the server and is recovered on server crash. |
JMSEXPIRATION | Write | Expiration delay in milliseconds for the message on the server [0..4 000 000 000]. 0 signifies that the message never expires. Warning! After this delay, a message is considered as expired, and is no longer available in the topic or queue. When developing interfaces it is advised to set this parameter to zero. |
JMSPRIORITY | Write | Relative Priority of the message: 0 (lowest) to 9 (highest). |
JMSTYPE | Write | Optional name of the message. |
MESSAGEMAXNUMBER | Read | Maximum number of messages retrieved [0 .. 4 000 000 000]. 0: All messages are retrieved. |
MESSAGESELECTOR | Read | Message selector in ISO SQL syntax for filtering on the router. See Section 24.7.1, "Using JMS Properties" for more information on message selectors. |
MESSAGETIMEOUT | Read | Time to wait for the first message in milliseconds [0 .. 4 000 000 000]. If MESSAGETIMEOUT is equal to 0, then there is no timeout. MESSAGETIMEOUT and MESSAGEMAXNUMBER cannot be both equal to zero. If Warning! An interface may retrieve no message if this timeout value is too small. |
NEXTMESSAGETIMEOUT | Read | Time to wait for each subsequent message in milliseconds [0 .. 4 000 000 000]. The default value is 1000. Warning! An interface may retrieve only part of the messages available in the topic or the queue if this value is too small. |
ROOT_TABLE | Write | Resource name of the datastore that is the root of the XML model hierarchy. |
SENDMESSAGETYPE | Write | Type of message to send (1 -> BytesMessage, 2 ->TextMessage). |
SYNCHRO_XML_TO_JMS | Write | Generates the XML message from the XML schema, and sends this message. This option must be set to |
This chapter describes how to work with LDAP directories in Oracle Data Integrator.
This chapter includes the following sections:
Oracle Data Integrator supports LDAP directories integration using the Oracle Data Integrator Driver for LDAP.
The LDAP concepts map the Oracle Data Integrator concepts as follows: An LDAP directory tree, more specifically the entry point to this LDAP tree, corresponds to a data server in Oracle Data Integrator. Within this data server, a single schema maps the content of the LDAP directory tree.
The Oracle Data Integrator Driver for LDAP (LDAP driver) loads the hierarchical structure of the LDAP tree into a relational schema. This relational schema is a set of tables that can be queried or modified using standard SQL statements.
The relational schema is reverse-engineered as a data model in ODI, with tables, columns, and constraints. This model is used like a normal relational data model in ODI. Any changes performed in the relational schema data (insert/update) is immediately impacted by the driver in the LDAP data.
See Appendix A, "Oracle Data Integrator Driver for LDAP Reference" for more information on this driver.
Oracle Data Integrator does not provide specific Knowledge Modules (KM) for the LDAP technology. You can use LDAP as a SQL data server. LDAP data servers support both the technology-specific KMs sourcing or targeting SQL data servers, as well as the generic KMs. See Chapter 4, "Generic SQL" or the technology chapters for more information on these KMs.
Make sure you have read the information in this section before you start working with the LDAP technology.
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.
The list of supported platforms and versions is available on Oracle Technical Network (OTN):
http://www.oracle.com/technology/products/oracle-data-integrator/index.html
.
There are no technology-specific requirements for using LDAP directories in Oracle Data Integrator.
This section lists the requirements for connecting to LDAP database.
Oracle Data Integrator Driver for LDAP
LDAP directories are accessed through the Oracle Data Integrator Driver for LDAP. This JDBC driver is installed with Oracle Data Integrator.
To connect to an LDAP directory you must ask the system administrator for the following connection information:
You may also require a connection to the Reference LDAP Tree structure and to an External Storage database for the driver. See Appendix B, "Oracle Data Integrator Driver for XML Reference" for more information on these concepts and configuration parameters.
Setting up the topology consists in:
An LDAP data server corresponds to an LDAP tree that is accessible to Oracle Data Integrator.
Create a data server for the LDAP technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a LDAP data server:
com.sunopsis.ldap.jdbc.driver.SnpsLdapDriver
jdbc:snps:ldap?<property>=<value>[&<property>=<value>...]
jdbc:snps:ldap2?<property>=<value>[&<property>=<value>...]
These two URLs accept the key properties listed in Table 26-1. See Appendix A, "Driver Configuration" for a detailed description of these properties and for a comprehensive list of all JDBC driver properties.
Note: The first URL requires the LDAP directory password to be encoded. The second URL allows you to give the LDAP directory password without encoding it. It is recommended to use the first URL to secure the LDAP directory password. |
Table 26-1 JDBC Driver Properties
Property | Value | Notes |
---|---|---|
ldap_auth | <authentication mode> | LDAP Directory authentication method. See the |
ldap_url | <LDAP URL> | LDAP Directory URL. See the |
ldap_user | <LDAP user name> | LDAP Directory user name. See the |
ldap_password | <LDAP user password> | LDAP Directory user password. This password must be encoded if using the jdbc:snps:ldap URL syntax. See the |
lldap_basedn | <base DN> | LDAP Directory basedn. See the |
URL Examples
To connect an Oracle Internet Directory on server OHOST_OID
and port 3060
, using the user orcladmin
, and accessing this directory tree from the basedn dc=us,dc=oracle,dc=com
you can use the following URL:
Create an LDAP physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.
Setting up a Project using the LDAP database follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
The recommended knowledge modules to import into your project for getting started are the following:
This section contains the following topics:
A data model groups a set of datastores. Each datastore represents in the context of a directory a class or group of classes. Typically, classes are mapped to tables and attributes to column. See Appendix A, "LDAP to Relational Mapping" for more information.
Create an LDAP Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
LDAP supports standard reverse-engineering, which uses only the abilities of the LDAP driver.
When the reverse-engineering process of the LDAP driver translates the LDAP tree into a relational database structure, it constructs tables from sets of objects in the tree.
The names of these tables must reflect this original structure in order to maintain the mapping between the two. As a result, the table names are composed of the original LDAP object names that may be extremely long and not appropriate as datastore names in integration interfaces.
The solution consists in creating an alias file that contains a list of short and clear table name aliases. See Appendix A, "Table Aliases Configuration" for more information.
Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on LDAP use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
The standard reverse-engineering process will automatically map the LDAP tree contents to a relational database structure. Note that these tables automatically include primary key and foreign key columns to map the directory hierarchy.
The reverse-engineering process also creates a ROOT table that represents the root of the LDAP tree structure from the LDAP entry point downwards.
See Appendix A, "LDAP Processing Overview" for more information.
You can use LDAP entries as a source or a target of an integration interface.
The KM choice for an interface or a check determines the abilities and performances of this interface or check. The recommendations in this section help in the selection of the KM for different situations concerning an LDAP data server.
An LDAP directory can be used as an interface's source or target. The LKM choice in the Interface Flow tab that is used to load data between LDAP entries and other types of data servers is essential for the performance of the interface.
Use the Generic SQL KMs or the KMs specific to the other technology involved to load data from an LDAP database to a target or staging area database.
Table 26-2 lists some examples of KMs that you can use to load from an LDAP source to a staging area.
Table 26-2 KMs to Load from LDAP to a Staging Area
Staging Area | KM | Notes |
---|---|---|
Microsoft SQL Server | LKM SQL to MSSQL (BULK) | Uses SQL Server's bulk loader. |
Oracle | LKM SQL to Oracle | Faster than the Generic LKM (Uses Statistics) |
Sybase | LKM SQL to Sybase ASE (BCP) | Uses Sybase's bulk loader. |
All | LKM SQL to SQL | Generic KM |
LDAP can be used as a target of an interface. The IKM choice in the Interface Flow tab determines the performances and possibilities for integrating.
Use the Generic SQL KMs or the KMs specific to the other technology involved to integrate data in an LDAP directory.
Table 26-3 lists some examples of KMs that you can use to integrate data from a staging area to an LDAP target.
This section provides information on how to troubleshoot problems that you might encounter when using LDAP in Oracle Data Integrator. It contains the following topics:
You are probably using an external RDBMS to store your relational model.
java.util.MissingResourceException: Can't find bundle for base name ldap_....
The property bundle file is missing, present in the incorrect directory or the filename is incorrect.
java.sql.SQLException: A NamingException occurred saying: [LDAP: error code 32
The connection property bundle is possibly incorrect. Check the property values in the bundle files.
java.sql.SQLException: A NamingException occurred saying: [LDAP: error code 49 - Invalid Credentials]
The authentication property is possibly incorrect. Check the password.
java.sql.SQLException: Exception class javax.naming.NameNotFoundException occurred saying: [LDAP: error code 32 - No Such Object].
The LDAP tree entry point is possibly incorrect. Check the target DistinguishedName in the LDAP URL.
java.sql.SQLException: No suitable driver
This error message indicates that the driver is unable to process the URL is registered. The JDBC URL is probably incorrect. Check that the URL syntax is valid. See Section A.3, "Installation and Configuration".
This chapter describes how to work with Oracle TimesTen In-Memory Database in Oracle Data Integrator.
This chapter includes the following sections:
The Oracle TimesTen In-Memory Database (TimesTen) provides real-time data management. It provides application-tier database and transaction management built on a memory-optimized architecture accessed through industry-standard interfaces. Optional data replication and Oracle caching extend the product to enable multi-node and multi-tier configurations that exploit the full performance potential of today's networked, memory-rich computing platforms.
Oracle TimesTen In-Memory Database is a memory-optimized relational database. Deployed in the application tier, TimesTen operates on databases that fit entirely in physical memory using standard SQL interfaces. High availability for the in-memory database is provided through real-time transactional replication.
TimesTen supports a variety of programming interfaces, including JDBC (Java Database Connectivity) and PL/SQL (Oracle procedural language extension for SQL).
The TimesTen concepts map the Oracle Data Integrator concepts as follows: An Oracle TimesTen In-Memory Database instance corresponds to a data server in Oracle Data Integrator. Within this database instance, the database/owner pair maps to an Oracle Data Integrator physical schema. A set of related objects within one database corresponds to a data model, and each table, view or synonym will appear as an ODI datastore, with its attributes, columns and constraints.
Oracle Data Integrator uses Java Database Connectivity (JDBC) to connect to an Oracle TimesTen In-Memory Database ODBC DSN.
Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 27-1 for handling TimesTen data. These KMs use TimesTen specific features. It is also possible to use the generic SQL KMs with the TimesTen database. See Chapter 4, "Generic SQL" for more information.
Table 27-1 TimesTen Knowledge Modules
Knowledge Module | Description |
---|---|
IKM TimesTen Incremental Update (MERGE) | Integrates data from staging area into a TimesTen target table using TimesTen JDBC driver in incremental update mode. For example, inexistent rows are inserted; already existing rows are updated. |
LKM SQL to TimesTen | Loads data from an ANSI SQL-92 source to a TimesTen staging table using the TimesTen JDBC driver. |
LKM File to TimesTen (ttBulkCp) | Loads data from a file to a TimesTen staging table using ttBulkCp utility. |
Make sure you have read the information in this section before you start using the TimesTen Knowledge Modules:
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.
The list of supported platforms and versions is available on Oracle Technical Network (OTN):
http://www.oracle.com/technology/products/oracle-data-integrator/index.html
Some of the Knowledge Modules for TimesTen use the ttBulkCp utility.
The following requirements and restrictions apply for these Knowledge Modules:
This section lists the requirements for connecting to a TimesTen database.
To be able to access Microsoft Excel data, you need to:
Install the TimesTen ODBC Driver
Microsoft Excel workbooks can only be accessed through ODBC connectivity. The ODBC Driver for TimesTen must be installed on your system.
Declare a TimesTen ODBC Data Source
An ODBC data source must be defined for each Microsoft Excel workbook (.xls
file) that will be accessed from ODI. ODBC datasources are created with the Microsoft ODBC Data Source Administrator. Refer to your Microsoft Windows operating system documentation for more information on datasource creation.
JDBC Driver
Oracle Data Integrator uses the TimesTen JDBC driver to connect to a TimesTen database. This driver must be installed in your Oracle Data Integrator drivers directory.
ODI Agent
The ODI Agent running the job must have the TimesTen JDBC Driver and ODBC driver installed and configured.
Setting up the Topology consists of:
A TimesTen data server corresponds to a TimesTen database.
Create a data server for the TimesTen technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining a TimesTen data server:
org.TimesTen.Driver
jdbc:timesten:direct:dsn=<DSNname>
where DSNname
is the name of an ODBC datasource configured on the machine running the agent
Note: Note that Oracle Data Integrator will have write access only on the database specified in the URL. |
Create a TimesTen physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.
Setting up a project using the TimesTen database follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
It is recommended to import the following knowledge modules into your project for getting started with TimesTen:
This section contains the following topics:
Create a TimesTen Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
TimesTen supports both Standard reverse-engineering - which uses only the abilities of the JDBC driver - and Customized reverse-engineering.
In most of the cases, consider using the standard JDBC reverse engineering for starting.
Consider switching to customized reverse-engineering if you encounter problems with the standard JDBC reverse-engineering process due to some specificities of the TimesTen JDBC driver.
Standard Reverse-Engineering
To perform a Standard Reverse-Engineering on TimesTen use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Customized Reverse-Engineering
To perform a Customized Reverse-Engineering on TimesTen with a RKM, use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields specific to the TimesTen technology:
KM: RKM SQL (Jython).<project name>
. The reverse-engineering process returns tables, views, columns, Keys and Foreign Keys.
Oracle Data Integrator provides the CKM SQL for checking data integrity against constraints defined on a TimesTen table. See "Set up Flow Control and Post-Integration Control" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for details.
See Chapter 4, "Generic SQL" for more information.
You can use TimesTen as a source, staging area, or a target of an integration interface.
The KM choice for an interface or a check determines the abilities and performance of this interface or check. The recommendations in this section help in the selection of the KM for different situations concerning a TimesTen data server.
TimesTen can be used as a source, target or staging area of an interface. The LKM choice in the Interface Flow tab to load data between TimesTen and another type of data server is essential for the performance of an interface.
Use the Generic SQL KMs or the KMs specific to the other technology involved to load data from a TimesTen database to a target or staging area database.
For extracting data from a TimesTen staging area to a TimesTen table, use the IKM TimesTen Incremental Update (MERGE). See Section 27.7.1.1, "Loading Data from TimesTen" for more information.
Oracle Data Integrator provides Knowledge Modules that implement optimized methods for loading data from a source or staging area into a TimesTen database. These optimized TimesTen KMs are listed in Table 27-2. In addition to these KMs, you can also use the Generic SQL KMs or the KMs specific to the other technology involved.
Table 27-2 KMs for loading data to TimesTen
Source or Staging Area Technology | KM | Notes |
---|---|---|
SQL | LKM SQL to TimesTen | Loads data from an ANSI SQL-92 source to a TimesTen staging table using the TimesTen JDBC driver. |
File | LKM File to TimesTen (ttBulkCp) | Loads data from a file to a TimesTen staging table using ttBulkCp utility. |
Oracle Data Integrator provides Knowledge Modules that implement optimized data integration strategies for TimesTen. These optimized TimesTen KMs are listed in Table 27-3. In addition to these KMs, you can also use the Generic SQL KMs.
The IKM choice in the Interface Flow tab determines the performances and possibilities for integrating.
This chapter describes how to work with Oracle Changed Data Capture Adapters as well as with Attunity Stream in order to integrate changes captured on legacy sources using Oracle Data Integrator.
This chapter includes the following sections:
Oracle Changed Data Capture Adapters offer log-based change data capture (CDC) for enterprise data sources such as CICS, VSAM, Tuxedo, IMS DB, and IMS TM. Captured changes are stored in a storage called Staging Area (which is different from the Oracle Data Integrator interfaces' staging areas).
Attunity Stream is part of the Attunity Integration Suite (AIS) and provides the same features as the Oracle Changed Data Capture Adapters. In this section, we will refer to both products as Attunity Stream.
The Attunity Stream Staging Area contains the Change Tables used by Attunity Stream to store changes captured from the sources. It maintains the last position read by Oracle Data Integrator (This is the Attunity Stream Context, which is different from the Oracle Data Integrator Context concept) and starts at this point the next time a request from Oracle Data Integrator is received. The Change Tables are accessed through Attunity Stream Datasources.
Oracle Data Integrator uses Attunity Stream datasources as a sources of integration interfaces. They cannot be used as target or staging area. Journalizing or data quality check is not possible on this technology.
The Attunity Stream concepts map the Oracle Data Integrator concepts as follows: One Workspace within an Attunity Agent (or Daemon) listening on a port corresponds to one data server in Oracle Data Integrator. Within this Daemon, each Datasource (or Datasource/Owner pair) corresponds to one ODI Physical Schema. In each datasource, the Change Tables appear as ODI Datastores in an ODI model based on the Attunity technology.
Oracle Data Integrator provides the LKM Attunity to SQL for handling Attunity Stream data. The KMs use Attunity Stream specific features.
The Oracle Data Integrator CDC Knowledge Module provides integration from Attunity Stream Staging Areas via a JDBC interface. It is able to:
Using the data provided in the Attunity staging area, the Oracle CDC KM cleans the working environment (dropping temporary tables), determines and saves Attunity Stream Context information, loads the journalized data into the collect table and purges the loaded data from the journal.
Note: Although Attunity Stream is used to capture changes in source systems, it is used as a regular JDBC source (only an LKM is used). The Oracle Data Integrator journalizing framework (JKM) is not used for this technology. |
Make sure you have read the information in this section before you start using the Oracle Knowledge Modules:
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.
The list of supported platforms and versions is available on Oracle Technical Network (OTN):
http://www.oracle.com/technology/products/oracle-data-integrator/index.html
.
Please review the Attunity Streams or Oracle Changed Data Capture Adapters documentation for the requirements and instruction for installing and setting up Streams for your source servers.
In order to use the Attunity Stream technology, you must first install the Attunity drivers in the drivers directory of your Oracle Data Integrator installation and restart ODI. See "Add Additional Drivers and Open Tools" in the Oracle Fusion Middleware Installation Guide for Oracle Data Integrator.
The driver files include the following: nvjdbc2.jar
, nvapispy2.jar
, nvlog2.jar
.
Setting up the Topology consists in:
An Attunity Stream data server corresponds to the server and workspace storing the Attunity Stream datasources.
Create a data server for the Attunity Stream technology using the standard procedure, as described in "Creating a Data Server" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. This section details only the fields required or specific for defining an Oracle data server:
com.attunity.jdbc.NvDriver
jdbc:attconnect://<host_name>:<port>/<workspace> [;AddDefaultSchema=1][;<parameter>=<value>
] You can use in the URL the properties listed in:
Table 28-1 JDBC Attunity Driver Properties
Option | Description |
---|---|
<host_name> | Name of the machine running the Attunity daemon |
<port> | Port that the daemon listens to |
<workspace> | Daemon's workspace. Default is |
AddDefaultSchema=1 | This parameter specifies that a schema shows the default owner name |
<parameter>=<value> | Any parameter available for the JDBC driver. Note that it is not needed to specify the datasource using the DefTdpName driver parameter, as Oracle Data Integrator accesses the change tables using the full qualified syntax: |
For more information on the JDBC URL connection details, see the Oracle Application Server CDC Adapters Installation Guide.
Create an Attunity Stream physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
This physical schema represents the Attunity Stream datasource from which you want to read the changed data. While defining the physical schema, the list of datasources and owners available for your workspace is displayed, provided that the data server is correctly configured. Public is displayed if no datasources and owners exist.
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.
Setting up a project using the Attunity Stream follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
It is recommended to import the LKM Attunity to SQL into your project for getting started with Attunity Stream.
This section contains the following topics:
Create an Attunity Stream Model using the standard procedure, as described in "Creating a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Attunity Stream supports standard reverse-engineering. Standard reverse-engineering returns the change tables stored in the datasource as datastores. The change tables contain some CDC header columns in addition to the data columns used for integration. These columns include timestamps, table_name, operation, transactionID, context, and so forth. See the Attunity Stream documentation for more information on the header columns content.
To perform a Standard Reverse-Engineering on Oracle use the usual procedure, as described in "Reverse-engineering a Model" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Oracle Data Integrator uses Attunity Stream datasources as a sources of integration interfaces. They cannot be used as target or staging area. Journalizing or data quality check is not possible on this technology.
To create an integration interface, which loads Attunity Stream data into your Oracle Data Integrator integration project, run the following steps:
No
, if you wish to retain temporary objects (files and scripts) after integration. ORDER_ID, CUSTOMER_ID
Note: When running an interface using this LKM, the changes are consumed from the change table. This KM does not support reading twice the same change. |
This chapter describes how to work with Oracle GoldenGate in order to capture changes on source transactional systems and replicate them in a staging server for consumption by Oracle Data Integrator interfaces.
This chapter includes the following sections:
Oracle GoldenGate (OGG) product offers solutions that provide key business applications with continuous availability and real-time information. It provides guaranteed capture, routing, transformation and delivery across heterogeneous databases and environments in real-time.
Using the Oracle GoldenGate knowledge modules requires that you know and understand Oracle GoldenGate concepts and architecture. See the Oracle GoldenGate Documentation on OTN for more information:
http://www.oracle.com/technetwork/middleware/goldengate/overview/index.html
Oracle Data Integrator uses Oracle GoldenGate to replicate online data from a source database to a staging database. This staging database contains a copy of the source tables and the ODI Changed Data Capture (CDC) infrastructure, both loaded using Oracle GoldenGate.
The staging database can be stored in an Oracle or Teradata schema. The source database can be Oracle, Microsoft SQL Server, DB2 UDB, or Sybase ASE. In this chapter, <database> refers to any of these source database technologies.
Setting up CDC with GoldenGate is done using the following process:
Oracle Data Integrator provides the Knowledge Modules listed in Table 29-1 for replicating online data from a source to a staging database. Unlike other CDC JKMs, the Oracle GoldenGate JKMs journalize data in the staging Oracle or Teradata database and not in the source server.
The JKM <database> to Oracle Consistent (OGG) and the JKM <database> to Teradata Consistent (OGG) perform the same tasks:
Table 29-1 Oracle GoldenGate Knowledge Modules
Knowledge Module | Description |
---|---|
JKM Oracle to Oracle Consistent (OGG) | Creates the infrastructure for consistent set journalizing on an Oracle staging server and generates the Oracle GoldenGate configuration for replicating data from an Oracle source to this staging server. |
JKM DB2 UDB to Oracle Consistent (OGG) | Creates the infrastructure for consistent set journalizing on an Oracle staging server and generates the Oracle GoldenGate configuration for replicating data from an IBM DB2 UDB source to this staging server. |
JKM Sybase ASE to Oracle Consistent (OGG) | Creates the infrastructure for consistent set journalizing on an Oracle staging server and generates the Oracle GoldenGate configuration for replicating data from a Sybase ASE source to this staging server. |
JKM MSSQL to Oracle Consistent (OGG) | Creates the infrastructure for consistent set journalizing on an Oracle staging server and generates the Oracle GoldenGate configuration for replicating data from a Microsoft SQL Server source to this staging server. |
JKM Oracle to Teradata Consistent (OGG) | Creates the infrastructure for consistent set journalizing on a Teradata staging server and generates the Oracle GoldenGate configuration for replicating data from an Oracle source to this staging server. |
JKM DB2 UDB to Teradata Consistent (OGG) | Creates the infrastructure for consistent set journalizing on a Teradata staging server and generates the Oracle GoldenGate configuration for replicating data from an IBM DB2 UDB source to this staging server. |
JKM Sybase ASE to Teradata Consistent (OGG) | Creates the infrastructure for consistent set journalizing on a Teradata staging server and generates the Oracle GoldenGate configuration for replicating data from a Sybase ASE source to this staging server. |
JKM MSSQL to Teradata Consistent (OGG) | Creates the infrastructure for consistent set journalizing on a Teradata staging server and generates the Oracle GoldenGate configuration for replicating data from a Microsoft SQL Server source to this staging server. |
Make sure you have read the information in this section before you start using the Oracle GoldenGate Knowledge Modules:
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.
The list of supported platforms and versions is available on Oracle Technical Network (OTN):
http://www.oracle.com/technology/products/oracle-data-integrator/index.html
.
See also the Oracle GoldenGate documentation on OTN for source and staging database version platform support.
In order to run the Extract and Replicat processes, Oracle GoldenGate must be installed on both the source and staging servers. Installing Oracle GoldenGate installs all of the components required to run and manage GoldenGate processes.
Oracle GoldenGate Manager Process must be running on each system before Extract or Replicat can be started, and must remain running during their execution for resource management.
Oracle GoldenGate has specific requirement and installation instructions that must be performed before starting the Extract and Replicat processes configured with the Oracle GoldenGate JKMs. See the Oracle GoldenGate Documentation on OTN for more information.
If the source database is Oracle, there are no connectivity requirements for using Oracle GoldenGate data in Oracle Data Integrator.
If the source database is IBM DB2 UDB, Microsoft SQL Server, or Sybase ASE, Oracle GoldenGate uses the ODBC driver to connect to the source database. You need to install the ODBC driver and to declare the data source in your system. You also need to set the data source name (DSN) in the KM option SRC_DSN.
To use the JKM <database> to Oracle Consistent (OGG) or the JKM <database> to Teradata Consistent (OGG) in your Oracle Data Integrator integration projects, you need to perform the following steps:
This step consists in declaring in Oracle Data Integrator the staging data server, the source data server, as well as the physical and logical schemas attached to these servers.
To define the topology in this configuration, perform the following tasks:
Create a data server for the Oracle or Teradata technology. For more information, see:
Create an Oracle or Teradata physical schema using the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Note: The physical schema defined in the staging server will contain in the data schema the changed records captured and replicated by the Oracle GoldenGate processes. The work schema will be used to store the ODI CDC infrastructure. |
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.
You have to define a source data server from which Oracle GoldenGate will capture changes.
Create a data server for your source technology using the standard procedure. For more information, see the chapter corresponding to your source technology in this guide:
This data server represents the source database instance.
Create a physical schema under the data server that you have created in Section 29.3.1.3, "Define the Source Data Server". Use the standard procedure, as described in "Creating a Physical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Create for this physical schema a logical schema using the standard procedure, as described in "Creating a Logical Schema" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and associate it in a given context.
Oracle GoldenGate will replicate in the staging server the records changed in the source. In order to perform this replication, the source table structures must be replicated in the staging server.
To replicate these source tables:
See "Creating a Model" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for more information on model creation.
Note that you do not need to reverse-engineer this data model.
Yes
when you Configure CDC for the Replicated Tables. Note: See "Working with Common Format Designer" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for more information on diagrams, generating DDL, and generating Interface IN features. |
Setting up a project using Oracle GoldenGate features follows the standard procedure. See "Creating an Integration Project" of the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator.
Depending on the technology of your source data server and staging server, import one of the following KMs into your project:
Changed Data Capture must be configured for the replicated tables. This configuration is similar to setting up consistent set journalizing and is performed using the following steps.
Set the KM options as follows:
Note: This name should be unique across the entire information system.This name must not be longer than 5 characters and must contain only upper case letters and/or digits. When SRC_SETUP_OGG_PROCESSES is set to No, this option is required and the value of this option must match the value that was provided when setting up the capture on the other Model. |
Note: For Sybase users only: When defining the data source name, you have to add the database server name to the datasource name as follows:
|
Note: This name should be unique across the entire information system.This name must not be longer than 5 characters and must contain only upper case letters and/or digits. |
NO
. You can review the result of the journal startup action:
Readme.txt
file are generated in the directory that is specified in the LOCAL_TEMP_DIR KM option. You can use these files to Configure and Start Oracle GoldenGate Processes. See "Working with Changed Data Capture" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for more conceptual information and detailed instructions on CDC.
Note: Although this CDC configuration supports consistent set journalizing, it is not required to order datastores in the Journalized Table tab of the model after adding them to CDC. |
The JKM generates in the LOCAL_TEMP_DIR a folder named after the source and target object groups. This folder contains the following:
Readme.txt
file that contains detailed instructions for configuring and starting the Oracle GoldenGate processes. src
folder that contains configuration files to upload on the source server, in the Oracle GoldenGate installation directory. stg
folder that contains configuration files to upload on the staging server, in the Oracle GoldenGate installation directory. The detailed instructions, customized for your configuration, are provided in the readme file.
These instructions include:
src
folder to the source server. stg
folder to the staging server. OBEY
file generated by the JKM for starting the Extract process, using the ggsci
command line. OBEY
file generated by the JKM for the initial load, using the ggsci
command line. OBEY
file generated by the JKM for the initial load, using the ggsci
command line. OBEY
file generated by the JKM for the starting the Replicat processes, using the ggsci
command line. See the Oracle GoldenGate documentation on OTN for more information on OBEY
files, the ggsci
and defgen
utilities.
You can use the data in the replicated data as a source in your integration interfaces. This process is similar to using a source datastore journalized in consistent set mode. See "Using Changed Data: Consistent Set Journalizing" in the the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for more information.
This section includes the following advanced configuration topics:
The staging tables contain a replica of the structure and data from the source tables. The Oracle GoldenGate processes capture changes on the source tables and apply them to the target. Yet the staging tables must be initially loaded with the original content of the source tables. You can use the following methods to perform the initial load:
The following KM options can be used to improve replication performances:
For the NB_APPLY_PROCESS and TRAIL_FILE_SIZE parameters, see the Oracle GoldenGate Documentation on OTN for more information on performance tuning.
It is possible to set up a configuration where changes are captured on a single source and replicated to several staging servers. The example below illustrates how to set this up in a typical configuration.
Replication should source from source server SRC and replicate in both STG1 and STG2 staging servers.
Start the journal and follow the instructions in the readme to set up the Oracle GoldenGate processes in SRC and STG2. Note that playing the configuration on SRC again will not recreate a capture process, trail files, or definition files. It will simply create a new Oracle GoldenGate Datapump process to push data to STG2.
This chapter describes how to work with Oracle SOA Suite cross references in Oracle Data Integrator.
This chapter includes the following sections:
Oracle Data Integrator features are designed to work best with Oracle SOA Suite cross references, including integration interfaces that load a target table from several source tables and handle cross references.
Cross-referencing is the Oracle Fusion Middleware Function, available through the Oracle BPEL Process Manager and Oracle Mediator, previously Enterprise Service Bus (ESB), and leveraged typically by any loosely coupled integration built on the Service Oriented Architecture. It is used to manage the runtime correlation between the various participating applications of the integration.
The cross-referencing feature of Oracle SOA Suite enables you to associate identifiers for equivalent entities created in different applications. For example, you can use cross references to associate a customer entity created in one application (with native id Cust_100) with an entity for the same customer in another application (with native id CT_001).
Cross-referencing (XREF) facilitates mapping of native keys for entities across applications. For example, correlate the same order across different ERP systems.
The implementation of cross-referencing uses a database schema to store a cross reference information to reference records across systems and data stores.
For more information about cross references, see "Working with Cross References" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
The optional ability to update or delete source table data after the data is loaded into the target table is also a need in integration. This requires that the bulk integration provides support for either updating some attributes like a status field or purging the source records once they have been successfully processed to the target system.
The XREF data can be stored in multiple cross reference tables and in two formats:
This table stores cross references for multiple entities. In this table:
XREF_TABLE_NAME
is the name of the cross reference table XREF_COLUMN_NAME
is the name of the column to be populated. This column name, for example the application name, is used as a unique identifier for the cross reference table. ROW_NUMBER
stores a unique identifier (Row Number) for a given entity instance, regardless of the application VALUE
is the value of the record identifier for a given entity in this application A specific XREF_COLUMN_NAME entry called COMMON exists to store a generated identifier that is common to all applications.
For example, an ORDER existing in both SIEBEL and EBS will be mapped in a generic table as shown below:
Where:
APP1
and APP2
are used to store PK values on different applications and link to the same source record ROW_ID
(Row Number) is used to uniquely identify records within a XREF data table. COM
holds the common value for the integration layer and is passed among participating applications to establish the cross reference The same ORDER existing in both SIEBEL and EBS would be mapped in a custom XREF_ORDER table as shown below:
Table 30-2 Example of a Custom Table: XREF_ORDERS (Partial)
ROW_ID | SIEBEL | EBS | COMMON |
---|---|---|---|
100012345 | SBL_101 | EBS_002 | COM_100 |
See Section 30.3.3, "Designing an Interface with the Cross-References KMs" and Section 30.4, "Knowledge Module Options Reference" for more information.
The IKM SQL Control Append (SOA XREF) provides the following parameters to handle these two table structures:
legacy
to use the XREF_DATA generic table, or to new
to use the custom table structure. If using the generic table structure, you must set the following options:
ORDER
. SIEBEL
or EBS
depending on which system is targeted. If using the custom table structure, you must use the following options:
XREF_DATA
. In the example above (See Table 30-2), this table name would be XREF_ORDER
. SIEBEL
or EBS
depending on which system is targeted. Oracle Data Integrator provides the Knowledge Modules (KM) listed in Table 30-3 for handling SOA cross references (XREF).
These new Knowledge Modules introduce parameters to support SOA cross references. See Section 30.1.1.2, "Cross Reference Table Structures" and Section 30.3.3, "Designing an Interface with the Cross-References KMs" for more information on these parameters.
Table 30-3 SOA XREF Knowledge Modules
Knowledge Module | Description |
---|---|
LKM SQL to SQL (SOA XREF) | This KM replaces the LKM SQL to SQL (ESB XREF). This KM supports cross references while loading data from a standard ISO source to any ISO-92 database. Depending of the option SRC_UPDATE_DELETE_ACTION, this LKM can DELETE or UPDATE source records. The LKM SQL to SQL (SOA XREF) has to be used in conjunction with the IKM SQL Control Append (SOA XREF) in the same interface. |
LKM MSSQL to SQL (SOA XREF) | This KM replaces the LKM MSSQL to SQL (ESB XREF). This KM is a version of the LKM SQL to SQL (SOA XREF) optimized for Microsoft SQL Server. |
IKM SQL Control Append (SOA XREF) | This KM replaces the IKM SQL Control Append (ESB XREF). This KM provides support for cross references while integrating data in any ISO-92 compliant database target table in truncate/insert (append) mode. This KM provides also data control: Invalid data is isolated in an error table and can be recycled.When loading data to the target, this KM also populates PK/GUID XREF table on a separate database. This IKM SQL Control Append (SOA XREF) has to be used in conjunction with the LKM SQL to SQL (SOA XREF) or LKM MSSQL to SQL (SOA XREF). |
To load the cross reference tables while performing integration with Oracle Data Integrator, you must use the SOA XREF knowledge modules. These knowledge modules will load the cross reference tables while extracting or loading information across systems.
Note: In order to maintain the cross referencing between source and target systems, the LKM and IKM supporting cross referencing must be used in conjunction. |
The overall process can be divided into the following three main phases:
During the loading phase, a Source Primary Key is created using columns from the source table. This Source Primary Key is computed using a user-defined SQL expression that should return a VARCHAR value. This expression is specified in the SRC_PK_EXPRESSION KM option.
For example, for a source Order Line Table (aliased OLINE in the interface) you can use the following expression:
TO_CHAR(OLINE.ORDER_ID) || '-' || TO_CHAR(OLINE.LINE_ID)
This value will be finally used to populate the cross reference table.
During the integration phase, a Common ID is created for the target table. The value for the Common ID is computed from the expression in the XREF_SYS_GUID KM option. This expression can be for example:
<SEQUENCE_NAME>. NEXTVAL
) SYS_GUID()
for Oracle, NewID()
for SQL Server) This Common ID can also be automatically pushed to the target columns of the target table that are marked with the UD1 flag.
Both the Common ID and the Source Primary Key are pushed to the cross reference table. In addition, the IKM pushes to the cross reference table a unique Row Number value that creates the cross reference between the Source Primary Key and Common ID. This Row Number value is computed from the XREF_ROWNUMBER_EXPRESSION KM option, which takes typically expressions similar to the Common ID to generate a unique identifier.
The same Common ID is reused (and not re-computed) if the same source row is used to load several target tables across several interfaces with the Cross-References KMs. This allows the creation of cross references between a unique source row and different targets rows.
This optional phase (parameterized by the SRC_UPDATE_DELETE_ACTION KM option) deletes or updates source records based on the successfully processed source records:
DELETE
value, the source records processed by the interface are deleted. UPDATE
value, a source column of the source table will be updated with an expression for all the processed source records. The following KM options parameterize this behavior: It is possible to execute delete and update operations on a table different table from the source table. To do this, you must set the following KM options in the LKM:
Make sure you have read the information in this section before you start using the SOA XREF Knowledge Modules:
Before performing any installation you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements for the products you are installing.
The list of supported platforms and versions is available on Oracle Technical Network (OTN):
http://www.oracle.com/technology/products/oracle-data-integrator/index.html
.
There are no technology requirements for using Oracle SOA Suite cross references in Oracle Data Integrator. The requirements for the Oracle Database and Microsoft SQl Server apply also to Oracle SOA Suite cross references. For more information, see:
There are no connectivity requirements for using Oracle SOA Suite cross references in Oracle Data Integrator. The requirements for the Oracle Database and Microsoft SQl Server apply also to Oracle SOA Suite cross references. For more information, see:
This section consists of the following topics:
The steps to create the topology in Oracle Data Integrator, which are specific to projects using SOA XREF KMs, are the following:
This data server and this physical schema must point to the Oracle instance and schema or to the Microsoft SQL Server database containing the cross reference tables.
See "Creating a Logical Schema" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for more information.
Import the following KMs into your project, if they are not already in your project:
To create an integration interface, which both loads a target table from several source tables and handles cross references between one of the sources and the target, run the following steps:
Mapping the Common ID: If you want to map in a target column the Common ID generated for the cross reference table, check the UD1 flag for this column and enter a dummy mapping. For example a constant value such as'X'
.
Specify in SRC_PK_EXPRESSION the expression representing the Source Primary Key value that you want to store in the XREF table.
If the source table has just one column defined as a key, enter the column name (for example SEQ_NO
).
If the source key has multiple columns, specify the expression to use for deriving the key value. For example, if there are two key columns SEQ_NO
and DOC_DATE
in the table and you want to store the concatenated value of those columns as your source value in the XREF table enter SEQ_NO || DOC_DATE
. This option is mandatory.
Optionally set the SRC_UPDATE_DELETE_ACTION to impact the source table, as described in Section 30.1.3.3, "Updating/Deleting Processed Records (LKM)"
New
to use the new XREF_DATA Table structure. Otherwise enter Legacy
to use legacy XREF_DATA Table. Default is New
. Configure the options depending on the table structure you are using, as specified in Section 30.1.1.3, "Handling Cross Reference Table Structures" <SEQUENCE_NAME>.NEXTVAL
) SYS_GUID()
for Oracle and NewID()
for SQL Server) YES
in order to be able to use the CKM Oracle. Note: If the target table doesn't have any placeholder for the Common ID and you are for example planning to populate the source identifier in one of the target columns, you must use the standard mapping rules of ODI to indicate which source identifier to populate in which column.If the target column that you want to load with the Common ID is a unique key of the target table, it needs to be mapped. You must put a dummy mapping on that column. At runtime, this dummy mapping will be overwritten with the generated common identifier by the integration knowledge module. Make sure to flag this target column with UD1. |
This section lists the KM options for the following Knowledge Modules:
Table 30-4 LKM SQL to SQL (SOA XREF)
Option | Values | Mandatory | Description |
---|---|---|---|
SRC_UPDATE_DELETE_ACTION | NONE|UPDATE|DELETE | Yes | Indicates what action to take on source records after integrating data into the target. See Section 30.1.3.3, "Updating/Deleting Processed Records (LKM)" for more information. |
SRC_PK_EXPRESSION | Concatenating expression | Yes | Expression that concatenates values from the PK to have them fit in a single large varchar column. For example: for the source Orderline Table (aliased OLINE in the interface) you can use expression:
|
SRC_PK_LOGICAL_SCHEMA | Name of source table's logical schema | No | Indicates the source table's logical schema. The source table is the one from which we want to delete or update records after processing them. This logical schema is used to resolve the actual physical schema at runtime depending on the Context. For example: |
SRC_PK_TABLE_NAME | Source table name, default is MY_TABLE | No | Indicate the source table name of which we want to delete or update records after processing them. For example: |
SRC_PK_TABLE_ALIAS | Source table alias, default is MY_ALIAS | No | Indicate the source table's alias within this interface. The source table is the one from which we want to delete or update records after processing them. For example: |
SRC_UPD_COL | Aliased source column name | No | Aliased source column name that holds the update flag indicator. The value of this column will be updated after integration when SRC_UPDATE_DELETE_ACTION is set to |
SRC_UPD_EXPRESSION | Literal or expression | No | Literal or expression used to update the SRC_UPD_COL. This value will be used to update this column after integration when SRC_UPDATE_DELETE_ACTION is set to |
DELETE_TEMPORARY_OBJECTS | Yes|No | Yes | Set this option to |
LKM MSSQL to SQL (SOA XREF)
See Table 30-4 for details on the LKM MSSQL to SQL (SOA XREF) options.
Table 30-5 IKM SQL Control Append (SOA XREF)
Option | Values | Mandatory | Description |
---|---|---|---|
INSERT | Yes|No | Yes | Automatically attempts to insert data into the Target Datastore of the Interface. |
COMMIT | Yes|No | Yes | Commit all data inserted in the target datastore. |
FLOW_CONTROL | Yes|No | Yes | Check this option if you wish to perform flow control. |
RECYCLE_ERRORS | Yes|No | Yes | Check this option to recycle data rejected from a previous control. |
STATIC_CONTROL | Yes|No | Yes | Check this option to control the target table after having inserted or updated target data. |
TRUNCATE | Yes|No | Yes | Check this option if you wish to truncate the target datastore. |
DELETE_ALL | Yes|No | Yes | Check this option if you wish to delete all the rows of the target datastore. |
CREATE_TARG_TABLE | Yes|No | Yes | Check this option if you wish to create the target table. |
DELETE_TEMPORARY_OBJECTS | Yes|No | Yes | Set this option to |
XREF_TABLE_NAME | XREF table name | Yes, if using Legacy XREF table structure. | Table Name to use in the XREF table. Example: |
XREF_COLUMN_NAME | Column name | Yes, if using Legacy XREF table structure. | Primary key column name to use as a literal in the XREF table. See Section 30.1.1.3, "Handling Cross Reference Table Structures" for more information. |
XREF_SYS_GUID_EXPRESSION | SYS_GUID() | Yes | Enter the expression used to populate the common ID for the XREF table (column name "VALUE"). Valid examples are: |
XREF_ROWNUMBER_EXPRESSION | SYS_GUID() | Yes | Enter the expression used to populate the row_number for the XREF table. For example for Oracle: |
XREF_DATA_STRUCTURE | New|Legacy | Yes | Enter |
XREF_DATA_TABLE | XREF table name | No. Can be used with custom XREF table structure. | Enter the name of the table storing cross reference information. Default is |
XREF_DATA_TABLE_COLUMN | XREF data table column name | Yes, if using custom XREF table structure | For new XREF data structure only: Enter the column name of the XREF data table to store the source key values. See Section 30.1.1.3, "Handling Cross Reference Table Structures" for more information. |
This appendix describes how to work with the Oracle Data Integrator driver for LDAP.
This appendix includes the following sections:
With Oracle Data Integrator Driver for LDAP (LDAP driver) Oracle Data Integrator is able to manipulate complex LDAP trees using standard SQL queries.
The LDAP driver supports:
The LDAP driver works in the following way:
The LDAP to Relational Mapping is a complex but automated process that is used to generate a relational structure. As LDAP servers do not provide metadata information in a standard way, this mapping is performed using data introspection from the LDAP tree. Therefore, automatic mapping is carried out on the contents of the LDAP tree used as a source for this process.
This section contains the following topics:
The LDAP driver maps LDAP elements to a relational schema in the following way:
<tablename>PK
. Records reference their parent tables through a <parent_level_tablename>FK column
. The root of the LDAP tree structure is mapped to a table called ROOT
containing a ROOTPK
column in a unique record. <parent_tablename><attribute_name>
. Each sub-table contains a <parent_tablename>FK column
linking it to the parent table. Figure A-1 shows an LDAP tree with OrganizationalUnit entries linking to Person instances. In this case, certain Person entries have multiple email addresses.
This LDAP tree will be mapped into the following relational structure:
ROOT
table represents the root of the hierarchy and contains one ROOTPK
column. ORGANIZATIONALUNIT
table represents different organizationalUnit instances of the tree. It contains the ORGANIZATIONALUNITPK
primary key column and the attributes of the organizationalUnit instances (cn, telephoneNumber, etc.). It is linked to the ROOT
table by the ROOTFK
foreign key column. PERSON
table represents the instances of the person class. It contains the PERSONPK
primary key column and the ORGANIZATIONALUNITFK
linking it to the ORGANIZATIONALUNIT
table and the attributes of PERSON
instances, (telephoneNumber, description, cn). PERSON_EMAIL
table containing the EMAIL
column and a PERSONFK
linking a list of email attributes to a PERSON
record. Figure A-2 shows the resulting relational structure.
Figure A-2 Relational Structure mapped from the LDAP Tree Example shown in Figure A-1
In LDAP directories, class entries are often specified by inheriting attributes from multiple class definitions. In the relational mapping procedure, the LDAP driver translates this fact by combining each combination of classes in an LDAP entry to generate a new table.
For example, some entries of the Person class may also be instances of either of the Manager or BoardMember classes (or both). In this case, the mapping procedure would generate a PERSON
table (for the instances of Person) but also MANAGER_PERSON
, BOARDMEMBER_PERSON
, BOARDMEMBER_MANAGER_PERSON
and so forth, tables depending on the combination of classes existing in the LDAP tree.
In order to avoid unnecessary multiplication of generated tables, it is possible to parameterize this behavior. The Grouping Factor parameter allows this by defining the number of divergent classes below which the instances remain grouped together in the same table. This resulting table contains flag columns named IS_<classname>, whose values determine the class subset to which the instance belongs. For example, if IS_<classname>
is set to 1
, then the instance represented by the record belongs to <classname>
.
The behavior where one table is created for each combination of classes corresponds to a Grouping Factor equal to zero. With a grouping factor equal to one, instances with only one divergent class remain in the same table.
In our example, with a Grouping Factor higher than or equal to 2, all company person instances (including Person, Manager and BoardMember class instances) are grouped in the PERSON
table. The IS_MANAGER
and IS_BOARDMEMBER
columns enable the determination of PERSON records that are also in the Manager and/or BoardMember classes.
This section details some specific situations of the mapping process.
SNPSLDAPKEY
column containing the Relative Distinguished Name (RDN) that can be used as identifier for the current record (original LDAP class instance). This is done by setting the key_column
URL property to true. This SNPSLDAPKEY
column must be loaded if performing DML commands that update the LDAP tree contents. Note that this column is created only in tables that originate from LDAP instances. Tables that correspond to multiple valued instance attributes will not be created with these columns. case_sens
URL property that makes the RDBMS and LDAP servers to enforce case-sensitivity. _
") during the mapping. Exception: If non alphanumeric, the first character is converted to "x
". SELECT
will be mapped to a table named SELECT_
. As LDAP servers do not provide metadata information in a standard way, the LDAP to Relational Mapping process is performed by default using data introspection from the LDAP tree.
With the LDAP driver it is also possible to use a Reference LDAP Tree for the LDAP to Relational Mapping process instead of using the LDAP tree that contains the actual data.
This Reference LDAP Tree is configured using the lm_props
property of the driver URL. This property specifies a.properties
file that contains the connection information to a LDAP tree whose hierarchical structure rigorously reflects that of the operational LDAP tree but without the accompanying data volume.
This technique reveals certain advantages:
The use of this technique, however, imposes a certain number of constraints in the design of the precise structure of the Reference LDAP Tree:
Note: These issues have a direct impact on the generated relational structure by forcing the creation of additional tables and columns to map multiple attribute fields and must be taken into consideration when designing the Reference LDAP Tree. |
This section contains the following topics:
The relational structure resulting from the LDAP to Relational mapping may be managed by virtual mapping or stored in an external database.
The virtual mapping stores the relational structure in the run-time agent's memory and requires no other component. The relational structure is transparently mapped by the driver to the LDAP tree structure. SQL commands and functions that are available for the LDAP driver are listed in the SQL Syntax.
Note: The virtual mapping may require a large amount of memory for large LDAP tree structures. |
The external database may be any relational database management system. The driver connects through JDBC to this engine and uses it to store the relational schema. This method provides the following benefits:
See Section A.3.2, "Using an External Database to Store the Data" for more information on how to set up external storage.
DML operations on tables in the relational are executed with standard SQL statements.
Modifications made to the relational data are propagated to the directory depending on the selected storage :
The Oracle Data Integrator driver for LDAP is automatically installed during the Oracle Data Integrator installation. The following topics cover advanced configuration topics and reference information.
This section contains the following topics:
Note: You must add the libraries and drivers required to connect the LDAP directory using JNDI to the Oracle Data Integrator classpath. |
Note: If using an external database engine you must also make sure that the JDBC driver used to connect to the external database and the .properties file are in the classpath. |
This section details the driver configuration.
com.sunopsis.ldap.jdbc.driver.SnpsLdapDriver
jdbc:snps:ldap?<property=value>[&...]
jdbc:snps:ldap2?<property=value>[&...]
The first URL requires the LDAP directory password to be encoded. The second URL allows you to give the LDAP directory password without encoding it.
Note: It is recommended to use the first URL to secure the LDAP directory password. |
The LDAP driver uses different properties depending on the established connection. Figure A-3 shows when to use which properties.
Figure A-3 Properties Files for LDAP Driver
The LDAP driver connects to the LDAP directory. You can configure this connection with the properties that start with ldap_
. For example, ldap_basedn
. Instead of passing the LDAP directory properties in the driver URL, you can use a properties file for the configuration of the connection to the LDAP directory. This properties file must be specified in the ldap_props
property of the driver URL.
If you want to use the hierarchical structure of the LDAP tree without the accompanying data volume, you can use the Reference LDAP tree. The connection to the Reference LDAP tree is configured with the properties that start with lm_
. For example, lm_basedn
. Instead of passing the lm_
properties in the driver URL, you can use a properties file. This properties file must be specified in the lm_props
property of the driver URL. See Section A.2.1.4, "Reference LDAP Tree" for more information.
To configure the connection of the LDAP driver to an external database, use the properties that start with db_
. For example, db_url
. Instead of passing the external database properties in the driver URL, you can use a properties file for the configuration of the connection to the external database. This properties file must be specified in the db_props
property of the driver URL. See Section A.3.2, "Using an External Database to Store the Data" for more information.
Table A-1 describes the properties that can be passed in the driver URL.
Table A-1 Driver Properties
Property | Mandatory | Type | Default | Description |
---|---|---|---|---|
db_props or dp | No | string (file location) | Empty string | Name of a Note: This property should contain the name of the .properties file without the file extension. Note: This Note: You can specify the external database connection configuration using all the |
ldap_props or lp | No | string (file location) | N/A | Name of a Note: This property should contain the name of the .properties file without the file extension. Note: This Note: You can specify the LDAP directory connection configuration using all the |
lm_props or lm | No | string (file location) | N/A | Name of a Note: This property should contain the name of the .properties file without the file extension. Note: This Note: You can specify the reference LDAP directory connection configuration using all the |
case_sens or cs | No | boolean (true | false) | false | Enable / disable case sensitive mode for both LDAP- and RDBMS-managed objects. |
alias_bundle or ab | No | string (file location) | Empty string | Full name of a properties file including both the absolute path to the properties file and the file extension. The properties file is a file that contains the list of aliases for the LDAP to Relational Mapping. If this file does not exist, it will be created by the driver. See Section A.3.4, "Table Aliases Configuration" for more information. Note: The file extension does not need to be |
alias_bundle_encoding or abe | No | string (encoding code) | Default encoding | Alias bundle file encoding. This encoding is used while reading and overwriting the alias_bundle file. If it is not defined then the default encoding would be used. You will find a list of supported encoding at the following URL: |
grouping_factor or gf | No | alphanumeric | 2 | Determines how many object classes will be grouped together to set up a single relational table mapping. See Section A.2.1.2, "Grouping Factor" for more information. |
key_column or kc | No | boolean (true | false) | false | If set to true, a technical column called |
numeric_ids or ni | No | boolean (true | false) | false | If set to true, all internal Primary and Foreign Keys are of NUMERIC type. Otherwise, they are of the VARCHAR type. |
id_length or il | No | Alphanumeric | 10 / 30 | The length of the internal Primary and Foreign Key columns. The default is 10 for NUMERIC column types and 30 for VARCHAR column types. |
table_prefix or tp | No | string | N/A | Prefix added to relational tables of the current connection. |
log_file or lf | No | string (file location) | N/A | Trace log file name. If the log file name is not set the trace data is displayed on the standard output. The presence of this property triggers trace logging for a particular relational schema. |
log_level or ll | No | alphanumeric | 1 | Log level. This property is ignored if log_file is not specified. The log level can is a bit mask that can be specified either in hexadecimal or decimal value. Log Level Values:
Examples:
|
ldap_auth | No | string | simple | LDAP Directory authentication method. See the |
ldap_url | Yes | string | N/A | LDAP Directory URL. See the |
ldap_user | No | string | Empty string | LDAP Directory user name. See the |
ldap_password | No | string | Empty string | LDAP Directory user password. See the |
lldap_basedn | No | string | N/A | LDAP Directory basedn. See the |
lm_auth | No | string | simple | Reference LDAP authentication method. See the |
lm_url | Yes | string | N/A | Reference LDAP URL. See the |
lm_user | No | string | Empty string | Reference LDAP Directory user name. See the |
lm_password | No | string | Empty string | Reference LDAP Directory user password. See the |
lm_basedn | No | string | N/A | Reference LDAP Directory basedn. See the |
db_driver | Yes | string | N/A | External Database JDBC Driver. See the |
db_url | Yes | string | N/A | External Database JDBC URL. See the |
db_user | No | string | Empty string | External Database user. See the |
db_password | No | string | Empty string | External Database password. See the |
db_schema | No | string | Empty string | External Database schema. See the |
db_catalog | No | string | Empty string | External Database catalog. See the |
db_drop_on_disconnect or db_dod | No | boolean (true|false) | true | Drop tables on disconnect on the external database. See the |
db_load_mode or db_lm | No | string | ci | Loading method for the external database. See the |
tna | No | boolean (true|false) | true | Transform Non Ascii. Set to false to keep non-ascii characters. |
URL Examples
The following section lists URL examples:
jdbc:snps:ldap?lp=ldap_mir&ldap_basedn=o=tests&gf=10&lf=
Connects to the LDAP directory specified in the ldap_mir .properties
file, overriding the basedn property of the ldap bundle and using a grouping factor of 10. General information (important) is sent to the standard output.
jdbc:snps:ldap?lp=ldap_ours&lm=generic&ab=c:/tmp/aliases.txt&gf=10&kc=true
Connects to the LDAP directory using the ldap_ours .properties
file; a generic Directory tree for relational model creation is signaled by the lm property; an alias bundle file is used for the creation of the relational structure; a maximum grouping factor of 10 is used; key column creation is enabled for the SNPSLDAPKEY field to allow updates requests in the relational model.
jdbc:snps:ldap?lp=ldap_mir&dp=mysql_mir_ldap&ldap_basedn=dc=tests&lm=ldap_mir&lm_basedn=dc=model&ab=d:/temp/mapldap.txt&
Connects to the LDAP directory using the ldap_mir .properties
file; overriding ldap basedn property; using the "dc=model" subtree of the same directory to perform mapping; using an alias bundle; overriding the lm database property (load mode); specifying a grouping factor of 0 to indicate no grouping (grouping disabled); Full trace logging is activated.
The relational structure resulting from the LDAP to relational mapping of the LDAP tree can be stored in the run-time agent's memory or in an external database.
Note: The list of technologies that support external storage is available on Oracle Technical Network (OTN) :
|
The external storage is configured with a set of properties described in Table A-2.
The external storage properties can be passed in several ways:
The properties can be directly set in the driver URL. When using this method, the properties have to be prefixed with db_
. For example, if connecting to an Oracle database, specify the Oracle JDBC driver name in the driver
parameter as follows:
db_driver=oracle.jdbc.driver.OracleDriver
.
The properties can be specified on the Properties tab of the Data Server editor in Topology Navigator. When using this method, the properties have to be prefixed with db_
. For example, if you want to set the driver
parameter:
db_driver
oracle.jdbc.driver.OracleDriver
if you are connecting to an Oracle database. The properties can be set in an external database properties file. This properties file, also called property bundle, is a text file with the .properties
extension containing a set of lines with on each line a <property>=<value>
pair.This external database porperties file contains the properties of a JDBC connection to the relational database schema. The properties file is referenced using the db_props
property in the JDBC URL.
Note: It is important to understand that the LDAP driver loads external property bundle files once only at runtime startup. If errors occur in these files, it is advisable to exit Oracle Data Integrator and then reload it before re-testing. |
When using this method, note the following:
db_props
property is set to the name of the properties file without the .properties
extension. For example, if you have in your classpath the prod_directory.properties
file, you should refer to this file as follows: db_props=prod_directory
. The db_props
property indicates that the schema must be loaded in a database schema whose connection information is stored in a external database properties file.
<user.dir>/odi/oracledi/userlib
folder oracledi/agent/drivers
folder Note: When connecting to the external database, the LDAP driver uses JDBC connectivity. Make sure that the JDBC driver to access this external database is also available in the ODI classpath. |
It is possible to set or override the external database properties on the URL. These properties must be prefixed with the string db_
. For example:
oracle.jdbc.driver.OracleDriver
&db_url=<external_db_url>The properties for configuring external storage are described inTable A-2.
Table A-2 External Database Connection Properties
Property | Mandatory | Type | Default | Description |
---|---|---|---|---|
driver | Yes | string | N/A | JDBC driver name |
url | Yes | string | N/A | JDBC URL |
user | No | string | Empty string | Login used to connect the database |
password | No | string | Empty string | Encrypted database user password. Note: To encrypt the password, use the |
schema | No | string | Empty string | Database schema storing the LDAP Tree. This property should not be used for Microsoft SQLServer, and the catalog property should be used instead. |
catalog | No | string | Empty string | Database catalog storing the LDAP Tree. For Microsoft SQL Server only. This property should not be used simultaneously with the schema property. |
drop_on_disconnect or dod | No | boolean (true | false) | true | If true, drop the tables from the database at disconnection time. If set to false the tables are preserved in the database. |
load_mode or lm | No | string | ci | The loading method. Values may be:
|
The following is an example of an external database .properties
file to connect to an external Oracle database:
The Oracle Data Integrator driver for LDAP uses the properties described in Table A-3 to connect to a directory server that contains the LDAP data or the Reference LDAP Tree. These properties can be provided either in a property bundle file or on the driver URL.
The properties for configuring a directory connection are detailed in Table A-3.
Table A-3 LDAP Directory Connection Properties
Property | Mandatory | Type | Default | Description |
---|---|---|---|---|
auth | No | string | simple | The authentication method |
url | Yes | string | N/A | URL to connect to the directory. It is an LDAP URL. Note: This driver supports the LDAPS (LDAP over SSL) protocol. The LDAPS URL must start with ldaps://. To connect a server using LDAPS, you must manually install the certificate in the java machine. See the keytool program provided with the JVM for more information. |
user | No | string | Empty string | The LDAP server user-login name. Mandatory only if "auth" is set. Note: If user and password properties are provided to create the connection with the JDBC Driver for LDAP, then they are used to connect the LDAP directory. |
password | No | string | Empty string | LDAP server user-login password. Mandatory only if "auth" is set. Note: The password needs to be encrypted, unless the 'jdbc:snps:ldap2' URL syntax. Note: To encrypt the password, use the |
basedn | No | string | N/A | The base dn with which you wish to connect to the LDAP tree. The base dn is the top level of the LDAP directory tree. If it not specified, the base dn specified in the LDAP URL is used. |
The following is an example of an LDAP properties file content:
The LDAP driver allows a certain flexibility in the definition of the model table names in Oracle Data Integrator by the use of table aliases. This is particularly useful when the algorithm used to navigate the LDAP tree generates long composite names from the LDAP object class hierarchy. To avoid issues related to RDBMS-specific object name-length constraints, the LDAP driver can set up and use aliases.
Note: It is also possible to change the default "Maximum Table Name Length" and "Maximum Column Name Length" values on the Others tab of the Technology Editor in the Physical Architecture accordion. |
To create a table alias file:
jdbc:snps:ldap?.....&ab=C:/tmp/aliases.txt&...
.
The alias file is created by the driver at connection time when the alias_bundle
property is specified. Typically, a user connects initially through the LDAP driver which creates this file containing a list of potential table names to be created by the reverse-engineering operation.
<original table name > = <desired alias name>
values. Example A-1 shows an extract of an alias file after the user has provided shortened names. See step 4 for more information. In the alias text file, add short text value aliases to replace the originally derived composite names and save the file.
Note: If any modifications have been applied to the object class structure or attribute sets of the LDAP directory, the driver will rewrite this file while including the new or modified entries to the table name list. |
The SQL statements described in Section A.4.1, "SQL Statements" are available when using the Oracle Data Integrator driver for LDAP. They enable the management of relational data structure and data through standard SQL Syntax.
Note:
|
Table A-4 summarizes the recommendations to apply when performing the listed DML operations on specific key fields.
Table A-4 DML Opertaions on Key Fields
Type of Column | Insert | Update | Delete |
---|---|---|---|
Foreign Key | Pay attention to master table referential constraints and ordered table populate operations. | Not permitted | Pay attention to master table referential constraints and ordered delete requests. |
Primary Key | Pay attention to slave table referential constraints and ordered table populate operations. | Not permitted | Pay attention to slave table referential constraints and ordered delete requests |
IS_xxx | Pay attention to associating the correct flag value to the original object class. | Not permitted | OK |
Key_Column | Pay attention to setting the RDN value in the correct LDAP syntax. | Not permitted | OK |
Any number of commands may be combined. The semicolon (;) may be used to separate each command but is not necessary.
Closes this connection.
Remarks
Insert one or more new rows of data into a table.
Retrieves information from one or more tables in the schema.
Modifies data of a table in the database.
Table A-5 describes the numeric functions.
Table A-5 Numeric Functions
Function | Description |
---|---|
ABS(d) | returns the absolute value of a double value |
ACOS(d) | returns the arc cosine of an angle |
ASIN(d) | returns the arc sine of an angle |
ATAN(d) | returns the arc tangent of an angle |
ATAN2(a,b) | returns the tangent of a/b |
BITAND(a,b) | returns a & b |
BITOR(a,b) | returns a | b |
CEILING(d) | returns the smallest integer that is not less than d |
COS(d) | returns the cosine of an angle |
COT(d) | returns the cotangent of an angle |
DEGREES(d) | converts radians to degrees |
EXP(d) | returns e (2.718...) raised to the power of d |
FLOOR(d) | returns the largest integer that is not greater than d |
LOG(d) | returns the natural logarithm (base e) |
LOG10(d) | returns the logarithm (base 10) |
MOD(a,b) | returns a modulo b |
PI() | returns pi (3.1415...) |
POWER(a,b) | returns a raised to the power of b |
RADIANS(d) | converts degrees to radians |
RAND() | returns a random number x bigger or equal to 0.0 and smaller than 1.0 |
ROUND(a,b) | rounds a to b digits after the decimal point |
SIGN(d) | returns -1 if d is smaller than 0, 0 if d==0 and 1 if d is bigger than 0 |
SIN(d) | returns the sine of an angle |
SQRT(d) | returns the square root |
TAN(d) | returns the trigonometric tangent of an angle |
TRUNCATE(a,b) | truncates a to b digits after the decimal point |
Table A-6 describes the string functions.
Table A-6 String Functions
Function | Description |
---|---|
ASCII(s) | returns the ASCII code of the leftmost character of s |
BIT_LENGTH(s) | returns the string length in bits |
CHAR(c) | returns a character that has the ASCII code c |
CHAR_LENGTH(s) | returns the string length in characters |
CONCAT(str1,str2) | returns str1 + str2 |
DIFFERENCE(s1,s2) | returns the difference between the sound of s1 and s2 |
HEXTORAW(s1) | returns the string translated from hexadecimal to raw |
INSERT(s,start,len,s2) | returns a string where len number of characters beginning at start has been replaced by s2 |
LCASE(s) | converts s to lower case |
LEFT(s,count) | returns the leftmost count of characters of s |
LENGTH(s) | returns the number of characters in s |
LOCATE(search,s,[start]) | returns the first index (1=left, 0=not found) where search is found in s, starting at start |
LTRIM(s) | removes all leading blanks in s |
OCTET_LENGTH(s) | returns the string length in bytes |
RAWTOHEX(s) | returns translated string |
REPEAT(s,count) | returns s repeated count times |
REPLACE(s,replace,s2) | replaces all occurrences of replace in s with s2 |
RIGHT(s,count) | returns the rightmost count of characters of s |
RTRIM(s) | removes all trailing blanks |
SOUNDEX(s) | returns a four character code representing the sound of s |
SPACE(count) | returns a string consisting of count spaces |
SUBSTR(s,start[,len]) | (alias for substring) |
SUBSTRING(s,start[,len]) | returns the substring starting at start (1=left) with length len. Another syntax is SUBSTRING(s FROM start [FOR len]) |
TRIM | TRIM([{LEADING | TRAILING | BOTH}] FROM s): removes trailing and/or leading spaces from s. |
UCASE(s) | converts s to upper case |
LOWER(s) | converts s to lower case |
UPPER(s) | converts s to upper case |
Table A-7 describes the date and time functions.
Table A-7 Date and Time Functions
Function | Description |
---|---|
CURDATE() | returns the current date |
CURTIME() | returns the current time |
CURRENT_DATE | returns the current date |
CURRENT_TIME | returns the current time |
CURRENT_TIMESTAMP | returns the current timestamp |
DATEDIFF(s, d1,d2) | returns the counts of unit of times specified in s elapsed from datetime d1 to datetime d2. s may take the following values: 'ms'='millisecond', 'ss'='second','mi'='minute','hh'='hour', 'dd'='day', 'mm'='month', 'yy' = 'year'. |
DAYNAME(date) | returns the name of the day |
DAYOFMONTH(date) | returns the day of the month (1-31) |
DAYOFWEEK(date) | returns the day of the week (1 means Sunday) |
DAYOFYEAR(date) | returns the day of the year (1-366) |
EXTRACT | EXTRACT ({YEAR | MONTH | DAY | HOUR | MINUTE | SECOND} FROM <datetime>): extracts the appropriate part from the <datetime> value. |
HOUR(time) | return the hour (0-23) |
MINUTE(time) | returns the minute (0-59) |
MONTH(date) | returns the month (1-12) |
MONTHNAME(date) | returns the name of the month |
NOW() | returns the current date and time as a timestamp |
QUARTER(date) | returns the quarter (1-4) |
SECOND(time) | returns the second (0-59) |
WEEK(date) | returns the week of this year (1-53) |
YEAR(date) | returns the year |
Note that A date value starts and ends with ', the format is yyyy-mm-dd (see java.sql.Date). A time value starts and ends with ', the format is hh:mm:ss (see java.sql.Time).
Table A-8 describes the system functions.
Table A-8 System Functions
Function | Description |
---|---|
IFNULL(exp,value) | if exp is null, value is returned else exp |
CASEWHEN(exp,v2,v2) | if exp is true, v1 is returned, else v2 |
CONVERT(term,type) | converts exp to another data type |
COALESCENCE(e1,e2,e3,...) | if e1 is not null then it is returned, else e2 is evaluated. If e2 is null, then is it returned, else e3 is evaluated and so on. |
NULLIF(v1,v2) | returns v1 if v1 is not equal to v2, else returns null |
CASE WHEN | There are two syntax for the CASE WHEN statement: CASE v1 WHEN v2 THEN v3 [ELSE v4] END: if v1 equals v2 then returns v3 [otherwise v4 or null if ELSE is not specified]. CASE WHEN e1 THEN v1[WHEN e2 THEN v2] [ELSE v4] END: when e1 is true return v1 [optionally repeated for more cases] [otherwise v4 or null if there is no ELSE] |
CAST(term AS type) | converts exp to another data type |
Table A-9 describes the system and connection functions.
Table A-10 lists the JDBC API features of the Oracle Data Integrator driver for LDAP.
Table A-10 JDBC API Features
Feature Groups | JDBC Version | Support |
---|---|---|
Batch Update | 2.0 Core | Yes |
Blob/Clob | 2.0 Core | No |
JNDI DataSources | 2.0 Optional | No |
Failover support | - | No |
Transaction SavePoints | 3.0 | No |
Unicode support | - | No |
Disributed Transaction | 2.0 Optional | No |
Connection Pooling | 2.0 Optional | No |
Cluster support | - | No |
The following table identifies the JDBC classes supported by the Oracle Data Integrator driver for LDAP.
Table A-11 JDBC Classes
JDBC Classes | JDBC Version | Support |
---|---|---|
Array | 2.0 Core | No |
Blob | 2.0 Core | No |
Clob | 2.0 Core | No |
CallableStatement | 1.0 | Yes |
Connection | 1.0 | Yes |
ConnectionPoolDataSource | 2.0 Optional | No |
DatabaseMetaData | 1.0 | Yes |
DataSource | 2.0 Optional | No |
Driver | 1.0 | Yes |
PreparedStatement | 1.0 | Yes |
Ref | 2.0 Core | No |
RowSet | 2.0 Optional | No |
ResultSet | 1.0 | Yes |
ResultSetMetaData | 1.0 | Yes |
Statement | 1.0 | Yes |
Struct | 2.0 Core | No |
XAConnection | 2.0 Optional | No |
XADataSource | 2.0 Optional | No |
This appendix describes how to work with the Oracle Data Integrator driver for XML.
This appendix includes the following sections:
Oracle Data Integrator Driver for XML (XML driver) handles an XML document as a JDBC data source. This allows Oracle Data Integrator to use XML documents as data servers.
With Oracle Data Integrator Driver for XML, Oracle Data Integrator can query XML documents using standard SQL syntax and perform changes in the XML files. These operations occur within transactions and can be committed or rolled back.
The Oracle Data Integrator driver for XML supports the following features:
The XML driver works in the following way:
The XML to SQL Mapping is a complex process that is used to map a hierarchical structure (XML) into a relational structure (schema). This mapping is automatic.
Elements and Attributes Mapping
The XML driver maps XML elements and attributes the following way:
Hierarchy & Order Mapping
Extra data may appear in the relational structure as follows:
<element_name>PK:
This column identifies the element. <parent_element_name>FK
: This column links the current element to its parent in the hierarchy. It contains a value matching the parent element's <element_name>PK
value. <element_name>ORDER
to preserve the order of the elements. When adding new rows in the relational schema, make sure that the ORDER column is correctly set to have the elements correctly ordered under the parent element. <root_element_name>PK
: All level 1 sub-elements will refer to this PK entry. SNPSFILENAME:
This column contains the names of the XML file loaded into this schema. SNPSFILEPATH
: This column contains the XML file path. SNPSLOADDATE
: This column contains the date and time when the file was loaded into the schema. The values in this table are managed by the driver and should not be modified.
Mapping Exceptions
This section details some specific situations for the mapping of extra data.
#PCDATA
are not mapped as tables, but as columns of the table representing their parent element. These columns are named <element_name>DATA
. SELECT
will be mapped to a table named SELECT_
. Such elements are restored in the XML file with their original naming when a synchronize operation takes place. Note that extra objects created by the driver are used to keep the XML file consistency. These records must be loaded in the relational schema before it is synchronized to an XML file.
The XML driver supports XML namespaces (xmlns:
) specified for XML attributes and elements.
Elements or attributes specified with a namespace (using the syntax <namespace>:<element or attribute name>
) are mapped as tables or columns prefixed with the namespace using the syntax: <namespace>_<element or attribute name>
. When synchronizing the XML data back to the file, the namespace information is automatically generated.
A schema corresponds to the concept used in Oracle database and other RDBM systems and is a container that holds a set of relational tables. A schema is a generic relational structure in which an entire set of XML file instances may be successfully parsed and extracted. The identified elements and attributes are inserted in the appropriate relational tables and fields.
This schema is generated by the XML driver from either an XML instance file, a DTD file, or an XSD file. It is recommended to generate the schema from a DTD or XSD file.
Note that only a single DTD or XSD file may be referenced in definition of an XML data server URL. In this case, this DTD or XSD may be considered as a master DTD or XSD file if the artifact includes references to other DTD / XSD files. Note that in certain cases multiple schemas may be required. In this case use the add_schema_bundle
property.
The schema may be stored either in a built-in engine or in an external database.
See Section B.3.3, "Using an External Database to Store the Data" for more information.
It is possible to handle, within the same JDBC connection, multiple schemas and to load multiple XML files simultaneously. It is possible to CREATE, TRUNCATE, SET, and LOAD FILE INTO schemas. When connecting to the JDBC driver, you connect to the schema that is specified on the URL. It is possible to set the current schema to another one using the SET SCHEMA command. See Section B.4, "Detailed Driver Commands" for more information.
The default schema is a specific schema that is used for storing temporary data. It is not recommended (though technically possible) to use the default schema to store XML files. It is recommeded to create a schema for each XML file.
It is also possible to automatically create additional schemas with different XML structures when creating the connection to the driver. See Section B.3.1, "Driver Configuration" for more information.
Data in the schemas is handled using the SQL language.
It is possible to access tables in a schema that is different from the current schema. To access the tables of a different schema, prefix the table name with the schema name, followed by a period character (.
). For example:
This query returns data from table1 in the current schema, and from table2 from schema2.
Note: Note that the other schema must be located on the same storage space - built-in engine or external database - as than the current schema. |
A schema cannot be case-sensitive. All elements in the schema (tables and columns) are in UPPERCASE. If the XML file element names contain lowercase letters, they are converted to upper case. When the elements are synchronized to the XML file, their names are created with their original case.
A schema is usually automatically created when connecting to an XML file, and loaded with the data contained in the XML file. It is possible to force the schema creation and the data loading in the schema using specific driver commands. See Section B.4, "Detailed Driver Commands" for more information. It is also possible to force a synchronization process of the data by using the SYNCHRONIZE
command, as described in Section B.4.9, "SYNCHRONIZE".
When accessing an XML file, the driver locks it in order to prevent other instances of the driver to connect to the file. The lock file has the same name as the XML file but an .lck
extension.
If the driver is incorrectly disconnected, a lock may remain on the file. To remove it, delete the .lck
file. It is also possible to unlock an XML file with the UNLOCK FILE command.
XSD is supported by the XML driver for describing XML file structures. See Section B.7, "XML Schema Supported Features" for more information.
In addition, the XML driver supports document validation against XSD schemas specified within the XML file. This operation may be performed using the VALIDATE driver specific command.
The Oracle Data Integrator driver for XML is automatically installed with Oracle Data Integrator. The following topics cover advanced configuration topics and reference information.
This section contains the following topics:
Note: If using an External Database storage, you must also make sure that the JDBC driver used to connect the external database, as well as the. properties file are in the classpath. |
This section details the driver configuration.
com.sunopsis.jdbc.driver.xml.SnpsXmlDriver
jdbc:snps:xml?f=<filename>[&s=<schema>&<property>=<value>...]
The properties for the URL are detailed in Table B-1.
Table B-1 Driver Properties
Property | Mandatory | Type | Default | Description |
---|---|---|---|---|
file or f | Yes | string (file location) | - | XML file name. Use slash "/" in the path name instead of back slash "\". It is possible to use an HTTP, FTP or File URL to locate the file. Files located by URL are read-only. For an XML file, if this property is missing, a relational schema is created by the XML driver from the DTD/XSD file and no XML file is searched for. |
dtd or d | No | string (file location) | - | Description file: This file may be a DTD or XSD file. It is possible to use an HTTP, FTP or File URL to locate the file. Files located by URL are read-only. Note that the DTD or XSD file that is specified in the URL takes precedence over the DTD or XSD file that is specified within the XML file. References should be made with an absolute path. For an XML file, if this property is missing, and no DTD or XSD is referenced in the XML file, the driver will automatically consider a DTD file name similar to the XML file name with A DTD file may be created from the XML file structure depending on the generate_dtd URL property. Note that when no DTD or XSD file is present, the relational structure is built using only the XML file content. It is not recommended to reverse-engineer the data model from such a structure as one XML file instance may not contain all the possible elements described in the DTD or XSD, and data model may be incomplete. |
root_elt or re | No | String | - | Name of the element to take as the root table of the schema. This value is case sensitive. This property can be used for reverse-engineering for example a specific message definition from a WSDL file, or when several possible root elements exist in a XSD file. Important: This property is used to designate ONLY the Element in the XSD / DTD file which will serve as the Root Element DEFINITION of any XML instance file Root Element. |
read_only or ro | No | boolean (true | false) | false | Open the XML file in read only mode. |
schema or s | No | string | - | Name of the schema where the XML file will be loaded. If this property is missing, a schema name is automatically generated from the XML file name. If this property is not specified in the XML data Server URL, the XML Driver will automatically create a schema name. This schema will be named after the five first letters of the XML file name. Note: It is not possible to make more than one connection to a schema. Subsequent connections fail if trying to connect to a schema already in use. Important: The schema name should be specified in uppercase. Important: It is forbidden to have a schema name identical to an XML ELEMENT name. |
standalone | No | boolean (true | false) | false | If this option is set to true, the schema for this connection is completely isolated from all other schemas. With this option, you can specify the same schema name for several connections, each schema being kept separated. When using this option, tables in this schema cannot be accessed from other schemas, and this connection cannot access tables from other schemas. The schema is restricted to this connection and only this one. Other connections cannot see this schema. Useful for parallel jobs with the same topology in order to avoid that the jobs overlap each other. |
ns_prefix_generation or nspg | No | auto | xml | xsd | auto | This option defines how namespace prefixes are generated and written in the XML file.
Note that the xsd option value assumes that a similar prefix is not used in several XSD files to reference a different namespace. |
no_default_ns or ndns | No | boolean (true | false) | false | If this property is set to true, the driver generates the target file with no default namespace entry. |
no_closing_tags or nct | No | boolean (true | false) | false | If this property is set to true, the driver generates the empty tags without their closing tags (for example <element/>). If set to false the driver generates an empty element as <element></element>. This property is true by default if the v1_compatibility property is used. |
db_props or dp | No | string | - | This property is used to use an external database instead of the memory engine to store the schema. The db_props property indicates that the schema must be loaded in a database schema whose connection information are stored in a external database property file named like the db_props property with the extension |
load_data_on_connect or ldoc | No | boolean (true | false) | true | Load automatically the data in the schema when performing the JDBC connection. If set to false, a SYNCHRONIZE statement is required after the connection to load the data. This option is useful to test the connection or browse metadata without loading all the data. |
drop_on_disc or dod | No | boolean (true | false) | false | Drop automatically the schema when closing the JDBC connection. If true, the schema is stored in the built-in engine, it is always dropped. If true and the data is on an external database, only the current reference to the schema in memory will be dropped, but the tables will remain in the external database. This means that if you try to connect to this schema again, it will reuse the tables in the external database rather than starting from scratch (as it would when the data is loaded in memory). |
ignore_unknown_elements or iue | No | boolean (true | false) | false | Ignore all elements in the XML file that do not exist in the associated DTD (Document Type Definition) or XSD (XML Schema Definition) file. |
useMaxValue | No | boolean (true | false) | false | When this property is set to true, elements for which maxOccurs is not specified in the XSD are considered as maxOccurs ="unbounded". Otherwise, the driver assumes that maxOccurs=1 when maxOccurs is not specified. |
generate_dtd or gd | No | yes | no | auto | auto | Defines if a DTD file must be created from the XML file structure:
Warning: DTD files created using this option contain only the definition of XML elements appearing in the XML file, and may not be complete. |
java_encoding or je | No | string (encoding code) | UTF8 | Target file encoding (for example: Note that if the Java encoding is specified, the XML encoding should also be specified. |
xml_encoding or xe | No | string (encoding code) | UTF8 | Encoding specified in the generated XML File, in the tag (for example Note that if the XML encoding is specified, the Java encoding should also be specified. |
v1_compatibility or v1 | No | boolean (true | false) | false | With this property set to true, the driver performs the XML to SQL mapping as if in version 1.x. This property is provided for compatibility. |
numeric_id or ni | No | boolean (true | false) | true | If set to true, all internal Primary and Foreign Keys are of NUMERIC type. Otherwise, they are of the VARCHAR type. |
id_length or il | No | integer | 10 / 30 | The length of the internal Primary and Foreign Key columns. The default is 10 for NUMERIC column types and 30 for VARCHAR column. |
numeric_scale or ns | No | integer | empty | Scale of the numeric columns generated during the XML to SQL mapping. |
no_batch_update or nobu | No | boolean (true | false) | false | Batch update is not used for this connection. The command to set the batch update is not sent. This prevents errors to occur for external databases that do not support this JDBC feature, or allows to debug errors related to batch update usage. |
add_schema_bundle or asb | No | string | - | Additional schemas bundle file. This property indicates that additional schemas must be created at connection time. The description for these extra schemas are located in an additional schemas property file named like the add_schema_bundle property with the extension ".properties". The additional schemas property file contains a list of valid JDBC driver's URL. In this file, the property names are ignored. Only the list of values is taken into account. All these additional schemas are created with the drop_on_disconnect option set to true by default. Example of additional schemas property files contents:
|
add_schema_path or asp | No | string (directory) | - | Directory containing a set of XSD files. For each XSD file in this directory, an additional schema is created in the built-in engine or external database storage, based on this XSD. Note that no object is created in the external database storage for these additional schemas. The schema names are default generated named (5 first characters of the file name, uppercased). |
log_file or lf | No | string (file location) | - | Log file name. If the log file is empty, the trace is displayed in the standard output. The presence of this property triggers the trace for the schema. Each schema may have a different trace file. |
log_level or ll | No | Integer | - | Log level. The log level is a mask of the following values:
Examples:
|
default_type_varchar or dtvc | No | boolean (true | false) | false | If set to true, the default datatype used in the relational schema for columns storing XML annotation and documentation elements is VARCHAR of size 255. The length of this column is specified using the dlvc property. If set to false, the LONG datatype if used. This property should be set to yes for technologies that do not support multiple LONG columns within the same table, such as Oracle. |
default_length_varchar or dlvc | No | integer | 255 | Default length of the VARCHAR column used for storing XML annotation and documentation elements. This properties is valid only if dtvc is set to yes..For example: :
|
tna | No | boolean (true|false) | true | Transform Non Ascii. Set to false to keep non-ascii characters. |
Table B-2 listsURL samples.
Table B-2 URL Samples
URL Sample | Action |
---|---|
| Connects to the default schema. |
| Open the |
| Open the |
| Connect directly to the schema |
It is possible to automatically create additional schemas with different XML structures when creating the connection with the driver. This is performed by:
Note that all these additional schemas are automatically dropped when their last connection is closed.
In most cases, the XML driver stores the relational schema mapping of the XML schema in a built-in engine. It is also possible to store the relational schema in an external relational database.
Use external storage:
Before using external storage, ensure that you have understood the impacts of its usage and that you have increased the ODI timeout to values which conform to your performance requirements.
Note: Supported RDBMS for external storage include Oracle, Microsoft SQL Server, MySQL, and Hypersonic SQL. The complete list of technologies that support external storage is available on Oracle Technical Network (OTN) :
|
These schemas are created in addition to the one that may be created with the properties specified in the JDBC driver URL.
The external storage is configured with a set of properties described in Table B-3. These properties can be passed in several ways:
Passing the Properties in the Driver URL
The properties can be directly set in the driver URL. When using this method, the properties have to be prefixed with dp_
. For example, if connecting to an Oracle database, specify the Oracle JDBC driver name in the driver
parameter as follows:
dp_driver=oracle.jdbc.driver.OracleDriver
.
Setting the Properties in ODI Studio
The properties can be specified on the Properties tab of the Data Server editor in Topology Navigator. When using this method, the properties have to be prefixed with dp_
. For example, if you want to set the driver
parameter:
dp_driver
oracle.jdbc.driver.OracleDriver
if you are connecting to an Oracle database. Setting the Properties in a Properties File
The properties can be set in an external database properties file. This properties file, also called property bundle, is a text file with the .properties
extension containing a set of lines with on each line a <property>=<value>
pair.This external database porperties file contains the properties of a JDBC connection to the relational database schema. The properties file is referenced using the db_props
property in the JDBC URL. When using this method, note the following:
db_props
property is set to the name of the properties file including the .properties
extension. The db_props
property indicates that the schema must be loaded in a database schema whose connection information is stored in a external database properties file. <user.dir>/odi/oracledi/userlib
folder oracledi/agent/drivers
folder Note: When connecting to the external database, the XML driver uses JDBC connectivity. Make sure that the JDBC driver to access this external database is also available in the ODI classpath. |
It is possible to set or override the external database properties on the URL. These properties must be prefixed with the string dp_
. For example:
The properties for configuring external storage are described inTable B-3.
Table B-3 Properties of the External Database Properties File
Property | Mandatory | Type | Default | Description |
---|---|---|---|---|
driver | Yes | string | - | JDBC driver name. Important: The driver class file must be in the classpath of the java application. |
url | Yes | string | - | JDBC URL |
user | Yes | string | - | Login used to connect the database |
password | Yes | string | - | Encrypted password of the user. Note: To encrypt the password, use the |
schema | Yes | string | - | Database schema storing the relational schema and the XML data. Note for MS SQLServer that:
|
catalog | Yes | string | - | For Microsoft SQL Server only. Database catalog storing the XML data & information. |
drop_on_connect or doc | No | boolean (Y|N) | N | Drop the tables from the database schema if they already exist. If set to N the existing tables are preserved. |
create_tables or ct | No | (Y | N | AUTO) | AUTO | Y: create systematically the tables in the schema. N: never create the tables in the schema AUTO: Create the tables if they do not exist. |
create_indexes or ci | No | boolean (Y|N) | Y | Y: create indexes on tables' PK and FK N: do not create the indexes. This value provides faster INSERT but dramatically slows SELECT in the data. It also saves storage space on your RDB. |
truncate_before_load or tbl | No | boolean (Y|N) | Y | Y: truncate all data when connecting N: preserve existing data |
ids_in_db or iidb | No | boolean (Y|N) | Y | Y: preserve identifiers (counters) in the database for a future append connection N: do not preserve identifiers. Future append is not possible. |
drop_tables_on_drop_schema or dtods | No | boolean (Y|N) | Y | Y: a DROP SCHEMA does not only causes the reference to the database schema to be erased from the driver, but also causes all tables to be dropped. N: DROP SCHEMA erases the reference to the database schema from the driver, but the tables are kept in the database schema. |
use_prepared_statements or ups | No | boolean (Y|N) | Y | Y: use the prepared statements with the database connection to perform driver operation (load/unload files). N: do not use the prepare statement. Processing is usually faster with prepare statement. The database and driver must support prepared statements in order to use this option. |
use_batch_update or ubu | No | boolean (Y|N) | Y | Y: use batch update with the database connection. N: do not use batch update. Inserting data is usually faster with batch update. Should be set to Yes only if the following conditions are met:
Note: The batch update options specified here are only used to load the data in the schema. To use batch update when manipulating data in the schema, you must specify batch update options in your Java application. |
batch_update_size or bus | No | integer | 30 | Batch update size. Records will be written in the database schema by batches of this size, if the use_batch_update property is set to Y. |
commit_periodically or cp | No | boolean (Y|N) | Y | A COMMIT will be sent regularly when loading data from the XML file into the database schema. This regular COMMIT avoids overloading of the database log when loading large XML data files. Should be set to Yes only if the following conditions are met:
Note: The commit options specified here are only used to load the data in the schema. To commit when performing transactions in the schema, you must specify the commit in your Java application. |
num_inserts_before_commit or nibc | No | integer | 1000 | Interval in records between each COMMIT, if the commit_periodically property is set to Y. |
reserve_chars_for_column or rcfc | No | integer | 3 | Long XML names are truncated to fit the maximum allowed size on the RDBMS, according to the maximum allowed size for column names returned by the JDBC driver. However, there are some situations when you will want to reserve characters to make the driver-generated names shorter. The number of reserved character is defined in the reserve_chars_for_column value. For example, on a database with a maximum of 30 characters and with this property set to 3 (which is the default), all column names will not be larger than 27 characters. |
reserve_chars_for_table or rcft | No | integer | 3 | Same as reserve_chars_for_column (rcfc) property but applies to names of the table created in the RDBMS schema. |
varchar_length or vl | No | integer | 255 | Size of all the columns of the relational structure that will be used to contain string data. |
numeric_length or nl | No | integer | 30 | Size of all the columns of the relational structure that will be used to contain numeric data. |
unicode | No | boolean (true|false) | For MS SQL Server: If unicode = true, nvarchar is used. If unicode = false or not set, varchar is used. |
The following sample is an example of a property file for using an Oracle Database as the external storage:
The following sample is an example of a property file for using a Microsoft SQL Server database as the external storage:
The following statements are specific to the XML driver, and allow to manage XML files and schemas. They can be launched as standard SQL statements on the JDBC connection to the XML driver.
To manipulate the data stored in the schemas, you may use standard SQL syntax. This syntax is either the built-in engine's SQL Syntax, or the SQL Syntax of the External Database engine you use.
Conventions
The following conventions are used within this document:
This section details the following driver specific commands:
Generate an XML file called <file_name> from the default schema data, or from a specific schema.
If the EMPTY option is specified, an empty file with the XML structure specified in the DTD or XSD is generated.
Parameters
Specify the schema in which data will be written in the XML file.
Encoding of the generated File.
Encoding generated in the file's xml tag.
Example of generated tag: <?xml version="1.0" encoding="ISO-8859-1"?>
Note that Java and XML encoding should always be specified together.
If this parameter is specified, the driver generates the empty tags with closing tag. By default, the driver generates an empty element as <element></element>.
with the no_closing_tags parameter, it generates <element/>.
If this parameter is specified, the driver generates the target file without a default namespace entry.
Remarks
Generate an XML file called <file_name> from the default schema data, or from a specific schema.
Parameters
Specify the schema in which data will be written in the XML file.
Encoding of the generated File.
Encoding generated in the file's xml tag. Example of generated tag: <?xml version="1.0" encoding="ISO-8859-1"?>.
Note that Java and XML encoding should always be specified together.
If this parameter is specified, the driver generates the empty tags with closing tag. By default, the driver generates an empty element as <element></element>.
with the no_closing_tags parameter, it generates <element/>
.
If this parameter is specified, the driver generates the target file without a default namespace entry.
Remarks
Create physically all the foreign keys joining the tables from the relational schema in the database. This command is helpful to enforce integrity constraints on the schema.
Note: When requested, the driver always returns "virtual" foreign keys, corresponding to the relational structure mapping. It does not return the real foreign keys enforced at database level. |
Remarks
After using CREATE FOREIGNKEYS, it is not possible any longer to perform a LOAD FILE.
Create in <schema_name>
an empty schema or a schema with tables mapping the structure of the description file specified as <dtd/xsd_name>
.
Parameters
Specify the description file (DTD or XSD) which structure will be created in the schema.
Specify if an existing schema structure must be replaced with the new one.
Element in the description file considered as the root of the XML file. This element name is case sensitive.
The schema loaded cannot have data inserted, deleted or updated.
Encoding of the target XML file(s) generated from schema.
Note: Java and XML encoding should always be specified together.
Encoding generated in the target files' XML tag. Example of generated tag: <?xml version="1.0" encoding="ISO-8859-1"?>.
Remarks
Drop all the foreign keys on the tables of the relational schema in the database. This command is helpful to drop all integrity constraints on the schema.
Drop an existing schema. If <schema_name>
is not specified, the current schema is dropped. It is not possible to drop a schema if there are pending connections to this schema. Trying to drop a schema with existing connections causes an exception.
Load the <file_name>
XML file into the current relational schema.
Parameters
Specify the description file (DTD or XSD) which structure will be created in the schema.
Adds the data from the XML file in the schema if it already exists. The new XML file should have valid description file for the existing schema.
Force the file to be loaded in <schema_name>. Note that the current schema is not set after the command automatically to <schema_name>.
Specify if an existing schema structure with the same name must be replaced with the one that is being loaded.
The schema loaded cannot have data inserted, deleted or updated.
Element in the description file considered as the root of the XML file. This element name is case sensitive.
If the XML file is already locked by another driver instance, an exception occurs unless the AUTO_UNLOCK is specified. This parameter unlocks automatically the file if it is locked.
Loads the file in the external database identified by the properties file called <external database properties>.properties.
Remarks
Set the current schema to <schema_name>.
Remarks
If no <schema_name> is specified, the schema is set to the default schema.
Synchronize data in the schema with the file data.
Parameters
Synchronizes all schemas
Synchronizes only <schema_name>
Forces the data to be loaded from the file to the schema. Erases all changes in the schema.
Forces the data to be loaded from the schema to the file. Erases all changes in the file.
If FROM FILE/DATABASE are not specified, the driver automatically determines where data have been modified (in the FILE or DATABASE) and updates the unmodified data. If both the FILE and the DATABASE have been modified, the driver issues a Conflict Error. if the IGNORE CONFLICTS parameter is used, no error is issued, and if performing a SYNCHRONIZE ALL, the following schemas will be synchronized.
Note: A schema is marked updated only when a data modification (update, delete, insert, drop) is executed in a connection to that schema. It is not marked as updated, when the order is launched from a connection to another schema. |
Unlocks <file_name> if it is locked by another instance of the driver.
Clears all data from the current schema, or from <schema_name>.
Verifies that the XML file <file_name> is well-formed and validates the content of the XML file <file_name> against the XML Schema (XSD) if the schema is referenced in the XML file. This command returns an exception if the file is not valid. For a full description of the validation performed, see:
http://xerces.apache.org/xerces2-j/features.html#validation.schema
Parameters
Name of the XML file to validate.
Ignore or generate errors on XSD validation warnings, such as values out of range. The default value is IGNORE_ON_WARNING.
Ignore or generate errors on XSD validation errors, such as non conform attribute or element. The default value is ERROR_ON_ERROR.
Ignore or generate errors on XSD validation fatal errors, such as malformed XML. The default value is ERROR_ON_FATAL_ERROR.
Displays on the Java console the detailed errors and number of the line causing the error. Nothing is displayed by default on the console.
The following statements are available when using the built-in engine to store the XML schema. They enable the management of the data and data structure in the schema through Standard SQL Syntax.
This section contains the following topics:
Note: If you are using an external database, you may use the database engine querying syntax instead of this one. |
Any number of commands may be combined. You can optionally use the semicolon character (;) to separate each command.
This section details the following commands:
Ends a transaction on the schema and makes the changes permanent.
Create a tables and its constraints in the relational schema.
Remarks
Remove rows in a table in the relational schema. This function uses a standard SQL Syntax.
Closes this connection.
Remarks
Remove a table, the data and indexes from the relational schema.
Insert one or more new rows of data into a table.
Undo the changes made since the last COMMIT or ROLLBACK.
Retrieves information from one or more tables in the schema.
Switches on or off the connection's auto-commit mode. If switched on, then all statements will be committed as individual transactions. Otherwise, the statements are grouped into transactions that are terminated by either COMMIT or ROLLBACK. By default, new connections are in auto-commit mode.
Modifies data of a table in the database.
Table B-4 lists the numerical functions.
Table B-4 Numerical Functions
Function | Description |
---|---|
ABS(d) | returns the absolute value of a double value |
ACOS(d) | returns the arc cosine of an angle |
ASIN(d) | returns the arc sine of an angle |
ATAN(d) | returns the arc tangent of an angle |
ATAN2(a,b) | returns the tangent of a/b |
CEILING(d) | returns the smallest integer that is not less than d |
COS(d) | returns the cosine of an angle |
COT(d) | returns the cotangent of an angle |
DEGREES(d) | converts radians to degrees |
EXP(d) | returns e (2.718...) raised to the power of d |
FLOOR(d) | returns the largest integer that is not greater than d |
LOG(d) | returns the natural logarithm (base e) |
LOG10(d) | returns the logarithm (base 10) |
MOD(a,b) | returns a modulo b |
PI() | returns pi (3.1415...) |
POWER(a,b) | returns a raised to the power of b |
RADIANS(d) | converts degrees to radians |
RAND() | returns a random number x bigger or equal to 0.0 and smaller than 1.0 |
ROUND(a,b) | rounds a to b digits after the decimal point |
SIGN(d) | returns -1 if d is smaller than 0, 0 if d==0 and 1 if d is bigger than 0 |
SIN(d) | returns the sine of an angle |
SQRT(d) | returns the square root |
TAN(d) | returns the trigonometric tangent of an angle |
TRUNCATE(a,b) | truncates a to b digits after the decimal point |
BITAND(a,b) | return a & b |
BITOR(a,b) | returns a | b |
Table B-5 lists the string functions.
Table B-5 String Functions
Function | Description |
---|---|
ASCII(s) | returns the ASCII code of the leftmost character of s |
CHAR(c) | returns a character that has the ASCII code c |
CONCAT(str1,str2) | returns str1 + str2 |
DIFFERENCE(s1,s2) | returns the difference between the sound of s1 and s2 |
INSERT(s,start,len,s2) | returns a string where len number of characters beginning at start has been replaced by s2 |
LCASE(s) | converts s to lower case |
LEFT(s,count) | returns the leftmost count of characters of s |
LENGTH(s) | returns the number of characters in s |
LOCATE(search,s,[start]) | returns the first index (1=left, 0=not found) where search is found in s, starting at start |
LTRIM(s) | removes all leading blanks in s |
REPEAT(s,count) | returns s repeated count times |
REPLACE(s,replace,s2) | replaces all occurrences of replace in s with s2 |
RIGHT(s,count) | returns the rightmost count of characters of s |
RTRIM(s) | removes all trailing blanks |
SOUNDEX(s) | returns a four character code representing the sound of s |
SPACE(count) | returns a string consisting of count spaces |
SUBSTRING(s,start[,len]) | returns the substring starting at start (1=left) with length len |
UCASE(s) | converts s to upper case |
LOWER(s) | converts s to lower case |
UPPER(s) | converts s to upper case |
Table B-6 lists the date/time functions.
Note that a date value starts and ends with a single quote ('), the format is yyyy-mm-dd
(see java.sql.Date). A time value starts and ends with a single quote ('), the format is hh:mm:ss
(see java.sql.Time).
Table B-6 Date/Time Functions
Function | Description |
---|---|
CURDATE() | returns the current date |
CURTIME() | returns the current time |
DAYNAME(date) | returns the name of the day |
DAYOFMONTH(date) | returns the day of the month (1-31) |
DAYOFWEEK(date) | returns the day of the week (1 means Sunday) |
DAYOFYEAR(date) | returns the day of the year (1-366) |
HOUR(time) | return the hour (0-23) |
MINUTE(time) | returns the minute (0-59) |
MONTH(date) | returns the month (1-12) |
MONTHNAME(date) | returns the name of the month |
NOW() | returns the current date and time as a timestamp |
QUARTER(date) | returns the quarter (1-4) |
SECOND(time) | returns the second (0-59) |
WEEK(date) | returns the week of this year (1-53) |
YEAR(date) | returns the year |
Table B-7 lists the system functions.
Table B-8 lists the JDBC API features that are implemented in the Oracle Data Integrator Driver for XML:
Table B-8 JDBC API Features
Feature Groups | JDBC Version | Support |
---|---|---|
Batch Update | 2.0 Core | Yes |
Blob/Clob | 2.0 Core | Yes |
JNDI DataSources | 2.0 Optional | Yes |
Failover support | - | Yes |
Transaction SavePoints | 3.0 | Yes |
Unicode support | - | No |
Distributed Transaction | 2.0 Optional | No |
Connection Pooling | 2.0 Optional | No |
Cluster support | - | No |
Table B-9 lists JDBC Java classes.
Table B-9 JDBC Java Classes
JDBC Class | JDBC Version | Support |
---|---|---|
Array | 2.0 Core | No |
Blob | 2.0 Core | Yes |
CallableStatement | 1.0 | Yes |
Clob | 2.0 Core | Yes |
Connection | 1.0 | Yes |
ConnectionPoolDataSource | 2.0 Optional | No |
DatabaseMetaData | 1.0 | Yes |
DataSource | 2.0 Optional | No |
Driver | 1.0 | Yes |
Ref | 2.0 Core | No |
ResultSet | 1.0 | Yes |
ResultSetMetaData | 1.0 | Yes |
RowSet | 2.0 Optional | No |
Statement | 1.0 | Yes |
Struct | 2.0 Core | No |
PreparedStatement | 1.0 | Yes |
XAConnection | 2.0 Optional | No |
XADataSource | 2.0 Optional | No |
The driver supports part of the XML Schema (XSD) specification. Supported elements are listed in this section.
For more information on the XML Schema specification, see the W3C specification at http://www.w3.org/TR/xmlschema-1/
.
This section contains the following topics:
The following datatypes are supported:
This section lists all schema elements. Supported syntax elements are shown in bold. Unsupported syntax elements are shown in regular font. They are ignored by the driver.
This section details the following schema elements:
Note: XML files generated or updated using the XML driver should ideally be validated against their corresponding XSD files using the VALIDATE command after generation. |
This element specifies that child elements can appear in any order and that each child element can occur zero or one time.
Note that child elements mandatory properties (minOccurs=1) are not managed by the driver. This should be handled by checks on the data, and by validating the XML contents against the XSD.
This element defines an attribute.
Note that the use
attribute of this element defines the column mapped by the driver for the attribute as mandatory or not.
This element defines a set of attributes.
This element allows one and only of the elements to be present within the containing element.
Note that the child element's unique nature are not managed by the driver. This should be handled by checks on the data, and by validating the XML contents against the XSD.
This element defines extensions or restrictions on a complex type.
This element defines a complex type.
This element defines an element of the XML file.
Note: The maxOccurs and minOccurs attributes of the element are used in the XML-to-SQL mapping. If a child element is of a simple type and is monovalued (one occurrence only), then this element is mapped to a simple column in the table corresponding to its parent element. Otherwise, a table linked to the parent element's table is created.Note that if no reference to either minOccurs or maxOccurs is mentioned in an element then the element is consider as monovalued and is transformed to a column. This behavior can be changed using the |
Note: Using different sub-elements with the same name but with different types is not supported by XML driver. An XSD with such a structure will not be processed correctly. |
This element extends an existing simpleType or complexType element
The group element is used to define a group of elements to be used in complex type definitions.
This element is used to add multiple schemas with different target namespace to a document.
This element is used to add multiple schemas with the same target namespace to a document.
This element defines a simple type element as a list of values of a specified data type.
This element defines restrictions on a simpleType, simpleContent, or a complexContent.
This element defines the root element of a schema.
This element specifies that the child elements must appear in a sequence. Each child element can occur 0 or more times.
Note the following:
This element contains extensions or restrictions on a text-only complex type or on a simple type as content.
This element defines a simple type element.
The following elements and features are not supported or implemented by the XML driver.
The following schema elements are not supported by the XML driver.
WARNING: Elements and attributes allowed in an XML file due to an Any or AnyAttribute clause in the XSD may cause errors when the file is loaded. |
This appendix describes how to work with the Oracle Data Integrator driver for Complex Files.
This appendix includes the following sections:
The Oracle Data Integrator Driver for Complex Files (Complex File driver) handles files in a Complex (or Native) Format as a JDBC data source. This allows Oracle Data Integrator to use complex files as data servers.
With the Complex File driver, Oracle Data Integrator can query complex files using standard SQL syntax and perform changes in the complex files. These operations occur within transactions and can be committed or rolled back.
The Oracle Data Integrator driver for Complex Files supports the following features:
The Complex File driver uses a Native Schema file. This file, written in the nXSD format describes the structure of the Native File and how to translate it to an XML file.
The Complex File driver translates internally the native file into an XML structure, as defined in the Native Schema (nXSD) description and from this XML file it generates a relational schema that is consumed by Oracle Data Integrator. The overall mechanism is shown in Figure C-1.
The second part of the process, starting from the XML structure, corresponds precisely to the capabilities of the Oracle Data Integrator Driver for XML.
The Complex Files driver works in the following way:
The Native Schema can be created manually, or generated using the Native Format Builder Wizard available as part of Fusion Middleware Technology Adapters. See "Native Format Builder Wizard" in the Oracle Fusion Middleware User's Guide for Technology Adapters for more information on the Native Schema format and the Native Format Builder Wizard.
The XML to SQL Mapping is a complex process that is used to map a hierarchical structure (XML) into a relational structure (schema). This mapping is automatic. See Section B.2.1, "XML to SQL Mapping" for more information.
The Complex File driver supports the same features as the XML driver:
The Oracle Data Integrator driver for Complex Files is automatically installed with Oracle Data Integrator. The following topics cover advanced configuration topics and reference information.
This section details the driver configuration.
oracle.odi.jdbc.driver.file.complex.ComplexFileDriver
jdbc:snps:complexfile?f=<native file location>&d=<native schema>&re=<root element name>&s=<schema name>[&<property>=<value>...]
The properties for the URL are detailed in Table C-0.
Table C-1 Driver Properties
Property | Mandatory | Type | Default | Description |
---|---|---|---|---|
file or f | Yes | string (file location) | - | Native file location. Use slash "/" in the path name instead of back slash "\". It is possible to use an HTTP, FTP or File URL to locate the file. Files located by URL are read-only. This parameter is mandatory. |
dtd or d | Yes | string (file location) | - | Native Schema (nXSD) file location. This parameter is mandatory. |
root_elt or re | Yes | String | - | Name of the element to take as the root table of the schema. This value is case sensitive. This property can be used for reverse-engineering for example a specific section of the Native Schema. This parameter is mandatory. |
read_only or ro | No | boolean (true | false) | false | Open the native file in read only mode. |
schema or s | No | string | - | Name of the relational schema where the complex file will be loaded. This parameter is mandatory. This schema will be selected when creating the physical schema under the Complex File data server. Note: It is not possible to make more than one connection to a schema. Subsequent connections fail if trying to connect to a schema already in use. Important: The schema name should be specified in uppercase, and cannot be named like an existing XML element. |
standalone | No | boolean (true | false) | false | If this option is set to true, the schema for this connection is completely isolated from all other schemas. With this option, you can specify the same schema name for several connections, each schema being kept separated. When using this option, tables in this schema cannot be accessed from other schemas, and this connection cannot access tables from other schemas. |
db_props or dp | No | string | - | This property is used to use an external database instead of the memory engine to store the schema. See Section B.3.3, "Using an External Database to Store the Data" for more information. |
load_data_on_connect or ldoc | No | boolean (true | false) | true | Automatically load the data in the schema when performing the JDBC connection. If set to false, a SYNCHRONIZE statement is required after the connection to load the data. This option is useful to test the connection or browse metadata without loading all the data. |
drop_on_disc or dod | No | boolean (true | false) | false | Automatically drop the schema when closing the JDBC connection. If true, the schema is stored in the built-in engine, it is always dropped. If the schema is stored in an external database, the driver attempts to drop the database schema, but might fail if tables still exist in this schema. The drop_tables_on_drop_schema property can be specified in the external database property file to ensure that all tables are automatically dropped when the schema is dropped. See Section B.3.3, "Using an External Database to Store the Data" for more information. |
useMaxValue | No | boolean (true | false) | false | When this property is set to true, elements for which maxOccurs is not specified in the schema are considered as maxOccurs ="unbounded". Otherwise, the driver assumes that maxOccurs=1 when maxOccurs is not specified. |
java_encoding or je | No | string (encoding code) | UTF8 | Target file encoding (for example: |
numeric_id or ni | No | boolean (true | false) | true | If set to true, all internal Primary and Foreign Keys are of NUMERIC type. Otherwise, they are of the VARCHAR type. |
id_length or il | No | integer | 10 / 30 | The length of the internal Primary and Foreign Key columns. The default is 10 for NUMERIC column types and 30 for VARCHAR column. |
numeric_scale or ns | No | integer | empty | Scale of the numeric columns generated in the relational schema. |
no_batch_update or nobu | No | boolean (true | false) | false | Batch update is not used for this connection. The command to set the batch update is not sent. This prevents errors to occur for external databases that do not support this JDBC feature, or allows to debug errors related to batch update usage. |
log_file or lf | No | string (file location) | - | Log file name. If the log file is empty, the trace is displayed in the standard output. The presence of this property triggers the trace for the schema. Each schema may have a different trace file. |
log_level or ll | No | Integer | - | Log level. The log level is a mask of the following values:
Examples:
|
tna | No | boolean (true|false) | true | Transform Non Ascii. Set to false to keep non-ascii characters. |
The following example illustrates these properties:
Connects to the PROD20100125_001.csv
file described by products.nxsd
and expose this file as a relational structure in the PRODUCT Schema.
The Complex File driver supports the same SQL syntax as the XML driver. See Section B.5, "SQL Syntax" for the SQL Syntax supported by the XML Driver.
The exceptions to this rule are the following:
The Complex File driver supports the same JDBC features as the XML driver. See Section B.5, "SQL Syntax" for more information.
 Copyright © 2011, Oracle and/or its affiliates. All rights reserved. |