User's Guide for Oracle Business Rules
11g Release 1 (11.1.1.6.1)
E10228-08
March 2012
Documentation for developers and business users that provides information about using and developing applications involving facts, rules, and decision tables for Oracle Business Rules by using design-time tools, such as Oracle JDeveloper with Oracle SOA extension, and run-time application such as Oracle SOA Composer.
Oracle Fusion Middleware User's Guide for Oracle Business Rules 11g Release 1 (11.1.1.6.1)
E10228-08
Copyright © 2005, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Author: Anirban Ghosh
Contributing Authors: Steven Leslie, Peter Purich, Thomas Van Raalte, Richard Smith, Poh Lee Tan
Contributors: Sreejith Achazhiyathkalathil, Kirit Adatiya, Chris Cowell-Shah, Ching Luan Chung, Kathryn Gruenefeldt, Gary Hallmark, Ralf Mueller, Joe Rosinski, Abhimanyu Prabhavalkar, Ganesh Radhakrishnan, Anitha Suraj, Phil Varner, Lakshmi Venkatakrishnan, Neal Wyse
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This Preface contains these topics:
Oracle Fusion Middleware User's Guide for Oracle Business Rules is intended for application programmers, system administrators, and other users who perform the following tasks:
To use this document, you need a working knowledge of Java programming language fundamentals.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
Printed documentation is available for sale in the Oracle Store at
To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN).
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
For Release 11.1.1.6.x, this guide has been updated in several ways. The following table lists the sections that have been added or changed. If a feature was not available in the first release of 11.1.1.6.x, the last columns denote which documentation release contains the update.	
For a list of known issues (release notes), see the "Known Issues for Oracle SOA Products and Oracle AIA Foundation Pack" at http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html	
.	
Sections	Changes Made
---	---
What's New in This Guide for Release 11.1.1.6.x	Chapter added to list the new or updated content for this release.
This chapter describes the concepts of business rules and provides an overview of the Oracle Business Rules run-time and design-time elements such as facts, bucketsets, rulesets, Decision Table, and Oracle SOA Composer. It also describes the Oracle Business Rules engine architecture.	
The chapter contains the following sections:	
For more information, see:	
Oracle Business Rules enable dynamic decisions at runtime allowing you to automate policies, computations, and reasoning while separating rule logic from underlying application code. This allows more agile rule maintenance and empowers business analysts with the ability to modify rule logic without programmer assistance and without interrupting business processes.	
Business rules are statements that describe business policies or describe key business decisions. For example, business rules include:	
For example, a car rental company might use the following business rule:	
An airline might use a business rule such as the following:	
A financial institution could use a business rule such as:	
These examples represent individual business rules. In practice, you can use Oracle Business Rules to combine many business rules or to use more complex tests.	
For the car rental example, you can name the rule the Driver Age Rule. Traditionally, business rules such as the Driver Age Rule are buried in application code and might appear in a Java application as follows:	
This code is not easy for nontechnical users to read and can be difficult to understand and modify. For example, suppose that the rental company changes its policy so that all drivers under 18 are declined using the Driver Age Rule. In many production environments the developer must modify the application, recompile, and then redeploy the application. Using Oracle Business Rules, this process can be simplified because a business rules application is built to support easily changing business rules.	
Oracle Business Rules allows a business analyst to change policies that are expressed as business rules, with little or no assistance from a programmer. Applications using Oracle Business Rules support continuous change that allows the applications to adapt to new government regulations, improvements in internal company processes, or changes in relationships between customers and suppliers.	
A rule follows an if-then structure and consists of the following parts:	
Alternatively, you can express rules in a spreadsheet-like format called a Decision Table (see Section 1.1.3, "What Are Decision Tables?").	
You write rules and Decision Tables in terms of fact types and properties. Fact types are often imported from the Java classes, XML schema, Oracle ADF Business Components view objects, or may be created in Rules Designer. Fact properties have a name, value, data type, and an optional bucketset. A bucketset splits the value space of the data type into buckets that can be used in Decision Tables, choice lists, and for design time validation (see Section 1.1.4, "What Are Facts and Bucketsets?").	
You group rules and Decision Tables in an Oracle Business Rules object called a ruleset (see Section 1.1.5, "What Are Rulesets?").	
You group one or more rulesets and their facts and bucketsets in an Oracle Business Rules object called a dictionary (see Section 1.1.8, "What Are Dictionaries?").	
For more information, see Section 1.2, "Oracle Business Rules Runtime and Design Time Elements".	
The rule IF part is composed of conditional expressions, rule conditions, that refer to facts. For example:	
IF Rental_application.driver age < 21	
The conditional expression compares a business term (Rental_application.driver age) to the number 21 using a less than comparison.	
The rule condition activates the rule whenever a combination of facts makes the conditional expression true. In some respects, the rule condition is like a query over the available facts in the Rules Engine, and for every row returned from the query the rule is activated.	
For more information, see:	
The rule THEN part contains the actions that are executed when the rule is fired. A rule is fired after it is activated and selected among the other rule activations using conflict resolution mechanisms such as priority. A rule might perform several kinds of actions. An action can add facts, modify facts, or remove facts. An action can execute a Java method or perform a function which may modify the status of facts or create facts.	
Rules fire sequentially, not in parallel. Note that rule actions often change the set of rule activations and thus change the next rule to fire.	
For more information, see:	
A Decision Table is an alternative business rule format that is more compact and intuitive when many rules are needed to analyze many combinations of property values. You can use a Decision Table to create a set of rules that covers all combinations or where no two combinations conflict.	
For more information, see Chapter 5, "Working with Decision Tables".	
In Oracle Business Rules, facts are the objects that rules reason on. Each fact is an instance of a fact type. You must import or create one or more fact types before you can create rules.	
In Oracle Business Rules a fact is an asserted instance of a class. The Oracle Business Rules runtime or a developer writing in the RL Language uses the RL Language assert	
function to add an instance of a fact to the Oracle Business Rules Engine.	
In Rules Designer you can define a variety of fact types based on, XML Schema, Java classes, Oracle RL definitions, and ADF Business Components view objects. In the Oracle Business Rules runtime such fact type instances are called facts.	
You can create bucketsets to define a list of values or a range of values of a specified type. After you create a bucketset you can associate the bucketset with a fact property of matching type. Oracle Business Rules uses the bucketsets that you define to specify constraints on the values associated with fact properties in rules or in Decision Tables. You can also use bucketsets to specify constraints for variable initial values and function return values or function argument values.	
For more information, see:	
A ruleset is an Oracle Business Rules container for rules and Decision Tables. A ruleset provides a namespace, similar to a Java package, for rules and Decision Tables. In addition you can use rulesets to partially order rule firing.	
For more information, see:	
A decision function provides a contract for invoking rules from Java or SOA (from an SOA composite application or from a BPEL process). The contract includes input fact types, rulesets to run, and output fact types. For more information, see Chapter 6, "Working with Decision Functions".	
Oracle Business Rules SDK (Rules SDK) provides APIs that let you write applications that access, create, modify, and execute rules in Oracle Business Rules dictionaries (and all the contents of a dictionary). The Rules SDK provides the Decision Point API to access and run rules or Decision Tables from a Java application. For more information, see Chapter 7, "Working with Rules SDK Decision Point API".	
A dictionary is an Oracle Business Rules container for facts, functions, globals, bucketsets, links, decision functions, and rulesets. A dictionary is an XML file that stores the application's rulesets and the data model. Dictionaries can link to other dictionaries. Oracle JDeveloper creates an Oracle Business Rules dictionary in a .rules	
file. You can create as many dictionaries as you need. A dictionary may contain any number of rulesets. For more information, see Section 2.2, "Working with a Dictionary and Dictionary Links".	
Oracle Business Rules provides support for using business rules as a Decision component or as a library in a Java application. A Decision component is a mechanism for publishing rules and rulesets as a reusable service that can be invoked from multiple business processes. To create and use rules in the Oracle SOA Suite, or to create rules and integrate these rules into your applications, Oracle Business Rules provides the following runtime and design time elements:	
Oracle SOA Suite provides support for Decision components that support Oracle Business Rules. A Decision component is a mechanism for publishing rules and rulesets as a reusable service that can be invoked from multiple business processes.	
A Decision Component is a SCA component that can be used within a composite and wired to a BPEL component. Apart from that, Decision components are used for dynamic routing capability of Mediator and Advanced Routing Rules in Human Workflow.	
Oracle Business Rules Rules Engine (Rules Engine) is available in an SOA composite application using the SOA Business Rule service engine that efficiently applies rules to facts and defines and processes rules.	
Rules Engine has the following features:	
For more information, see Section 1.3, "Oracle Business Rules Engine Architecture".	
Oracle Business Rules Rules Engine (Rules Engine) is available as a library for use in a Java EE application (non-SOA). Rules Engine efficiently applies rules to facts and defines and processes rules. Rules Engine defines a Java-like production rule language called Oracle Business Rules RL Language (RL Language), provides a language processing engine (inference engine), and provides tools to support debugging.	
Oracle JDeveloper Rules Designer allows business rules to be specified separately from application code. Separating the business rules from application code allows business analysts to change business policies quickly with graphical tools. The Rules Engine evaluates the business rules and returns decisions or facts that are then used in the business process.	
Rules Engine has the following features:	
A rule-enabled Java application can load and run rules programs. The rule-enabled application passes facts and rules to the Rules Engine (facts are asserted in the form of Java objects or XML documents). The Rules Engine runs in the rule-enabled Java application and uses the Rete algorithm to efficiently fire rules that match the facts.	
For more information, see Section 1.3, "Oracle Business Rules Engine Architecture" and Section 1.2.4, "Oracle Business Rules SDK".	
Oracle Business Rules supports a high-level Java-like language called Oracle Business Rules RL Language (RL Language). RL Language defines the valid syntax for Oracle Business Rules programs. RL Language includes an intuitive Java-like syntax for defining rules that supports the power of Java semantics, providing an easy-to-use syntax for application developers. RL Language consists of a collection of text statements that can be generated dynamically or stored in a file.	
Using RL Language application programs can assert Java objects as facts, and rules can reference object properties and invoke methods. Likewise, application programs can use XML documents or portions of XML documents as facts.	
Programmers can use RL Language as a full-featured rules programming language both directly and as part of the Oracle Business Rules SDK (Rules SDK).	
Business analysts can use Rules Designer to work with rules. In this case, the business analyst does not need to directly view or write RL Language programs. For more information, see Section 1.2.5, "Rules Designer".	
For detailed information about RL Language, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.	
Oracle Business Rules SDK (Rules SDK) is a Java library that provides business rule management features that a developer can use to write a rule-enabled program that accesses a dictionary, or to write customized rules programs that add rules or modify existing rules. Rules Designer uses Rules SDK to create, modify, and access rules and the data model using well-defined interfaces. Customer applications can use Rules SDK to access, display, create, and modify collections of rules and the data model.	
You can use the Rules SDK APIs in a rule-enabled application to access rules or to create and modify rules. The rules and the associated data model could be initially created in a custom application or using Rules Designer.	
This guide describes the Oracle Business Rules SDK Decision Point API. Using a Decision Point you can access a dictionary and run the rules in the dictionary. For complete Oracle Business Rules SDK API information, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.	
For more information, see Chapter 7, "Working with Rules SDK Decision Point API".	
The Oracle Business Rules Designer (Rules Designer) extension to Oracle JDeveloper is an editor that enables you to create and edit rules as Figure 1-1 shows.	
Figure 1-1 Oracle JDeveloper with Rules Designer	
Rules Designer provides a point-and-click interface for creating rules and editing existing rules. Using Rules Designer you can work directly with business rules and a data model. You do not need to understand the RL Language to work with Rules Designer. Rules Designer provides an easy way for you to create, view, and modify business rules.	
Rules Designer supports several types of users, including the application developer and the business analyst. The application developer uses Rules Designer to define a data model and an initial set of rules. The business analyst uses Rules Designer either to work with the initial set of rules or to modify and customize the initial set of rules according to business needs. Using Rules Designer a business analyst can create and customize rules with little or no assistance from a programmer.	
When a dictionary is deployed in an SOA composite application, Oracle Business Rules lets you view the dictionary or edit and save changes to the dictionary. You can use the SOA Composer application (SOA Composer) to work with a deployed dictionary that is part of an SOA composite application, as Figure 1-2 shows.	
Figure 1-2 Using Oracle SOA Composer to View or Edit a Dictionary at Runtime	
For more information, see Chapter 12, "Using Oracle SOA Composer with Oracle Business Rules".	
A rule-based system using the Rete algorithm is the foundation of Oracle Business Rules. A rule-based system consists of the following:	
In Oracle Business Rules the rule-based system is a data-driven forward chaining system. The facts determine which rules can fire. When a rule fires that matches a set of facts, the rule may add facts. These facts are again run against the rules. This process repeats until a conclusion is reached or the cycle is stopped or reset. Thus, in a forward-chaining rule-based system, facts cause rules to fire and firing rules can create more facts, which in turn can fire more rules. This process is called an inference cycle.	
With Oracle Business Rules you can use declarative rules, where you create rules that make declarations based on facts rather than coding. For an example of declarative rules,	
In declarative rules:	
When a rule adds facts and these facts run against the rules, this process is called an inference cycle. An inference cycle uses the initial facts to cause rules to fire and firing rules can create more facts, which in turn can fire more rules. For example, using the initial facts, Rules Engine runs and adds an additional fact, and an additional rule tests for conditions on this fact creating an inference cycle:	
The inference cycle that Oracle Business Rules provides enables powerful and modular declarative assertions.	
The Rete algorithm was first developed by artificial intelligence researchers in the late 1970s and is at the core of Rules Engines from several vendors. Oracle Business Rules uses the Rete algorithm to optimize the pattern matching process for rules and facts. The Rete algorithm stores partially matched results in a single network of nodes in working memory.	
By using the Rete algorithm, the Rules Engine avoids unnecessary rechecking when facts are deleted, added, or modified. To process facts and rules, the Rete algorithm creates and uses an input node for each fact definition and an output node for each rule.	
Fact references flow from input to output nodes. In between input and output nodes are test nodes and join nodes. A test occurs when a rule condition has a Boolean expression. A join occurs when a rule condition ANDs two facts. A rule is activated when its output node contains fact references. Fact references are cached throughout the network to speed up recomputing activated rules. When a fact is added, removed, or changed, the Rete network updates the caches and the rule activations; this requires only an incremental amount of work.	
The Rete algorithm provides the following benefits:	
Oracle Business Rules uses working memory to contain facts (facts do not exist outside of working memory). A RuleSession contains the Oracle Business Rules working memory.	
A Rule Session consists of rules, facts and an agenda. An assert or retract adds or removes fact instances from working memory.	
When facts in working memory are changed:	
Figure 1-3 shows these parts of Oracle Business Rules runtime.	
Figure 1-3 Rules in Rule Session with Working Memory and Facts	
A rule action may assert, modify, or retract facts and cause activations to be added or removed from the agenda. There is a possible loop if a rule's action causes it to fire again. Rules are fired sequentially, but in no pre-defined order. The rule session includes a ruleset stack. Activated rules are fired as follows:	
Only rules within rulesets on the stack are fired, but all rules in a rule session are matched and, if matched, activated.	
This chapter describes the Oracle Business Rules data model comprising fact types, functions, globals, bucketsets, decision functions, and dictionary links.	
The chapter includes the following sections:	
For more information, see Section 1.1.8, "What Are Dictionaries?".	
To implement the data model portion of an Oracle Business Rules application you create a dictionary and add data model elements. To complete the dictionary, you create one or more rulesets containing rules that use or depend upon these data model elements.	
For more information, see:	
A dictionary is an Oracle Business Rules container for facts, functions, globals, bucketsets, links, decision functions, and rulesets. A dictionary is an XML file that stores the rulesets and the data model for an application. Dictionaries can link to other dictionaries. You can create as many dictionaries as you need. A dictionary may contain any number of rulesets. Using Oracle Business Rules, a data model is contained in one or more dictionaries. All the data model elements referenced by the rulesets must be available in the dictionary.	
A dictionary is stored in a *.rules	
file.	
Each Oracle Business Rules dictionary lets you include links to other dictionaries. Each dictionary that you create also includes the built-in dictionary; this dictionary includes standard functions and types that all Oracle Business Rules applications need. In addition to the main dictionary, you create one or more application-specific dictionaries, such as PurchaseItems.rules	
. You can read and write the properties of these dictionaries.	
The complete data model defined by a dictionary and its linked dictionaries is called a combined dictionary. You can create multiple links to the same dictionary; in this case, all but the first link is ignored.	
For more information, see Section 2.2.7, "What You Need to Know About Dictionary Linking".	
Oracle JDeveloper provides many ways to create a dictionary for Oracle Business Rules. This shows one way you can create a dictionary in an SOA project. You can create a dictionary for use in an SOA application.	
A typical SOA composite design pattern is to provide each application with its own dictionary. When different applications need access to the same parts of a common data model, you can use dictionary links to include a target application's dictionary in the dictionary of a source application. Doing so copies the target application's dictionary into the source application. Therefore, when you work with a dictionary that contains links the linked contents are referred to as local contents.	
You may also create a dictionary in the business tier, for use outside of an SOA application. For more information, see Section 9.2.4, "How to Create an Oracle Business Rules Dictionary in the Grades Project".	
To create a dictionary in the SOA Tier using Rules Designer:	
Figure 2-1 Creating a Business Rules Dictionary for an SOA Project	
PurchaseItems	
. com.example	
. You can later add inputs or outputs, or remove the inputs or outputs. For more information, see Chapter 6, "Working with Decision Functions".	
In the Create Business Rules dialog, click OK to create the Decision component and the Oracle Business Rules dictionary.	
Oracle JDeveloper creates the dictionary in a file with a .rules	
extension, and starts Rules Designer as shown in Figure 2-3.	
Figure 2-3 Creating a New Oracle Business Rules Dictionary PurchaseItems	
composite.xml	
file, as Figure 2-4 shows. Figure 2-4 Decision Component Shown in Composite Editor	
The simplest way to create a rules dictionary is using Rules Designer. You can create a dictionary for use in the business tier, outside of an SOA application. For information on using Oracle Business Rules without SOA, see Chapter 9, "Creating a Rule-enabled Non-SOA Java EE Application".	
You can view and edit dictionary settings using the Dictionary Settings icon.	
To change the dictionary alias:	
Figure 2-5 Dictionary Settings Dialog to Change Dictionary Alias or Description	
You can link to a dictionary in the same application or in another application using the Links navigation tab in Rules Designer. To link to another dictionary you need at least one other dictionary available.	
To link to a dictionary using resource picker:	
When you work with ADF Business Components Facts you should create a link to the Decision Point Dictionary. For more information, see Chapter 10, "Working with Oracle Business Rules and ADF Business Components".	
To link to the decision point dictionary:	
When you have a dictionary, for example a dictionary named Project_rules1 that links to another dictionary, for example, a dictionary named Shared_rules you need to see any changes made to either dictionary in both dictionaries. Using Rules Designer you can modify the Shared_rules dictionary and see those modifications in Project1_rules1 by updating the Project_rules1 dictionary, or you can close and then reopen Rules Designer.	
To update a linked dictionary:	
Using a dictionary with links to another dictionary is useful in the following cases:	
For example, consider a project where you would like to share some Oracle Business Rules Functions. You can create a dictionary that contains the functions, and name it DictCommon	
. Then, you can create two dictionaries, DictApp1	
and DictApp2	
that both link to DictCommon	
, and both can use the same Oracle Business Rules functions. When you want to change one of the functions, you only change the version in DictCommon	
. Then, both dictionaries use the updated function the next time RL Language is generated from either DictApp1	
or DictApp2	
.	
In Oracle Business Rules a fully qualified dictionary name is called a DictionaryFQN and this consists of two components:	
A dictionary refers to a linked dictionary using its DictionaryFQN and an alias. Oracle Business Rules uses the DictionaryFQN to find a linked dictionary.	
Note the following naming constraints for combined dictionaries:	
For example, within a combined dictionary that includes dictionary d1 and dictionary d2, dictionary d1 may have a ruleset named Ruleset_1	
with a rule rule_1. If dictionary d2 also has a ruleset named Ruleset_1	
with a rule_2, then when Oracle Business Rules generates RL Language from the combined, linked dictionaries, both rules rule_1 and rule_2 are in the single ruleset named Ruleset_1	
. If you violate this naming convention and do not use distinct names for the rules within a ruleset in a combined dictionary, Rules Designer reports a validation warning similar to the following:	
For more information, see Appendix A, "Oracle Business Rules Files and Limitations".	
When you create a dictionary link using the resource picker, the dictionary is copied to the source project (the project where the dictionary that you are linking from resides). Thus, this type of linking creates a local copy of the dictionary in the project. This is not a link to the original target, no matter where the target dictionary is. Thus, Rules Designer uses a copy operation for the link if you create a link with the resource picker.	
When you are using Rules Designer you can browse a deployed composite application and any associated Oracle Business Rules dictionaries in the MDS connection. However, you cannot create a dictionary link to a dictionary deployed to MDS.	
Oracle Business Rules accesses input and output variables by type only, and not by name. Thus, if you have two inputs of the same type, input1 and input2, the rules are not able to distinguish which is input1 and which is input2. The variable names are only useful in the BPEL process definition. The mapping for the Oracle Business Rules business terms default to fact type.property, and there may be no relationship to the BPEL variable name.	
You can use Rules Designer to add Oracle Business Rules globals.	
In Oracle Business Rules a global is similar to a public static variable in Java. You can specify that a global is a constant or is modifiable.	
You can use global definitions to share information among several rules and functions. For example, if a 10% discount is used in several rules you can create and use a global Gold Discount, so that the appropriate discount is applied to all the rules using the global.	
Using global definitions can make programs modular and easier to maintain.	
You can use Rules Designer to add globals.	
To add a global:	
Figure 2-8 Adding a Global in Rules Designer	
You can use Rules Designer to edit globals.	
To edit a Global:	
The Edit Global dialog shows the Constant and Final checkboxes that you can select for a global.	
Note the following when you use globals:	
When you select the Constant option in the Edit Global dialog, this specifies the global is a constant. In Oracle Business Rules a constant is a string or numeric literal, a final global whose value is a constant, or a simple expression involving constants and +	
, -	
, *	
, and /	
.	
Selecting the Constant option for a global has three effects:	
Selecting the Constant option is optional. Note that bucket values, bucket range endpoints, and ruleset filter values are always constant.	
The data model includes decision functions. For information on working with decision functions, see Section 6.1, "Introduction to Decision Functions".	
Oracle Business Rules provides functions to hide complexity when you create rules. Oracle Business Rules lets you use built-in or user-defined functions in rule and Decision Table conditions and actions.	
In Oracle Business Rules you define a function in a manner similar to a Java method, but an Oracle Business Rules function does not belong to a class. You can use Oracle Business Rules functions to extend a Java application object model so that users can perform operations in rules without modifying the original Java application code.	
You can use an Oracle Business Rules function in a condition or in an action associated with a rule or a Decision Table.	
You can also use an Oracle Business Rules function definition to share the same or a similar expression among several rules, and to return results to the application.	
An Oracle Business Rules function includes the following:	
You can also use functions to test rules from within Rules Designer. For more information, see Section 8.1.5, "How to Test a Decision Function Using an Oracle Business Rules Function".	
You use Rules Designer to add an Oracle Business Rules function.	
To add an Oracle Business Rules Function:	
void	
. assert	
, call	
, modify	
to even conditional actions such as if	
, else	
, elseif	
, while	
, for	
, if	
(advanced)	
, and while	
(advanced)	
. For example, see Figure 2-10. Figure 2-10 Adding an Oracle Business Rules Function	
This chapter describes the Oracle Business Rules data model element called Facts, which are the objects that rules reason on. It also covers another element called Bucketsets that define groupings of fact property values.	
The chapter includes the following sections:	
In Rules Designer, you make business objects and their methods known to Oracle Business Rules using fact types that are part of a data model.	
You can create fact types and bucketsets before you create rules.	
In Rules Designer you can work with the following kinds of facts:	
For more information, see Section 3.2, "Working with XML Facts".	
For more information, see Section 3.3, "Working with Java Facts".	
For more information, see Section 3.4, "Working with RL Facts".	
For more information, see Section 3.5, "Working with ADF Business Components Facts".	
You typically use Java fact types and XML fact types to create rules that examine the business objects in a rule-enabled application, or to return results to the application. You use RL Language fact type definitions to create intermediate facts that can trigger other rules in the Rules Engine. ADF Business Components fact types enables you to use ADF Business Components as Facts in rules and in Decision Tables.	
In Oracle Business Rules, facts that you can run against the rules are data objects that have been asserted. Each object instance corresponds to a single fact. If an object is re-asserted (whether it has been changed or not), the Rules Engine is updated to reflect the new state of the object. Re-asserting the object does not create a fact. To have multiple facts of a particular fact type, separate object instances must be asserted.	
You can create bucketsets to define a list of values or a range of values of a specified type. After you create a bucketset, you can associate the bucketset with a business term of matching type. When a bucketset is associated with a business term, Oracle Business Rules uses the buckets that you define as constraints for the values for the business terms in rules or in Decision Tables.	
For more information, see:	
The XML fact type allows XML Schema types, elements, and attributes to be used when writing rules. Elements and types defined in XML Schema can be imported into the data model and can then be used to create rules and Decision Tables, just as with Java fact types and RL Fact types. The mapping between the XML Schema definition and the XML Fact types uses the Java Architecture for XML Binding (JAXB). By default, Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle Application Server. JAXB as defined in JSR-222 provides a mapping between the types, names, and conventions in an XML Schema definition and the available types, allowed names and conventions in Java. For example, an element named order-id	
and of type xsd:integer	
is mapped to a Java Bean property named orderID	
of type BigInteger	
(and xsd:int	
type maps to Java int	
).	
Thus, with Oracle Business Rules if you have an XML document that contains data associated with your application and you have the schema associated with the XML document then you can use Rules Designer to define rules based on elements that you specify from the XML Schema.	
To create XML fact types, perform the following steps:	
Elements and types defined in XML Schema can be imported into the data model so that instances of types can be created, asserted, modified, and retracted by rules. Most XML documents describe hierarchical information, where each element contains subelements. It is common for users to want to write individual rules based on multiple elements in this hierarchy, and the hierarchical relationship among the elements. In Oracle Business Rules the default behavior when you assert	
a fact is to only assert the single fact instance, and none of the child objects it may reference in the hierarchy of subelements. When you create rules or a Decision Table it is often desirable to assert an entire hierarchy of elements based on a reference to a root element. Oracle Business Rules provides the assertTree	
action type that allows for a recursive assert for a hierarchy. For more information, see Section 4.8, "Working with Tree Mode Rules".	
Before you can use XML Schema definitions in a data model you must import XML schema. This step generates the JAXB classes and makes the generated classes and packages associated with the XML schema visible in Rules Designer.	
To import XML schema and add XML facts:	
Figure 3-1 The XML Facts Tab in Rules Designer	
Figure 3-2 XML Fact: Add Source Schema Dialog	
Note: Typically, the XML schema (xsd) file is located inside the xsd folder because any XML schema that is created needs to be stored inside the xsd folder under SOAContent.	
generated	
" if no namespace or annotation is defined. Using the schema namespace is preferred. For example, the namespace http://www.oracle.com/as11/rules/demo	
is mapped to com.oracle.as11.rules.demo	
.	
Figure 3-3 XML Fact: Create XML Fact Dialog	
To work with an XML Fact, in Rules Designer open the Edit XML Fact dialog.	
To display and edit XML facts:	
The Edit XML Fact dialog includes the fields shown in Table 3-1.	
Table 3-1 XML Fact: Edit XML Fact Dialog Fields	
If an XML schema changes in a project, the schema must be reimported into the Oracle Business Rules dictionary. When you reimport the schema, Oracle Business Rules uses JAXB to recompile all source schemas for every XML fact type and updates the XML fact type definitions with the updated XML schema definitions. You should reimport facts if you changed the schema or classes and you want to use the changed schema or classes at runtime.	
Note: When the XML schema on which an XML fact is based changes, on reimporting the schema, the facts are updated and imported into the base dictionary. When working with facts in a linked dictionary, you need to reload the XML facts for the changed schema from the base dictionary instead of the linked dictionary.	
To reimport XML facts:	
After the reimport operation you need to correct any validation warnings that may be caused by incompatible changes (for example, the updated schema may include a change that removed a property that is referenced by a rule).	
Keep the following points in mind when you work with XML Facts:	
assertTree	
action type is available only in advanced mode. For more information on creating rules using assertTree	
, see Section 4.8, "Working with Tree Mode Rules". tree	
option for the input types defines whether assert	
or assertTree	
is used to put the input facts in working memory. For more information on assertTree	
, see Section 4.8, "Working with Tree Mode Rules". restriction	
definition, this allows a user to restrict the types that are valid for use in an element. A common use of restriction is to define an enumeration of strings which can be used for an element, as shown in Example 3-1. Example 3-1 XML Schema Restriction Example	
Oracle JAXB 2.0 maps a restriction to a Java enum type. When you use Rules Designer to import either a Java enum type or an element with an XML restriction, the static final fields representing the enums are available for use in expressions. Additionally, Oracle Business Rules creates a bucketset for each enum containing all of the enum values and null. For more information on bucketsets, see Section 3.6, "Working with Bucketsets".	
For more information about JAXB, see	
minOccurs="0"	
and nillable="true"	
has special handling in JAXB. For more information, see Section C.12, "Why do XML Schema with xsd:string Typed Elements Import as Type JAXBElement?". Integer	
, Long	
, Short	
, Float	
, Double	
, BigDecimal	
, and BigInteger	
. These types can appear in XML Fact Types. In Rules Designer, importing a Java Fact makes the Java classes and their methods become visible to Rules Designer. Rules Designer does not copy the Java code or bytecode into the data model or into the dictionary.	
A Java fact type allows selected properties and methods of a Java class to be imported to the Rules Engine so that rules can access, create, modify, and delete instances of the Java class.	
Importing a Java fact type allows the Rules Engine to access and use public attributes, public methods, and bean properties defined in a Java class (bean properties are preferable because they can be modified using the modify action).	
Before you can use Java Facts in rules and in Decision Tables, you must make the classes and packages that contain the Java Facts available to Rules Designer. To do this you use Rules Designer to specify the classpath that contains the Java classes, and then you import the Java Facts.	
To import and define Java Facts:	
Figure 3-5 The Java Facts Table in the Facts Navigation Tab	
The default Rules Designer classpath includes three packages, java	
, javax	
, and org	
. These packages contain classes that Rules Designer lets you import from the Java runtime library (rt.jar). Rules Designer does not let you remove these classes from the Classes area (and the associated classpaths are not shown in the Classpaths area).	
Figure 3-7 Selecting Java Classes for Java Facts	
To display or edit Java Facts after you import the Java Facts, use the Edit Java Fact dialog.	
To display and edit Java facts:	
The Edit Java Fact dialog includes the fields shown in Table 3-2.	
Table 3-2 Edit Java Fact Dialog Fields	
Field	Description
---	---
Class	Displays the Java Fact class for the source associated with the Java Fact.
Alias	Enter the Java Fact alias.
Super Class	Displays Java super class associated with this fact.
Description	Enter the Java Fact description.
Visible	Select to show the Java Fact in lists in Rules Designer.
Attributes area	Select the available class properties, constructors, methods, or fields associated with the Java class for the Java Fact act to display or edit.
When you define Java Facts you need to know the following:	
\	
) or a slash (/) to specify the classpath in the Classpath area. Rules Designer accepts either path separator. For example, to import a class cool.example.Test1	
located in c:\myprj\cool\example\Test1.class	
, specify the classpath value, c:\myprj	
.	
RL Facts are the only kind of facts that you can create directly and do not have an external source. All other types of Oracle Business Rules facts are imported. An RL Fact is similar to a relational database row or a JavaBean without methods. An RL Fact contains a list of properties of types available in the data model, either RL Fact, Java Fact, or primitive types. You can use an RL Fact to extend a Java application object model by providing virtual dynamic types.	
For example:	
IF customer spent $500 within past 3 months	
THEN customer is a Gold Customer	
This rule might use a Java Fact to specify the customer data and also use an action that creates an RL Fact, Gold Customer. A rule might be defined to use a Gold Customer fact, as follows:	
IF customer is a Gold customer	
THEN offer 10% discount	
This rule uses the RL Fact named Gold Customer. This rule then infers, using the Gold Customer fact, that if a customer spent $500 within the past 3 months, then the customer is eligible for a 10% discount. In addition rules could specify other ways that a customer becomes a Gold Customer.	
For testing and prototyping with Rules Designer you can create RL Facts and use the RL Facts to write and test rules before you import a schema and switch to XML Facts (you might need to wait for an approved XML schema to be created or to be made available). Switching from RL Facts to corresponding XML Facts involves the following steps:	
You add RL Facts from the Facts navigation tab.	
To define RL facts:	
Figure 3-9 RL Facts Tab in Rules Designer	
You add properties to RL Facts using the Edit RL Facts dialog.	
To display and edit RL facts and add RL fact properties:	
When you add properties to RL Facts using the Edit RL Facts dialog, in the Properties area the Initial Value field provides a list of possible values as shown in Figure 3-11.	
Figure 3-11 Setting RL Fact Property Initial Value	
When you are working with some fields in Rules Designer, the initial values list or other lists may be empty as shown in Figure 3-12. In this case the list is an empty box. Thus, when Rules Designer does not find options to assist you in entering values, you must supply a value directly in the text entry area or click the Expression Builder icon to display the expression builder dialog.	
Figure 3-12 RL Fact Empty List Options for Initial Value Field	
ADF Business Components Facts allow you to use ADF Business Components as Facts in rules and in Decision Tables. By using ADF Business Components Facts you can assert view object graphs representing the business objects upon which rules should be based, and let Oracle Business Rules deal with the complexities of managing the relationships between the various related view objects in the view object graph.	
For more information, see Chapter 10, "Working with Oracle Business Rules and ADF Business Components".	
When an ADF Business Components view object is imported, an ADF Business Components fact type is created which has a property corresponding to each attribute of the view object.	
To add ADF Business Components facts:	
Figure 3-13 ADF Business Components Facts Tab	
Figure 3-15 ADF Business Components Facts in Rules Designer	
In the classpath list shown in the Search Classpath area in the Create ADF Business Components Fact dialog one of the listed classpaths allows you to see the view object definitions available in your project. In this dialog you only need to click Add to Classpath when you need to use a classpath that is not available to your project (this case should be very rare).	
ADF Business Components Facts can include a circular reference, as shown in Figure 3-15. When this warning is shown in the Business Rule validation log you need to manually resolve the circular reference. To do this you must deselect the Visible checkbox for one of the properties that is involved in the circular reference.	
Each ADF Business Components fact type contains a property named ViewRowImpl	
that references the oracle.jbo.Row	
instance that the fact instance represents and a property named key_values	
which points to an oracle.rules.sdk2.decisionpoint.KeyChain	
object that may be used to retrieve the set of key-values for this row and its parent rows.	
When working with ADF Business Components Facts you should know the following:	
The ADF Business Components fact type importer correctly determines which relationships are 1-to-1 and which are 1-to-many, and generates definitions in the dictionary accordingly. For 1-to-many relationships the type of the property generated is a List	
, which contains facts of the indicated type at runtime.	
If you need to call such methods then add the view object implementation to the dictionary as a Java fact type instead of as an ADF Business Components fact type. In this case, all getters and setters and other methods become available but the trade-off is that related view objects become inaccessible and, should related view object access be required, these relationships must be explicitly managed.	
Thus, you cannot assert ADF Business Components view object instances directly to a Rule Session, but must instead use the helper methods provided in the MetadataHelper	
and ADFBCFactTypeHelper	
classes. For more information, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.	
You can create a bucketset to define a list of values or a list of value ranges to limit the acceptable set of values for a fact or a property of a fact in Oracle Business Rules. You can define a bucketset as a Global Bucketset that allows reuse, where a bucketset is named and stored in the data model, or as a Local Bucketset that is specified when you define a Decision Table and only applies to one condition expression. For more information on using a local bucketset, see Section 5.2.2, "How to Add Condition Rows to a Decision Table".	
You can use Bucketsets for the following:	
There are three forms for bucketsets:	
A list of values bucketset lets you specify the type and the list of buckets for the bucketset.	
For more information, see Section 3.6.5, "What You Need to Know About List of Values Bucketsets".	
To define a list of values (LOV) global bucketset:	
Figure 3-16 Adding a List of Values Bucketset	
Ensure that the bucketset name is not the same as the as a fact alias, because this would result in a validation errors as the following:	
For example, select String from the list.	
For more information on specifying aliases, see Section 3.6.2, "How to Define a List of Ranges Global Bucketset."	
For more information on the Allowed in Actions field and the Include Disallowed Buckets in Tests field, see Section 3.6.7, "What You Need to Know About Bucketset Allowed in Actions Option".	
Figure 3-17 Create List of Values Bucketset	
You can control rule ordering in a Decision Table by changing the relative position of the buckets in an LOV bucketset associated with a condition expression in a Decision Table.	
To change the order of buckets in a list of values bucketset:	
A list of ranges bucketset lets you specify the type and the endpoints for buckets in the bucketset.	
For more information, see Section 3.6.6, "What You Need to Know About Range Bucketsets".	
To define a list of ranges (range) global bucketset:	
Figure 3-18 Edit Bucketset: List of Ranges	
In this example, select int.	
Figure 3-19 Edit Bucketset: Adding Required Buckets	
In these steps you add three buckets. You start with the default values, as shown in Figure 3-19. After changing the default buckets, the buckets have the following values:	
Rules Designer added the buckets with the default values of 50 and 0 and a negative Infinity (-Infinity) bucket.	
Starting at the first or top bucket, in the Endpoint field, double-click the default value and enter the top value bucket endpoint, and press Enter.	
In this example, enter 1000 for the first bucket.	
In this example, you can leave this checkbox checked to include the bucket endpoint.	
For more information on the Allowed in Actions field and the Include Disallowed Buckets in Tests field, see Section 3.6.7, "What You Need to Know About Bucketset Allowed in Actions Option".	
The alias appears in Decision Tables that use this bucketset. Use an alias to give a more meaningful name to the bucket than the default value (the range-based Range value).	
Please note that most names and aliases in Oracle Business Rules allow only letters, numbers, embedded single spaces, and the characters $, _, ', ., -, /, and :. However, bucket aliases allow additional characters, such as [0..1]. If a bucket alias contains such additional characters, then you cannot refer to the bucket by the alias in the action cells in a Decision Table. In these cases, you can use the bucket name, which is also known as the bucket value.	
The Range field is read-only: it clearly identifies the actual range associated with the bucket regardless of the Alias value. For more information, see Section 3.6.6, "What You Need to Know About Range Bucketsets").	
Figure 3-20 shows the completed bucketset.	
Figure 3-20 Edit Bucketset: Completed Range Buckets	
When you import an XML schema, if the XSD contains enumeration values Rules Designer automatically creates an enumerated type bucketset for each enumeration. Although enumerated type bucketsets are read-only, you can change the order of buckets.	
For more information, see Section 3.2.4, "What You Need to Know About XML Facts".	
To define an enumerated type (enum) bucketset from XML types:	
Example 3-2 shows the order.xsd	
schema file which contains the enumeration Status	
.	
Example 3-2 Order.xsd Schema	
Status	
enumeration values shown in Example 3-2 are imported as buckets with the XSD-specified values. Figure 3-21 Bucketset Showing the Form Enum with Imported Values	
You can control rule ordering in a Decision Table by changing the relative position of the buckets in an enum bucketset associated with a condition expression in a Decision Table.	
To change the order of buckets in an enum bucketset:	
When you import a Java enum, Rules Designer automatically creates an enumerated type bucketset for each Java enum. Although enumerated type bucketsets are read-only, you can change the order of buckets.	
To define an enumerated type (enum) bucketset from Java facts:	
Example 3-3 shows the RejectPurchaseItem.java	
class which contains enumeration OrderSize	
.	
Figure 3-22 shows a how to create a Java fact for the Java enumeration Class1$OrderSize	
.	
Class1$OrderSize	
enumeration from the enumeration in Example 3-3 is now a bucketset with the Java enum	
-specified values. Figure 3-23 Edit Bucketset Dialog for Java Enum	
You can control rule ordering in a Decision Table by changing the relative position of the buckets in an enum bucketset associated with a condition expression in a Decision Table.	
To change the order of buckets in an enumerated type (enum) bucketset:	
In a Decision Table the order of the buckets in a bucketset associated with a condition expression determines the order of the condition cells, and thus the order of the rules. You can control rule ordering in a Decision Table by changing the relative position of the buckets in a list of values bucketset associated with a condition expression; however, you cannot reorder range buckets.	
Figure 3-24 shows a bucketset definition in Rules Designer for a bucketset named colors using a list of values.	
Figure 3-24 Bucketset Definition Using List of Values	
As shown in Figure 3-24, by default with a List of Values bucketset there is a value otherwise	
included with the list of values (LOV). This value, otherwise	
, is distinct from all other values and matches all values of the type that have no other bucket. Thus, with otherwise	
in the list of values a condition expression that uses the bucketset can handle every value and provides a match for every value of the specified type, where a match is either a defined value or the otherwise	
bucket. The otherwise	
value cannot be removed from an LOV bucketset but it can be excluded by clearing the Allowed in Actions checkbox (when otherwise	
is excluded an attempt to assign any value that is not in the list of buckets in the bucketset causes a validation warning).	
Table 3-3 shows the bucketset values that Rules Designer supports for LOV bucketsets.	
Table 3-3 Supported Types for LOV Bucketsets	
Type	Description
---	---
Java primitive types	This includes
Contains	
Contains	
Note: You are not required to specify an LOV bucketset when you use a boolean type in a Decision Table. For boolean types, Oracle Business Rules provides built-in buckets for the possible values (
When you add a bucket to a List of Ranges bucketset, the value is calculated based on the currently selected bucket value and the next highest bucket value. When you change the endpoint value the value is automatically sorted in the bucketset; thus, it does not matter where a bucket is added. However, it is possible for Rules Designer to not have spaces between the current bucketset endpoint value and the endpoint value. In this case, Rules Designer shows a validation warning of the following form:	
To correct this problem you must modify bucket endpoints to remove the duplicate bucket.	
Figure 3-25 shows the Edit Bucketset window for a bucketset with an integer, int	
, range.	
Figure 3-25 Bucketset Definition Using List of Ranges and Three Endpoints	
Table 3-4 shows the types Rules Designer supports for Range buckets.	
Table 3-4 Supported Types for Range Buckets	
Type	Description
---	---
Selected primitive types	This includes:
Contains Calendar types in the current locale	
Note the following conventions for the Range field:
>=25"
means "from 25 to positive infinity" and "<18"
means from negative infinity up to but not including 18. [
": specifies a range that includes this end point value. For example, "[18..25)"
means "from 18 up to but not including 25". "(18..25]"
means "over 18, not including 18, up to and including 25". When you define buckets in a bucketset you might define some buckets corresponding to non-permissible values. For example, in a bucketset for driver ages you would typically not allow a bucket that contains values less than 0. Thus, when a fact with driver data includes an age property associated with a driver ages bucketset, then you should not be able to create or modify a fact that has the age property set to a value such as -1. In a bucketset you select Allowed in Actions for valid buckets and deselect this option for invalid buckets.
The bucketset option Include Disallowed Buckets in Tests allows you to include all the buckets, whether Allowed in Actions is selected or not, in Decision Table conditions and in rule tests. By including all buckets you can explicitly test for illegal values. Using the option Include Disallowed Buckets in Tests you can handle two possible cases:
age < 0
an Allowed in Actions is this provides design time validation warnings if you try to create an action that uses an invalid value, such as the following: modify(driver, age: -1))
. For more information, see Section 4.11, "Using Bucketsets as Constraints for Options Values in Rules". When you enter a bucket value in a bucketset, the value you supply must be valid for the type specified for the bucketset. If the value you enter is not valid for the bucketset type, Rules Designer makes the value you supply a string by adding quotation marks. Adding quotation marks is the only way to make a legal literal when the user provided data is not appropriate for the specified type. For example, if you add an int type LOV bucketset, and then supply a value 2.2 to a bucket, Rules Designer shows a warning such as the following:
To fix this problem either enter a valid value for the bucket value, for example in this case the value 2, or change the type of the bucketset.
For an additional example, when you enter a value for a bucket, for example if you enter a bucket value with bucketset with data type short and add a bucket with the value 999999, Rules Designer assigns this the value "999999". The maximum value for a short is 32767. In this case you see a warning related to the bucket value, similar to the previous example, because a String is not a valid bucket value for a bucketset with data type short. The solution to this is to enter appropriate values for all buckets (in this example, enter a value less than or equal to 32767).
After you define a global bucketset you can associate parts of the data model with the global bucketset (if their types are compatible). In this way, condition cells in the Conditions area can automatically be assigned a bucketset when you define a Decision Table. Also, when a bucketset is associated with a business term, Oracle Business Rules uses the buckets that you define as constraints for the values for expressions for the business terms in rules.
You can associate the following four kinds of business term with a bucketset:
To prepare for creating Decision Tables, you can associate a global bucketset with fact properties in the data model.
To associate a bucketset with a fact property:
Figure 3-26 Defining a Bucketset for a Property
To prepare for creating Decision Tables you can associate a global bucketset with functions in the data model.
To associate a bucketset with a function return value:
Figure 3-27 Defining a Bucketset for a Function Return Value
To associate a bucketset with a function argument:
To prepare for creating Decision Tables, you can associate a global bucketset with global values in the data model.
To associate a bucketset with a global value:
Figure 3-28 Defining a Bucketset for a Global Value
This chapter describes the Oracle Business Rules data model element called ruleset that you use to group one or more rules and Decision Tables. It also discusses how to work with dictionaries, nested tests, and advanced and tree mode rules, and Expression Builder.
The chapter includes the following sections:
For more information, see Section 1.1.5, "What Are Rulesets?".
You can use business rules to define key decisions and policies for a business, including:
Oracle Business Rules provides two ways to work with rules:
This chapter describes working with IF/THEN rules. For information on Decision Tables, see Chapter 5, "Working with Decision Tables".
A ruleset provides a unit of execution for rules and for Decision Tables. In addition, rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets can be executed in order. This is called rule flow. The ruleset stack determines the order. The order can be manipulated by rule actions that push and pop rulesets on the stack. In rulesets, the priority of rules applies to specify the order of firing of the rules in the ruleset. Rulesets also provide an effective date specification that identifies that the ruleset is always active, or that the ruleset is restricted based on a time and date range, or a starting or ending time and date.
All rules and Decision Tables are created in a ruleset. A ruleset organizes rules and Decision Tables into a unit of execution.
To create a ruleset:
Effective date support provides the ability to specify a start date and an end date for a ruleset, a rule or a Decision Table. For a ruleset the effective date defines the date range in which the rules and Decision Tables within the ruleset are effective. For more information on effective dates, see Section 4.9, "Using Date Facts, Date Functions, and Specifying Effective Dates".
To set the effective date for a ruleset:
Figure 4-2 Ruleset Showing Effective Date Field
Figure 4-3 Using the Set Effective Date Dialog
As the number of rules in a ruleset increases, it can be difficult to navigate the list of rules. You can instruct Rules Designer to filter the list of rules, to display only rules of interest. For example, you can display only active rules or only rules that have validation warnings.
For more information on creating rules, see Section 4.3, "Working with Rules".
To use a filter to display matching rules in a ruleset:
Figure 4-4 Showing a Filter Query in a Ruleset
Figure 4-5 Inserting a Default Filter Query Test
In this case, as shown in Figure 4-6, when you click an <operand> you can choose from the rule-specific options shown in Table 4-1.
Table 4-1 Rule Filter Query Operands
Operand | Description |
---|---|
| Matches against the rule name. |
| Matches against the rule description. |
| Matches against the rule priority. For more information, see Section 4.5.5, "How to Set a Priority for a Rule". |
| Matches against the rule start date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule". |
| Matches against the rule end date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule". |
| Matches against a specified number of minutes until the rule start date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule". |
| Matches against a specified number of minutes until the rule end date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule". |
| Matches against a specified number of days until the rule start date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule" |
| Matches against a specified number of days until the rule end date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule" |
| Matches against a specified number of years until the rule start date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule" |
| Matches against a specified number of years until the rule end date. For more information, see Section 4.9.2, "How to Set the Effective Date for a Rule" |
| Matches against whether the rule is active. For more information, see Section 4.5.3, "How to Select the Active Option". |
| Matches against whether the rule has validation warnings. For more information, see Section 4.4.2, "Understanding Rule Validation". |
| Matches against one or more fact types. |
For more information, see Section 4.3.2, "How to Define a Test in a Rule".
Customer
. Rules Designer displays only the rules that match the filter query as Figure 4-7 shows.
Figure 4-7 Enable Filter Query in a Ruleset with Filter On Option
Rules Designer displays all the rules in the ruleset.
You create business rules to process facts and to obtain intermediate conclusions that Oracle Business Rules can process. You create rules in a ruleset, so before working with rules you need to create a ruleset (or use the default ruleset). For more information on creating a ruleset, see Section 4.2, "Working with Rulesets".
You can easily test your rules as you are designing them without having to deploy your application. For more information, see Section 8.1.5, "How to Test a Decision Function Using an Oracle Business Rules Function".
Rules Designer rule validation can assist you when you work with rules. To show the validation log window, click the Validate icon or select View>Log and select the Business Rule Validation tab. This displays warnings for incorrect or incomplete rules. Note that you must correct all warnings before you can test or deploy rules. For more information on rule validation, see Section 4.4.2, "Understanding Rule Validation".
As the number of rules in a ruleset increases, you can configure Rules Designer to filter the list of rules to show only rules of interest. For more information, see Section 4.2.3, "How to Use a Filter to Display Matching Rules in a Ruleset".
To create a rule you first add the rule to a ruleset, and then you insert tests and actions. The actions are associated with pattern matches. At runtime when a test in the IF area of a rule matches, the Rules Engine activates the THEN action and prepares to run the actions associated with the rule.
Rules Designer lets you create a rule where by default the rule fires for each matching fact. To enable other options, where the same fact type matches more than once, or never, you select Advanced Mode. For more information on advanced mode and showing advanced settings, see Section 4.5, "Using Advanced Settings with Rules and Decision Tables".
To add rules in a ruleset:
Rule_1
, as shown in Figure 4-8. To create a test in a rule you add conditions for facts. For example, with a sample CustomerOrder
fact with an annual spending property, you can add a test to determine if a customer order is associated with a high value of spending, based on the annual spending for the customer. Note that you can use bucketsets to limit the values for tests and actions in rules. For more information, see Section 4.11, "Using Bucketsets as Constraints for Options Values in Rules".
Figure 4-9 shows this sample rule.
At runtime, when this rule is processed the Rules Engine checks the facts against rule pattern tests that you define to find matching facts. For this sample rule, Rule_1
, when a fact matches the Rules Engine modifies the fact and then modifies the value property to "High".
To define tests in rules:
<operand>
and a right-hand-side <operand>
, as shown in Figure 4-10. Figure 4-10 Rule Test with Left-hand-side operand and Right-hand-side operand
To do this, select the left-hand-side <operand>. This displays a text entry area and a list, as shown in Figure 4-11:
Figure 4-11 Configuring the Left-hand-side Operand of a Test in a Rule
You can view the options using a single list, by selecting List View, or using a navigator by selecting Tree View.
The value you enter must agree with the type of the corresponding operand. For example, in the test IF CustomerOrder.annualSpending
> <operand>, valid values for <operand> must agree with the type of CustomerOrder
field annualSpending
.
==
). To do this, select the default == operator. This displays a field and a list. The list may contain additional operators, depending on the datatype of the left operand. For example, to test strings, if you select a String operand on the left hand side, then additional String operators, such as startsWith and equalsIgnoreCase are available as shown in Figure 4-12. Figure 4-12 Configuring String Operators in a Rule
Similarly, to test a logical condition between the left-hand and right-hand operands, select one of the logical operators as shown in Figure 4-13: ==
(equality), !=
(not equal), >
(greater than), >=
(greater than or equal to), <
(less than), <=
(less than or equal to). For more information on the operators, see Appendix B, "Oracle Business Rules Built-in Classes and Functions.".
Figure 4-13 Configuring the Operator of a Test in a Rule
Configure the <operand> placeholder as you would for any operand.
For example, enter 2000
into the text entry area and press Enter or Return, as shown in Figure 4-14.
Figure 4-14 Configuring the Right-hand-side Operand of a Test in a Rule
Oracle Business Rules test variables provide a way to shorten lengthy expressions that occur in rule and decision table conditions and actions. The variable and its value can be represented as an inline business term definition. The test variables are also called as inline aliases.
The option to insert test variables appears as a list next to <insert test> in the rules condition section. As part of the definition of rule condition, you can define a variable to represent a complex expression, a mathematical expression, or callouts to functions.
For example you have an XML fact called Song
that has an attribute as composer
having a function called size
. When referring to the attribute, instead of using Song.composer.size()
every time, you can just define a variable as the following:
Subsequently, in tests, you can use lo
as part of your expressions. The expression can be anything from a simple to a complex expression. For example, in the body of a function, if you click <insert action>, you can see expression as a part of the available options.
Figure 4-15 displays a test variable.
Once you define an inline alias, for subsequent test conditions, the inline alias is available in the list of the operands. The scope of an inline alias is restricted to the subsequent tests in a particular rule, in which the inline alias is defined. In case of a nested test, you can still use the inline alias, because the nested test is a part of the base test where you have defined the alias. This is true even for any test that you define even within the nested test. The scope of the inline alias is not just restricted to the test conditions of the base and its nested test, but also to the actions of that rule. If the inline alias is defined as a part of a nested test condition and not as a part of the main test condition, even then the alias will be available to all the subsequent test conditions and actions within or outside the main nested test.
However, if you define an inline alias inside a not nested test, then the scope of the inline alias is restricted only to the subsequent tests inside the not nested test and not to any tests that are outside the not nested test.
The inline aliases can be used both in If-Then rules as well as Decision Tables. In a Decision Table, in advanced mode, you can show or hide patterns as well as enter a pattern by clicking <insert pattern>. After you insert a pattern, you can insert tests. In normal mode, you can show or hide tests as well as enter a test by clicking <insert test>.
To create a range test in a rule, you add conditions for facts. For example, with a sample CustomerOrder
fact with an annual spending property, you can add a test to determine if the value of a customer order falls between an upper and lower range.
The following summarizes this sample rule:
At runtime, when this rule is processed the Rules Engine checks the facts against rule pattern tests that you define to find matching facts.
To define range tests in rules:
Figure 4-16 Rule Test with Left-hand-side operand and Right-hand-side operand
To do this, select the left-hand-side <operand>. This displays a text entry area and a list, as shown in Figure 4-17:
Figure 4-17 Adding a Test Left-hand-side Operand to a Rule
You can view the options using a single list, by selecting List View, or using a navigator by selecting Tree View.
For example, in the test IF CustomerOrder.annualSpending >
<operand>, valid values for <operand> must agree with the type of CustomerOrder
field annualSpending
.
between
operator. To do this, select the default == operator. This displays a text entry area and a list. Select between as shown in Figure 4-18. Figure 4-18 Configuring the Operator of a Range Test in a Rule
This adds two more <operand> placeholders as shown in Figure 4-19.
Figure 4-19 Between Operator in a Range Test
Figure 4-20 Configuring the Operand of a Range Test in a Rule
The test is true when the left-most operand (CustomerOrder.annualSpending
) is between the values 100
and 2000
.
To create a set test in a rule, you add conditions for facts. For example, with a sample CustomerOrder
fact with a line item property you can add a test to determine if the line item belongs to an arbitrary set of products.
The following summarizes this sample rule:
At runtime, when this rule is processed the Rules Engine checks the facts against rule pattern tests that you define to find matching facts.
To define set tests in rules:
Figure 4-21 Rule Test with Left-hand-side operand and Right-hand-side operand
To do this, select the left-hand-side <operand>. This displays a text entry area and a list as shown in Figure 4-22:
Figure 4-22 Adding a Test Left-hand-side Operand to a Rule
You can view the options using a single list, by selecting List View, or using a navigator by selecting Tree View.
in
operator. To do this, select the default == operator. This displays a text entry area and a list. Select in as shown in Figure 4-23. Figure 4-23 Configuring the Operator of a Set Test in a Rule
This adds two more <operand>
placeholders in a comma separated list and an <insert>
placeholder as shown in Figure 4-24.
To add another operand to the list, click <insert>.
To delete an operand from the list, right-click the operand and select Delete Test Expression.
<operand>
placeholders as you would for any operand as shown in Figure 4-25. Figure 4-25 Configuring the Operands of a Set Test in a Rule
The test is true when the value of the left-most operand (CustomerOrder.lineItem.sku
) is any of 12345, 43255, or 76348.
To create a rule you insert tests and you insert actions. The actions are associated with pattern matches. When a test in the IF area of a rule matches, the Rules Engine activates the THEN action and prepares to run the actions associated with the rule.
When you add an action, you use one of the forms of actions shown in Table 4-2. For each form shown in Table 4-2 the options that Rules Designer presents are context sensitive, so the lists and the number of items you work with may be different, depending on which action you add and the choices you make while you enter the action. Table 4-2 shows the basic actions; additional actions are available with Advanced Mode. For more information on advanced mode see Section 4.5, "Using Advanced Settings with Rules and Decision Tables".
Table 4-2 Rule Action Choices
Action Form | Description |
---|---|
| Assert a new fact |
| Modify a data value associated with a matched fact |
| Retract a fact |
| Call a function |
| Conditional actions |
To define actions in rules:
Figure 4-26 Adding a Modify Action to a Rule
assert
, call
, modify
to even conditional actions such as if
, else
, elseif
, while
, for
, if
(advanced)
, and while
(advanced)
as shown in customerOrder
as shown in Figure 4-27. Figure 4-27 Adding Modify Action to a Rule and Selecting the Target
"High
" (include the double quotation marks) and press Enter or Return as shown in Figure 4-28. Figure 4-28 Adding Modify Action Property and Value to a Rule
Figure 4-29 Rule with Test and Action Added
A rule loop occurs when the value for a condition is changed by an action. Loops can occur across rules in a single rule, spread over several Decision Tables, or spread over rules and Decision Tables in the same ruleset. You need to avoid creating rule actions that modify fact properties that are used in rule conditions. At runtime, such rules could cause an infinite loop.
In most cases, writing of rules should not require a focus on performance. However, there are tips that can that help you to enhance and maximize rule performance.
For more information on Oracle Business Rules performance tuning, see "Oracle Business Rules Performance Tuning" in Oracle Fusion Middleware Performance and Tuning Guide.
Rules Designer performs dictionary validation when you make any change to the dictionary. Rules Designer validation can assist you when you work with rules or Decision Tables. To show the validation log window, click the Validate icon or select View>Log and select the Business Rule Validation tab. This displays warnings for incorrect or incomplete rules. Note that you must correct all warnings before you can test or deploy rules.
When a dictionary is invalid, Rules Designer produces a list of warning messages and lists the associated dictionary objects. You can use the validation message information to locate the dictionary object and to correct problems. In addition, Rules Designer flags objects with validation warnings with a validation indicator (a red, wavy underline), as shown in Figure 4-30.
Figure 4-30 Validation Warnings Shown in Log and On Screen with Wavy Underline
If a dictionary is invalid, you can save the dictionary. However, you can only generate RL Language for a dictionary that is valid and does not display warnings in the Rules Designer validation log.
In the validation log, each validation message includes the following:
When you are viewing the validation log, if you select an item and then right-click and select from the list Select and Highlight Object in Editor, Rules Designer moves the cursor to select the dictionary object. Note that for some validation warnings this functionality is not possible.
Rules Designer performs dictionary validation when you make any change to the dictionary. When Rules Designer displays a warning message, the validation log includes a message that should assist you in locating the dictionary object that caused the validation warning. For example, the following string indicates that the warning originates from the data model object named RLFact_1
. In addition, the problem is in the property named test_int
:
Table 4-3 specifies the parts of the dictionary object name specified in a validation message.
Table 4-3 Data Model Dictionary Property in Validation Log
Name | Description |
---|---|
| Dictionary Name |
| Data Model component in dictionary. |
| Element name in data model |
| Property name in the specified element. |
| Expression part of property. |
For more information, see:
When you click the Validate icon Rules Designer displays the validation log. When you first add a rule you see validation warnings similar to those shown in Figure 4-31.
The dictionary object name part of a validation message for a rule includes details that help you to identify the ruleset, the rule, and an area in the rule that is associated with the validation warning. For example, the following dictionary object specification indicates a problem:
In validation messages, the dictionary object name for a rule uses indexes that start at 1. Thus, the first pattern is Pattern[1]
.
In addition to validating rules, you can also test them in Rules Designer as you are designing them. For more information, see Section 8.1.5, "How to Test a Decision Function Using an Oracle Business Rules Function".
When you click the Validate icon Rules Designer displays the validation log. When you first add a Decision Table you see validation warnings similar to those shown in Figure 4-32.
Figure 4-32 Decision Table Validation Messages
The dictionary object name part of a validation message for a Decision Table includes details that help you to identify the area of the Decision Table that is associated with the validation warning. For example, the following dictionary object specification indicates a problem in the first action row, and the first action cell of the Decision Table:
In validation messages the dictionary object name for a Decision Table object uses indexes that start at 1. For example, to indicate the first condition cell in the first row in the Conditions area, the message is as follows:
This specification indicates the condition cell for the rule with the label R1 in the first row of the Conditions area in a Decision Table as shown in Figure 4-33.
Figure 4-33 Decision Table with Warning on a Condition Cell
Rules Designer performs dictionary validation when you make any change to the dictionary.
To validate a dictionary:
Advanced settings for rules and Decision Tables let you work with features that provide advanced options that not all Oracle Business Rules users need. These features include:
For more information, see:
For more information, see Section 4.8.2, "How to Create Simple Tree Mode Rules".
For more information, see Section 4.5.3, "How to Select the Active Option".
For more information, see Section 4.5.4, "How to Select the Logical Option".
For more information, see Section 5.3.1.3, "Understanding Decision Table Gap Checking" and Section 5.3.5, "How to Perform Decision Table Gap Checking".
For more information, see Section 4.5.5, "How to Set a Priority for a Rule".
For more information, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis".
For more information, see, Section 4.5.6, "How to Specify Effective Dates".
In Rules Designer, next to each rule name and Decision Table name, the show or hide advanced settings icon lets you show and hide advanced settings.
To show and hide advanced settings in a rule or decision table:
Figure 4-34 Showing Rules Advanced Settings
Figure 4-35 Hiding Advanced Settings in a Rule
Select Advanced Mode to use Rule or Decision Table features that provide additional pattern matching options and additional actions. For more information, see Section 4.7, "Working with Advanced Mode Rules".
To select the advanced mode option:
Oracle Business Rules includes the ability to specify that a rule or a Decision Table is active or inactive. The active option is set independent of the effective dates and may be set without changing or removing previously specified effective dates. When Rule Active is unselected, Rules Designer does not validate the rule.
To select the active option:
A ruleset or Decision Table with the Logical option selected specifies that rules in the generated RL Language use the logical property. The logical property allows you to enable or disable logical dependence between the facts that trigger a rule and the facts asserted by a rule.
A rule with the logical property enabled makes all facts that are asserted by an action block in the rule dependent on facts matched in the rule condition. Anytime a fact referenced in the rule condition changes, such that the rule's conditions no longer apply, the facts asserted by the rule condition are automatically retracted. For more information on the logical property, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.
Using the ruleset and Decision Table Logical option you can enable or disable the logical property for the generated RL Language associated with the rules in the ruleset or the Decision Table. By default, the Logical option is not selected.
To select the logical option:
You can set the priority for a rule or a Decision Table. You can select from a predefined named priority list as shown in Table 4-4, or enter a positive or negative integer to specify your own priority level. Higher priority rules run before lower priority rules, within a ruleset. The default priority is medium
(with the integer value 0).
Table 4-4 Priority String Value Mapping
Named Priority | Integer Value |
---|---|
highest | 3000 |
higher | 2000 |
high | 1000 |
medium (Default Priority) | 0 |
low | -1000 |
lower | -2000 |
lowest | -3000 |
To set a priority for a rule:
Figure 4-37 Choosing a Predefined Named Priority
Figure 4-38 Choosing a User Defined Numeric Priority
You can specify effective dates for a ruleset, a rule, or a Decision Table.
To specify effective dates:
For more information on using effective dates, see Section 4.9, "Using Date Facts, Date Functions, and Specifying Effective Dates" and Section 4.2.2, "How to Set the Effective Date for a Ruleset".
In a rule or a Decision Table you can create more complicated tests using the nested tests feature.
To use nested tests:
Figure 4-39 Adding a Nested Test to a Rule
Figure 4-40 A Nested Test Added to a Rule
Oracle Business Rules provides features that allow you to create advanced rules that add support for the following Oracle Business Rules features:
For more information, see Section 4.7.5, "What You Need to Know About Advanced Mode Rules".
The advanced mode pattern matching options specify when a rule should fire. Table 4-5 shows the available options.
Table 4-5 Advanced Mode Pattern Matching Options
Option | Description |
---|---|
This is the default pattern matching option. A rule should fire each time there is a match (for all matching cases). | |
This option selects one firing of the rule if there is at least one match. | |
The value specifies that the rule fires once if there are no such matches. | |
This specifies an aggregate function is applied to all matches. For more information, see Section 4.7.4, "How to Use Advanced Mode Aggregate Conditions". |
To use advanced mode pattern matching options:
The Surround With dialog appears as shown in Figure 4-42.
The pattern is surrounded by a nested pattern with the default (for each case where) as shown in Figure 4-43.
Figure 4-43 Default Pattern Matching Option: for each case where
Figure 4-44 Adding an Advanced Pattern Match Option
The matched fact name field, pattern binding variable, in a rule or a Decision Table lets you test multiple instances of the same type in a single rule. The matched fact name lets you enter a temporary name for the matched fact to use in a test. For example, the rules shown in Figure 4-45 show the use of pattern binding variables in a rule that applies a discount on a shoe item when an order includes at least one "matching" hat item.
Figure 4-45 Rule Using a Pattern Binding Variable
For example, you can create the rule, as shown in Figure 4-46 to find duplicate items in a customer order. This example shows the use of matched in a rule.
Figure 4-46 Rule to Find Duplicate Items in an Order
To use advanced mode matched fact naming:
Order$LineItem1
and then press Enter. Figure 4-47 Adding a Matched Fact Variable Name
Figure 4-48 Choosing a Matched Fact Variable Name as an Operand
Note in Figure 4-48 that the test checking:
RL.get fact ID(Order$LineItem1)
> RL.get fact ID(Order$LineItem2)
Prevents a single instance of an Order$LineItem
from matching both patterns that match the Order$LineItem
fact type. The ">
" is required so that the rule does not fire for different permutations of different instances. For more information, see Appendix C, "How Do I Correctly Express a Self-Join?".
When you create a rule with Advanced Mode, Rules Designer presents a list with the available actions shown in Table 4-6. For each form shown in Table 4-6, the options that Rules Designer presents are context sensitive. Thus, the lists and the number of items you see when you work with the action types are context sensitive, depending on which action you add and the choices you make while you enter the action.
Table 4-6 Advanced Mode Action Options
Action Form | Description |
---|---|
| Assert a fact |
| Asserts a tree of facts given the root. |
| Assert a new fact. |
| Assign a value to a variable. |
| Assign a value to a new variable. |
| Perform expression. |
| Call a function. |
| Oracle RL, like Java, has a for loop. A for loop includes a type with a variable and a collection. The type and variable defines the loop variable that holds the collection value used within the loop. Collection is an expression that evaluates to a collection of the correct type for the loop variable. You can use a for loop to iterate through any collection. A return, throw, or halt may exit the action block. |
| Using the if else action, if the test is true, execute the first action block, and if the test is false, execute the optional else part, which may be another if action or an action block. Oracle RL, unlike Java, requires action blocks and does not allow a single semicolon terminated action. |
| Modify a data value associated with a matched fact. |
| Retract a fact. |
| The return action returns from the action block of a function or a rule. A return action in a rule pops the ruleset stack, so that execution continues with the activations on the agenda that are from the ruleset that is currently at the top of the ruleset stack. |
| Use an Oracle RL expression that you supply. |
| As in Java, the synchronized action is useful for synchronizing the actions of multiple threads. The synchronized action block lets you acquire the specified object's lock, then execute the action-block, then release the lock. |
| Throw an exception, which must be a Java object that implements java.lang.Throwable. A thrown exception may be caught by a catch in a try action block. |
| The try, catch, and finally in Oracle RL is like Java both in syntax and in semantics. There must be at least one catch or finally clause. |
| While the test is true, execute the action block. A return, throw, or halt may exit the action block. |
To use advanced mode action forms:
Figure 4-49 Adding an Action to a Rule in Advanced Mode
For example, select assign new.
When you create a rule with Advanced Mode, Rules Designer supports the pattern matching aggregate option. When you write rule conditions that are based not only on one fact, but on many facts, you can use an aggregate. You use aggregate functions when the conditions have a view spanning multiple facts.
Table 4-7 shows the available aggregate functions.
Table 4-7 Aggregate Functions for Advanced Mode Rules
Function | Description |
---|---|
| Count of matching facts. |
| Average of matching facts. |
| Maximum value of matching facts. |
| Minimum value of matching facts. |
| Sum of matching facts. |
| Builds a list of matching facts. |
For example, to write a rule that specifies a special order as follows:
The five line items may span multiple facts. Thus, you can use the count
aggregate function to write this sample special order rule.
When you use an aggregate function, do the following:
aggregate
for the pattern. <variable>
A name for the aggregate value. <expression>
The value to aggregate, for example driver.age
. When the aggregate function you select is the count
function the <expression>
is not used. For example, you can compute the sum of the cost all the line items with color "red", as shown in Figure 4-50.
Figure 4-50 Using Aggregate Functions with Rules Red Color Total Cost Rule
To use advanced mode aggregates:
Figure 4-51 Adding an Advanced Pattern Match Option
Figure 4-52 Using Aggregate Functions in a Rule
total_cost
and item_x
. Figure 4-53 Completed Aggregate Function in a Rule
Figure 4-54 Using Aggregate Functions with Rules Red Color Total Cost Rule
There are some special cases to keep in mind when you work with Advanced Mode rules, including the following:
To deselect the advanced mode option:
Tree Mode rules make it easier to work with a master detail hierarchy, where there are nested elements that map to a parent child relationship.
To introduce tree mode rules, it is instructive to work with an example. Consider the lifecycle of an application fragment that uses business processes and rules to process a retail purchase order (PO). The purchase order has a header with business terms that apply to the entire PO. The PO also contains a list of shipping destinations. Each destination has an address, a list of items to be shipped to the destination's address, and a list of shipments.
Consider the business rule: the status of a PO is "fully shipped" if the status of every item is either "shipped" or "canceled".
Figure 4-55 shows a sample XML schema representation for the PO example. The XML documents for the PO are tree structured. This allows a natural representation for the PO. For example, the PO itself is the top level document element and destinations are nested elements that contain item elements and shipment elements. Shipment elements also contain item elements that reference the ordered items. Status has a list of valid values.
Figure 4-55 PO Schema for Tree Mode Rules Sample
Example 4-1 shows the sample purchase order XML schema as represented in Figure 4-55.
Example 4-1 Sample Purchase Order (PO) Schema
Example 4-2 shows part of the XML for an instance of the PO schema. To use tree mode rules you can create a rule that tests one or more business terms and if the tests pass, one or more business terms are added or changed. Oracle Business Rules has special support to enable error-free authoring of rules on fact trees like the sample PO instance.
For example, consider creating a rule for an instance of the PO schema that states:
Example 4-2 Sample Abbreviated PO XML Instance
You use non-advanced tree mode, or simple tree mode, when the Advanced Mode option is not selected and Tree Mode is selected. With this mode Rules Designer shows ROOT: <fact type> where you enter the root fact type, as shown in Figure 4-56.
Figure 4-56 Simple Tree Mode Rule with Tree Mode Selected
When you create rules with Tree Mode selected and Advanced Mode unselected you can reference properties in the tree using qualified names, for example:
PO/destination/item.quantity
that is similar to item.quantity
but only items that are a destination
of PO are matched. PO$Destination$item.quantity
that refers to a List<item>
. This reference is unchanged from non-tree mode. With Simple Tree Mode you can only choose terms that do not require many-to-many joins or aggregation.
For more information, see Section 4.8.2, "How to Create Simple Tree Mode Rules".
You use advanced tree mode when the Advanced Mode option is selected and the Tree Mode option is selected. With this mode Rules Designer shows ROOT: <fact type> where you enter the root fact type, as shown in Figure 4-57. Rules Designer shows patterns for the tree structured facts but the simple tests that join the parent and child facts are hidden.
In advanced tree mode the tree mode patterns, except for the root, display as:
<operator> <variable> is a <fact path>
Where the <fact path>
is an XPath-like path through the 1-to-1 and 1-to-many relationships starting at the root. For example, each fact path has a name like PO/destination
, where PO
is the root fact type and the destination is a property of type List
. A 1-to-many relationship in a fact path is indicated with a "/
", as in PO/destination
.
A 1-to-1 relationship in a fact path is indicated with ".
" This unchanged from non-tree mode. For example, item.availabilityDate
.
Advanced mode exposes the concept of a pattern, the simplest of which is is a. For example, p is a PO
causes p
to match, iterate over, all the PO
facts, and d is a p/destination
causes d
to match all the destinations of p
. The left side of is a is a variable, and the right side is a fact type or a fact path. By default, Oracle Business Rules sets the variable name equal to the fact type or path. For example, PO is a PO. A pattern can also be a pattern block. A pattern block has a logical quantifier, negation, or aggregation that applies to the patterns and tests nested inside the block.
For more information, see Section 4.8.3, "How to Create Advanced Tree Mode Rules".
When you work with advanced tree mode rules, Rules Designer expects you to use an aggregation pattern, including exists and not exists to combine terms from different child forests into the same rule while avoiding a Cartesian product.
Given the XML schema shown in Example 4-1 and the schema instance shown in Example 4-2, the following procedure creates the PO rule to cancel non 30-day availability items.
To create simple tree mode rules:
For more information, see Section 4.3.1, "How to Add Rules".
For more information, see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table".
Figure 4-58 Simple Tree Mode Advanced Settings
Figure 4-59 Simple Tree Mode: Configuring the Root
The IF statement now reads IF <operand> == <operand>
.
PO/destination/item.availabilityDate
. Figure 4-60 Adding Simple Tree Mode Expression
Figure 4-61 Using Expression Builder to Add a Simple Tree Mode Rule
Figure 4-62 Simple Tree Mode: Right-Hand Operand with Value 30
The THEN statement now reads: THEN modify <target>
.
Figure 4-64 Simple Tree Mode Rule Final Rule
Note that in the modify
statement, PO/destination/item
refers to the particular item
instance member.
Given the XML schema shown in Example 4-1 and the instance of these facts shown in Example 4-2, the following procedure creates a free shipping rule that can be summarized as:
To create advanced tree mode rules:
For more information, see Section 4.3.1, "How to Add Rules".
For more information, see Section 4.5.1, "How to Show and Hide Advanced Settings in a Rule or Decision Table".
Figure 4-65 Advanced Tree Mode Rule for Free Shipping
Figure 4-66 Advanced Tree Mode Free Shipping Rule
When you select Tree Mode and select a root fact type, the options lists show all available fact types (not just the children of the root fact type). This allows you to view all available fact types as well as the children of the root fact type. There is no option to limit the option list to only show the children of the selected root fact type.
Oracle Business Rules provides functions that make it easier for you to work with times and dates, and provides effective date features to let you determine when rules are effective, based on times and dates:
Table 4-8 describes the available Effective Date options.
Table 4-8 Effective Date Possible Values
Effective Date | Description |
---|---|
Always Valid | Specifies to set neither "From" nor "To" dates. |
From (without To date set) | Valid from a certain date indefinitely into the future. |
To (without a From date set) | Valid from now until a certain date. |
From Set and To set | Valid only between two dates. |
An effective date specification other than Always can be one of the following:
You can use the current date fact in a rule or a Decision Table.
To use the CurrentDate fact:
Calendar
type, as shown in Figure 4-67. Figure 4-67 Rule with Condition Using CurrentDate Fact
You can specify an effective start date and or an effective end date for a ruleset, a rule, or a Decision Table. For information on specifying the effective date for a ruleset, see Section 4.2.2, "How to Set the Effective Date for a Ruleset".
To set the effective date for a rule:
Figure 4-68 Showing Advanced Settings in a Rule
Figure 4-69 Setting the Effective Date for a Rule
By default, the Oracle Business Rules Engine implicitly manages the clock associated with the CurrentDate fact and the effective date, setting each to the value of the system date. Using the RL Language functions setCurrentDate()
and setEffectiveDate()
you can explicitly set the current date and the effective date. For more information, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.
An effective start date is defined as the first point in time at which a rule, Decision Table, or ruleset may actively participate in rule evaluations and fire. Thus, if a rule is effective it may fire if its condition is satisfied and if the rule is not effective, it does not fire whether the condition is satisfied or not.
An effective end date is the first moment in time at which the rule, Decision Table, or ruleset no longer actively participates in rule evaluations (not effective means the rule does not fire).
The effective start and end date can be set on a Decision Table, but these dates cannot be set individually for the rules within a Decision Table.
Rules and Decision Tables also include the Rule Active option. This option is set independent of the effective dates and makes dates effective without changing or removing the specified effective date. For more information on using the Rule Active option, see Section 4.5.3, "How to Select the Active Option".
The precedence of the effective date, when it is defined for both a ruleset and for the rules or Decision Tables within a ruleset, is as follows (with the top precedence being 1):
Thus, the effective dates specified for rules or Decision Tables within a ruleset must not violate the boundaries established by the ruleset that contains the rules or Decision Tables. For example, a rule may not have an effective end date that is later than the effective end date specified for a ruleset.
You can use the Duration, JavaDate, and XMLDate, OracleDate, and OracleDuration extension methods in a rule or a Decision Table. For more information, see Appendix B, "Oracle Business Rules Built-in Classes and Functions".
To use a Duration method:
Figure 4-70 Using Duration Methods in a Rule
Figure 4-71 Adding a Rule Using Duration Function
Use the expression builder to create and edit expressions for Oracle Business Rules.
You can access the expression builder from different parts of Rules Designer, including in the Edit Globals dialog, and in the conditions area when you work with conditions in Decision Tables, and when you enter rules and Decision Tables in advanced mode with free form expressions selected.
Figure 4-72 shows the Rules Designer expression builder.
Figure 4-72 Rules Designer Expression Builder
In the expression builder when you double-click items in the Variables or Functions navigation trees, or in the Operators tab, or in the Constants tab, this inserts the item into the expression in the Expression area. You can also create or edit expressions directly by entering text in the Expression area.
When you enter an expression, note that Variables are valid assignment targets and Constants are not valid assignment targets. Thus, you should use both tabs if you are unsure what type of item you want to add to the expression you are building.
Specify an argument for a selected function by placing the cursor inside the function in the Expression field and double-clicking the expression or function to insert. For example, place the cursor inside the parentheses of a function and select a variable. This inserts the variable in the expression at the cursor position.
XML fact types allow XML Schema types, elements, and attributes to be used when writing rules. Elements and types defined in XML Schema can be imported into the data model and can then be used to create rules and Decision Tables, just as with Java fact types and RL Fact types. The mapping between the XML Schema definition and the XML Fact types uses the Java Architecture for XML Binding (JAXB). By default, Oracle Business Rules uses the JAXB 2.0 shipped with the Oracle Application Server. JAXB as defined in JSR-222 provides a mapping between the types, names, and conventions in an XML Schema definition and the available types, allowed names and conventions in Java. For example, an element named order-id
and of type xsd:integer
is mapped to a Java Bean property named orderID
of type BigInteger
(and xsd:int
type maps to Java int
).
You can use expressions in Oracle Business Rules. Expressions allow arithmetic using the operators *
, +
, /
, %
, and other supported operators on primitive numerics, for example double
, int
, and the numeric types Integer
, Long
, Short
, Float
, Double
BigDecimal
, and BigInteger
that are available in the built-in dictionary. For more information on supported primitive numerics, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.
Expressions allow casting between any two numeric types, for example, (short)((BigInteger)1 + (Long)2)
. Example 4-3 shows a few additional sample expressions.
The expression processor uses the XPath/Xquery rules for type promotion (XML Path Language (XPath) 2.0). For example, BigDecimal
is promoted to float
/double
; type promotion going the other direction requires a cast, except for literals such as 3.3.
You can use List of Values Bucketsets and List of Ranges Bucketsets to specify constraints for business terms in rules. This allows you to use Rules Designer to produce validation warnings for possible errors where a value supplied is out of range, or not within a set of possible values as specified in a bucketset. Oracle Business Rules also lets you use bucketsets to specify constraints for global initial values, function return values, or function argument values. For more information, see Section 2.3, "Working with Oracle Business Rules Globals" and Section 3.7, "Associating a Bucketset with Business Terms".
You can use a list of ranges bucketset as a constraint for any business term other than a function result.
For more information on using a list of values bucket set as a constraint, see Section 4.11.2, "How to Use a List of Values Bucketset as a Constraint for a Fact Property".
To use a List of Ranges bucketset as a constraint for a fact property:
Figure 4-73 Valid Grades Bucketset for Fact Property
Figure 4-74 Associating a Bucketset with a Fact Property
Now, if you define a rule with a test that uses the fact property you receive a validation warning when a value is out of range. For example if you define a rule with an expression with the value -10, Rules Designer shows a validation warning as shown in Figure 4-75.
Figure 4-75 Using a Fact Property Value that is not in the Allowed in Actions for Associated Bucketset
You can use a list of values bucketset as a constraint for a fact property.
For more information on using a list of ranges bucket set as a constraint, see Section 4.11.1, "How to Use a List of Ranges Bucketset as a Constraint for a Business Term".
To use a List of Values bucketset as a constraint for a fact property:
You can use LOV bucketsets to provide options for expressions and actions.
How to use bucketsets to provide options for rule expressions and actions:
Driver.
eye_test
with an LOV bucketset named eyes
, with values: pass
, fail
, and glasses_required
, and then you use Driver.eye_test
in a test expression, the bucket values are limited as shown in Figure 4-76. Figure 4-76 Using a Bucketset to Provide Options for a Rule Test Expression
This chapter describes how to use Decision Tables to create and use business rules in an easy to understand format that provides an alternative to the IF/THEN rule format. It also covers the various components of a Decision Table such, as conditions, conflicts, actions, and discusses the various operations that you can perform on a Decision Table.
The chapter includes the following sections:
Businesses invest in software to automate their business processes. Historically, this automation focused on the collection, presentation, and manipulation of data to facilitate human decision-making about that data. Increasingly, however, software designers and developers are called upon to automate the decision making process by putting detailed rules about business processes into software architectures. In addition, many enterprises are experiencing increasing pressure to make software systems more responsive to business changes. In some cases, the role of writing and testing business rules is no longer assigned to software engineers, but is passed to trained business users. Alternatively, some organizations attempt to separate changes in the business behavior of software from the traditional software development cycles, and tie changes to business driven imperatives like product or sales cycles.
A Decision Table provides a mechanism for describing data processing tasks, especially when that description is done by business analysts rather than computer programmers.
The Decision Table format is intuitive for business analysts who are familiar with spreadsheets. The formal structure that a Decision Table provides makes it easier to author, understand, and change multiple similar rules and lets software check for rule completeness and consistency.
Oracle Business Rules Decision Tables provide the following features:
Ease of verification and visualization are the major reasons for using Decision Tables.
For information, see Chapter 4, "Working with Rulesets and Rules".
A Decision Table displays multiple related rules in a single spreadsheet-style view. In Rules Designer a Decision Table presents a collection of related business rules with condition rows, rules, and actions presented in a tabular form that is easy to understand. Business users can compare cells and their values at a glance and can use Decision Table rule analysis features by clicking icons and selecting values in Rules Designer to help identify and correct conflicting or missing cases.
To help understand Decision Table concepts, consider a set of IF/THEN rules that determine if a driver is eligible for a license, and an equivalent Decision Table. Note if a driver has taken a driver training class then the driver has training certification.
The IF/THEN rules follow:
Figure 5-1 shows a Decision Table representation of these rules that includes areas for Decision Table Conditions and Actions.
Figure 5-1 Sample Decision Table with Conditions and Actions
The Conditions area in a Decision Table includes one or more condition rows. Each condition row has a condition expression and, for each rule, a condition cell. A condition expression is an expression that you build in Rules Designer. The condition expression is often a fact property or a function result, but it can be any expression that has a type that can be associated with a bucketset. Test expressions are often used, such as Driver.age<16
. These expressions are associated with the built-in boolean bucketset, with values true
and false
. The value or the range for a given condition cell takes its value or its range from one or more buckets in the associated LOV or Ranges bucketset. For more information on bucketsets, see Section 3.6, "Working with Bucketsets".
For example, Figure 5-1 shows the condition expression for a Driver
fact with the Driver.age
property. The corresponding row in the Decision Table shows condition cells including buckets for the ranges <20
, and >=20
. The values in the cells come from the global bucketset named driver_ages
.
Figure 5-1 also shows a condition row for the Driver
fact with the Driver.has_training
property. This condition row shows condition cells with the values, true, false, and -. The hyphen (-
) means "do not care" (that is Driver.has_training
could be true
or false
in this case). The values for these condition cells come from the default bucketset associated with boolean types (this consists of default buckets for the values true
and false
).
Decision Tables show rules in bucket order, and to change the order of rules you need to change the order of buckets in the bucketsets. Thus, the order of the buckets in the bucketset associated with a condition row determines the order of the condition cells, and thus the order of the rules. You can control rule ordering in a Decision Table by changing the relative position of the buckets in an LOV bucketset associated with a condition row; however, you cannot reorder range buckets. For information on ordering buckets in a bucketset, see Section 3.6.1, "How to Define a List of Values Global Bucketset".
Actions are associated with rules in a Decision Table. At runtime, when facts match for condition cells, the Rules Engine prepares to run the actions associated with the rule.
Table 5-1 shows the types of actions you can choose in the Actions area. Thus, in an action you can call a function, assert a new fact, retract a fact, or modify a fact. In the Actions area the cells corresponding to an individual action for a rule are called action cells. Note, in advanced mode there are additional options for actions. For more information on advanced mode, see Section 4.5.2, "How to Select the Advanced Mode Option".
Table 5-1 Decision Table Actions for Action Cells
Action | Description |
---|---|
| Assert a new fact |
| Call a function |
| Retract a fact |
| Modify a data value associated with a matched fact |
When you add multiple actions the actions that you add in the Actions area are ordered; actions appearing in the higher rows run before actions in the following rows.
The Decision Table actions such as modify
can refer to facts matched in the condition cells. For example, given a Decision Table with condition rows on the Driver
fact that includes condition rows for Driver.age
and Driver.has_training
, actions can modify the property Driver.eligible
and you can specify a value for Driver.eligible
for each action cell.
Certain types of actions in the Actions area include a Parameterized checkbox. This checkbox specifies that a property from the action can have its value set in the action cell associated with a rule in the Decision Table. When the parameterized checkbox is selected the value you supply for the expression value in the action, in the Actions area, becomes the default value for the property if a value is not supplied in the action cell. For example, see Figure 5-2 where the value false
is assigned as the default value for the action property eligible
.
Figure 5-2 Action Editor Showing Parameterized Action with Default Value
A ruleset contains a Decision Table; this provides a way to group the Decision Table along with IF/THEN rules. When rules and Decision Tables are grouped in a ruleset, the IF/THEN rules and the Decision Table rules all execute as a set of interrelated rules.
A rule in a Decision Table is not named. Although Rules Designer shows rules in a Decision Table with labels, for example, R1, R2, and R3, these rule labels are not names for individual rules but are labels derived from the current ordering of the rules in the Decision Table. Thus, a rule with the label R1 could be moved to position 3 and then Rules Designer relabels this rule R3.
Rules in a Decision Table are organized as a table that contains a tree of condition cells. The condition cells in the first row span the cells of later condition rows. A parent cell in row i spans its children in row i+1.
Figure 5-3 shows rules in a Decision Table where each rule consists of one cell from each row in the Conditions area, and an associated action cell in the same column in the Actions area. Figure 5-3 shows the rule with the label R3 defined by the first cell from condition 1 (the Driver.age
< 20
bucket), the second cell from condition 2 (the Driver.eye_test
equals fail
bucket), and the third cell from condition 3 (the Driver.has_training
equals true
bucket). Likewise for each of the other rules, R1 to R12, there is a unique path through the Decision Table.
As shown in Figure 5-3, it is significant for a cell to be a parent of another cell and a parent cell spans lower cells. In the Conditions area, when condition cells have the same parent condition cell the cells are called siblings. Certain operations only apply for condition cells that are siblings. For example, Figure 5-4 shows two sibling cells that are selected; with these cells selected the Merge Selected Cells operation is valid. For these cells, the corresponding bucket with the value fail
for Driver.eye_test
is also a sibling (as shown in the R3 and R4 columns in Figure 5-4). For more information, see Section 5.3.3, "How to Merge or Split Conditions in a Decision Table".
Figure 5-4 Sibling Condition Cells in a Decision Table
Rules Designer lets you easily reorder rows by selecting the row and clicking a Move icon. By reordering rows in the Conditions area you can perform operations on condition cells at the desired granularity. Thus, the move operations can assist you when you want to split, merge, or assign certain values that might only be appropriate at a particular level in the tree, depending on the location of a condition cell or depending on the location of the parent, children, or siblings of a condition cell.
By default, when you create a condition row, Rules Designer creates a single condition cell and assigns the "?
" value to the cell. A condition cell with the value "?
" indicates that the value of the cell is undefined in the bucketset. For example, Figure 5-5 shows a "?" value for Driver.age
.
Figure 5-5 Sample Decision Table Showing Undefined in Condition Cell
In the Decision Table Actions area you can specify that an action cell "do nothing". In this case, deselect the action cell. When the action cell checkbox is unselected this means do not perform this action when the pattern matches for the specified condition values in the Decision Table. Thus, for each action cell you can specify whether the rule associated with the action cell should activate the action, or does not perform the action.
In a Decision Table, when a condition cell represents a bucket that has been removed from the bucketset, Rules Designer provides a validation warning such as the following:
To fix this type of validation warning you can do one of the following:
A Decision Table loop occurs when the value for a condition row is changed by an action. Loops can occur across the rules in a single Decision Table or spread over several Decision Tables, or spread over rules and Decision Tables in the same ruleset. Try not to create Decision Table actions that modify fact properties that are used in Decision Table conditions. This could cause an infinite loop.
Note: You can prevent infinite loops by using the rule firing limit on the containing decision function. |
You add a Decision Table by performing several steps. These steps include:
To work with a Decision Table you start by creating a Decision Table in a ruleset.
To create a decision table:
Note: When you add a Decision Table the rules validation log displays validation warnings. The Decision Table is not complete and does not validate without warnings until you add conditions and actions to the Decision Table. |
A Decision Table includes a Conditions area where you specify Decision Table condition rows. The condition rows determine the facts that the Oracle Rules Engine matches at runtime. To create a Decision Table you need to add one or more condition rows to the Decision Table.
To add condition rows to a decision table:
Figure 5-7 Adding a Condition to a Decision Table
To use a local bucketset or specify the bucketset for a decision table condition:
Figure 5-8 Specifying a Bucketset For a Condition Row in a Decision Table
For more information on creating bucketsets, see Section 3.6, "Working with Bucketsets".
A Decision Table includes an Actions area where you specify Decision Table actions. The actions determine actions for rules in a Decision Table.
To create a valid Decision Table you need to do the following:
To add actions to a decision table:
Figure 5-9 Adding an Action to a Decision Table
Table 5-2 Action Editor Dialog Arguments Fields
Field | Description |
---|---|
Property | Displays the property names for the specified target. |
Type | Displays the type for the property. |
Value | Select the default value for the action from the list of available actions. The specified value applies to either the entire action, as the default value, or when a particular action cell is selected, the value specified applies for that particular action cell. |
Parameterized | This specifies a parameterized value. A parameterized value displays in a Decision Table action cell. When you select parameterized value for a property, this generally means that each rule supplies a different parameter value. |
Constant | Select to specify a constant value. |
To set values for action cells in a decision table:
For more information on referring to a bucketset from a Decision Table, see Section 3.6.2, "How to Define a List of Ranges Global Bucketset."
To deselect an action cell in a decision table:
When you add actions, you may need to change the order of the actions. In Rules Designer you can use the Move Down icon or Move Up icon to change the order of actions.
You can add a rule to a Decision Table. Rules Designer adds a column for the rule to the left of the existing rules and each condition cell is initialized to "?
", which actually means a validation error prompting you to populate the cell with relevant values.
To add a rule to a decision table:
Ordering Rules by Bucket
The Order Rules By Bucket checkbox under the Advanced Settings of a Decision Table is selected by default. In this case, the Decision Table layout changes automatically on adding new rules.
When you add a new rule to a Decision Table, the new rule is added as the first rule of the Decision Table and the other rules move as required to keep the bucket values in their defined order. This is because Order Rules By Bucket is enabled, which means rule ordering in a Decision Table is set according to the relative position of buckets associated with a condition expression. If Order Rules By Bucket is not enabled when you add a rule, the new rule is added as the last rule of the Decision Table. In either case, the cells in the new rule column have "?" symbols, indicating the cells do not have values yet.
Note: When Order Rules By Bucket is selected, the rules are ordered and duplicate rules (rules with exactly the same buckets) are combined. So, you cannot add two rules without any buckets to a Decision Table, because in that case, the rules are duplicates and would immediately be combined. When Order Rules By Bucket is deselected, then duplicate rules are allowed. |
In addition, the Move Left and Move Right buttons pertaining to a rule column is also enabled and you can reposition rules. The Span options also get enabled and you can also cut, copy, or paste rules.
You can define tests in a Decision Table. The tests must evaluate to true for any rule in the decision table to fire. For more information about defining tests and working with rule conditions, see Section 4.3, "Working with Rules".
To add tests to a Decision Table:
The added test is displayed in Figure 5-10.
Figure 5-10 Adding Test to a Decision Table
After you create a Decision Table there are operations that you may want to perform on the Decision Table, including the following:
After you create a Decision Table you may want to modify the contents of the Decision Table to produce a Decision Table that includes a complete set of rules for all cases, or to produce a Decision Table that provides the least number of rules for the cases.
The split and compact operations allow you to manipulate the contents of the condition cells in a Decision Table.
The split table operation creates a rule for every combination of buckets across the conditions. For example, in a Decision Table with 3 boolean conditions, 2 x 2 x 2 = 8 rules are created. In a Decision Table with 32 boolean conditions, 2**32 ~ 2 billion rules are created. Thus, you only use split table when the number of rules created is small enough that filling in the action cells is feasible.
When you want to apply match conditions for the "do not care" values in a Decision Table and create a match case for each cell, you use the split table operation.
Split can be applied to an entire Decision Table or to a single condition row. Additionally, split may be performed on an individual condition cell.
Depending on what is selected in the Decision Table, the split operation can create condition cells. Thus, using the split operation you can create rules in a Decision Table. Table 5-3 summarizes the split operation for a selected condition cell, condition row, or for a complete Decision Table.
Table 5-3 Summary of Split Operation
Operator | Description |
---|---|
Condition Cell | Creates one sibling condition cell for each bucket value represented by the cell. If the condition cell value is "do not care", then the cell is split into one sibling cell for each bucket in the bucketset that is not represented by a sibling condition cell, and "do not care" is no longer represented. |
Condition Row | For each condition cell in the proceeding condition expression, create a sibling group which contains a cell for each value in the bucketset. The effect of this operation is the same as adding a "do not care" to each sibling group and calling split on each condition cell in each sibling group. |
Decision Table | Same as calling split on each condition row in the Decision Table. |
Depending on what is selected in the Decision Table, the compact table or merge cells operations remove condition cells. The compact table operation can be applied to an entire Decision Table. Additionally, the merge operation may be performed on sibling cells or on an entire condition row. Thus, using compact table or merge you can remove rules from a Decision Table. Table 5-4 summarizes the compact table and merge operations.
Table 5-4 Summary of Merge Operation
Operator | Description |
---|---|
Condition Cell | Merging two or more condition cells adds all buckets in the cells to a single cell, and removes all but one of the cells. If one of the cells represents "do not care", then the merged cell represents "do not care". This operation may merge action cells and this can create warnings for duplicate action cells, such as, |
Condition Row | Combine all values in each sibling group into a single "do not care" cell for each condition cell in the proceeding condition expression. The effect of this is the same as calling merge on all cells in each sibling group. This operation may merge action cells and this can create warnings for duplicate action cells, such as, |
Decision Table | Compacts the Decision Table by merging conditions of rules with identical actions. |
Split and merge are inverse operations when conflicting action cells are not associated with the operation. In this case, without conflicting action cells, a merge operation combines all the values from the siblings into one sibling, and discards the other sibling condition cells, and as a result of merging the condition cells, when a Decision Table contains action cells, the action cells are also merged. Thus, the merge operation combines multiple condition cells into a single condition cell and adds all buckets to the single cell.
When there are conflicting values for the action cells, a merge operation merges the action cells in a form that requires additional manual steps. Thus, if two action cells have conflicting parameters, after the merge the action cell contains multiple conflicting parameter values. These conflicting values are appended to the action cell and must be manually resolved by selecting and deleting the unwanted duplicate parameters. For example, see Figure 5-11 that shows conflicting values in an action cell.
An action cell that contains multiple values for a property is invalid. When you select the action cell Rules Designer shows a popup window with checkboxes to allow you to select a single value for the action cell. As shown in the validation log in Figure 5-11, Rules Designer shows a validation warning until you select a single value.
Figure 5-11 Conflicting Properties to be Resolved for a Merged Action Cell
You can move the conditions or actions in a Decision Table. The Move icons let you reorder condition rows in the Conditions area and actions in the Actions area. Moving conditions up or down may reorder visual display of the rules, but these operations does not change the logic in any way. For example, if (x.a == 1
and
x.b == 1
) is logically the same as if (x.b == 1
and
x.a == 1
).
When you work with Decision Tables some operations only apply for condition cells that are siblings. Using the Move icon you can reorder rows so that Decision Table operations apply to the tree at the desired granularity. For example, when you want to change the action of a condition cell for a single rule, then you need to move that condition cell to the last row in the Decision Table Conditions area. For example, consider the Decision Table shown in Figure 5-12.
To view this table with granularity for the Driver.age
, move the Driver.age
condition from the first row to the third row, as shown in Figure 5-13.
Figure 5-13 Decision Table After Move Down with Age Condition Last
Now to make the Driver.age
conditions "do not care" for the first two rules, where the driver passes the eyesight test and has had driver training is true, you can easily apply changes to these particular conditions when the Driver.age
condition is in the last row. Thus, in this table, it is easier to view and modify age related rules when Driver.age
is in the last row, with the finest granularity.In general, the move operations can assist you when you want to split, merge, or assign certain values that might only be appropriate at a particular level in the tree, depending on the location of a condition cell, or depending on the location of the parent, children, or siblings of a condition cell.
For actions in the Actions area, clicking Move Up or Move Down lets you reorder the actions. Actions are ordered so that when multiple actions apply, the first action runs before subsequent actions. Thus, using the Move Up or Move Down operation on an action may be appropriate, depending on your application.
A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a combination of buckets, one from each condition, that is not covered by an existing rule. Rules Designer provides Gap Checking to check for gaps. When you click the Gap Analysis icon, Rules Designer finds gaps and presents a dialog to fix any gaps that are found.
You can choose to make existence of gaps a validation warning. When you deselect Allow Gaps in the Advanced Settings area, the Decision Table reports a validation warning when a gap is found. For more information, see Section 4.5, "Using Advanced Settings with Rules and Decision Tables".
For example, using the Driver example if you create a gap by deleting the rule that covers the case for Driver.age
< 20 and Driver.has_training
false
, and then you click Gap Analysis, Rules Designer shows the Gap Analysis dialog as shown in Figure 5-14. Clicking OK with the checkboxes selected adds either all rules or the selected rules to the Decision Table (this example only shows a single rule to add).
Gap checking generates different new rules for the following cases:
Driver.age
and Driver.hair
. When there are two missing rules for different hair colors and the rules are siblings, that is, they have a common parent, then gap checking shows a single rule as shown in Figure 5-15. Figure 5-15 Gap Checking with Missing Sibling Rules
Figure 5-16 Gap Checking with Missing Non-Sibling Rules
In both of these cases shown in Figure 5-15 and Figure 5-16 there are two missing buckets, but for sibling rules the multiple buckets are combined in a single new rule. Thus, in general gap checking suggests fewer more general rules in preference to many more specific rules.
For sibling rules you can add multiple rules then edit each cell to pick the buckets you want. Alternatively, you can use Find Gaps to add a rule and then split the cell with multiple values, and delete the rules you do not want to keep.
The rules in a Decision Table can conflict. Two rules conflict when they overlap and they have different actions. Two rules overlap when at least one of their condition cells has a bucket in common. Overlap is common when a Decision Table contains "do not care" condition cells. Overlap without conflict is common and harmless.
Rules Designer finds conflicts and you can see the conflicts in the Conflict Resolution row in the Decision Table when you click Show Conflicts. How you handle and resolve conflicts depends on the specified conflict policy. You can choose a conflict policy or use the default manual conflict policy. When you set a conflict policy using the Conflict Policy option in the Advanced Settings area, Rules Designer sets the conflict policy for the Decision Table. The Conflict Policy specifies the Decision Table conflict policy and is one of the following:
For more information, see Section 4.5, "Using Advanced Settings with Rules and Decision Tables". For example, Figure 5-17 shows a Decision Table with conflicting rules that you resolve with the default manual conflict policy.
Figure 5-17 Decision Table Showing Conflicting Rules in the Conflicts Area
By clicking on the cells in the Decision Table Conflict Resolution area Rules Designer lets you resolve conflicts between rules as follows:
In these rules, if rule2 overrides rule1, then a top performer gets a 5% raise, and everyone else gets a 10% raise. However, in this case, you would like to have both rules fire. Because it does not matter which rule fires first, and there is no conflict, then a top performer gets a 15.5% raise either way. In this case, use the NoConflict list to remove the conflict. Note that no conflict is what you get with IF/THEN rules with equal priorities, only you are not warned of a conflict and you have to think carefully if you want one rule to override the other.
Figure 5-18 shows the Rules Designer Conflict Resolution dialog shown when you select a conflicting rule in the Conflict Resolution area. This dialog lets you resolve conflicts between rules by selecting overrides, prioritization with RunBefore or RunAfter options, and a NoConflict option.
Figure 5-18 Using the Decision Table Conflict Resolution Dialog
You can use the Decision Table Advanced Settings Conflict Policy auto override option to specify that, where possible, conflicts are automatically resolved. The automatic override conflict resolution policy specifies that a special case overrides a more general case. For more information, see Section 4.5, "Using Advanced Settings with Rules and Decision Tables".
Thus, when there are conflicts in a Decision Table, you can do one or more of the following to resolve the conflicts:
Use the Compact Table and Split Table icons to compact or split cells in a Decision Table. For more information, see Section 5.3.1.1, "Understanding Decision Table Split and Compact Operations."
To compact a decision table:
To split cells in a decision table:
Use the merge condition and split condition operations to merge or split a condition in a Decision Table. For more information, see Section 5.3.1.1, "Understanding Decision Table Split and Compact Operations."
To merge a condition in a decision table:
To split a condition in a decision table:
Use the condition cell operations to split a condition cell, to merge sibling condition cells, or to specify a "do not care" value for a condition cell in a Decision Table. For more information, see Section 5.3.1.1, "Understanding Decision Table Split and Compact Operations."
To merge sibling cells in a condition in a decision table:
To split a cell in a condition in a decision table:
To specify a "Do Not Care" value for a cell in a condition in a decision table:
To select all buckets to specify a "Do Not Care" value for a cell in a condition:
A gap is a "missing" rule in a Decision Table. A Decision Table has a gap if there is a combination of buckets, one from each condition, that is not covered by an existing rule. Rules Designer provides Gap Checking to check for gaps. When you use this operation Rules Designer presents a window to fix gaps. For more information, see Section 5.3.1.3, "Understanding Decision Table Gap Checking".
You can choose to make existence of gaps a validation warning. When you deselect Allow Gaps in the Advanced Settings area, the Decision Table reports a validation warning when a gap is found. For more information, see Section 4.5, "Using Advanced Settings with Rules and Decision Tables".
To perform decision table gap checking:
The rules in a Decision Table can conflict. Two rules conflict when they overlap and they have different actions. Two rules overlap when at least one of their condition cells has a bucket in common. For more information, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis".
To perform manual decision table conflict resolution:
When you select the Advanced Settings option in a Decision Table, you can select that Decision Table conflicts are automatically resolved using the auto override conflict policy (this applies only when it is possible to resolve the conflict using the Oracle Business Rules automatic conflict resolution policies). The automatic override conflict resolution uses a policy where when there is a rule conflict a special case overrides a more general case. For more information, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis".
To select the auto override policy:
When you select the Advanced Settings option in a Decision Table, you can select that the Decision Table conflicts are ignored using the ignore conflict policy. The ignore policy tells Oracle Business Rules to ignore conflicts in the Decision Table. For more information, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis".
To select the ignore conflict policy:
The Order Approval application demonstrates the integration of an SOA composite application with Oracle Business Rules and the use of a Decision Table.
In this application a process is modeled that uses the decision component to:
To complete this procedure, you need to:
The source code for Oracle Business Rules-specific samples and SOA samples are available online in the Oracle SOA Suite samples page.
To work with the Order Approval application, you first need to obtain the order.xsd
schema file either from the sample project that you obtain online or you can create the schema file and create all the application, project, and other files in Oracle JDeveloper. You can save the schema file provided in Example 5-1 locally to make it available to Oracle JDeveloper.
Example 5-1 shows the order.xsd
schema file.
Example 5-1 Order.xsd Schema
To work with Oracle Business Rules, you first create an application in Oracle JDeveloper.
To create an application for order approval:
OrderApprovalApp
. com.example
.order
. The prefix, followed by a period, applies to objects created in the initial project of an application.
Figure 5-19 Adding the Order Approval Application
OrderApproval
. Figure 5-20 Adding a Project to an Application
After creating a project in Oracle JDeveloper you need to create a Business Rule Service component within the project. When you add a business rule you can create input and output variables to provide input to the service component and to obtain results from the service component.
To use business rules with Oracle JDeveloper, you do the following:
To create a business rule service component:
composite.xml
to launch the SOA composite editor (this may already be open after you create the project). composite.xml
editor. Oracle JDeveloper displays a Create Business Rules page, as shown in Figure 5-21.
Figure 5-21 Adding a Business Rule Dictionary with the Create Business Rules Dialog
Figure 5-22 Import Schema File with Type Chooser
order.xsd
schema file and click OK. Figure 5-23 Importing the Order.xsd Schema File
For this example, select CustomerOrder
as the input variable.
Figure 5-24 Create Business Rules Dialog with CustomerOrder Input
OrderApproval
from the imported order.xsd
. Figure 5-25 Create Business Rules Dialog with Input and OrderApproval Output
Figure 5-26 Business Rules Component in OrderApproval Composite
The business rule service component enables you to integrate your SOA composite application with a business rule. This creates a business rule dictionary and enables you to execute business rules and make business decisions based on the rules.
Before adding rules you need to create the Oracle Business Rules data model. The data model contains the business data definitions (types) and definitions for facts that you use to create rules. For example, for this sample the data model includes the XML schema elements from order.xsd
that you specify when you define inputs and outputs for the business rule activity.
At times when you work with Rules Designer to create a rule or a Decision Table, you may need to create or modify elements in the data model.
To view data model elements for Oracle business rules:
Figure 5-27 Opening a Business Rules Dictionary with Rules Designer
To use a Decision Table you need to define bucketsets that specify how to draw values for each cell for the conditions that constitute the Decision Table. For this example the bucketsets are defined with a list of ranges that you define in Rules Designer.
To add OrderAmount bucketset to the data model:
OrderAmount
(In Rules Designer be sure to press Enter to accept the name). Figure 5-28 Adding the OrderAmount Bucketset
Figure 5-29 Adding the OrderAmount Bucketset with Low Medium and High Aliases
To add CreditScore bucketset to data model:
CreditScore
. 750
. 400
. Figure 5-30 Adding the CreditScore Bucketset
Figure 5-31 Adding the CreditScore Bucketset with Risky Avg and Solid Aliases
To prepare for creating Decision Tables you can associate a bucketset with fact properties in the data model. In this way condition cells in a Decision Table Conditions area can use the bucketset when you create a Decision Table.
Note that the OrderApproval.status
property is associated with the Status
bucketset when the OrderApproval
fact type is imported from the XML schema. In the schema, Status
is a restricted String
type and is therefore represented as an enum bucketset. Rules Designer creates the status bucketset. For more information, see Section 3.2.4, "What You Need to Know About XML Facts".
To associate bucketsets with Order and CreditScore properties:
Figure 5-32 Opening a Business Rules Dictionary with Rules Designer
Figure 5-33 Associating the OrderAmount Bucketset with CustomerOrder.order
You create a Decision Table to process input facts and to produce output facts, or to produce intermediate conclusions that Oracle Business Rules can further process using additional rules or in another Decision Table.
While you work with rules you can use the rule validation features in Rules Designer to assist you. Rules Designer performs dictionary validation when you make any change to the dictionary. To show the validation log window, click the Validate icon or select View>Log and select the Business Rule Validation tab. If you view the rules validation log you should see warning messages. You remove these warning messages as you create the Decision Table. For more information on rule validation see Section 4.4.2, "Understanding Rule Validation".
To use a Decision Table for rules in this sample application you work with facts representing a customer spending level and a customer credit risk for a particular customer and a particular order. Then, you use a Decision Table to create rules based on customer spending, the order amount, and the credit risk of the customer.
To add a decision table for order approval:
CustomerOrder.creditScore
in the Conditions column. CustomerOrder.order
. >2000
as shown in Figure 5-34. Figure 5-34 Adding the Annual Spending Entry to a Decision Table
Figure 5-35 Adding Conditions to the CustomerOrder Decision Table
To create an action in a decision table:
status
select the Parameterized checkbox and the Constant checkbox. This specifies that each rule independently sets the status. Figure 5-36 Adding an Action to a Decision Table with the Action Editor Dialog
Next you need to add rules to the Decision Table and specify an action for each rule.
You can use the Decision Table split operation to create rules for the bucketsets associated with the condition rows in the Decision Table. This creates one rule for every combination of condition buckets. There are three order amount buckets, three credit score buckets, and two boolean buckets for the annual spending amount for a total of eighteen rules (3 x 3 x 2 = 18).
To split cells in a decision table:
These steps produce validation warnings for action cells with missing expressions. You fix these in later steps.
Figure 5-37 Splitting a Decision Table Using Split Table Operation
To add actions for each rule in the decision table:
In the Decision Table you specify a value for the status property associated with OrderApproval for each action cell in the Actions area. The possible choices are: Status.MANUAL
, Status.REJECTED
, or Status.ACCEPTED
. In this step you fill in a value for status for each of the 18 rules. The values you enter correspond to the conditions that form each rule in the Decision Table.
Figure 5-38 Adding Action Cell Values to a Decision Table
Status.MANUAL
. Table 5-5 Values for Decision Table Actions
Rule | C1 creditScore | C2 order | C3 annualSpending > 2000 | A1 OrderApproval status |
---|---|---|---|---|
R1 | risky | Low | true |
|
R2 | risky | Low | false |
|
R3 | risky | Medium | true |
|
R4 | risky | Medium | false |
|
R5 | risky | High | true |
|
R6 | risky | High | false |
|
R7 | avg | Low | true |
|
R8 | avg | Low | false |
|
R9 | avg | Medium | true |
|
R10 | avg | Medium | false |
|
R11 | avg | High | true |
|
R12 | avg | High | false |
|
R13 | solid | Low | true |
|
R14 | solid | Low | false |
|
R15 | solid | Medium | true |
|
R16 | solid | Medium | false |
|
R17 | solid | High | true |
|
R18 | solid | High | false |
|
In this step you compact the rules to merge from eighteen rules to nine rules. This automatically eliminates the rules that are not needed and preserves the no gap, no conflict properties for the Decision Table.
To compact the decision table:
Figure 5-39 Compacting a Decision Table Using Compact Table
Notice that five of the nine remaining rules result in a manual order approval status. You can reduce the number of rules by deleting these five rules. Note it is often best practice to not do this (that is not replace several specific rules with one general rule). You need to compare the benefits of having fewer rules with the added complexity of managing the conflicts introduced when you reduce the number of rules.
To replace several specific rules with one general rule:
Status.MANUAL
. To select a rule, click the column heading. For example, click rule R2 as shown in Figure 5-40. Figure 5-40 Deleting Rules from a Decision Table
Status.MANUAL
. This should leave the Decision Table with four rules as shown in Figure 5-41. Figure 5-41 Decision Table After Manual Actions Removed
Now you can add a single rule to handle the manual case. After adding this rule you set the conflict policy with the option Conflict Policy auto override for conflict resolution.
To add a general rule:
Status.MANUAL
, as shown in Figure 5-42. Notice that the Business Rule Validation log includes the warning RUL-05851
for unresolved conflicts. Figure 5-42 Decision Table with Conflicting Rules
Figure 5-43 Adding a Rule to Handle Status Manual
To enable the auto override conflict resolution policy:
Figure 5-44 Adding a Rule to Handle Status Manual with Auto Override Conflict Policy
Before you can deploy the application you need to make sure the dictionary validates without warnings. If there are any validation warnings you need fix any associated problems.
To validate the dictionary:
Business rules created in an SOA application are deployed as part of the SOA composite when you create a deployment profile in Oracle JDeveloper. You deploy an SOA composite application to Oracle WebLogic Server.
To deploy and run the order approval application:
Then the SOA Deployment Configuration dialog displays.
After deploying the application you can test the Decision Table in the SOA composite application with the Oracle Enterprise Manager Fusion Middleware Control Console.
To test the application:
Figure 5-45 Testing the Order Approval Application
Example 5-2 Sample Input for Testing Order Approval Application
This chapter describes how to use a decision function to call rules from a Java application, from a composite, or from a BPEL process.
The chapter includes the following sections:
A decision function is a function that is configured declaratively.
A decision function contains the following declarations:
A decision function performs the following operations:
You can create a decision function to simplify the use of Oracle Business Rules from a Java application or from a BPEL process. In a decision function the rules you want to use can be organized into several rulesets, and those rulesets can be executed in a prescribed order. Facts may flow to the first ruleset, and this ruleset may assert additional facts that flow to the second and subsequent rulesets until finally facts flow back to the decision function as decision function output.
A decision function is a function that is configured declaratively.
You use Rules Designer to add a decision function.
To add a decision function:
Figure 6-1 The Decision Functions Area in Rules Designer
unlimited
for the rule firing limit. For more information, see Section 6.3.1, "What You May Need to Know About Rule Firing Limit Option for Debugging Rules". assert
function. When selected, the input is asserted using the assertTree
function. When selected it is expected that the input object or objects are the root of an object tree that is connected in one-to-many relationships with other objects using List
properties. For more information, see Section 4.8, "Working with Tree Mode Rules". List
of objects and the assertion applies to each object in the input List
(java.util.List
). Consider a situation where a decision function (DF1) calls another decision function (DF2) using the Initial Actions tab. DF1 is configured to push Ruleset1 to the ruleset stack. DF2 is configured to push Ruleset2. In DF1, before the initial actions are executed, Ruleset1 is pushed to the ruleset stack. Then, when DF2 is called, Ruleset2 is also pushed. So when rules start running, rules from both rulesets fire because of the ruleset stack. If you want to push Ruleset2 (because in the initial actions, you are calling DF2), you can use initial actions in DF1 to clear the ruleset stack before calling DF2, and push Ruleset1 on the stack after calling DF2.
You can add any required action ranging from assert
, call
, modify
to even conditional actions such as if
, else
, elseif
, while
, for
, if
(advanced)
, and while
(advanced)
as shown in Figure 6-3.
Note: If decision function DF1 contains DF2 in the Rulesets & Decision Functions tab, then DF2 may not have any initial actions. |
The if
(advanced)
and while
(advanced)
conditional actions accept only boolean
values. For each of the action conditions, you can add different test form types.
To edit an existing decision function:
To change the order of inputs:
To change the order of outputs:
A decision function is a function that is configured declaratively.
The Rule Firing Limit allows you to set the maximum number of steps (rule firings) that are allowed at runtime. Using this option and specifying a value other than unlimited can help you debug certain rule design problems and in some cases might help prevent java.lang.OutOfMemoryError
errors at runtime. This is can be useful when debugging infinitely recursive rule firings.
Oracle Business Rules generates a corresponding RL Language function for each decision function.
The signature of a generated decision function is similar to:
In a decision function, each parameter is generated depending on the List option, with the decision function input, as follows:
List
of objects and the assertion applies to each object in the input List
(java.util.List
). The generated RL Language function includes calls either to assert
or assertTree
for each argument, depending on the decision function Input option, Tree. When Tree is unselected the input is asserted using the assert
function. When Tree is selected, the input is asserted using the assertTree
function. When Tree is selected it is expected that the input object or objects are the root of an object tree that is connected in one-to-many relationships with other objects using List
or array type properties.
For the decision function selected rulesets, as specified in the Rulesets and Decision Functions area Selected box, the generated RL Language function includes a call to run()
with the selected rulesets in the selected ruleset stack order.
The generated RL Language function returns a list. The list has an element for each decision function output in order. If the output is declared to be a list, then the corresponding element is a list. However, if the output is not declared to be a list, then the corresponding element is the output fact or null (if there is no output fact of the declared type). If an output is not declared to be a list, and more than one output fact of the specified type is found in the working memory of Oracle Business Rules Engine, then an exception is thrown.
After you edit a decision function, for example, to change or add inputs and outputs, the changes are visible in BPEL for new Business Rule activities. However, the changes are not visible to existing Business Rule activities. For more information, see "Getting Started with Oracle Business Rules" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
A decision function supports either stateful or stateless operation. The Stateless checkbox in the Edit Decision Function dialog provides support for these two modes of operation.
By default the Stateless checkbox is selected which indicates stateless operation. With stateless operation, at runtime, the rule session is released after each invocation of the decision function.
When Stateless is deselected the underlying Oracle Business Rules object is kept in the memory of the Business Rules service engine, so that it is not given back to the Rule Session Pool when the operation is finished. A subsequent use of the decision function re-uses the cached RuleSession object, with all its state information from the previous invocation. Thus, when Stateless is deselected the rule session is saved for a subsequent request and a sequence of decision function invocations from the same process should always end with a stateless invocation.
This chapter describes how to use Oracle Business Rules SDK (Rules SDK) to write applications that access, create, modify, and execute rules in Oracle Business Rules dictionaries (and work with the contents of a dictionary). It also provides a brief description of Rules SDK and shows how to work with the Rules SDK Decision Point API.
The chapter includes the following sections:
For more information, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.
The Rules SDK consists of four areas:
Other than for explanation purposes, there is not an explicit distinction between these areas in Rules SDK. For example, to edit rules you also need to use the storage area of Rules SDK to access a dictionary. These parts of the Rules SDK are divided to help describe the different modes of usage, rather than to describe distinct Rules SDK APIs.
The Decision Point API provides a concise way to execute rules. Most users create Oracle Business Rules artifacts, including data model elements, rules, Decision Tables, and rulesets using the Rules Designer extension to Oracle JDeveloper. Thus, most users do not need to work directly with the engine, storage, or editing parts of Rules SDK.
To work with the Rules SDK Decision Point package you need to understand three important classes:
DecisionPoint
: is a helper class that follows the factory design pattern to create instances of DecisionPointInstance
. In most applications there should be one DecisionPoint
object that is shared by all application threads. A caller uses the getInstance()
method of DecisionPoint
to get an instance of DecisionPointInstance
which can be used to call the defined Decision Point. DecisionPointBuilder
: follows the Builder design pattern to construct a Decision Point. DecisionPointInstance
: users call invoke()
in this class to assert facts and execute a decision function. The DecisionPoint
classes support a fluent interface model so that methods can be chained together. For more information, see
http://www.martinfowler.com/bliki/FluentInterface.html
A Decision Point manages several aspects of rule execution, including:
oracle.rules.rl.RuleSession
objects To create a Decision Point in a Java application you need the following:
oracle.rules.sdk2.dictionary.RuleDictionary
instance. This chapter shows a car rental application that demonstrates the use of Rules SDK and the Decision Point API. You can obtain the sample application in a ZIP file, CarRentalApplication.zip
. This ZIP contains a complete JDeveloper application and project.
The source code for Oracle Business Rules-specific samples and SOA samples are available online in the Oracle SOA Suite samples page.
To work with the sample unzip CarRentalApplication.zip
into an appropriate directory. The car rental application project contains a rules dictionary and several Java examples using Rules SDK.
The Car Rental sample application shows you how to work with the Rules SDK Decision Point API.
To open the car rental sample application:
CarRental.rules
and several Java source files. The car rental sample uses the Rules SDK Decision Point API with either a pre-loaded Oracle Business Rules dictionary or a repository stored in MDS. When you are working in a development environment you can use the Decision Point API with the pre-loaded dictionary signature. In a production environment you would typically use a Decision Point with the MDS repository signature.
The CarRental dictionary is pre-defined and is available in the car rental sample application.
To work with the Decision Point API you need to create a dictionary that contains a decision function (the car rental sample application comes with a predefined dictionary and decision function).
You perform the following steps to create a dictionary and a decision function:
You need the following to add to a decision function when you create an application with a Decision Point.
To view the data model in the supplied car rental sample application:
The Java Facts tab shows four fact types imported, in addition to the fact types provided as built-in to the dictionary.
The Driver
Java Fact is imported from the Driver
Java class in the project.
The Denial
Java Fact is imported from Denial
Java class in the project.
The LicenseType
and VehicleType
facts are imported from the nested enum
classes defined in the Driver
class.
Figure 7-1 Defined Java Facts for the Car Rental Sample Application
When you use a Decision Point with Rules SDK, you call a decision function in a specified dictionary. The decision function that you call can contain one or more rulesets that are executed as part of the Decision Point.
To view the ruleset in the supplied car rental sample application:
When you work with the Decision Point API you use decision functions to expose an Oracle Business Rules dictionary. For more information on decision functions, see Chapter 6, "Working with Decision Functions".
To view the decision function in the car rental sample application:
Figure 7-2 Car Rental Sample Decision Function
The decision function Inputs table includes a single argument for a Driver fact type.
The decision function Outputs table includes a single argument for a Denial fact type.
The decision function Rulesets and Decision Functions area shows Denial Rules:if-then in the Selected box.
Figure 7-3 Car Rental Decision Function for the Car Rental Sample Application
The car rental sample includes two rulesets, one with IF/THEN rules and another containing a Decision Table. You can use either IF/THEN rules or Decision Tables or both in your application if you are using a Decision Point.
To view the rules in the car rental sample application:
Figure 7-4 Ruleset with IF/THEN Rules for the Car Rental Sample Application
The Denial Rules:if-then ruleset includes two rules:
Driver
instance age
property to the global Minimum driver age
. If the driver is under this age, then a new Denial
fact is asserted. A call to the decision function collects this Denial
fact, as defined in its output. The rule also calls a user-defined function, audit
, to provide some auditing output about why the Denial
is created. audit
, to provide some auditing output about why the Denial
is created. To view the Decision Table in the car rental application:
Figure 7-5 Ruleset with Decision Table for the Car Rental Sample Application
The car rental sample application includes the Denial Rules: decision table ruleset. To switch to use a Decision Table in the supplied decision function sample, move the Denial Rules:if-then from the Selected area in the decision function and add the Denial Rules: decision table ruleset, which uses a Decision Table to define similar rules, as shown in Figure 7-6.
Figure 7-6 Decision Function for Car Rental Sample with Decision Table Ruleset
When use Rules SDK in a development environment you of the option of using Decision Point API with a pre-loaded dictionary. In a production environment you typically use the Decision Point API with the MDS repository signature and the dictionary is stored in MDS. For more information on using a Decision Point with, see Section 7.5, "What You Need to Know About Using Decision Point in a Production Environment".
The source code for Oracle Business Rules-specific samples and SOA samples are available online in the Oracle SOA Suite samples page.
The CarRentalProject project includes the com.example.rules.demo
package that includes the car rental sample file, CarRentalWithDecisionPointUsingPreloadedDictionary.java
.
The project also includes several .java
source files that support different variations for using Decision Point. Table 7-1 provides a summary of the different versions of the car rental sample.
For more information on working with the Rules SDK Decision Point API, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules.
Table 7-1 Java Files in the Decision Point Sample CarRentalProject
Base Java Filename | Description |
---|---|
| This is the base class for all of the examples. It contains constant values for using the CarRental dictionary and a method |
| Contains a static attribute of type |
| Contains an example of creating a Decision Point that uses MDS to access and load the rule dictionary. In a production environment, most applications use the Decision Point API with MDS. |
| Contains an example of creating a Decision Point from an instance of the |
| Contains an advanced usage of the Engine API that is documented further in the comments. |
| Contains an advanced usage of the Engine API that is documented further in the comments. |
| Contains the class that defines the |
| Contains the class that defines the |
| Contains the class which can be used as a thread for simulating concurrent users invoking the Decision Point. |
To use a Decision Point you create a DecisionPoint
instance using DecisionPointBuilder
, as shown in Example 7-1.
Example 7-1 Using the Decision Point Builder
Example 7-1 shows the DecisionPointBuilder
supports a fluent interface pattern, so all methods can easily be chained together when you create a Decision Point. The three most common methods for configuring the Decision Point with DecisionPointBuilder
are overloaded to have the name with()
. Each with()
method takes a single argument of type RuleDictionary
, DictionaryFQN
, or String
. The DecisionPointBuilder
also supports similar set and get methods: getDecisionFunction()
, setDecisionFunction()
, getDictionary()
, setDictionary()
, getDictionaryFQN()
, setDictionaryFQN()
.
This chain shown in Example 7-1 includes the following steps:
DecisionPointBuilder
instance with code such as the following: with()
method using a String
argument defines the name of the decision function that the Decision Point executes. Calling this method is mandatory. The DF_NAME
specifies the name of the decision function you define for your application. For example for the sample car rental application DF_NAME
is defined in CarRental.java
as CarRentalDecisionFunction
.
with()
methods. In this case the sample code uses a pre-loaded Rule Dictionary instance, containing the specified decision function. The loadDictionary()
method loads an instance of RuleDictionary
from a file. Example 7-2 shows the loadDictionary()
method. For more information, see Section 7.3.2, "How to Use a Decision Point with a Pre-loaded Dictionary". build()
method to construct and return a DecisionPoint
instance. The DecisionPoint
instance is shared among all instances of the application, which is why it is a static attribute and created in a static block. Another way of initializing the DecisionPoint
would be to initialize the m_decisionPoint
attribute with a static method that created and returned a DecisionPoint
instance.
Example 7-2 shows the loadRuleDictionary()
method that loads an instance of RuleDictionary from a file.
When reading or writing a dictionary directly from a file as shown in Example 7-2, ensure to set the encoding to UTF-8
. If this is not done, Unicode characters used in the dictionary are corrupted. The UTF-8
option must be set explicitly in the FileInputStream
or OutputStreamWriter
constructor. Do not use Java classes such as FileReader
and FileWriter
, as these classes always use the platform default encoding which is usually an ASCII variant rather than a Unicode variant.
Example 7-2 Load Rule Dictionary Method
The car rental sample allows you to use Oracle Business Rules and simulate multiple concurrent users. Example 7-3 shows use of the Java ExecutorService
interface to execute multiple threads that invoke the Decision Point. The ExecutorService
is not part of the Rules SDK Decision Point API.
Example 7-3 Checking Drivers with Threads that Invoke Decision Point
Example 7-3 includes the following code for the sample application:
createDrivers()
, defined in CarRental.java
, to create a list of Driver
instances. Driver
instances to fill the driver list with drivers. DriverCheckerRunnable
instances. These instances open a Decision Point and run the rules on each driver. For information on this code, see Section 7.3.4, "How to Create and Use Decision Point Instances". Example 7-4 shows the code that waits for the threads to complete.
The DriverCheckerRunnable
instances call the checkDriver()
method. Example 7-5 shows the checkDriver()
method that is defined in CarRentalWithDecisionPoint
. The checkDriver()
method handles invoking Decision Point with a Driver
instance.
Example 7-5 Code to Create a Decision Point Instance with getInstance()
Example 7-5 shows the following:
DecisionPointInstance
from the static DecisionPoint
defined with the DecisionPointBuilder
, with the following code. List
as the input. This List
contains the Driver
instances: In this case the invoke()
returns a List
of length one, containing a List
of Denial
instances.
List
of any other size than one, then this is an error: List<Denial>
: Denial
instances were asserted by the rules. This indicates that it is OK to rent a car to the driver. Otherwise, print the reasons why the driver rental was rejected: In the car rental sample installed on your system, for the code shown in Example 7-2, modify the value of DICT_LOCATION
to match the location of the dictionary on your system.
To run the car rental sample on your system:
CarRental.java
file, paste the path value into the DICT_LOCATION
value. Example 7-6 shows sample output.
Example 7-6 Output from Car Rental Sample
In a production environment you can use an MDS repository to store Oracle Business Rules dictionaries. When you use an MDS repository to store the dictionary, the steps shown in Section 7.3.1, "How to Add a Decision Point Using Decision Point Builder" and Section 7.3.2, "How to Use a Decision Point with a Pre-loaded Dictionary" change to access the dictionary. The CarRentalWithDecisionPointUsingMdsRepository
shows sample code for using Decision Point with MDS.
To see a complete example with deployment steps showing the use of a Decision Point to access a dictionary in MDS, see Section 9.4, "Adding a Servlet with Rules SDK Calls for Grades Sample Application".
Example 7-7 shows the use of DictionaryFQN
with DecisionPointBuilder
to access a dictionary in an MDS repository. The complete example is shown in the sample code in CarRentalWithDecisionPointUsingMdsRepository
.
Example 7-7 Using Decision Point Builder with MDS Repository
Similar to the steps in Example 7-1, Example 7-7 shows the following:
DecisionPointBuilder
instance with. with()
method using a String
argument defines the name of the decision function that the Decision Point executes. Calling this method is mandatory. The DF_NAME
specifies the name of the decision function you define for your application. For example for the car rental application this is defined in CarRental.java
a CarRentalDecisionFunction
.
with()
methods. In this case the sample code calls a DictionaryFQN
to access an MDS repository. Example 7-8 shows the routing that uses the dictionary package and the dictionary name to create the DictionaryFQN
. build()
method to construct and return a DecisionPoint
instance. Example 7-8 Using the DictionaryFQN Method with MDS Repository
The Rules SDK API contains methods to assist with processing a decision trace. These methods process a decision trace to replace the RL names used in the trace with the aliases used in the associated dictionary. This makes the decision trace naming consistent with the naming used in the Oracle Business Rules dictionary.
The basic API for processing a decision trace requires a RuleDictionary
object and a DecisionTrace
object:
This code shows the processing call that converts the naming in the decision trace to use the same names, with aliases, as in the dictionary.
The Rules SDK Decision Point API contains methods that allow you configure decision tracing and retrieve the resulting trace when you invoke a decision point. The trace you retrieve from the Decision Point is internally processed using the processDecisionTrace()
method, thus you do not need to call this method to process the decision trace when you are working with a decision trace from a Decision Point.
Table 7-2 shows the Decision Point API methods for setting decision trace options. For more information on these methods, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.
Table 7-2 Decision Point Decision Tracing Methods
Method | Description |
---|---|
| Get the decision trace produced from the call to invoke. Returns |
| Get the decision trace level to be used by the RuleSession. This value defaults to
Return Type: String |
| Get the decision trace limit, or maximum number of trace elements which are retrieved for the trace. Return Type: int |
| Set the decision trace level to be used by the RuleSession. This parameter value is a String. Possible values are:
|
| Set the decision trace limit, or maximum number of trace elements which are retrieved for the trace. |
Example 7-9 shows a sample usage of decision tracing with DecisionPoint API.
Example 7-9 Using Decision Trace from Decision Point API
For more information on decision tracing, see "Tracing Rule Execution in Fusion Middleware Control Console" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This chapter describes how to test rules from Rules Designer of Oracle JDeveloper by using the Rules Test Framework provided by Oracle Business Rules. It also discusses how to test rules and Decision Tables by creating an Oracle Business Rules Function. In addition, it covers at run time, how to test a SOA Application that uses Oracle Business Rules through a decision service by using Oracle Enterprise Manager Fusion Middleware Control Console.
The chapter includes the following sections:
Oracle Business Rules provides a test framework that allows you to test rules with complex input parameters. This framework enables you to test rules at the time of designing so that you can validate or refine the rules as per your requirement.
Another way of testing rules is by defining a test function, where you can construct the input, execute rules, and validate the output. Because inputs are constructed and outputs are validated programmatically, test functions are typically used for simple tests, and the test framework is used for comprehensive tests. In addition, this test function is active only for functions that do not take any parameters and only return boolean values.
Oracle Business Rules provides an 'out-of-the-box' functionality that enables you to test whether the rules you are defining works fine with a given set of inputs at the time of designing. The granularity of testing provided is at the level of decision functions. When you define decision functions in a dictionary, you can define test suites and execute those test suites for each of the decision functions.
Oracle Business Rules supports multiple types of facts, such as Java facts, XML facts, RL facts, and ADFBC facts. The test framework currently only supports XML facts. So, if the decision function, which you have defined, have inputs or outputs referring to non-XML facts, the test framework cannot be used to test the decision function. If you use non-XML facts, a warning or error message is displayed indicating that you cannot use the test feature for that decision function.
To test rules, you need to create a decision function as the prerequisite.
TestDF
. songs
. artists
and fact type as Artist has been added. songs
. Note: This example uses sample schema and corresponding facts. |
Figure 8-1 The Edit Decision Function Dialog
When you create a decision function, two XML schemas (xsd files) get automatically generated to help in testing the decision function. These schemas have suffixes _TestSuite and _Types respectively. Further, these schemas are stored in an xsd folder under the testsuites folder, which can be seen in the Application Navigator as shown in Figure 8-2.
You need to define the test suites, which are created for the decision function, based on the schema with the suffix _TestSuite.
Figure 8-2 Application Navigator Displaying XSDs
The generated schema files follows the following naming convention:
As you can see in the preceding sample, the schema contains a master testSuite
element, which in turn contains an element called decisionFunction
that defines to which decision function does this test suite corresponds.The testSuite
element also contains one or more testCase
elements. Each testCase
contains a testInput
and expectedOutput
elements and a name. The testInput
values are the ones that are used as inputs to the test cases and expectedOutput
values are the ones against which the actual outputs are matched. The types of testInput
and expectedOutput
(parameterList
and resultList
respectively) have been defined in the subsequent XSD.
parameterList
and resultList
. These two types are used in the TestSuite schema but are defined here. The parameterList
type corresponds to the decision function input and the resultList
type corresponds to the decision function output. This is because a decision function has specific inputs and outputs. When you write a test case for a decision function, then the test case input need to correspond to the inputs accepted by the decision function and the expected output need to correspond to the decision function outputs. paramaterList
and the resultList
are single complexTypes. For example, a decision function requires 10 inputs and 5 outputs, then the parameterList
type will be a single ComplexType that collectively defines 10 different elements that need to be provided as the decision function input. The following is a sample of the Types.xsd:
Every time there is an update to the decision function, the corresponding two schemas get updated. For example, if you change the name of the decision function, then the names of the associated schemas are changed. If you delete the decision functions, the corresponding schemas get deleted.Even changes to the inputs and outputs of the decision function results in the associated schemas getting changed. So a decision function and its corresponding test schemas are always in sync.
In case you make any changes to the decision function, for example delete the decision function, typically the schemas get deleted. When you click the Undo icon on the dictionary toolbar, the decision function is retrieved. However, the corresponding schemas remain deleted. You need to manually regenerate the schemas for the decision function in this case. So the sync between the decision function and its corresponding test schemas is not supported in undo and redo operations.
To manually regenerate the schemas:
Click the Generate test suite schemas for all decision functions icon on the dictionary toolbar as shown in Figure 8-3.
Figure 8-3 Manually Regenerating Test Suite Schemas
When you click the icon to regenerate the test suite schemas, a bulk regeneration activity takes place, and all the test suite schemas pertaining to all the available decision functions in the dictionary gets regenerated. If the schemas already exist, those are overwritten.
This activity is particularly used in the following cases:
Note: You need to ensure that the migrated decision functions have XML facts as inputs and outputs, else the inputs and outputs defined in the test suite schema files will be empty. |
Once you have created the decision function for testing the rules, you can test rules.
To test rules:
TestDFTestSuite1
and click OK as displayed in Figure 8-4. When you create a test suite, a <test suite name>.xml file gets automatically generated and gets stored in the <base dictionary name> folder under the rules folder inside the testsuites folder. You can view the file in the Application Navigator window. For every test suite that you create, a corresponding XML file gets generated.
However, the newly created test suite file is empty, which does not contain any test case, input definitions, or output definitions.
The following is a sample test suite file containing test cases:
This executes all the test cases in the test suite file.
You can see the test details for the decision function in a tabular form.
The details contain the test suite name, the overall result, and the test case details, such as:
Figure 8-6 displays the test results.
The Comments section in the Results page displays any error details in case a test case fails.
You may have a situation where your test suite XML file does not conform to the test suite XSD file. In that case when you open the Decision Function Test window, in the Test Suite list, adjacent to the test suite name, a yellow warning triangle appears as shown in Figure 8-7.
If you try to run an erroneous test suite, you will get the following error message:
If the test suite XML file is malformed, then the test suite name does not appear in the list of test suites in the Decision Function Test window. In addition, for an invalid dictionary , when you test the Decision Function, the following error message is displayed:
Dictionary is invalid, fix validation errors and try again.
Consider a situation, where you have a base dictionary and a custom dictionary. The custom dictionary has a link to the base dictionary.
Now, navigate to the Decision Functions section of the custom dictionary. Note that the list of decision functions in the custom dictionary includes the decision functions from the linked/base dictionary. You can test the decision functions of the base dictionary from the custom dictionary.
In case your test case fails, the Results page displays the probable reasons of failure in the Comments section.
A test case can fail due to the following reasons:
The Comments section clearly states that there is a mismatch between the expected output and the actual output.
You can see that the Comments section displays that the test generated no results and some more details on the probable cause.
The Comments section displays that multiple outputs were generated on test execution along with some details on the probable cause.
This can be because the asserted fact failed to activate any rule resulting in no rules getting fired. So, the Comments section indicates that this may be due to a rule modelling error, because in all probabilities, the provided input failed to match any rule condition.
You can test rulesets by creating a decision function and calling the decision function from Rules Designer with an Oracle Business Rules function. In the body of the Oracle Business Rules function you create input facts, call a decision function, and validate the facts output from the decision function. For more information, see Section 6.1, "Introduction to Decision Functions" and Section 2.5, "Working with Oracle Business Rules Functions".
To test a decision function using an Oracle Business Rules function:
For more information on dictionary validation, see Section 4.4.4, "How to Validate a Dictionary"
For a test function, select boolean
.
In the body of the test function you can call a decision function using assign new
to call and get the return value of the decision function (in the body of the test function you create input facts, call a decision function, and validate the facts output from the decision function).
A decision function call returns a List
. Thus, to test a decision function in a test function you do the following:
List
, for example, in the following: Figure 8-8 shows a test function that calls a decision function.
Figure 8-8 Test Function to Call a Decision Function that Returns a List
The function is executed. The output is shown in a Function Test Result dialog, as Figure 8-9 shows.
Figure 8-9 Test Function Results for Grade Test
You can use Oracle Business Rules Functions to test decision functions from within Rules Designer. Keep the following points in mind when using a test function:
RL.
watch.all()
. For more information on RL Language functions, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules. In this guide, RL.watch.all()
is an alias for the RL Language function watchAll()
. RL.watch.all()
output. The dialog shows "Test Passed" when the grade is in the B range as shown in Figure 8-10. The dialog shows "Test Failed" when the grade asserted is not in the B range, as shown in Figure 8-11. Example 8-1 Function Body with True or False Return Value
For the testScore
value 81, this function returns "Test Passed" as shown in Figure 8-10. For the testScore
value 91, this returns "Test Failed", as shown in Figure 8-11.
Figure 8-10 Test Passed Test Function Output
Figure 8-11 Test Failed Test Function Output
In an SOA application that uses Oracle Business Rules with a Decision Service you can test rules at runtime with Oracle Enterprise Manager Fusion Middleware Control Console Test function.
For more information on using the Test function, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This chapter describes how to use Oracle JDeveloper to create a rule-enabled non-SOA Java EE application with Oracle Business Rules. It also shows a sample application, a Java Servlet, which runs as a Java Enterprise Edition (EE) application using Oracle Business Rules (this describes using of Oracle Business Rules without an SOA composite).
The chapter includes the following sections:
The source code for Oracle Business Rules-specific samples and SOA samples are available online in the Oracle SOA Suite samples page.
The Grades application provides a sample use of Oracle Business Rules in a Java Servlet. The servlet uses Rules SDK Decision Point API. This sample demonstrates the following:
grades.xsd
. To create the application and the project for the grades sample application, you do the following:
To work with Oracle Business Rules and create a Java EE application, you first need to create the application in Oracle JDeveloper.
To create a fusion web application (ADF) for grades:
GradeApp
. com.example.grades
. The prefix, followed by a period applies to objects created in the initial project of an application.
Figure 9-2 New Grades Application Named GradeApp
In the Grades sample application you do not use the Model or ViewController projects. You create a project in the application for the grades sample project.
To create a grades project:
Grades
. Figure 9-3 Adding Generic Project to the Grades Application
To create the Grades sample application you need to use the grades.xsd
file, shown in Example 9-1. You can create and store the schema file locally and then use Oracle JDeveloper to copy the file to your project.
Example 9-1 grades.xsd Schema
To add the XML schema to the grades project:
grades.xsd
. grades.xsd
. xsd
directory to the Grades project path name, as shown in Figure 9-4. Figure 9-4 Adding Schema to Grades Project in xsd Directory
grades.xsd
file, select the Source tab. grades.xsd
in the Grades project, as shown in Figure 9-5. Figure 9-5 Shows the Grades.xsd Schema File in the Grades Project
To generate JAXB 2.0 content model from grades schema:
After creating a project in Oracle JDeveloper create business rules within the Grades project.
To use business rules with Oracle JDeveloper, you do the following:
grades.xsd
schema To create a business rules dictionary in the business tier:
Figure 9-6 Adding a Business Rule to Grades with the Create Business Rules Dialog
GradingRules
. grades.xsd
. Figure 9-7 Shows the Type Chooser Dialog with TestScore Element
TestGrade
from the grades.xsd
schema. The resulting Create Business Rules dialog is shown in Figure 9-8.
Figure 9-8 Create Business Rules Dialog with Grades Input and Output
Figure 9-9 Shows the New Grading Rules Dictionary
Note that the business rule validation log area for the new dictionary shows several validation warnings. You remove these validation warning messages as you modify the dictionary in later steps.
To create the data model and the business rules for the Grades sample application, you do the following:
In this example you associate a bucketset with a fact type. This supports using a Decision Table where you need bucketsets that specify how to draw values for each cell in the Decision Table (for the conditions in the Decision Table).
To create the bucketset for the grades sample application:
Grade Scale
, and press Enter to accept the bucketset name. Figure 9-11 Grade Scale Bucketset with Grade Values Added
To associate a bucketset with a fact property:
To prepare for creating Decision Tables you can associate a global bucketset with fact properties in the data model. In this way condition cells in a Decision Table Conditions area can use the bucketset when you create a Decision Table.
You create rules in a Decision Table to process input facts and to produce output facts, or to produce intermediate conclusions that Oracle Business Rules can further process using additional rules or in another Decision Table.
To use a Decision Table for rules in this application you work with facts representing a test score. Then, you use a Decision Table to create rules based on the test score to produce a grade.
To add a decision table for Grades application:
testScore
. This enters the expression TestScore.testScore
for condition C1. If you view the rules validation log, you should see warning messages. You remove these warning messages as you modify the Decision Table in later steps.
To add an action to a decision table:
You add an action to the Decision Table to assert a new Grade fact.
This displays the Action Editor dialog.
This specifies that each rule independently sets the grade.
Next you add rules to the Decision Table and specify an action for each rule.
You can use the Decision Table split operation to create rules for the bucketset associated with the conditions row in the Decision Table. This creates one rule for every bucket.
To split the decision table:
The split operation eliminates the "do not care" cells from the table. The table now shows five rules that cover all ranges, as shown in Figure 9-12.
These steps produce validation warnings for action cells with missing expressions. You fix these problems in later steps when you define actions for each rule.
Figure 9-12 Splitting a Decision Table Using Split Table Operation for Grades
To add actions for each rule in the decision table:
In the Decision Table you specify a value for the result, a grade property, associated with TestGrade for each action cell in the Actions area. The possible choices for each grade property are the valid grades. In this step you fill in a value for each of the rules. The values you enter correspond to the conditions that form each rule in the Decision Table.
Figure 9-13 Adding Action Cell Values to Grades Decision Table
The name you specify when you use a decision function with a Rules SDK Decision Point must match the name of a decision function in the dictionary. To make the name match, you can rename the decision function to any name you like. Thus, for this example you rename the default decision function to use the name GradesDecisionFunction
.
To rename the decision function:
GradesDecisionFunction
, and then press Enter, as shown in Figure 9-14. Figure 9-14 Renaming Decision Function in Rules Designer
The Grades sample application includes a servlet that uses the Rules Engine.
To add this servlet with Oracle Business Rules you need to understand the important Rules SDK methods. Thus, to use the Oracle Business Rules dictionary you created with Rules Designer, you do the following:
init
routine. service
routine using the Rules SDK Decision Point API. For more information on Rules SDK Decision Point API, see Chapter 7, "Working with Rules SDK Decision Point API".
You add a servlet to the grades project using the Create HTTP Servlet wizard.
To add a servlet to the Grades project with Oracle JDeveloper:
Oracle JDeveloper displays the Create HTTP Servlet Welcome page, as shown in Figure 9-15.
Figure 9-15 Create HTTP Servlet Wizard - Welcome
This displays the Web Application page, as shown in Figure 9-16.
Figure 9-16 Create HTTP Servlet Wizard - Web Application
This displays the Create HTTP Servlet - Step 1 of 3: Servlet Information page.
GradesServlet
com.example.grades
HTML
unchecked
Figure 9-17 Create HTTP Servlet Wizard - Step 1 of 3: Servlet Information
This displays the Create HTTP Servlet: Step 2 of 3: Mapping Information dialog as shown in Figure 9-18.
Figure 9-18 Create HTTP Servlet Wizard - Step 2 of 3: Mapping Information
GradesServlet
/gradesservlet
JDeveloper adds a Web Content folder to the project and creates a GradesServlet.java
file and opens the file in the editor as shown in Figure 9-19.
Example 9-2 Business Rules Using Servlet for Grades Application
Example 9-2 includes a Oracle Business Rules Decision Point, that uses an MDS repository to access the dictionary. For more information, see Section 7.5, "What You Need to Know About Using Decision Point in a Production Environment".
When you add the Servlet shown in Example 9-2, note the following:
init()
method the servlet uses the Rules SDK Decision Point API for Oracle Business Rules. For more information on using the Decision Point API, see Chapter 7, "Working with Rules SDK Decision Point API". DecisionPointBuilder()
requires arguments including a decision function name and, in a production environment a dictionary FQN to access a dictionary in an MDS repository, as shown: For more information on using the Decision Point API, see Chapter 7, "Working with Rules SDK Decision Point API".
The Grades sample application includes an HTML test page that you use to invoke the servlet you created in Section 9.4, "Adding a Servlet with Rules SDK Calls for Grades Sample Application".
To add an HTML page to the servlet you use the Create HTML File wizard.
To add an HTML test page:
Oracle JDeveloper displays the Create HTML File dialog.
index.html
C:\JDeveloper\mywork\GradeApp\Grades\public_html
JDeveloper adds index.html
to the Web Content folder and opens the editor.
index.html
, select the Source tab. index.html
file. Note that in the form
element action
attribute uses the URL Pattern you specified in Figure 9-18.
Example 9-3 HTML Test Page
Business rules are deployed as part of the application for which you create a deployment profile in Oracle JDeveloper. You deploy the application to Oracle WebLogic Server.
You deploy the GradeApp sample application using JDeveloper with Oracle WebLogic Server.
To create the WAR file for the grades sample application:
Figure 9-21 Project Properties - Deployment
This displays the Create Deployment Profile dialog.
grades
, as shown in Figure 9-22. Note the Name value uses the package value that you specified in the form
element action
attribute in Example 9-3. Figure 9-22 Create Deployment Profile Dialog for WAR File
This displays the Edit WAR Deployment Profile Properties dialog.
C:\JDeveloper\mywork\GradeApp\Grades\deploy\grades.war
grades
. Figure 9-23 Edit WAR Deployment Properties - General
JDeveloper creates a deployment profile named grades (WAR File)
as shown in Figure 9-24.
Figure 9-24 Project Properties - Deployment Profile Created
To add the rules library to the weblogic-application file:
oracle.rules
library reference to the weblogic-application.xml file
. Add the following lines, as shown in Figure 9-25. Figure 9-25 Adding Oracle Rules Library Reference to WebLogic Descriptor
weblogic-application.xml
file. To add the MDS deployment file:
This displays the Application Properties dialog.
Figure 9-26 Application Properties - Deployment
This displays the Create Deployment Profile dialog.
MAR File
metadata1
Figure 9-27 Create Deployment Profile Dialog for MAR File
This displays the Edit MAR Deployment Properties dialog as shown in Figure 9-28.
Figure 9-28 Edit MAR Deployment Profile Properties - MAR Options
This displays the Add Contributor dialog.
GradingRules.rules
dictionary file. In this example, navigate to C:\JDeveloper\mywork\GradeApp\Grades
and click Select.
Figure 9-29 Edit MAR Deployment Profile Properties - User Metadata
This displays the Directories page as shown in Figure 9-30.
Figure 9-30 Edit MAR Deployment Profile Properties - Directories
JDeveloper creates an application deployment profile named metadata1 (MAR File)
as shown in Figure 9-31.
Figure 9-31 Application Properties - Deployment - MAR
Add an EAR file to the Grades sample application.
To add the ear file to the grades sample application:
EAR
grades
Figure 9-32 Create Deployment Profile Dialog for EAR File
Figure 9-33 Edit EAR Deployment Profile Properties - Application Assembly
JDeveloper creates an application deployment profile named grades(EAR File)
as shown in Figure 9-34.
Figure 9-34 Application Properties - Deployment - EAR
You can now deploy and run the grades sample application on Oracle WebLogic Server.
To deploy the grades sample application:
Figure 9-35 Deployment Configuration Dialog for MDS with Repository and Partition
After you deploy the grades sample application, you can run the application.
To run the grades sample application:
http://yourServerName:port/grades/
This displays the test servlet as shown in Figure 9-36.
Figure 9-36 Grades Sample Application Servlet
The first time you run the servlet there may be a delay before any results are returned. The first time the servlet is invoked, during servlet initialization the runtime loads the dictionary and creates a rule session pool. Subsequent invocations do not perform these steps and should run much faster.
Figure 9-37 Grades Sample Application Servlet with Results
This chapter describes how Oracle Business Rules allows you to use Oracle ADF Business Components view objects as facts to assert trees of view object graphs representing the business objects upon which rules should be based, and let Oracle Business Rules handle the complexities of managing the relationships between the various related view objects in the main view object's tree.
The chapter includes the following sections:
The ADF Business Components rule development process can be summarized as follows:
When an ADF Business Components view object is imported into an Oracle Business Rules data model, an ADF Business Components fact type is created which has a property corresponding to each attribute of the view object, as shown in Figure 10-1.
Additionally, the ADF Business Components fact type contains the following:
oracle.jbo.Row
instance that each fact instance represents. oracle.rules.sdk2.decisionpoint.KeyChain
object. You can use this property to retrieve the set of key-values for this row and its parent rows. Figure 10-1 ADF Business Components Sample Fact Type
Note the following:
The ADF Business Components fact type importer correctly determines which relationships are 1-to-1 and which are 1-to-many and generates definitions in the dictionary accordingly. For 1-to-many relationships the type of the property generated is a List
which contains facts of the indicated type at runtime.
If you need to call such methods then add the view object implementation to the dictionary as a Java fact type instead of as an ADF Business Components fact type. In this case, all getters and setters and other methods become available but the trade-off is that related view objects become inaccessible and, should related view object access be required, these relationships must be explicitly managed.
MetadataHelper
and ADFBCFactTypeHelper
classes. For more information, see Oracle Fusion Middleware Java API Reference for Oracle Business Rules. With Rules SDK, the primary way to update a view object within a Decision Point is with an action type. An action type is a Java class that you import into the rule dictionary data model in the same way you import a rule pattern fact type Java class. A new instance of this action type is then asserted in the action of a rule and then processed by the Postprocessing Ruleset in the DecisionPointDictionary
.
A Java class to be used as an action type must conform to the following requirements:
oracle.rules.sdk2.decisionpoint.ActionType
or oracle.rules.sdk2.decisionpoint.KeyedActionType
. By subclassing KeyedActionType
the Java class inherits a standard oracle.rules.sdk2.decisionpoint.KeyChain
attribute, which may be used to communicate the rule fact's primary keys and parent-keys to the ActionType
instance.
exec
method for the ActionType
. The exec
method should contain the main action which you want to perform. JavaBean
interface (that is, each property must have a getter and setter method). Example 10-1 shows a sample ActionType
implementation.
Example 10-1 Implementing an ActionType
In Example 10-1, there is an oracle.rules.sdk2.decisionpoint.DecisionPointInstance
as a parameter to the exec
method. Table 10-1 shows the methods in DecisionPointInstance
that an application developer might need when implementing the ActionType
exec
.
Table 10-1 DecisionPointInstance Methods
Method | Description |
---|---|
| Supplies a If you intend to use the decision function from a Decision service, use only String values. |
| Gives access to the Oracle Business Rules RuleSession object from which static configuration variables in the Rule Dictionary may be accessed. |
| If populated by the caller, supplies a String value to be used for Set Control indirection. |
| Provides a transaction object so that action types may make persistent changes in the back end. |
| Adds a named result to the list of output values in the form of a String key and Object value. Output is assembled as a |
Using Rules Designer you can select parameters appropriate for the ActionType
you are configuring.
You can use a Decision Point to execute a decision function. There are certain Decision Point methods that only apply when working with ADF Business Components Fact types. For more information on decision functions, see Chapter 6, "Working with Decision Functions".
When you use ADF Business Components fact types you invoke a decision function using the Rules SDK Decision Point interface.
To call a decision function using the Rules SDK Decision Point interface:
DecisionPoint
instance using the DecisionPointBuilder
. For more information, see Section 7.3.1, "How to Add a Decision Point Using Decision Point Builder".
DecisionPointInstance
using the DecisionPoint
method getInstance
. DecisionPointInstance
using DecisionPointInstance
method addInput
, setInputs
, or setViewObject
. These are either ViewObject
or ViewObjectReference
instances. These must be added in the same order as they are declared in the decision function input. For more information, see Section 10.2.1.3, "Calling the Invoke Method for an ADF Business Components Rule" DecisionPointInstance
. For more information, see Section 10.2.1.1, "Setting the Decision Point Transaction".
For more information, see Section 10.2.1.2, "Setting Runtime Properties".
DecisionPointInstance
method invoke
. For more information, see:
The Oracle Business Rules SDK framework requires an oracle.jbo.server.DBTransactionImpl2
instance to load a ViewObject
and to provide ActionType
instances within a transactional context. The class oracle.jbo.server.DBTransactionImpl2
is the default JBO transaction object returned by calling the ApplicationModule
method getTransaction
. Setting the transaction requires calling the DecisionPointInstance
method setTransaction
with the Transaction
object as a parameter.
Should a DBTransaction
instance not be available for some reason, the Oracle Business Rules SDK framework can bootstrap one using any of the three provided overrides of the setTransaction
method.
These require one of:
javax.sql.DataSource
object and a flag to specify whether the DataSource
represents a JTA transaction or a local transaction. Runtime properties may be provided with the setProperty
method. These can then be retrieved by ActionType
instances during their execution. If no runtime properties are needed, you may safely omit these calls.
The ViewObject
to be used in a Decision Point invocation can be specified in one of two ways, as shown in Table 10-2.
Table 10-2 Setting the View Object for a Decision Point Invocation
ViewObject Set Method | Description |
---|---|
| The decision function is invoked once for each Section 10.3.9.3, "How to Add Retract Employees Ruleset" shows this usage. To use |
| The decision function is invoked once with all of the |
Example 10-2 shows how to invoke a Decision Point with a ViewObject
instance using the setInputs
method. For the complete example, see Example 10-5.
Example 10-2 Invoking a Decision Point Using setInputs Method
Example 10-3 shows how to invoke a DecisionPoint
using the setViewObject
method to set the ViewObject
.
Example 10-3 Invoking a Decision Point Using setViewObject Method
Care must be taken when invoking Decision Points using a view object that loads large amounts of data, since the default behavior of the JBO classes is to load all data eagerly. If a view object with many rows and potentially very many child rows is loaded into memory, not only is there risk of memory-exhaustion, but DML actions taken based on such large data risk using all rollback segments.
To call a decision function with a ruleset using ADF Business Components fact types with the Oracle Business Rules SDK Decision Point interface you must configure the decision function with certain options. For more information on using decision functions, see Chapter 6, "Working with Decision Functions".
To define a decision function using the Java Decision Point interface:
The inputs, when working with an application using ADF Business Components fact types, are the ADF Business Components view objects used in your rules.
When you use the setViewObject
method with a Decision Point, the List attribute should be unselected. Each Input fact type should have the List attribute selected when you are using addInput
or setInputs
methods with the Decision Point. Optionally, depending on the usage of the view objects, select the Tree attribute:
For more information, see Section 10.2.1, "How to Call a Decision Point with ADF Business Components Facts".
When calling a decision function using the Java Decision Point interface for a decision function that uses ADF Business Components fact types, Output Fact Types should be left empty. The view object is updated using an ActionType
. For more information, see Section 10.1.2, "Understanding Oracle Business Rules Decision Point Action Type".
Both rulesets and decision functions may be included in the definition of a decision function. It is common for an application to require some rules or decision functions which act as "plumbing code". Such applications include components that perform transformations on the input data, assert auxiliary facts, or process output facts. The plumbing code may need to run before or after the rules that contain the core business rules of the application. You can separate these application concerns and their associated rules from the application functional concerns using nested decision functions. Using nested decision functions, the inner decision function does not contain the administrative, plumbing-oriented concerns, and thus only presents those rules which define the core logic of the application. This design eliminates the need for the user to understand the administrative rules and prevents a user from inappropriately modifying these rules (and possibly rendering the system inoperable due to these changes).
To create a configuration using multiple rulesets and nested decision functions, create two decision functions and add one to the other. A good naming scheme is to suffix the nested inner decision function with the name Core
. The user specified rulesets can be added to the inner Core
decision function. For example, DecisionFunction_1 can be defined to run the DecisionPointDictionary.Preprocessing decision function, the DecisionFunction_1Core decision function, and the DecisionPointDictionary.Postprocessing decision function. For this example, DecisionFunction_1Core contains the core business logic rulesets.
It is also common for the input of a Decision Point to be an ADF Business Components fact type that is the root of a tree of ADF Business Components objects. However, the user might only write business rules that match on a subset of the types found in the tree. In this case, it is a good practice to define the inputs of the nested decision functions to be only the types which are actually matched in the contained rulesets. For example, consider a Decision Point calling a decision function whose input is an Employee
fact type with the Tree option selected; if this decision function includes a nested decision function with rulesets that only matched on the Department
fact type. In this case, the nested decision function could either have as its input specified as an Employee
fact type with the Tree option selected, or a Department
fact type with the List option selected. For this example, the Tree option causes the children of the Employee
instances, including the Department
instances to be asserted (due to the one-to-many relationship between these types). If Employee
is an input to the outer decision function and the Tree option is selected, the then Department
fact type instances are asserted, and you can identify the signature on the inner decision function as a list of Department
instances (these are the exact types which are being matched on for this decision function).
The ADF Business Components sample application shows the use of ADF Business Component fact types.
The source code for Oracle Business Rules-specific samples and SOA samples are available online in the Oracle SOA Suite samples page.
To work with Oracle Business Rules with ADF Business Components facts, you first need to create an application and a project in Oracle JDeveloper.
To create an application that uses ADF Business Components facts:
Chapter10
. com.example
. This should be a globally unique prefix and is commonly a domain name owned by your company. The prefix, followed by a period, applies to objects created in the initial project of an application.
In this sample, use the prefix com.example
.
You need to add a new project named Chapter10.
Add a new project:
Chapter10
. You need to add ADF Business Components from a database table. For this example we use the standard HR database tables.
To add ADF Business Components:
Figure 10-2 Selecting Entity Objects for Sample Application
Figure 10-3 Adding Updatable View Objects for Sample Application
You should tune the ViewObject
to meet the performance requirements of your application.
To set tuning options for EmployeesView:
To set tuning options for DepartmentsView:
You use Oracle JDeveloper to create an Oracle Business Rules dictionary.
To create a dictionary:
Chapter10Rules
. com.example
. Figure 10-4 Create Business Rules for Chapter10Rules Dictionary
JDeveloper creates the dictionary and opens the Chapter10Rules.rule
s file in Rules Designer, as shown in Figure 10-5.
You need to add a dictionary links to the Oracle Business Rules supplied Decision Point Dictionary. This dictionary supports features for working with the Decision Point interface with ADF Business Components objects.
Add decision point dictionary links:
Figure 10-6 Adding a Dictionary Link to Decision Point Dictionary
You import ADF Business Components facts with Rules Designer to make these objects available when you create rules.
Import the ADF Business Components facts:
Figure 10-7 ADF Business Components Facts in Rules Designer
ADF Business Components Facts can include a circular reference, as indicated with the validation warning:
When this warning is shown in the Business Rule validation log, you need to manually resolve the circular reference. To do this you deselect the Visible checkbox for one of the properties that is involved in the circular reference.
To mark a property as non-visible:
To set alias for DepartmentsView and EmployeesView:
The sample code that runs the outside manager ruleset invokes the Decision Point with the view object set using the setInputs
method. This invokes the decision function once, with all of the view object rows loaded in a List
. Note that invoking the Decision Point this way is not scalable, because all of the view object rows must be loaded into memory at the same time, which can lead to OutOfMemory exceptions. Only use this invocation style when there are a small and known number of view object rows. You can also use a Decision Point with setViewObject
. For more information, see Section 10.2.1, "How to Call a Decision Point with ADF Business Components Facts".
After the view objects are imported as facts, you can rename the ruleset and create the decision function for the application.
To rename the ruleset:
Outside Manager Ruleset
to rename the ruleset. To add a decision function:
FindOutsideManagers
. In this decision function you do not define any outputs because you use the ActionType
API for taking action rather than producing output. For more information, see Section 10.1.2, "Understanding Oracle Business Rules Decision Point Action Type".
Figure 10-8 Adding the Find Outside Managers Decision Function
If they are not, select an item and use the Move Up and Move Down buttons to correct the order.
Several warnings appear. These warnings are removed in later steps when you add rules to the ruleset.
To create the sample application and to modify the view object in a rule, you need to create a Java implementation class for abstract class oracle.rules.sdk2.decisionpoint.ActionType
. All subclasses of ActionType
must implement the abstract exec
method.
To create the ActionType Java implementation class:
MessageAction
. com.example
. oracle.rules.sdk2.decisionpoint.ActionType
. Figure 10-9 Creating the Message Action Type Java Class
Oracle JDeveloper displays the Java Class.
Example 10-4 ActionType Java Implementation
MessageAction.java
and from the list select Make. You just created a new Java class and you need to add this class as a Java fact type in Rules Designer to use later when you create rules.
To create the Java fact type:
com
and example
to display the MessageAction checkbox. Figure 10-10 Create Java Fact with Message Action Type
This adds the fact to the table, as shown in Figure 10-11.
Figure 10-11 Adding the Message Action Type Java Fact
You add the rule to find the managers that are in a different departments than their employees.
To add the find managers in different departments rule:
Figure 10-12 Adding the Find Managers in Different Departments Rule
Figure 10-13 Find Managers in Different Departments Rule
Add the outside manager finder class. This uses the Decision Point to execute a decision function.
To add the Outside Manager Finder Class:
OutsideManagerFinder
. Example 10-5 Outside Manager Finder Java Class with Decision Point
You need to update the ADF-META-INF
file with MDS information for accessing the dictionary. You can use a local file with MDS to access the Oracle Business Rules dictionary. However, this procedure is not the usual dictionary access method with Oracle Business Rules in a production environment. For information on using a Decision Point to access a dictionary with MDS in a production environment, see Section 7.5, "What You Need to Know About Using Decision Point in a Production Environment".
Update ADF-META-INF:
adf-config.xml
source. adf-config.xml
, before the closing </adf-config>
tag, as shown in Example 10-6. Example 10-6 Adding MDS Elements to adf-config.xml for Local Dictionary Access
<property>
element with the attribute metadata-path
, change the path to match .adf
directory in the application on your system. Copy definitions to MDS accessible location:
Copy dictionary to MDS accessible location:
You can build and test the project by running the find managers with employees in different departments rule.
Build the OutsideManagerFinder configuration:
OutsideManagerFinder
. src\com\example
folder. Run the project:
Example 10-7 Running the OutsideManagerFinder Ruleset
The sample code that runs the department manager ruleset invokes the Decision Point with the view object set using the setViewObject
method. This invokes the decision function once for each row in the view object. All decision function calls occur in the same RuleSession. Between decision function calls, the RuleSession preserves all state from the previous decision function call. Thus, any objects asserted during the previous call remain in working memory for the next call unless they are explicitly retracted by rulesets that you supply. When the state is maintained, you can retract all facts or selectively retract facts between calls by running a ruleset with rules that use the retract action. This ruleset is run as part of the same decision function that you use with the Decision Point. The retract all employees ruleset demonstrates retracting these facts, as shown in Figure 10-15. For more information, see Section 10.2.1, "How to Call a Decision Point with ADF Business Components Facts".
You now add the department manager finder ruleset.
To add the department manager finder ruleset:
Department Manager Finder Ruleset
. Next you add the Find rule to find department managers. This rule demonstrates the use of Tree Mode rules with Oracle ADF Business Components fact types.
Add department manager finder rule:
Find
. Figure 10-14 Adding the Find Rule to the Department Manager Finder Ruleset
You add a ruleset to retract the employee fact type instances. This ensures that the Employee fact type is removed between invocations of the decision function.
To add the retract employee ruleset:
Figure 10-15 Adding the Retract All Employees Rule
Now you create the decision function for the department manager finder ruleset. You use this decision function to execute the ruleset from a Decision Point.
To add a decision function for department manager finder ruleset:
FindDepartmentManagers
. In this decision function you do not define any outputs, because you use the ActionType
API for taking action rather than producing output.
Figure 10-16 Adding the Find Department Managers Decision Function
If they are not, select an item and use the Move Up and Move Down buttons to correct the order.
Add the department manager finder class. This class include the code with the Decision Point that executes the decision function.
Add the department manager finder class:
DeptManagerFinder
. Example 10-8 Department Manager Finder Class
Copy the updated dictionary to an MDS accessible location.
Copy dictionary to MDS accessible location:
.adf
directory. You can build and test the project to execute the department manager finder ruleset.
Build the project:
DeptManagerFinder
. src\com\example
directory. Run the project:
Example 10-9 Output from Department Manager Finder Ruleset
When you see duplicate entries in the output, when working with tree mode rules in this example, the duplicate entries are due to multiple rule firings on the same data in a different part of the view object graph.
The sample code that runs the raises ruleset invokes the Decision Point by specifying the view object using the setViewObject
method. This invokes the decision function once for each row in the view object. The retract employees ruleset retracts all instances of Employee
asserted for each call, so that they do not remain in working memory between calls to the decision function. The action type shown in Example 10-10 shows how to change the ViewRowImpl
attribute values with a ActionType
. For more information, see Section 10.2.1, "How to Call a Decision Point with ADF Business Components Facts".
You now add the raises ruleset.
To add the raises ruleset:
Raises Ruleset
. To create this part of the sample application and to modify the view object in the raises rule, you need to create a Java implementation class for the abstract class oracle.rules.sdk2.decisionpoint.ActionType
. All subclasses of ActionType
must implement the abstract exec
method.
To create the raise ActionType Java implementation class:
RaiseAction
. com.example
. oracle.rules.sdk2.decisionpoint.ActionType
. Figure 10-17 Creating the Raise ActionType Java Class
Oracle JDeveloper displays the Java Class.
Example 10-10 ActionType Java Implementation
RaiseAction.java
and from the list select Make. You just created a new Java class. You import this class as a Java fact type in Rules Designer to use later when you create rules.
To create the Java fact type:
ManagerRules.rules
dictionary. com
and example
to display the RaiseAction checkbox. Figure 10-18 Create Java Fact from Raise Action Class
This adds the Raise Action fact type to the Java Facts table.
This rule shows how to use action types to update database entries.
To add 12 year raise rule:
Longer than 12 years
. Figure 10-19 Adding the Longer Than 12 Years Rule to the Raises Ruleset
Now create the decision function for the employee raises and the retract all employees rulesets.
To add a decision function:
EmployeeRaises
. In this decision function you do not define any outputs, because you use the ActionType
API for taking action rather than producing output.
Figure 10-20 Adding the Employee Raises Decision Function
If they are not, select an item and use the Move Up and Move Down buttons to correct the order.
Add the employee raises class. This executes the decision function.
To add the employee raises class:
EmployeeRaises
. Example 10-11 DeptManagerFinder Class
Copy the updated dictionary to the MDS accessible location.
Copy dictionary to MDS accessible location:
.adf
directory. You can build and test the project by running employee raises ruleset.
Build the project:
EmployeeRaises
. src\com\example
folder. Run the project:
Example 10-12 Output from Raises Ruleset
This chapter discusses the Decision components that support Oracle Business Rules. It also covers how to use a Decision component as a mechanism for publishing rules and rulesets as a reusable service that can be invoked from multiple business processes.
A Decision Component is a SCA component that can be used within a composite and wired to a BPEL component. Apart from that, Decision Components are used for dynamic routing capability of Mediator and Advanced Routing Rules in Human Workflow.
This chapter includes the following sections:
A Decision component is a Web service that wraps a rule session to the underlying decision function.
A Decision component consists of the following:
For example, a credit rating ruleset may expect a customer ID and previous loan history as facts, but a pension payment ruleset may expect a value with the years of employee service, salary, and age as facts.
For more information, see Section 11.2.1, "Working with Decision Component Metadata".
This service lets business processes assert and retract facts as part of the process. In some cases, all facts can be asserted from the business process as one unit. In other cases, the business process can incrementally assert facts and eventually consult the rule engine for inferences. Therefore, the service has to support both stateless and stateful interactions.
You can create a variety of such business rules service components.
For more information, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Using Oracle JDeveloper with Rules Designer these tools automatically generate all required metadata and WSDL operations. The Decision component can be integrated into an SOA composite application in the following ways:
For more information, see "Getting Started with Oracle Business Rules" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
For more information, see "Getting Started with Oracle Business Rules" in the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
This integration provides the following benefits:
A Decision component is defined by the following files:
Typically, Oracle JDeveloper generates and maintains these files.
Every Decision component within a composite comprises one business rule metadata file. The business rule metadata file provides information about the location of the component business rule dictionary and the Decision Services exposed by the Decision component.
One Decision component might expose one or more Decision Services. For example a CreditRating Decision component might expose two services, CheckEligibility and CalculateCreditRating.In Oracle Fusion Middleware 11g Release 1 (11.1.1), the Decision Service metadata comprises the decision function name that is being exposed as a Web service. For projects that are migrated from older releases of Oracle SOA Suite, the Decision Service metadata typically has more information depending on the interaction pattern used in 10.1.3.x.
The business rule metadata file (business_rule_name
.decs
) defines the contract between the components involved in the interaction of the business rule with the design time and back-end Oracle Rules Engine.
This file is in the SOA Content area of the Application Navigator in Oracle JDeveloper for your SOA composite application. Table 11-1 describes the top-level elements in the Decision service .decs
file.
Table 11-1 Decision Metadata File (.decs) Top-level Elements
Element | Description |
---|---|
| The <ruleEngineProvider name="OracleRulesSDK" provider="Oracle_11.0.0.0.0"> <repository type="SCA-Archive"> <path>AutoLoanComposite/oracle/rules/AutoLoanRules.rules</path> </repository> </ruleEngineProvider> The repository type is set to
|
| A Decision service is a Web service (or SOA) enabler of business rules. It is a service in the sense of a Web service, thus opening the world of business rules to service-oriented architectures (SOA). In 11g Release 1 (11.1.1.6.1), a Decision service consists of metadata and a WSDL contract for the service. The In general, a Decision service includes the following elements:
Apart from the operations (patterns), the parameter types (or fact types) of operations are specified (and validated later at runtime). Therefore, every Decision service exposes a strongly-typed contract. |
An SCA business_rule_name.componentType
file is included with each Decision component. This file lists the services exposed by the business rules service component. In the following sample, two services are exposed: CreditRatingService
and LoanAdvisorService
.
An entry in composite.xml
is created for a decision component. For example,
The business rules service engine uses the information from this implementation type to process requests for the Service Engine. From an SCA perspective, a Decision Component is a new "implementation type".
You can use a Decision service to expose an Oracle Business Rules Decision Function as a service. A decision function is a function that is configured declaratively, without using RL Language programming that you use to call rules from a Java EE application or from a BPEL process.
Example 11-1 shows a business_rule_name
.decs
file decisionServices
element that defines the metadata for an Oracle Business Rules Decision Function exposed as a service.
Example 11-1 decisionService for Decision Function Execution
In this case, the decision function ValidatePurchasesDF
itself is specified entirely in the PurchaseItems.rules
file.
For more information, see, Chapter 6, "Working with Decision Functions".
To provide a stateful Decision service you create a decision function and specify that the decision function is not stateless. To do so you deselect the Stateless checkbox in a decision function.
Note the following details about stateful interactions with a decision component (also see Figure 11-2):
A Decision Component running in a Business Rules service engine supports either stateful or stateless operation. The Reset Session (stateless) checkbox in the Create Business Rules dialog provides support for these two modes of operation.
When the Reset Session (stateless) checkbox selected, this indicates stateless operation.
When Reset Session (stateless) checkbox is unselected, the underlying Oracle Business Rules object is kept in memory of the Business Rules service engine at a separate location (so that it is not given back to the Rule Session Pool when the operation is finished). Only use stateful operation if you know you need this option (some errors can occur at runtime when using stateful operation and these errors could use a significant amount of service engine memory).
When Reset Session (stateless) checkbox is unselected, a subsequent use of the Decision component reuses the cached RuleSession object, with all its state information from the callFunctionStateful
invocation, and then releases it back to the Rule Session pool after the callFunctionStateless
operation is finished.
A Decision service consists only of the service description. All other artifacts are shared within a decision component as shown in Figure 11-1.
Figure 11-1 Decision Service Architecture
The heart of runtime is the Decision service cache, which is organized in a tree structure. Every decision component owns a subtree of that cache (depending on the composite distinguished name (DN), component, and service name). In this regard, Decision services of a decision component share the following data:
For more information, see Section 11.2.3, "Using Stateful Interactions with a Decision Component".
Figure 11-2 shows how both stateless and stateful rule sessions interact with the rule session pool and how stateful rule sessions interact with the stateful rule session cache during a Decision service request.
Figure 11-2 Stateless and Stateful Rule Session Usage for a Decision Service Request
This chapter describes how to use the Oracle SOA Composer application (Oracle SOA Composer) to work with a deployed dictionary and tasks that are part of an SOA composite application at run time.
The chapter includes the following sections:
Oracle SOA Composer is a Web-based application that allows you to work with Oracle Business Rules dictionaries and tasks for deployed applications. Figure 12-1 shows how Oracle SOA Composer accesses a dictionary or a task in an MDS repository.
Figure 12-1 Oracle SOA Composer Architecture
Figure 12-2 shows the Oracle SOA Composer login page. This page allows Oracle SOA Composer to authenticate the specified user.
Figure 12-2 Oracle Oracle SOA Composer Login Page
To login to Oracle SOA Composer:
http://
SERVER_NAME_OR_IP_ADDRESS
/soa/composer
For information on creating and managing users and groups, see Oracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help.
Oracle SOA Composer supports user and password access control and only authenticated users can use Oracle SOA Composer. However, Oracle SOA Composer does not provide finer grained access control. For example, Oracle SOA Composer does not support access control for individual rulesets or rules within a dictionary.
Oracle SOA Composer does support access control to metadata. Using Oracle SOA Composer, only users with the SOADesigner application role can access the metadata from Oracle SOA Composer. By default all the users with the WLS Administrator privileges have this role.
If a user without the SOADesigner role logs into Oracle SOA Composer, a message is shown indicating the user is not authorized to modify the SOA metadata, as shown in Figure 12-3.
Figure 12-3 SOA Composer Unauthorized Metadata Access Message
For more information on assigning the SOADesigner role to a nonadmin user who requires access to Oracle SOA Composer, see "Managing Application Roles in Oracle Enterprise Manager Fusion Middleware Control Console" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
After you login to Oracle SOA Composer you can select a document to open. Oracle SOA Composer supports viewing and editing different types of metadata, including a DVM document or an Oracle Business Rules dictionary. In Oracle SOA Composer, you can open either an Oracle Business Rules dictionary or a DVM file with the Open menu as shown in Figure 12-4.
Figure 12-4 Oracle Oracle SOA Composer Open Menu Options
To open an Oracle Business Rules dictionary using the Open menu:
Figure 12-5 Oracle SOA Composer with Oracle Business Rules Dictionaries
Figure 12-6 Oracle Business Rules Dictionary Open in Oracle SOA Composer View Mode
As shown in Figure 12-6, Oracle SOA Composer shows a dictionary that displays a left-side panel with a list of tabs and links. Dictionary details for the selected item are shown on the right-hand side. Oracle SOA Composer includes the following tabs:
Note: Functions are not supported in Oracle SOA Composer. |
By default, a dictionary is opened in the view mode. If a dictionary is previously opened in the edit mode and the changes made, if any, are not reverted, the next time when you open it, Oracle SOA Composer opens the dictionary in the edit mode. For more information on Edit mode, see Section 12.4, "Getting Started with Editing and Saving a Dictionary at Run Time".
To open an Oracle Business Rules dictionary directly using a known URL:
Figure 12-7 Using Link Dialog to Obtain the URL for an Open Dictionary
For example,
SERVER_NAME
_OR_IP_ADDRESS/soa/composer?docPath=/deployed-composites/default/BusinessRulesTest_rev1.0/oracle/rules/businessrulestest/OrderBooking.rulesAccording to the preceding example, composites are stored as per the following structure: deployed-composites/composite name_revcomposite revision
/oracle/rules/dictionary package path
/dictionary name
.rules
To open and edit a recently edited dictionary using the My Edits option:
If you recently edited a dictionary, then you can use the Open menu My Edits option to open and edit a dictionary.
Figure 12-8 Using Open My Edits Option to Open a Dictionary
To open a ruleset in an Oracle Business Rules dictionary:
Figure 12-9 Opening a Ruleset from the Contents Field in Oracle SOA Composer
Note: You can also open a ruleset by first selecting a row in the Select a dictionary to open dialog box and then clicking the Open button. This opens the first ruleset of the selected rules dictionary as the default tab. |
When you use the Open menu and select Open Rules to open a dictionary, Oracle SOA Composer shows you all the metadata artifacts associated with the soa-infra that is co-located with the running Oracle SOA Composer application. From the supplied list, as shown in Figure 12-9, you select the composite, dictionary, and ruleset to open.
The Select a Dictionary to Open dialog includes a Rules File field. When you hold the mouse over the values in the Rules File field, Oracle SOA Composer shows a "Complete Path" popup that includes the dictionary path, as shown in Figure 12-10.
Figure 12-10 Showing the Dictionary Rules File Complete Path from the Open Dialog
When you open a dictionary Oracle SOA Composer displays the Globals tab. The Globals tab only shows final global variables (global variables with Final option selected). Final global variables from linked dictionaries are also displayed in the Globals tab. However, these linked global variables are not editable even in the edit mode.
You cannot create or delete global variables. From the Globals tab, in edit mode, you can edit the Name, Description, and Value fields. For the Value field, you can use the expression builder to set the value. To check for validity, you can click Validate button on the Oracle SOA Composer menu bar. In view mode, the edit operations are not available. For information on using the Oracle SOA Composer edit mode, see Section 12.4, "Getting Started with Editing and Saving a Dictionary at Run Time".
To view globals in Oracle SOA Composer:
Figure 12-11 Using the Oracle SOA Composer Rules Dictionary Globals Tab
When you open a dictionary and select the Bucketsets tab, if the dictionary contains bucketsets, the table shows all the bucketsets. Bucketsets from linked dictionaries are also displayed in the Bucketsets table. You can select a linked bucketset and click the Edit button to view the buckets. However, a linked bucketset is not editable even in the edit mode.
For information on the Oracle SOA Composer edit mode, see Section 12.4, "Getting Started with Editing and Saving a Dictionary at Run Time".
To view bucketsets in Oracle SOA Composer:
Figure 12-12 Using the Oracle SOA Composer Rules Dictionary Bucketsets Tab
In Oracle SOA Composer, you can view the names of the dictionaries to which the current dictionary is linked by using the Links tab on the left-side panel as shown in Figure 12-13. Currently, even in the edit mode, you can only view the linked dictionary names, but you cannot link to a dictionary or delete an existing link to any dictionary.
To view linked dictionary names in Oracle SOA Composer:
Figure 12-13 Viewing the Linked Dictionary Name
The Links table displays the name of the linked dictionaries, which in this case is CreditRatingRules.
In Oracle SOA Composer, you can view the decision functions that are available to the current dictionary by using the Decision Functions tab on the left-side panel as shown in Figure 12-14. Currently, even in the edit mode, you can only modify the following fields and options:
You cannot create any decision function, rename an existing decision function, or add or delete any input or output.
To view decision function names in Oracle SOA Composer:
Figure 12-14 Viewing Decision Function Names
The Decision Functions table displays the names of all the available decision functions, both parent and linked, which in this case are DecisionFunction_0, and CreditRatingRules.DecisionFunction_0.
Oracle SOA Composer displays the rulesets in the dictionary on the left-side panel, as shown in Figure 12-15. You can select a ruleset to display a detailed view of the ruleset. In view mode, all the rules in the ruleset are displayed but they are not editable. For information on the Oracle SOA Composer Edit mode, see Section 12.4, "Getting Started with Editing and Saving a Dictionary at Run Time".
Note: Using Oracle SOA Composer in edit mode, you cannot create or delete rulesets. You can view and modify rulesets. |
Figure 12-15 Using the Oracle SOA Composer Rules Dictionary Rulesets Tab to View Rules
To select the next ruleset or previous ruleset:
Figure 12-16 Using the Oracle SOA Composer Rules Dictionary Rulesets Tab to Select Next Ruleset
When you select and open a dictionary Oracle SOA Composer shows the dictionary in read only mode. From each tab in view mode, you enter edit mode for the dictionary item by selecting the Edit menu. In edit mode, after you make changes, click Save to save your changes. Saving changes saves the dictionary to a work area. To apply the changes to the run time version of the dictionary, click Commit.
If you decide you do not want to apply the changes, you can revert the changes by selecting either of the following:
This clears only the unsaved changes.
This aborts all the changes done as part of the existing edit session.
In Oracle SOA Composer, number formatting changes based on the browser locale. For example, you are using Oracle SOA Composer with U.S. English as the browser language. You enter a floating-point data, such as 34533223.2345, as a value. If you wish to view the data in any other language, such as French, you need to:
In French, the value should display as 34533223,2345.
Note: The grouping and decimal separators specified in Oracle SOA Composer overrides the locale-specific ones. |
In Oracle SOA Composer, selecting the Bucketsets tab shows you a table listing the bucketsets in the dictionary. To edit a bucketset, select the appropriate row, and click the Edit Bucketset icon to display the Bucketset Editor. Depending on the type of the bucketset, Range, Enum, or LOV, this displays a corresponding Edit bucketset page. You can create a Range Bucketset by clicking the Add Bucketset icon and selecting a type. This adds a new row in the Bucketsets table. For example, for Date types, such as Date, DateTime, or Time, a calendar is displayed for selecting the date, time, and timezone. Adding a bucket automatically adds an end point for a range bucket and a value for an LOV bucket based on the datatype. You can modify the newly added bucket end point or value. Note that the alias is modified when an end point or value is changed.
To delete a bucketset, select a row and click Delete.
To edit a Range Bucketset:
Figure 12-17 Using Bucketset Editor to Edit a Range Bucketset
To edit an LOV Bucketset:
Figure 12-18 Bucketset Editor Dialog to Edit an LOV Bucketset
You can change the relative position of buckets in an LOV bucketset only; you cannot reorder buckets in a Range bucketset.
Figure 12-19 Moving Buckets in a Bucketset to Change the Order of Values
Only when a bucket has the Allowed in Actions field selected does the bucketset display in the condition cell drop-down in a Decision Table.
Click Validate in the menu bar to validate the dictionary while making changes to a bucketset.
An Oracle Business Rules dictionary can be linked to other dictionaries. The complete data model defined by a dictionary and its linked dictionaries is called a combined dictionary. You can create multiple links to the same dictionary. However, in this case, all but the first link is ignored.
You cannot use Oracle SOA Composer to link dictionaries. However, if a deployed composite already has linked dictionaries, using Oracle SOA Composer, you can view the linked dictionary names and make use of the Globals, Bucketsets, and Rulesets of the linked dictionaries across applications. For example you have an application called App1
that contains a dictionary called Dict1
. Dict1
is linked to another dictionary called Dict2
. Because Dict1
is linked to Dict2
, the objects of Dict2
will be available for use in App1
.
For more information on viewing linked dictionary names, see Section 12.3.6, "How to View Linked Dictionary Names at Run Time."
In Oracle SOA Composer, in the edit mode, you can use the Prefix Linked Names checkbox in the Links table to either display or hide the linked dictionary name that is prefixed to the all the items in the dictionary such as Globals, Bucketsets, and Rulesets. Selecting the checkbox prefixes facts from the linked dictionary with its dictionary name, and deselecting hides the linked dictionary facts prefix. By default, the Prefix Linked Names checkbox is in selected state as shown in Figure 12-20.
Figure 12-21 displays three bucketsets: Rating from the current dictionary and Bucketset_1 and Bucketset_2 from the base dictionary CreditRatingRules, which is prefixed to both Bucketset_1 and Bucketset_2.
Figure 12-21 Prefixed Linked Dictionary Name Displayed
Figure 12-22 displays the Rating bucketset name after you have deselected the Prefix Linked Names checkbox in the Links tab. In this case, the linked dictionary name is not prefixed to the bucketset name.
For more information about linked dictionaries, see Section 2.2.7, "What You Need to Know About Dictionary Linking."
In Oracle SOA Composer, in the edit mode, selecting the Decision Functions tab shows you a table listing the decision functions that are available to the dictionary, both parent and linked.
Currently, even in the edit mode, you can only modify the following fields and options:
To edit a decision function:
unlimited
. However, you can enter an integer value for the rule firing limit and press the Tab key. The newly specified value gets added to the Rule Firing Limit list. You cannot edit the following:
Consider a situation where a decision function (DF1) calls another decision function (DF2) using the Initial Actions tab. DF1 is configured to push Ruleset1 to the ruleset stack. DF2 is configured to push Ruleset2. In DF1, before the initial actions are executed, Ruleset1 is pushed to the ruleset stack. Then, when DF2 is called, Ruleset2 is also pushed. So when rules start running, rules from both rulesets fire because of the ruleset stack. If you want to push Ruleset2 (because in the initial actions, you are calling DF2), you can use initial actions in DF1 to clear the ruleset stack before calling DF2, and push Ruleset1 on the stack after calling DF2.
You can add any required action ranging from assert
, call
, modify
to even conditional actions such as if
, else
, elseif
, while
, for
, if
(advanced)
, and while
(advanced)
as shown in Figure 12-24.
The if
(advanced)
and while
(advanced)
structs accepts only boolean
values. For each of the action conditions, you can add different test form types.
Note: If decision function DF1 contains DF2 in the Rulesets & Decision Functions tab, then DF2 may not have any initial actions. |
For more information on decision functions, see Chapter 6, "Working with Decision Functions."
You can use the Oracle Business Rules Dictionary Editor composite declarative component to leverage the functionality of editing Rules Dictionaries in any ADF-based Web application. It enables you to edit business rules metadata artifacts, such as Globals, Bucketsets, and Rulesets, by using the Rules SDK2 API.
For more information on Oracle Business Rules Dictionary Editor, see "Using the Oracle Business Rules Dictionary Editor Declarative Component" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Rules Dictionary Editor Task Flow, which is a wrapper around the Rules Dictionary Editor declarative component is used in ADF-based Web applications that require a task flow instead of a declarative component.
For more information on Oracle Business Rules Dictionary Editor, see "Using the Oracle Business Rules Dictionary Task Flow" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
In Oracle SOA Composer with edit mode you can edit, add, and delete rules in a ruleset. For more information on how to use edit mode, see Section 12.4, "Getting Started with Editing and Saving a Dictionary at Run Time".
Oracle SOA Composer allows you to edit the rules in a dictionary.
To edit a rule with Oracle SOA Composer:
Note: The Edit view provides an interface to the dictionary that allows you to edit most dictionary components (you can only create and edit some dictionary components at design-time using the Rules Designer extension to Oracle JDeveloper). |
Figure 12-25 Using Oracle SOA Composer to Edit a Ruleset in a Dictionary
In Oracle SOA Composer you can add rules to a ruleset.
To add a rule in a ruleset:
If the ruleset where you are adding a new rule does not contain any existing rule, then you can either:
Figure 12-27 displays the Add and the Add Rule icon.
In Oracle SOA Composer you can delete rules in a ruleset.
To delete a rule in a ruleset:
Figure 12-28 Deleting a Rule in a Ruleset
In Oracle SOA Composer you can edit advanced settings for rules in a ruleset. For more information on advanced settings, see Section 4.5, "Using Advanced Settings with Rules and Decision Tables".
To show and edit advanced settings in a rule:
Figure 12-29 Showing and Editing Rule Advanced Settings
In Oracle SOA Composer you can add conditions to a rule in a ruleset. For more information on working with rule conditions, see Section 4.3, "Working with Rules".
To add rule conditions:
Figure 12-30 Adding a New Rule Condition in a Ruleset
If the rule where you want to add a condition does not contain any existing condition, then you need to click the Add Test down arrow to display a a list of available options for adding a condition as shown in Figure 12-31.
Figure 12-31 Adding a Condition to a Blank Rule
The following are the available options for adding a condition:
Each nesting level provides a list with the preceding options to operate on a nested block.
In Oracle SOA Composer you can delete conditions for a rule in a ruleset. For more information on working with rule conditions, see Section 4.3, "Working with Rules".
To delete rule conditions:
Figure 12-32 Deleting a Rule Condition in a Ruleset
Separate list is available for each nesting level. So the delete operation can be performed on a single condition or a nested block.
Using Oracle SOA Composer, you can edit conditions in a rule. You can select a rule condition for nesting or modify expression values within the condition. For more information on working with rule conditions, see Section 4.3, "Working with Rules".
To modify a condition in a rule:
You can use the Expression Builder, Condition Browser, Date Browser, and Right Operand Browser to edit the left and right-side expressions.
In addition to modifying the values, you can also change the form type of a condition. For example, a simple test can be changed to variable definition and so on. To change the form type of a condition, you need to select the condition by using the adjacent check box and select the required form type from the Selected Tests list as shown in Figure 12-33.
In Oracle SOA Composer you can add actions to a rule. For more information on working with rule actions, see Section 4.3, "Working with Rules".
To add rule actions:
Figure 12-34 Adding a Rule Action in a Ruleset
If the rule to which you want to add an action does not contain any existing action, then you need to click the Add Action icon in the THEN area as shown in Figure 12-35.
In Oracle SOA Composer you can delete actions in a rule. For more information on working with rule actions, see Section 4.3, "Working with Rules".
To delete rule actions:
Figure 12-36 Deleting a Rule Action in a Ruleset
In Oracle SOA Composer you can modify actions in a rule. For more information on working with rule actions, see Section 4.3, "Working with Rules".
To modify rule actions:
The Properties dialog box is displayed where you can modify the property details as shown in Figure 12-38.
For more information on number formatting in rules, see Section 12.4.1, "What You May Need to Know About Localized Number Formatting Support in Oracle SOA Composer."
In Oracle SOA Composer, you can work with advanced mode rules in a ruleset. For more information on working with advanced mode rules, see Section 4.7, "Working with Advanced Mode Rules".
To show and modify advanced mode rules:
Figure 12-39 Showing Advanced Mode Rule Options
The Advanced Mode rules options enables you to create, modify, and delete patterns, as well as add, modify, and delete conditions and actions within a pattern.
Using the Advanced Mode rule options, you can:
Figure 12-40 Specifying Pattern Variable and Fact Type
In the graphic example, CustomerOrder
is a pattern variable of CustomerOrder
fact type.
and
or or
. You can use the connective link to toggle between the connectives. Figure 12-43 Adding and Removing Pattern Nesting
Inside the open curly brace, you can specify a pattern and then click the Add Test down arrow to add conditions to the nested pattern as shown in Figure 12-44, as well as add another pattern to the same pattern block.
Figure 12-44 Inserting Pattern Conditions
A nested pattern block ends with a closing curly brace. You can have multiple levels of nested patterns, which means that inside a nested pattern, you can have another nested pattern. You can click the Delete Nested Pattern Block icon to remove the entire nested pattern block as shown in Figure 12-45.
Figure 12-45 Deleting a Nested Pattern Block
When you nest a pattern, an operator list is displayed with (for each case where) selected as the default operator in the operator list. The other items are there is a case where, there is no case where, and aggregate as shown in Figure 12-46.
Figure 12-46 Selecting the Pattern Operator
The user interface remains the same as (for each case where) when you select there is a case where or there is no case where as the operator. However, when you select aggregate, the user interface changes. For an aggregate operator, you must enter a variable in the available field and select a function from the function list. The function list displays the following:
count
average
maximum
minimum
sum
collection
Except for the count
function, all the other functions require an expression. You can specify an expression in the available field or launch the Condition Browser window.
Figure 12-47 displays a nested pattern, where numPricey
is the variable name and count
is function name.
Figure 12-47 The Count Aggregate Operator
In the Advanced Mode of rules, in the THEN part, you can add any required action ranging from assert
, call
, modify
to even conditional actions such as if
, else
, elseif
, while
, for
, if
(advanced)
, and while
(advanced)
as shown in Figure 12-48.
In Oracle SOA Composer you can work with tree mode rules in a ruleset. For more information on working with tree mode rules, see Section 4.8, "Working with Tree Mode Rules".
To show and modify tree mode rules:
Figure 12-49 Showing the Tree Mode Rule Area in a Rule
In a ruleset with many rules, for the ease of navigation, the Oracle SOA Composer UI displays the rules in multiple pages, with each page containing a set of six rules. This paging capability ensures better performance when a ruleset with a large number of rules are loaded.
Oracle SOA Composer provides a list from where you can directly access the page where the rule of your choice exists. Alternatively, you can click the Previous and Next buttons on the either side of the list to move to the preceding or the following set of rules.
Figure 12-50 displays the rules paging capability of Oracle SOA Composer.
You can use the Oracle Business Rules Editor composite declarative component to leverage the functionality of editing business rules in any ADF-based Web application. It enables you to edit business rules available in rulesets by using the Rules SDK2 API.
For more information on Oracle Business Rules Dictionary Editor, see "Using the Oracle Business Rules Editor Declarative Component" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Oracle SOA Composer provides browser windows that helps you to work with different types of expressions such as rule expressions, XPATH expressions, date expressions, and so on.
The different types of browsers provided by Oracle SOA Composer are:
Expression Builder is used to build different types of expressions such as XPATH expressions, rule expressions, and so on.
Expression Builder has a field where you can enter the expression directly. It has four tabs: Variables, Functions, Operators, and Constants. Each of these tabs display data in a tree structure. The Variables tab displays all the variables in the rules meta-data. The Functions tab displays all the functions in the rules meta-data. The Operators tab displays operators such as +, -, *, and so on. The Constants tab displays all the constants that exist in the rules meta-data.You can switch between the tabs, select an item in the tree, and click the Insert Into Expression button to insert the selected item at the cursor position in the expression field. When an item is selected in the tree, the Content Preview and the Description areas display more information about the selected item. Once you create the expression and click OK, the newly created expression appears in the field that is available to the left of the expression builder icon.
Figure 12-51 displays the Expression Builder browser.
Figure 12-51 The Expression Builder Browser
The Condition Browser has a field, a hierarchical tree, and an Expression Builder embedded inside it. You can enter the expression directly in the field, or select an item from the tree. When an item is selected in the tree, the new selection appears in the field immediately. You can also use the embedded Expression Builder to create an expression.
Once the Expression Builder is launched and an expression is created, the new expression appears in the Condition Browser field. Once you create an expression and click the OK button in the Condition Browser, the newly created expression appears in the field that is to the left of the Condition Browser icon.
Figure 12-52 displays the Condition Browser.
The Date Browser is used to select a Literal Date or a Date Expression. The Date Browser has two options to switch between a Literal Date and a Date Expression. When one option is selected, the other one is disabled.
Select:
Figure 12-53 displays the Date Browser.
The Right Operand browser is used to select multiple right expressions. The browser displays operands in each row. You can enter an expression directly in the operand field or launch the Condition Browser to select an expression. The + icon adds a row after the current one. The - icon deletes the current row. These icons are enabled and disabled based on the selected operator. For instance the in operator allows multiple right expressions. So in this case, the icons are enabled.
Figure 12-54 displays a Right Operand browser.
Note: Using Right Operand browsers, you can enter multiple values for the right-side expression. However, you can place a Date browser outside a Right Operand browser, and in which case, only one expression can be entered. For both these browsers, you cannot enter values directly in the right-side expression field. Once you have entered values using the browser and clicked OK, the values get added as comma-separated values on the Rules UI. |
When Oracle SOA Composer is in edit mode, you can edit, add, and delete a Decision Table in a ruleset. For more information on how to use edit mode, see Section 12.4, "Getting Started with Editing and Saving a Dictionary at Run Time".
In Oracle SOA Composer, you can add a Decision Table to a ruleset. For more information on working with Decision Tables, see Section 5.1, "Introduction to Working with Decision Tables".
To add a Decision Table in a ruleset:
Figure 12-55 Adding a Decision Table in a Ruleset
A blank Decision Table is displayed as shown in Figure 12-56.
Using Oracle SOA Composer, you can add condition rows to a Decision Table.
To add condition rows to a Decision Table:
The selected or specified condition row and a Rules column with the header R1 is added to the table; the cell below R1 has a "?" symbol (Figure 12-57). The "?" symbol indicates that the cell does not have a value yet.
Figure 12-57 New Condition Row Added in a New Decision Table
If you are adding a condition to a table that has existing condition rows, similar to adding a condition to a blank Decision Table, Oracle SOA Composer prompts for specifying the condition details. Once the details are provided, the specified condition is added as the last condition row; the condition cells under each rule column in the new row also have "?" symbols, as shown in Figure 12-58.
Figure 12-58 New Condition Row Added As Last Row in a Decision Table
For information about all symbols that might be used in a decision table, see Section 12.7.4.1, "Editing Decision Table Cells."
Figure 12-59 Editing a Condition to a Decision Table
Expression Builder lets you build expressions.
If there is no global bucketset associated with the value, then after you add a condition row to a Decision Table, you need to either specify an existing global bucketset or create a Local List of Values or a Local List of Ranges bucketset.
To associate a bucketset for the condition, perform either of the following:
Figure 12-60 Associating an Existing Bucketset With a Condition Row
Figure 12-61 Associating a Local List of Values or Local List of Ranges With a Condition Row
You can edit the bucketset for the selected condition by clicking the Edit Bucketset icon as shown in Figure 12-62.
This displays the Bucketset Editor where you can add, edit or delete buckets. If editing a Local List of Values bucketset, you can also reorder buckets in the bucketset.
For more information on number formatting in bucketsets, see Section 12.4.1, "What You May Need to Know About Localized Number Formatting Support in Oracle SOA Composer."
For more information on adding condition rows, see Section 5.2.2, "How to Add Condition Rows to a Decision Table".
In Oracle SOA Composer, you can add actions to a Decision Table.
To add actions to Decision Table:
Figure 12-63 Adding an Action to a Decision Table
The Action Editor window is displayed as shown in Figure 12-64.
Table 5-1 in Chapter 5, "Working with Decision Tables," lists the available actions.
For more information on number formatting in bucketsets, see Section 12.4.1, "What You May Need to Know About Localized Number Formatting Support in Oracle SOA Composer."
For more information on adding actions to Decision Tables, see Section 5.2.3, "How to Add Actions to a Decision Table."
Using Oracle SOA Composer, you can add a rule to a Decision Table.
To add a rule to a Decision Table:
Figure 12-65 Adding a Rule to a Decision Table
A new column for the added rule is displayed as shown in Figure 12-66.
Figure 12-66 Added Rule in the Decision Table
Note: When you add a rule to a blank Decision Table, Oracle SOA Composer displays the Condition Browser window, and after you select or specify a condition, a condition row gets added automatically. |
Notice that the new rule is added as the first rule of the Decision Table and the other rules have moved as required to keep the bucket values in their defined order. This is because Order Rules By Bucket is enabled by default, which means rule ordering in a Decision Table is set according to the relative position of buckets associated with a condition expression. If Order Rules By Bucket is not enabled when you add a rule, the new rule is added as the last rule of the Decision Table. In either case, the cells in the new rule column have "?" symbols, indicating the cells do not have values yet.
For information about all symbols used in a table, see Section 12.7.4.1, "Editing Decision Table Cells." For additional information about rules ordering, see Section 12.7.4.2, "Controlling the Order of Rules in a Decision Table."
Note: You can enter values for the condition cells (or any other cells) only by double-clicking the cell. |
Note: If because of the inadequate column width, you cannot view the complete contents of a cell in a Decision Table, you can roll your mouse pointer over the cell to view the contents. |
Each rule in a Decision Table contains cells pertaining to three sections: Conditions, Conflicts, and Actions.
Working with Condition Cells
In view mode, a condition cell with a "?" symbol indicates that the cell does not have a condition value. If a cell has two or more values specified, a semicolon-separated list of values is displayed in the cell.
In the editable mode (that is, when you double-click a conditions cell), the condition cells display specified condition values in multichoice lists. When editing a new rule or when a condition value is unspecified, the condition cell is blank, as shown in Figure 12-67.
If you select All:
Figure 12-68 shows a Decision Table with a condition cell displaying the value "All" in editable mode, a cell displaying the "-" symbol, and cells displaying a semicolon-separated list of values.
Figure 12-68 Displaying All Values for a Condition
You can select any value that is available in the condition value list.
Note: When you edit the condition cells, if Order Rules By Bucket is selected, the Decision Table is refreshed and the edited rule column may shift to the left or right depending on the selected condition cell value. |
Note: You can modify the bucketset associated with a a condition, by clicking the condition. This enables the bucketset list and the Edit Bucketset icon so that you can edit the associated bucketset. |
Working with Action Cells
When you add an action, an action row is created with the specified action type. There are two types of action cells:
Note: The Edit Action icon is enabled only if the action form cell row is selected. The Edit Action icon invokes the Action Editor window. |
Figure 12-69 displays both types of action cells. You can see that the action parameter cells, in edit mode, have edit fields with the Condition Browser icons next to them.
Figure 12-69 The Action Cells in a Decision Table
Figure 12-70 displays the Action Editor window where you can select the values for an action parameter cell. If you select the Always Selected checkbox, all the checkboxes for the particular action form get selected. All the checkboxes pertaining to the action form are also disabled, because the specified action "is always selected".
Note: You can delete all the condition cells and all the action cells of a Decision Table at one go. Clicking the Conditions or the Actions box selects all the conditions or actions in the Decision Table respectively as shown in the following graphic. You can then click the Delete icon on the Decision Table toolbar to delete the conditions or actions. |
By default the Order Rules by Bucket checkbox is enabled in a Decision Table, as shown in Figure 12-66. This means the order of the buckets in the bucketset associated with a condition row determines the order of the condition cells, and thus the order of the rules.
To change the order of rules in a Decision Table, you need to change the order of buckets in the bucketsets. For example, you can control rule ordering in a Decision Table by changing the relative position of the buckets in an LOV bucketset associated with a condition row. Note, however, that you cannot reorder range buckets.
When the Order Rules by Bucket checkbox is selected in a Decision Table and you add a rule, by default the new rule is added as the first rule column; the other rule columns move as required to keep the bucket values in their defined order. When the Order Rules by Bucket checkbox is not enabled and you add a rule, the new rule is added as the last rule column. If you now select the Order Rules by Bucket checkbox, the newly added rule shifts to the first column.
You can delete one or multiple rules in a Decision Table.
To delete rules in a Decision Table:
To delete multiple rules in a Decision Table:
In Oracle SOA Composer, you can define tests in a Decision Table by adding conditions to facts. For more information about defining tests and working with rule conditions, see Section 4.3, "Working with Rules".
Note: To add more complex conditions to facts, see Section 12.7.11, "Working with Advanced Mode Options in a Decision Table." |
To add tests to a Decision Table:
Figure 12-72 Advanced Settings Area Expanded in a Decision Table
Figure 12-74 Simple Test Added to a Decision Table
Note: If a Decision Table already contains test conditions, you can add new test conditions by clicking the downward pointing arrow at the end of an existing condition and selecting the required test form type. |
You can modify the contents of a Decision Table to create a table that includes a complete set of rules for all cases, or a table that provides the least number of rules for the cases. The split and compact operations enables you to manipulate the contents in a Decision Table.
The split table operation creates a rule for every combination of buckets across the conditions. For example, in a Decision Table with 2 boolean conditions, 2 x 2 = 4 rules are created. In a Decision Table with 20 boolean conditions, 2**20 ~ 1 million rules are created. So, you only use split table when the number of rules created is small enough that filling in the action cells is feasible.
Using Oracle SOA Composer, split can be applied to an entire Decision Table. However, you cannot perform split operation on an individual condition row or cell.
To split a Decision Table:
Using Oracle SOA Composer, you can compact a Decision Table by merging conditions of rules with identical actions. So, compacting a table enables you to remove conditions from a Decision Table. However, using Oracle SOA Composer, you cannot merge two or more condition cells.
To compact a Decision Table:
For more information on splitting and compacting Decision Tables, see Section 5.3, "Performing Operations on Decision Tables."
In a Decision Table, a "missing" rule is termed as a "gap." A gap in a Decision Table occurs when a rule does not cover some combinations of buckets, one from each condition.
Using Oracle SOA Composer, you can check for missing rules in Decision Tables.
To check for missing rules:
Figure 12-77 Checking for Missing Rules in a Decision Table
The Gap Analysis window is displayed as shown in Figure 12-78. You can select the rules that need to be added to the Decision Table.
For more information about checking for missing rules, see Section 5.3.5, "How to Perform Decision Table Gap Checking."
Rules in a Decision Table can conflict when they overlap and have different actions. Two rules overlap when at least one of their condition cells has a bucket in common. However, overlap without conflict is common and harmless. For more information about conflicts in Decision Tables, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis."
Using Oracle SOA Composer, you can find and resolve conflicts in a Decision Table.
To perform conflict resolution in a Decision Table:
Note: For more information on conflict policies, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis." |
Figure 12-80 The Conflict Resolution Window
Figure 12-81 Options for Conflict Resolution
For more information about the conflict resolution options in Decision Tables, see Section 5.3.1.4, "Understanding Decision Table Conflict Analysis."
In Oracle SOA Composer, you can turn the rows in a Decision Table to columns by clicking the Switch Rows to Columns icon on the Decision Table toolbar. This enables the rules to be displayed as rows, and conditions, actions, and conflicts to be displayed as the columns.
Switching rows to columns provides ease of navigation when a Decision Table has many rules because you can see all the rules together and you do not need to "page the columns" for viewing the rules.
Figure 12-82 displays a Decision Table before the switch operation.
Figure 12-83 displays the sample Decision Table after switching the rows to columns.
In Oracle SOA Composer, you can use advanced mode rules in a Decision Table just like you can work with advanced mode rules in a ruleset. The Advanced Mode rules options enable you to create, modify, and delete patterns, as well as add, modify, and delete conditions and actions within a pattern. For more information about advanced mode rules, see Section 4.7, "Working with Advanced Mode Rules".
Note: To add a simple test using the <insert test> link above the Decision Table, see Section 12.7.6, "Defining Tests in a Decision Table." |
To show and use advanced mode options:
Figure 12-84 Advanced Mode Enabled in a Decision Table
The advanced mode options in a Decision Table are similar to the advanced mode options in a ruleset. For more information, see Section 12.5.11.1, "Working with Advanced Mode Options."
In Oracle SOA Composer, you can delete Decision Tables in a ruleset. For more information on working with Decision Tables, see Section 5.1, "Introduction to Working with Decision Tables."
To delete a decision table in a ruleset:
Figure 12-85 Select the Delete Decision Table Icon
Oracle SOA Composer enables you to define test variables that provide a way to shorten lengthy expressions that occur in rule and decision table conditions and actions. The variable and its value can be represented as an inline business term definition. The test variables are also called inline aliases.
So, instead of writing:
You can write:
In subsequent test conditions, you can use foo
as part of your expressions. The expression can be anything from a simple to a complex expression.
To define a variable, in the IF section of a rule, you need to click the down arrow adjacent to Add Test, and select variable from the list.
Apart from variables, you can also define other test form types, such as simple test, nested tests ((...)
), and not nested tests (not (...)
).
After you verify dictionary modifications, you can commit those changes to the MDS repository.
To commit changes to an Oracle Business Rules dictionary:
Note: A dictionary with validation errors can be saved, but it can be committed only after correcting the validation issues. |
When multiple users are editing the same dictionary, Oracle SOA Composer shows a message that the dictionary is being edited by another user and asks for a confirmation. When multiple users work on a single dictionary, only the last commit is persisted.
Oracle SOA Composer enables you to update rules dictionaries at run time. However, the modifications made to the dictionaries through Oracle SOA Composer are not automatically reflected in Oracle JDeveloper. To synchronize the dictionary updates made in Oracle SOA Composer with the dictionaries available in Oracle JDeveloper, you must select the Export option in Oracle Enterprise Manager Fusion Middleware Control Console. This utility allows you to export the SOA composite application along with the dictionary.
To select the Export option in Fusion Middleware Control Console:
Figure 12-87 Selecting the Export Utility
Figure 12-88 Exporting All Postdeployment Changes
In Oracle SOA Composer, in the Edit mode, you can validate a dictionary for errors. The dictionary level validation errors are displayed in a Validation Panel in the bottom of Oracle SOA Composer window as shown in Figure 12-89.
Note: When you open rules in Oracle SOA Composer, the Validation panel remains in the collapsed state. If you click the Validate button on the Oracle SOA Composer toolbar, the Validation Panel is expanded, and it remains in the expanded state during subsequent user interactions. However, if you manually collapse the Validation Panel or drag the panel separator, the working of the automatic collapse and expand cannot be guaranteed. |
The Validation Panel lists all the dictionary-level validation errors. When you double-click a row in the Validation Panel, Oracle SOA Composer leads you to the erroneous component. For example, if a Bucket or a Bucketset error is double-clicked in the Validation Panel, Oracle SOA Composer switches to the Bucketsets tab and displays the invalid icon next to the Bucketset name. You can move the mouse cursor over the invalid icon to see the list of error messages for that Bucketset as shown in Figure 12-90.
Figure 12-90 Bucketset Validation Error Messages
When the Bucketset Editor window is displayed, the invalid fields are highlighted in the editor, and a pop-up containing the error messages are displayed, as shown in Figure 12-91.
Figure 12-91 Highlighted Error Entries in Bucketset Editor
When you double-click an error pertaining to a Decision Table, the UI switches to the Decision Table UI and displays the error messages when you move the mouse cursor on the invalid icon as shown in Figure 12-92.
Figure 12-92 Accessing the Erroneous Component
Similarly, in the Validation Panel, if you double-click an error pertaining to a rule in a ruleset, the UI switches to the ruleset to which the rule belongs and highlights the erring fields of the rule. In addition, all the errors pertaining to the rule are displayed in a pop-up as shown in Figure 12-93.
The Validation Panel does not get updated automatically to display any new validation errors that may be generated due to any modification to the dictionary components.
For example, when a new rule is added with some errors, the Validation Panel is not updated automatically. You need to click the Validate button on the Oracle SOA Composer menu to update the Validation Panel with the new error entry, as shown in Figure 12-94.
When a dictionary is open, you can obtain dictionary and composite details from the Info dialog.
To obtain dictionary information:
Figure 12-95 Using Info Dialog to Obtain the Document Path for an Open Dictionary
Using Oracle SOA Composer, you can view and edit tasks that may be or may not be associated to Approval Management Extensions (AMX) rules. AMX enables you to define complex task routing slips for human workflow by taking into account business documents and associated rules to determine the approval hierarchy for a work item. Additionally, AMX lets you define multi-stage approvals with associated list builders based on supervisor or position hierarchies. At design time, you can define the approval task in the Human Task Editor of Oracle JDeveloper, and associate the task with a BPEL process. For more information about approval management and tasks, see "Using Approval Management" in Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.
In Oracle SOA Composer, the Task Editor is embedded as a task flow so that you can view and perform all the task metadata lifecycle operations.
In Oracle SOA Composer, you can open a task or an AMX rules metadata with the Open menu.
To open a task or an AMX rule using the Open menu:
Note: You can differentiate between traditional rules and AMX rules depends on the naming convention. For example, if a composite has the following artifacts:
In this case, the Rules.rules file is an AMX rules file associated with an AMX task, and so, is displayed as a part of an AMX task in the list of Select a Task to open, and not as a part of an ordinary Oracle Business Rules listing. |
If the composite that you have selected only has a task and no associated AMX rule or ruleset, then the task window is displayed as shown in Figure 12-98.
Figure 12-98 Oracle SOA Composer with Only Task Displayed
If the composite contains a task and an associated AMX rule or ruleset, then Oracle SOA Composer displays both the task and the rule or ruleset in a tabbed window as shown in Figure 12-99.
Figure 12-99 Oracle SOA Composer with Both Task and AMX Rule
Task Configuration enables business users and administrators to review the rules that were configured automatically by the workflow designer. These predefined rules can be changed for a specific customer based on the customer's applicable corporate policies.
In Oracle SOA Composer, Task Configuration enables you to edit the event-driven (only tasks) and data-driven rules (tasks with an associated AMX rules) associated with an approval flow at run time.
To configure event-driven settings:
You can configure the following options and settings:
Setting Approval Aggregation Requirements
Task aggregation requirements can be any of the following:
Notifying Errors
You can specify the user and group names that need to be notified in case of an error in the task. You need to click the On Error Notify search icon to display the Configure Error Assignees dialog box where you can specify the user or group names as shown in Figure 12-102.
Setting Assignment and Routing Policy
You can set the assignment and routing policy by using the options available in Oracle SOA Composer. Figure 12-106 shows the available options for setting assignment and routing policy.
Figure 12-103 Setting Assignment and Routing Policy
For more information about the assignment and routing options available in event-driven configuration, see "Routing Policy Method" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Setting Expiration and Escalation Policy
You can set the expiration and escalation policy for the task by using the available items in the Expiration and Escalation Policy list. The available list items are:
Figure 12-104 displays the list of options for setting the expiration and escalation policy.
Figure 12-104 Setting Expiration and Escalation Policy
For more information about expiration and escalation policy, see "How to Escalate, Renew, or End the Task" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Configuring Notification Settings
You can configure notification settings for a task by using the options available in the Notification Settings section of Oracle SOA Composer.
Figure 12-105 displays the different options available to configure notification settings for a task.
Figure 12-105 Specifying Notification Settings
For more information about specifying notification settings for a task, see "How to Specify Participant Notification Preferences" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Configuring Task Access Settings
You can set access-rule settings to control the actions a user can perform. You can also specify content and action permissions based on the logical role of a user, such as creator (initiator), owner, assignee, and reviewers.
In Oracle SOA Composer, you can set access settings by using the options available under Task Access as shown in Figure 12-106.
Figure 12-106 Specifying Task Access Settings
For more information on configuring task access, see "How to Define Security Access Rules" in Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.
To configure data-driven settings:
Figure 12-107 Opening an AMX Rule for Editing
Figure 12-108 Saving AMX Rule Configuration
You can perform the following actions:
For more information about editing data-driven settings, see "How to Edit Data-Driven Settings" in Oracle Fusion Middleware User's Guide for Oracle Business Process Management.
This appendix lists known naming constraints for Rules Designer files and names, and certain Rules SDK limitations.
This appendix includes the following sections:
This section covers Rules Designer naming conventions.
Rules Designer enforces a limitation for ruleset names; a ruleset name must start with a letter and contain only letters, numbers, or the following characters: ".
", "-
", "_
",""
, ":
", "/
", and single spaces. Letters include the characters (a
to z
and A
to Z
) and numbers (0
to 9
).
Rules Designer dictionary names can contain only the following characters, upper and lowercase letters (a
to z
and A
to Z
), numbers (0
to 9
), and the underscore (_
). Special characters are not valid in a dictionary name.
Rules Designer dictionary names are case preserving but case-insensitive. For example, the dictionary names Dictionary
and DICT
are both valid. If you create a dictionary named Test
, then you can create another dictionary named TEST
only if you first delete the dictionary named Test
.
This appendix discusses the extensive library of Oracle Business Rules (OBR) built-in classes, methods, and functions that help reasoning about data containing text strings, lists, numbers, dates, times, and so on.
In the following sections, there are multiple tables whose each row has a Kind column that is either Cl, Co, M, sM, P, or sP (Class, Constructor, Method, static Method, Property, or static Property (Java static final field) respectively). The first row in each table specifies the class. When the Java Name is the same as the OBR Name (the rule SDK terms it the Alias), a '-' is displayed. The Signature column provides type information for methods, functions, and properties. The signature of a property is actually the type, for example BigDecimal
. The signature of a method or function is of the form return(arg1,arg2,...)
, where return
is the return type and arg1,arg2,...
are the argument types.
This appendix covers the following sections:
This section covers the String-related classes provided by Oracle Business Rules.
Table B-1 lists the String
class.
Table B-1 The String Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
String | Cl | - | java.lang.String | Java immutable character strings. Beware, Java uses 0-based indexing for characters in strings, and XML uses 1-based indexing | |
charAt | S | char(int) | - | Returns the char value at 0-based index arg1. "Oracle".charAt(2)=='a'. |
|
compareTo | M | int(String) | - | Returns the value 0 if the argument string is equal to this string; a value less than 0 if this string is lexicographically less than the string argument; and a value greater than 0 if this string is lexicographically greater than the string argument. "a".compareTo("b")<0. |
|
contains | M | boolean(String) | - | Tests whether this string contains arg1. "Oracle".contains("rac")==true. |
|
endsWith | M | boolean(String) | - | Tests whether this string ends with arg1. "Oracle".endsWith("le")==true. |
|
equalsIgnoreCase | M | boolean(String) | - | Tests whether this string equals arg1, ignoring case consideration. "Oracle".equalsIgnoreCase("oRaClE")==true. |
|
indexOf | M | int(String,int) | - | Returns the 0-based index of the start of arg1 within this String, but not before the 0-based index arg2. "banana".indexOf("an",2)==3. |
|
lastIndexOf | M | int(String,int) | - | Returns the 0-based index within this string of the last occurrence of arg1, searching backward starting at the index arg2. "banana".lastIndexOf("an","banana".length())==3. |
|
length | M | int | - | Returns the length of this string. "Oracle".length()==6. |
|
matches | M | boolean(String) | - | Tests if this string matches the given regular expression. "banana".matches("^b.*a$")==true. |
|
replaceAll | M | String(String,String) | - | Replaces each substring of this string that matches arg1 (a regular expression) with arg2. "banana".replaceAll(".a","xo")=="xoxoxo". | |
replaceFirst | M | String(String,String) | - | Replaces first substring of this string that matches arg1 (a regular expression) with arg2. "banana".replaceFirst(".a","xo")=="xonana". | |
startsWith | M | boolean(String) | - | Tests whether this string starts with arg1. "Oracle".startsWith("Or")==true. |
|
substring | M | String(int,int) | - | Returns the substring of this string, starting with the 0-based index arg1, and ending before the 0-based index arg2. "Oracle".substring(1,4)=="rac". |
|
toLowerCase | M | String() | - | Converts this string to lower case. "Oracle".toLowerCase()=="oracle". |
|
toUpperCase | M | String() | - | Converts this string to upper case. "Oracle".toUpperCase()=="ORACLE". |
|
trim | M | String() | - | Removes leading and trailing whitespace. " Oracle ".trim()=="Oracle". |
|
Table B-2 lists the RL class strings methods.
Table B-2 The RL Class String Methods
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
RL | Cl | - | oracle.rules.rl.extensions.RL | Supplement standard Java classes with W3C RIF functionality. | |
string.join | sM | String(String...) | stringJoin | Concatenates first n-1 args using the last arg as a separator. RL.string.join("a","b","c","#")=="a#b#c". | |
string.substring | sM | String(String,int,int) | substring | Returns the substring of arg1, beginning at the 1-based index arg2, and continuing for arg3 characters. RL.string.substring("Oracle",2,3)=="rac". | |
string.suffix | sM | String(String,int) | substring | Returns the suffix of arg1, beginning at the 1-based index arg2. RL.string.suffix("Oracle",5)=="le". | |
string.substring before | sM | String(String,String) | substringBefore | Returns the substring of arg1 that occurs before arg2. RL.string.substring before("Oracle","ac")=="Or". | |
string.substring after | sM | String(String,String) | substringAfter | Returns the substring of arg1 that occurs after arg2. RL.string.substring after("Oracle","ac")=="le". | |
string.iri.encode path | sM | String(String) | encodeForURI | Encodes characters not permitted in an URI path. RL.string.iri encode path("Oracle Business Rules")=="Oracle%20Business%20Rules". | |
string.iri.to uri | sM | String(String) | iriToUri | Encodes some characters not permitted in a URI. RL.string.iri to uri("http://www.example.com/~bébé")=="http://www.example.com/~b%C3%A9b%C3%A9" | |
string.iri.to ascii | sM | String(String) | escapeHtmlUri | Encodes non-ascii characters. RL.string.iri to ascii("javascript:if (navigator.browserLanguage == 'fr') window.open('http://www.example.com/~bébé');")=="javascript:if (navigator.browserLanguage == 'fr') window.open('http://www.example.com/~b%C3%A9b%C3%A9');" | |
string.is normalized | sM | boolean(String) | isNormalizedString | A normalized string does not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. RL.string.is normalized(" Business Rules ")==true. |
|
string.is token | sM | boolean(String) | isToken | A token is a normalized string with no leading or trailing spaces, and no double spaces. RL.string.is token("Business Rules")==true. |
|
string.is language | sM | boolean(String) | isLanguage | A language identifier. RL.string.is language("en")==true. |
|
string.is Name | sM | boolean(String) | isName | A name is a token with no spaces (and some other constraints on its characters). RL.string.is Name("xs:Name")==true. |
|
string.is NCName | sM | boolean(String) | isNCName | A non-colonized name. RL.string.is NCName("xs:NCName")==false. |
|
string.is NMTOKEN | sM | boolean(String) | isNMTOKEN | An NMTOKEN is a Name with no restriction on the initial character. RL.string.is NMTOKEN("-Oracle")==true. |
|
string.compare | sM | int(String,String) | compare | Returns -1, 0, or 1 if arg1<arg2, arg1==arg2, or arg1>arg2, respectively. RL.string.compare("foo","bar")==1. |
|
This section covers the List classes provided by Oracle Business Rules.
Table B-3 lists the List
class.
Table B-3 The List Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
List | Cl | - | java.util.List | Represents mutable and immutable lists. Lists use 0-based indexes. Attempts to modify an immutable list may result in UnsupportedOperationExceptions. | |
append | M | void(Object) | add | Appends arg1 to this list. Modifies this list. |
|
add | M | void(int,Object) | - | Inserts arg2 into this list at position arg1. Modifies this list. |
|
appendAll | M | void(java.util.Collection) | addAll | Appends the contents of arg1 to this list. Modifies this list. |
|
addAll | M | void(int,java.util.Collection) | - | Inserts the contents of arg2 into this list at position arg1. Modifies this list. |
|
clear | M | void() | - | Removes the contents of this list. Modifies this list. |
|
contains | M | boolean(Object) | - | Tests whether this list contains arg1. RL.list.create(1,2,3).contains(2)==true. |
|
containsAll | M | boolean(java.util.Collection) | - | Tests whether this list contains every element in arg1. RL.list.create(1,2,3).containsAll(RL.list.create(3,2,1))==true. |
|
get | M | Object(int) | - | Get the element at position arg1. RL.list.create(1,2,3).get(1)==2. |
|
indexOf | M | int(Object) | - | Returns first index of arg1 in this list. RL.list.create(1,2,3).indexOf(2)==1. |
|
remove | M | boolean(Object) | - | Removes first occurrence of arg1 from this list. Returns whether this list was modified. |
|
remove by index | M | Object(int) | remove | Removes and return the element at position arg1. Modifies this list. |
|
removeAll | M | boolean(java.util.Collection) | - | Removes all elements from this list that are contained in arg1. Returns whether this list was modified. |
|
retainAll | M | boolean(java.util.Collection) | - | Removes all elements from this list that are *not* contained in arg1. Returns whether this list was modified. |
|
set | M | Object(int,Object) | - | Replaces the item in this list at position arg1 with arg2. Returns the replaced item. Modifies this list. |
|
size | M | int() | - | Returns the size of this list. RL.list.create(1,2,3).size()==3. |
|
subList | M | List(int,int) | - | Returns a view of the portion of this list between arg1, inclusive, and arg2, exclusive. RL.list.create(1,2,3,4).subList(1,3)==RL.list.create(2,3). |
|
Table B-4 lists the RL
class list methods.
Table B-4 The RL Class List Methods
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
RL | Cl | - | oracle.rules.rl.extensions.RL | - | - |
list.append | sM | List(List,Object...) | append | Returns a new immutable list containing the contents of arg1, followed by arg2, arg3, ... RL.list.append(RL.list.create(1),2,3)==RL.list.create(1,2,3). | |
list.concatenate | sM | List(List...) | concatenate | Returns a new immutable list containing the concatenation of arg1, arg2, ... RL.list.concatenate(RL.list.create(1),RL.list.create(2))==RL.list.create(1,2). | |
list.distinct values | sM | List(List) | distinctValues | Returns a new immutable list like arg1 but with duplicates removed. RL.list.distinct values(RL.list.create(2,2))==RL.list.create(2). | |
list.except | sM | List(List,List) | except | Returns a new immutable list containing elements from arg1 that are not in arg2. RL.list.except(RL.list.create(1,2,3,4),RL.list.create(1,3))==RL.list.create(2,4). | |
list.get | sM | Object(List,int) | get | Returns the element at position arg2 in arg1. If arg2<0, return the element at arg1.size()+arg2. RL.list.get(RL.list.create(1,2,3),-1)==3. | |
list.index of | sM | List<Integer>(List,Object) | indexOf | Returns a list of indexes where the arg2 occurs in arg1. RL.list.index of(RL.list.create(1,2,3,2),2)==RL.list.create(1,3). | |
list.insert before | sM | List(List,int,Object) | insertBefore | Returns a new immutable list containing arg1 with arg3 inserted before the item at position arg2. If arg2<0, arg3 is inserted before the element at arg1.size()+arg2. RL.list.insert before(RL.list.create(1,2,3),-1,99)==RL.list.create(1,2,99,3). | |
list.intersect | sM | List(List,List) | intersect | Returns a new immutable list containing the intersection of arg1 and arg2. RL.list.intersect(RL.list.create(1,2,3),RL.list.create(3,1))==RL.list.create(1,3). | |
list.create | sM | List(Object...) | list | Returns a new immutable list containing the arguments. | |
list.remove | sM | List(List,int) | remove | Returns a new immutable list containing the elements of arg1, with the element at position arg2 removed. If arg2<0, the element at arg1.size()+arg2 is removed. RL.list.remove(RL.list.create(1,2,3),0)==RL.list.create(2,3). | |
list.reverse | sM | List(List) | reverse | Returns a new immutable list containing the elements of arg1 in reverse order. RL.list.reverse(RL.list.create(1,2,3))==RL.list.create(3,2,1). | |
list.union | sM | List(List) | union | Returns a new immutable list containing the concatenation of the arguments with duplicates removed. RL.list.union(RL.list.create(1,2),RL.list.create(2,3))==RL.list.create(1,2,3). |
Oracle Business Rules support the primitive Java numeric types byte
, short
, int
, long
, float
, and double
. OBR also supports the "boxed" versions: Short
, Int
, Long
, Float
, and Double
. Unlimited precision integers and decimals are supported, using the Java classes BigInteger
and BigDecimal
. OBR supports arithmetic expressions (+
, -
, *
, /
, **
) on all numeric types. For example, if *bd
is BigDecimal
, then you can add one to it by simply writing bd + 1
. You do not have to write bd.add(BigDecimal.ONE)
.
Table B-5 lists the Integer
class.
Table B-5 The Integer Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
Integer | Cl | - | java.lang.Integer | An integer object. Unlike the primitive "int", an Integer can be null and can be in Lists. |
|
Integer | Co | Integer(int|String) | - | Creates an Integer from an int or from its lexical representation as a String. new Integer(1)==new Integer("1"). |
|
MIN_VALUE | sP | int | - | Smallest primitive int value. Integer.MIN_VALUE<0. |
|
MAX_VALUE | sP | int | - | Largest primitive int value. Integer.MAX_VALUE>0. |
|
intValue | M | int() | - | Converts this Integer to an int. new Integer(1).intValue()==1. |
|
toString | M | String() | - | Converts this Integer to its lexical representation. new Integer(1).toString()=="1". |
|
Table B-6 lists the Long
class.
Table B-6 The Long Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
Long | Cl | - | java.lang.Long | A long integer object. Unlike the primitive "long", a Long can be null and can be in Lists. | |
Long | Co | Long(long|String) | - | Creates a Long from a long or from its lexical representation as a String. new Long(1)==new Long("1"). |
|
MIN_VALUE | sP | long | - | Smallest primitive long value. Long.MIN_VALUE<0. |
|
MAX_VALUE | sP | long | - | Largest primitive long value. Long.MAX_VALUE>0. |
|
longValue | M | long() | - | Converts this Long to a long. new Long(1).longValue()==1. |
|
toString | M | String() | - | Converts this Long to its lexical representation. new Long(1).toString()=="1". |
|
Table B-7 lists the Short
class.
Table B-7 The Short Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
Short | Cl | - | java.lang.Short | A short integer object. Unlike the primitive "short", a Short can be null and can be in Lists. | |
Short | Co | Short(short|String) | - | Creates a Short from a short or from its lexical representation as a String. new Short(1)==new Short("1"). |
|
MIN_VALUE | sP | short | - | Smallest primitive short value. Short.MIN_VALUE<0. |
|
MAX_VALUE | sP | short | - | Largest primitive short value. Short.MAX_VALUE>0. |
|
shortValue | M | short() | - | Converts this Short to a short. new Short(-1).shortValue()==-1. |
|
toString | M | String() | - | Converts this Short to its lexical representation. new Short(-1).toString()=="-1". |
|
Table B-8 lists the Float
class.
Table B-8 The Float Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
Float | Cl | - | java.lang.Float | A Float object. Unlike the primitive "float", a Float can be null and can be in Lists. | |
Float | Co | Float(float|double|String) | - | Creates a Float from a float, a double, or from its lexical representation as a String. new Float(1.1)==new Float("1.1"). |
|
infinite | P | boolean | - | The value of this Float is infinity. new Float(Float.NEGATIVE_INFINITY).infinite==true. |
|
naN | P | boolean | - | The value of this Float is not a number. new Float(Float.NaN).naN==true. |
|
NaN | sP | float | - | Value representing "not a number". |
|
NEGATIVE_INFINITY | sP | float | - | Value representing negative infinity. |
|
POSITIVE_INFINITY | sP | float | - | Value representing positive infinity. |
|
floatValue | M | float() | - | Converts this Float to a float. new Float(1.1f).floatValue()==1.1f. |
|
toString | M | String() | - | Converts this Float to its lexical representation. new Float(1.1f).toString()=="1.1". |
|
Table B-9 lists the Double
class.
Table B-9 The Double Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
Double | Cl | - | java.lang.Double | A Double object. Unlike the primitive "double", a Double can be null and can be in Lists. | |
Double | Co | Double(double|String) | - | Creates a Double from a double or from its lexical representation as a String. new Double(1.1)==new Double("1.1"). |
|
infinite | P | boolean | - | The value of this Double is infinity. new Float(Float.POSITIVE_INFINITY).infinite==true. |
|
naN | P | boolean | - | The value of this Double is not a number. new Double(double.NaN).naN==true. |
|
NaN | sP | double | - | Value representing "not a number". |
|
NEGATIVE_INFINITY | sP | double | - | Value representing negative infinity. |
|
POSITIVE_INFINITY | sP | double | - | Value representing positive infinity. |
|
doubleValue | M | double() | - | Converts this Double to a double. new Double(1.1).doubleValue()==1.1. |
|
toString | M | String() | - | Converts this Double to its lexical representation. new Double(1.1).toString()=="1.1". |
|
Table B-10 lists the BigInteger
class.
Table B-10 The BigInteger Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
BigInteger | Cl | - | java.math.BigInteger | Immutable arbitrary-precision integers. |
|
BigInteger | Co | BigInteger(String) | - | Creates a BigInteger from its lexical representation as a String. new BigInteger("1")==1. |
|
doubleValue | M | double() | - | Converts this BigInteger to a double. May lose precision. new BigInteger("1").doubleValue()==1.0. |
|
longValue | M | long() | - | Converts this BigInteger to a long. May lose precision. new BigInteger("1").longValue()==1L. |
|
max | M | BigInteger(BigInteger) | - | Returns the greater of this or arg1. new BigInteger("1").max(2)==2. |
|
min | M | BigInteger(BigInteger) | - | Returns the lesser of this or arg1. new BigInteger("1").min(2)==1. |
|
toString | M | String() | - | Returns the lexical representation of this BigInteger. new BigInteger("123").toString()=="123". |
|
valueOf | sM | BigInteger(long) | - | Converts arg1 (a long) to a BigInteger. BigInteger.valueOf(123).toString()=="123". |
|
Table B-11 lists the BigDecimal
class.
Table B-11 The BigDecimal Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
BigDecimal | Cl | - | java.math.BigDecimal | Immutable, arbitrary-precision signed decimal numbers. |
|
BigDecimal | Co | BigDecimal(long|double|String) | - | Creates a BigDecimal from a long, a double, or from its lexical representation as a String. new BigDecimal(1.1)==new BigDecimal("1.1"). |
|
BigDecimal | Co | BigDecimal(BigInteger,int) | - | Creates a BigDecimal from BigInteger arg1 and scale arg2. new BigDecimal(new BigInteger("123"),2)==1.23. | |
doubleValue | M | double() | - | Converts this BigDecimal to a double. May lose precision. new BigDecimal("0.1").doubleValue()==0.1. |
|
longValue | M | long() | - | Converts this BigDecimal to a long. May lose precision. new BigDecimal("0.1").longValue()==0L. |
|
max | M | BigDecimal(BigDecimal) | - | Returns the greater of this BigDecimal or arg1. new BigDecimal("0.1").max(0.2)==0.2. |
|
min | M | BigDecimal(BigDecimal) | - | Returns the lesser of this BigDecimal or arg1. new BigDecimal("0.1").min(0.2)==0.1. |
|
scale | M | int() | - | Returns the scale--the number of digits to the right of the decimal point. new BigDecimal("1.00").scale()==2. |
|
setScale | M | BigDecimal(int) | - | Sets the scale, but don't change the value. new BigDecimal("1").setScale(2).toString()=="1.00". |
|
toEngineeringString | M | String() | - | Returns the literal representation of this BigDecimal using engineering notation if an exponent is needed. new BigDecimal("123E2").toEngineeringString()=="12.3E+3". |
|
toPlainString | M | String | - | Returns the literal representation of this BigDecimal without exponents. new BigDecimal("123E2").toPlainString()=="12300". |
|
valueOf | sM | BigDecimal(long|double) | - | Converts arg1 (a long or double) to a BigDecimal. new BigDecimal(1.3)==BigDecimal.valueOf(1.3). |
|
ROUND_UP | sP | int | - | Used with divide. new BigDecimal("11").divide(2,BigDecimal.ROUND_UP)==6. |
|
ROUND_DOWN | sP | int | - | Used with divide. new BigDecimal("11").divide(2,BigDecimal.ROUND_DOWN)==5. |
|
divide | M | BigDecimal(BigDecimal,int) | - | Returns this/arg1 with scale the same as this BigDecimal. If rounding must be performed to stay within the result scale, use the rounding mode given by arg2 (ROUND_UP or ROUND_DOWN). new BigDecimal("11").divide(2,BigDecimal.ROUND_UP)==6. |
|
Table B-12 lists the Number
class.
Table B-12 The Number Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
Number | Cl | - | - | Base class of all numerics (except primitives). | |
doubleValue | M | double() | - | Converts this number to a double. |
|
floatValue | M | float() | - | Converts this number to a float. |
|
intValue | M | int() | - | Converts this number to a int. |
|
longValue | M | long() | - | Converts this number to a long. |
|
shortValue | M | short() | - | Converts this number to a short. |
|
Table B-13 lists the RL
class number methods.
Table B-13 The RL Class Number Methods
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
RL | Cl | - | oracle.rules.rl.extensions.RL | - | - |
number.is byte | sM | boolean(Number) | isByte | arg1 is integral and -128<=arg1<=127. RL.numeric.is byte(200)==false. |
|
number.is short | sM | boolean(Number) | isShort | arg1 is integral and -32768<=arg1<=32767. RL.numeric.is short(0.1)==false. |
|
number.is int | sM | boolean(Number) | isInt | arg1 is integral and -2147483648<=arg1<=2147483647. RL.numeric.is int(-1000)==true. |
|
number.is long | sM | boolean(Number) | isLong | arg1 is integral and -9223372036854775808<=arg1<=9223372036854775807. RL.numeric.is integer(new BigInteger("100")**100)==false. |
|
number.is integer | sM | boolean(Number) | isInteger | arg1 is integral. RL.numeric.is integer(new BigInteger("100")**100)==true. |
|
number.is decimal | sM | boolean(Number) | isDecimal | arg1 is neither Double nor Float. RL.numeric.is decimal(1.1)==false. |
|
number.is non-negative integer | sM | boolean(Number) | isNonNegativeInteger | arg1 is integral and arg1>=0. RL.numeric.is non-negative integer(-1)==false. |
|
number.is negative integer | sM | boolean(Number) | isNegativeInteger | arg1 is integral and arg1<0. RL.numeric.is negative integer(-1)==true. |
|
number.is non-positive integer | sM | boolean(Number) | isNonPositiveInteger | arg1 is integral and arg1<=0. RL.numeric.is non-positive integer(-1)==true. |
|
number.is positive integer | sM | boolean(Number) | isPositiveInteger | arg1 is integral and arg1>0. RL.numeric.is positive integer(-1)==false. |
|
number.is unsigned byte | sM | boolean(Number) | isUnsignedByte | arg1 is integral and 0<=arg1<=255. RL.numeric.is unsigned byte(200)==true. |
|
number.is unsigned short | sM | boolean(Number) | isUnsignedShort | arg1 is integral and 0<=arg1<=65535. RL.numeric.is unsigned short(0.1)==false. |
|
number.is unsigned int | sM | boolean(Number) | isUnsignedInt | arg1 is integral and 0<=arg1<=4294967295. RL.numeric.is unsigned int(-1000)==false. |
|
number.is unsigned long | sM | boolean(Number) | isUnsignedLong | arg1 is integral and 0<=arg1<=18446744073709551615. |
|
This section lists the time and duration classes provided by Oracle Business Rules.
Table B-14 lists the Calendar
class.
Table B-14 The Calendar Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
Calendar | Cl | - | java.util.Calendar | A Calendar represents a datetime and timezone. A calendar instance has a number of mutable int fields. The first argument to add, get, isSet, roll, and set is a field number. This class provides a number of static properties that should be used for the field numbers. |
|
ERA | sP | int | - | Field number for the Calendar era. 1 is for A.D. and 0 is for B.C. ((Calendar)"2010-02-01").get(Calendar.ERA)==1. |
|
YEAR | sP | int | - | Field number for the Calendar year. ((Calendar)"2010-02-01").get(Calendar.YEAR)==2010. |
|
MONTH | sP | int | - | Field number for the Calendar month. Months are 0-based. ((Calendar)"2010-02-01").get(Calendar.MONTH)==1. |
|
WEEK_OF_YEAR | sP | int | - | Field number for the Calendar week. ((Calendar)"2010-02-01").get(Calendar.WEEK_OF_YEAR)==6. |
|
DAY_OF_YEAR | sP | int | - | Field number for the Calendar day of year. ((Calendar)"2010-02-01").get(Calendar.DAY_OF_YEAR)==32. |
|
DAY_OF_MONTH | sP | int | - | Field number for the Calendar day of month. ((Calendar)"2010-02-01").get(Calendar.DAY_OF_MONTH)==1. |
|
DAY_OF_WEEK | sP | int | - | Field number for the Calendar day of the week. ((Calendar)"2010-02-01").get(Calendar.DAY_OF_WEEK)==2. |
|
HOUR | sP | int | - | Field number for the Calendar hour, 12 hour format. ((Calendar)"2010-02-01T20:15:10").get(Calendar.HOUR)==8. |
|
AM_PM | sP | int | - | Field number for the Calendar AM_PM flag. 0 is for AM and 1 is for PM. ((Calendar)"2010-02-01T20:15:10").get(Calendar.AM_PM)==1. |
|
HOUR_OF_DAY | sP | int | - | Field number for the Calendar hour, 24 hour format. ((Calendar)"20:15:10").get(Calendar.HOUR)==20. |
|
MINUTE | sP | int | - | Field number for the Calendar minutes. JavaDate.from time string("20:15:10").get(Calendar.MINUTE)==15. |
|
SECOND | sP | int | - | Field number for Calendar seconds. ((Calendar)"20:15:10").get(Calendar.SECOND)==10. |
|
ZONE_OFFSET | sP | int | - | Field number for timezone. Value is millsecond offset from GMT. ((Calendar)"20:15:10-05:30").get(Calendar.ZONE_OFFSET)==-(5*3600+30*60)*1000. |
|
add | M | void(int,int) | add | Adds the amount of time specified by arg2 to the calendar field specified by arg1. Modifies this Calendar. |
|
clear | M | void() | clear | Clears (unset all fields in) this Calendar. Modifies this Calendar. |
|
get | M | int(int) | get | Gets the value of the field specified by field number arg1. ((Calendar)"20:15:10").get(Calendar.SECOND)==10. |
|
getInstance | sM | Calendar() | getInstance | Gets a calendar initialized to the current time in the default time zone and locale. |
|
roll | M | void(int,int) | roll | Adds the amount of time specified by arg2 to the calendar field specified by arg1. Does not affect any other calendar field. Modifies this Calendar. |
|
set | M | void(int,int) | set | Sets the calendar field specified by arg1 to the value specified by arg2. Modifies this Calendar. |
|
time | P | java.util.Date | time | Returns a Date object representing this Calendar's time value. ((Calendar)"2010-02-01").time<((Calendar)"2010-02-02").time. |
|
timeInMillis | P | long | timeInMillis | Returns this Calendar's time value in milliseconds. ((Calendar)"2010-02-01").timeInMillis<((Calendar)"2010-02-02").timeInMillis. |
|
Table B-15 lists the JavaDate
class.
Table B-15 The JavaDate Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
JavaDate | Cl | - | oracle.rules. rl. extensions.JavaDate | Helper class for working with Calendars as immutable objects. Treating Calendars as immutable objects can help prevent errors. | |
add years to | sM | Calendar(Calendar, int) | addYearsTo | Returns a new Calendar that is arg2 years later than arg1. JavaDate.add years to("2009-01-01",1)=="2010-01-01". | |
add months to | sM | Calendar(Calendar, int) | addMonthsTo | Returns a new Calendar that is arg2 months later than arg1. JavaDate.add months to("2009-01-01",1)=="2009-02-01". | |
add weeks to | sM | Calendar(Calendar,int) | addWeeksTo | Returns a new Calendar that is 7*arg2 days later than arg1. JavaDate.add weeks to("2009-01-01",1)=="2009-01-08". | |
add days to | sM | Calendar(Calendar,int) | addDaysTo | Returns a new Calendar that is arg2 days later than arg1. JavaDate.add days to("2009-01-01",1)=="2009-01-02". | |
add hours to | sM | Calendar(Calendar,int) | addHoursTo | Returns a new Calendar that is arg2 hours later than arg1. JavaDate.add hours to("01:01:01",1)=="02:01:01". | |
add minutes to | sM | Calendar(Calendar,int) | addMinutesTo | Returns a new Calendar that is arg2 minutes later than arg1. JavaDate.add minutes to("01:01:01",1)=="01:02:01". | |
add seconds to | sM | Calendar(Calendar,int) | addSecondsTo | Returns a new Calendar that is arg2 seconds later than arg1. JavaDate.add seconds to("01:01:01",61)=="01:02:02". | |
add milliseconds to | sM | Calendar(Calendar,int) | addMillisecondsTo | Returns a new Calendar that is arg2 milliseconds later than arg1. JavaDate.add milliseconds to("01:01:01",61)=="01:01:01.061". | |
add duration to | sM | Calendar(Calendar,XMLDuration) | addDurationTo | Returns a new Calendar that is later than arg1 by the duration arg2. JavaDate.add duration to("2009-12-30T23:59:00",Duration.from string("P1DT1M"))=="2010-01-01". | |
from date string | sM | Calendar(String) | fromDateString | Creates a Calendar for the extended ISO 8601 date literal arg1. Extended to allow YYYY-MM-DD@TimeZoneId. JavaDate.from date string("2010-02-06@PST")=="2010-02-06-08:00". | |
from datetime string | sM | Calendar(String) | fromDateTimeString | Creates a Calendar for the extended ISO 8601 datetime literal arg1. Extended to allow YYYY-MM-DDTHH:MM:SS@TimeZoneId. JavaDate.from datetime string("2010-02-06T14:15:00@PST")=="2010-02-06T14:15:00-08:00". | |
from time string | sM | Calendar(String) | fromTimeString | Creates a Calendar for the extended ISO 8601 time literal arg1. Extended to allow HH:MM:SS@TimeZoneId. Warning: the date portion of the Calendar will be initialized to the current date. JavaDate.from time string("14:15:00@PST")=="14:15:00-08:00". | |
subtract years from | sM | Calendar(Calendar,int) | subtractYearsFrom | Returns a new Calendar that is arg2 years earlier than arg1. JavaDate.subtract years from("2009-01-01",1)=="2008-01-01". | |
subtract months from | sM | Calendar(Calendar,int) | subtractMonthsFrom | Returns a new Calendar that is arg2 months earlier than arg1. JavaDate.subtract months from("2009-01-01",1)=="2008-12-01". | |
subtract weeks from | sM | Calendar(Calendar,int) | subtractWeeksFrom | Returns a new Calendar that is 7*arg2 days earlier than arg1. JavaDate.subtract weeks from("2009-01-01",1)=="2008-12-25". | |
subtract days from | sM | Calendar(Calendar,int) | subtractDaysFrom | Returns a new Calendar that is arg2 days earlier than arg1. JavaDate.subtract days from("2009-01-01",1)=="2008-12-31". | |
subtract hours from | sM | Calendar(Calendar,int) | subtractHoursFrom | Returns a new Calendar that is arg2 hours earlier than arg1. JavaDate.subtract hours from("01:01:01",1)=="00:01:01". | |
subtract minutes from | sM | Calendar(Calendar,int) | subtractMinutesFrom | Returns a new Calendar that is arg2 minutes earlier than arg1. JavaDate.subtract minutes from("01:01:01",1)=="01:00:01". | |
subtract seconds from | sM | Calendar(Calendar,int) | subtractSecondsFrom | Returns a new Calendar that is arg2 seconds earlier than arg1. JavaDate.subtract seconds from("01:01:01",61)=="01:00:00". | |
subtract milliseconds from | sM | Calendar(Calendar,int) | subtractMillisecondsFrom | Returns a new Calendar that is arg2 milliseconds earlier than arg1. JavaDate.subtract milliseconds from("01:01:01",61)=="01:01:00.939". | |
subtract duration from | sM | Calendar(Calendar,XMLDuration) | subtractDurationFrom | Returns a new Calendar that is earlier than arg1 by the duration arg2. JavaDate.subtract duration from("2009-12-30T23:59:00",Duration.from string("P1DT1M"))=="20009-12-29T23:58:00". | |
to date string | sM | String(Calendar) | toDateString | Returns the ISO 8601 lexical representation of arg1, ignoring time components. JavaDate.to date string("2010-07-04T12:30:00Z")=="2010-07-04Z" | |
to datetime string | sM | String(Calendar) | toDateTimeString | Returns the ISO 8601 lexical representation of arg1. JavaDate.to datetime string("2010-07-04T12:30:00Z")=="2010-07-04T12:30:00.000Z" | |
to time string | sM | String(Calendar) | toTimeString | Returns the ISO 8601 lexical representation of arg1, ignoring date components. JavaDate.to time string("2010-07-04T12:30:00Z")=="12:30:00.000Z" |
Table B-16 lists the XMLGregorianCalendar
class.
Table B-16 The XMLGregorianCalendar Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
XMLGregorianCalendar | Cl | - | javax.xml.datatype.XMLGregorianCalendar | Representation for W3C XML Schema 1.0 date/time datatypes. |
|
normalize | M | XMLGregorianCalendar() | - | Normalizes this instance to UTC. XMLDate.from string("2000-03-04T23:00:00+03:00").normalize()==XMLDate.from string("2000-03-04T20:00:00Z") |
|
toGregorianCalendar | M | java.util.GregorianCalendar() | - | Converts this XMLGregorianCalendar to a (superclass of) Calendar. XMLDate.from string("2010-02-03").toGregorianCalendar()==(Calendar)"2010-02-03". | |
year | P | int | - | The year of this calendar, or Integer.MIN_VALUE if undefined. XMLDate.from string("2011-12-31").year==2011. |
|
month | P | int | - | The month of this calendar, or Integer.MIN_VALUE if undefined. Months are 1-based, e.g. Jan is month 1. XMLDate.from string("2011-12-31").month==12. |
|
day | P | int | - | The day of this calendar, or Integer.MIN_VALUE if undefined. XMLDate.from string("2011-12-31").day==31. |
|
hour | P | int | - | The hour of this calendar, or Integer.MIN_VALUE if undefined. XMLDate.from string("2011-12-31").hour==Integer.MIN_VALUE. |
|
minute | P | int | - | The minute of this calendar, or Integer.MIN_VALUE if undefined. XMLDate.from string("2011-12-31T09:30:00").minute==30. |
|
second | P | int | - | The second of this calendar, or Integer.MIN_VALUE if undefined. XMLDate.from string("09:30:05Z").second==5. |
|
timezone | P | int | - | The timezone offset in minutes of this calendar, or Integer.MIN_VALUE if undefined. XMLDate.from string("09:30:00-09:00").timezone==-540. |
|
Table B-17 lists the XMLDate
class.
Table B-17 The XMLDate Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
XMLDate | Cl | - | oracle.rules.rl.extensions.XMLDate | Helper class for working with XMLGregorianCalendars as immutable objects. Treating calendars as immutable objects can help prevent errors. | |
add years to | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | addYearsTo | Returns a new XMLGregorianCalendar that is arg2 years later than arg1. XMLDate.add years to("2009-01-01",1)=="2010-01-01". | |
add months to | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | addMonthsTo | Returns a new XMLGregorianCalendar that is arg2 months later than arg1. XMLDate.add months to("2009-01-01",1)=="2009-02-01". | |
add weeks to | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | addWeeksTo | Returns a new XMLGregorianCalendar that is 7*arg2 days later than arg1. XMLDate.add weeks to("2009-01-01",1)=="2009-01-08". | |
add days to | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | addDaysTo | Returns a new XMLGregorianCalendar that is arg2 days later than arg1. XMLDate.add days to("2009-01-01",1)=="2009-01-02". | |
add hours to | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | addHoursTo | Returns a new XMLGregorianCalendar that is arg2 hours later than arg1. XMLDate.add hours to("01:01:01",1)=="02:01:01". | |
add minutes to | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | addMinutesTo | Returns a new XMLGregorianCalendar that is arg2 minutes later than arg1. XMLDate.add minutes to("01:01:01",1)=="01:02:01". | |
add seconds to | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | addSecondsTo | Returns a new XMLGregorianCalendar that is arg2 seconds later than arg1. XMLDate.add seconds to("01:01:01",61)=="01:02:02". | |
add milliseconds to | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | addMillisecondsTo | Returns a new XMLGregorianCalendar that is arg2 milliseconds later than arg1. XMLDate.add milliseconds to("01:01:01",61)=="01:01:01.061". | |
add duration to | sM | XMLGregorianCalendar(XMLGregorianCalendar,XMLDuration) | addDurationTo | Returns a new XMLGregorianCalendar that is later than arg1 by the duration arg2. XMLDate.add duration to("2009-12-30T23:59:00",Duration.from string("P1DT1M"))=="2010-01-01". | |
from string | sM | XMLGregorianCalendar(String) | fromString | Creates an XMLGregorianCalendar for the ISO 8601 date literal arg1. XMLDate.from string("2010-02-06-08:00")=="2010-02-06-08:00". | |
subtract years from | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | subtractYearsFrom | Returns a new XMLGregorianCalendar that is arg2 years earlier than arg1. XMLDate.subtract years from("2009-01-01",1)=="2008-01-01". | |
subtract months from | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | subtractMonthsFrom | Returns a new XMLGregorianCalendar that is arg2 months earlier than arg1. XMLDate.subtract months from("2009-01-01",1)=="2008-12-01". | |
subtract weeks from | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | subtractWeeksFrom | Returns a new XMLGregorianCalendar that is 7*arg2 days earlier than arg1. XMLDate.subtract weeks from("2009-01-01",1)=="2008-12-25". | |
subtract days from | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | subtractDaysFrom | Returns a new XMLGregorianCalendar that is arg2 days earlier than arg1. XMLDate.subtract days from("2009-01-01",1)=="2008-12-31". | |
subtract hours from | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | subtractHoursFrom | Returns a new XMLGregorianCalendar that is arg2 hours earlier than arg1. XMLDate.subtract hours from("01:01:01",1)=="00:01:01". | |
subtract minutes from | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | subtractMinutesFrom | Returns a new XMLGregorianCalendar that is arg2 minutes earlier than arg1. XMLDate.subtract minutes from("01:01:01",1)=="01:00:01". | |
subtract seconds from | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | subtractSecondsFrom | Returns a new XMLGregorianCalendar that is arg2 seconds earlier than arg1. XMLDate.subtract seconds from("01:01:01",61)=="01:00:00". | |
subtract milliseconds from | sM | XMLGregorianCalendar(XMLGregorianCalendar,int) | subtractMillisecondsFrom | Returns a new XMLGregorianCalendar that is arg2 milliseconds earlier than arg1. XMLDate.subtract milliseconds from("01:01:01",61)=="01:01:00.939". | |
subtract duration from | sM | XMLGregorianCalendar(XMLGregorianCalendar,XMLDuration) | subtractDurationFrom | Returns a new XMLGregorianCalendar that is earlier than arg1 by the duration arg2. XMLDate.subtract duration from("2009-12-30T23:59:00",Duration.from string("P1DT1M"))=="20009-12-29T23:58:00". | |
to string | sM | String(XMLGregorianCalendar) | toString | Returns the ISO 8601 lexical representation of arg1. XMLDate.to string("2010-04-15T11:00:00-09:00")=="2010-04-15T11:00:00-09:00". | |
is datetime | sM | boolean(XMLGregorianCalendar) | isDateTime | Checks if this calendar have both date and time fields. XMLDate.is datetime("2009-12-30T23:59:00")==true. |
|
is datetime stamp | sM | boolean(XMLGregorianCalendar) | isDateTimeStamp | Checks if this calendar have date, time, and timezone fields. XMLDate.is datetime stamp("2009-12-30T23:59:00")==false. |
|
is date | sM | boolean(XMLGregorianCalendar) | isDate | Checks if this calendar have date fields and no time fields. XMLDate.is date("2009-12-30")==true. |
|
is time | sM | boolean(XMLGregorianCalendar) | isTime | Checks if this calendar have time fields and no date fields. XMLDate.is time("2009-12-30T23:59:00")==false. |
|
get timezone | sM | XMLDuration(XMLGregorianCalendar) | getTimezone | Gets the timezone from the calendar as a duration. XMLDate.get timezone("11:00:00+05:30")==Duration.from string("PT5H30M"). | |
get seconds | sM | BigDecimal(XMLGregorianCalendar) | getSeconds | Gets the seconds, including fractional part, from the calendar as a BigDecimal. XMLDate.get seconds("00:00:12.345")==12.345. |
|
Table B-18 lists the OracleDate
class.
Table B-18 The OracleDate Class
OBR Name | Kind | Signature | Java Name | Description |
---|---|---|---|---|
OracleDate | Cl | - | oracle.rules.sdk2.extensions.OracleDate | Helper class for working with oracle.jbo.domain.Timestamp. For examples of method use, see like-named XMLDate methods. |
add years to | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | addYearsTo | Returns a new oracle.jbo.domain.Timestamp that is arg2 years later than arg1. |
add months to | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | addMonthsTo | Returns a new oracle.jbo.domain.Timestamp that is arg2 months later than arg1. |
add weeks to | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | addWeeksTo | Returns a new oracle.jbo.domain.Timestamp that is 7*arg2 days later than arg1. |
add days to | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | addDaysTo | Returns a new oracle.jbo.domain.Timestamp that is arg2 days later than arg1. |
add hours to | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | addHoursTo | Returns a new oracle.jbo.domain.Timestamp that is arg2 hours later than arg1. |
add minutes to | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | addMinutesTo | Returns a new oracle.jbo.domain.Timestamp that is arg2 minutes later than arg1. |
add seconds to | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | addSecondsTo | Returns a new oracle.jbo.domain.Timestamp that is arg2 seconds later than arg1. |
add milliseconds to | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | addMillisecondsTo | Returns a new oracle.jbo.domain.Timestamp that is arg2 milliseconds later than arg1. |
add duration to | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,XMLDuration) | addDurationTo | Returns a new oracle.jbo.domain.Timestamp that is later than arg1 by the duration arg2. |
from string | sM | oracle.jbo.domain.Timestamp(String) | fromString | Creates an oracle.jbo.domain.Timestamp for the ISO 8601 date literal arg1. |
subtract years from | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | subtractYearsFrom | Returns a new oracle.jbo.domain.Timestamp that is arg2 years earlier than arg1. |
subtract months from | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | subtractMonthsFrom | Returns a new oracle.jbo.domain.Timestamp that is arg2 months earlier than arg1. |
subtract weeks from | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | subtractWeeksFrom | Returns a new oracle.jbo.domain.Timestamp that is 7*arg2 days earlier than arg1. |
subtract days from | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | subtractDaysFrom | Returns a new oracle.jbo.domain.Timestamp that is arg2 days earlier than arg1. |
subtract hours from | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | subtractHoursFrom | Returns a new oracle.jbo.domain.Timestamp that is arg2 hours earlier than arg1. |
subtract minutes from | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | subtractMinutesFrom | Returns a new oracle.jbo.domain.Timestamp that is arg2 minutes earlier than arg1. |
subtract seconds from | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | subtractSecondsFrom | Returns a new oracle.jbo.domain.Timestamp that is arg2 seconds earlier than arg1. |
subtract milliseconds from | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,int) | subtractMillisecondsFrom | Returns a new oracle.jbo.domain.Timestamp that is arg2 milliseconds earlier than arg1. |
subtract duration from | sM | oracle.jbo.domain.Timestamp(oracle.jbo.domain.Timestamp,XMLDuration) | subtractDurationFrom | Returns a new oracle.jbo.domain.Timestamp that is earlier than arg1 by the duration arg2. |
to string | sM | String(oracle.jbo.domain.Timestamp) | toString | Returns the ISO 8601 lexical representation of arg1. |
Table B-19 lists the Duration
class.
Table B-19 The Duration Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
Duration | Cl | - | oracle.rules.sdk2.extensions.OracleDuration | Helper class for comparing and subtracting dates. Can convert the difference of 2 dates into an XMLDuration. Can also create an XMLDuration from its literal (String) representation. Only day time and year month XMLDurations are supported. | - |
compare | sM | int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp) | - | Returns -1, 0, or 1 according to whether arg1<arg2, arg1==arg2, or arg1>arg2, respectively. Duration.compare("2010-01-01","2010-02-02")==-1 |
|
years between | sM | int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp) | yearsBetween | Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.years between("2008-01-01", "2009-02-02")==1. | - |
months between | sM | int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp) | monthsBetween | Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.months between("2009-01-01","2008-02-02")==-10. | - |
weeks between | sM | int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp) | weeksBetween | Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.weeks between("2000-01-01","2000-02-04")==4. | - |
days between | sM | int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp) | daysBetween | Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.days between("2000-01-01","2000-02-04")==34. | - |
hours between | sM | int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp) | hoursBetween | Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.hours between("2000-01-04T03:30:00","2000-01-01T00:00:00")==-75 | - |
minutes between | sM | int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp) | minutesBetween | Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.minutes between("03:30:00","04:45:00")==75. | - |
seconds between | sM | int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp) | secondsBetween | Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.seconds between("03:30:00","03:31:15")==75. | - |
milliseconds between | sM | int(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp) | millisecondsBetween | Subtracts arg1 from arg2, where the args are some kind of date/time. Duration.milliseconds between("03:30:00","03:31:15")==75000. | |
between | sM | XMLDuration(Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp, Calendar|XMLGregorianCalendar|oracle.jbo.domain.Timestamp) | between | Subtracts arg1 from arg2, where the args are some kind of date/time. Returns day-time Duration. Duration.between("2009-01-01T01:15:00","2009-02-02T11:30:00")==Duration.from string("P32DT10H15M"). |
|
from string | sM | XMLDuration(String) | fromString | Parses a duration from an ISO 8601 duration literal. "P1DT2H3M" is the duration of 1 day, 2 hours, and 3 minutes. | |
compare durations | sM | int(XMLDuration,XMLDuration) | compareDurations | Compares two durations. Both must be either day-time or year-month durations. Returns -1, 0, or 1 according to whether arg1<arg2, arg1==arg2, or arg1>arg2, respectively. Duration.compare(Duration.from string("P1Y"),Duration.from string("P13M"))==-1. | |
is day-time duration | sM | boolean(XMLDuration) | isDayTimeDuration | Checks if arg1 a day-time duration. Only day-time and year-month durations are supported. Duration.is day-time duration(Duration.from string("P2DT1S"))==true. |
|
is year-month duration | sM | boolean(XMLDuration) | isYearMonthDuration | Checks if arg1 a year-month duration. Only day-time and year-month durations are supported. Duration.is year-month duration(Duration.from string("P13M"))==true. |
|
get seconds | sM | BigDecimal(XMLDuration) | getSeconds | Gets the seconds field from the duration as a BigDecimal, including fractional seconds. Duration.get seconds(Duraton.from string("PT12.345S"))==12.345. |
|
divide | sM | XMLDuration(XMLDuration,int|double) | - | Divides a duration by an integral or double divisor. Duration.divide(Duration.from string("P1Y"),4)==Duration.from string("P3M"). | |
ratio | sM | BigDecimal(XMLDuration,XMLDuration) | - | Computes the ratio of 2 durations as a BigDecimal. Duration.ratio(Duration.from string("P1Y"),Duration.from string("P3M"))==4 |
Table B-20 lists the XMLDuration
class.
Table B-20 The XMLDuration Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
XMLDuration | Cl | - | javax.xml.datatype.Duration | Immutable representation of a time span as defined in the W3C XML Schema 1.0 specification. Only day-time and year-month XMLDurations are supported. |
|
years | P | int | - | Years field of the duration. Duration.from string("P2Y3M").years==2. |
|
months | P | int | - | Months field of the duration. Duration.from string("P2Y3M").months==2. |
|
days | P | int | - | Days field of the duration. Duration.from string("P1DT2H3M4S").days==1. |
|
hours | P | int | - | Hours field of the duration. Duration.from string("P1DT2H3M4S").hours==2. |
|
minutes | P | int | - | Minutes field of the duration. Duration.from string("P1DT2H3M4S").minutes==3. |
|
seconds | P | int | - | Seconds field of the duration. Duration.from string("P1DT2H3M4S").seconds==4. |
|
sign | P | int | - | Returns the sign of this duration in -1,0, or 1. Duration.from string("-P1Y").sign==-1. | - |
add | M | XMLDuration(XMLDuration) | - | Adds two durations. Duration.from string("P6M").add(Duration.from string("P6M"))==Duration.from string("P1Y"). | |
subtract | M | XMLDuration(XMLDuration) | - | Subtracts two durations. Duration.from string("P6M").subtract(Duration.from string("P6M"))==Duration.from string("P0Y"). | |
multiply | M | XMLDuration(BigDecimal|int) | - | Multiplies arg1 duration by arg2 factor. Duration.from string("P6M").multiply(2)==Duration.from string("P1Y"). | |
negate | M | XMLDuration() | - | Durations can be negative, e.g. if you reverse the arguments to Duration.between(arg1,arg2). Duration.from string("P6M").negate()==Duration.from string("-P6M"). |
|
to string | M | String() | toString | Gets the ISO8601 literal representation for this duration. Duration.from string("P6M").to string()=="P6M". |
Table B-21 lists the CurrentDate
class.
This section covers the miscellaneous classes provided by Oracle Business Rules.
Table B-22 lists the JAXBElement
class.
Table B-22 The JAXBElement Class
OBR Name | Kind | Signature | Java Name | Description | Reference |
---|---|---|---|---|---|
JAXBElement | Cl | - | javax.xml.bind.JAXBElement | Represents XML element information in XML Fact Types. |
|
nil | P | boolean | - | A nil element is not the same thing (in XML) as an absent element. |
|
value | P | Object | - | This is a reference to an XML Fact Type |
|
Table B-23 lists the Object
class.
Table B-24 lists the different functions provided by Oracle Business Rules..
Table B-24 The Oracle Business Rules Functions
OBR Name | Signature | RL Name | Description | Reference |
---|---|---|---|---|
| void(Object) | println | Prints the string value of arg1. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.assert a tree of facts | Object(Object) | assertTree | Asserts (insert into working memory) the tree of visible fact types with arg1 as the root. Returns arg1. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.assert | Object(Object) | assert | Asserts arg1 (insert arg1 into working memory). Returns arg1. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.retract | void(Object) | retract | Removes the fact associated with the object arg1 from working memory. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.get fact ID | int(Object) | id | Returns the fact id associated with the object arg1. If arg1 is not associated with a fact, return -1. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.get fact by ID | Object(int) | object | Returns the object associated with the given fact id. If there is no such fact id, returns null. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.contains | boolean(List,Object) | contains | The contains() function is similar to the contains() method on Java Collection but includes the ability to handle the presence of JAXBElement in the collection. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.ruleset stack.push | void(String) | pushRuleset | Pushes arg1, the name of a ruleset, onto the ruleset stack. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.ruleset stack.pop | String() | popRuleset | Pops and returns the top of the ruleset stack, the name of a ruleset. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.ruleset stack.get | String[]() | getRulesetStack | Returns the ruleset stack as a String array. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.ruleset stack.set | void(String[]) | setRulesetStack | Sets the ruleset stack to arg1, a String array. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.ruleset stack.clear | void() | clearRulesetStack | Pops all ruleset names off the ruleset stack. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.date.get current | Calendar() | getCurrentDate | Returns the date associated with the CurrentDate fact. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.date.set current | void(Calendar) | setCurrentDate | Sets the date for reasoning on an engine managed fact representing the "current" date (with the CurrentDate fact). | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.date.get effective | Calendar() | getEffectiveDate | Returns the current value of the effective date. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.date.set effective | void(Calendar) | setEffectiveDate | Updates the effective date in the rules engine. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.watch.rules | void() | watchRules | Prints information about rule firings (execution of activations). | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.watch.activations | void() | watchActivations | Prints information about addition or removal of activations from the agenda. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.watch.facts | void() | watchFacts | Prints information about assertion, retraction, or modification of facts in working memory. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.watch.focus | void() | watchFocus | Prints information about pushing and popping of the ruleset stack. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.watch.compilations | void() | watchCompilations | Prints information about how the condition parts of a rule are shared with existing rules. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.watch.all | void() | watchAll | Prints information about rules, facts, activations, focus, and compilations. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.stop watching.rules | void() | clearWatchRules | Stops printing information about rule firings. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.stop watching.activations | void() | clearWatchActivations | Stops printing information about addition or removal of activations from the agenda. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.stop watching.facts | void() | clearWatchFacts | Stops printing information about assertion, retraction, or modification of facts in working memory. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.stop watching.focus | void() | clearWatchFocus | Stops printing information about pushing and popping of the ruleset stack. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.stop watching.compilations | void() | clearWatchCompilations | Stops printing information about how the condition parts of a rule are shared with existing rules. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.stop watching.all | void() | clearWatchAll | Stops printing information about rules, facts, activations, focus, and compilations. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.show.facts | void() | showFacts | Prints all facts in working memory. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
RL.show.activations | void() | showActivations | Prints all activations on the agenda. | Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules |
This appendix contains frequently asked questions about Oracle Business Rules.
When a Java object has been asserted and then the object is changed without using the modify action, the object must be re-asserted in the Rules Engine. Therefore, if a rule associated with the changed Java object does not fire, this means that the Rules Engine did not reevaluate any rule conditions and did not activate any rules. Thus, when a Java object changes without using the modify action, the object must be re-asserted in the Rules Engine.
For more information on the differences between Oracle Business Rules RL Language and Java, see Appendix A in Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.
Method calls on an Oracle Business Rules RuleSession object are thread-safe such that calls by multiple threads do not cause exceptions at the RuleSession level. However, there are no exclusivity or transactional guarantees on the execution of methods. The lowest-level run
method in the Rules Engine is synchronized, so two threads with a shared RuleSession
cannot both simultaneously execute run
. One call to run
must wait for the other to finish.
Oracle Business Rules functions are not synchronized by default. Like Java methods, Oracle Business Rules functions can execute concurrently and it is the programmer's responsibility to use synchronized blocks to protect access to shared data (for instance, a HashMap
containing results data).
Any set of actions that a user wants to be executed as in a transaction-like form must synchronize around the shared object. Users should not synchronize around a RuleSession
object because exceptions thrown when calling RuleSession
methods may require the RuleSession
object to be discarded.
For most uses of a RuleSession
object in Oracle Business Rules, each thread or servlet instance should create and use a local RuleSession
object. This usage pattern is roughly analogous to using a JDBC connection in this manner.
The following examples demonstrate how to use a shared RuleSession
object.
For the case where Thread-1 includes the following:
and Thread-2 includes the following:
In this case, the execution of the two threads might proceed as shown in Example C-1.
Example C-1 Using a Shared RuleSession Object in Oracle Business Rules
In Example C-1, the two facts Thread-1 asserted are never both in the RuleSession
during a call to run
. Notice also that only one thread calls the run
method. If you use a design where multiple threads can call run
on a shared RuleSession
, this can create extremely hard to find bugs and there is usually no gain in performance.
All accesses to a shared RuleSession
object must be synchronized to ensure the intended behavior. However, a RuleSession
instance may throw an exception and not be recoverable, so do not use this object as the synchronization object. Instead, use another shared object as the synchronization point.
One can envision a shared server process producer-consumer model for RuleSession
use. In this model, multiple threads assert facts to a shared RuleSession
and one thread periodically calls run
, reads any results, and outputs them. This ensures that thread conflicts cannot occur, because the two code segments must be executed serially and cannot be intermingled. For example, the code with shared objects, producer code, and consumer code in Example C-2, Example C-3, and Example C-4.
Example C-2 RuleSession Shared Objects
Example C-3 RuleSession Producer Code
Example C-4 RuleSession Consumer Code
Note: When multiple threads are sharing a |
When working with facts, there are cases where the runtime behavior of Oracle RL may produce surprising results.
Consider the Oracle RL code in Example C-5.
Example C-5 Self-Join Using Fact F
How many lines print in the Example C-5 output? The answer is 4 lines because the same fact instance can match for both f1
and f2
.
Thus, Example C-5 gives the following output:
Using the same example with a third F
, for example (assert(new F(i:3));
) then nine lines are printed and if, at the same time, a third term && fact F F3
is added then 27 lines are printed.
If you are attempting to find all combinations and orders of distinct facts, you need an additional term to in the test, as shown in Example C-6.
Example C-6 Find All Combinations of Fact F
The code in Example C-6 gives the following output:
The simplest, although not the fastest way to find all combinations of facts, regardless of their order, is to use the code shown in Example C-7.
Example C-7 Finding Combinations of Fact F
Because the function id()
shown in Example C-7 takes longer to execute in a test pattern than a direct comparison, the fastest method is to test on a unique value in each object. For example, you could add an integer value property "oid" to your class that is assigned a unique value for each instance of the class.
Example C-8 shows the same rule using the oid value.
Example C-8 Fast Complete Comparison
This problem may also arise if you attempt to remove all duplicate facts from the Oracle Rules Engine, using a function as shown Example C-9.
Example C-9 Retracting Duplicate Facts Incorrect Sample
However, this rule removes all facts of type F
, not just the duplicates because F1
and F2
may be the same fact instance. Example C-10 shows the correct version of this rule.
The Oracle Rules Engine supports the Java PropertyChangeListener
design pattern. This allows an instance of a Java fact that uses the PropertyChangeSupport
class to automatically notify the Oracle Rules Engine when property values have changed. Java facts are not required to implement this pattern to be used by Oracle Rules Engine.
Typically, changes made to values of a property of a Java object that has previously been asserted to the Oracle Rules Engine requires that the object be re-asserted in order for rules to be reevaluated with the new property value. For properties that fire PropertyChangeEvent
, changing the value of those properties both changes the value and re-asserts the fact to the Oracle Rules Engine.
To implement the PropertyChangeListener
design pattern in a class, do the following:
PropertyChangeSupport
object: firePropertyChange
: addPropertyChangeListener
method (delegate to m_pcs
): removePropertyChangeListener
method (delegate to m_pcs
): When deciding whether to design your application to always explicitly re-assert modified objects or implement the PropertyChangeListener
design pattern, consider the following:
PropertyChangeListener
pattern eliminates this extra computational cost. PropertyChangeListener
before a guard condition property is set would cause the rule to refire itself endlessly. PropertyChangeListener
design pattern. PropertyChangeListener
-enabled facts allow a Java application to communicate property changes to the rule engine without having to change the application to perform explicit asserts. This also means that code that modifies a property of an object does not need to have a reference to the RuleSession
object in scope. PropertyChangeListener
support prevents the common error of neglecting to re-assert a fact after changing its properties. There are some limitations for using Business Rules with a BPEL process, including the following:
For an additional restriction, see Appendix D, "How Are Decision Service Input Output Element Types Restricted?".
For information on setting XML fact type visible option, see Section 3.2, "Working with XML Facts".
You do not actually put Java code in a rule. However, you can invoke a Java method from a rule condition or action.
Oracle BPEL PM can invoke only decision functions exposed as a decision service, and this means that the decision function inputs and outputs must be XML fact types.
You can use an existing ruleset or decision function that uses Java fact types if you convert the input XML facts to Java facts. For example, you could create some rules in a ruleset, named convertFromXML
, and put this ruleset before the Java ruleset in the decision function ruleflow. Similarly, you could create a ruleset to convert from Java facts to output XML facts and put this ruleset after the Java ruleset in the decision function ruleflow.
Alternatively, if your rules use only properties, and no methods or fields, from the Java fact types you can replace the Java fact types with XML fact types as follows:
To enable debugging output during ruleset execution for a BPEL Decision Service, you enable the SOA rules logger. When the SOA rules logger is set to TRACE
level then the output of watchAll
is logged to the SOA diagnostic log. When you change the logging level using Fusion Middleware Control Console, you do not need to redeploy the application to use the specified level.
For information on using the SOA oracle.soa.service.rules and oracle.soa.services.rules.obrtrace loggers, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Versioning is supported in Oracle Business Rules in two ways:
Note: It is possible for a server application to respond to dictionary changes as they are made visible to the application in MDS. The rule service engine (decision service) does this automatically. For non-SCA application, this can be done using the RuleRepository interface. At this time, they way to support an "in-draft" version is by using the sandbox feature of MDS. The Oracle Business Rules RuleRepository interface supports this.
The priority for rules and decision tables is highest to lowest, with the higher priority rule or Decision Table executing first. For example, if you create rules with priorities 1-4, they would be executed in the execution priority order 4,3,2,1. Using Rules Designer you can select a priority from a predefined named priority list or enter a positive or negative integer to specify your own priority level. The default priority is medium
(with the integer value 0). For more information, see Section 4.5.5, "How to Set a Priority for a Rule".
Note, however, you should try to avoid priorities as much as possible since they break the purely declarative model of rules. If you find yourself using a lot of priorities, then generally it is best to try to restructure your rule patterns and tests to avoid conflicts, or divide the rules into multiple rulesets using ruleflow if they are intended to be run in a certain order. A conflict is a case when more than one rule in a ruleset is able to fire. For example, if a "gold customer" rule says to make a customer that spends over $1000 a gold customer, and a "silver customer" rule says to make a customer that spends over $500 a silver customer, then when a customer spends $1100 there is a conflict. Rather than prioritize the rules, it is more declarative to change the "silver customer" rule to test for customers that spend between $500 and $1000. This conflict analysis and conflict avoidance is particularly easy if you use Decision Tables. For more information on Decision Tables, see Chapter 5, "Working with Decision Tables".
You use ruleflow, that is the ruleset stack, to order rulesets. For information on working with the ruleset stack, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.
According to the JAXB 2.0 spec, the default type mapping for elements that have minOccurs="0"
and nillable="true"
is JAXBElement<
T>
, where T is the default mapping of the type defined for the element. For example, xsd:string
maps to JAXBElement<String>
, xsd:int
maps to JAXBElement<Integer>
, and xsd:integer
maps to JAXBElement<BigInteger>
. This is because nillable="true"
means the user has defined a semantic difference between a element not being defined in a document, with minOccurs=0
, it does not have to be defined, and an element being defined but having the attribute nil="true"
. This is a subtle difference and is often used to define the difference between an unknown value and a value known to be "no value".
To use the JAXBElement-typed property in a rule, the property must be first checked for non-null, and then the "value" property or getValue()
method can be used retrieve a value of the underlying type:
Alternatively, you may want to define a customized JAXB binding so nillable elements are mapped to type T rather than JAXBElement<
T>
. However, this is a lossy conversion, as you no longer are able to determine the difference between a non-existent element and a nil one. This does make the nillable attribute less useful, but it does allow you to explicitly define an element as nil in your document, similarly to how in Java an Object-typed field is initialized to null by default or you can explicitly initialize it to null.
There are several ways to do this. In both cases, add these attributes to the top-level xsd:schema
element start tag:
Do not import classes that have been compiled into the "SCA-INF/classes" directory. Classes in this directory cannot be reloaded into the datamodel when they change.
You can use the following Rules SDK code to include a null value:
The Web Distributed Authoring and Versioning (WebDAV) repository is not supported to store a dictionary in Oracle Fusion Middleware 11g Release 1 (11.1.1) Oracle Business Rules. Oracle Business Rules supports using an MDS (file backed or Database backed) repository for storing dictionaries.
There are special considerations when you use Rules Designer and a source control system, such as CVS or Subversion. When you use a source code control system with Rules Designer you need to specify that rule dictionary files in your project are recognized as "binary" files instead of "text" files. The rule dictionary files are XML documents and by default the source code control system treats these files as text files. However, rule dictionary files cannot be merged because the files contain semantic structure. If a rule dictionary file is treated as a text file and then changed, the source control system attempts to merge the file with a "trivial" merge. Using a trivial merge creates a semantically invalid dictionary file which cannot be unmarshalled into a RuleDictionary object.
Thus, when you use a source code control system with rule dictionary files, .rules files, you need to make sure the source code control system treats the files as binary files. There are configuration options you need to set to specify that the system treats dictionary files as binary files. For example, in the Subversion source code control system you can set the MIME type with the svn:mime-type
file property. For more information, see
When you set the source code control system options to specify the binary file type, this allows the source code control system, for example tortoiseSVN, to treat the rules dictionary files correctly, as binary files.
This appendix contains workarounds and solutions for issues you may encounter when using Oracle Business Rules.
The following topics are covered:
Rules Designer does not list the methods supporting a Java bean property in choice lists; only the bean properties are visible. For example, a Java bean with a property named Y
must have at least a getter method getY()
and may also have a setter method setY(y-type-param)
. All of properties and methods (including getter and setter that compose the properties) are displayed when viewing the Java FactType. Only the properties of Java Classes (not the getter and setter methods) are displayed in choice lists. When attempting to control the visibility of the property it is best to use the properties visibility flag. Marking a getter or a setter method as not visible may not remove the properties from choice lists.
In Java the Java Bean introspector includes write-only properties. Oracle RL does not include such properties as Beans, because they cannot be reasoned on in a rule. Thus, in order for Java fact type bean properties to be properly accessed in Oracle RL they must have both a getter and setter. Properties which have a setter but not a getter, that is write-only properties, are not allowed in the Oracle RL "new" syntax.
For example, if a bean Foo
only has the method setProp1(int i)
, then you cannot use the following in Oracle RL:
Sometimes when working with XML facts, you might receive an error of the form:
The java.lang.NoClassDefFoundError
is very likely due to required classes not in classpath. Try checking the following:
xml.jar
to your classpath when executing. Oracle Business Rules escapes RL specific keywords when generating RL from Rules Designer. In most cases, RL specific keywords can be used without causing errors. One exception is using a keyword as the name of a class. This is unlikely for Java classes because by convention they start with an upper case letter and RL specific keywords are all lowercase. For more information, see Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules.
Problem: I receive an error such as the following:
Reason: This can be due to JAXB 2.1.6 issue 490, caused when unmarshalling incorrect, for example letter characters when float is expected, data as described at the following site,
http://java.net/jira/browse/JAXB-490
Workaround: the workaround for this problem is to assign a value to the appropriate element, as shown in Figure D-1 and Figure D-2 where approvalRequired
is assigned a default value false()
.
Figure D-1 Adding an Expression to Initialize a Value for a Business Rules Service Input
Figure D-2 Expression Assigned to Input Variable for Business Rules Service
Dictionaries which have been migrated from 10.1.3 use JAXB 1.0 instead of JAXB 2.0, which is the default for Oracle Fusion Middleware 11g Release 1 (11.1.1) dictionaries. Because of this use of JAXB 1.0, the migrated dictionaries may contain Element types. If your dictionary has Element types marked as visible, generated RL may throw MultipleInheritanceException
.
The solution to this issue is to mark the Element fact types non-visible or remove them from the datamodel. Only the Type classes generated by JAXB should be used to write rules, so there is no functionality loss from deleting the Element types.
The defined behavior of JAXB is to fail when a name of the form '_'
+ number is found. In this case JAXB cannot generate an "obvious" Java class name from this string. The default behavior of JAXB for '_'
+ char is to treat it as a word boundary (underscoreBinding="asWordSeparator"
), which means the underscore is stripped and the char is UpperCamelCased. For example, _fooBar
is mapped to FooBar
.
To fix this problem, you need to provide a schema customization to direct JAXB to generate the names differently. The default value for underscoreBinding
is specified as "asWordSeparator"
, which does not allow an underscore to be used at the beginning of a name.
The global annotation underscoreBinding="asCharInWord"
causes the '_'
to be preserved in the classname and UpperCamelCase after the number:
With this global annotation, the mapping for _1foo_bar_baz
is _1Foo_Bar_Baz
.
Using the Decision Service to run business rules with XML schema defining the input, for any given complexType
"tFoo" in an XML-Schema file Foo.xsd
there can only be one XML-Schema element "foo
" of type "tFoo". The Decision Service does not allow you to use two elements "foo
" and "bar
" of the same type "tFoo.
When you use the Decision Service a schema must define a complexType
or import another schema which defines a complexType
. You cannot use schemas which do not define complexType
, such as the following:
In Oracle Business Rules, when you import fact type properties which would have the same name as a Java language reserved word are excluded. For a complete list of Java reserved words, see
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/_keywords.html
A workaround is to rename the getter and setter method pair that produce the excluded property. If these methods names cannot be changed, the methods should be used in rules instead of the properties.
For example, if a property named continue
is excluded, you can create rules that use getContinue()
and setContinue()
methods instead of using the property.You can do this by rewriting a pattern. For example, replace:
with:
For another example, in an action, replace:
with:
This appendix describes the Java Rule Engine API (JSR-94) specification that defines a standard Java runtime API to access a rule engine from a Java SE or Java EE client.
The appendix includes the following sections:
For more information, see:
http://jcp.org/en/jsr/detail?id=94
http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html
Oracle Business Rules provides JSR-94 support. This allows you to create more portable rule-enabled applications.
You can create JSR-94 execution sets from Oracle Business Rules rulesets and you can create JSR-94 rule sessions from these execution sets. For more information, see Section E.2, "Creating JSR-94 Rule Execution Sets from Oracle Business Rules Rulesets".
You can access Oracle Business Rules rulesets and execute them against the Oracle Business Rules Engine using the JSR-94 API. For more information, see Section E.3, "Using the JSR-94 Interface with Oracle Business Rules".
Oracle Business Rules also provides extensions to the JSR-94 API that you may find useful. For more information, see Section E.3.4, "Using Oracle Business Rules JSR-94 Extensions".
To use JSR-94 with rules in RL Language text, you must map the rules to a JSR-94 rule execution set.
A JSR-94 rule execution set (rule execution set) is a collection of rules that are intended to be executed together. You also must register a rule execution set before running it. A registration associates a rule execution set with a URI; using the URI, you can create a JSR-94 rule session.
Note: In Oracle Business Rules, a JSR-94 rule execution set registration is not persistent. Thus, you must register a rule execution set programmatically using a JSR-94 |
For more information, see Section E.3.1, "Creating a Rule Execution Set with createRuleExecutionSet".
You can use JSR-94 with RL Language rulesets saved as text, where the Oracle RL text is directly included in the rule execution set. For more information, see "Using the Extended createRuleExecutionSet to Create a Rule Execution Set" for information about JSR-94 extensions that assist you in including RL Language text.
To create a rule execution set from Oracle Business Rules Oracle RL language text:
RuleAdministration
instance). Table E-1 Oracle Business Rules Oracle RL Language Text XML Mapping Elements for JSR-94
Element | Description |
---|---|
| Includes an |
| Specifies a list of rulesets that form the initial ruleset stack. The order of the rulesets in the list is from the top of the stack to the bottom of the stack. |
Note: In the |
Example E-1 XML Mapping File for Rulesets Defined in an Oracle RL Program
You can use JSR-94 with Oracle RL rulesets specified using a URL. For more information, see "Using the Extended createRuleExecutionSet to Create a Rule Execution Set" for information about JSR-94 extensions that assist you in specifying a URL.
To create a rule execution set from Oracle RL text specified in a URL:
RuleAdministration
instance). Table E-2 Oracle Business Rules Oracle RL URL XML Mapping Elements for JSR-94
Element | Description |
---|---|
| Includes an |
| Specifies a list of rulesets that form the initial ruleset stack. The order of the rulesets in the list is from the top of the stack to the bottom of the stack. |
Example E-2 XMP Mapping File for Rulesets Defined in a URL
A rule execution set may contain rules that are derived from multiple sources and the sources may be a mix of Rules Designer defined rulesets and RL Language rulesets. In this case, the XML element <rule-execution-set>
set contains multiple <rule-source>
elements, one for each source of rules. You must list each <rule-source>
in the order in which they are to be interpreted in Rules Engine.
Note: For this Oracle Business Rules release, a JSR-94 rule execution set can only reference one Rules Designer dictionary. |
This section describes some Oracle Business Rules specific details for JSR-94 interfaces.
The RuleExecutionSetProvider
and LocalRuleExecutionSetProvider
interfaces in javax.rules.admin
include the createRuleExecutionSet
to create a RuleExecutionSet
object.
For the remaining createRuleExecutionSet
methods, the first argument is interpreted as shown in Table E-3.
Table E-3 First Argument Types for createRuleExecutionSet Method
Argument | Description |
---|---|
| Specifies an instance of the |
| Specifies a URL that specifies the location of an XML document that is an instance of the |
| Specifies an input stream that is used to read an XML document that is an instance of the |
| Specifies a character reader that is used to read an XML document that is an instance of the |
Note: JSR-94 also includes |
The second argument to the createRuleExecutionSet
methods is a java.util.Map
of vendor-specific properties.
Clients create a JSR-94 rule session using the createRuleSession
method in the RuleRuntime
class. This method takes a java.util.Map
argument of vendor-specific properties. This argument can be used to pass in any of the properties defined for the Oracle Business Rules oracle.rules.rl.RuleSession
. If a rule execution set contains URL or repository rule sources, the rules from those sources are fetched on the creation of each new RuleSession
.
JSR-94 allows for metadata for rule execution sets and rules within a rule execution set. The Oracle Business Rules implementation does not add any additional metadata beyond what is in the JSR-94 specification. The rule execution set description is an optional item and thus may not be present. If it is not present, the empty string is returned. For rules, only the rule name is available and the description is initialized with an empty string.
This section covers the following extensions provided in the JSR-94 implementation classes.
Oracle Business Rules provides a helper function to facilitate creating the XML control file required as input to create a RuleExecutionSet
.
The helper method createRuleExecutionSet
is available in the RLLocalRuleExecutionSetProvider
class. The createRuleExecutionSet
method has the following signature:
Table E-4 describes the createRuleExecutionSet
arguments.
Table E-4 createRuleExecutionSet Arguments
Argument | Description |
---|---|
| Specifies the name of the rule execution set. |
| Specifies the description of the rule execution set. |
| Specifies an array of specifications for the sources of rules. The
For more information, see the |
| Specifies the initial contents of the RL Language ruleset stack to be set before each time the rules are executed. The contents of the array should be ordered from the top of stack (0th element) to the bottom of stack (last element). |
| Oracle specific properties. |
In a stateful interaction with a JSR-94 rule session, a user may want the ability to invoke an arbitrary RL Language function. The class that implements the JSR-94 StatefulRuleSession
interface provides access to the callFunction
methods in the oracle.rules.rl.RuleSession
class.
Example E-3 shows how you can to invoke an RL Language function with no arguments in a JSR-94 StatefulRuleSession
.
This appendix describes how to use the Rule reporter API to create lists or reports of the contents of a rules dictionary.
The appendix includes the following sections:
As the size and complexity of an Oracle Business Rules dictionary grows, documenting the dictionary and communicating with others about the contents of the rules dictionary can be important. Using the RuleReporter
class you can create lists or reports of the contents of a rules dictionary. You can use these reports to document your design and to communicate about the dictionary contents.
There are two ways to use Rule Reporter:
RuleReporter
on the command line RuleReporter
API in a Java program Rule Reporter is written in the Groovy programming language using the MarkupBuilder class, making it easy to create custom reporters whether you simply want to have differently formatted HTML or use an entirely different markup language. Groovy is a Java-like dynamic language which runs on the JVM and interacts seamlessly with Java objects.
The JDEV_INSTALL
/jdeveloper/soa/modules/oracle.rules_11.1.1/reporter.jar
file contains style sheet oracle/rules/tools/reporter/style.css
. When you place this file in the same directory as the HTML output file that Rule Reporter generates, this provides definitions to render the page. You can modify the style sheet to change the HTML layout.
For complete details on the RuleReporter
API, see the Oracle Fusion Middleware Java API Reference for Oracle Business Rules.
The command-line or Java API use of Rule Reporter needs to have the classpath include all required JAR files.
You can execute a command line script to use Rule Report to list the contents of a dictionary.
You can execute a command line script to use Rule Report to list the contents of a dictionary.
To list the contents of a dictionary with Rule Reporter using the command line:
RuleReporter
dependencies as Example F-1 shows. For more information, see Section F.1.3, "What You Need to Know About Rule Reporter Dependent Jar Files".
RuleReporter
with the following command line as Example F-1 shows: java oracle.rules.tools.reporter.RuleReporter
DICT-NAME
DEST-FILE
LINK-PATHS
Where:
DICT-NAME
: the name of the rules dictionary you want to generate a report on. For example: C:\JDeveloper\mywork\GradeApp\Grades\oracle\rules\grades\OracleRules1.rules
.
DEST-FILE
: the name of the destination file for the generated Rule Reporter output, usually suffixed with .html
. For example: C:\Temp\report.html
.
LINK-PATHS
: a list of the locations on the file system which may contain dictionaries that DICT-NAME
links to. For example: C:\Temp
.
If DICT-NAME
does not link to any dictionaries, you must still specify at least one path.
Example F-1 shows how to generate a report for a dictionary.
Example F-1 Executing RuleReporter on the Command Line
JDEV_INSTALL
/jdeveloper/soa/modules/oracle.rules_11.1.1\reporter.jar
file oracle/rules/tools/reporter/style.css
to the same directory as the HTML output file. In this example, copy the style.css
file to C:/Temp
.
This causes a web browser to use the definitions to render the page. You can modify the style sheet to change the visual layout of the HTML as shown in Figure F-1.
Figure F-1 RuleReporter report.html with style.css
You can quickly and easily create a basic report of the contents of a dictionary using a Java application with the oracle.rules.tools.reporter.RuleReporter
class.
You can use the RuleReporter
class to list the contents of a dictionary. This class, oracle.rules.tools.reporter.RuleReporter
takes several arguments, as shown:
DICT-NAME
,DEST-FILE
,LINK-PATHS
Where:
DICT-NAME
: the name of the rules dictionary you want to generate a report on. For example: C:\\JDeveloper\\mywork\\GradeApp\\Grades\\oracle\\rules\\grades\\OracleRules1.rules
.
DEST-FILE
: the name of the destination file for the generated Rule Reporter output, usually suffixed with .html
. For example: C:\\Temp\\report.html
.
LINK-PATHS
: a list of the locations on the file system which may contain dictionaries that DICT-NAME
links to. For example: new ArrayList<String>(Arrays.asList("C:\\Temp"))
.
If DICT-NAME
does not link to any dictionaries, you must still specify at least one path.
When you supply these arguments and call the RuleReporter.report()
method, this produces a dictionary report for the specified dictionary.
To list the contents of a dictionary using rule reporter with Java:
ReportApplication
. This should be a globally unique prefix and commonly uses a domain name owned by your company. The prefix, followed by a period, applies to objects created in the initial project of an application.
In this sample, you use the prefix com.example
.
ReportProject
. Figure F-3 Specifying Technologies in a Project
Add the libraries Adfm Designtime API, JAXB, ADF Model Runtime, Oracle XML Parser v2, Oracle JDBC, and Oracle Rules.
Report
. Figure F-4 Creating the Report.java Class
Oracle JDeveloper displays the Java Class, as shown in Example F-2.
RuleReporter
class as shown in Example F-3. Replace the first argument to the RuleReporter
constructor with the location of your dictionary. Example F-3 Report.java Completed
ReportProject
and select Make. Report.java
and select Run. In this example, the Report.java
class generates the report in C:\Temp\report.html
JDEV_INSTALL
/jdeveloper/soa/modules/oracle.rules_11.1.1\reporter.jar
file oracle/rules/tools/reporter/style.css
style sheet to the same directory as the HTML output file. In this example, copy the style.css
file to C:/Temp
. This causes a web browser to use the definitions to render the page. You can modify the style sheet to change the visual layout of the HTML as shown in Figure F-5.
Figure F-5 RuleReporter report.html with style.css
com.sun.xml.bind.v2.runtime.reflect.opt.Const
errors, D.5.decs
file, 11.2.1.1java.lang.IllegalAccessError
, D.5java.lang.NoClassDefFoundError
, D.3Copyright © 2005, 2012, Oracle and/or its affiliates. All rights reserved. |