

Oracle® Application Testing Suite
OpenScript User's Guide

Version 9.00 for Microsoft Windows (32-Bit)

E15488-01

September 2009

Oracle Application Testing Suite OpenScript User's Guide Version 9.00 for Microsoft Windows (32-Bit)

E15488-01

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Rick Santos

Contributing Author: Leo Cloutier, Dan Hynes, Orlando Cabrero, Theresa Bandy, Joe Fernandes, Matt
Demeusy

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle Enterprise Manager Application Testing Suite contains Classic IDE 3.2.2 with the OpenScript product
and certain Equinox jar files from the Eclipse SDK (the "EPL Programs"). The authors and/or contributors
to the EPL Programs disclaim (i) all warranties and conditions, express and implied, including warranties or
conditions of title and non-infringement, and implied warranties or conditions of merchantability and
fitness for a particular purpose and (ii) all liability for damages, including direct, indirect, special, incidental
and consequential damages, such as lost profits. Any provision of any license provided by Oracle is offered
by Oracle alone and not by any other party. The source code for the EPL Programs and a copy of the Eclipse
Public License is available from Oracle at the following URL: http://oss.oracle.com.

-iii

Contents

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiv
Related Documents ... xv
Conventions ... xv

1 Getting Started With OpenScript

1.1 OpenScript Features ... 1-1
1.2 Installing OpenScript.. 1-2
1.3 Starting the OpenScript Workbench .. 1-3
1.4 Overview of the OpenScript Main Window (Workbench)... 1-3
1.4.1 Tester Perspective .. 1-3
1.4.2 Developer Perspective .. 1-3
1.4.3 OpenScript Menu Options ... 1-4
1.4.3.1 File... 1-4
1.4.3.2 Edit.. 1-5
1.4.3.3 Search ... 1-6
1.4.3.4 Script... 1-6
1.4.3.5 View.. 1-7
1.4.3.6 Run.. 1-7
1.4.3.7 Tools ... 1-8
1.4.3.8 Help .. 1-8
1.4.3.9 Navigate... 1-8
1.4.3.10 Project ... 1-9
1.4.3.11 Window.. 1-9
1.4.4 OpenScript Tool Bar ... 1-10
1.4.5 Script View... 1-10
1.4.5.1 Tree View.. 1-11
1.4.5.2 Java Code .. 1-11
1.4.6 Details View... 1-11
1.4.7 Problems View .. 1-12
1.4.8 Properties View... 1-12
1.4.9 Console View... 1-12
1.4.10 Results View .. 1-12
1.4.11 Navigator and Package Explorer Views.. 1-13
1.4.12 Debug View ... 1-13
1.4.13 Variables and Breakpoints Views... 1-13

-iv Oracle Application Testing Suite OpenScript User's Guide

2 Setting Preferences

2.1 Setting OpenScript Preferences... 2-1
2.2 Correlation Category .. 2-1
2.2.1 Module Correlation Preferences.. 2-1
2.2.2 Add Library .. 2-2
2.2.3 Add/Edit Rule ... 2-2
2.3 General Category .. 2-2
2.3.1 General Preferences ... 2-3
2.3.2 Browser Preferences .. 2-3
2.3.3 Encryption Preferences ... 2-3
2.3.4 Repository Preferences.. 2-4
2.3.5 Workbench Preferences .. 2-4
2.4 Playback Category .. 2-4
2.4.1 General Playback Preferences .. 2-4
2.4.1.1 General ... 2-4
2.4.1.2 Error Handling.. 2-5
2.4.1.3 System .. 2-5
2.4.2 Error Recovery Preferences .. 2-5
2.4.2.1 General ... 2-6
2.4.2.2 Functional Test.. 2-6
2.4.2.3 HTTP .. 2-6
2.4.2.4 Oracle Forms Functional Test ... 2-7
2.4.2.5 Oracle Forms Load Test... 2-7
2.4.2.6 Utilities ... 2-7
2.4.2.7 Web Functional Test... 2-7
2.4.3 Functional Test Preferences.. 2-8
2.4.3.1 Object Enumeration.. 2-8
2.4.4 HTTP Preferences .. 2-9
2.4.4.1 Proxy... 2-9
2.4.4.2 Compression.. 2-9
2.4.4.3 Headers .. 2-9
2.4.4.4 Connections ... 2-9
2.4.4.5 SSL .. 2-9
2.4.4.6 Other.. 2-10
2.4.5 Oracle EBS/Forms Functional Test Preferences .. 2-10
2.4.5.1 Event Timeout.. 2-10
2.4.5.2 Miscellaneous... 2-11
2.4.5.3 Replay Port ... 2-11
2.4.6 Web Functional Test Preferences.. 2-11
2.4.6.1 Object Timeout... 2-11
2.4.6.2 Miscellaneous... 2-11
2.4.6.3 Agent Port... 2-11
2.4.6.4 Capture Screenshot Interval... 2-11
2.4.6.5 Object Tests... 2-11
2.5 Record Category... 2-12
2.5.1 HTTP Preferences ... 2-12
2.5.1.1 General .. 2-12

-v

2.5.1.2 Proxy Settings... 2-12
2.5.1.3 URL Filters.. 2-13
2.5.2 Oracle EBS/Forms Functional Test Preferences .. 2-13
2.5.2.1 General .. 2-13
2.5.2.2 Object Identification .. 2-13
2.5.3 EBS/Forms Load Test Preferences... 2-14
2.5.4 Siebel Functional Test Preferences ... 2-14
2.5.4.1 Object Identification .. 2-14
2.5.5 Web Functional Test Preferences.. 2-14
2.5.5.1 General .. 2-14
2.5.5.2 Object Identification .. 2-15
2.5.6 Web Services Preferences .. 2-15
2.5.6.1 General .. 2-15
2.5.6.2 Parser Tools .. 2-15
2.5.6.3 Proxy Configuration.. 2-16
2.6 Step Group Category... 2-16
2.6.1 Basic Module Preferences .. 2-16
2.6.2 Forms Functional Test Preferences .. 2-17
2.6.3 Forms Load Test Preferences .. 2-18
2.6.4 HTTP Preferences ... 2-18
2.6.5 Siebel Functional Test Preferences ... 2-19
2.6.6 Siebel Load Test Preferences ... 2-20
2.6.7 Web Functional Test Preferences.. 2-20
2.7 Setting Project Preferences.. 2-21

3 Creating and Modifying Scripts

3.1 Creating Repositories and Workspaces ... 3-1
3.1.1 Creating a Repository.. 3-1
3.1.2 Managing Repositories ... 3-2
3.1.3 Managing Workspaces.. 3-2
3.1.4 Managing Scripts ... 3-2
3.2 Creating a Script Project... 3-2
3.3 Modifying Scripts.. 3-4
3.3.1 Adding Step Groups to a Script... 3-4
3.3.2 Adding a Delay to a Script ... 3-5
3.3.3 Adding a Log Message to a Script... 3-5
3.3.4 Adding a For Statement to a Script ... 3-6
3.3.5 Adding a Function to a Script .. 3-6
3.3.6 Adding a Script to Run from a Script ... 3-9
3.3.7 Adding a Set Variable to a Script ... 3-10
3.3.8 Adding Comments to Script Results.. 3-10
3.3.9 Adding Error Recovery to a Script... 3-11
3.3.9.1 Script Types .. 3-11
3.3.9.2 Constants .. 3-11
3.3.9.3 Actions .. 3-12
3.3.10 Chaining Multiple Scripts.. 3-12
3.3.10.1 Setting the Browser Preferences .. 3-12

-vi Oracle Application Testing Suite OpenScript User's Guide

3.3.10.2 Recording Scripts... 3-13
3.3.10.3 Creating a Shell Script... 3-13
3.3.11 Moving Nodes in a Script .. 3-14
3.4 Changing Text File Encoding... 3-14
3.5 Enabling Debug Logging .. 3-14

4 Using Databanks

4.1 Understanding Data Driven Testing (Parameterization).. 4-1
4.2 Using Script Databanks.. 4-2
4.3 Configuring Databanks.. 4-2
4.4 Getting Databank Records... 4-3

5 Using the Web Functional Test Module

5.1 About the Web Functional Test Module ... 5-1
5.1.1 Key Features of the Web Functional Test Module.. 5-2
5.2 Recording Web Functional Tests .. 5-2
5.2.1 Setting Web Functional Test Record Preferences.. 5-2
5.2.2 Adding/Editing Object Identifiers.. 5-3
5.2.2.1 Available Attributes for Web DOM Elements.. 5-5
5.2.3 Recording Web Functional Test Scripts.. 5-6
5.3 Playing Back Scripts ... 5-7
5.3.1 Setting Web Functional Test Playback Preferences .. 5-7
5.3.2 Playing Back Web Functional Scripts ... 5-8
5.3.3 Playing Back Web Functional Scripts with Iterations .. 5-8
5.4 Modifying Scripts.. 5-8
5.4.1 Adding Browser Navigation to a Script ... 5-8
5.4.2 Adding Web Actions on Browser Objects.. 5-9
5.4.3 Adding Object Libraries to a Script.. 5-10
5.4.4 Adding a Server Response Test .. 5-10
5.4.5 Adding Text Matching Tests to a Script .. 5-11
5.4.6 Adding Object Tests ... 5-12
5.4.7 Adding Table Tests... 5-14
5.4.8 Adding a Wait for Page ... 5-15
5.4.9 Inspecting Object Paths.. 5-16
5.4.10 Setting Script Properties .. 5-16
5.4.11 Substituting Databank Variables.. 5-16
5.5 Editing Object Libraries .. 5-17
5.5.1 Using the Web Functional Test Module API .. 5-17

6 Using the HTTP Module

6.1 About the HTTP Module ... 6-1
6.1.1 Key Features of the HTTP Module.. 6-1
6.2 Navigation Editing (Correlation) ... 6-2
6.2.1 Setting Correlation Preferences ... 6-2
6.2.2 Adding Correlation Libraries... 6-3
6.2.3 Adding and Editing Correlation Rules... 6-3

-vii

6.2.3.1 Client Set Cookie... 6-3
6.2.3.2 Correlate Header .. 6-4
6.2.3.3 Correlate Referer Header .. 6-4
6.2.3.4 DOM Correlation Rules ... 6-4
6.2.3.5 Function/Text Substitution Rules.. 6-5
6.2.3.6 Substitute Recorded Date .. 6-6
6.2.3.7 Variable Substitution Rules... 6-7
6.3 Recording Scripts .. 6-8
6.3.1 Setting HTTP Record Preferences ... 6-8
6.3.2 Recording a New HTTP Script ... 6-10
6.4 Playing Back Scripts .. 6-11
6.4.1 Setting HTTP Playback Preferences... 6-11
6.4.2 Playing Back HTTP Scripts.. 6-13
6.4.3 Playing Back HTTP Scripts With Iterations .. 6-13
6.4.4 Viewing Script Playback Results .. 6-13
6.4.5 Resetting Encoding... 6-14
6.4.6 Comparing Recorded/Playback Results... 6-14
6.4.7 Playing Back HTTP Scripts In Oracle Load Testing for Web Applications 6-14
6.4.8 Posting Binary or XML File Data.. 6-15
6.5 Modifying Scripts... 6-16
6.5.1 Understanding the HTTP Module Script View.. 6-16
6.5.2 Using Script Variables.. 6-17
6.5.3 Adding a Variable to a Script.. 6-19
6.5.4 Adding a Solve XPath to a Script ... 6-19
6.5.5 Finding a Variable in a Script.. 6-20
6.5.6 Deleting Variables from a Script... 6-20
6.5.7 Adding Authentication to a Script ... 6-20
6.5.8 Adding Text Matching Tests to a Script .. 6-21
6.5.9 Adding Server Response Tests to a Script... 6-22
6.5.10 Substituting Databank Variables.. 6-22
6.5.11 Substituting Post Data Variables .. 6-23
6.5.12 Adding a Cookie to a Script .. 6-23
6.5.13 Removing a Cookie From Script... 6-24
6.5.14 Adding a User Agent to a Script... 6-24
6.6 Adding Navigation.. 6-25
6.6.1 Understanding Navigation Editing (Correlation) ... 6-25
6.6.2 Adding HTTP Get Navigation.. 6-27
6.6.3 Adding HTTP Post Navigation .. 6-27
6.6.4 Adding an HTTP Multipart Post Navigation... 6-28
6.6.5 Adding an HTTP XML Post Navigation ... 6-29
6.6.6 Using the HTTP Module API ... 6-30

7 Using the Oracle Forms Functional Test Module

7.1 About the Oracle Forms Functional Test Module.. 7-1
7.1.1 Key Features of the Oracle Forms Functional Test Module .. 7-1
7.1.2 Prerequisites ... 7-2
7.2 Recording Oracle EBS/Forms Functional Tests ... 7-2

-viii Oracle Application Testing Suite OpenScript User's Guide

7.2.1 Setting Oracle Forms Functional Test Record Preferences .. 7-3
7.2.2 Adding/Editing Object Identifiers.. 7-3
7.2.3 Recording Oracle EBS/Forms Functional Test Scripts .. 7-4
7.3 Playing Back Scripts ... 7-5
7.3.1 Setting Oracle Forms Functional Test Playback Preferences .. 7-5
7.3.2 Playing Back Oracle EBS/Forms Functional Scripts .. 7-6
7.3.3 Playing Back Oracle EBS/Forms Functional Scripts with Iterations 7-6
7.4 Modifying Scripts.. 7-6
7.4.1 Adding Forms Actions.. 7-6
7.4.2 Using the Oracle Forms Functional Test Module API ... 7-7

8 Using the Oracle Forms Load Test Module

8.1 About the Oracle Forms Load Test Module.. 8-1
8.1.1 Key Features of the Oracle Forms Load Test Module .. 8-1
8.1.2 Prerequisites ... 8-2
8.2 Recording Oracle EBS/Forms Load Tests... 8-2
8.2.1 Setting Oracle Forms Load Test Record Preferences.. 8-3
8.2.2 Recording Oracle EBS/Forms Load Test Scripts .. 8-3
8.3 Playing Back Scripts ... 8-4
8.3.1 Playing Back Oracle EBS/Forms Functional Scripts .. 8-4
8.3.2 Playing Back Oracle EBS/Forms Functional Scripts with Iterations 8-4
8.4 Modifying Scripts.. 8-5
8.4.1 Adding Forms Actions.. 8-5
8.4.2 Using the Oracle Forms Load Test Module API ... 8-5
8.5 Setting Oracle Forms Load Test Correlation Preferences ... 8-6
8.6 Oracle Forms Load Test Correlation Library.. 8-6
8.7 Troubleshooting Oracle EBS/Forms Load Test Scripts .. 8-7
8.7.1 Debugging Using the Message Log .. 8-7
8.7.1.1 During Recording ... 8-7
8.7.1.2 Format of the Recorded Log ... 8-7
8.7.1.3 During Playback ... 8-8
8.7.2 Analyzing Message Logs .. 8-8
8.7.3 Troubleshooting Forms ifError Messages.. 8-8

9 Using the Web Services Module

9.1 About the Web Services Module .. 9-1
9.1.1 Key Features of the Web Services Module... 9-1
9.2 Creating Web Services Scripts Using WSDL Manager.. 9-2
9.2.1 Creating the Web Services Script Tree.. 9-2
9.2.2 Adding WSDL Files to the WSDL Manager View.. 9-2
9.2.3 Adding Methods to the Script Tree... 9-2
9.2.4 Editing Method Parameters in the Details View... 9-3
9.3 Modifying Scripts.. 9-3
9.3.1 Adding a Web Services Post Navigation ... 9-3
9.3.2 Adding a Text Matching Test... 9-4
9.3.3 Adding Security Extensions ... 9-5
9.3.4 Adding Attachments ... 9-6

-ix

9.4 Recording Web Services Scripts.. 9-8
9.4.1 Setting Web Services Record Preferences .. 9-8
9.4.2 Recording Web Services Scripts .. 9-8

10 Using the Siebel Functional Test Module

10.1 About the Siebel Functional Test Module .. 10-1
10.1.1 Key Features of the Siebel Functional Test Module .. 10-1
10.2 Functional Testing Siebel Applications .. 10-2
10.2.1 Prerequisites .. 10-2
10.2.2 Setting up the Siebel Test Environment .. 10-2
10.2.3 Enabling Siebel Test Automation ... 10-3
10.2.3.1 Siebel 7.x.. 10-3
10.2.3.2 Siebel 8.0.. 10-3
10.2.4 Script Creation Techniques ... 10-3
10.2.5 Setting Browser Options .. 10-4
10.2.6 Starting the Siebel Application ... 10-4
10.2.7 Determining a Siebel Component Type .. 10-5
10.3 Recording Siebel Functional Test Scripts ... 10-5
10.3.1 Setting Siebel Functional Test Record Preferences .. 10-6
10.3.2 Adding/Editing Object Identifiers... 10-6
10.3.3 Recording Siebel Functional Test Scripts .. 10-7
10.4 Modifying Scripts... 10-8
10.4.1 Adding Siebel Actions.. 10-8

11 Using the Siebel Load Test Module

11.1 Load Testing Siebel Applications .. 11-1
11.1.1 Prerequisites .. 11-1
11.1.2 Setting Up Siebel Load Test Environments .. 11-2
11.1.2.1 Basic Configuration... 11-2
11.1.2.2 Floating Load Balancing Test Server .. 11-2
11.1.2.3 Clustered Web Server Configuration ... 11-2
11.1.2.4 Clustered Siebel Servers Configuration ... 11-2
11.1.2.5 Clustered Database Server Configuration ... 11-2
11.1.3 Siebel Correlation Library ... 11-3
11.1.4 Script Creation Techniques ... 11-3
11.1.5 Recording Scripts for Load Tests.. 11-3
11.1.6 Starting the Siebel Application ... 11-3
11.1.7 Playing Back Scripts ... 11-4
11.1.8 Resolving Script Issues... 11-4
11.1.8.1 Siebel Entities to Parameterize .. 11-5
11.1.9 Using Data Banks with Siebel ... 11-5
11.1.10 Preparing the Siebel Server Manager Commands... 11-6
11.1.10.1 Creating the Batch File.. 11-7
11.1.10.2 Creating the Command Input File .. 11-7
11.1.10.3 Siebel Statistics ... 11-8
11.1.10.4 Batch File Location .. 11-10
11.1.11 Defining ServerStats Metrics... 11-10

-x Oracle Application Testing Suite OpenScript User's Guide

11.1.12 Defining a ServerStats Configuration.. 11-11
11.1.13 Importing Pre-Configured Metrics and Profiles to Oracle Load Testing for Web

Applications 11-12
11.1.14 Running Load Tests in the Oracle Load Testing for Web Applications Console.. 11-12
11.1.14.1 Viewing VU Grid... 11-13
11.1.14.2 Viewing ServerStats .. 11-13
11.1.15 Generating Graphs and Reports Using Oracle Load Testing for Web Applications.........

11-13
11.1.15.1 Creating Custom Runtime Graphs ... 11-13
11.1.15.2 Creating Custom Reports ... 11-13
11.2 Setting Siebel Correlation Preferences .. 11-14
11.3 Siebel Correlation Library... 11-14

12 Using the Utilities Module

12.1 About the Utilities Module... 12-1
12.1.1 Key Features of the Utilities Module ... 12-1
12.2 Using Text File Processing.. 12-1
12.2.1 Reading Lines of Text from a File... 12-1
12.2.2 Reading Text from a CSV File ... 12-2
12.2.3 Reading Text from an XML File ... 12-2
12.3 Getting Values from a Database .. 12-3
12.4 Using the XPath Generator... 12-4
A.1 Specifying Command Line Settings ... A-1
A.2 Supported Agent Command Line Settings ... A-2
A.2.1 General Settings .. A-2
A.2.2 Browser Settings .. A-4
A.2.3 HTTP Settings ... A-5
A.2.3.1 Proxy ... A-5
A.2.3.2 Compression .. A-6
A.2.3.3 Headers .. A-6
A.2.3.4 Connections ... A-6
A.2.3.5 Other ... A-7
A.2.4 Functional Test Settings .. A-8
A.2.5 Oracle EBS/Forms Functional Test Settings .. A-8
A.2.6 Web Functional Test Settings ... A-8
A.2.7 Error Recovery Settings .. A-9
A.2.7.1 General ... A-9
A.2.7.2 Functional Testing .. A-9
A.2.7.3 HTTP .. A-10
A.2.7.4 Oracle EBS/Forms Functional Testing .. A-10
A.2.7.5 Oracle EBS/Forms Load Testing .. A-10
A.2.7.6 Web Functional Testing ... A-10
A.2.7.7 Utilities ... A-11
B.1 Basic Module Error Messages .. B-1
B.1.1 General Script Exceptions.. B-1
B.1.2 Binary Decoding Exceptions ... B-1
B.1.3 Script Creation Exceptions .. B-2

-xi

B.1.4 Segment Parser Exceptions ... B-3
B.1.5 Script Service Exceptions ... B-4
B.1.6 URL Encoding Exceptions... B-4
B.1.7 Variable Exceptions .. B-4
B.2 Platform Error Messages... B-4
B.2.1 Browser Exceptions .. B-5
B.2.2 SSL Exceptions .. B-5
B.2.3 TCP Exceptions ... B-5
B.2.4 HTTP Exceptions .. B-7
B.3 HTTP Error Messages.. B-7
B.3.1 HTTP Service Exceptions... B-7
B.4 Oracle Forms Load Test Error Messages.. B-8
B.4.1 Connect Errors... B-8
B.4.2 I/O Errors .. B-10
B.4.3 Match Errors .. B-11
B.4.4 Component Not Found Errors.. B-12
B.4.5 Playback Errors ... B-12
B.5 Siebel Error Messages.. B-13
B.5.1 Siebel Exceptions... B-13
B.6 Web Error Messages .. B-13
B.6.1 Web Service Exceptions ... B-13
C.1 Installation .. C-1
C.2 OpenScript Script Execution in Oracle Test Manager for Web Applications C-1
C.3 Manual Installation of FireFox Extension .. C-2

Index

-xii Oracle Application Testing Suite OpenScript User's Guide

xiii

Preface

Welcome to the Oracle OpenScript User's Guide. Oracle OpenScript is an extensible,
standards-based test automation platform designed to test the next generation of Web
applications. This guide explains how to use the features and options of Oracle
OpenScript for testing Web applications.

Audience
This document is intended for test engineers who will be developing Oracle
OpenScript scripts for regression and performance (load and scalability) testing of a
Web site or application. The guide does require an understanding of software or Web
application testing concepts. Test engineers using Oracle OpenScript should be
familiar with the concepts of regression testing, load testing, and scalability testing.

The record/playback paradigm of Oracle OpenScript does not require any
programming experience to develop scripts for testing. However, the advanced
programming features available in Oracle OpenScript do require experience with the
Java programming language. The programming sections and code examples of this
manual assume that you understand programming concepts in Java.

Using This Guide
This guide is organized as follows:

Chapter 1, "Getting Started With OpenScript" introduces OpenScript and provides an
overview of the features and user interface.

Chapter 2, "Setting Preferences" explains the available options in the OpenScript
Preferences categories.

Chapter 3, "Creating and Modifying Scripts" explains the procedures for creating and
modifying basic scripts in OpenScript.

Chapter 4, "Using Databanks" explains the concepts and procedures of Data Driven
Testing using Databanks.

Chapter 5, "Using the Web Functional Test Module" provides instructions on
configuring and using the OpenScript Web Functional Test Module for functional
testing of applications through the Document Object Model (DOM) of the Web
browser.

Chapter 6, "Using the HTTP Module" provides instructions on configuring and using
the OpenScript HTTP Module for load testing of Web applications through the
underlying HTTP protocol traffic.

xiv

Chapter 7, "Using the Oracle Forms Functional Test Module" provides instructions on
configuring and using the OpenScript Oracle Forms Functional Test Module for
functional testing of Oracle Forms web applications.

Chapter 8, "Using the Oracle Forms Load Test Module" provides instructions on
configuring and using the OpenScript Oracle Forms Load Test Module for load testing
of Oracle Forms web applications.

Chapter 9, "Using the Web Services Module" provides instructions on using the
OpenScript Web Services Module for testing Web Services.

Chapter 10, "Using the Siebel Functional Test Module" provides instructions on
configuring and using the OpenScript Siebel Functional Test Module for testing Siebel
applications through the Document Object Model (DOM) of the Web browser and the
Siebel test automation framework.

Chapter 11, "Using the Siebel Load Test Module" provides instructions on configuring
and using the OpenScript Siebel Load Test Module for load testing Siebel web
applications through the underlying HTTP protocol traffic.

Chapter 12, "Using the Utilities Module" provides instructions on using the
OpenScript Utilities Module, which provides commonly used testing functions.

Appendix A, "Command Line Reference" provides reference information for command
line settings.

Appendix B, "Error Message Reference" provides reference information for error
messages.

Appendix C, "Troubleshooting" provides basic troubleshooting information.

Appendix D, "Third-Party Licenses" contains copyright information about certain
third-party products used with Oracle Application Testing Suite.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

xv

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents
For more information, see the following documents in the Oracle Application Testing
Suite documentation set:

■ Oracle Application Testing Suite Release Notes

■ Oracle Functional Testing for Web Applications Functional Testing User’s Guide

■ Oracle Functional Testing for Web Applications Job Scheduler User’s Guide

■ Oracle Functional Testing for Web Applications Navigation Editor User’s Guide

■ Oracle Functional Testing for Web Applications Application Programming Interface
Reference

■ Oracle Functional Testing for Web Applications Result Objects Reference

■ Oracle Functional Testing for Web Applications Settings Manager Reference

■ Oracle Load Testing for Web Applications Load Testing User’s Guide

■ Oracle Load Testing for Web Applications Load Testing ServerStats Guide

■ Oracle Test Manager for Web Applications Test Manager User’s Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvi

1

Getting Started With OpenScript 1-1

1 Getting Started With OpenScript

OpenScript is an updated scripting platform for creating automated extensible test
scripts in Java. Combining an intuitive graphical interface with the robust Java
language, OpenScript serves needs ranging from novice testers to advanced QA
automation experts.

OpenScript is built on a standards-based platform and provides the foundation for
OpenScript Modules and Application Programming Interfaces (APIs). OpenScript
APIs are used to build scripts for testing Web applications. The OpenScript API
consists of a set of procedures that can be used to customize the scripts within the
development environment. The API can also be used by advanced technical users to
enhance scripts for unique testing needs.

1.1 OpenScript Features
OpenScript is the next generation environment for developing Oracle Application
Testing Suite scripts for Web application testing. OpenScript provides the following
features:

■ Scripting Workbench - OpenScript provides an Eclipse -based scripting
Workbench where you can create and run your automated test scripts. Users can
use the Tree View graphical scripting interface for creating and editing scripts
through the UI. Users can also switch to the Java Code View programming
interface and leverage the integrated Eclipse IDE for creating and editing their
scripts programmatically.

Functional test scripts created in OpenScript can be played back to test and
validate application functionality. Load test scripts created in OpenScript will run
in Oracle Load Testing for Web Applications for application load testing, allowing
users to simulate hundreds our thousands of users executing scripts at the same
time.

■ Test Modules - The OpenScript Test Modules provide application-specific test
automation capabilities. Each Test Module is custom built to test a specific
application or protocol. OpenScript includes several functional and load testing
modules for testing Web-based applications. Additional modules can be
developed for the OpenScript platform.

OpenScript’s Test Module interface is completely open and extendable by
end-users. Users can leverage the Test Module API to build their own modules for
testing specific applications or can extend an existing module to add custom
functionality.

■ Graphical/Tree View Scripting Interface - The OpenScript Tree View scripting
interface provides a graphical representation of the test script. Multiple script

Installing OpenScript

1-2 Oracle Application Testing Suite OpenScript User's Guide

windows can actually be open at the same time. Within each script window, the
Tree View is broken down into 3 main script sections:

■ Initialize: For script commands that only execute once on the first iteration

■ Run: Main body of the script for commands that will run on every iteration

■ Finish: For script commands that only execute once on the last iteration

Within each section, script Steps and Navigation nodes can be created
automatically during script recording or manually through the Tree View user
interface. Additional script commands will also be represented as nodes in Tree
View including test cases, data inputs, log messages, etc. Each Tree View node has
a corresponding representation in the Java Code View.

■ Programming/Code View Scripting Interface - The OpenScript Java Code View
scripting interface provides a Java representation of the test script. This view
provides full access to Eclipse IDE for creating, editing & debugging script code.
Script commands in Java are mapped to a corresponding representation in the Tree
View. Users can edit their script in either the code or tree view and changes will be
automatically reflected in both views.

■ Properties View & Results View - The OpenScript Properties View allows users to
view detailed properties for selected script nodes in the Tree View. The Results
View shows detailed step-by-step results of script playback which are linked to the
OpenScript display window.

■ Data Banking - OpenScript allows users to parameterize script data inputs to
perform data driven testing using Data Banking. Users can select any data inputs
for their script and then substitute a variable to drive the input from an external
file during playback. Multiple Data Bank files can be attached to a single script
and users can specify how OpenScript assigns data during script playback.

■ Correlation - The OpenScript Correlation interface allows users to create
correlation libraries to automatically parameterize dynamic requests during
playback. Correlation libraries contain rules for automatically handling dynamic
request parameters such as urls, query strings and post data for the load testing
modules.

■ OpenScript Preferences - The OpenScript Preferences interface is where users
specify settings to control script recording, script playback, correlation and general
preferences for the OpenScript Workbench.

1.2 Installing OpenScript
To install OpenScript:

1. Download the product Zip file from the Web site and save it to a temporary
directory on your hard disk.

2. Unzip the file and run the openscript###.exe to install OpenScript.

3. Follow the installation prompts to do the following:

■ Accept the license agreement

■ Specify the installation directory

4. Click Finish when done.

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-3

1.3 Starting the OpenScript Workbench
To start the OpenScript workbench:

From the Start menu:

■ Select Programs from the Start menu and then select OpenScript from the Oracle
Application Testing Suite menu.

From the Welcome Screen:

■ Click Goto the OpenScript Workbench.

1.4 Overview of the OpenScript Main Window (Workbench)
The OpenScript main window (Workbench) is where you perform the majority of your
test development activities. The main window consists of the perspectives used for
developing scripts. OpenScript includes a Tester Perspective and a Developer
Perspective. The menu bar, toolbar, and the views and editors vary depending upon
which perspective is being used. The following sections describe the functionality and
various elements of the OpenScript Workbench.

Some dialogs and views require the user to hit the popup menu keyboard button in
order to access some features in the UI that are normally accessible using the
right-click menu.

1.4.1 Tester Perspective
The OpenScript Tester Perspective provides a convenient way to record and edit
scripts and view the playback results. The Tester Perspective opens the following
views by default.

■ Script View: Shows the recorded script in two tabs: Tree View and Java Code. The
Tree View tab shows the steps and pages and the Initialize, Run, and Finish nodes
of each step using a graphical tree view. The Java Code tab shows the underlying
Java code used for the script.

■ Details View: Shows the content details for URL navigations or pages added to
the script.

■ Problems View: Shows any problems in the script code that may produce errors
or prevent compiling the script.

■ Properties View: Shows the properties for the selected node in the script.

■ Console View: Shows the playback command output and status information for
the script. Script log message also appear in the Console.

■ Results View: Shows the results of script playback.

The following Error log view is also available but does not open by default:

■ Error Log View: Shows the error log information for the project and script.

The views are described in more detail in the following sections.

1.4.2 Developer Perspective
The OpenScript Developer Perspective provides advanced options for developers
when creating and editing scripts using the advanced features of OpenScript and the
Eclipse development platform. The Developer Perspective opens the following views
by default:

Overview of the OpenScript Main Window (Workbench)

1-4 Oracle Application Testing Suite OpenScript User's Guide

■ Navigator and Package Explorer Views: Shows hierarchical views of the script
project resources. You can open the resource files in an editor to view and edit the
contents.

■ Script View: Shows the recorded script in two tabs: Tree View and Java Code. The
Tree View tab shows the steps and pages and the Initialize, Run, and Finish nodes
of each step using a graphical tree view. The Java Code tab shows the underlying
Java code used for the script.

■ Debug View: Shows the debugging options and provides options for stepping
through code.

■ Variables and Breakpoint Views: Shows the script variables and breakpoints set
in the code.

■ Details View: Shows recorded page details in three tabs: HTML, Browser, and
Header. The HTML tab shows the page HTML source. The Browser tab shows the
page. The Header tab shows the page response header.

■ Problems View: Shows any problems in the script code that may produce errors
or prevent compiling the script.

■ Properties View: Shows the properties for the selected node in the script.

■ Console View: Shows the playback command output and status information for
the script. Script log message also appear in the Console.

■ Results View: Shows the results of script playback.

The following Error log view is also available but does not open by default:

■ Error Log View: Shows the error log information for the project and script.

The views are described in more detail in the following sections.

1.4.3 OpenScript Menu Options
The menu options that appear change depending upon which perspective is set in the
Workbench (Tester or Developer) and which view is the active view. Specific test
modules may also add or remove menu options.

1.4.3.1 File
■ New - opens the New Project wizard. You can select the type of project including

OpenScript scripts, jobs and modules

■ Open Script - opens a window for selecting the OpenScript Repository,
workspace, and script to open.

■ Open File - opens a window for selecting the file to open.

■ Close - closes the script editor.

■ Close All - closes all script editors.

■ Save - saves the data in the currently active editor.

■ Save As - save the data in the currently active editor using a new name.

■ Save All - saves the data in all open editors.

■ Import Script - opens a window for importing an archived OpenScript script
project from a .zip file.

■ Export Script - opens a window for exporting the OpenScript script project to an
archive .zip file.

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-5

■ Exit - exits OpenScript.

The following options are also available in the Developer Perspective:

■ Revert - reverts changes to the last saved file contents.

■ Move - opens a dialog box for selecting where to move the resource.

■ Rename - opens a dialog box for specifying a new name for the resource.

■ Refresh - refreshes the resources in the Navigator or Package view.

■ Convert Line Delimiters To - opens a sub menu for selecting the type of line
delimiters for the conversion: Windows, UNIX, or Mac OS.

■ Print - prints the contents of the selected editor view.

■ Switch Workspace - opens a dialog box for selecting the workspace to use.

■ Import - opens a window for selecting the type of project to import.

■ Export - opens a window for exporting the type of project to export.

■ Properties - opens the properties information for the selected resource.

1.4.3.2 Edit
■ Undo - undoes the last action.

■ Redo - redoes the last action.

■ Cut - cuts the selected text/data to the clipboard.

■ Copy - copies the selected text/data to the clipboard.

■ Paste - pasted text/data on the clipboard to cursor location.

■ Delete - deletes the selected text/data.

■ Select All - selects all text/data in the currently active editor.

■ Find/Replace - opens a dialog box for setting the text search and replace options.
The menu option is available when an editor is open.

■ Search - opens a dialog box for specifying the search criteria.

The following options are also available when the Java Code editor is open in the
Script view.

■ Expand Selection To - opens a sub menu for selecting which element to use to
expand the selection.

■ Find Next - finds the next instance of the Find text specified in the Find/Replace
settings.

■ Find Previous - finds the previous instance of the Find text specified in the
Find/Replace settings.

■ Incremental Find Next - finds the next instance of the Find text specified in the
Find/Replace settings.

■ Incremental Find Previous - finds the previous instance of the Find text specified
in the Find/Replace settings.

■ Add Bookmark - opens a dialog box for specifying the bookmark name.

■ Add Task - opens a dialog box for defining a task to perform on a resource.

■ Smart Insert Mode - when selected, code typing aids such as automatic
indentation and closing of brackets are enabled in the code view.

Overview of the OpenScript Main Window (Workbench)

1-6 Oracle Application Testing Suite OpenScript User's Guide

■ Show Tooltip Description - opens a description for the current selection in the
Code View.

■ Content Assist - opens a context assist menu to bring up Java code assist
proposals and templates. See the Templates preference page for available
templates (Window > Preferences > Java > Editor > Templates) and go to the
Editor preference page (Window > Preferences > Java > Editor > Code Assist) for
configuring the behavior of code assist.

■ Word Completion - completes typing of a partial word.

■ Quick Fix - If the cursor is located at a location with problem indication this opens
a context assist dialog at the current cursor to present possible corrections.

■ Set Encoding - opens a dialog box for setting the type of text file encoding.

1.4.3.3 Search
■ Search - opens a dialog box for specifying the search criteria.

■ File - opens a dialog box for specifying the file search criteria.

■ Text - opens a sub menu for selecting the text search location.

1.4.3.4 Script
■ Record - starts the selected OpenScript script recorder.

■ Playback - plays back the currently open OpenScript

■ Iterate - plays back the script repeatedly, with or without a Databank.

■ Stop - stops the OpenScript script recorder.

■ Configure Databanks - opens a window for configuring the databank to use with
the OpenScript script.

■ Configure Modules - opens a dialog for configuring modules to use with the
OpenScript script project.

■ Revert all Navigations to Recorded - reverts changes back to the recorded version
of the script.

■ Create Step Group - creates step groups in the script based on page navigations.

■ Correlate Script - opens a dialog box for selecting a defined correlation library to
manually apply to the script. Correlation libraries are used to convert dynamic
data in page navigations to variable values for script playback. Use the Correlation
options in the in the OpenScript Preferences to define the correlation libraries and
rules.

■ Add - opens a sub menu for adding options to the script tree.

The Script menu includes additional options for functional test scripts:

■ Inspect Path - starts the object capture mode and opens a browser for selecting the
object path to capture. The object path is used by functional test scripts for object
identification.

■ Object Test - opens a dialog box for defining an object test for a functional test
script.

■ Table Test - opens a dialog box for defining a table test for a functional test script.

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-7

1.4.3.5 View
■ Tester Perspective changes the Workbench to the Tester Perspective.

■ Developer Perspective changes the Workbench to the Developer Perspective.

■ Reset Perspective resets the current perspective to the default settings.

■ Error Log toggles the Error Log View. When selected, the Error Logs view is
displayed. When cleared, the Error Log View is hidden.

■ Properties toggles the Properties View. When selected, the Properties view is
displayed. When cleared, the Properties View is hidden.

■ Problems toggles the Problems View. When selected, the Problems view is
displayed. When cleared, the Problems View is hidden.

■ Details toggles the Details View. When selected, the Details view is displayed.
When cleared, the Details View is hidden.

■ Console toggles the Console View. When selected, the Console view is displayed.
When cleared, the Console View is hidden.

■ Results toggles the Results View. When selected, the Results view is displayed.
When cleared, the Results View is hidden.

■ OpenScript Preferences opens the OpenScript Preferences dialog box for
specifying default settings and options.

1.4.3.6 Run
■ External Tools opens a sub menu for selecting the external tools option.

The following options are also available in the Developer Perspective:

■ Resume resumes suspended code execution or script playback.

■ Suspend suspends the current code execution or script playback.

■ Terminate ends the current code execution or script playback.

■ Step Into single steps code execution into the highlighted statement or method.
The Step options are active in debug mode.

■ Step Over single steps code execution over the current statement or method to the
next statement or method.

■ Step Return steps code execution out of the current method and stops after exiting
the current method.

■ Run to Line resumes execution until the specified line is executed. Used When a
thread is suspended.

■ Use Step Filters toggles step filters on and off. When set to on, all step functions
apply step filters.

■ Run Last Launched runs the last launched code or script playback.

■ Debug Last Launched opens the debug configuration options for the last
launched code or script playback. You can customize the debug configuration
before launching the code or script playback for debugging.

■ Run History opens a sub menu listing run configurations. Selecting a run
configuration shows the run history in the debug view.

Overview of the OpenScript Main Window (Workbench)

1-8 Oracle Application Testing Suite OpenScript User's Guide

■ Run As opens a sub menu listing available external run tools. External tools need
to be configured to appear on the sub menu by selecting External Tools from the
Run menu.

■ Run opens the run configuration options for the last launched code or script
playback. You can customize the run configuration before launching the code or
script playback.

■ Debug History opens a sub menu listing debug configurations. Selecting a debug
configuration shows the run history in the debug view.

■ Debug As opens a sub menu listing available external run tools. External tools
need to be configured to appear on the sub menu by selecting External Tools from
the Run menu.

■ Debug opens the debug configuration options for the last launched code or script
playback. You can customize the debug configuration before launching the code or
script playback.

1.4.3.7 Tools
■ Manage Scripts - opens a window for managing OpenScript scripts.

■ Manage Workspaces - opens a window for managing OpenScript Workspaces.

■ Manage Repositories - opens a window for managing OpenScript Repositories.

■ XPath Generator opens a dialog box for generating an XPath from an XML file.

1.4.3.8 Help
■ Welcome opens the welcome page with links to the Workbench product

documentation.

■ Help Contents opens the help table of contents.

■ Search opens the help search view.

■ Dynamic Help opens the available help topics for the currently active view and
perspective.

■ Key Assist opens the list of keyboard shortcuts.

■ Tips and Tricks opens the help tip and tricks window.

■ Cheat Sheets opens the Cheat Sheets view.

■ About OpenScript opens a dialog box showing version, copyright, and license
information with additional options for Feature, Plug-in, and configuration
details.

1.4.3.9 Navigate
The Navigate menu appears when the Developer perspective is open.

■ Go Into refocuses the active view so that the current selection is at the root. This
allows web browser style navigation within hierarchies of artifacts.

■ Go To opens a sub menu with options for selecting the location to which to
navigate. The sub menu options change depending upon the current view.

■ Open Type opens a dialog box for selecting the type library to open in an editor
view.

■ Open Type in Hierarchy opens a dialog box for selecting the type library to open
in a hierarchy view.

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-9

■ Open Resource opens a dialog box for selecting the resource file to open in an
editor view.

■ Show In opens a sub menu for selecting where to show the statement or method
selected in the code view: Package Explorer, Navigator, or Outline view.

■ Next moves the selection to the next annotation in the Code View.

■ Previous moves the selection to the next annotation in the Code View.

■ Last Edit Location moves the selection to the location of the last edit made in the
Code View.

■ Back moves the selection back through the list of locations previously selected in
the Code view.

■ Forward moves the selection forward through the list of locations previously
selected in the Code view.

1.4.3.10 Project
The Project menu appears when the Developer perspective is open.

■ Open Project opens the project selected in the Navigator View.

■ Close Project closes the project selected in the Navigator View.

■ Build All builds all projects. This option is only available if the Build
Automatically option is not selected.

■ Build Project builds the current project. This option is only available if the Build
Automatically option is not selected.

■ Build Working Set opens a sub menu for selecting or creating a working set of
projects. Working set projects are only available if the Build Automatically option
is not selected.

■ Clean opens a dialog box for selecting the project to clean of build problems.

■ Build Automatically toggles the automatic build option on and off.

■ Generate Javadoc opens the Generate Javadoc window.

■ Properties opens the properties window for the current project.

1.4.3.11 Window
■ New Window opens a new OpenScript window.

■ New Editor opens a new editor view of the current file.

■ Open Perspective opens a sub menu for selecting the perspective to open.

■ Show View opens a sub menu for selecting the view to show.

■ Customize Perspective opens a window for selecting the shortcuts and commands
to customize.

■ Save Perspective As opens a dialog box for specifying a name for the saved
perspective.

■ Reset Perspective resets the current perspective to the default settings.

■ Close Perspective closes the currently open perspective.

■ Close All Perspectives closes all perspectives.

■ Navigation opens a sub menu for selecting navigation options.

Overview of the OpenScript Main Window (Workbench)

1-10 Oracle Application Testing Suite OpenScript User's Guide

■ Working Set opens a sub menu for selecting a Working Set of projects or defining
a new Working Set.

■ Preferences opens a window for specifying the project preferences.

1.4.4 OpenScript Tool Bar
The following toolbar buttons are available in the Tester and Developer Perspectives:

■ New - opens a Wizard for creating new OpenScript scripts or Java platform objects
and resources.

■ Save - saves the changes in the currently active editor. The button is only active if
an editor is open with changes to be saved.

■ Print - prints the information in the currently selected editor. The button is only
active if an editor with printable content is open.

■ Playback - starts playback of the currently open Visual Script.

■ Iterate - opens a dialog box for specifying the playback iterations options.

■ Record - starts OpenScript script recording using the selected script recorder.
Clicking the menu button opens the a menu listing the available recorder types.

■ Stop - stops OpenScript script recording.

■ Debug - opens a dialog box for specifying a debug configuration.

■ Run - Runs the selected configuration type or application.

■ Run External Tools - Runs an external application.

■ New Java Project - opens a window for creating a new Java project.

■ New Java Package - opens a window for creating a new Java package

■ New Java Class - opens a window for creating a new Java class.

■ Open Type - opens a window for specifying the type library to open.

■ Search - opens a dialog box for specifying search options.

■ Select Working Sets - opens a dialog box for selecting working sets.

■ Next Annotation - goes to the next annotation in the Java code. This button is only
active when a Java Code view is open.

■ Previous Annotation - goes to the previous annotation in the Java code. This
button is only active when a Java Code view is open.

■ Last Edit Location - opens the edit view that was open and goes to the last edit
location.

■ Back to (location) - browses back to the last OpenScript script view.

■ Forward - browses forward to the previous OpenScript script view.

1.4.5 Script View
Shows the recorded script in two tabs: Tree View and Java Code. The Tree View tab
shows the steps and pages and the Initialize, Run, and Finish nodes of each step using
a graphical tree view. The Java Code tab shows the underlying Java code used for the
script.

The script view is where you perform the majority of script editing actions. The Script
view has the following tab views:

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-11

1.4.5.1 Tree View
The Tree View shows the script navigations and data as nodes in a collapsible tree
view. The Tree View corresponds to the Java Code view. Any changes in the Tree View
will be automatically updated in the Java Code view. The Tree View has the following
standard nodes:

■ Initialize - specifies script actions to perform once at the beginning of script
playback.

■ Run - specifies script actions to perform one or more times during script playback
depending upon databanks or other custom programming.

■ Finish - specifies script actions to perform once at the end of script playback.

Use the Record options and right-click shortcut menu to add options to script nodes or
modify the properties of script nodes in the Tree View.

1.4.5.2 Java Code
The Java Code view shows the script navigations and data as Java programming code.
The Java Code view corresponds to the Tree View. Any changes in the Code View will
be automatically updated in the Tree View. The Java Code view has the following
standard procedures:

■ initialize() - corresponds to the Initialize node of the Tree View and executes
any custom code added once at the beginning of script playback.

■ run() - corresponds to the Run node of the Tree View and executes recorded and
custom code one or more times during script playback depending upon databanks
or other custom programming.

■ finish() - corresponds to the Finish node of the Tree View and executes any
custom code added once at the end of script playback.

Use Ctrl-space to open an Intellisense window listing available procedures. See the
API Reference in the OpenScript Platform Reference help for additional programming
information.

1.4.6 Details View
The Details view shows the content details for URL navigations added to the script.
The Details view may have the following tab views depending upon the selected script
node:

■ ScreenShot - shows a screen capture of the web page.

■ Browser - shows the Browser rendered page for the script navigation selected in
the tree view.

■ HTML - shows the HTML source for the script navigation selected in the tree view.

■ Headers - shows the Request Header and Response Header source for the script
navigation selected in the tree view.

■ Comparison - shows the recorded and playback text for the Content, Request
Header, or Response Header selected in the Compare list. The Comparison tab
appears only after a script is played back and a navigation is selected in the
Results View.

■ Results Report - shows the results report for the script playback. The Results
Report tab appears only after a script is played back and a navigation is selected in
the Results View.

Overview of the OpenScript Main Window (Workbench)

1-12 Oracle Application Testing Suite OpenScript User's Guide

1.4.7 Problems View
The Problems view shows any problems in the script code that may produce errors or
prevent compiling the script. The Problems view shows the following information:

■ # error, # warnings, # infos - shows the number of errors, warning messages, and
information messages in the problems view.

■ Description - shows a description of the errors, warning messages, and
information messages.

■ Resource - shows the name of the resource file where the error, warning, or
information message was generated.

■ Path - shows the script name, workspace, and repository path where the resource
file is located.

■ Location - shows the location/line number where the error, warning, or
information message was generated.

The following toolbar button is available in the Problems View:

■ Configure the filters to be applied to this view - opens a dialog box for configuring
the filters to apply to the Problems View.

1.4.8 Properties View
The Properties view shows the properties for the selected node in the script. The
Properties view shows the following information:

■ Property - shows the names of the properties for the script node. The properties
vary depending upon which type of script node is selected.

■ Value - shows the value of the script node properties. Property values can be
edited in the properties view.

The following toolbar buttons are available in the Properties View:

■ Show Categories - toggles the property categories.

■ Show Advanced Properties - toggles the advanced properties.

■ Restore Default Value - restores any changed property values to the default values.

1.4.9 Console View
The Console view shows the playback command output and status information for the
script. Script log message also appear in the Console. See the Process Console View
topics in the reference section of the Java development user guide online help for
additional information about console toolbar options.

1.4.10 Results View
The Results view shows the playback results for the script. The Results view shows the
following information:

■ Name - shows the test date or navigation name.

■ Duration - shows the playback time for the page navigations.

■ Result - shows the playback result: Passed or Failed.

■ Summary - shows the data values from the Data Bank that are passed to
parameters or it shows failure descriptions.

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-13

The following toolbar buttons are available in the Result View:

■ Delete Result - deletes the selected result row.

■ Delete All Results - deletes all rows from the Results View.

■ Scroll Lock - toggles scroll lock on and off for the Result View.

■ Properties - opens the Properties for the selected result.

1.4.11 Navigator and Package Explorer Views
The Navigator and Package Explorer view shows the Java resources for the script and
Java package. Double-click on a resource to open it in an editor view. See the Package
Explorer View topics in the reference section of the Java development user guide
online help for additional information about Package Explorer toolbar options.

1.4.12 Debug View
The Debug view provides options for debugging script playback. See the Debug View
topics in the reference section of the Java development user guide online help for
additional information about debugging toolbar options.

1.4.13 Variables and Breakpoints Views
The Variables and Breakpoints view shows variable values and breakpoints for
debugging script playback. See the Breakpoints and Variables View topics in the
reference section of the Java development user guide online help for additional
information about breakpoints and variables toolbar options.

Overview of the OpenScript Main Window (Workbench)

1-14 Oracle Application Testing Suite OpenScript User's Guide

2

Setting Preferences 2-1

2 Setting Preferences

The OpenScript Preferences let you specify default values and settings to use for
OpenScript options. This chapter explains the available options in the OpenScript
Preferences categories. The OpenScript preferences are under the OpenScript node.
The available preferences may vary depending upon installed modules.

2.1 Setting OpenScript Preferences
To set OpenScript preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and select the preference category.

4. Specify the preferences as necessary for the selected category.

The following sections explain the available options for each category.

2.2 Correlation Category
The OpenScript Correlation interface allows users to create correlation libraries to
automatically parameterize dynamic requests during playback. Correlation libraries
contain rules for automatically handling dynamic request parameters such as urls,
query strings and post data for the specific modules.

This category lets you specify libraries and rules for transforming dynamic data in
recorded script URLs and related parameters (headers, post data, etc.) to variable
names that will be recognized by the script playback engine (OpenScript or Oracle
Load Testing for Web Applications). Correlation rules must be defined within
OpenScript modules and are not available with the basic platform.

2.2.1 Module Correlation Preferences
Selected Module: Shows the names of the defined correlation libraries. Use the Add
button to define libraries. After you define a library you can use the Add Rule button
to specify the rules to include in the library.

■ Add Library: Opens a dialog box for adding a correlation library name.

■ Add Rule: Opens a dialog box for adding a correlation rule to the selected library.

■ Edit: Opens a dialog box for editing the selected correlation library name.

General Category

2-2 Oracle Application Testing Suite OpenScript User's Guide

■ Delete: Deletes the selected correlation library from the Preferences list. The
defined rules for the library are also removed from the preferences. The correlation
library .XML file is not deleted from disk.

■ Up: Moves the correlation rule up in the priority list.

■ Down: Moves the correlation rule down in the priority list.

■ Import: Opens a dialog box for selecting the correlation library file to import.

■ Export: Opens a dialog box for selecting the location where you want to export the
selected correlation library .XML file.

■ Revert: Reverts the library to the default values.

Tab view: Shows the library or rule details for the selected correlation library or rule.
The tab view information changes depending upon whether a library or rule node is
selected and which type of correlation rule is selected. See the module chapters for
details about specific correlation libraries.

2.2.2 Add Library
This dialog box lets you specify a new correlation library for transforming dynamic
data in recorded script URLs and related parameters (headers, post data, etc.) to
variable names that will be recognized by the script playback engine (OpenScript or
Oracle Load Testing for Web Applications).

■ Name: Specifies the name of the correlation library. After you define a library you
can use the Add Rule button to specify the rules to include in the library. The
name is required. You can also select Copy rules to copy correlation rules from an
existing library.

■ Copy rules from existing library: Lets you copy correlation rules from an existing
library to a new library.Specifies the name of the correlation library. After you
define a library you can use the Add Rule button to specify the rules to include in
the library. The name is required. You can also select Copy rules to copy
correlation rules from an existing library.

– Copy Rules: When selected, a list of existing correlation rule libraries will be
enabled for copying.

– Library: Lists the correlation rule libraries available for copying.

2.2.3 Add/Edit Rule
This dialog box lets you specify or edit a correlation rule for transforming dynamic
data in recorded script URLs and related parameters (headers, post data, etc.) to
variable names that will be recognized by the script playback engine (OpenScript or
Oracle Load Testing for Web Applications).

■ Type: Specifies the type of correlation rule. The available Source and Target
options change depending upon the rule type.

■ Name: Specifies the name of the correlation rule. The name is required.

■ Source: Specifies which object(s) to substitute as dynamic data.

■ Target: Specifies which object(s) to use as the target location of the transform.

2.3 General Category
This category lets you specify general preferences.

General Category

Setting Preferences 2-3

2.3.1 General Preferences
These preferences set the default general preferences. The resulting dialog presents the
following fields:

Confirm exit when closing last window: When selected, a confirmation message
appears when closing the OpenScript workbench.

Remove script from workbench on close: When selected, any opens scripts will be
removed from the workbench when OpenScript is closed.

2.3.2 Browser Preferences
The Browser preferences specify the browser and any additional arguments. The
resulting dialog presents the following fields:

Browser Type: Select which browser to use.

■ Internet Explorer: When selected, OpenScript uses the Internet Explorer browser.

– Path Override: Specifies the path and file name to use to override the default
Internet Explorer browser location.

– Additional Arguments: Specifies any additional command arguments to
include when starting the browser.

– Hide browser during playback: When selected, the browser is hidden during
script playback.

– Always launch a new browser when recording a different script: When
selected, a new instance of the Internet Explorer browser is launched for each
new script recording. When cleared, a new browser is launched only for the
first script recording of the OpenScript session. The general case is to launch a
new browser instance for each specific script. However, when chaining scripts
using a shell script where each script needs to use the same instance of the
browser, clearing this setting will cause subsequent scripts recordings to use
the same browser instance as the first recording.

■ FireFox: When selected, OpenScript uses the FireFox browser.

– Path Override: Specifies the path and file name to use to override the default
FireFox browser location.

– Additional Arguments: Specifies any additional command arguments to
include when starting the browser.

Start Up: Specifies the browser start up settings.

■ Startup Timeout: Specifies the amount of time, in seconds, to use for the browser
startup timeout.

2.3.3 Encryption Preferences
These preferences set the default encryption preferences. The resulting dialog presents
the following fields:

Do not encrypt script data: When selected, passwords are stored and displayed as
plain text in the script.

Obfuscate script data: When selected, passwords are obfuscated before storing and
displaying in the script. Obfuscated passwords are hidden but not securely encrypted.

Encrypt script data: When selected, passwords are encrypted in the script. Specify an
encryption password to use.

Playback Category

2-4 Oracle Application Testing Suite OpenScript User's Guide

■ Password: Specifies the password to use when encrypting and decrypting data
strings using the encrypt() and decrypt() functions. Only users who use the
same encryption password in their copy of OpenScript will be able to decrypt
script passwords. This same encryption password must be used for authentication
on all agent machines that will run or open the script in Oracle Load Testing for
Web Applications Authentication Manager or Oracle Test Manager for Web
Applications.

2.3.4 Repository Preferences
These preferences lets you specify the name and location of the repository to use to
store script files. The resulting dialog presents the following fields:

Name: Shows the names of the defined repositories. Use the Add button to define
repositories and locations.

Location: Shows the location of defined repositories.

Add: Opens a dialog box for specifying a repository and location.

Edit: Opens a dialog box for editing the selected repository and location. The Default
repository location can be changed but it cannot be renamed.

Delete: Deletes the selected repository and location from the Preferences list. The
script files and directory are not deleted. The Default repository cannot be deleted.

2.3.5 Workbench Preferences
These preferences let you specify the default workbench preferences. The resulting
dialog presents the following field:

Remove script from workbench on close: When selected the script is automatically
removed from the workbench when the script is closed.

2.4 Playback Category
This category lets you specify script playback preferences.

2.4.1 General Playback Preferences
This category lets you specify general playback preferences. The resulting dialog box
displays the following sections and fields:

2.4.1.1 General
This section lets you specify general playback preferences and displays the following
fields:

VU Pacing (Think Time): Specifies the script playback delay between pages for each
virtual user. This is the amount of time the user looks at a page before making the next
request and is commonly referred to as "think time." There are four options:

■ Recorded: Uses the delay times that were recorded in the Script. You can set
minimum and maximum delay times (in seconds) that override the script delay
times in the Minimum and Maximum edit boxes.

Warning: HTTP scripts do not automatically obfuscate/encrypt
sensitive script passwords.

Playback Category

Setting Preferences 2-5

■ Recorded/Random: Uses random delay times based upon the recorded user delay.
The low end of the random range as the actual recorded user delay minus the
Lower percentage setting. The high end of the random range as the actual
recorded user delay plus the Upper percentage setting. For example, if the actual
recorded delay time was 100 seconds and the Lower and Upper settings are 10%
and 25% respectively, Oracle Load Testing for Web Applications uses random
delay times between 90 and 125 seconds.

■ Random: Uses random times for Virtual User pacing. You can set minimum and
maximum delay times for random delay in the Minimum and Maximum edit
boxes.

■ No Delay: Plays back the Visual Scripts at the fastest possible speed with no time
between page requests.

Preserve variables between iterations: Used to preserve or automatically clear
variables defined in the Run section between successive iterations of the Run section.

Variables defined in the Initialize section will be preserved forever, unless explicitly
removed in script code.

Variables set in the Run section will always be preserved between the final iteration of
the Run section and the Finish section.

Variables include all items that are added into the script variables collection (see:
getVariables() script method). This includes variables for elements such as HTTP
form fields defined using http.solve(...) and http.solveXPath(...).

2.4.1.2 Error Handling
This section specifies the default playback error handling settings.

On iteration failure, do not run more iterations: When selected, virtual user playback
is stopped if an error occurs between playback iterations.

Use recorded value if variable is not found: When selected, the recorded data value
will be used if a variable is not found. Databank variables will always use the recorded
value if the databank attached to the script cannot be found. If the databank cannot be
found and Use Recorded Value If Variable Is Not Found is not selected, the recorded
data value will still be used.

2.4.1.3 System
This section specifies the default playback system settings.

Maximum JVM Heap Size: Specifies the maximum size of the JVM heap. This value
cannot be more than 90% of the total memory size.

Playback port: Specifies the port number to use for playback.

Debug logging: When selected, debug logging is enabled and DEBUG messages
appear in the Console view during script playback. When cleared, debug logging is
disabled and DEBUG messages do not appear in the console view during script
playback.

2.4.2 Error Recovery Preferences
This category lets you specify error recovery actions for exceptions that occur during
playback. You can set the error recovery action for individual playback exceptions.
Expand specific sections and set the error recovery action. You can set the action as
Fail, Warn, or Ignore, as follows:

Playback Category

2-6 Oracle Application Testing Suite OpenScript User's Guide

■ Fail: Report the error as failure and stop script execution.

■ Warn: Report the error as a warning and continue script execution.

■ Ignore: Ignore the error and continue script execution.

Error Recovery playback preferences specified in the OpenScript Preferences are
stored on the local machine and only apply when the script is played back from inside
OpenScript on that machine. If you upload your script to Oracle Load Testing for Web
Applications on another server and your script depends on an error recovery setting
being a certain way in order for it to work, then you can set the error recovery setting
in the OpenScript script Java code.

In OpenScript scripts, error settings can be turned on and off at any time, overriding
the default Oracle Load testing for Web Applications and OpenScript Preferences
using script Java code. For example:

getSettings().setErrorRecovery("http.zeroLengthDownloads", "IGNORE");
// user code executed in script, such as http.get(), http.post(), ...
getSettings().setErrorRecovery("http.zeroLengthDownloads", "FAIL");

2.4.2.1 General
This section lets you specify the default General error recovery actions, as follows:

Variable Not Found - specifies the error recovery action if a variable cannot be found
when parsing transformed strings.

Create Variable Failed - specifies the error recovery action if a script fails to create a
variable.

File Not Found - specifies the error recovery action if a file is not found.

Segment Parser Failed - specifies the error recovery action if the XPath Segment
Parser cannot verify the correctness of an XPath.

Binary Decode Failed - specifies the error recovery action if a binary post data
parameter error occurs.

Encryption Service Not Initialized - specifies the error recovery action when the
password encryption service was not initialized.

Unexpected Script Error - specifies the error recovery action if any unexpected script
error occurs.

2.4.2.2 Functional Test
This section lets you specify the default Functional Test error recovery actions, as
follows:

Text Matching Failed - specifies the error recovery action if a text matching test fails.

Object Test Failed - specifies the error recovery action if an object test fails.

Table Test Failed - specifies the error recovery action if a table test fails.

2.4.2.3 HTTP
This section lets you specify the default HTTP error recovery actions, as follows:

Zero Length Downloads - specifies the error recovery action if a server response
indicates zero bytes length.

Text Matching Failed - specifies the error recovery action if a text matching test fails.

Playback Category

Setting Preferences 2-7

Response Time Error - specifies the error recovery action if a Server Response Time
test fails.

Solve Variable Failed - specifies the error recovery action if a table test fails.

HTML Parsing Error - specifies the error recovery action if an HTML parsing error
occurs.

Invalid URL - specifies the error recovery action if the server returns an Invalid URL
response code.

Invalid HTTP Response Code - specifies the error recovery action if the sever returns
an invalid HTTP response code.

Client Certificate Keystore Error - specifies the error recovery action if the Client
Certificate Keystore indicates and error.

2.4.2.4 Oracle Forms Functional Test
This section lets you specify the default Oracle Forms Functional test error recovery
actions, as follows:

Oracle Forms - specifies the error recovery action if any Oracle Forms Functional test
error occurs.

2.4.2.5 Oracle Forms Load Test
This section lets you specify the default Oracle Forms Load test error recovery actions,
as follows:

Form Server Connect Failed - specifies the error recovery action if a server connection
error occurs.

Read or Write Message Failed - specifies the error recovery action if a read or write
error occurs with an Oracle Forms message.

Control Cannot Be Initialized - specifies the error recovery action if server control
fails to initialize.

2.4.2.6 Utilities
This section lets you specify the default Utilities error recovery actions, as follows:

SQL Execute Error - specifies the error recovery action if an SQL execute error occurs.

XML Parsing Error - specifies the error recovery action if any XML parsing error
occurs.

CSV Loading Error - specifies the error recovery action if an error occurs while
loading a CSV file.

2.4.2.7 Web Functional Test
This section lets you specify the default Web Functional Test error recovery actions, as
follows:

Response Time Error - specifies the error recovery action if a Server Response Time
test fails.

XML Parsing Error - specifies the error recovery action if any XML parsing error
occurs.

Solve Variable Failed - specifies the error recovery action if the value of any variable
cannot be solved.

Playback Category

2-8 Oracle Application Testing Suite OpenScript User's Guide

2.4.3 Functional Test Preferences
This category lets you specify playback preferences for that apply to all Functional Test
scripts. The resulting dialog box displays the following sections and fields:

2.4.3.1 Object Enumeration
This section lets you specify the default Smart Match setting.

Smart Match: When selected, the OpenScript Smart Match object identification
ranking feature is enabled. The following example explains how the Smart Match
ranking feature enhances object identification in an XPath. With the following XPath,

/web:a[@text='Search' OR @href='search.jsp' OR @index='0']

it is possible for multiple links on a page to match the XPath criteria. For example:

link A: text='Logout', href='logout.jsp', index=0
link B: text='Search', href='search.jsp', index=3
link C: text='Search', href='doNotSearch.jsp', index=15
link D: text='Find', href='search.jsp', index=22

When Smart Match is not enabled, OpenScript returns the first result found on the
page (Link A in the above example).

When Smart Match is enabled, OpenScript ranks all the results based on how well they
match the specified attributes in the XPath. OpenScript evaluates the XPath from
left-to-right and produce a list of attribute name=value pairs. For example:

Attribute 1: text=Search
Attribute 2: href=search.jsp
Attribute 3: index=0

OpenScript then builds a table and assigns a score to each attribute for each result.
OpenScript assigns a 0 or a 1 based on whether or not each result matches a particular
attribute name=value pair. The result with the highest numerical ranking will be used
during playback. For example:

Logical operators (AND, OR) in the XPath are ignored when Smart Match is enabled
during playback. In Smart Match mode, all attributes are matched as one group in
left-highest priority.

When Smart Match is disabled, you can use single or mixed Logical operators (AND,
OR) and Parentheses. You can specify required attributes by using the Logical AND
operator. All attributes joined together using the Logical OR operator are optional. The
AND operator has a higher priority than the OR operator when both operators are
used in a single Xpath. Parenthetical groups of attributes are also permitted. For
example:

/web:a[@text='Search' AND (@alt='Find' OR @title='Find')]

Link
Attr 1
text=Search

Attr 2
href=search.jsp Attr 3 index=0

Smart Mode
Score

A 0 0 1 001

B 1 1 0 110 (Best Match)

C 1 0 0 100

D 0 1 0 010

Playback Category

Setting Preferences 2-9

In this XPath, the text attribute is required, and the alt and title attributes are ranked
using the Smart Match ranking system.

You can turn on/off Smart Mode for an individual action(s) by using the
getSettings().set() API.

2.4.4 HTTP Preferences
This category lets you specify HTTP playback preferences. The resulting dialog box
displays the following sections and fields:

2.4.4.1 Proxy
This section lets you specify HTTP playback preferences and displays the following
fields:

Proxy Host: Specifies the host name of the proxy server.

Proxy Port: Specifies the port to use on the proxy server.

Username: Specify the user name to use for authentication.

Password: Specify the password to use for authentication.

Non-Proxy Hosts: Specifies the host name of the non-proxy servers.

2.4.4.2 Compression
This section lets you specify specifies the default HTTP compression playback settings.

Enable GZIP: When selected, the GZIP compression format is enabled.

Enable Deflate: When selected, deflate is enabled.

2.4.4.3 Headers
This section specifies the default HTTP header playback settings.

Browser Emulation: Specifies which browser to emulate for script playback. The
Default is the recorded browser.

Language: Specifies which language to use for script playback. The default is English.

HTTP Version: Specifies which HTTP version to use for script playback.

Accept String: Specifies the Accept string to use in the Request header for script
playback.

2.4.4.4 Connections
This section specifies the default HTTP playback connections settings.

Enable Keep Alive: When selected, keep alive is enabled.

Max Number of Keep Alive Requests: Specifies the maximum number of requests to
make on a keep alive connection before closing it or select Unlimited for an unlimited
number.

2.4.4.5 SSL
This section specifies the default HTTP playback Secure Sockets Layer (SSL) settings.

SSL Version: Specifies the SSL version to use.

Playback Category

2-10 Oracle Application Testing Suite OpenScript User's Guide

2.4.4.6 Other
This section specifies the default miscellaneous HTTP playback settings.

Do not request URLs ending in: Specifies the URLs that will not be requested when
the URL ends with one of the specified patterns or file types. Specify the ending
pattern or file type separated by commas.

Cache Emulation: Specifies the type of user to simulate. This is useful for simulating
different profiles of virtual users. A first time user places more of a load on the Web
server because pages and image are not yet cached. A repeat user places less of a load
on the server as only newer pages are requested and brought down from the Web
server. There are three options:

■ Do Not Cache: cache is not used. When using WinInet, selecting Do Not Cache
has the same effect as selecting 1st Time as the Cache Emulation method. In this
case, document cache is not created and not cleared.

■ 1st Time User: The virtual users are considered to be using the Web site or
application for the first time for each iteration so no cache is used. The cache is
used during the iteration.

■ Repeat User: The virtual users are considered to have visited or used the Web site
or application previously. Pages and images are retrieved from the cache.

Enable Cookies: When selected, the virtual user profiles will use cookies. Use this
setting if your Web application uses cookies to manage session and other context
information.

Download Local Files: When selected, the Java Agent retrieves the requested local file
contents.

Preserve Cookies between iterations: Used to preserve or automatically clear cookies
added to the browser in the Run section between successive iterations of the Run
section.

■ Cookies added to the browser in the Initialize section will be preserved forever,
unless explicitly removed in script code.

■ Cookies added to the browser in the Run section will always be preserved
between the final iteration of the Run section and the Finish section.

Preserve Connections Between Iterations - used to preserve connections between
OpenScript and the browser between successive iterations of the script.

Max Content Size (KB) - specifies the maximum number of KB to download from a
server for a given request.

2.4.5 Oracle EBS/Forms Functional Test Preferences
This category lets you specify playback preferences for Oracle EBS/Forms Functional
Tests. The resulting dialog box displays the following sections and fields:

2.4.5.1 Event Timeout
This section lets you specify the default forms event timeout setting.

Forms Startup Timeout: Specifies the maximum number of seconds OpenScript
should wait for a form to appear before considering the form not found. This is the
default timeout when waiting for a form to appear before invoking an action against it.
This is also the default timeout when waiting for a form to appear before continuing
the script.

Playback Category

Setting Preferences 2-11

Forms Action Timeout: Specifies the maximum number of seconds OpenScript should
wait for forms action playback until success.

2.4.5.2 Miscellaneous
This section lets you specify screenshot capture preferences.

Capture screenshots: Specifies the amount of time to wait before capturing a
screenshot of the page.

2.4.5.3 Replay Port
This section lets you specify playback replay port preferences.

Port: Specifies the communication port between OpenScript and the Forms Helper
object.

2.4.6 Web Functional Test Preferences
This category lets you specify the default preferences for Web Functional Test script
playback. The resulting dialog box displays the following sections and fields:

2.4.6.1 Object Timeout
This section lets you specify the default object playback timeout setting.

Timeout(S): Specifies the maximum number of seconds OpenScript should wait for an
object to appear before considering the object not found. This is the default timeout
when waiting for an object to appear before invoking an action against it. This is also
the default timeout when waiting for an object to appear before continuing the script.

You can override individual object wait timeouts in waitForPage() or
object.waitFor() by editing their "timeout" properties. Action timeouts cannot be
overridden.

2.4.6.2 Miscellaneous
This section lets you specify the default playback capture settings.

Capture HTML: When selected, the page HTML will be captured.

Capture ScreenShot: When selected, the a screen image of the page will be captured.

2.4.6.3 Agent Port
This section lets you specify playback agent port preferences.

Port: Specifies the port number to use to communicate with the agent machine.

2.4.6.4 Capture Screenshot Interval
This section lets you specify the default screen capture delay setting.

Delay time for capture screenshot: Specifies the amount of time to wait before
capturing a screenshot of the page.

2.4.6.5 Object Tests
This section lets you specify the default date format.

Date Format: Specifies the month, day, year, and time format. The Date Pattern follows
standard Java SimpleDateFormat string conventions. The default value is MMM d,
yyyy h:mm:ss a (month, day, year, hour, minutes, seconds, am/pm).

Record Category

2-12 Oracle Application Testing Suite OpenScript User's Guide

2.5 Record Category
This category lets you specify recording preferences.

2.5.1 HTTP Preferences
This dialog box lets you specify recording preferences for the HTTP module. The
resulting dialog box displays the following sections and fields:

2.5.1.1 General
This tab lets you specify the general browser recorder settings.

Setup: Specifies the network settings for proxy recording.

■ Network Interface: Enter or select the network IP address of the proxy server.

■ Port: Specify the port to use on the proxy server.

■ Additional arguments: Specify any additional command line arguments to use
when starting the proxy server.

■ Maximum Download Size (MB): Specify the file size for file downloads.

Client-side Digital Certificate file: Enter the name of a .PFX-formatted digital
certificate file or use the Browse button to select a file.

■ File: Specifies the name of the setup file. Enter the name or use the Browse to
select the file from a drive and directory location.

■ Choose above pfx file to store: Specifies the private-key password defined for the
client certificate PFX file when the certificate was exported from Internet Explorer.
Click Store and enter the private-key password for the client certificate.

SSL Version: Specifies the SSL version to use.

■ SSL Version: Select SSL version to use for the proxy server.

Close browser when stopping recorder: Specify the error handling options that will
be used during HTTP recording.

■ Close browser: When selected, the browser closes automatically when recording is
stopped.

Error Handling: Specify the error handling options that will be used during HTTP
recording.

■ Record navigations that return error code 404: When selected, the HTTP recorder
records navigations that return a Server Status Code 404: Not Found.

2.5.1.2 Proxy Settings
This tab lets you specify the default Proxy recorder settings.

Chain Proxy: Specifies if the OpenScript proxy is chained to another proxy.

■ Use browser's proxy: When selected, the HTTP recorder uses the proxy
configuration specified by the browser.

■ Use specified proxy: When selected, OpenScript uses the specified proxy.

– Use proxy configuration script: When selected, the specified configuration
scripts will be used.

Record Category

Setting Preferences 2-13

– Address: Specify the URL to the JavaScript file containing the
FindProxyForURL JavaScript function supplied by the system administrator
for the intranet environment.

– Use proxy server: When selected, the specified proxy server will be used.

– Address: specify the network IP address of the proxy server to which to chain
the OpenScript proxy.

– Port: Specify the port to use on the chained proxy server.

Proxy Authentication: Specifies the log in credentials for authentication.

■ Username: Specify the user name to use for authentication.

■ Password: Specify the password to use for authentication.

2.5.1.3 URL Filters
This tab lets you specify the URL filters.

Name: Shows the name(s) of the defined filters. Select the checkbox to enable the filter.
Clear the checkbox to disable the filter.

Pattern: Shows the pattern(s) specified for the defined filters.

Match by: Shows the match setting(s) (Content Type or URL) specified for the defined
filters.

Add: Opens a dialog box for specifying a URL filter.

Edit: Opens a dialog box for editing the selected URL filter.

Delete: Deletes the selected URL filter.

2.5.2 Oracle EBS/Forms Functional Test Preferences
This dialog box lets you specify recording preferences for the Oracle Forms Functional
Test module. The resulting dialog box displays the following sections and fields:

2.5.2.1 General
This tab lets you specify the general browser recorder settings.

Recorder: Specifies the record port.

■ Port: Specifies the port to use for recording.

Miscellaneous: Specifies if screenshots are captured.

■ Capture screenshots: When selected, screenshots are captured during recording.

2.5.2.2 Object Identification
This tab lets you specify the Oracle Forms object identification attributes.

Name: Shows the name(s) of the defined Oracle Forms object identifiers.

Attributes: Shows the pattern(s) specified for the defined Oracle Forms object
identifiers.

Add: Opens a dialog box for specifying a new Oracle Forms object identifier.

Edit: Opens a dialog box for editing the selected Oracle Forms object identifier.

Delete: Deletes the selected Oracle Forms object identifier.

Record Category

2-14 Oracle Application Testing Suite OpenScript User's Guide

2.5.3 EBS/Forms Load Test Preferences
This dialog box lets you specify recording preferences for the Oracle Forms Load Test
module. The resulting dialog box displays the following field:

Recorder: Specifies the record port.

■ Port: Specifies the port to use for recording.

Recording Mode: Specifies if the Oracle Forms Load Test recorder uses the simplified
script model or not.

■ Debugging Mode: When cleared, the Oracle Forms Load Test recorder generates
simplified script code for Oracle Forms components. The components are
represented in the script code by the OpenScript "nca" Oracle Forms Load Test
script service methods in the form:

nca.component("handlerName").action()

When selected, the Oracle Forms Load Test recorder generates verbose script code
using a protocol containing the raw messages being sent to the server. The
components are represented in the script code by the OpenScript "nca.send"
methods which accept a serialized Oracle Forms Message object in XML form and
send the message to Forms server in the form:

nca.send("<Message ...>")

or

nca.sendTerminal(1)

2.5.4 Siebel Functional Test Preferences
This dialog box lets you specify recording preferences for the Siebel Functional Test
module. The resulting dialog box displays the following section:

2.5.4.1 Object Identification
This tab lets you specify the Siebel object identification attributes.

Name: Shows the name(s) of the defined Siebel object identifiers.

Attributes: Shows the pattern(s) specified for the defined Siebel object identifiers.

Add: Opens a dialog box for specifying a new Siebel object identifier.

Edit: Opens a dialog box for editing the selected Siebel object identifier.

Delete: Deletes the selected Siebel object identifier.

2.5.5 Web Functional Test Preferences
This dialog box lets you specify recording preferences for the Web Functional Test
module. The resulting dialog box displays the following sections and fields:

2.5.5.1 General
This tab lets you specify the general browser recorder settings.

Recorder: Specifies the record port and download path.

■ Port: Specifies the port to use for recording.

Record Category

Setting Preferences 2-15

■ Download Path: Specifies the location to use to store downloaded files. Click
Browse to change the default location.

Miscellaneous: Specifies the miscellaneous record settings.

■ Capture Screen Shots: When selected, screen images are captured during
recording.

■ Capture HTML: When selected, page source HTML is captured during recording.

■ Ignore Auto Page: When selected, server-side auto pages are ignored during
recording.

■ Action Cache Interval(s): Specifies how often to cache page actions during
recording. The following cases are determined by this setting:

If while recording, the text on the same Web page element is changed within the
Action Cache Interval time setting, the previously recorded value will be replaced
by the changed value. In the Java code, the setText action will be replaced with
the changed value.

If while recording, a browser window closes within the Action Cache Interval after
a user performs an action on a web page (for example, a button click) the window
close event will not be recorded, as the window close event is considered to be
caused by the previously performed action.

2.5.5.2 Object Identification
This tab lets you specify recording preferences for the Web Functional Test module.

Name: Shows the name(s) of the defined Web object identifiers.

Attributes: Shows the pattern(s) specified for the defined Web object identifiers.

Add: Opens a dialog box for specifying a new Web object identifier.

Edit: Opens a dialog box for editing the selected Web object identifier.

Delete: Deletes the selected Web object identifier.

2.5.6 Web Services Preferences
This tab lets you specify recording preferences for the Web Services module. The
resulting dialog box displays the following sections and fields:

2.5.6.1 General
This tab lets you specify the general browser recorder settings.

Request Timeout: Specifies the amount of time in seconds to wait for a response to a
request before timing out.

2.5.6.2 Parser Tools
This tab lets you specify additional Apache AXIS parsers to use with the Web Services
module.

Apache AXIS 1.X: Specifies the root folder of the Apache AXIS 1.X implementation of
the SOAP ("Simple Object Access Protocol") parser. Download "AXIS 1.4 Final" binary
ZIP file (axis-bin-1_4.zip) from http://ws.apache.org/axis/, unpack the zip file,
and then specify the AXIS 1.X root folder using the Browse button.

Apache AXIS 2: Specifies the root folder of the Apache AXIS 2 implementation of the
SOAP ("Simple Object Access Protocol") parser. Download the AXIS 2 Standard Binary

Step Group Category

2-16 Oracle Application Testing Suite OpenScript User's Guide

Distribution ZIP file (axis2-1.3-bin.zip) from http://ws.apache.org/axis2/,
unpack the zip file, and specify the AXIS 2 root folder using the Browse button.

2.5.6.3 Proxy Configuration
This tab lets you specify the proxy configuration to use with the Web Services module.
The Web Services module uses the integrated HTTP Proxy recorder to record
SOAP/HTTP protocol requests. Specify the proxy settings for the parsers to be able to
parse the internet WSDL file from an internal network.

Automatic configuration: Specifies if an automatic configuration script should
override the proxy server settings.

■ Automatically detect browser's automatic configuration script: When selected,
the proxy recorder automatically detects the automatic configuration script
specified in the browser's Local Area Network (LAN) connection settings.

■ Use automatic configuration script: When selected, the proxy recorder uses the
automatic configuration script specified in the Address field.

– Address: Specifies the URL of the automatic configuration script to use.

Proxy server: Specifies a proxy server to use for Web Services recording.

■ Use a proxy when downloading wsdl file: When selected, the proxy recorder uses
the specified proxy server settings.

– Address: Specifies the URL of the proxy server to use.

– Port: Specifies the port number to use.

– Username: Specifies the username to use for authentication on the proxy
server.

– Password: Specifies the password to use for authentication on the proxy
server.

2.6 Step Group Category
This category lets you specify script step group creation, naming, and numbering
preferences. Step groups allow you to optionally organize your OpenScript script
commands into logical groupings based on the type of script you are creating. If step
groups are enabled during recording, your script commands will be listed within a
step group node (or sections) in the tree view (or code view) of the script. Step groups
can also be added or modified manually or completely disabled if you prefer not to
use them.

2.6.1 Basic Module Preferences
This dialog box lets you specify how step groups are created. The resulting dialog box
displays the following options:

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time interval threshold. Specify the Threshold time value in
seconds. Script commands that occur within the specified time interval relative to
each other, will be organized into the same step group. For example, if a user
performs multiple actions on a page within the specified time interval would
result in those action commands being grouped into the same step group. This

Step Group Category

Setting Preferences 2-17

may be useful for grouping commands into step groups for AJAX applications
where full Web page transitions may not occur which would allow you to group
commands by page.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording. Step names will be displayed in the step nodes of the tree view and also
shown in the code view. Step names can also be edited manually in either view.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number steps: When selected, step groups will not be numbered
automatically during script recording.

2.6.2 Forms Functional Test Preferences
This dialog box lets you specify how step groups are created for EBS Forms Functional
Tests. See the Basic module Step Group preferences on on page 2-16 for additional
information. The resulting dialog box displays the following options:

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

■ Forms Functional Test: When selected, step groups will be created based on the
windows in which the actions occur. Groups are created whenever a Window
Activate action is recorded.

■ Web Functional Test: When selected, step groups are created based upon the
loading of a new Web page being loaded in the browser. When a new page is
finished loading, the page and subsequent user actions performed on that page
prior to the next page load will be grouped into the same step group.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ Forms Functional Test: When selected, step groups will be named the same as the
window titles. Groups will be named the same as the window that is active.

■ Web Functional Test: When selected, step groups are named based upon the title
of the Web page as defined in the HTML <Title> tag for the main page and the
page URL will also be shown in parentheses in the step group name, If a title is not
specified then the step group will be named "No Title" but the URL will still be
displayed.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Group Category

2-18 Oracle Application Testing Suite OpenScript User's Guide

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number steps: When selected, step groups will not be numbered
automatically during script recording.

2.6.3 Forms Load Test Preferences
This dialog box lets you specify how step groups are created for EBS Forms Load Tests.
See the Basic module Step Group preferences on on page 2-16 for additional
information. The resulting dialog box displays the following options:

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

■ Forms Load Test: When selected, step groups will be created based on the
windows in which the actions occur. Groups are created whenever a Window
Activate action is recorded.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ By page title: When selected, step groups are named based upon the title of the
Web page as defined in the HTML <Title> tag for the main page and the page URL
will also be shown in parentheses in the step group name. If a title is not specified
then the step group will be named "No Title" but URL will still be displayed.

■ Forms Load Test: When selected, step groups will be named the same as the
window titles. Groups will be named the same as the window that is active.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number steps: When selected, step groups will not be numbered
automatically during script recording.

2.6.4 HTTP Preferences
This dialog box lets you specify how step groups are created, named, and numbered
for HTTP scripts. See the Basic module Step Group preferences on on page 2-16 for
additional information. The resulting dialog box displays the following options:

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

Step Group Category

Setting Preferences 2-19

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ By page title: When selected, step groups include the title of the web page.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number step: When selected, step groups will not be numbered
automatically during script recording.

2.6.5 Siebel Functional Test Preferences
This dialog box lets you specify how step groups are created for Siebel Functional
Tests. See the Basic module Step Group preferences on on page 2-16 for additional
information. The resulting dialog box displays the following options:

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

■ Web Functional Test: When selected, step groups are created based upon the
loading of a new Web page being loaded in the browser. When a new page is
finished loading, the page and subsequent user actions performed on that page
prior to the next page load will be grouped into the same step group.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ Siebel Functional Test: When selected, step groups will be named based upon the
Siebel URL pattern. OpenScript uses a heuristic to evaluate the recorded URL of
pages to determine a meaningful title.

■ Web Functional Test: When selected, step groups are named based upon the title
of the Web page as defined in the HTML <Title> tag for the main page and the
page URL will also be shown in parentheses in the step group name, If a title is not
specified then the step group will be named "No Title" but the URL will still be
displayed.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number steps: When selected, step groups will not be numbered
automatically during script recording.

Step Group Category

2-20 Oracle Application Testing Suite OpenScript User's Guide

2.6.6 Siebel Load Test Preferences
This dialog box lets you specify how step groups are created, named, and numbered
for Siebel scripts. See the Basic module Step Group preferences on on page 2-16 for
additional information. The resulting dialog box displays the following options:

Step Creation: if step groups are created or not by default during script recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ By Siebel URL Pattern: When selected, step groups will be named based upon the
Siebel URL pattern. OpenScript uses a heuristic to evaluate the recorded URL of
pages to determine a meaningful title.

■ By page title: When selected, step groups include the title of the web page.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number step: When selected, step groups will not be numbered
automatically during script recording.

2.6.7 Web Functional Test Preferences
This dialog box lets you specify how step groups are created for Web Functional Tests.
See the Basic module Step Group preferences on on page 2-16 for additional
information. The resulting dialog box displays the following options:

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

■ Web Functional Test: When selected, step groups are created based upon the
loading of a new Web page being loaded in the browser. When a new page is
finished loading, the page and subsequent user actions performed on that page
prior to the next page load will be grouped into the same step group.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ Web Functional Test: When selected, step groups are named based upon the title
of the Web page as defined in the HTML <Title> tag for the main page and the
page URL will also be shown in parentheses in the step group name, If a title is not
specified then the step group will be named "No Title" but the URL will still be
displayed.

Setting Project Preferences

Setting Preferences 2-21

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number steps: When selected, step groups will not be numbered
automatically during script recording.

2.7 Setting Project Preferences
To set Project preferences:

1. Start OpenScript.

2. Switch to the Developer Perspective.

3. Select Preferences from the Window menu.

4. Expand the desired node and select the Preferences category.

5. Specify the preferences as necessary for the selected category.

Setting Project Preferences

2-22 Oracle Application Testing Suite OpenScript User's Guide

3

Creating and Modifying Scripts 3-1

3 Creating and Modifying Scripts

This chapter explains the procedures for creating and modifying basic scripts in
OpenScript. The module chapters provide additional information about creating
scripts using the features and capabilities provided within specific modules.

3.1 Creating Repositories and Workspaces
Repositories and workspaces store project related script files and results log files. You
can use repositories and workspaces to organize your various testing projects.
OpenScript lets you create multiple workspaces.You can create repositories to organize
the storage of your script projects.

A repository is the directory location where you store workspaces. Workspaces are
user-specified subdirectories of the repository. OpenScript automatically appends an
exclamation point to the directory name to identify the directory as a Workspace
directory.

When you record and save scripts, or play back a script and save the log file,
OpenScript stores the script or log file in the specified Workspace.

OpenScript initially uses the default Oracle Functional Testing for Web Applications
repository and workspaces (C:\OracleATS\OFT). You can create your own
repositories and workspaces using OpenScript.

3.1.1 Creating a Repository
To create a repository:

1. Select OpenScript Preferences from the View menu.

2. Expand the OpenScript node.

3. Expand the General node.

4. Select the Repository node.

5. Click Add.

This dialog box lets you specify the name and location of the repository to use to
store script files.

6. Enter a repository name. The name is required.

Name: Enter any name to identify the repository.

7. Enter the drive and directory location or click Browse to select the location to use
for the repository.

Creating a Script Project

3-2 Oracle Application Testing Suite OpenScript User's Guide

Location: Enter the drive and directory path to the repository or use the Browse
button to select a location. The location must be a valid drive and directory path.

8. Click OK to add the new repository to the list of repositories.

9. Click OK to close the preferences.

When you create new a script project, you can select the repository to use to store the
project.

3.1.2 Managing Repositories
To add, edit, or delete repositories:

1. Select Manage Repositories from the Tools menu.

2. Select the repository where you want to create the workspace.

3. Click the Add, Edit or Delete buttons to manage repositories.

4. Click Close when finished.

3.1.3 Managing Workspaces
When starting a new testing project, you should create a project-specific Workspace to
store related files.

To create, rename, or delete workspaces:

1. Select Manage Workspaces from the Tools menu. OpenScript opens a dialog box
for managing Workspaces.

2. Select the repository where you want to create the workspace.

3. Click New, Rename, or Delete buttons to manage workspaces.

4. Click Close when finished.

3.1.4 Managing Scripts
To rename or delete scripts:

1. Select Manage Scripts from the Tools menu.

2. Select the script.

3. Click the Rename or Delete buttons to manage script files.

4. Click Close when finished.

3.2 Creating a Script Project
You must create a script project to generate the basic structure that you can then
customize.

To create a script project:

1. Select New from the File menu.

2. Expand a group node and select the type of script to create:

Functional Testing (Browser/GUI Automation): The Functional Testing group
contains the following script types:

Creating a Script Project

Creating and Modifying Scripts 3-3

■ Oracle EBS/Forms: This option lets you create a new script for automated
functional testing of Oracle E-Business Suite and other applications that utilize
Web and Oracle Forms components at the browser/gui level. The resulting
script will contain the Initialize, Run, and Finish nodes. The Run node will
contain recorded Web navigations based upon the defined Step Group
preferences and the Web navigations and Forms actions performed during
recording. You can edit the script tree or Java code to customize the script.

■ Siebel: This option lets you create a new script for automated functional
testing of Siebel applications that utilize Siebel High Interactivity and
Standard Interactivity/Web controls at the browser/gui level. The resulting
script will contain the Initialize, Run, and Finish nodes. The Run node will
contain recorded Web navigations based upon the defined Step Group
preferences and the Web navigations performed during recording. You can
edit the script tree or Java code to customize the script.

■ Web: This option lets you create a new script for automated functional testing
of Web applications at the browser/gui level. The resulting script will contain
the Initialize, Run, and Finish nodes. The Run node will contain recorded Web
navigations based upon the defined Step Group preferences and the Web
navigations performed during recording. You can edit the script tree or Java
code to customize the script.

General: The General group contains the following script types:

■ Java Code Script: This option lets you create a new automated test script
using your own custom Java code through the OpenScript Eclipse IDE. A basic
script structure contains only the Initialize, Run, and Finish nodes. You can
edit the script tree or Java code to develop your own custom script.

■ Web Services: This option lets you create the basic structure of a Web Services
script a new script for automated testing of Web Services at the SOAP/HTTP
protocol level. A Web Services script structure contains only the Initialize,
Run, and Finish nodes. You can use the WSDL Manager to add WSDL files
and edit the script tree or Java code to customize the script. If you have a Web
Services client application written already that communicates over HTTP and
which communicates through a proxy, you can record the traffic using the
OpenScript HTTP recorder.

Load Testing (Protocol Automation): The Load Testing group contains the
following script types:

■ Oracle EBS/Forms: This option lets you create a new script for load testing of
Oracle E-Business Suite and other applications that utilize HTTP and Oracle
Forms (NCA) protocols at the protocol level. The resulting script will contain
the Initialize, Run, and Finish nodes. The Run node will contain recorded
HTTP protocol navigations based upon the defined Step Group preferences
and the navigations and Forms protocol for actions performed during
recording. You can edit the script tree or Java code to customize the script.

■ Siebel This option lets you create a Siebel script structure of a new OpenScript
script project. A Siebel script lets you record Siebel Web navigations using a
browser for load testing Siebel applications. The resulting script will contain
the Initialize, Run, and Finish nodes. The Run node will contain recorded
HTTP protocol navigations based upon the defined Step Group preferences
and the Web and Siebel navigations performed during recording. You can edit
the script tree or Java code to customize the script.

■ Web/HTTP This option lets you create a new script for load testing of Web
Applications at the HTTP protocol level. The resulting script will contain the

Modifying Scripts

3-4 Oracle Application Testing Suite OpenScript User's Guide

Initialize, Run, and Finish nodes. The Run node will contain recorded Web
navigations based upon the defined Step Group preferences and the Web
navigations performed during recording. You can edit the script tree or Java
code to customize the script.

3. Click Next.

4. Select the Repository and workspace where you want to store the script project.

■ Repository: Specifies the repository where the script project will be saved.
Select a repository from the list or click the New button to open the
OpenScript repository preferences and create a new repository.

■ Workspace: Specifies the workspace within the repository where the script
project will be saved. Select a workspace from the list or click the New button
to open a dialog box for creating a new workspace.

The New Workspace dialog box lets you specify a new OpenScript workspace.

– Name: Specifies the name of the new workspace.

5. Enter a script name.

■ Script: Specify a name for the script project. The script name is required and
must be unique.

■ Existing Scripts: List the names of the existing scripts in the workspace.

6. Click Finish. For Java Code Scripts, a basic script tree will be created in the script
view. For HTTP and Siebel Scripts, a script tree will be created in the script view
after you record the script.

3.3 Modifying Scripts
Once you have created a script project, you can customize the script for your specific
testing purposes using the available menu options or editing your own code in the
Java Code view.

3.3.1 Adding Step Groups to a Script
Step groups provide a way to group multiple procedures into a single reporting step.

To add a manual step group to a script:

1. Open or create a script project.

2. Select the script node where you want to add the step group.

3. Select the Script menu and then select Step Group from the Add sub menu.

This dialog box lets you specify or modify a step group node in a script tree.

4. Enter a name for the Step Group.

Title: Specify the title text of the step group. The title text will appear in the script
tree.

5. Enter any think time delay to add to the Step Group.

Think time: Specify the amount of time in milliseconds to use as a think time
delay for the step group.

6. Click OK. The Step Group is added to the script tree.

To add a step groups to a script based upon preferences:

Modifying Scripts

Creating and Modifying Scripts 3-5

1. Open or create a script project.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node.

4. Expand the Record node.

5. Select the Step Groups node.

6. Specify the step Group preferences and click OK.

7. Select Create Step Groups from the Script menu. The Step Groups will be
automatically added to the script tree.

8. In the Java Code view, the step group consists of the code executed between
beginStep and endStep:

beginStep("Step Group 1", 10);
{
 /**
 * Add code to be executed for the step group.
 */
 getLogger().info("Step Group 1");
}
endStep();

3.3.2 Adding a Delay to a Script
To add a delay to a script:

1. Open or create a script project.

2. Select the script node where you want to add the delay.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the General node and select Think Time.

This dialog box lets you specify or modify a delay time in seconds.

5. Enter a valid integer to use as the think time in seconds.

6. Click OK. The Think node is added to the script tree.

7. In the Java Code view, the think(time;) (the time is in seconds) statement will
be added to the script code:

think(10.0);

3.3.3 Adding a Log Message to a Script
To add a log message to a script:

1. Open or create a script project.

2. Select the script node where you want to add the log message.

3. Select the Script menu and then select Message from the Add sub menu.

This dialog box lets you specify or modify a log message in a script tree.

4. Enter the message text.

Message: Specify the text of the log message. The text will appear in the Console
view on script playback.

5. Click OK. The log message node is added to the script tree.

Modifying Scripts

3-6 Oracle Application Testing Suite OpenScript User's Guide

6. In the Java Code view, the type("log message") method will be added to the
script code:

info("Message");
warn("Message");
fail("Message");

The log message text appears in the Console View when the script is played back.

3.3.4 Adding a For Statement to a Script
To add a For statement to a script:

1. Open or create a script project.

2. Select the script node where you want to add the For statement.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Control Statements node and select For.

This dialog box lets you specify or modify the For statement loop count.

5. Enter a valid integer to use as the loop count.

Loop Count: Specify the number of times to loop though the For statement.

6. Click OK. The For node is added to the script tree.

7. In the Java Code view, the for (int i=0; i < loop count; i++) statement
will be added to the script code:

for (int i=0; i < 10; i++)

3.3.5 Adding a Function to a Script
You can add your own custom functions to your script and specify the arguments to
pass to the function.

To add a function to a script:

1. Create a script project.

2. Record a complete script.

3. Select the Run node in the script tree.

4. Select the Script menu and then select Other from the Add sub menu.

5. Expand the General node and select Function.

This dialog box lets you specify a custom function name with multiple arguments.

Name: Specifies the name of the custom function. Click Add to define the names
and data type of an argument.

Argument: Lists the defined function arguments for the custom function.

Type: Lists the data type for the defined argument for the custom function.

Add: Opens a dialog box for defining a new argument for the custom function.

Edit: Opens a dialog box for editing the selected argument.

Delete: Removes the selected argument from the list.

Up: Moves the selected argument up one place in the list.

Down: Moves the selected argument down one place in the list.

Modifying Scripts

Creating and Modifying Scripts 3-7

6. Enter the function name.

7. Click Add.

This dialog box lets you specify a custom function argument to use to pass data to
the function.

Name: Specify a name of the custom function argument (you may want to include
the data type in the argument name so that it is indicated in the Substitute Variable
list).

Type: select the data type: String, Integer, Double, Long, or Boolean.

8. Enter an argument name.

9. Select the data type for the argument.

10. Click OK.

11. Click Add and add more arguments or click OK to add the function to the script.
The function name node is added to the script tree.

12. In the Java Code view, the public void function name statement will be
added to the script code followed by the arguments with the data types:

public void MyFunction(@Arg("argString") String argString,
@Arg("argInt") int argInt,
@Arg("argDouble") double argDouble,
@Arg("argLong") long argLong,
@Arg("argBool") boolean argBool)

throws Exception {

13. Add items into the Function. You can use the Tree View drag/drop or cut/paste
features to move Tree View items to the function. You can use the Script Add
option to add variable items to the function. You can also use the Code View to
add custom code to the function.

To pass arguments into a function:

Define the variables to use to pass values to the custom function arguments
somewhere in the script before where the Call Function statement will be placed in the
script:

1. Select the script node where you want to add variables.

2. Select the Script menu and then select Other from the Add sub menu.

3. Expand the Variables node and select Set Variable.

This dialog box lets you define a variable in a script.

4. Enter the variable name and value.

■ Name: Specify the name of the variable.

■ Value: Specify the value to assign to the variable.

5. Enter a value or click the Substitute Variable icon to select a variable value to
assign to the variable.

6. Click OK.

7. In the Java Code view, the getVariables().set() statement will be added to
the script code followed by the variable name and value for each variable:

getVariables().set("MyString", "String");
getVariables().set("MyInt", "1");
getVariables().set("MyDouble", "1234");

Modifying Scripts

3-8 Oracle Application Testing Suite OpenScript User's Guide

getVariables().set("MyLong", "1234560");
getVariables().set("MyBool", "True");

The following is an example of a variable set to a Databank value:

getVariables().set("MyString", "{{db.customer.FirstName,String}}");

8. Select the Function node (your custom function name) in the script.

9. Select the Script menu and then select Other from the Add sub menu.

10. Expand the tree and select the item to add. For example Message under the
General node or Set Variable under the Variables node.

11. Click the Substitute Variable icon to select a custom variable or function argument.
The Select Variable tree lists the custom function with all of is defined arguments.

12. Select an argument for the custom function.

13. Click OK.

14. In the Java Code view, the message statement (info, warn or fail) or
getVariables().set() statement will be added to the script code followed by
the variable name and value for each variable:

public void MyFunction(@Arg("argString") String argString,
@Arg("argInt") int argInt,
@Arg("argDouble") double argDouble,
@Arg("argLong") long argLong,
@Arg("argBool") boolean argBool)

throws Exception {
info("{{arg.argString}}");
getVariables().set("MyArgString", "{{arg.argString}}");
getVariables().set("MyArgInt", "{{arg.argInt}}");
getVariables().set("MyArgDouble", "{{arg.argDouble}}");
getVariables().set("MyArgLong", "{{arg.argLong}}");
getVariables().set("MyArgBool", "{{arg.argBool}}");

}

To call a custom function in a script:

1. Select the node in the script tree here you want to call the function.

2. Select the Script menu and then select Other from the Add sub menu.

3. Expand the General node and select Call Function.

This dialog box lets you specify a custom function to call and specify the argument
values.

4. Enter the argument data to pass to the custom function or click the Substitute
Variable icon to select a custom variable or databank variable.

■ Function: Select the name of the custom function. The names of custom
functions that were added to the script will appear in this list.

■ Arguments: A field for each custom function argument will appear for the
selected function. Enter the argument value or click the Substitute Variable
icon to select a custom variable or databank variable.

5. Click OK.

6. In the Java Code view, the callFunction statement will be added to the script
code followed by the function name and arguments as String data types:

gcallFunction("MyFunction", "MyStringArg");

Modifying Scripts

Creating and Modifying Scripts 3-9

To pass data types other than String, enclose a defined variable name in double
curly braces as follows, "{{VarName}}".

callFunction("MyFunction", "{{MyString}}", "{{MyInt}}", "{{MyDouble}}",
"{{MyLong}}", "{{MyBool}}");

3.3.6 Adding a Script to Run from a Script
To add a For statement to a script:

1. Open or create a script project.

2. Select the script node where you want to add the For statement.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Expand the General node and select Run Script.

This dialog box lets you specify the script to run from within another script.

5. Select or clear the Use Absolute Path option. If you select Use Absolute Path,
select the path and script using Browse next to the Script File field and skip to
Click OK. If you clear Use Absolute Path continue the remaining steps.

Use Absolute Path: When selected, the Script File field becomes enabled. Click
Browse next to the Script File field to select the script path and file name.

6. Select the repository and workspace.

Repository: Lists the defined OpenScript repositories.

Workspace: Lists the defined OpenScript workspaces.

7. Select the script to run.

Script: Lists the available OpenScript scripts in the selected repository and
workspace.

Script File: Specifies the absolute path and script name for a script when the Use
Absolute Path option is selected. Click Browse to select the script path and file
name.

8. Select or clear the Sections of script to run option.

Sections of script to run: Specifies which script sections to run during playback.

■ Initialize Section: When selected, the code in the Initialize section of the
selected script to run is executed during playback. When cleared, the code in
the Initialize section is skipped.

■ Run Section: When selected, the code in the Run section of the selected script
to run is executed during playback. When cleared, the code in the Run section
is skipped.

■ Finish Section: When selected, the code in the Finish section of the selected
script to run is executed during playback. When cleared, the code in the Finish
section is skipped.

9. Click OK. The script name node is added to the script tree.

10. In the Java Code view, the runScript(); statement will be added to the script
code:

runScript("repository", "workspace", "scriptName", initialize = true|false, run
= true|false, finish = true|false);

Modifying Scripts

3-10 Oracle Application Testing Suite OpenScript User's Guide

Example

runScript("Default", "Default", "fmstocks1", true, true, true);

3.3.7 Adding a Set Variable to a Script
To add a Set Variable to a script:

1. Open or create a script project.

2. Select the script node where you want to add the set variable.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Variable node and select Set Variable.

This dialog box lets you set a variable value in a script.

5. Enter the variable name and value.

■ Name: Specify the name of the variable.

■ Value: Specify the value to assign to the variable.

6. Click OK. The Set variable = value node is added to the script tree.

7. In the Java Code view, the getVariables().set("variable name",
"value"); method will be added to the script code:

getVariables().set("sVar_MyVar", "My_Value");

If you want to set the variable with a value from an Oracle Functional Testing for
Web Applications transform variable (i.e. a variable value contained in {{}} syntax),
use the Transforms.transform method with the getVariables().set, as follows
(requires HTTP module):

http.solve("varTitle", "<TITLE>(.+)</TITLE>", "Page Title Error", false,
Source.Html, 0);

getVariables().set("sVar_MyVar", Transforms.transform("{{varTitle}}",
getVariables()));

3.3.8 Adding Comments to Script Results
To add comments to script results:

1. Open or create a script.

2. Click the Code view tab.

3. Add comments or warnings using one of the following code examples:

■ Using a step group:

beginStep("Any comment string", 0);
{
//The comment string appears in the Name column of the Results view.
}
endStep();

■ Using the getStepResult().addComment method:

//The comment string appears in the Summary column of the Results view
getStepResult().addComment("Any comment string");

Modifying Scripts

Creating and Modifying Scripts 3-11

■ Using the getStepResult().addWarning method:

//The warning string appears in the Summary column of the Results view.
//addWarning overides addcomment.
getStepResult().addWarning("Any warning string");

3.3.9 Adding Error Recovery to a Script
To add error recovery to a script:

1. Open or create a script project.

2. Select the script node where you want to add the log message.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the General node and select Error Recovery Action.

Exception: Select the type of exception error. The list will vary depending upon
the script type.

Action: Select the error recovery action: Fail, Warn or Ignore.

5. Click OK. The log message node is added to the script tree.

6. In the Java Code view, the setErrorRecovery(scriptType.constant,
ErrorRecoveryAction.action); method will be added to the script code:

setErrorRecovery(BasicErrorRecovery.ERR_VARIABLE_NOT_FOUND,
ErrorRecoveryAction.Fail);

3.3.9.1 Script Types
The following are the possible values for scriptType in the Java code statements:

BasicErrorRecovery (Basic module)

FormsErrorRecovery (EBS/Forms Functional module)

FTErrorRecovery (Generic functional module)

HttpErrorRecovery (HTTP module)

NcaErrorRecovery (EBS/Forms Load module)

UtilitiesErrorRecovery (Generic Utilities)

WebErrorRecovery (Web Functional module)

3.3.9.2 Constants
The following are the possible values for constant in the Java code statements:

BasicErrorRecovery (Basic module)

ERR_VARIABLE_NOT_FOUND
ERR_CREATE_VARIABLE_ERRORCODE
ERR_FILE_NOT_FOUND
ERR_SEGMENT_PARSER_ERROR
ERR_BINARY_DECODE
ERR_ENCRYPTION_SERVICE_NOT_INITIALIZED
ERR_GENERIC_ERROR_CODE

FormsErrorRecovery (EBS/Forms Functional module)

ERR_FORMS_FT_ERROR

Modifying Scripts

3-12 Oracle Application Testing Suite OpenScript User's Guide

FTErrorRecovery (Generic Functional Module)

ERR_FT_MATCH_ERROR
ERR_OBJECT_TEST_ERROR
ERR_TABLE_TEST_ERROR

HttpErrorRecovery (HTTP Module)

ERR_ZERO_LENGTH_DOWNLOAD
ERR_MATCH_ERROR
ERR_RESPONSE_TIME_ERROR
ERR_SOLVE_ERROR
ERR_HTML_PARSING_ERROR
ERR_INTERNET_INVALID_URL
ERR_INVALID_HTTP_RESPONSE_CODE
ERR_KEYSTORE_LOAD_ERROR

NcaErrorRecovery (EBS/Forms Load Module)

CONNECT_ERROR
MESSAGE_IO_ERROR
CONTROL_INITIALIZE_ERROR

UtilitiesErrorRecovery (Generic Utilities)

ERR_SQL_EXECUTE_ERROR
ERR_XML_PARSING_ERROR
ERR_CSV_LOADING_ERROR

WebErrorRecovery (Web Functional module)

ERR_RESPONSE_TIME_ERROR
ERR_WEBDOM_SOLVE_ERROR

3.3.9.3 Actions
The following are the possible values for action in the Java code statements:

Fail
Ignore
Warn

3.3.10 Chaining Multiple Scripts
You can run multiple scripts from within a single script to chain playback of scripts
together.

The procedure involves the following major steps:

■ Setting the browser preferences

■ Recording scripts

■ Creating a shell script

3.3.10.1 Setting the Browser Preferences
The browser preferences specify if a new browser will launch when recording a
different script. Because the navigation sequence between multiple scripts is
important, the same instance of the browser should run all scripts if the scripts are a
continuation of each other. If each script is self-contained and there is no navigation
between scripts, each script can launch its own browser and you can skip the Browser
Preferences steps.

Modifying Scripts

Creating and Modifying Scripts 3-13

1. Select Preferences from the View menu.

2. Expand the General category and select Browsers.

3. Clear the Always launch a new browser when recording a different script
option.

4. Click OK.

3.3.10.2 Recording Scripts
When recording scripts for chained playback, it is important to plan the start and stop
points between scripts. This is especially true if session state needs to be maintained
between scripts. All of the scripts must be of the same type.

1. Create and record the first script, for example a Web Functional test log in script.

2. Stop the recording but do not close the browser.

3. Save the script.

4. Create and record the next script. The navigation in this script should start from
the point in the browser where the first script stopped.

5. Stop the recording and save the script.

6. Create and record any additional scripts to chain. The navigation in these script
should start from the point in the browser where the previous script stopped.

3.3.10.3 Creating a Shell Script
The shell script is used to run the previously recorded scripts in sequence.

1. Create a new script to use as the shell script.

2. Select the script node where you want to add the first script. This could be either
the Initialize or Run nodes.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the General node and select Run Script.

5. Click OK.

6. Select the Repository and Workspace names.

7. Select the script to run.

8. Click OK.

9. Select the script node where you want to add the next script. This could be either
the Initialize, Run, or Finish nodes.

10. Select the Script menu and then select Other from the Add sub menu.

11. Expand the General node and select Run Script.

12. Click OK.

13. Select the Repository and Workspace names.

14. Select the next script to run.

15. Click OK.

16. Repeat the Add script steps for each additional script to run.

17. Save and playback the shell script to verify the script navigations work together
correctly.

Changing Text File Encoding

3-14 Oracle Application Testing Suite OpenScript User's Guide

18. In the Java Code view, the runScript() methods will be added to the script
code:

runScript("Default", "Default", "Web1", true, true, true);
runScript("Default", "Default", "Web2", true, true, true);

3.3.11 Moving Nodes in a Script
You can click and drag a node in the script tree view to move the node to another
location in the script tree. For example, you move a step group node from the Run
section to the Initialize section or move a navigation node.

To move script nodes in the script tree:

1. Open or create a script project.

2. Select the script node to move in the Tree View tab of the Script View.

3. Click and drag the mouse to move the node in the script tree. The script tree shows
an indicator line that points to the location in the script tree where the node will be
moved.

4. Release the mouse button when the indicator line is at the location where you
want to move the script node.

When moving Step Groups between script sections (i.e. between Run and Initialize,
etc.) you may need to move the node to the section node.

You can also switch to the code view and move lines of code manually.

3.4 Changing Text File Encoding
Before recording sites with international characters on an English OS, users should
change the default character set encoding to a character set that supports the desired
character set.

To change the text file encoding:

1. Start OpenScript and select Developer Perspective from the View menu.

2. Select Preferences from the Windows menu.

3. Expand the General node.

4. Select the Workspace node.

5. Select the Other option under Text file encoding.

6. Select desired text file encoding (i.e. UTF-8 for Japanese language Web sites, etc.).

7. Click Close when finished.

3.5 Enabling Debug Logging
OpenScript provides debug logging capability using Jakarta Log4j.

To enable debug logging:

1. Close OpenScript.

2. Open the file log4j.xml located in C:\OracleATS\OpenScript.

3. Locate the following section at the end of the file:

<!-- ======================= -->

Enabling Debug Logging

Creating and Modifying Scripts 3-15

 <!-- Setup the Root category -->
 <!-- ======================= -->

 <!-- For production -->
 <root>
 <priority value="WARN"/>
 <appender-ref ref="AGENTFILE" />
 </root>

 <!-- For debugging
 <root>
 <priority value="DEBUG"/>
 <appender-ref ref="AGENTFILE" />
 <appender-ref ref="CONSOLE" />
 </root>
 -->

4. Move the ending comment brackets from:

<!-- For production -->
 <root>
 <priority value="WARN"/>
 <appender-ref ref="AGENTFILE" />
 </root>

 <!-- For debugging
 <root>
 <priority value="DEBUG"/>
 <appender-ref ref="AGENTFILE" />
 <appender-ref ref="CONSOLE" />
 </root>
 -->

to:

<!-- For production
 <root>
 <priority value="WARN"/>
 <appender-ref ref="AGENTFILE" />
 </root>
 -->

 <!-- For debugging -->
 <root>
 <priority value="DEBUG"/>
 <appender-ref ref="AGENTFILE" />
 <appender-ref ref="CONSOLE" />
 </root>

5. Save the file log4j.xml and restart OpenScript.

6. Run scripts.

The debug messages are stored in the file OpenScript.log located in
<installdir>\OpenScript.

To turn off debugging, move the ending comment braces back to the original locations.

Enabling Debug Logging

3-16 Oracle Application Testing Suite OpenScript User's Guide

Using Databanks 4-1

4
Using Databanks

OpenScript allows users to parameterize script data inputs to perform data driven
testing using Data Banking. Users can select any data inputs for their script and then
substitute a variable to drive the input from an external file during playback. Multiple
Data Bank files can be attached to a single script and users can specify how OpenScript
assigns data during script playback.

4.1 Understanding Data Driven Testing (Parameterization)
Data Driven Testing, or parameterization, allows you to quickly and efficiently create
automated data-driven tests.

The OpenScript Modules record parameters defined by each page of the Web
application to a script. Databanks are used to hold unlimited amounts of input data
that can be automatically fed as parameters into your Web application when the script
is run. You can use the OpenScript databanking features to define variable values in
script parameters and substitute values from Databank files for the variable values.

During playback, the parameters in the Web page are filled with values from the
Databank file. Databank files can be easily created or modified using any simple text
editor, spreadsheet, word processor, or database application. Users can create
sophisticated unattended regression tests to thoroughly exercise a Web application by
using varied input data from Data Bank files.

Data Input Parameterization enables users to parameterize recorded script inputs to
perform data driven testing in either the script GUI view or code view. These inputs
could be form field inputs for Web applications but could also be other types of script
inputs that users may parameterize. Types of inputs users may parameterize include:

■ Any user entered input data (i.e. parameterize the data I entered for the search
field)

■ Test case values (i.e. parameterize a text string for validation so I can use different
inputs for comparison during playback)

■ Recorded navigations (i.e. parameterize a starting navigation so I can navigate to
different host servers during playback)

■ Recorded user actions/object identified (i.e. parameterize a link object path so I
can click on different links during playback)

Data Input Sources enables users to drive input values from an external CSV file or
other external data source such as a database (i.e. using a database query to pull inputs
from a database table).

Data Parameterization GUI View enables users to configure the inputs they want to
parameterize and the data source they want to drive the inputs from through a

Using Script Databanks

4-2 Oracle Application Testing Suite OpenScript User's Guide

substitute variable GUI interface. For example, the "ticker" query string parameter for
"Page [4] Ticker List" in the following Tree View is set to the variable value
"{{fmstocks_data.ticker,ter}}".

Within the variable "{{fmstocks_data.ticker,ter}}", "fmstocks_data" is the name of the
Databank file, ".ticker" identifies the field name within the Databank file, and "ter" is
the recorded value.

Data Parameterization Code View Commands enable users to specify the inputs they
want to parameterize and the data source they want to drive the inputs from through
data parameterization in the code view.

For example, the "ticker" query string parameter for "Page [4] Ticker List" in the above
Tree View appear as http.querystring(http.param("ticker",
"{{fmstocks_data.ticker,ter}}") in the http.get method code in the Code
View, as follows (line breaks and spacing added for clarity):

beginStep("[4] Ticker List", 3422);
{
 http.get(6, "http://testserver2/fmstocks/{{LINK_1_3,TickerList.asp}}",
 http.querystring(http.param("ticker", "{{fmstocks_data.ticker,ter}}"),
 http.param("company", "")), null, true, "ASCII", "ASCII");
}
endStep()

4.2 Using Script Databanks
Databanks are used to hold unlimited amounts of input data that can be automatically
fed into your Web application. During playback, the parameters in the Web page are
filled with values from the databank file. The databank and script parameter shortcut
menu options allow you to map parameters in a script to fields in a databank file as
variable names.

Scripts must be configured to used databanks. Use the Configure Databank option on
the Script menu to specify the databank file(s) to use with a script. Scripts can be
configured to use more than one databank file.

When you record a script that has a navigation that uses parameters, the parameter
nodes appear under the Query String node:

In the Code View, the parameters appear in the http.param parameters of the
http.querystring parameter:

When you configure the databank(s) to use with the script, the Get next databank
record from databank name node and Java code are added to the script.

Select the script parameter node to map to a databank and use the Substitute Variable
option on the right-click shortcut menu to select the databank field name to map to the
parameter. The Databank file and field name appear in the parameter node of the
script tree.

The variable appears in the Code view in the http.param parameters of the
http.querystring parameter:

Use the Playback iterations to playback using the records in the databank. You can also
use custom code to loop through databank records and assign values to variables.

4.3 Configuring Databanks
You must configure the databank to use with a script before you can get records from
the databank to use in a script.

Getting Databank Records

Using Databanks 4-3

To configure databanks to use with a script:

1. Open or create a Script project.

2. Select Configure Databank from the Script menu.

This dialog box lets you configure the databank files used with the script.

3. Click the Add button.

Add: Opens a dialog box for selecting a databank file to add to the script.

4. Enter the databank file name or click Browse to select the databank file.

■ Databank: Shows the name(s) of the comma-separated value databank file(s)
added to the script.

■ Browse: Opens a dialog box for selecting the path and file to use as the
databank.

■ Edit: Opens the selected databank file.

■ Delete: Deletes the selected databank file from the script. The file is not
deleted from disk.

5. Enter an alias name to use for the databank or leave the default alias name. The
default alias name is the name of the .CSV databank file.

Alias: Specifies an alias name to use for the databank. The databank file name is
the default. The databank alias name is the name that appears when you add a
databank record retrieval node to a script tree.

6. Click OK.

The following information appears after a databank file has been selected:

■ Line numbers: Shows the line number of the databank record.

■ Column Headers: Shows the field name(s) used in the databank file.

■ Rows: Shows the data values specified for each record in the databank.

Databank files are comma-separated value files. The field names are on the first line of
the file separated by commas (no spaces). The field data is on subsequent lines
separated by commas (different line for each record, no spaces around commas). The
following shows an example:

FirstName,LastName,Mail,Phone

John,Smith,JohnS@company.com,x993

Mary,Ellen,MaryE@company.com,x742

If a data value contains a comma, place quotation marks around the value, as follows:

John,Smith,"Anytown, MA","(603) 993-0000"

4.4 Getting Databank Records
To get databank records to use with a script:

1. Open or create a script project.

2. Configure the databank to use with a script.

3. Select the script node where you want to use the databank record.

4. Select the Script menu and then select Other from the Add sub menu.

Getting Databank Records

4-4 Oracle Application Testing Suite OpenScript User's Guide

5. Expand the General node and select Get Next Databank Record.

6. Click OK.

7. Select the databank alias to specify the databank file to get the record from.

8. Click OK. A GetNextDatabankRecord: databank alias node will be added to the
script.

9. In the Java Code view, the getDatabank("databank
alias").getNextDataBankRecord() method will be added to the script
code:

getDatabank("customer").getNextDatabankRecord();

10. Add your custom code to create an array variable to retrieve data from the
databank record.

5

Using the Web Functional Test Module 5-1

5Using the Web Functional Test Module

This chapter provides instructions on configuring and using the OpenScript Web
Functional Test Module, which tests Web-based applications by accessing objects
through the Document Object Model (DOM) of the Web browser.

5.1 About the Web Functional Test Module
The OpenScript Web Functional Test Module is an application module that supports
functional testing of Web-based applications that uses the Web Document Object
Model (DOM). OpenScript provides a flexible and easy-to-use scripting interface for
both Technical Testers and Non-Technical Testers. The OpenScript Functional Test
Module enables script creation from both the code view and GUI view scripting
interfaces.

The Functional Test Module extends the OpenScript platform with Document Object
Model (DOM) recording and playback capabilities. The DOM recorder automatically
captures Web page objects, actions, and navigations and records them as tree view
nodes (with the underlying code in the Code View) in the script. The Functional Test
Module also provides additional GUI script modification options. Web Functional Test
Scripts differ from HTTP Scripts. Even though both are used to test web applications,
HTTP scripts automate the underlying HTTP network protocol, whereas Web
Functional Test scripts automate the browser UI.

The Web Functional Test Module is an extension module to the Oracle OpenScript
platform that extends the platform with Web Functional Test recording and playback
capabilities. The Web Functional Test Module is fully integrated with the OpenScript
platform including the Results view, Details view, Properties view, Console/Problems
views, Preferences, Step Groups, Script Manager, and Workspace Manager.

The Web Functional Test recorder displays commands in the Tree View in
easy-to-understand commands. By default, script commands are grouped into Steps
Groups by the Web page on which they were performed. Each Step Group contains
one or more script commands corresponding to recorded actions that were performed
on the page. The default name for the Step Group is the Web page Title (as specified in
the "Title" tag).

OpenScript shows the results of Web Functional Test script playback in the Results
view. The Results view shows results for each script command (including duration
and summary for failures). The Results Report compiles the same information into an
HTML Results Report. Results can be exported from the OpenScript GUI in standard
format (CSV / HTML). Results are also generated for unattended playback through
the command line.

The Web Functional Test Module API includes a "Web" class that provides additional
programming functionality.

Recording Web Functional Tests

5-2 Oracle Application Testing Suite OpenScript User's Guide

5.1.1 Key Features of the Web Functional Test Module
The Web Functional Test Module provides the following functionality:

■ Records Document Object Model objects and actions for playback automation. The
objects and actions can be generated by a Web browser (i.e. IE or FireFox).

■ Plays back functional testing scripts to validate proper functionality. Playback runs
interactively in the OpenScript user interface and is also supported in the Oracle
Load Testing for Web Applications Agents (i.e. Java Agent).

■ Provides full script code view integration to support script generation for the Web
Functional Test Module. The Web Functional Test Module includes an additional
API to support Web Functional Test protocol code scripting.

■ Allows users to parameterize user inputs to Functional Test scripts and drive those
inputs from an external data file (Databank).

■ Allows users to insert test cases for validation of objects and actions.

■ Provides additional options/settings that are specific to Functional Test scripts
within the Functional Test categories in the preferences interface.

■ Reports playback results for Functional Test scripts in the Results and Console
views.

5.2 Recording Web Functional Tests
The Web Functional Test Module records Document Object Model objects and actions
in a Web browser for playback automation. The Recorder creates functional and
regression test scripts for automating GUI applications in a browser.

OpenScript records standard Web DOM objects (links, images, forms, form elements,
etc.) and events (click, mousedown, focus, etc.) for playback. Web DOM objects are
identified by one or more attribute as configured through the Web Functional Test
Record Preferences under Object Identification. Object Identification attributes can
later be modified by users through the Preferences global settings for new scripts or
for already recorded commands in the tree view or code view. All Web DOM objects,
events and attributes should be supported. Recording can be configured through
Internet Explorer or Firefox. You can set the browser type in the Preferences.

The Web Functional Test Module provides a record toolbar button that lets you initiate
the Web DOM recorder and capture Web page actions to the script view. The record
toolbar includes start and stop recording toolbar buttons. OpenScript recorders also
open a floating toolbar that can be used while recording without having to switch
between the browser and OpenScript.

5.2.1 Setting Web Functional Test Record Preferences
Before recording Web Functional Test scripts, set Web record preferences.

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Record category.

4. Select Web Functional Test.

5. Click the General tab and set the general recording preferences as follows:

■ Recorder: Specifies the record port.

Recording Web Functional Tests

Using the Web Functional Test Module 5-3

– Port: Specifies the port to use for recording.

■ Miscellaneous: Specifies the miscellaneous record settings.

– Capture Screen Shots: When selected, screen images are captured during
recording.

– Capture HTML: When selected, page source HTML is captured during
recording.

– Ignore Auto Page: When selected, server-side auto pages are ignored
during recording.

– Action Cache Interval(s): Specifies how often to cache page actions during
recording. The following cases are determined by this setting:

If while recording, the text on the same Web page element is changed
within the Action Cache Interval time setting, the previously recorded
value will be replaced by the changed value. In the Java code, the set-
Text action will be replaced with the changed value.

If while recording, a browser window closes within the Action Cache
Interval after a user performs an action on a web page (for example, a but-
ton click) the window close event will not be recorded, as the window
close event is considered to be caused by the previously performed action.

6. Click the Object Identification tab and use Add or Edit to customize the object
identification elements or attributes.

7. Click OK when finished.

5.2.2 Adding/Editing Object Identifiers
The Web Functional Module uses object identification to specify attributes used to
identify Web objects. The Web Functional Test Module includes predefined path
attributes for common Web objects. Object paths are specified in XPath format. For
example, for web objects, the object identification path appears as follows in Java code
commands:

/web:window[@index='0']
/web:document[@index='0']
/web:form[@index='0']
/web:input_text[@id='ticker' or @name='ticker' or @index='0']

You can set the default object attributes in the Web Functional Test Module Record
Preferences. You can also edit object attributes in recorded scripts in the tree view or
the code view.

In addition to the predefined object identification, you can add an Object Library to the
script to record paths into a library file. Object Library files may be shared and reused
across other scripts. The Object Library files provide a more convenient "short name"
for objects to provide for more convenient programming.

The Web Functional Test Module includes object identifiers that specify how the
recorder identifies Browser objects. You can add object identifiers or edit the existing
object identifiers in the Record preferences.

To add or edit an object identifier:

1. Select the OpenScript Preferences from the View menu.

2. Expand the Record node and select Web Functional Test.

3. Click the Object Identification tab.

Recording Web Functional Tests

5-4 Oracle Application Testing Suite OpenScript User's Guide

4. Click Add or select an existing object identifier and click Edit.

The Object Element dialog box lets you define an object identifier for a Web
Functional Test recorder. The object identifier specifies how the OpenScript Web
Functional Test recorder module identifies web objects in the Document Object
Model on a Web page.

Name: Specify the name of the object identifier.

Attributes: Shows the attributes defined for the object identifier. The attributes can
consist of an object attributes group and specific object element attributes.

Add: Opens a dialog box for specifying a new Web object identifier.

Edit: opens a dialog box for editing the selected Web object identifier.

Delete: Deletes the selected Web object identifier.

Up: Moves the selected Web object identifier up in the priority order.

Down: Moves the selected Web object identifier down in the priority order.

For each object element, you specify a name (typically a Web object attribute), an
operator, a value and a value type. As you add object elements, OpenScript builds
the object identifier using logical OR between each object identifier element. Click
Edit to change between logical OR and AND.

5. If adding a new object identifier, click Add and specify the path segments for the
object identifier.

The Path Segment dialog box lets you define a segment of an object identifier for a
Web Functional Test recorder. The object identifier specifies how the OpenScript
Web Functional Test recorder module identifies web objects in the Document
Object Model on a Web page.

Attribute: When selected, specify the name, operator, value, and value type for the
object identifier.

■ Name: Specify the name of the Web object attribute to use to identify the
object.

■ Operator: Specify the logical operator to use to identify the object value.

■ Value: Specify the value of the Web object attribute to use to identify the
object.

■ Value Type: Specify the value type to use to identify the object. The value type
can be a string, a number, or by variable reference. Set the Value type to match
the specified value.

– String: The value in the Value field will be matched as a text string to
identify the Web object.

– Number: The value in the Value field will be matched as a numeric value
to identify the Web object.

– Reference: The value in the Value field will be matched as a variable
name to identify the Web object.

Group: when selected the Web object identifier can be specified as a string
representing a logical group of Names, Operators, and Values.

6. If editing an existing segment, click Edit and specify the path attributes for the
object identifier.

The Path Attribute dialog box lets you edit an element of an object identifier.

Recording Web Functional Tests

Using the Web Functional Test Module 5-5

Name: Specify the name of the Web object attribute to use to identify the object.

Operator: Specify the logical operator to use to identify the object value.

Value: Specify the value of the Web object attribute to use to identify the object.

Value Type: Specify the value type to use to identify the object. The value type can
be a string, a number, or by variable reference. Set the Value type to match the
specified value.

■ String: The value in the Value field will be matched as a text string to identify
the Web object.

■ Number: The value in the Value field will be matched as a numeric value to
identify the Web object.

■ Reference: The value in the Value field will be matched as a variable name to
identify the Web object.

And/Or: specifies logical OR or AND between object elements. This option does
not appear if the object element being edited is the last object element in the object
identifier group.

7. If editing an existing path, click Edit and specify the path attributes for the object
identifier.

The Path Attribute Group dialog box lets you edit an object identifier group as a
string value.

Group: A text string of the object identifier group. The object identifier group
syntax follows the @name operator value/type format. Values by reference
are enclosed in double curly braces {{}}. String values are enclosed in single
quotation marks. Numeric values are not enclosed. Logical OR or AND are used
between object elements. Parenthesis are used for logical grouping of multiple
object elements. Object identifiers can use the wildcard characters * (asterisk) for
multiple characters and ? (question mark) for single characters. For example,
@text="Login*". The following are examples of object identifier group syntax:

@index={{index}} or @title='title' or @number=5

@text={{text}} or @href={{href}} or @index={{index}}

(@id={{id}} or @name={{name}} or @index={{index}}) and multiple mod
{{multiple}}

8. Click OK when finished adding or editing segments or attributes. The object
identifier is added to the record preferences.

9. If you have the browser open when adding or editing object identifiers, close and
restart the browser.

5.2.2.1 Available Attributes for Web DOM Elements
The following table lists the attributes available for Web Document Object Model
objects.

Element Attributes

Common attributes for all web DOM elements tag, id, index, title, style, class, html, _
adftrueval, rn, un, ot

web:window index, title

web:document index, url

Recording Web Functional Tests

5-6 Oracle Application Testing Suite OpenScript User's Guide

5.2.3 Recording Web Functional Test Scripts
To record Web Functional Test scripts:

1. Start OpenScript.

2. Set the Web Functional Test Recording preferences.

3. Select New from the File menu.

4. Select Web Functional Test Script.

5. Click Next.

6. Select the Repository and Workspace.

7. Enter a script name.

8. Click Finish. A new Script tree is created in the Script View.

9. Select Record from the Script menu. The browser automatically opens when you
start recording.

10. Load the web page where you want to start recording into the browser.

11. Navigate the web site to record page objects, actions, and navigations. The page
objects, actions, and navigations will be added to the Run node of the script tree.

12. When finished navigating pages, close the browser.

13. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

14. Expand the Run node of the script to view the page objects, actions, and
navigation nodes in the script tree.

web:a disabled, text, href

web:button type, name, value, disabled, text

web:input_button type, name, value, disabled, text

web:input_file type, name, value, index, disabled, size

web:input_hidden type, name, value, index, disabled

web:input_image type, name, disabled, alt, align, border, height,
hspace, src, lowsrc

web:input_submit type, name, value, disabled, text

web:input_text type, name, value, defaultValue, disabled,
maxlength, readOnly, size

web:input_check type, name, value, disabled, checked,
defaultChecked, readOnly, size

web:input_radio type, name, value, disabled, checked,
defaultChecked, readOnly, size

web:img alt, height, longdesc, name, src, width

web:option value, text, optionIndex(index in the select),
defaultSelected, selected

web:select name, disabled, value, selectedIndex

web:textarea name, disabled, value, defaultValue, readonly,
cols, rows

Element Attributes

Playing Back Scripts

Using the Web Functional Test Module 5-7

You can customize the script using the menu options or the Code View for specific
testing requirements.

5.3 Playing Back Scripts
OpenScript plays back recorded Web actions/commands which consist of an event
plus an object identified by its attributes (for example: click
link(text="Home")). The actions used for playback will either be those that are
recorded or are specified manually in the Java Code view. Playback can be configured
through Internet Explorer or Firefox. Unattended playback is supported through
Oracle Test Manager for Web Applications or third-party tools using OpenScript's
command line interface. Web Functional Test scripts do not play in Oracle Load
Testing for Web Applications.

The Web Functional Test Module provides playback and iterate toolbar buttons that
allows users to start the script playback for either a single playback through the script
or multiple iterations using data from a databank file. Playback results for Web
Functional scripts can be viewed in the Results and Console views.

5.3.1 Setting Web Functional Test Playback Preferences
To set Web Functional Test Playback preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Playback category.

4. Select Web Functional Test.

5. Expand the Object Timeout group and set the preferences as follows:

■ Timeout(S): Specifies the maximum number of seconds OpenScript should
wait for an object to appear before considering the object not found. This is the
default timeout when waiting for an object to appear before invoking an
action against it. This is also the default timeout when waiting for an object to
appear before continuing the script.

You can override individual object wait timeouts in waitForPage() or
object.waitFor() by editing their "timeout" properties. Action timeouts
cannot be overridden.

6. Expand the Miscellaneous group and set the preferences as follows:

■ Capture HTML: When selected, the page HTML will be captured.

■ Capture ScreenShot: When selected, the a screen image of the page will be
captured.

7. Expand the Agent Port group and set the preferences as follows:

■ Port: Specifies the port number to use to communicate with the agent
machine.

8. Expand the Capture Screenshot Interval group and set the preferences as follows:

Note: Do not close the script editor view or script project while
recording or playing back scripts. Doing so could result in
unpredictable behavior in the OpenScript application.

Modifying Scripts

5-8 Oracle Application Testing Suite OpenScript User's Guide

■ Delay time for capture screenshot: Specifies the amount of time to wait before
capturing a screenshot of the page.

9. Click OK when finished.

5.3.2 Playing Back Web Functional Scripts
To play back Web Functional scripts:

1. Start OpenScript.

2. Open the Web Functional script to play back.

3. Select Playback from the Script menu or click the toolbar button.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

5.3.3 Playing Back Web Functional Scripts with Iterations
To play back Web Functional scripts with iterations:

1. Start OpenScript.

2. Open the Web Functional script to play back.

3. Select Iterate from the Script menu or click the toolbar button.

4. Set the iteration count.

5. Select which databank file to use, if necessary.

6. Set the starting record and data usage.

7. Click OK.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

5.4 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

5.4.1 Adding Browser Navigation to a Script
To add a Browser Navigation to a Script:

1. Record a Web Functional Test script.

2. Select the script node where you want to add the navigation.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Web Actions node.

5. Expand the Browser node and select Navigate.

6. Click OK.

7. Enter the object identification path for the browser. You can use the Capture or
Select buttons to capture or select an object path.

8. Enter the URL.

9. Click OK. The navigate node is added to the script tree.

Modifying Scripts

Using the Web Functional Test Module 5-9

In the Java Code view, the web.window(objectId).navigate method will be
added to the script code:

web.window(1,
"/web:window[@index='0']").navigate("http://testserver2/fmstocks");

The Browser web actions includes additional options for browser navigation such
as Back, Forward, Close, Refresh, Wait for Page, etc. Additional browser actions
have corresponding Java code methods:

web.window(1,
"/web:window[@index='0']").waitForPage("http://testserver2/fmstocks/",
"Stocks", true, null)
web.window("/web:window[@index='0']").close();
web.window("/web:window[@index='0']").back();
web.window("/web:window[@index='0']").forward();
web.window("/web:window[@index='0']").refresh();
web.window("/web:window[@index='0']").solve("MyVariable", "(.+?)", true, 1);
web.window("/web:window[@index='0']").storeResponseTime("MyRespTime");
web.window("/web:window[@index='0']").waitFor(10);
web.window("/web:window[@index='0']").storeAttribute("MyAttribVar",
"MyAttribute");

5.4.2 Adding Web Actions on Browser Objects
The Web Functional Test Module includes actions for Browser objects that can be
added to a script.

To add Web actions on Browser objects to a script:

1. Record a Web Functional Test script.

2. Select the script node where you want to add the action.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Web Actions node.

5. Expand an action node and select the action.

6. Click OK.

7. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path.

8. Click OK. The action node is added to the script tree.

In the Java Code view, a web.object(objectId).action() method will be
added to the script code:

web.button("/web:window[@index='0']
/web:document[@index='0']
/web:form[@index='0'
or @id='loginform'
or @name='loginform']

/web:input_submit[@name='LoginButton'
or @value='Login'
or @index='0']").click()

The Web Actions node includes actions for objects such as buttons, check boxes,
dialogs, images, links, tables, etc. Other object actions have corresponding Java
code methods:

web.link("/web:window[@index='0']

Modifying Scripts

5-10 Oracle Application Testing Suite OpenScript User's Guide

/web:document[@index='0']
/web:a[@text='Open a new account.'
or @href='http://testserver2/fmstocks/_NewAccount.asp'
or @index='0']").click()

or

web.select("/web:window[@index='0']
/web:document[@index='0']
/web:form[@index='0']
/web:select[(@id='namespace'
or @name='namespace'
or @index='0')
and multiple mod 'False']").selectOptionByText("[select product]");

5.4.3 Adding Object Libraries to a Script
To add Object Libraries to a script:

1. Open or create a Web Functional Test script project.

2. Select the Initialize node.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the General node and select Load Object Library.

5. Click OK.

6. Select the location to save or retrieve the library. Script libraries will be saved in an
ObjectLibraries directory below the script directory. Repository libraries will be
saved in an ObjectLibraries directory below the installation directory. You can also
specify a specific directory for the libraries.

7. Add the library file and alias:

■ If you have already created an Object library, browse to the file and select it.

■ If you have not created a library file, click Browse, enter a file name, and click
Save. A new file will be created. When you record a Web Functional Test
script, the browser actions will be automatically added to the object library
file.

8. Click OK. The Object Library node is added to the script tree.

9. Record a Web Functional Test script to use the object library.

The object identification paths for browser objects will be automatically added to
the object library file during recording. You can open and edit the object library file
using the Object Library Editor. Select the Load Object Library node in the script
tree and then select Open Object Library from the right-click shortcut menu.

In the Java Code view, the ft.loadObjectLibrary method will be added to the
script code:

ft.loadObjectLibrary("MyLibrary", "mylibrary.properties",
LibraryLocation.ScriptLibraries)

5.4.4 Adding a Server Response Test
You can use Server Response Tests to report an error and/or abort the script if a Web
page does not return back to the client within a specified time range.

To add a Server Response Test to a script:

Modifying Scripts

Using the Web Functional Test Module 5-11

1. Record a Web Functional Test script.

2. Expand the Run node.

3. Select the script node where you want to add the Server Response test.

4. Select the Script menu and then select Other from the Add sub menu.

5. Expand the Web Actions group.

6. Expand the Test group.

7. Select Server Response Test and click OK.

8. Enter the window path.

9. Enter a name for the test.

10. Enter the minimum and maximum time values.

11. Set the Stop Iteration on Failure option.

12. Click OK to add the Server Response node to the script tree.

In the Java Code view, the Server Response Test consists of the code executed in
the web.window(objectId).verifyResponseTime() or
web.window(objectId).assertResponseTime()method:

web.window("/web:window[@index='0']").verifyResponseTime("MyserverResp", 10.0,
20.0);

or

web.window("/web:window[@index='0']").assertResponseTime("MyserverResp2", 10.0,
50.0)

In the above code examples, verify means "do not stop on failure" and assert
means "stop on failure".

5.4.5 Adding Text Matching Tests to a Script
To add a Text Matching Test to a Script:

1. Open or create a Web Functional Test script project.

2. Select the script node where you want to add the Text Matching Test.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Web Actions node.

5. Expand the Tests node and select Text Matching Test.

6. Click OK.

7. Select the Look in location.

8. If you selected Specified Document, enter the object identification path for the
browser, document, or frame.

9. Enter a name for the test.

10. Specify the text to match string.

11. Select the Pass when setting.

■ Selected text is present: The test case passes if the Text to Match string is
found in the selected source.

Modifying Scripts

5-12 Oracle Application Testing Suite OpenScript User's Guide

■ Selected text is absent: The test case passes if the Text to Match string is not
found in the selected source.

12. Select the Match type.

■ Exact: Matches the Text to Match string exactly.

■ Regular Expression: Matches using the Regular Expression specified in Text
to Match.

■ Wildcard: Matches using the wildcard characters specified in Text to Match.

13. Set the Stop Iteration On Failure option.

14. Click OK. The Text Matching Test node is added to the script tree.

In the Java Code view, the web.assertText or
web.document(specifiedDoc).assertText method will be added to the
script code if the Stop Iteration On Failure option is selected:

web.assertText("MyTextMatchTest", "Home", TextPresence.PassIfPresent,
MatchOption.Exact)

web.document("Main").assertText("MyTextMatchTest2", "Home",
TextPresence.PassIfPresent, MatchOption.RegEx);

In the Java Code view, the web.verifyText or
web.document(specifiedDoc).verifyText method will be added to the
script code if the Stop Iteration On Failure option is not selected:

web.verifyText("MyTextMatchTest", "Home", TextPresence.PassIfPresent,
MatchOption.Exact)

web.document("Main").verifyText("MyTextMatchTest2", "Home",
TextPresence.PassIfPresent, MatchOption.RegEx);

5.4.6 Adding Object Tests
The Web Functional Test Module includes an object test case for Browser objects that
can be added to a script.

To add an object test to a script:

1. Record a Web Functional Test script.

2. Select the script node where you want to add the object test.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Web Actions node.

5. Expand the Tests node and select Object Test.

6. Click OK.

7. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path.

■ Substitute Variable: Opens a dialog box for selecting the variable to use for
the object ID.

■ Capture Object: Opens a capture object dialog box and starts the capture
mode. Navigate to the object to capture and use options in the capture dialog
box to capture the object path.

Modifying Scripts

Using the Web Functional Test Module 5-13

■ Edit Object Path: Opens a dialog box for editing the currently selected object
path.

■ View Object Path: Opens a dialog box for editing the currently selected object
path.

■ Select from Object Library: Opens a dialog box for selecting an object from a
saved library.

■ Save to Object Library: Opens a dialog box for saving the current object to a
library.

8. Enter a test name.

9. Select an Attribute/Value pair and specify the test details.

Attributes: Shows the attributes of the selected object. Select an attribute and
specify the test details.

■ Attribute: Shows the name of the attribute. When selected, the attribute is
included in the object test. When cleared, the attribute is not included in the
object test.

■ Value: Shows either the recorded value or the test criteria for the attribute
depending upon which Display option is selected.

■ Enable All: Enables all properties for inclusion in the test criteria.

■ Disable All: Disables all properties for exclusion from the test criteria.

■ Add Row: Adds a new row to the table.

■ Display: Selects which values appear in the properties list.

– Test: When selected, the Value list shows the test criteria defined for each
attribute.

– Recorded Values: When selected, the Value list shows the recorded value
for each attribute.

Test Details: Specifies the test criteria for the selected attribute.

■ Recorded Value: Shows the recorded value of the attribute.

■ Enable: When selected, the attribute is included in the object test. When
cleared, the attribute is not included in the object test.

■ Value Type: Specifies the data type to use as the test criteria for the attribute.
The available options in the Operator list depend upon the selected value type
to test: String, Boolean, Date, or Numeric.

■ Operator: Specifies the operator to use for the playback test criteria. The list of
operators changes depending upon the selected Value Type.

The following options are available for String values:

– Exact: The test passes if the text or attribute value matches exactly the
current value of the text string during playback of the script.

– Wildcard: The test passes if the text or attribute value matches the current
value of the Like operator pattern during playback of the script.

– Regular Expression: The test passes if the text or attribute value matches
the current value of the Regular Expression pattern during playback of the
script.

The following options are available for Numeric and Date values:

Modifying Scripts

5-14 Oracle Application Testing Suite OpenScript User's Guide

– [Relational Operators]: Lists the relational operators. Select the type of
comparison to use during playback of the script. If you select the Range
operator, the Object Test adds a field for specifying the range. Specify the
from-to range.

The following option is available for Boolean values:

– Exact: The test passes if the text or attribute value matches the True or
False value specified in the Value field during playback of the script.

■ Value: Specifies the value to use for the test criteria for the attribute.

■ [Substitute Variable]: Opens a window for selecting a databank variable to
substitute as the value to use for the test criteria for the attribute.

10. Specify the test details for each Attribute/Value pair as required for the test.

11. Click OK. The object test node is added to the script tree.

In the Java Code view, a web.element(objectId).verifyAttributes
method will be added to the script code:

web.element(15, "/web:window[@index='0']
/web:document[@index='0']
/web:form[@index='0'
or @id='loginform'
or @name='loginform']

/web:input_password[@name='password' or @index='0']").verifyAttributes(
"MyObjectTest", web.attributes(web.attribute("index", "0",

TestOperator.StringExact),
web.attribute("tag", "INPUT", TestOperator.StringExact),
web.attribute("name", "password", TestOperator.StringExact),
web.attribute("value", "ta", TestOperator.StringExact),
web.attribute("type", "password", TestOperator.StringExact),
web.attribute("checked", "False", TestOperator.StringExact),
web.attribute("disabled", "False", TestOperator.StringExact)));

5.4.7 Adding Table Tests
The Web Functional Test Module includes a table test case for HTML tables that can be
added to a script.

To add a table test to a script:

1. Record a Web Functional Test script.

2. Select the script node where you want to add the table test.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Web Actions node.

5. Expand the Tests node and select Table Test.

6. Click OK.

7. Enter the object identification path for the table. You can use the Capture or Select
menu options to capture or select an object path.

■ Substitute Variable: Opens a dialog box for selecting the variable to use for
the object ID.

■ Capture Object: Opens a capture object dialog box and starts the capture
mode. Navigate to the object to capture and use options in the capture dialog
box to capture the object path.

Modifying Scripts

Using the Web Functional Test Module 5-15

■ Edit Object Path: Opens a dialog box for editing the currently selected object
path.

■ View Object Path: Opens a dialog box for editing the currently selected object
path.

■ Select from Object Library: Opens a dialog box for selecting an object from a
saved library.

■ Save to Object Library: Opens a dialog box for saving the current object to a
library.

8. Enter a test name.

9. Select a row and column cell and specify the test details.

Test Details: Specifies the test to perform for each value. Select a value in the row
and column list to set the details for that specific value.

■ Row: Shows the row number of the selected table value.

■ Column: Shows the column number of the selected table value.

■ Enable: When selected, the table value is included in the comparison test.

■ Recorded value: Shows the selected attribute's recorded value.

■ Value Type: Specifies the data type of the selected value: String, Numeric,
Date, or Boolean.

■ Operator: Specifies how to compare the value. The Operator options change
depending upon the selected value type. For relational operators, if you select
the Range operator, a field is added for specifying the numeric or date range.
Specify the from-to range.

■ Value: Specifies the value to test.

■ [Substitute Variable] - opens a dialog box for selecting the variable to use as
the value to test.

10. Specify the test details for each table cell as required for the test.

11. Click OK. The table test node is added to the script tree.

In the Java Code view, a web.table(objectId).verifyCells method will be
added to the script code:

web.table(24, "/web:window[@index='0']
/web:document[@index='0']
/web:table[@index='6']").verifyCells("MyTableTest",
web.cells(web.cell(1, 1, "Ticker ", TestOperator.StringExact),
web.cell(1, 2, "Company ", TestOperator.StringExact),
web.cell(2, 1, "ORCL ", TestOperator.StringExact),
web.cell(2, 2, "Oracle Corporation ", TestOperator.StringExact)))

5.4.8 Adding a Wait for Page
You can use the Wait for Page browser option to cause the script playback to wait until
a page is returned by the server before continuing playback.

To add a Wait for Page command to a script:

1. Record a Web Functional Test script.

2. Expand the Run node.

3. Select the script node where you want to add the Wait for Page node.

Modifying Scripts

5-16 Oracle Application Testing Suite OpenScript User's Guide

4. Select the Script menu and then select Other from the Add sub menu.

5. Expand the Web Actions group.

6. Expand the Browser group.

7. Select Wait For Page and click OK.

8. Enter the document ID in XPath format.

9. Select or clear the Wait for any page option.

10. If you clear the Wait for any page option, specify the URL and Match option.

11. Set the Timeout value.

12. Click OK to add the Server Response node to the script tree.

In the Java Code view, a web.window(objectId).waitForPage() method
will be added to the script code:

web.window(6,
"/web:window[@index='0']").waitForPage("http://testserver2/fmstocks/home.asp",
null, null)

5.4.9 Inspecting Object Paths
To inspect a Web object path:

1. Record a Web Functional Test script.

2. Select the Script menu and then select Inspect Path. OpenScript opens the capture
mode.

3. Navigate to the Web object and place the mouse cursor on the object.

4. Press F10 to capture the path.

5. Highlight the path with the mouse cursor and press the Ctrl+C keys to copy the
path to the clipboard.

6. Click OK when finished.

5.4.10 Setting Script Properties
To set script properties:

1. Record a Web Functional Test script.

2. Select the Script menu and then select Script Properties.

3. Select the properties category.

4. Specify the properties for the category.

5. Click OK when finished.

5.4.11 Substituting Databank Variables
To substitute a databank variable for a query string parameter in a script:

1. Record a Web Functional test script that has text string parameters.

2. Expand the Run node.

3. Expand the node containing text parameters.

4. Right-click a text parameter node and select Properties from the shortcut menu.

Editing Object Libraries

Using the Web Functional Test Module 5-17

5. If you have already configured the script with one or more databanks, select the
click the [Substitute Variable] icon and select the databank field to substitute for
the text parameter from the desired databank file and click Finish.

6. If you have not already configured the script with a databank, select Add new
databank and click Next.

a. Click the Browse button and select the databank file to use.

b. Select the column (field name) to substitute for the text parameter and click
Finish.

In the Tree View, the databank variable appears in place of the recorded value as
{{db.databankFileName.field,recordedValue}}.

In the Java Code view, the databank variable appears as
{{db.databankFileName.field,recordedValue}} in the
web.text(objectId).setText method:

web.text(1, "/web:window[@index='0']
/web:document[@index='0']
/web:form[@index='0']
/web:input_text[@id='ticker'
or @name='ticker'
or @index='0']").setText("{{db.fmstocks_data.ticker,orcl}}")

5.5 Editing Object Libraries
To edit an object library:

1. Create a Web Functional Test script project.

2. Add an Object Library to the script and record the Web application under test.

3. Select the Load Object Library node in the script tree and then select Open Object
Library from the right-click shortcut menu.

4. If necessary, click the Object Library tab.

5. Select an object in the Objects list.

6. Edit the object attributes in the Details section.

You can add objects to and delete objects from the Object list. You edit the object
attributes in the object string or in the tree hierarchy of the Details section. The tree
hierarchy lets you move attributes up or down in the priority order.

You can click the libraryName.properties tab to view or edit the object/object
attribute text strings in the object library file source.

7. Select Save from the File menu or click the Save toolbar button to save changes to
the object library file.

5.5.1 Using the Web Functional Test Module API
The Web Functional Module includes a script Application Programming Interface
(API) specific to Web DOM functional testing. The Web Functional Test Module
recorder creates the Java code that corresponds to the Tree View and displays the Web
Functional Test commands in the Java Code view using easy-to-understand function
names. The Java Code view commands correspond to the Tree View and you can edit
your scripts in either view.

Editing Object Libraries

5-18 Oracle Application Testing Suite OpenScript User's Guide

You can use the Web Functional Test API to enhance recorded scripts with additional
testing functionality. Commands that are specific to the Web Functional Testing
Module are part of the "web" class. Additional functional test methods are available in
the "ft" class. You can also leverage other commands from other enabled classes
(services) or general Java commands in your scripts.

Some examples of the Web Testing Module API include:

■ Adding control statements

■ Adding think time

■ Launching and closing the Browser

■ Navigating to a URL

■ Performing actions on Web objects (click, double click, etc.)

■ Setting text fields

■ Waiting for a page to load

Many API methods can be added using the Web Functional Test Module Tree View.
Additional methods can be added using the Java Code view.

6

Using the HTTP Module 6-1

6 Using the HTTP Module

This chapter provides instructions on configuring and using the OpenScript HTTP
Module, which tests Web-based applications by automating the underlying HTTP
protocol traffic.

6.1 About the HTTP Module
The OpenScript HTTP Module is an application/protocol module that supports load
testing of Web-based applications that communicate via http(s) protocol. OpenScript
provides a flexible and easy-to-use scripting interface for both Technical Testers and
Non-Technical Testers. The OpenScript HTTP Module enables script creation from
both the code view and GUI view scripting interfaces.

The HTTP Module extends the OpenScript platform with HTTP Proxy recording and
playback capabilities. The proxy recorder automatically captures Web page
navigations and records them as tree view nodes (with the underlying code in the
Code View) in the script. The HTTP Module also provides additional GUI script
modification options for HTTP navigation.

6.1.1 Key Features of the HTTP Module
The HTTP module provides the following functionality:

■ Records HTTP protocol requests for playback automation. The requests can be
generated by a Web browser (i.e. IE) or by a plug-in (i.e. AJAX XMLHTTP
plug-in).

■ Plays back HTTP scripts to validate proper functionality. Playback runs
interactively in the OpenScript user interface and is also supported in the Oracle
Load Testing for Web Applications Agents (i.e. Java Agent).

■ Provides full script code view integration to support script generation for the
HTTP Module. The commands include (but are not limited to) methods to
generate GET requests, POST requests, correlation substitutions, validation, etc.
The HTTP Module includes an additional API to support HTTP protocol code
scripting.

■ Allows users to parameterize user inputs to HTTP scripts and drive those inputs
from an external data file (Databank).

■ Provides additional options/settings that are specific to HTTP scripts within the
HTTP categories in the preferences interface.

■ Reports playback results for HTTP scripts in the Results and Console views.

Navigation Editing (Correlation)

6-2 Oracle Application Testing Suite OpenScript User's Guide

6.2 Navigation Editing (Correlation)
The HTTP Module enables users to view and edit all recorded navigations and related
parameters (headers, post data, etc.) in either the script GUI Tree view or Code View. It
also enables them to view and edit any default correlation/parameterization of
dynamic navigations and apply their own correlation to handle dynamic navigations.

■ Navigation Editing GUI View: Configures the navigations they want to
parameterize and the correlation rules they want to apply through a navigation
editing GUI view interface. The GUI allows viewing and editing properties for
different types of navigations (for both Web/HTTP applications and
non-Web/HTTP applications) and data inputs. This GUI View includes:

– Display & Editing for Recorded Navigations: Includes recorded navigations
and any navigation parameters like headers, etc. and a mechanism for users to
edit/add/delete navigations including dynamic parameter sources/targets.

– Display & Editing for Correlation Rules Library & Editing: Includes a list of
all default correlation rules included in the module(s) (listed by application
type) and a mechanism for users to add/edit/delete correlation rules.

■ Navigation Editing Code View Commands: Users are able to specify the
navigations they want to parameterize and the data source they want to drive the
inputs from through navigation editing commands in the code view. These
commands map to the navigation editing GUI view.

beginStep("[2] Home", 3266);
{

http.post(4, "http://testserver2/fmstocks/{{FORMACTION_0,default.asp}}",
null,
http.postdata(http.param("login", "{{INPUT_0,ta616}}"),

http.param("password", "{{INPUT_1,ta}}"),
http.param("LoginButton", "{{INPUT_2,Login}}")),

null, true, "ASCII", "ASCII");
{
http.solveXpath("LINK_1_3", ".//A[text()='research a company']

/@href", "TickerList.asp", 0);
http.solveXpath("LINK_1_2", ".//A[text()='Logout']

/@href", "logout.asp", 0);
}

}
endStep();

6.2.1 Setting Correlation Preferences
To set correlation preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Correlation category.

4. Select HTTP.

5. Select or clear the check boxes for defined rules.

6. Select Add Library, Add Rule, or Edit Rule to define custom correlation rules.

7. Click OK.

Navigation Editing (Correlation)

Using the HTTP Module 6-3

6.2.2 Adding Correlation Libraries
Selecting Add Library in the Correlation Rules Preferences opens the Add Library
dialog box. This dialog box lets you specify a new correlation library for transforming
dynamic data in recorded script URLs and related parameters (headers, post data, etc.)
to variable names that will be recognized by the script playback engine (OpenScript or
Oracle Load Testing for Web Applications). The dialog box has the following options:

■ Name: Specifies the name of the correlation library. After you define a library you
can use the Add Rule button to specify the rules to include in the library. The
name is required. You can also select Copy rules to copy correlation rules from an
existing library.

■ Copy rules from existing library: Lets you copy correlation rules from an existing
library to a new library.

– Copy Rules: When selected, a list of existing correlation rule libraries will be
enabled for copying.

– Library: Lists the correlation rule libraries available for copying.

6.2.3 Adding and Editing Correlation Rules
Selecting Add Rule or Edit Rule in the Correlation Rules Preferences opens the Add
Rule or Edit Rule dialog box. This dialog box lets you specify or edit a correlation rule
for transforming dynamic data in recorded script URLs and related parameters
(headers, post data, etc.) to variable names that will be recognized by the script
playback engine (OpenScript or Oracle Load Testing for Web Applications). The dialog
box has the following options:

■ Type: Specifies the type of correlation rule. The available Source and Target
options change depending upon the rule type. The following rule types are
available:

– Client Set Cookie: This rule type automatically transforms web page cookie
objects with dynamic data.

– Correlate Header: This rule type automatically transforms web page header
objects with dynamic data.

– Correlate Referer Header: This rule type automatically transforms web page
referer header objects with dynamic data.

– DOM Correlation: This rule type automatically transforms web page
Document Object Model (DOM) objects with dynamic data.

– Function/Text Substitution: This rule type lets you specify a used-defined
function to replace a specific parameter or parameters.

– Substitute Recorded Date: This rule type lets you specify a Regular Expression
pattern to find and replace a date parameters with a variable value.

– Variable Substitution: This rule type lets you specify a Regular Expression
pattern to find and replace a specific parameter or parameters with a variable
value.

■ Name: Specifies the name of the correlation rule. The name is required.

The following sections describe the rule types.

6.2.3.1 Client Set Cookie
When Client Set Cookie is selected, the Source and Target show the following options:

Navigation Editing (Correlation)

6-4 Oracle Application Testing Suite OpenScript User's Guide

■ Source: Always cookies.

■ Target: Specifies which document object(s) to use as the target location of the
transform.

– Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

– Replace specified location: When selected, the correlation rule applies only to
the object matching the Location criteria.

– Location: Specifies the cookie parameter(s) to which to apply the correlation
rule using a Regular Expression. (See Variable Substitution Rules below for
examples.)

6.2.3.2 Correlate Header
When Correlate Header is selected, the Source and Target show the following options:

■ Source: Always web page headers.

■ Target: Specifies which header object(s) to use as the target location of the
transform.

– Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

– Replace specified location: When selected, the correlation rule applies only to
the object matching the Location criteria.

– Location: Specifies the header parameter(s) to which to apply the correlation
rule using a Regular Expression. (See Variable Substitution Rules below for
examples.)

6.2.3.3 Correlate Referer Header
When Correlate Referer Header is selected, the Source and Target show the following
options:

■ Source: Always web page referer headers.

■ Target: Specifies which referer header object(s) to use as the target location of the
transform.

– Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

– Replace specified location: When selected, the correlation rule applies only to
the object matching the Location criteria.

– Location: Specifies the referer header parameter(s) to which to apply the
correlation rule using a Regular Expression. (See Variable Substitution Rules
below for examples.)

6.2.3.4 DOM Correlation Rules
When DOM Correlation Rules is selected, the Source and Target show the following
options:

■ Source: Specifies which document object(s) to substitute as dynamic data.

– Links: When selected, web page link objects with dynamic data will
automatically transformed to variable values.

Navigation Editing (Correlation)

Using the HTTP Module 6-5

– Action: When selected, web page action objects with dynamic data will
automatically transformed to variable values.

– Input: When selected, web page input objects with dynamic data will
automatically transformed to variable values.

– TextArea: When selected, web page TextArea objects with dynamic data will
automatically transformed to variable values.

– JavaScript: When selected, web page JavaScript objects with dynamic data
will automatically transformed to variable values.

■ Target: Specifies which referer header object(s) to use as the target location of the
transform.

– Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

– Replace specified location: When selected, the correlation rule applies only to
the object matching the Location criteria.

– Location: Specifies the web page object(s)/parameter(s) to which to apply the
correlation rule using a Regular Expression. (See Variable Substitution Rules
below for examples.)

6.2.3.5 Function/Text Substitution Rules
When Function/Text Substitution Rules is selected, the Source and Target show the
following options:

■ Source: Specifies the function name or text to use as the substitute for dynamic
data.

– Function/Text: Specifies the name of the function to use to search the source
location. The following functions are available:.

* {{@timestamp}}: Searches the source using the specified Target Regular
Expression and replaces the data with the script variable
{{@timestamp}}. The timestamp value is the difference, measured in
milliseconds, between the current time and Midnight, January 1, 1970
UTC.

* {{@today(MM/dd/yyyy)}}: Searches the source using the specified
Target Regular Expression and replaces the data with the script variable
{{@today(MM/dd/yyyy)}}. The value is the current date in
month/day/year format.

* {{@hostip}}: Searches the source using the specified Target Regular
Expression and replaces the data with the script variable {{@hostip}}.
The value is the host IP address.

* {{@hostname}}: Searches the source using the specified Target Regular
Expression and replaces the data with the script variable
{{@hostname}}. The value is the host name.

* {{@jstr({{myVariable}})}}: Searches the source using the specified
Target Regular Expression and replaces the data with the script variable
{{@jstr({{myVariable}})}}. The value is a serialized Java string
that specifies a Hexadecimal length value followed by the string contained
in myVariable in the format \00\09var_value.

* {{@file({{myVariable}})}}: Searches the source using the specified
Target Regular Expression and replaces the data with the script variable

Navigation Editing (Correlation)

6-6 Oracle Application Testing Suite OpenScript User's Guide

{{@file({{myVariable}})}}. The value is the text string contained in
the file specified by myVariable or a hard coded path such as
{{@file(c:\\OpenScript_Sample.txt)}}.

* {{@len({{myVariable}})}}: Searches the source using the specified
Target Regular Expression and replaces the data with the script variable
{{@len({{myVariable}})}}. The value is the length of the string
contained in myVariable.

* {{@iterationnum}}: Searches the source using the specified Target
Regular Expression and replaces the data with the script variable
{{@iterationnum}}. The value is the script playback iteration number.

* {{@sessionname}}: Searches the source using the specified Target
Regular Expression and replaces the data with the script variable
{{@sessionname}}. The value is the script playback session number.

* {{@timestampsecs}}: Searches the source using the specified Target
Regular Expression and replaces the data with the script variable
{{@timestampsecs}}. The value is the current timestamp in seconds
instead of milliseconds.

* {{@siebeltimestampsecs}}: Searches the source using the specified
Target Regular Expression and replaces the data with the script variable
{{@siebeltimestampsecs}}. The value is the current timestamp in
seconds instead of milliseconds and sets the
SWSECancelID=@timestampsecs (Siebel scripts).

■ Target: Specifies which referer header object(s) to use as the target location of the
transform.

– Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

– Replace specified location: When selected, the correlation rule applies only to
the object matching the Location criteria.

– Location: Specifies the web page object(s)/parameter(s) to which to apply the
correlation rule using a Regular Expression. (See Variable Substitution Rules
below for examples.)

6.2.3.6 Substitute Recorded Date
When Substitute Recorded Date is selected, the Source and Target show the following
options:

■ Source: Specifies the attribute to use as the substitute for dynamic data.

– Attribute Name: for internal use only and should only be set to "value"
(without quotations).

– Date Pattern: Specifies the date pattern in the form M/dd/yyyy. The Date
Pattern follows standard Java Date format string conventions. When

Note: For @jstr, @file, and @len functions, myVariable is an
OpenScript script variable defined using the http.solve or
http.solveXpath methods. The variable name must be enclosed in
double {{ }} braces within the function parenthesis. For example:

{{@len({{myVariable}})}}

Navigation Editing (Correlation)

Using the HTTP Module 6-7

correlating scripts, the time that the navigation was recorded is converted to a
date using the specified Date Pattern. If the current date is found in a request,
it is replaced with: {{@today(date_pattern)}}.

■ Target: Specifies which referer header object(s) to use as the target location of the
transform.

– Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

– Replace specified location: When selected, the correlation rule applies only to
the object matching the Location criteria.

– Location: Specifies the referer header parameter(s) to which to apply the
correlation rule using a Regular Expression. (See Variable Substitution Rules
below for examples.)

6.2.3.7 Variable Substitution Rules
When Variable Substitution Rules is selected, the Source and Target show the
following options:

■ Source: Specifies the attribute to use as the substitute for dynamic data.

– Variable Name: Specifies the name of the variable to use as the substitute for
dynamic data.

– Pattern: Specifies the Regular Expression to use to locate the dynamic data to
replace.

– Error Message: Specifies an error message to report if the source data is not
found on playback.

– Source: Specifies where to search for the dynamic data to replace: HTML
Display Contents, Raw HTML or Response Header.

– Encoding: Specifies if encoding should be used for the search and the type.

■ Target: Specifies which referer header object(s) to use as the target location of the
transform.

– Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

– Replace specified location: When selected, the correlation rule applies only to
the object matching the Location criteria.

– Location: Specifies the web page object(s)/parameter(s) to which to apply the
correlation rule using a Regular Expression. Specify a regular expression to
narrow down which part of a target request may be replaced with the
correlated variable. All or part of a url, query string, and/or postdata may be
substituted. Use ((.+?)) to indicate where the variable should be
substituted.

* The expression may be used to substitute a variable into a specific
name=value pair. For example, to substitute the session ID in this post
data: Post Data: sessionId=123456&color=blue.

Specify the following expression: sessionId=((.+?)).

Using the above expression, if the correlation rule's variable is found on a
page and its value matches "123456", then the post data will become: ses-
sionId={{correlationRuleVariable-
Name,123456}}&color=blue.

Recording Scripts

6-8 Oracle Application Testing Suite OpenScript User's Guide

* If the name=value pair appears URL-encoded in the post data or query
string, do NOT URL-encode the expression. For example, to substitute the
"file/folder" parameter in this post data: Post Data:
file%2Ffolder=folderXYZ%2FfileABC&session=ABC%2FDEF.

Specify the following expression: file/folder=((.+?)).

* If substituting a variable into a non-URL-encoded postdata or querystring,
do not URL-encode the expression. For example, to substitute the "id"
value of the following unencoded XML post data: Post Data:
<xml><session id="12345"/></xml>.

Specify the following expression: <session id="((.+?))"/>.

Using the above expression, if the correlation rule's variable is found on a
page and its value matches "12345", then the entire post data will become:
<xml><session id="{{correlationRuleVariable-
Name,12345}}"/></xml> .

* If substituting a variable into a range of URL-encoded Name=Value pairs,
then URL-encode the expression. For example, to replace all but the first
parameter of the following URL-encoded query string data with one
value: Query String:
file=root%2Fdata.txt&sessionId=123%2Fxyz&color=blue.

Specify the following expression: file=root%2Fdata.txt((.+?)).

Using the above expression, if the correlation rule's variable is found on a
page and its value matches "&sessionId=123%2Fxyz&color=blue",
then the entire query string will become:

file=root%2Fdata.txt{{correlationRuleVariableName,&ses-
sionId=123%2Fxyz&color=blue}}

6.3 Recording Scripts
The OpenScript HTTP Module records parameters defined by each page of the Web
application to a script which can then be played back, with parameters in the Web
page filled in with values from a Databank file.

The HTTP Module records HTTP protocol requests generated by a Web browser for
playback automation. The HTTP Recorder records Web browser events for playback
correlation which allows users to correlate dynamic HTTP requests based on
knowledge of the GUI events which generated the navigation (i.e. dynamic GET
request originated from click on link "x").The HTTP Module provides a Record toolbar
button that allows users to initiate the HTTP proxy recorder and captures Web page
navigations to the script view. The toolbar includes start and stop recording toolbar
buttons.

6.3.1 Setting HTTP Record Preferences
Before recording HTTP scripts, first set the HTTP record preferences.

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node, then expand the Record category.

4. Select HTTP.

5. Click the General tab and set the general recording preferences as follows:

Recording Scripts

Using the HTTP Module 6-9

■ Setup - specifies the network settings for proxy recording.

– Network Interface: enter or select the network IP address of the proxy
server.

– Port: specify the port to use on the proxy server.

– Additional arguments: specify any additional command line arguments
to use when starting the proxy server.

– Maximum Download Size (MB): specify the file size for file downloads.

■ Client-side Digital Certificate file: enter the name of a .PFX-formatted digital
certificate file or use the Browse button to select a file.

– File: specifies the name of the PFX file. Enter the name or use the Browse
to select the file from a drive and directory location.

– Choose above pfx file to store: specifies the private-key password defined
for the client certificate PFX file when the certificate was exported from
Internet Explorer. Click Store and enter the private-key password for the
client certificate.

■ SSL Version: specifies the SSL version to use.

– SSL Version: select SSL version to use for the proxy server.

■ Close browser when stopping recorder: specify the error handling options
that will be used during HTTP recording.

– Close browser: when selected, the browser closes automatically when
recording is stopped.

■ Error Handling: specifies the error handling options that will be used during
HTTP recording as follows.

– Record navigations that return error code 404: When selected, the HTTP
recorder records navigations that return a Server Status Code 404: Not
Found.

6. Click the Proxy Settings tab and configure the default Proxy recorder settings as
follows:

■ Chain Proxy: specifies if the OpenScript proxy is chained to another proxy.

– Use Browser's proxy: when selected, the HTTP recorder uses the proxy
configuration specified by the browser.

– Use specified proxy: when selected, OpenScript uses the specified proxy.

Use proxy configuration script: when selected, the specified configura-
tion scripts will be used.

Address: specify the URL to the JavaScript file containing the FindProxy-
ForURL JavaScript function supplied by the system administrator for the
intranet environment.

Use proxy server: when selected, the specified proxy server will be used.

Address: specify the network IP address of the proxy server to which to
chain the OpenScript proxy.

Port: specify the port to use on the chained proxy server.

■ Proxy Authentication: specifies the log in credentioals for authentication.

– Username: specify the user name to use for authentication.

Recording Scripts

6-10 Oracle Application Testing Suite OpenScript User's Guide

– Password: specify the password to use for authentication.

7. Click the URL Filters tab to create a new Proxy URL filter or to select a
pre-defined filter.

To use a pre-defined filter, select the checkbox for the filter in the list. Clear the
checkbox to disable the filter.

To create a new filter or edit an existing filter:

■ Click Add or Edit.

■ Specify the filter name.

■ Specify the URL filter wild card or Regular Expression pattern to match
against. Wild card characters include the asterisk (*) to represent a string of
characters and the question mark (?) to represent a single character.

■ Select what to apply the filter against as the value for Match:

– Content type: When selected, the filter applies to the page content type.

– URL: When selected, the filter applies to the page URL.

■ Select the type of filtering method to use as the value for Method:

– Wild card: If selected, the filter uses wild card characters to filter the
content.

– Regular expression: If selected, the filter uses the regular expression
provided to filter the content.

8. Click OK when finished.

6.3.2 Recording a New HTTP Script
To create a new HTTP script, you essentially record the script.

1. Start OpenScript.

2. Set the HTTP Recording preferences if you haven’t already.

3. Select New from the File menu.

4. Select HTTP Script.

5. Click Next.

6. Select the Repository and Workspace.

7. Enter a script name.

8. Click Finish. A new Script tree is created in the Script View.

9. Select Record from the Script menu or click the arrow on the Record toolbar
button and select Proxy Recorder.

10. If you set the Launch browser option in the HTTP Record preferences, the browser
automatically opens when you start recording with the HTTP Proxy recorder. If
you did not set the Launch browser option, you will have to open a browser
manually.

11. Load the web page where you want to start recording into the browser.

12. Navigate the web site to record page navigations. The page navigations will be
added to the Run node of the script tree.

Playing Back Scripts

Using the HTTP Module 6-11

13. When finished navigating pages, stop the script by selecting Stop from the Script
menu or clicking the Stop button on the OpenScript toolbar.

14. If you set the Close browser option in the HTTP Record preferences, the browser
automatically closes when you stop recording. If you did not set the Close
browser option, you will have to close the browser manually.

15. Expand the Run node of the script to view the page navigation nodes in the script
tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

Note: Do not close the script editor view or script project while recording or
playing back scripts. Doing so could result in unpredictable behavior in the
OpenScript application.

6.4 Playing Back Scripts
Once HTTP scripts have been recorded, you can play them back to validate
functionality. Playback runs interactively in the OpenScript user interface and is also
supported in the Oracle Load Testing for Web Applications.

The HTTP Module provides playback and iterate toolbar buttons that allows users to
start the HTTP script playback for either a single playback through the script, or run
through multiple iterations using data from a databank file. Playback results for HTTP
scripts can be viewed in the Results and Console views.

6.4.1 Setting HTTP Playback Preferences
Before playing back scripts, you should set the playback preferences.

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node, then select the Playback category.

4. Select HTTP Module.

5. Expand the Proxy group and set the preferences as follows:

■ Proxy Host: The host name of the HTTP proxy server.

■ Proxy Port: The port to use on the proxy server.

■ Proxy Username: The use name to use for authentication.

■ Proxy Password: The password to use for authentication.

■ Non-Proxy Hosts: The host name of the non-proxy servers.

6. Expand the Compression group and set the preferences as follows:

■ Enable GZIP: When selected, the GZIP compression format is enabled.

■ Enable Deflate: When selected, deflate is enabled.

7. Expand the Headers group and set the preferences as follows:

■ Browser Emulation: The browser to emulate for script playback. By default
the recorded browser is used.

■ Language: The language to use for script playback. The default is English.

■ HTTP Version: The HTTP version to use for script playback.

Playing Back Scripts

6-12 Oracle Application Testing Suite OpenScript User's Guide

■ Accept String: The Accept string to use in the Request header for script
playback.

8. Expand the Connections group and set the preferences as follows:

■ Enable Keep Alive: If selected, keep alive is enabled on the connection.

■ Max Number of Keep Alive Requests: The maximum number of requests to
make on a keep alive connection before closing it. Select Unlimited for an
unlimited number of requests.

9. Expand the SSL group to specify the default HTTP playback Secure Sockets Layer
(SSL) settings:

■ SSL Version: The SSL version to use.

10. Expand the Other group and set the preferences as follows:

■ Do not request URLs ending in: URLs ending with any of the specified
patterns or file types will not be requested. Specify the ending pattern or file
type separated by commas.

■ Cache Emulation: The type of user to simulate when playing back the script.
This is useful for simulating different profiles of virtual users.

A first time user places more of a load on the Web server because pages and
image are not yet cached. A repeat user places less of a load on the server as
only newer pages are requested and brought down from the Web server.

Select one of the following options:

– Do not request URLs ending in: Virtual users are considered to be using
the Web site or application for the first time for each iteration so no cache
is used. The cache is used during the iteration.

– Do Not Cache: Select to not use the cache.

Note: When using WinInet, selecting Do Not Cache has the same effect as
selecting 1st Time as the Cache Emulation method. In this case, document
cache is not created and not cleared.

– 1st Time User: Virtual users are considered to be using the Web site or
application for the first time for each iteration so no cache is used. The
cache is used during the iteration.

– Repeat User: Virtual users are considered to have visited or used the Web
site or application previously. Pages and images are retrieved from the
cache.

■ Enable Cookies: If selected, the virtual user profiles will use cookies. Use this
setting if your Web application uses cookies to manage session and other
context information.

■ Download Local Files: When selected, the Java Agent retrieves the requested
local file contents.

■ Preserve Cookies Between Iterations: Used to preserve or automatically clear
cookies added to the browser in the Run section between successive iterations
of the Run section.

Cookies added to the browser in the Initialize section will be preserved
forever, unless explicitly removed in script code.

Cookies added to the browser in the Run section will always be preserved
between the final iteration of the Run section and the Finish section.

Playing Back Scripts

Using the HTTP Module 6-13

■ Preserve Connections Between Iterations: Used to preserve connections
between OpenScript and the browser between successive iterations of the
script.

■ Max Content Size (KB): Specifies the maximum number of KB to download
from a server for a given request.

11. Click OK when finished.

6.4.2 Playing Back HTTP Scripts
Once an HTTP script has been recorded, you can play it back.

1. Start OpenScript.

2. Open the HTTP script to play back.

3. Select Playback from the Script menu or click the toolbar button.

4. You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

See"Viewing Script Playback Results" on page 6-13 for more information.

6.4.3 Playing Back HTTP Scripts With Iterations
OpenScript allows repetitive playback of navigations in a script. The iterations can be
performed with or without databanks.

1. Start OpenScript.

2. Open the HTTP script to play back.

3. Select Iterate from the Script menu or click the toolbar button.

4. Set the iteration count to the desired number of playback iterations.

5. Select which databank file to use, if desired.

■ Name: Lists the alias name(s) for the databank file(s).

■ Starting Row: The starting record for the databank. You can specify the
starting row for the selected databank in the Databank Settings section.

■ Data: Shows the data in the specified starting row.

6. Set the starting record for the selected databank in the Databank Settings section:

■ Name: Shows the alias name of the selected databank file.

■ Starting Record: The starting record for the selected databank. The starting
record will be updated in the Databanks section.

7. Click OK.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

6.4.4 Viewing Script Playback Results
To view HTTP script play back results:

1. Start OpenScript.

2. Open the HTTP script to play back.

3. Select Playback from the Script menu or click the toolbar button.

Playing Back Scripts

6-14 Oracle Application Testing Suite OpenScript User's Guide

4. When playback is finished, click the Results view. If necessary, select Results from
the View menu to open the Results View.

5. In the Name column, expand the results node to view the results.

6.4.5 Resetting Encoding
The Reset Encoding menu option changes the character set used when displaying the
recorded HTML. Use this option to reset the encoding for non-English web sites where
the correct character encoding may not be set automatically.

To reset encoding:

1. Start OpenScript.

2. Open the HTTP script.

3. Expand the HTTP script and select a navigation node.

4. Right-click on the navigation node and select Reset Encoding from the shortcut
menu.

5. Enter the encoding value for the recorded HTML page and click OK.

6.4.6 Comparing Recorded/Playback Results
To compare HTTP script play back results with the recorded navigations:

1. Start OpenScript.

2. Switch to the Tester Perspective and make sure the Details View is open. If not,
select Details from the View menu to open the Details View.

3. Open the HTTP script to play back.

4. Select Playback from the Script menu or click the toolbar button.

5. When playback is finished, view the results. If necessary, select Results from the
View menu to open the Results View.

6. In the Name column, expand the results node to view the results.

7. In the Name column, click a navigation node for a page.

8. In the Detail View, click the Comparison tab.

9. In the Comparison tab, select Content, Request Headers or Response Headers to
view the Recorded and Playback text to compare in the lower panes.

6.4.7 Playing Back HTTP Scripts In Oracle Load Testing for Web Applications
Once recorded, you can play back HTTP scripts in Oracle Load Testing for Web
Applications.

If OpenScript and Oracle Load Testing for Web Applications are on the same
machine:

1. Start Oracle Load Testing for Web Applications.

2. Select the Repository and Workspace where the OpenScript scripts are located.

3. Select the script to play back.

4. Set the User Mode to Java Client.

5. Configure the scenario parameters as required for the test.

Playing Back Scripts

Using the HTTP Module 6-15

6. Run the scenario in the Autopilot mode.

If OpenScript and Oracle Load Testing for Web Applications are on the different
machines:

1. Select Export Script from the File menu.

2. Select the additional files to export to a Zip file and click OK.

3. Copy the exported Zip file to the Oracle Load Testing for Web Applications
machine.

4. Start Oracle Load Testing for Web Applications.

5. Select Upload File from the Tools menu.

6. Select OpenScript Zip as the file type.

7. Enter the name and location of the exported OpenScript Zip file.

8. Select the Repository and Workspace where the OpenScript scripts is to be
uploaded.

9. Click Upload to upload the file.

10. In the Build Scenarios tab, select the script to play back.

11. Set the User Mode to Java Client.

12. Configure the scenario parameters as required for the test.

13. Run the scenario in the Autopilot.

Note: Any external files, such as databanks files, must available to Oracle Load Testing
for Web Applications (i.e. located in the path in specified in script file).

6.4.8 Posting Binary or XML File Data
To post Binary or XML File Data:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-10.

2. Open the Java Code view.

3. Use the following code to specify a binary data variable and the
http.navigate() method to post the data:

byte[] data =
oracle.oats.utilities.FileUtil.readBytesFromFile("c:\\image.jpg");
http.navigate(0, "http://www.mysite.com/", null, data, null, true);

The same solution works for an XML file:

byte[] data = oracle.oats.utilities.FileUtil.readBytesFromFile("c:\\file.xml");
http.navigate(0, "http://www.mysite.com/", null, data, null, true);

If you want to store your binary or XML file inside the script itself:

1. Switch to the Developer perspective.

2. In the Navigator View, create a folder in the script project called "resources".

3. Add your jpg or XML file into the new "resources" folder.

4. Change the first line of the above code sample to this:

byte[] data =

Modifying Scripts

6-16 Oracle Application Testing Suite OpenScript User's Guide

getScriptPackage().getResourceFile("resources/yourfile.jpg").getData();

By storing the file locally with the script, the file will always be available to the
agent, even if it is run on a remote agent machine through Oracle Load Testing for
Web Applications.

6.5 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

6.5.1 Understanding the HTTP Module Script View
The default display for an HTTP proxy recorded script is the Tree View GUI in the
Script View. The HTTP Recorder generates the Tree View and code based upon the
Step Group preferences set in OpenScript. The default Step Group settings will
generate Step Groups based upon page navigations in the HTTP web application.

Figure 6–1 Script Tree View

Below each navigation will be child nodes for additional information about a page
navigation, such as query strings and form action inputs. The right-click shortcut
menu includes additional script modification options specific to the script generated
using the HTTP Module.The Tree View is a graphical representation of the underlying
code in the Code View. For example, "Page [4] Ticker List" in the above Tree View
appears as Step Group and http.get method code in the Code View, as follows
(line breaks and spacing added for clarity):

beginStep("[4] Ticker List", 3422);
{
 http.get(6, "http://testserver2/fmstocks/{{LINK_1_3,TickerList.asp}}",
 http.querystring(http.param("ticker", "ter"),
 http.param("company", "")),

Modifying Scripts

Using the HTTP Module 6-17

 null, true, "ASCII", "ASCII");
}
endStep();

Changes made in the Tree View are automatically updated in the Code View. Changes
made in the Code View are automatically updated in the Tree View. The HTTP Module
includes an API with HTTP protocol-specific methods. The commands include (but are
not limited to) methods to generate GET requests, POST requests, correlation
substitutions, validation, etc.

6.5.2 Using Script Variables
OpenScript scripts use variables to pass dynamic data between navigations. The
navigation can be in step groups or another code sequence. You can use the Tree view
and Script menu options to add custom variables to a script or code them manually
using the Code view. The HTTP Proxy recorder also defines variables when recording.
The following example shows how the HTTP Proxy recorder's default settings record
Step Groups, navigations and variables for form inputs and links.

The script is a three page script. the first page is a login page. The second page is the
page returned after login which includes links to other pages. The page in the script is
the page returned by a click on a link.

Step Group 1 (beginStep("[1] Stocks", 0);) gets the page navigation and form
input parameters. The http.solveXpath method assigns the input values to script
variables using XPaths (for example, ".//INPUT[@name='login']/@value") to
find the input value in the page source.

beginStep("[1] Stocks", 0);
{
 http.get(2, "http://testserver2/fmstocks/", null, null, true, "ASCII", "ASCII");
 {
 http.solveXpath("FORMACTION_0", ".//FORM[@name='loginform']/@action",
 "default.asp", 0);
 http.solveXpath("INPUT_0", ".//INPUT[@name='login']/@value", "ta496", 0);
 http.solveXpath("INPUT_1", ".//INPUT[@name='password']/@value", "ta", 0);
 http.solveXpath("INPUT_2", ".//INPUT[@name='LoginButton']/@value", "Login", 0);
 }
}
endStep();
beginStep("[2] Home", 3246);
{
 http.post(4, "http://testserver2/fmstocks/{{FORMACTION_0,default.asp}}",
 null, http.postdata(http.param("login", "{{INPUT_0,ta496}}"),
 http.param("password", "{{INPUT_1,ta}}"),
 http.param("LoginButton", "{{INPUT_2,Login}}")),
 null, true, "ASCII", "ASCII");
 {
 http.solveXpath("LINK_1_3", ".//A[text()='research a company']/@href",
 "TickerList.asp", 0);
 }
}
endStep();
beginStep("[3] Ticker List", 1703);
{
 http.get(13, "http://testserver2/fmstocks/{{LINK_1_3,TickerList.asp}}", null,
 null, true, "ASCII", "ASCII");
}
endStep();

Modifying Scripts

6-18 Oracle Application Testing Suite OpenScript User's Guide

In step Group 2 (beginStep("[2] Home", 3264);), the page navigation uses the
variables defined in Step Group 1 to pass the data values as parameters to the
http.post method. The he http.solveXpath method assigns links HREF values
to variables using XPaths.

beginStep("[1] Stocks", 0);
{
 http.get(2, "http://testserver2/fmstocks/", null, null, true, "ASCII",
 "ASCII");
 {
 http.solveXpath("FORMACTION_0", ".//FORM[@name='loginform']/@action",
 "default.asp", 0);
 http.solveXpath("INPUT_0", ".//INPUT[@name='login']/@value", "ta496", 0);
 http.solveXpath("INPUT_1", ".//INPUT[@name='password']/@value", "ta", 0);
 http.solveXpath("INPUT_2", ".//INPUT[@name='LoginButton']/@value",
 "Login", 0);
 }
}
endStep();
beginStep("[2] Home", 3246);
{
 http.post(4, "http://testserver2/fmstocks/{{FORMACTION_0,default.asp}}",
 null, http.postdata(http.param("login", "{{INPUT_0,ta496}}"),
 http.param("password", "{{INPUT_1,ta}}"),
 http.param("LoginButton", "{{INPUT_2,Login}}")),
 null, true, "ASCII", "ASCII");
 {
 http.solveXpath("LINK_1_3", ".//A[text()='research a company']/@href",
 "TickerList.asp", 0);
 }
}
endStep();
beginStep("[3] Ticker List", 1703);
{
 http.get(13, "http://testserver2/fmstocks/{{LINK_1_3,TickerList.asp}}",
 null, null, true, "ASCII", "ASCII");
}
endStep();

In Step Group 3 (beginStep("[3] Ticker List", 1703);), the page navigation
uses a variable defined in Step Group 2 to pass the data values as parameters to the
http.get method.

beginStep("[1] Stocks", 0);
{
 http.get(2, "http://testserver2/fmstocks/", null, null, true, "ASCII",
 "ASCII");
 {
 http.solveXpath("FORMACTION_0", ".//FORM[@name='loginform']/@action",
 "default.asp", 0);
 http.solveXpath("INPUT_0", ".//INPUT[@name='login']/@value", "ta496", 0);
 http.solveXpath("INPUT_1", ".//INPUT[@name='password']/@value", "ta", 0);
 http.solveXpath("INPUT_2", ".//INPUT[@name='LoginButton']/@value",
 "Login", 0);
 }
}
endStep();
beginStep("[2] Home", 3246);
{
 http.post(4, "http://testserver2/fmstocks/{{FORMACTION_0,default.asp}}",
 null, http.postdata(http.param("login", "{{INPUT_0,ta496}}"),

Modifying Scripts

Using the HTTP Module 6-19

 http.param("password", "{{INPUT_1,ta}}"),
 http.param("LoginButton", "{{INPUT_2,Login}}")),
 null, true, "ASCII", "ASCII");
 {
 http.solveXpath("LINK_1_3", ".//A[text()='research a company']/@href",
 "TickerList.asp", 0);
 }
}
endStep();
beginStep("[3] Ticker List", 1703);
{
 http.get(13, "http://testserver2/fmstocks/{{LINK_1_3,TickerList.asp}}",
 null, null, true, "ASCII", "ASCII");
}
endStep();

6.5.3 Adding a Variable to a Script
The following describes how to add a variable to a script. A regular expression is used
to search a specified location for a value to set for the variable.

1. Open or create a script project.

2. Select the script node in which you want to add the variable.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Variable node and select Variable.

5. Enter the variable name.

6. Enter the variable value.

7. Click OK. The Set: variableName = value node is added to the script tree.

8. In the Java Code view, the getVariables().set("varName", "value");
method will be added to the script code.

6.5.4 Adding a Solve XPath to a Script
To add a SolveXpath to a script:

1. Open or create a script project.

2. Select the script node where you want to add the XPath value.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Variable node and select Solve XPath.

5. Enter the variable name.

6. Enter the XPath to use to search for the value for the variable.

7. Enter the Result index value to use for the variable method.

8. Click OK. The SolveXpath: name node is added to the script tree.

9. In the Java Code view, the http.solveXpath(); method will be added to the
script code:

http.solveXpath("var_MyDomVar", ".//INPUT[@name='login']/@value", "ta610", 0);

Example:
http.solveXpath("FORMACTION_0", ".//FORM[@name='loginform']/@action",
"default.asp", 0);

Modifying Scripts

6-20 Oracle Application Testing Suite OpenScript User's Guide

getLogger().info("Form Name: {{FORMACTION_0}}");

6.5.5 Finding a Variable in a Script
To find a variable in a script:

1. Open or create a script.

2. Right-click on a post data or query string parameter containing {{ }} syntax and
select Find Variable Source.

The variable referenced inside the {{ }} will be selected in the script tree node.

If more than one variable exists inside the given parameter, OpenScript will display a
dialog box from which to pick which variable to find.

6.5.6 Deleting Variables from a Script
Deleting a variable from the tree view causes references to the variable using {{ }}
notation in any string in the script to be reverted to their recorded values. Variable
references in the Java code are also reverted.

To delete a variable from a script:

1. Open or create a script.

2. Right-click on a post data or query string parameter containing {{ }} syntax and
select Delete.

The variable referenced inside the {{ }} syntax will be reverted to its recorded value.

To delete similar variables from a script:

1. Open or create a script.

2. Right-click on a post data or query string parameter containing {{ }} syntax and
select Delete all type_ Variables. This menu option appears for any variables
whose name is prefixed with a word followed by an underscore (_) character.

All variables of type_ referenced inside the {{ }} syntax will be reverted to their
recorded values.

6.5.7 Adding Authentication to a Script
To add authentication to an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-10.

2. Select the Run node.

3. Select the Script menu and then select Other from the Add sub menu.

4. Select the Authentication node and click OK.

5. Enter the URL to access for authentication.

6. Enter a username.

7. Enter the password for the user. Passwords are encrypted using the Base-64 Crypt
algorithm.

8. Click OK to add the Authentication node to the script tree.

Modifying Scripts

Using the HTTP Module 6-21

9. In the Java Code view, the Authentication consists of the code executed in the
http.addAuthentication procedure:

http.addAuthentication("http://testserver2", "username",
decrypt("KRT|J|xJPDP"));

6.5.8 Adding Text Matching Tests to a Script
You can use Text Matching Tests to report an error and/or abort the script if a single
HTTP request does not match the Text Matching Test criteria.

To add a Text Matching Test to an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-10.

2. Expand the Run node.

3. Select the HTTP navigation node where you want to add the Text Matching test.

4. Select the Script menu and then select Text Matching Test from the Add menu.

5. Enter a name for the test.

6. Enter the text to match. This is a regular expression pattern to use to match against
the source location.

7. Enter a custom error message to display if the text matching test fails on script
playback, such as "Could not find {text to match}".

8. Select the source location that will be searched for the matching text:

■ HTML: Search the HTML source of the page.

■ Response Header: Search the page’s Response Header.

9. Select the Pass when setting.

■ Selected text is present: The test case passes if the Text to Match string is
found in the selected source.

■ Selected text is absent: The test case passes if the Text to Match string is not
found in the selected source.

10. Select the Regular Expression option if the Text to Match is a Regular Expression.
Clear the Regular Expression option if the Text to Match is plain text.

11. Set the Stop Iteration On Failure option.

12. Click OK. The Text Matching Test node is added to the script tree.

In the Java Code view, the http.assertText method will be added to the script
code if the Stop Iteration On Failure option is selected:

http.assertText("MyTextMatchTest", "Home", TextPresence.PassIfPresent,
MatchOption.Exact)

In the Java Code view, the http.verifyTextmethod will be added to the script
code if the Stop Iteration On Failure option is not selected:

http.verifyText("MyTextMatchTest", "Home", TextPresence.PassIfPresent,
MatchOption.Exact)

Modifying Scripts

6-22 Oracle Application Testing Suite OpenScript User's Guide

6.5.9 Adding Server Response Tests to a Script
You can use Server Response Tests to report an error and/or abort the script if a single
HTTP request does not return back to the client within a specified time range.

To add a Server Response Test to an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-10.

2. Expand the Run node.

3. Select the HTTP navigation node where you want to add the Server Response test.

4. Select the Script menu and then select Other from the Add sub menu.

5. Select Server Response Test from the Validation group.

6. Enter a name for the test.

7. Enter the minimum and maximum time values.

8. Enter any error message text to log if the test fails.

9. Set the Stop Iteration on Failure option.

10. Click OK to add the Server Response node to the script tree.

6.5.10 Substituting Databank Variables
During playback, the parameters in the Web page are filled with values from the
Databank file. However, you can substitute a databank variable for a query string
parameter in an HTTP script.

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-10 that has query string parameters.

2. Expand the Run node.

3. Expand the node containing query string parameters.

4. Right-click a query string parameter node and select Substitute Variable from the
shortcut menu.

■ If you have already configured the script with one or more databanks, select
the databank field to substitute for the query string parameter from the
desired databank file and click Finish.

■ If you have not already configured the script with a databank, select Add new
databank and click Next.

– Click the Browse button and select the databank file to use.

– Select the column (field name) to substitute for the query string parameter
and click Finish.

In the Tree View, the databank variable appears in place of the recorded value as
{{databankFileName.field,recordedValue}}.

In the Java Code view, the databank variable appears as
{{databankFileName.field,recordedValue}} in the
http.querystring(http.param() parameter of the http.get method:

http.get(6, "http://testserver2/fmstocks/TickerList.asp",
 http.querystring(http.param("ticker", "{{fmstocks_data.ticker,ter}}"),
 http.param("company", "")),
 null, true, "ASCII", "ASCII");

Modifying Scripts

Using the HTTP Module 6-23

6.5.11 Substituting Post Data Variables
To substitute a variable for a Post Data parameter in an HTTP script:

1. Record an HTTP script that has Post Data parameters.

2. Expand the Run node.

3. Expand the node containing Post Data parameters.

4. Right-click a Post Data parameter node and select Substitute Variable from the
shortcut menu.

■ If you have already defined custom variables in the script, select the variable
name to substitute for the Post Data parameter and click Finish.

■ If you have not already defined custom variables in the script, select Create
new script variable and click Next.

The Search for Value panel lists the navigation(s) that contain the post data
value. If there are more than one navigation that contain the post data value,
select the navigation were you want to substitute a variable. When you select a
navigation, the data for that navigation appears below with the specific source
highlighted along with a suggested Regular Expression.

– Specify the Regular Expression to use for the substitute variable for the
Post Data parameter and click Next.

– Click Test to verify the Regular Expression locates the correct data value to
substitute.

– If the Regular Expression locates the correct data value to substitute, click
Next to continue. If the Regular Expression does not return the correct
data value, modify and test the Regular Expression until the desired data
value is located and click Next to continue.

– Enter a name for the substitute variable.

– If you want to add the variable as a variable rule in a correlation library,
click Add to library and specify the rule information. If not, click Finish to
insert the substitute script variable into the script

In the Tree View, the script variable appears in place of the recorded value as
{{variableName,recordedValue}}.

In the Java Code view, the script variable appears as variableName,Regular
Expression parameters in the http.solve method:

http.solve("MY_VAR", "<INPUT id=login name=login value=\"(.+?)\">", null,
false, Source.Html, 0);

6.5.12 Adding a Cookie to a Script
To add a cookie to a script:

1. Open or create a script project.

2. Select the script node where you want to add the cookie.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Cookie node and select Add Cookie.

This dialog box lets you add a cookie to a script.

5. Enter a valid cookie string.

Modifying Scripts

6-24 Oracle Application Testing Suite OpenScript User's Guide

■ Cookie String: Specifies the cookie string to add

■ Cookie String Charset: Specifies the character set to use for the cookie string

6. Click OK. The Cookie node is added to the script tree.

7. In the Java Code view, the http.addCookie method will be added to the script
code:

http.addCookie("cookieString", "charset");

Example:

http.addCookie("username=testCookie", "ASCII");
java.util.List <Cookie> cookies =
http.getBrowser().getCookieJar().getAllCookies();
for (Cookie cookie : cookies) {
 getLogger().info(cookie.getUrl());
 getLogger().info(cookie.getCookieString());
 }

6.5.13 Removing a Cookie From Script
To remove a cookie from a script:

1. Open or create a script project.

2. Select the script node where you want to place the remove cookie node.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Cookie node and select Remove Cookie.

5. Enter the cookie string to remove.

6. Click OK. The Remove Cookie node is added to the script tree.

7. In the Java Code view, the http.removeCookie method will be added to the
script code:

http.removeCookie("cookieString");

6.5.14 Adding a User Agent to a Script
To add a user agent to a script:

1. Open or create a script project.

2. Select the script node where you want to add the user agent.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the HTTP node and select Set User Agent.

5. Enter the user agent details.

6. Click OK. The user agent node is added to the script tree.

7. In the Java Code view, the http.setUserAgent("agent"); method will be
added to the script code:

http.setUserAgent("Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET
CLR 1.1.4322; InfoPath.1; .NET CLR 2.0.50727)");

Adding Navigation

Using the HTTP Module 6-25

6.6 Adding Navigation
The HTTP Module allows you to view and edit all recorded navigations and related
parameters (headers, post data, etc.) in either the script GUI Tree view or the Code
View. It also enables you to view and edit any default correlation/parameterization of
dynamic navigations and apply your own correlation to handle dynamic navigations.

6.6.1 Understanding Navigation Editing (Correlation)
You can use the Navigation Editing GUI View to configure the navigations you want
to parameterize and the correlation rules you want to apply. The GUI allows viewing
and editing properties for different types of navigations (for both Web/HTTP
applications and non-Web/HTTP applications) and data inputs.

The Display & Editing for Recorded Navigations view includes recorded navigations
and any navigation parameters like headers, etc. It also provides a mechanism for
users to edit/add/delete navigations including dynamic parameter sources/targets.

Figure 6–2 Display & Editing for Recorded Navigations view

The Display & Editing for Correlation Rules Library & Editing view includes a list of
all default correlation rules included in the module(s), listed by application type. It
also provides a mechanism for adding, editing or deleting correlation rules.

Adding Navigation

6-26 Oracle Application Testing Suite OpenScript User's Guide

Figure 6–3 The Display & Editing for Correlation Rules Library & Editing view

You can specify the navigations you want to parameterize and the data source you
want to drive the inputs from through navigation editing commands in the code view.
These commands map to the navigation editing GUI view.

beginStep("[2] Home", 3266);
{
 http.post(4, "http://testserver2/fmstocks/{{FORMACTION_0,default.asp}}",
 null, http.postdata(http.param("login", "{{INPUT_0,ta616}}"),
 http.param("password", "{{INPUT_1,ta}}"),
 http.param("LoginButton", "{{INPUT_2,Login}}")),
 null, true, "ASCII", "ASCII");
 {
 http.solveXpath("LINK_1_3", ".//A[text()='research a
 company']/@href", "TickerList.asp", 0);
 http.solveXpath("LINK_1_2", ".//A[text()='Logout']/@href",
 "logout.asp", 0);
 }
}
endStep();

Adding Navigation

Using the HTTP Module 6-27

6.6.2 Adding HTTP Get Navigation
To add an HTTP Get Navigation to an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-10.

2. Select the Run node.

3. Select the Script menu, then select HTTP Get Navigation from the Add sub menu.

4. On the Base URL tab, specify the following:

■ Path: The base URL path to use for the navigation.

■ Request charset: The character set to use for the request.

■ Response charset: The character set to use for the response.

■ Encode strings: When selected, control and special characters in string are
encoded to the Character entity references. When cleared, control and special
characters in string are not encoded.

5. On the Query String tab, use the Add button to add the requested name/value
pairs to the Base URL. Note that you can use the Up and Down buttons to move
the selected query string parameter up or down one place in the search order.

6. On the Headers tab, use the Add button to add name/value pairs and actions to
the Base URL.

7. Click OK to add the HTTP Get Navigation node to the script tree.

8. In the Java Code view, the HTTP Get Navigation consists of the code executed in
the http.Get method (line breaks and spacing added for clarity):

http.Get(1, "http://testserver2",
 http.querystring(http.param("QueryString1", "QueryValue1"),
 http.param("QueryString2", "QueryValue2"),
 http.param("QueryString3", "QueryValue3")),
 http.headers(http.header("HeaderString1", "HeaderValue1NoActions",
 Header.HeaderAction.Add),
 http.header("HeaderString2", "HeaderValue2SetifNotSet",
 Header.HeaderAction.SetIfNotSet),
 http.header("HeaderString3", "HeaderValue3ApplytoAll",
 Header.HeaderAction.GlobalAdd),
 http.header("HeaderString4", "HeaderValue4BothActions",
 Header.HeaderAction.GlobalSetIfNotSet)),
 false, "ASCII", "ASCII");

6.6.3 Adding HTTP Post Navigation
To add an HTTP Post Navigation to an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-10.

2. Select the Run node.

3. Select the Script menu and then select Other from the Add sub menu.

4. Select the HTTP Post Navigation node and click OK.

5. On the Base URL tab, specify the following:

■ Path: The base URL path to use for the navigation.

■ Request charset: The character set to use for the request.

Adding Navigation

6-28 Oracle Application Testing Suite OpenScript User's Guide

■ Response charset: The character set to use for the response.

■ Encode strings: When selected, control and special characters in string are
encoded to the Character entity references. When cleared, control and special
characters in string are not encoded.

6. On the Query String tab, use the Add button to add the requested name/value
pairs to the Base URL. Note that you can use the Up and Down buttons to move
the selected query string parameter up or down one place in the search order.

7. On the Post Data tab, use the Add button to add name/value pairs to the Base
URL.

8. On the Headers tab, use the Add button to add name/value pairs and actions to
the Base URL.

9. Click OK to add the HTTP Post Navigation node to the script tree.

10. In the Java Code view, the HTTP Post Navigation consists of the code executed in
the http.Post method (line breaks and spacing added for clarity):

http.Post(12, "http://testserver2",
 http.querystring(http.param("QueryString1", "QueryValue1"),
 http.param("QueryString2", "QueryValue2"),
 http.param("QueryString3", "QueryValue3")),
 http.postdata(param("PostString1", "PostValue1"),
 http.param("PostString2", "PostValue2"),
 http.param("PostString3", "PostValue3")),
 http.headers(http.header("HeaderString1", "HeaderValue1NoActions",
 Header.HeaderAction.Add),
 http.header("HeaderString2", "HeaderValue2SetifNotSet",
 Header.HeaderAction.SetIfNotSet),
 http.header("HeaderString3", "HeaderValue3ApplytoAll",
 Header.HeaderAction.GlobalAdd),
 http.header("HeaderString4", "HeaderValue4BothActions",
 Header.HeaderAction.GlobalSetIfNotSet)),
 true, "ASCII", "ASCII");

6.6.4 Adding an HTTP Multipart Post Navigation
To add an HTTP Multipart Post Navigation to an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-10.

2. Select the Run node.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the HTTP Multipart Navigation node and select the Multipart Post
Navigation node and click OK.

5. On the Base URL tab, enter the following:

■ Path: The base URL path to use for the navigation.

■ Boundary: Specify the boundary to use to identify parts of a multipart form
input navigation (file navigations). The boundary is used within the
Content-Type: multipart/form-data; boundary="" response sent by the user
agent. The specified boundary should not occur in any of the file data.

■ Request charset: The character set to use for the request.

■ Response charset: The character set to use for the response.

Adding Navigation

Using the HTTP Module 6-29

■ Encode strings: Select this option so that control and special characters in
string are encoded to the Character entity references. When cleared, control
and special characters in string are not encoded

6. On the Query String tab, use the Add button to add name/value pairs to the Base
URL.

7. On the Post Data tab, use the Add button to add postdata to the Base URL. You
can specify standard Postdata name/value pairs or postdata files. If you select
File, specify the path, filename, and content type for each postdata file parameter.

8. On the Headers tab, use the Add button to add name/value pairs and actions to
the Base URL.

9. Click OK to add the HTTP Multipart Post Navigation node to the script tree.

10. In the Java Code view, the HTTP Multipart Post Navigation consists of the code
executed in the http.multipartPost method (line breaks and spacing added
for clarity):

http.multipartPost(13, "http://testserver2",
 http.querystring(http.param("QueryString1", "QueryValue1"),
 http.param("QueryString2", "QueryValue2"),
 http.param("QueryString3", "QueryValue3")),
 http.postdata(http.param("PostDataString1", "PostDataValue1Standard"),
 http.param("PostDataString2", "PostDataValue2FilePath",
 "PostDataValue2FileName", "ASCII"),
 http.param("PostDataString3",
 "C:\\Oracle\\OFT\\DataBank\\fmstocks_data.csv",
 "C:\\Oracle\\OFT\\DataBank\\fmstocks_data.csv", "CSV")),
 http.headers(http.header("HeaderString1", "HeaderValue1NoActions",
 Header.HeaderAction.Add),
 http.header("HeaderString2", "HeaderValue2IfNotSet",
 Header.HeaderAction.SetIfNotSet),
 http.header("HeaderString3", "HeaderValue3ApplytoAll",
 Header.HeaderAction.GlobalAdd),
 http.header("HeaderString4", "HeaderValue4Both",
 Header.HeaderAction.GlobalSetIfNotSet)),
 "boundary", false, "ASCII", "ASCII");

6.6.5 Adding an HTTP XML Post Navigation
To add an HTTP XML Post Navigation to an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-10.

2. Select the Run node.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the XML Post Navigation node and select the XML Post Navigation node
and click OK.

5. On the Base URL tab, specify the following:

■ Path: The base URL path to use for the navigation.

■ Request charset: The character set to use for the request.

■ Response charset: The character set to use for the response.

Adding Navigation

6-30 Oracle Application Testing Suite OpenScript User's Guide

■ Encode strings: When selected, control and special characters in string are
encoded to the Character entity references. When cleared, control and special
characters in string are not encoded.

6. On the Query String tab, use the Add button to add the requested name/value
pairs to the Base URL. Note that you can use the Up and Down buttons to move
the selected query string parameter up or down one place in the search order.

7. On the Post Data tab, enter the XML post data to add to the Base URL.

8. On the Headers tab, use the Add button to add name/value pairs and actions to
the Base URL.

9. Click OK to add the HTTP XML Post Navigation node to the script tree.

10. In the Java Code view, the HTTP XML Post Navigation consists of the code
executed in the http.xmlPost method (line breaks and spacing added for
clarity):

http.xmlPost(0, "http://xmltest2",
 http.querystring(http.param("xmlQueryString1", "xmlQueryValue1"),
 http.param("xmlQueryString2", "xmlQueryValue2"),
 http.param("xmlQueryString3", "xmlQueryValue3")),
 "xmlPostDataString",
 http.headers(http.header("xmlHeaderString1", "xmlHeaderValue1NoAction",
 Header.HeaderAction.Add),
 http.header("xmlHeaderString2", "xmlHeaderValue2IfNotSet",
 Header.HeaderAction.SetIfNotSet),
 http.header("xmlHeaderString3",
 "xmlHeaderValue3ApplytoAll", Header.HeaderAction.GlobalAdd),
 http.header("xmlHeaderString4", "xmlHeaderValue4Both",
 Header.HeaderAction.GlobalSetIfNotSet)),
 false, "ASCII", "ASCII");

6.6.6 Using the HTTP Module API
The Web Functional Module includes a script Application Programming Interface
(API) specific to Web HTTP protocol testing. The HTTP Module recorder creates the
Java code that corresponds to the Tree View and displays the HTTP commands in the
Java Code view using easy-to-understand function names. The Java Code view
commands correspond to the Tree View and you can edit your scripts in either view.

You can use the HTTP API to enhance recorded scripts with additional testing
functionality. Commands that are specific to the HTTP Module are part of the "http"
class. You can also leverage other commands from other enabled classes (services) or
general Java commands in your scripts.

Some examples of the HTTP Module API include:

■ Adding authentication

■ Adding and removing cookies

■ Adding HTTP navigation (Get and Post)

■ Adding HTTP Multipart Post navigation

■ Adding HTTP Multipart name/value pairs

■ Adding name/value pairs

■ Adding XML Post navigation

Adding Navigation

Using the HTTP Module 6-31

■ Setting the user agent

Many API methods can be added using the HTTP Module Tree View. Additional
methods can be added using the Java Code view.

Adding Navigation

6-32 Oracle Application Testing Suite OpenScript User's Guide

7

Using the Oracle Forms Functional Test Module 7-1

7Using the Oracle Forms Functional Test
Module

This chapter provides instructions on configuring and using the OpenScript Oracle
Forms Functional Test Module, which provides support for functional testing of Oracle
Forms web applications.

7.1 About the Oracle Forms Functional Test Module
The Oracle Forms Functional Test Module provides support for functional testing of
Oracle Forms web applications. The Oracle Forms Functional Test Module is an
extension to the Web Functional Test Module.

The Oracle Forms Functional Test Module is an extension module to the OpenScript
Web Functional Test Module that extends the Web testing with Oracle Forms
Functional Test recording and playback capabilities. The Oracle Forms Functional Test
Module is fully integrated with the OpenScript platform including the Results view,
Details view, Properties view, Console/Problems views, Preferences, Step Groups,
Script Manager, and Workspace Manager.

The Oracle Forms Functional Test recorder displays commands in the Tree View in
easy-to-understand commands. By default, script commands are grouped into Steps
Groups by the Web page on which they were performed. Each Step Group contains
one or more script commands corresponding to recorded actions that were performed
on the page. The default name for the Step Group is the Web page Title (as specified in
the "Title" tag).

OpenScript shows the results of Oracle Forms Functional Test script playback in the
Results view. The Results view shows results for each script command (including
duration and summary for failures). The Results Report compiles the same
information into an HTML Results Report. Results can be exported from the
OpenScript GUI in standard format (CSV / HTML). Results are also generated for
unattended playback through the command line.

The Oracle Forms Functional Test Module API includes a "forms" class that provides
additional programming functionality.

7.1.1 Key Features of the Oracle Forms Functional Test Module
■ Supports Oracle E-Business Suite Release 12 (Forms 10g) running on Sun JRE and

E-Business Suite Release 11i (Forms 6i) running on Jinitiator.

■ Records Forms actions in the applet.

Recording Oracle EBS/Forms Functional Tests

7-2 Oracle Application Testing Suite OpenScript User's Guide

■ Plays back recorded Forms actions/commands which consist of an event plus
object identified by its attributes (for example: forms.textField(28,
"//forms:textField[(@name='DIST_LIST_NAME_0')]").input("LOREM
IPSUM")).

■ Provides full script code view integration to support script generation for the
Oracle Forms Functional Test Module. The Oracle Forms Functional Test Module
includes an additional API to support Oracle Forms Functional Test protocol code
scripting.

■ Allows users to parameterize user inputs to Oracle Forms Functional Test scripts
and drive those inputs from an external data file (Databank).

■ Allows users to insert Tests to validate Oracle Forms content on playback.

■ Provides additional automation of all Oracle Forms GUI components using
options/settings that are specific to Oracle Forms Functional Test scripts within
the Oracle Forms Functional Test categories in the preferences interface.

■ Reports playback results for Oracle Forms Functional Test scripts in the Results
and Console views.

■ The Oracle Forms Functional Test Script Module API. The Oracle Forms
Functional Test Application Programming Interface include Java code methods
specific to functional testing of Oracle Forms applications.

The New Project wizard (Select New from the File menu) includes an "Oracle
EBS/Forms " option in the Functional Test group to use when creating Oracle Forms
functional testing projects in OpenScript. The Oracle Forms Functional Test Script
Module records Oracle Forms applications using Object Identification. OpenScript
captures user actions and records them to the OpenScript script nodes in a highly
readable sequence of navigations and actions.

7.1.2 Prerequisites
The Oracle Forms Functional Test Module recorder has the following prerequisites:

■ Internet Explorer browser for recording with OpenScript. OpenScript installs a
Browser Helper Object inside IE 6 and 7.

■ Before recording any script in Forms Functional Test Module, you must run the
Forms/EBS application at least once before attempting to record a script with
OpenScript on that machine. This ensures that required JRE/Jinitiator has been
installed and also verifies that forms applications can run successfully on that
machine inside of Internet Explorer.

■ .NET 2.0 Framework (automatically installed)

7.2 Recording Oracle EBS/Forms Functional Tests
The Oracle Forms Functional Test Module records standard Oracle Forms components
for Oracle E-Business Suite Release 12 (Forms 10g) running on Sun JRE and E-Business
Suite Release 11i (Forms 6i). The Recorder creates functional and regression test scripts
for automating testing of Oracle Forms applications.

Oracle Forms are applet based controls and the Oracle Forms Functional Test Module
provides the object/attribute information for OpenScript to record interactions with
those controls. Actions will be captured in the test script as OpenScript "forms"
commands. Other components are standard Web controls which are captured as
standard OpenScript "web" commands using Web Functional Test object attributes.

Recording Oracle EBS/Forms Functional Tests

Using the Oracle Forms Functional Test Module 7-3

Object Identification attributes can later be modified by users through the Preferences
global settings for new scripts or for already recorded commands in the tree view or
code view. Recording can be configured through Internet Explorer only as the Oracle
Forms Functional Test Module does not support Firefox.

The Oracle Forms Functional Test Module provides a record toolbar button that lets
you initiate the Oracle Forms recorder and capture Web/Oracle Forms page actions to
the script view. The record toolbar includes start and stop recording toolbar buttons.
OpenScript recorders also open a floating toolbar that can be used while recording
without having to switch between the browser and OpenScript.

7.2.1 Setting Oracle Forms Functional Test Record Preferences
To set Oracle Forms Functional Test record preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Record category.

4. Select Oracle EBS/Forms Functional.

5. Click the General tab and set the general recording preferences as follows:

■ Recorder: Specifies the record port.

– Port: Specifies the port to use for recording.

■ Miscellaneous: Specifies if screenshots are captured.

– Capture screenshots: When selected, screenshots are captured during
recording.

6. Click the Object Identification tab and use Add or Edit to customize the object
identification elements or attributes.

7. Click OK.

7.2.2 Adding/Editing Object Identifiers
The Oracle Forms Functional Test Module uses object identification to specify
attributes used to identify Oracle Forms objects. The Oracle Forms Functional Test
Module uses the same predefined path attributes for common Web objects as the Web
Functional Test Module; however, Oracle Forms Test Automation provides additional
attributes to identify forms controls. Object paths are specified in XPath format. For
example the object identification path appears as follows in Java code commands:

//forms:textField[(@name='DIST_LIST_NAME_0')]

You can set the default Web object attributes in the Oracle Forms Functional Test
Module Record Preferences. You can also edit object attributes in recorded scripts in
the tree view or the code view.

In addition to the predefined object identification, you can add an Object Library to the
script to record paths into a library file. Object Library files may be shared and reused
across other scripts. The Object Library files provide a more convenient "short name"
for objects to provide for more convenient programming.

The Oracle Forms Functional Test Module includes object identifiers that specify how
the recorder identifies Browser objects. You can add object identifiers or edit the
existing object identifiers in the Record preferences.

Recording Oracle EBS/Forms Functional Tests

7-4 Oracle Application Testing Suite OpenScript User's Guide

To add or edit an object identifier:

1. Select the OpenScript Preferences from the View menu.

2. Expand the Record node and select Forms Functional Test.

3. Click the Object Identification tab. This tab lets you specify the Oracle Forms
object identification attributes, as follows:

Name: shows the name(s) of the defined Oracle Forms object identifiers.

Attributes: shows the pattern(s) specified for the defined Oracle Forms object
identifiers.

Add: opens a dialog box for specifying a new Oracle Forms object identifier.

Edit: opens a dialog box for editing the selected Oracle Forms object identifier.

Delete: deletes the selected Oracle Forms object identifier.

For each object element, you specify a name (typically a Oracle Form object
attribute), an operator, a value and a value type. As you add object elements,
OpenScript builds the object identifier using logical OR between each object
identifier element. Click Edit to change between logical OR and AND.

4. Click Add or select an existing object identifier and click Edit.

5. If adding a new object identifier, enter a name for the object identifier.

6. Add or edit object elements for the object identifier.

See the Web Functional Test Module for additional information about adding and
editing Object Identifiers.

7. Click OK. The object identifier is added to the record preferences.

7.2.3 Recording Oracle EBS/Forms Functional Test Scripts
To record Oracle EBS/Forms Functional Test scripts:

1. Start OpenScript.

2. Set the Oracle Forms Functional Test Recording preferences.

3. Select New from the File menu.

4. Expand the Functional Testing group.

5. Select Oracle EBS/Forms (The Oracle EBS/Forms script combines both Web and
Oracle Forms technologies as part of the same script).

6. Click Next.

7. Select the Repository and Workspace.

8. Enter a script name.

9. Click Finish. A new Script tree is created in the Script View.

10. Select Record from the Script menu. The browser automatically opens when you
start recording.

11. Load the web page where you want to start recording into the browser.

12. Navigate the web site to record page objects, actions, and navigations. The page
objects, actions, and navigations will be added to the Run node of the script tree.

13. When finished navigating pages, close the browser.

Playing Back Scripts

Using the Oracle Forms Functional Test Module 7-5

14. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

15. Expand the Run node of the script to view the page objects, actions, and
navigation nodes in the script tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

7.3 Playing Back Scripts
OpenScript plays back recorded Oracle Forms actions/commands which consist of an
event plus an object identified by its attributes (for example: forms.textField(28,
"//forms:textField[(@name='DIST_LIST_NAME_0')]").input("LOREM
IPSUM")). The actions used for playback will either be those that are recorded or
specified manually in the Java Code view. Playback can be configured through IE only
as the Oracle Forms Functional Test Module does not support Firefox. Unattended
playback is supported through Oracle Test Manager for Web Applications or
third-party tools using OpenScript's command line interface. Oracle Forms Functional
Test scripts do not play in Oracle Load Testing for Web Applications.

The Oracle Forms Functional Test Module provides playback and iterate toolbar
buttons that allows users to start the script playback for either a single playback
through the script or multiple iterations using data from a databank file. Playback
results for Oracle Forms Functional scripts can be viewed in the Results and Console
views.

7.3.1 Setting Oracle Forms Functional Test Playback Preferences
To set Oracle Forms Functional Test Playback preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Playback category.

4. Select Forms Functional Test.

5. Expand the Event Timeout group and set the preferences as follows:

■ Forms Startup Timeout(S): specifies the maximum number of seconds
OpenScript should wait for a form to appear before considering the form not
found. This is the default timeout when waiting for a form to appear before
invoking an action against it. This is also the default timeout when waiting for
a form to appear before continuing the script.

6. Expand the Action Settings group and set the preferences as follows:

■ Retry Times: specifies how many times to retry an action before timing out or
reporting a failure.

7. Expand the Replay Port group and set the preferences as follows:

■ Port: specifies the port number to use to communicate with the agent machine.

8. Click OK.

Note: Do not close the script editor view or script project while
recording or playing back scripts. Doing so could result in
unpredictable behavior in the OpenScript application.

Modifying Scripts

7-6 Oracle Application Testing Suite OpenScript User's Guide

7.3.2 Playing Back Oracle EBS/Forms Functional Scripts
To play back Oracle EBS/Forms Functional scripts:

1. Start OpenScript.

2. Open the Oracle Forms Functional script to play back.

3. Select Playback from the Script menu or click the toolbar button.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

7.3.3 Playing Back Oracle EBS/Forms Functional Scripts with Iterations
To play back Oracle Forms Functional scripts with iterations:

1. Start OpenScript.

2. Open the Oracle Forms Functional script to play back.

3. Select Iterate from the Script menu or click the toolbar button.

4. Set the iteration count.

5. Select which databank file to use, if necessary.

6. Set the starting record for the selected databank in the Databank Settings section.

7. Click OK.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

7.4 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

7.4.1 Adding Forms Actions
The Oracle Forms Module includes actions for Oracle Forms objects that can be added
to a script.

To add Forms actions to a script:

1. Record a EBS/Forms Functional Test script.

2. Select the script node where you want to add the action.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Forms Action node.

5. Expand an action node and select the action.

6. Click OK.

7. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path.

8. Enter any required values to use for the object action.

9. Click OK. The action node is added to the script tree.

In the Java Code view, a forms.object(objectId).action() method will be
added to the script code:

Modifying Scripts

Using the Oracle Forms Functional Test Module 7-7

forms.textField(27, "//forms:textField[(@name='DIST_LIST_APPLICATION_
0')]").openDialog();

The Forms Action node includes actions for objects such as BlockScroller, Button,
Calendar, CheckBox, ChoiceBox, EditBox, EditorDialog, FlexWindow, HelpDialog,
InfoBox, List, ListOfValues, Notification, Calculator, RadioGroup, ResponseBox,
TabbedRegion, TextField, Tree, TreeList, SpreadTable, SchedulingDataClient. Other
object actions have corresponding Java code methods.

7.4.2 Using the Oracle Forms Functional Test Module API
The Oracle Forms Functional Test Module includes a script Application Programming
Interface (API) specific to Oracle Forms functional testing. The Oracle Forms
Functional Test Module recorder creates the Java code that corresponds to the Tree
View and displays the Oracle Forms Functional Test commands in the Java Code view
using easy-to-understand function names. The Java Code view commands correspond
to the Tree View and you can edit your scripts in either view.

You can use the Oracle Forms Functional Test API to enhance recorded scripts with
additional testing functionality. Commands that are specific to the Oracle Forms
Functional Testing Module are part of the "forms" class. Additional functional test
methods are available in the "web" and "ft" classes. You can also leverage other
commands from other enabled classes (services) or general Java commands in your
scripts.

Some examples of the Oracle Forms Testing Module API include:

■ Forms Action

■ Button

■ Calendar

■ Checkbox

■ Choice Box

■ Edit Box

■ Editor Dialog

■ Flex Window

■ Form Window

■ HelpDialog

■ Info Box

■ List

■ ListOfValues

■ Notification

■ RadioGroup

■ ResponseBox

■ TabbedRegion

■ TextField

■ Tree

■ TreeList

Modifying Scripts

7-8 Oracle Application Testing Suite OpenScript User's Guide

■ SpreadTable

■ SchedulingDataClient

Many API methods can be added using the Oracle Forms Functional Test Module Tree
View. Additional methods can be added using the Java Code view.

8

Using the Oracle Forms Load Test Module 8-1

8Using the Oracle Forms Load Test Module

This chapter provides instructions on configuring and using the OpenScript Oracle
Forms Load Test Module, which provides support for load testing of Oracle Forms
web applications.

8.1 About the Oracle Forms Load Test Module
The Oracle Forms Load Test Module is an extension module to the OpenScript HTTP
Module that extends the Web testing with Oracle Forms Load Test recording and
playback capabilities. The Oracle Forms Load Test Module is fully integrated with the
OpenScript platform including the Results view, Details view, Properties view,
Console/Problems views, Preferences, Step Groups, Script Manager, and Workspace
Manager. The Oracle Forms Load Test Module provides the following features:

The Oracle Forms Load Test recorder displays commands in the Tree View in
easy-to-understand commands. By default, script commands are grouped into Steps
Groups by the Web page on which they were performed. Each Step Group contains
one or more script commands corresponding to recorded actions that were performed
on the page. The default name for the Step Group is the Web page Title (as specified in
the "Title" tag).

OpenScript shows the results of Oracle Forms Load Test script playback in the Results
view. The Results view shows results for each script command (including duration
and summary for failures). The Results Report compiles the same information into an
HTML Results Report. Results can be exported from the OpenScript GUI in standard
format (CSV / HTML). Results are also generated for unattended playback through
the command line.

The Oracle Forms Load Test Module API includes a "nca" class that provides
additional programming functionality.

8.1.1 Key Features of the Oracle Forms Load Test Module
■ The Oracle Forms Load Test Script Module. The New Project wizard (New from

the File menu) includes an "Oracle EBS/Forms" option in the Load Test Group to
use when creating Oracle Forms load testing projects in OpenScript. The Oracle
Forms Load Test Script Module records Oracle Forms applications at the protocol
level. OpenScript captures user actions and records them to the OpenScript script
based upon HTTP requests and post data or query strings.

■ Correlation Library. The Oracle Forms Load Test Module includes an Oracle
forms-specific library of correlation rules for parameterizing scripts.

■ Test Cases (Validation). The Oracle Forms Load Test Module includes a Status Bar
test for validating validate Oracle Forms application content on playback.

Recording Oracle EBS/Forms Load Tests

8-2 Oracle Application Testing Suite OpenScript User's Guide

■ Oracle Forms-Specific Application Programming Interface (API). The Oracle
Forms Load Test Module includes a Oracle Forms Load Test Module API
Specification that can be used to customize Oracle Forms-specific scripts.

8.1.2 Prerequisites
The Oracle Forms Load Test Module recorder has the following prerequisites:

■ Internet Explorer browser for recording with OpenScript. OpenScript installs a
Browser Helper Object inside IE 6 and 7.

■ Before recording any script in Forms Functional Test Module, you must run the
Forms/EBS application at least once before attempting to record a script with
OpenScript on that machine. This ensures that required JRE/Jinitiator has been
installed and also verifies that forms applications can run successfully on that
machine inside of Internet Explorer.

■ .NET 2.0 Framework (automatically installed)

8.2 Recording Oracle EBS/Forms Load Tests
The Oracle Forms Load Test Module records standard Oracle Forms components for
Oracle E-Business Suite Release 12 (Forms 10g) running on Sun JRE and E-Business
Suite Release 11i (Forms 6i). The Recorder creates load test scripts for automating
testing of Oracle Forms applications.

Oracle Forms are applet based controls and the Oracle Forms Load Test Module
provides the object/attribute information for OpenScript to record interactions with
those controls. Actions will be captured in the test script as OpenScript "nca"
commands. Other components are standard Web controls which are captured as
standard OpenScript "http" navigation commands. Correlation rules can be modified
by users through the Preferences settings for new scripts. Recording can be configured
through Internet Explorer only as the Oracle Forms Load Test Module does not
support Firefox.

The Oracle Forms Load Test Module provides a record toolbar button that lets you
initiate the Oracle Forms recorder and capture Web/Oracle Forms page actions to the
script view. The record toolbar includes start and stop recording toolbar buttons.
OpenScript recorders also open a floating toolbar that can be used while recording
without having to switch between the browser and OpenScript.

When an recording Oracle forms script determining the type of communication is
important. Oracle Forms client can communicate with the server using the following
modes:

■ Socket Mode: All the communication exchanged between the server and client is
performed at a socket level therefore the proxy recorder will not capture any
transactions that occur between the server and client.

■ HTTP Mode: All the communication happens over the HTTP protocol and gets
captured by both the proxy recorder and the Oracle Forms Load Test module. The
duplication of HTTP requests is filtered out by the Oracle Forms Load Test module
and the message log only retains the requests captured by Oracle Forms Load Test
module and not the request captured by proxy recorder.

■ HTTPS Mode: This mode the communication is very similar to that of HTTP
except the connection is made over the HTTP protocol on port 443 using SSL.

Recording Oracle EBS/Forms Load Tests

Using the Oracle Forms Load Test Module 8-3

8.2.1 Setting Oracle Forms Load Test Record Preferences
To set Oracle Forms Load Test record preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Record category.

4. Select Forms Load Test.

5. Set the record mode and the port as follows:

■ Recording Mode: specifies if the Oracle Forms Load Test recorder uses the
simplified script model or not.

– Record using Simple Mode: when selected, the Oracle Forms Load Test
recorder generates simplified script code for Oracle Forms components.
The components are represented in the script code by the OpenScript
"nca" Oracle Forms Load Test script service methods in the form:

nca.component("handlerName").action()

When cleared, the Oracle Forms Load Test recorder generates verbose
script code using a protocol containing the raw messages being sent to the
server. The components are represented in the script code by the Open-
Script "nca.send" methods which accept a serialized Oracle Forms Mes-
sage object in XML form and send the message to the Forms server in the
form:

nca.send("<Message ...>")

or

nca.sendTerminal(1)

■ Recorder: specifies the record port.

– Port: specifies the port to use for recording.

6. Click OK.

8.2.2 Recording Oracle EBS/Forms Load Test Scripts
To record Oracle EBS/Forms Load Test scripts:

1. Start OpenScript.

2. Set the Oracle Forms Load Test Correlation preferences.

3. Set the Oracle Forms Load Test Recording preferences.

4. Select New from the File menu.

5. Expand the Load Testing group.

6. Select Oracle EBS/Forms (The Oracle EBS/Forms script combines both HTTP and
Oracle Forms technologies as part of the same script).

7. Click Next.

8. Select the Repository and Workspace.

9. Enter a script name.

10. Click Finish. A new Script tree is created in the Script View.

Playing Back Scripts

8-4 Oracle Application Testing Suite OpenScript User's Guide

11. Select Record from the Script menu. The browser automatically opens when you
start recording.

12. Load the web page where you want to start recording into the browser.

13. Navigate the web site to record page objects, actions, and navigations. The page
objects, actions, and navigations will be added to the Run node of the script tree.

14. When finished navigating pages, close the browser.

15. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

16. Expand the Run node of the script to view the page objects, actions, and
navigation nodes in the script tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

8.3 Playing Back Scripts
OpenScript plays back recorded Oracle Forms actions/commands which consist of an
object identified by its attributes (for example:
nca.treeList("handlerName").selectByIndex(0);). The actions used for
playback will either be those that are recorded or specified manually in the Java Code
view. Playback can be configured through IE only as the Oracle Forms Load Test
Module does not support Firefox. Unattended playback is supported through Oracle
Test Manager for Web Applications or third-party tools using OpenScript's command
line interface.

The Oracle Forms Load Test Module provides playback and iterate toolbar buttons
that allows users to start the script playback for either a single playback through the
script or multiple iterations using data from a databank file. Playback results for
Oracle Forms Load scripts can be viewed in the Results and Console views.

8.3.1 Playing Back Oracle EBS/Forms Functional Scripts
To play back Oracle EBS/Forms Load scripts:

1. Start OpenScript.

2. Open the Oracle EBS/Forms Load script to play back.

3. Select Playback from the Script menu or click the toolbar button.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

8.3.2 Playing Back Oracle EBS/Forms Functional Scripts with Iterations
To play back Oracle EBS/Forms Load scripts with iterations:

1. Start OpenScript.

2. Open the Oracle EBS/Forms Load script to play back.

3. Select Iterate from the Script menu or click the toolbar button.

Note: Do not close the script editor view or script project while
recording or playing back scripts. Doing so could result in
unpredictable behavior in the OpenScript application.

Modifying Scripts

Using the Oracle Forms Load Test Module 8-5

4. Set the iteration count.

5. Select which databank file to use, if necessary.

6. Set the starting record for the selected databank in the Databank Settings section.

7. Click OK.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

8.4 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

8.4.1 Adding Forms Actions
The Oracle Forms Module includes actions for Oracle Forms objects that can be added
to a script.

To add Forms actions to a script:

1. Record a EBS/Forms Functional Test script.

2. Select the script node where you want to add the action.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Forms Load Action node.

5. Expand an action node and select the action.

6. Click OK.

7. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path.

8. Enter any required values to use for the object action.

9. Click OK. The action node is added to the script tree.

In the Java Code view, a nca.object(handlerName).action() method will
be added to the script code:

nca.treeList("handlerName").selectByIndex(0);

The Forms Load Action node includes actions for objects such as Application,
Button, CheckBox, ChoiceBox, List Item, List of Values, Pop List Item, Radio
Button, Tab, Text Field, Window, Generic Client, and Alert Dialog. Other object
actions have corresponding Java code methods.

8.4.2 Using the Oracle Forms Load Test Module API
The Oracle Forms Load Test Module includes a script Application Programming
Interface (API) specific to Oracle EBS/Forms load testing. The Oracle Forms Load Test
Module recorder creates the Java code that corresponds to the Tree View and displays
the Oracle Forms Load Test commands in the Java Code view using
easy-to-understand function names. The Java Code view commands correspond to the
Tree View and you can edit your scripts in either view.

You can use the Oracle Forms Load Test API to enhance recorded scripts with
additional testing functionality. Commands that are specific to the Oracle Forms
Functional Testing Module are part of the "nca" class. Additional functional test

Setting Oracle Forms Load Test Correlation Preferences

8-6 Oracle Application Testing Suite OpenScript User's Guide

methods are available in the "http" class. You can also leverage other commands from
other enabled classes (services) or general Java commands in your scripts.

Some examples of the Oracle Forms Testing Module API include:

■ Application

■ Alert Dialog

■ Button

■ CheckBox

■ ChoiceBox

■ Generic Client

■ List Item

■ List of Values

■ Pop List Item

■ Radio Button

■ Tab

■ Text Field

■ Window

Many API methods can be added using the Oracle EBS/Forms Load Test Module Tree
View. Additional methods can be added using the Java Code view.

8.5 Setting Oracle Forms Load Test Correlation Preferences
To set Setting Oracle Forms Load Test Correlation preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Correlation category.

4. Expand the Oracle Forms Load Test library.

5. Select or clear the check boxes to enable or disable specific rules.

6. Click the Add or Edit buttons to modify rules in the library.

7. Click OK.

8.6 Oracle Forms Load Test Correlation Library
The Oracle Forms correlation library defines the correlation rules for Oracle
Forms-based applications. The correlation rules specify the variable names and regular
expressions to use to replace dynamic data in Oracle Forms applications and
navigations. The default Oracle Forms correlation library provided with the
OpenScript Oracle Forms Load Test Module includes the following correlation rules:

■ ICX Ticket 11i - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern icx_ticket='(.+?)' and replaces it
with the variable name formsload:icx_ticket_11i in all locations.

■ ICX Ticket R12 - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern icx_ticket&gv15=(.+?)& and
replaces it with the variable name formsload:icx_ticket_r12 in all locations.

Troubleshooting Oracle EBS/Forms Load Test Scripts

Using the Oracle Forms Load Test Module 8-7

■ Web Default Correlation - DOM Correlation - this rule implements the default
Web Document Object Model correlation rules for Oracle Forms applications.

■ Correlate Headers - Correlate Headers - this rule implements the default
Correlate Headers correlation rules for Oracle Forms applications that use
dynamic headers.

■ Correlate Referer Headers - Correlate Headers - this rule implements the default
Correlate Headers correlation rules for Oracle Forms applications that use
dynamic Referer Headers. This rule adds a http.solveRefererHeader method
to store the requested url for referer headers in later navigations to use.

■ LoginSubmitButton - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern FORM_SUBMIT_BUTTON':'(.+?)' and
replaces it with the variable name formsweb:loginsubmit in all locations.

■ OAS - Variable Substitution - this rule locates text in the HTML matching the
Regular Expression pattern oas=(.+?\.\.) and replaces it with the variable
name oas in all locations.

■ TI - Variable Substitution - this rule locates text in the HTML matching the
Regular Expression pattern &_ti=(.+?)& and replaces it with the variable name
formsweb:ti in all locations.

■ FormsLT Global Substitution - Oracle Forms Variable Substitution - this rule
adds the appropriate Connect Statement for Forms implementations running in
HTTP mode. Substitute Forms URL transform and ICX Ticket transform.

8.7 Troubleshooting Oracle EBS/Forms Load Test Scripts
The following are key concepts, tools, and functions you can use when debugging
Oracle EBS/Forms Load Test scripts recorded in Simple Mode (See the Record
Preferences), during recording as well as playback.

8.7.1 Debugging Using the Message Log
This section explains how to use the Message Log for debugging Oracle EBS/Forms
Load Test Scripts.

8.7.1.1 During Recording
When recording EBS/Forms Load scripts in Simple Mode, the Oracle Forms Load Test
module generates a complete log of messages that were exchanged between the forms
server and the client browser. The log is generated for all types of communication (See
Recording Oracle EBS/Forms Load Tests):

■ Socket Connection - numerically identified by a 0

■ HTTP Connection - numerically identified by a 1

■ HTTPS Connection - numerically identified by a 2

This recorded log is located in
<installdir>/OFT/<ScriptName>/recordedData/FormsLT_Recorded_
FormsMessage_Logs/RecordedMessages.log.

8.7.1.2 Format of the Recorded Log
The format in the log is as follows:

Troubleshooting Oracle EBS/Forms Load Test Scripts

8-8 Oracle Application Testing Suite OpenScript User's Guide

■ MESSAGE FROM CLIENT: indicates a Message sent from client to server,
followed by an XML string representation of the message object.

■ TERMINAL MESSAGE FROM CLIENT: indicates a Terminal Message sent from
client to server, followed by an XML string representation of the terminal message
object.

■ MESSAGE FROM SERVER: indicates a response message sent from the server to
client, followed by an XML string representation of the message object.

■ TERMINAL MESSAGE FROM SERVER: indicates a Terminal Message indicating
the end of a response sent from the server to the client, followed by an XML string
representation of the terminal message object.

8.7.1.3 During Playback
If a script fails during playback, you can enable the message log for debug purposes.

To enable the message log:

1. Open the Oracle EBS/Forms load test script.

2. Click the Java Code tab to switch over to the code view.

3. Insert nca.enableMessageLog(); in the Initialize section of the script
before the http.setUserAgent(...); line.

After enabling message logging, click the play button to run the script. During script
play back, all forms messages exchanged between server and the client are printed to
the console window in OpenScript.

This is a rather large log of messages and using the recorded log as a reference,
compare the messages being sent to the server by OpenScript. Check for messages that
appear in the recorded log but not in the playback log. It is normal to have messages
such as OUTERSIZE, LOCATION missing. The reason for this is because Simple mode
was designed keeping in mind that the user should see actions being recorded in the
script instead of messages.

8.7.2 Analyzing Message Logs
Messages to check for when analyzing recorded and playback logs are as follows:

■ FOCUS messages: Make sure the correct component has focus. The script cannot
execute an action on a component without correctly setting a focus on it. For
example, a text field component contains a button which displays a list of values
dialog when pressed. This button is not enabled until the focus is correctly set on
the text field. In this case, if OpenScript tries to execute a press button action and
the focus in not correct, you will encounter an error such as "Component not
available".

■ WINDOW_ACTIVATED messages: Make sure the correct window is the currently
active windows for the script action on a component. If the correct window is not
currently active, the script will not be able to execute any actions on the
components within that window.

8.7.3 Troubleshooting Forms ifError Messages
When playing the script in HTTP mode, the server can respond with error messages in
plain/text which would require special handling by the VU. The following are the
most common types of ifError messages returned by the server.

Troubleshooting Oracle EBS/Forms Load Test Scripts

Using the Oracle Forms Load Test Module 8-9

IfError Messages
These messages are returned as a response of any forms request against the server
when playing the script in HTTP mode. The response content type for these messages
is 'plain/text' and the response code is '200 OK'

ifError:3
The client does not handle cookies. Enable cookie handling for that virtual user.

ifError:4
The server was unable to create an Oracle Forms process. Problem exists on the
server-side.

ifError:5
The server was unable to start the Oracle Forms process. Problem exists on the
server-side.

ifError:6
The Oracle Forms session was aborted and the VU is unable to communicate with the
server. In most cases this would occur when the server is experiencing a heavy load or
if there is a problem with the script.

ifError:7
The server is currently busy, re-try the request later. The VU will re-try this request
<n> number of times where <n> is a value specified in Forms Load Test playback
preferences before it throws an error/stops playback.

ifError:11/<n>
The server is busy, re-try the request in <n> milliseconds. This type of message will not
be displayed to the user, the VU will automatically re-try this request after <n>
milliseconds.

Troubleshooting Oracle EBS/Forms Load Test Scripts

8-10 Oracle Application Testing Suite OpenScript User's Guide

9

Using the Web Services Module 9-1

9Using the Web Services Module

This chapter provides instructions on using the OpenScript Web Services Module,
which supports testing of Web Services.

9.1 About the Web Services Module
The Web Services Module is an application module that supports testing of Web
Services. The Web Services Module is an extension to the HTTP Module. The
OpenScript Web Services module includes the following features:

■ The Web Services Module. The New Project wizard (select New from the File
menu) includes a "Web Services Script" option to use when creating Web Services
scripts in OpenScript.

■ Support for SOAP Protocols. The Web Service Module supports the SOAP 1.1 and
1.2 protocols.

■ Support for multiple parsers. The Web Service Module supports the multiple
WSDL parsers. In addition to the default OpenScript and Oracle parsers,
OpenScript can also be configure to use apache AXIS and .Net parsers.

■ WSDL Manager. The OpenScript WSDL Manager lets you import and store Web
Services Definition files for creating Web Services scripts. Using the WSDL
Manager, you add Web Services methods to the OpenScript tree.

■ XML Editor. The OpenScript XML Editor lets you edit Web Services requests to
include either static values or variables.

■ Web Services-specific Application Programming Interface (API). The Web Services
Module includes a Web Services Module API Specification that can be used to
customize Web Services scripts.

9.1.1 Key Features of the Web Services Module
The Web Services Module is an extension module to HTTP Module that extends the
platform with Web Services testing capabilities. The Web Services Module is fully
integrated with the OpenScript platform including the Results view, Details view,
Properties view, Console/Problems views, Preferences, Step Groups, Script Manager,
and Workspace Manager.

The Web Services methods are added to the Script tree using the WSDL Manager. Web
Services method postdata parameters can be edited using the XML Editor features of
the Details View.

OpenScript shows the results of Web Services script playback in the Results view. The
Results view shows results for each script command (including duration and

Creating Web Services Scripts Using WSDL Manager

9-2 Oracle Application Testing Suite OpenScript User's Guide

summary for failures). The Results Report compiles the same information into an
HTML Results Report. Results can be exported from the OpenScript GUI in standard
format (CSV / HTML). Results are also generated for unattended playback through
the command line.

The Web Services Module API includes a "ws" class that provides additional
programming functionality.

9.2 Creating Web Services Scripts Using WSDL Manager
Creating Web Services scripts using WSDL Manager involves the following major
steps:

1. Create a Web Services script tree.

2. Add WSDL files to the WSDL Manager view.

3. Add methods from the WSDL Manager to the script tree.

4. Edit method parameters in the Details view.

The following sections explain each of the major steps.

9.2.1 Creating the Web Services Script Tree
To create a Web Services script tree:

1. Start OpenScript.

2. Select New from the File menu.

3. Expand the General group and select Web Services.

4. Click Next.

5. Select the Repository and Workspace.

6. Enter a script name.

7. Click Finish. A new Script tree is created in the Script View and the WSDL
Manager view appears.

9.2.2 Adding WSDL Files to the WSDL Manager View
To add files to the WSDL Manager view:

1. Click the Add icon in the WSDL Manager view.

2. Enter the URL to a the WSDL file or click Browse to select a local file.

3. Select the parser to use and set the Roll over option.

4. Click Next. The parsed methods appear.

5. Click Finish to add the parsed methods to the WSDL Manager view.

9.2.3 Adding Methods to the Script Tree
To add WSDL file methods from the WSDL Manager view to the script tree:

1. Expand the WSDL file tree in the WSDL Manager view.

2. Right-click the method to add and select Add to script from the shortcut menu.
The method will be added to the Run node of the script tree.

Modifying Scripts

Using the Web Services Module 9-3

In the Java Code view, a ws.method(method)/ws.endMethod() group with a
ws.post() method will be added to the script code, as follows:

ws.method("findApprovedPatientsByLastName");
{
ws.post(2, "http://server:7011/medrec-jaxws-services/PatientFacadeService",
"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>
<soapenv:Envelope
xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\"
xmlns:med=\"http://www.oracle.com/medrec\">\r\n
<soapenv:Header/>\r\n
<soapenv:Body>\r\n
<med:findApprovedPatientsByLastName>\r\n
<!--Optional:-->\r\n
<arg0>String</arg0>\r\n
</med:findApprovedPatientsByLastName>\r\n

</soapenv:Body>\r\n
</soapenv:Envelope>", null, true, null, null);

}
ws.endMethod();

9.2.4 Editing Method Parameters in the Details View
To edit WSDL file methods in the Details View:

1. Expand the Run node in the Script tree view.

2. Expand the WSDL method node in the Script tree view.

3. Select an XML post data node in the Script tree view.

4. Open the Details view and select the XML Tree tab.

5. Click a value in the right column of the XML Tree tab to edit the value.

or

Right-click a parameter in the left column of the XML Tree tab and select
Substitute Variable to select a variable name or Databank value to substitute for
the parameter value. If you parameterize a value with a Databank, the databank
variable appears as {{db.databankFileName.field,recordedValue}} in
the SOAP parameters. For example, the optional argument <arg0> in the above
postdata example would appear as
<arg0>{{db.customer.LastName,String}}</arg0>\r\n.

9.3 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

9.3.1 Adding a Web Services Post Navigation
To add a Web Services Post Navigation to a script:

1. Create a Web Services script.

2. Select the Run node.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the HTTP node.

Modifying Scripts

9-4 Oracle Application Testing Suite OpenScript User's Guide

5. Select the Web Services Post Navigation node from the Web Services group and
click OK.

6. On the Base URL tab, enter the URL, request and response charsets, and set the
Encode strings option.

7. On the Post Data tab, enter the SOAP protocol postdata XML.

8. On the Headers tab, use the Add button to add name/value pairs and actions to
the Base URL.

9. Click OK to add the Web Services Post Navigation node to the script tree.

In the Java Code view, the Web Services Post Navigation consists of the code
executed in the ws.Post method (line breaks and spacing added for clarity):

ws.post(2, "http://testserver2/EmployeeLookup/EmployeeLookup.asmx",
"<?xml version=\"1.0\" encoding=\"utf-8\"?>\r\n\r\n
<soapenv:Envelope

xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\"
xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"
xmlns:web=\"http://oracle.com/webservices\"> \r\n

<soapenv:Header/> \r\n
<soapenv:Body> \r\n
<web:findEmployee soapenv:
encodingStyle=\"http://schemas.xmlsoap.org/soap/encoding/\"> \r\n
<criteria xmlns:enc=\"http://oracle.com/webservices/encodedTypes\"
xsi:type=\"enc:SearchCriteria\"> \r\n
<FirstName xsi:type=\"xsd:string\">string</FirstName> \r\n
<LastName xsi:type=\"xsd:string\">string</LastName> \r\n
<EmployeeID xsi:type=\"xsd:int\">3</EmployeeID> \r\n

</criteria> \r\n
</web:findEmployee> \r\n

</soapenv:Body> \r\n
</soapenv:Envelope>",

http.headers(http.header("Content-Type", "text/xml",
Header.HeaderAction.Modify),
http.header("SOAPAction","\"http://oracle.com/webservices/findEmployee\"",
Header.HeaderAction.Add)),

false, "UTF-8", "UTF-8");

9.3.2 Adding a Text Matching Test
You can use Text Matching Tests to report an error and/or abort the script if a request
does not match the Text Matching Test criteria.

To add a Text Matching Test to a Web Services script:

1. Create a Web Services script.

2. Expand the Run node.

3. Select the Web Services postdata node where you want to add the Text Matching
test.

4. Select the Script menu and then select Other from the Add menu.

5. Select Text Matching Test from the Validation group.

6. Enter a name for the test.

7. Enter the Text to Match.

8. Enter any error message text to log if the test fails.

Modifying Scripts

Using the Web Services Module 9-5

9. Select the source location to look for the text to match: HTML or Response Header.

10. Select the Pass when setting.

■ Selected text is present: the test case passes if the Text to Match string is
found in the selected source.

■ Selected text is absent: the test case passes if the Text to Match string is not
found in the selected source.

11. Select the Regular Expression option if the Text to Match is a Regular Expression.
Clear the Regular Expression option if the Text to Match is plain text.

12. Click OK to add the Text Matching Test node to the script tree.

In the Java Code view, the Text Matching Test consists of the code executed in the
http.match method (line breaks and spacing added for clarity):

http.match("Test name", "Text to Match", "Error Message",
Source location = Source.Html | Source.ResponseHeader,
pass when present = false | pass when absent = true,
is not RegExp = false | is RegExp = true);

Example:

http.match("MyTXTMatch", "Login", "Could not find login", Source.Html, false,
false);

Set the default Error recovery setting for the HTTP Text Matching test in the
OpenScript playback preferences.

9.3.3 Adding Security Extensions
You can add security extensions to Web Services scripts.

To add security extensions to a Web Services script:

1. Create a Web Services script.

2. Expand the Run node.

3. Select the Web Services method node where you want to add the security and
attachments.

4. Select the Script menu and then select Other from the Add menu.

5. Expand the HTTP node.

6. Select Web Services Security Attachments from the Web Services group and click
OK.

7. If necessary click the WS-Security tab.

8. Enter a URL. If you selected a Web Services navigation node in the script tree, the
URL will be automatically entered.

9. Select User Username Token

10. Enter the user name and password.

■ Username: specifies the user name to use for the Username Token in the XML
request.

■ Password: specifies the password to use for the Username Token in the XML
request.

■ Confirm Password: confirms the password.

Modifying Scripts

9-6 Oracle Application Testing Suite OpenScript User's Guide

11. Select the password type: Password Text or Password Digest.

■ Password Text: when selected, the password in the XML request is included as
plain text. The URI attribute for the <wsse:Password> element is set to
#PasswordText.

■ Password Digest: when selected, the password is encrypted. The URI attribute
for the <wsse:Password> element is set to #PasswordDigest.

12. Select or clear the Add Created Header, Add Nonce and Add Timestamp options.

■ Add Created Header: when selected, a creation timestamp is included in the
Username Token of the XML request for use in setting the server cache limit of
used nonces.

■ Add Nonce: when selected, a cryptographically random nonce value is
included in the Username Token of the XML request to provide a
countermeasure for replay attacks.

■ Add Timestamp: when selected, a timestamp value is included in the Web
Services security element of the XML request. The timestamp includes both
Created and Expires elements. Specify the Valid For number of seconds.

13. Click OK to add the Security Attachment node to the script tree.

In the Java Code view, the Security Attachment consists of the code executed in the
ws.addSecurityAttachments method (line breaks and spacing added for
clarity), as follows:

ws.addSecurityAttachments("url",
ws.security("userName", deobfuscate("password"),addCreatedHeader,
addNonce, addTimestamp, validFor), null);

If you add security and file attachments together, the
ws.addSecurityAttachments method includes both the ws.security and
ws.attachments methods (line breaks and spacing added for clarity), as follows:

ws.addSecurityAttachments("url",
ws.security("userName", deobfuscate("password"),true, true, true, 10),
ws.attachments(AttachmentMechanism.transferType,
ws.attachment("filename","attachmentPart")));

9.3.4 Adding Attachments
You can add file attachments to Web Services scripts.

To add file attachments to a Web Services script:

1. Create a Web Services script.

2. Expand the Run node.

3. Select the Web Services method node where you want to add the security and
attachments.

4. Select the Script menu and then select Other from the Add menu.

5. Select Web Services Security Attachments from the Web Services group.

6. If necessary click the WS-Security tab.

7. Enter a URL. If you selected a Web Services navigation node in the script tree, the
URL will be automatically entered.

8. Click the Attachments tab.

Modifying Scripts

Using the Web Services Module 9-7

9. Select the Transfer Type.

■ DEFAULT - uses the default transfer type specified by the Content-Type
header.

■ SWA - Security SOAP Messages with Attachments

■ MTOM - SOAP Message Transmission Optimization Mechanism

■ DIME - Direct Internet Message Encapsulation

10. Click Add.

11. Enter the path and file name or click Browse to select a file.

12. If the Web Services method includes any Attachment Part object identifiers, select
an Attachment Part from the list. If the Web Services method does not include any
Attachment Part object identifiers, the list will be empty.

13. Click OK to add the Security Attachment node to the script tree.

In the Java Code view, the Security Attachment consists of the code executed in the
ws.addSecurityAttachments method (line breaks and spacing added for
clarity) as follows:

ws.addSecurityAttachments("url", null,
ws.attachments(AttachmentMechanism.transferType,
ws.attachment("filename","attachmentPart")));

If you add security and file attachments together, the
ws.addSecurityAttachments method includes both the ws.security and
ws.attachments methods (line breaks and spacing added for clarity), as follows:

ws.addSecurityAttachments("url",
ws.security("userName", deobfuscate("password"),true, true, true, 10),
ws.attachments(AttachmentMechanism.transferType,
ws.attachment("filename","attachmentPart")));

The following example Web Services script method shows the
ws.addSecurityAttachments method with a ws.post postdata method used
to upload a file. The ws.post method specifies the SOAP Envelope postdata,
Content-Type, and SOAP Action.

ws.method("upload");
{
ws.addSecurityAttachments("http://myurl.com:8080/services/MTOMService",
ws.security("username",deobfuscate("5blNah5kX/XuZnepYwInFw=="),
true, true, true, 20),

ws.attachments(AttachmentMechanism.MTOM,
ws.attachment("C:\\OracleATS\\OFT\\test.txt", "<upload>776598931581")));

ws.post(15, "http://myurl.com:8080/services/MTOMService",
"<soapenv:Envelope

xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\"
xmlns:ser=\"http://service.interop.mtom.sample\">\r\n

<soapenv:Header/>\r\n
<soapenv:Body>\r\n
<ser:upload>\r\n
<!--Optional:-->\r\n
<ser:fileName>string</ser:fileName>\r\n
<!--Optional:-->\r\n
<ser:contents>cid:776598931581</ser:contents>\r\n

</ser:upload>\r\n
</soapenv:Body>\r\n

Recording Web Services Scripts

9-8 Oracle Application Testing Suite OpenScript User's Guide

</soapenv:Envelope>",
http.headers(http.header("Content-Type", "text/xml;charset=UTF-8",

Header.HeaderAction.Modify),
http.header("SOAPAction", "\"urn:upload\"",
Header.HeaderAction.Modify)),

true, null, null);
}
ws.endMethod();

9.4 Recording Web Services Scripts
If you have a Web Services client application written already that communicates over
HTTP and which communicates through a proxy, you can record the traffic using thee
OpenScript HTTP recorder.

9.4.1 Setting Web Services Record Preferences
To set Web Functional Test record preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Record category.

4. Select Web Services.

5. Click the tabs and set the preferences.

6. Click OK.

9.4.2 Recording Web Services Scripts
To record Web Services script:

1. Start OpenScript.

2. Set the Web Services Recording preferences.

3. Select New from the File menu.

4. Expand the General group and select Web Services.

5. Click Next.

6. Select the Repository and Workspace.

7. Enter a script name.

8. Click Finish. A new Script tree is created in the Script View and the WSDL
Manager view appears.

9. Select Record from the Script menu. The browser automatically opens when you
start recording.

10. Load the web page where you want to start recording into the browser.

11. Navigate the web site to record navigations. The navigations will be added to the
Run node of the script tree.

12. When finished navigating pages, close the browser.

13. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

Recording Web Services Scripts

Using the Web Services Module 9-9

14. Expand the Run node of the script to view the page navigation nodes in the script
tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

Note: Do not close the script editor view or script project while recording or
playing back scripts. Doing so could result in unpredictable behavior in the
OpenScript application.

Recording Web Services Scripts

9-10 Oracle Application Testing Suite OpenScript User's Guide

10

Using the Siebel Functional Test Module 10-1

10Using the Siebel Functional Test Module

This chapter provides instructions on configuring and using the OpenScript Siebel
Functional Test Module, which tests Siebel applications by accessing objects through
the Document Object Model (DOM) of the Web browser and the Siebel test automation
framework.

10.1 About the Siebel Functional Test Module
The Siebel Functional Test Module provides support for functional testing of Siebel
web applications. The Siebel Functional Test Module is an extension module to the
OpenScript Web Functional Test Module that extends the Web testing with Siebel
Functional Test recording and playback capabilities. The Siebel Functional Test Module
is fully integrated with the OpenScript platform including the Results view, Details
view, Properties view, Console/Problems views, Preferences, Step Groups, Script
Manager, and Workspace Manager.

10.1.1 Key Features of the Siebel Functional Test Module
The Siebel Functional Test Module includes the following features:

■ Records Standard Siebel High Interactivity (HI) and Standard Interactivity (SI)
components for Siebel versions 7.7, 7.8, 8.0 and 8.1 through integration with Siebel
Test Automation CAS Library.

■ Plays back recorded Siebel actions/commands which consist of an event plus
object identified by its attributes (for example: GotoScreenlink
pageTabs("SiebePageTabs") Accounts Screen).

■ Provides full script code view integration to support script generation for the
Siebel Functional Test Module. The Siebel Functional Test Module includes an
additional API to support Siebel Functional Test protocol code scripting.

■ Allows users to parameterize user inputs to Siebel Functional Test scripts and
drive those inputs from an external data file (Databank).

■ Allows users to insert Tests to validate Siebel HI and SI content on playback.

■ Provides additional options/settings that are specific to Siebel Functional Test
scripts within the Siebel Functional Test categories in the preferences interface.

■ Reports playback results for Siebel Functional Test scripts in the Results and
Console views.

■ The Siebel Functional Test Script Module API. The Siebel Functional Test
Application Programming Interface include Java code methods specific to
functional testing of Siebel applications.

Functional Testing Siebel Applications

10-2 Oracle Application Testing Suite OpenScript User's Guide

The New Project wizard (select New from the File menu) includes a "Siebel Functional
Test Script" option to use when creating Siebel functional testing projects in
OpenScript. The Siebel Functional Test Script Module records Siebel applications using
the Siebel test automation framework. OpenScript captures user actions and records
them to the OpenScript script nodes in a highly readable sequence of navigations and
actions.

10.2 Functional Testing Siebel Applications
The following is an outline of the procedures and best practices used to perform
functional testing of Siebel applications with the OpenScript application.

10.2.1 Prerequisites
The instructions in this document assume the following prerequisites:

■ Testing hardware/environment is available.

■ The Siebel applications are installed on a Siebel Server.

■ The Oracle Application Testing Suite applications have been installed on a testing
machine.

■ The test machine can access the Siebel applications.

■ Some steps may require system administrator level privileges for the Siebel Server.

■ License for Siebel Test Automation required.

10.2.2 Setting up the Siebel Test Environment
The functional test environment should approximate as closely as possible a working
Siebel deployment environment. However, hardware cost constraints may be a
limiting factor. This section provides recommendations about the basic test system
configuration. Additional test system configurations can be used based upon
hardware and network availability.

The basic n-tier configuration should consist of the following systems:

■ Web Server

■ Siebel Server

■ Database Server

■ Database Storage

See the Siebel Installation Guide in the in the Siebel document bookshelf for information
about hardware and Siebel installation requirements.

Notes:

■ Siebel applications can contain High-Interactivity (HI) components, which use
ActiveX controls, and Standard-Interactivity (SI) applications, which use standard
HTML. Applications may also use a combination of HI and SI components.
Testing methods vary depending upon the type of components being tested. See
the "Automating Functional Tests" chapter in the Testing Siebel eBusiness
Applications document in the Siebel document bookshelf for a description of the
component types.

Functional Testing Siebel Applications

Using the Siebel Functional Test Module 10-3

■ In general, Siebel applications are more memory intensive than CPU intensive. If
trade-offs need to be made in test hardware decisions, memory should be given
higher consideration than CPU speed.

■ Siebel web applications use Cookies to maintain the state information.

10.2.3 Enabling Siebel Test Automation
The Siebel test automation framework must be activated on the Siebel server for
OpenScript to access it. Changing the Siebel configuration file may require system
administrator level privileges for the Siebel server. A license is also required to use the
Siebel Test Automation framework. Contact your account representative for additional
information about licence requirements.

10.2.3.1 Siebel 7.x
To enable the test automation framework in Siebel 7.x:

1. Open the .CFG file for the Siebel application on the Siebel server.

2. Set the EnableAutomation and AllowAnonUsers switches in the [SWE]
section as follows:

[SWE]
EnableAutomation = TRUE
AllowAnonUsers = TRUE
...

See the Siebel Testing Siebel eBusiness Applications documentation if you need to set
up secure access to the Siebel Test Automation framework.

3. Restart the Siebel Server.

10.2.3.2 Siebel 8.0
To enable the test automation framework in Siebel 8.0:

1. Log into Siebel as Administrator.

2. Go to "Site Map".

3. Go to "Administration - Server Configuration".

4. Select "Call Center Object Manager" (provided you want to enable automation for
Call Center).

5. Under list of Components, click the Parameters tab.

6. Find EnableAutomation and AllowAnonUsers parameters and set both to TRUE.

7. Restart the Siebel Server.

10.2.4 Script Creation Techniques
The following are tips and techniques to use when creating Siebel load test scripts
using the OpenScript application:

■ Disable browser caching to make sure the pages are returned from the server
rather than the browser cache.

■ Record actions from login through logout to make sure parameters are passed
properly between page navigations.

Functional Testing Siebel Applications

10-4 Oracle Application Testing Suite OpenScript User's Guide

■ Record actions slowly in the Siebel environment to make sure the recorder records
all actions to the OpenScript script. If possible, watch as the OpenScript script
pages are added to the script tree.

■ Siebel Popup windows may initially appear incorrect. Resize the window slightly
to refresh the page in the popup window.

■ Do not insert Siebel Tests in Siebel popup windows unless the test is necessary.

■ Save the script in OpenScript using Save As on the File menu. When you save a
Siebel proxy-recorded script, OpenScript automatically creates a Java Agent
versions of the script in the workspace. Depending upon the size of the script, the
file save operation may take some time.

10.2.5 Setting Browser Options
When recording and playing back scripts to test an application, you want to make sure
the pages returned are from the server and not the browser cache. To verify or change
the browser settings:

1. Open Internet Options from the Control Panel.

2. Click Settings in the Temporary Internet files section.

3. Select Every visit to the page.

4. Click View Objects in the Temporary Internet files folder section.

5. Verify that the downloaded Program files directory does not contain multiple
versions of the Siebel High Interactivity Framework and Siebel Test Automation
programs installed.

6. If necessary, remove the duplicate or older versions.

7. Close the Downloaded Program Files window.

8. Click OK to close the Temporary Settings.

9. Click OK to close the Internet Properties.

10.2.6 Starting the Siebel Application
When you start the Siebel application in the browser, the URL must include the Siebel
Web Engine (SWE) command to generate the test automation framework information.
The AutoOn Siebel Web Engine command (SWECmd) is added to the URL as follows
(SWECmd is case-sensitive):

http://hostname/application/start.swe?SWECmd=AutoOn

where hostname is the machine name or IP address of the Siebel server and
application is the name of the Siebel application. For example, application
could be callcenter or callcenter_enu depending upon the Siebel version.

Enter the start URL and command into the browser address. for example:

http://siebelServer/callcenter_enu/start.swe?SWECmd=AutoOn

As you navigate pages, OpenScript records page navigation to the OpenScript script
tree.

Recording Siebel Functional Test Scripts

Using the Siebel Functional Test Module 10-5

10.2.7 Determining a Siebel Component Type
Siebel applications can include High-Interactivity (HI) object and
Standard-Interactivity (SI) object types. You can use the Inspect Path feature of
OpenScript to determine the type of an object in an application.

1. Click the Inspect Path toolbar button or the Capture button to open the Select
Object dialog box.

2. Move the mouse cursor over the page in the Siebel application to view the
component type. The current component is highlighted in the OpenScript browser
and the path appears in the Select Element dialog box. Siebel HI component types
are indicated by /siebelft:cas[ClassName= in the Path/Object fields:

3. The path to HI component types is also referred to as the Object Descriptor String
(ODS) and is used in OpenScript to recognize applets used with the Siebel
application.

SI component types are indicated by /web:window[index='0']... in the Path
field.

4. Press F10 to capture the object path. You can copy the path from the dialog box
using Ctrl-C and paste using Ctrl-V.

The following are examples of complete object paths (line breaks added for clarity):

High-Interactivity (HI) Path.

/siebelft:cas[ClassName='SiebApplication' and
RepositoryName='Siebel Universal Agent']

/siebelft:cas[ClassName='SiebScreen' and
RepositoryName='Web Call Center Home Screen']

/siebelft:cas[ClassName='SiebView' and
RepositoryName='Home Page View (WCC)']

/siebelft:cas[ClassName='SiebApplet' and
RepositoryName='Sales Message Alert List Applet Tiny']

/siebelft:cas[ClassName='SiebList' and
RepositoryName='SiebList']

Standard-Interactivity (SI) Path:

/web:window[index='0']
 /web:document[index='10']
 /web:span[text='Search' or index='1']

or

/web:window[index='0']/web:document[index='10']
 /web:form[index='0' or name='SWEForm1_0']
 /web:input_text[id='s_1_1_16_0' or name='s_1_1_16_0' or index='1']

10.3 Recording Siebel Functional Test Scripts
The Siebel Functional Test Module records standard Siebel High Interactivity (HI) and
Standard Interactivity (SI) components for Siebel versions 7.7, 7.8, 8.0 and 8.1 through
integration with Siebel Test Automation CAS Library. Siebel Test Automation must be
enabled on the Siebel server side in order to successfully record these events. The
Recorder creates functional and regression test scripts for automating testing of Siebel
applications.

Siebel HI components are Active-X based controls and Siebel Test Automation
provides the object/attribute information for OpenScript to record interactions with

Recording Siebel Functional Test Scripts

10-6 Oracle Application Testing Suite OpenScript User's Guide

those controls. Actions on HI controls will be captured in the test script as OpenScript
"siebelFT" commands. Siebel SI components are standard Web controls which are
captured as standard OpenScript "web" commands using Web Functional Test object
attributes; however, Siebel Test Automation may provide additional attributes to
identify SI controls which take precedence over standard Web object/attributes. Object
Identification attributes can later be modified by users through the Preferences global
settings for new scripts or for already recorded commands in the tree view or code
view. Recording can be configured through Internet Explorer only as Siebel does not
support Firefox.

The Siebel Functional Test Module provides a record toolbar button that lets you
initiate the Siebel recorder and capture Web/Siebel page actions to the script view. The
record toolbar includes start and stop recording toolbar buttons. OpenScript recorders
also open a floating toolbar that can be used while recording without having to switch
between the browser and OpenScript.

Before recording Siebel Functional test scripts, make sure the Siebel test automation
framework is activated on the Siebel server. See Functional Testing Siebel Applications
for details about Prerequisites and the Siebel Test Environment.

10.3.1 Setting Siebel Functional Test Record Preferences
To set Siebel Functional Test record preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Record category.

4. Select Siebel Functional Test.

5. Set the Object Identification preferences.

6. Click OK.

10.3.2 Adding/Editing Object Identifiers
The Siebel Functional Test Module uses object identification to specify attributes used
to identify High Interactivity (HI) and Standard Interactivity (SI) Web objects. The
Siebel Functional Test Module uses the same predefined path attributes for common
Web objects as the Web Functional Test Module; however, Siebel Test Automation may
provide additional attributes to identify HI controls which take precedence over
standard Web objects/attributes. Object paths are specified in XPath format. For
example, for HI controls, the object identification path appears as follows in Java code
commands:

/siebelft:cas[@ClassName='SiebApplication' and
@RepositoryName='Siebel Universal Agent']

/siebelft:cas[@ClassName='SiebPageTabs' and
@RepositoryName='SiebPageTabs']")

and for SI Web objects, the object identification path appears as follows in Java code
commands:

/web:window[@index='0']
/web:document[@index='0']

/web:form[@index='0' or @name='SWEEntryForm']
/web:input_password[@id='s_swepi_2' or @name='SWEPassword' or @index='0']

Recording Siebel Functional Test Scripts

Using the Siebel Functional Test Module 10-7

The Siebel Functional Test Module includes object identifiers that specify how the
recorder identifies Browser and Siebel objects. You can set the default Siebel SI object
attributes in the Siebel Functional Test Module Record Preferences. You can add object
identifiers or edit the existing object identifiers in the Record preferences. The HI
control identification is provided by the Siebel Test Automation CAS Library. You can
also edit object attributes in recorded scripts in the tree view or the code view.

In addition to the predefined object identification, you can add an Object Library to the
script to record paths into a library file. Object Library files may be shared and reused
across other scripts. The Object Library files provide a more convenient "short name"
for objects to provide for more convenient programming.

To add or edit an object identifier:

1. Select the OpenScript Preferences from the View menu.

2. Expand the Record node and select Siebel Functional Test.

3. Click the Object Identification tab.

4. Click Add or select an existing object identifier and click Edit.

5. If adding a new object identifier, enter a name for the object identifier.

6. Add or edit object elements for the object identifier.

For each object element, you specify a name (typically a Siebel object attribute), an
operator, a value and a value type. As you add object elements, OpenScript builds
the object identifier using logical OR between each object identifier element. Click
Edit to change between logical OR and AND.

7. Click OK. The object identifier is added to the record preferences.

See the Using the Web Functional Test Module chapter for additional information about
adding and editing Object Identifiers.

10.3.3 Recording Siebel Functional Test Scripts
To record Siebel Functional Test Scripts:

1. Start OpenScript.

2. Select New from the File menu.

3. Select Siebel Functional Test Script.

4. Click Next.

5. Select the Repository and Workspace.

6. Enter a script name.

7. Click Finish. A new Script tree is created in the Script View.

8. Select Record from the Script menu. The browser automatically opens when you
start recording.

9. Load the Siebel application using the AutoOn Siebel Web Engine command
(?SWECmd=AutoOn) in the URL into the browser.

10. Log in and navigate the web site to record page objects, actions, and navigations.
The page objects, actions, and navigations will be added to the Run node of the
script tree.

11. When finished navigating pages, log out and close the browser.

Modifying Scripts

10-8 Oracle Application Testing Suite OpenScript User's Guide

12. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

13. Expand the Run node of the script to view the page objects, actions, and
navigation nodes in the script tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

10.4 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

10.4.1 Adding Siebel Actions
The Siebel Functional Test Module includes actions for Siebel objects that can be added
to a script.

To add Siebel actions to a script:

1. Record a Siebel Functional Test script.

2. Select the script node where you want to add the action.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Siebel Functional Test node.

5. Expand an action node and select the action.

6. Click OK.

The Siebel action dialog boxes let you define the action to perform during
playback of a Siebel Functional Test script. This dialog box is used for most Siebel
actions including Application, Button, Calculator, Calendar, Checkbox,
Communications Toolbar, Currency, List, Menu, Page Tabs, PDQ, Rich Text, Screen
Views, Task Assistant, Text, Text Area, Threadbar, Toolbar, Tree, and View Applets.
Specific values may be required for specific actions.

■ Action: Shows the action to perform. Additional values for variables or
attributes may be required depending upon the action to perform.

■ Path: Specify the object ID of the Siebel or Web object on which to perform the
action. You can use the Capture or Select menu options to capture or select an
object path.

■ Value(s): Specify the variables or attributes as required for the specific action
on an object.

7. Enter the object identification path for the object.

8. Enter any required values to use for the object action.

9. Click OK. The action node is added to the script tree.

In the Java Code view, a siebelFT.object(objectId).action() method
will be added to the script code:

Note: Do not close the script editor view or script project while
recording or playing back scripts. Doing so could result in
unpredictable behavior in the OpenScript application.

Modifying Scripts

Using the Siebel Functional Test Module 10-9

siebelFT.menu(100,"/siebelft:cas[@ClassName='SiebApplication'
and @RepositoryName='Siebel Universal Agent']

/siebelft:cas[@ClassName='SiebMenu'
and @RepositoryName='SiebMenu']").select("File\\\\File - Logout");

The Siebel Functional Test node includes actions for objects such as Application,
Calculator, Calendar, Communications Toolbar, Page Tabs, Task Assistant,
Threadbar, and View Applets, etc. Other object actions have corresponding Java
code methods.

Modifying Scripts

10-10 Oracle Application Testing Suite OpenScript User's Guide

11

Using the Siebel Load Test Module 11-1

11Using the Siebel Load Test Module

The Siebel Load Test Module provides support for load testing of Siebel web
applications. The Siebel module is an extension to the HTTP Module. The OpenScript
Siebel Load Test module includes the following features:

■ The Siebel Load Test Script Module. The New Project wizard (Select New from the
File menu.) includes a "Siebel Load Test Script" option to use when creating Siebel
load testing projects in OpenScript. The Siebel Load Test Script Module records
Siebel applications at the protocol level. OpenScript captures user actions and
records them to the OpenScript script based upon HTTP requests and post data or
query strings.

■ Siebel-Specific Correlation Library. The Siebel module includes a transform library
for automatically finding dynamic values inside recorded Siebel pages and
substituting them into the appropriate Siebel HTTP requests.

■ Siebel-Specific Correlation Rules. These rules define various transform rules for
automatically finding/substituting Siebel parameters into a navigation. The Siebel
rules are specified in a Siebel-specific correlation library that is added to the
OpenScript correlation preferences.

■ Siebel-Specific Application Programming Interface (API). The Siebel module
includes a Siebel Module API Specification that can be used to customize
Siebel-specific scripts.

11.1 Load Testing Siebel Applications
The following is an outline of the procedures and best practices used to load test Siebel
applications with the OpenScript application.

11.1.1 Prerequisites
The instructions in this document assume the following prerequisites:

■ Testing hardware/environment is available.

■ The Siebel applications are installed on a Siebel Server.

■ The Oracle Application Testing Suite have been installed on a testing machine.

■ The test machine can access the Siebel applications.

■ Some steps may require system administrator level privileges for the Siebel Server.

Load Testing Siebel Applications

11-2 Oracle Application Testing Suite OpenScript User's Guide

11.1.2 Setting Up Siebel Load Test Environments
The load test environment should approximate as closely as possible a working Siebel
deployment environment. However, hardware cost constraints may be a limiting
factor. The following sections provide recommendations about basic test system
configurations. Additional test system configurations can be used based upon
hardware and network availability.

11.1.2.1 Basic Configuration
The basic n-tier configuration should consist of the following systems:

■ Web Server

■ Siebel Server

■ Database Server

■ Database Storage

See the Siebel Installation Guide in the in the Siebel document bookshelf for information
hardware and Siebel installation and any licensing requirements.

11.1.2.2 Floating Load Balancing Test Server
In addition to the basic tier configuration, various load balancing tests should include
another system that can be configured on a single system as a movable server between
tiers. The floating load balancing server can be used to test fail-over of clustered
servers and recovery of servers if one server (on any one of the tiers) in a multiple
server configuration goes down.

A floating Server could be configured as Web Server, Siebel Server, and Database
Server on the same machine.

11.1.2.3 Clustered Web Server Configuration
The clustered Web server configuration tests two or more Web servers accessing a
single Siebel server. This configuration is used to test how Siebel and the database
server handles load balancing from multiple users accessing from multiple Web
browsers and systems.

11.1.2.4 Clustered Siebel Servers Configuration
The clustered Siebel server configuration tests two or more Siebel servers handing Web
traffic and accessing a single database server. This configuration is used to test Web
traffic load balancing on clustered Siebel servers and how the database server handles
load balancing from multiple Siebel servers accessing from multiple systems.

11.1.2.5 Clustered Database Server Configuration
The clustered database server configuration tests two or more database servers
handing Siebel data and accessing the database storage. This configuration is used to
test Siebel data load balancing on clustered database servers and how the database
storage handles load balancing from multiple database servers accessing from
multiple systems.

Note: In general, Siebel applications are more memory intensive
than CPU intensive. If trade-offs need to be made in test hardware
decisions, memory should be given higher consideration than CPU
speed.

Load Testing Siebel Applications

Using the Siebel Load Test Module 11-3

Notes:

■ Siebel web applications use Cookies to maintain the state information.

■ Each User must be logged into the same Siebel Application Server as first logged
into.

■ Do not use round robin load-balancing for clustered Siebel servers

11.1.3 Siebel Correlation Library
OpenScript includes a Siebel Test Automation library that Oracle Application Testing
Suite applications can communicate with when creating Scripts. The Siebel Correlation
Library is installed automatically as part of he OpenScript installation.

11.1.4 Script Creation Techniques
The following are tips and techniques to use when creating Siebel load test scripts
using the Oracle Functional Testing for Web Applications application:

■ Disable browser caching to make sure the pages are returned from the server
rather than the browser cache.

■ Record actions from login through logout to make sure parameters are passed
properly between page navigations.

■ Record actions slowly in the Siebel environment to make sure the recorder records
all actions to the OpenScript script. If possible, watch as the script pages are added
to the script tree.

■ Close the external browser window after recording.

■ Save the script. When you save a Siebel proxy-recorded script, OpenScript
automatically creates a Java Agent version of the script in the workspace.
Depending upon the size of the script, the file save operation may take some time.

11.1.5 Recording Scripts for Load Tests
Siebel load testing scripts are recording in an external browser window using the
OpenScript proxy recorder. When you record a Siebel Load Test Script, OpenScript
automatically starts the proxy recorder and opens an external browser window when
you click the Record button on the toolbar. Once the external browser opens, you can
load your Siebel application and start recording page navigation.

OpenScript does not support record and playback of the CTI Toolbar. URLS with the
SWECmd=WaitForCmd are filtered out by default.

11.1.6 Starting the Siebel Application
Start the Siebel application in the browser using the start URL:

http://hostname/application/start.swe

where hostname is the machine name or IP address of the Siebel server and
application is the Siebel application to start. For example:

http://siebelserver/callcenter_enu/start.swe

Enter the start URL and command into the browser address. As you navigate pages,
the OpenScript proxy recorder records page navigation to the Script tree. You can view
the nodes in the script tree and in the Java code.

Load Testing Siebel Applications

11-4 Oracle Application Testing Suite OpenScript User's Guide

11.1.7 Playing Back Scripts
OpenScript playback provides a convenient way to test and verify the page navigation
recorded to the script.

1. Open a Siebel load test script in OpenScript.

2. Select Playback from the Script menu or click the toolbar button to verify the
script plays back correctly.

3. Select items in the Results view and review the tabs in the Details view to check
for any errors. Click the Headers tab to view request and response header data.

4. Verify that the response headers do not contain content or data value errors. One
type of content error to check for is a "204 No Content" error. For example:

HTTP/1.1 100 Continue
Server: Microsoft-IIS/5.0
Date: Fri, 20 Mar 2009 15:51:47 GMT
X-Powered-By: ASP.NET
HTTP/1.1 200 OK:
Server: Microsoft-IIS/5.0
Date: Fri, 20 Mar 2009 15:51:47 GMT
X-Powered-By: ASP.NET
content-language: en
cache-control: no-cache
content-type: text/html;charset=UTF-8
content-length: 3762

See the Troubleshooting Load Testing Issues section in the Testing Siebel eBusiness
Applications documentation in the Siebel document bookshelf for additional examples
of common issues to resolve for load test scripts.

11.1.8 Resolving Script Issues
Each navigation node in the script tree shows the URL, Post Data, Recorded Headers,
and Custom Dynamic values recorded to the script.

Expand nodes in the script tree to view the navigation sequence.

The PostData node shows the Siebel entities included in the page navigation.
OpenScript Siebel Load Testing recorder automatically recognizes and parameterizes
Siebel entities for Load testing. Playing back a script verifies that the recorder
parameterized the Siebel entities properly.

The tree view nodes show the automatically created dynamic value names and Siebel
path for parameters required for the next page. The name and Siebel path are shown as
variable nodes under the post data node. It also shows automatically parameterized
Siebel functions in curly braces, for example:

SWEC={{@SWECount}}

If a script does not playback correctly, or has errors, you may need to add custom
dynamic values for Siebel parameters.

Check the PostData name/value pairs for the page navigation to verify the Siebel
entities have been properly parameterized during recording. Any Siebel parameters
that pass dynamic data from one page to the next should have custom dynamic values.

The PostData on the next page shows the destination of the dynamic values passed
from the previous page.

Load Testing Siebel Applications

Using the Siebel Load Test Module 11-5

11.1.8.1 Siebel Entities to Parameterize
The following table shows some common Siebel commands that may appear in the
PostData of the page navigation:

See the SWE API section of the Siebel Portal Framework Guide in the Siebel document
bookshelf for additional information about Siebel Web Engine (SWE) commands,
methods, and arguments.

11.1.9 Using Data Banks with Siebel
Data values in Siebel post data strings can be parameterized in a script and connected
to a Data Bank file that provides input data for data-driven tests. The OpenScript
script editing options let you specify additional Siebel method names that use
parameterized data.

1. Record or open a Siebel script in OpenScript.

2. Select Find/Replace from the Edit menu.

3. Type SWEMethod and click Find.

4. Continue clicking Find until you locate the SWEMethod that requires databanked
values.

For example, the PostData in a script page may contain the following record data
name=value pair:

s_1_2_49_0=doctest

The SWEMethod that posts the data is SWEMethod=Mirror Add GotoView.

To use Databank parameters for the data values:

1. Select Configure Databanks from the Script menu.

2. Click Add.

3. Set the Repository location and then click Browse.

4. Select the Databank file to add and click Open.

5. Click OK to add the Databank file.

Siebel Command Name

SWEACn Application Count

SWEBMC Bookmark

SWEBRS Browser Retry Sequence

SWEBID Browser ID

_sn Cookie

SWEFI Form ID

SWEVLC View Layout Cache

SWETS Timestamp

SWEC SWE Count

SWERowId, SWERowIds Row IDs

s_#_#_#_# Record Data

Load Testing Siebel Applications

11-6 Oracle Application Testing Suite OpenScript User's Guide

6. Click OK to close the Databank configuration.

7. Right click the node in the script tree that you want to substitute with a databank
variable and select Substitute Variable.

8. If necessary expand the Databanks node and select the databank field you want to
use as the input parameter data.

9. Click Finish.

10. The script node name/value pair changes to show the Databank alias name, field
name, and recorded value as a variable value. For example:

SWEUserName={{siebel_data.login,sadmin}}

11. Click the Playback toolbar button to playback the script once to verify the it plays
back correctly.

12. Click the Iterate toolbar button to playback the script with a Databank.

13. Set the Iteration count, starting record, and data usage and click OK.

14. Verify the script plays back correctly.

15. Save the script.

16. In the Oracle Load Testing for Web Applications application, add the script to the
Scenario.

17. Double-click the script name in the Scenario to define the Scenario details for the
script.

18. Make sure Java Client is selected as the User mode.

19. Set the Use Data Bank setting is set to True (if the Use Data Bank setting is not
shown, open the Scenario Details and set the option in the Main section).

20. Click Run Test and run the load test.

See the following sections of this document for details about defining ServerStats
metrics and running tests in the Oracle Load Testing for Web Applications console. See
the Oracle Load Testing for Web Applications User's Guide for additional information
about using the features and options in the Oracle Load Testing for Web Applications
application.

11.1.10 Preparing the Siebel Server Manager Commands
The Oracle Load Testing for Web Applications ServerStats uses the Siebel Server
Manager program to retrieve statistics from the Siebel Server while running Virtual
Users in a load test. The ServerStats Metrics need to be configured to run the Siebel
Server Manager with input commands from a batch file and a file containing the input
commands. The batch file and command input file must be created and placed on the
Siebel Server where the ServerStats Metrics can access and run the batch file. This
section explains the basic requirements of the batch file and command input file.

Note: Starting the Siebel command-line server-monitoring program
may require system administrator level privileges for the Siebel server.
The Oracle Load Testing for Web Applications system testing the
Siebel server needs the required user permissions to access the Siebel
server and run the Siebel Server Manager program from the local host.

Load Testing Siebel Applications

Using the Siebel Load Test Module 11-7

11.1.10.1 Creating the Batch File
Use any ASCII editor to create a batch file and a commands file to run the Siebel
Server Manager program. The batch file name will be referenced in the Oracle Load
Testing for Web Applications ServerStats metrics. You can use any name for the batch
file (for example srvrmgr_cmds.txt).

Use the following syntax to specify the command in the batch file to start the Siebel
Server Manager program:

\\machine IP\path to Siebel server bin\srvrmgr -g gateway -e enterprise -u
username p password -i input_File

For additional information about using the Siebel command-line server-monitoring
program (srvrmgr) and command line flags, see the Siebel System Administration Guide
Version 7.7 (or newer) documentation in the Siebel document bookshelf.

The following is an example of a command in a batch file to start the Siebel Server
Manager:

\\10.16.111.00\c$\sea77\siebsrvr\bin\srvrmgr -g gateway -e siebel -u sadmin -p
sadmin -i srvrmgr_cmds.txt

11.1.10.2 Creating the Command Input File
The command input file contains the commands to run in the Siebel Server Manager
program. The command input file will be automatically run by the batch file at each
Oracle Load Testing for Web Applications ServerStats Collection Interval. The example
in the previous section uses the file name srvrmgr_cmds.txt as the input file in the
srvrmgr command. You can use any file name as long as the batch command matches
the file name of the input file.

srvrmgr_cmds.txt is a text file that contains the sequence of commands to run in
the Siebel Server Manager program. The following is an example of an input file with
Server Manager commands:

configure list statistics show STAT_ALIAS, CURR_VAL
list statistics
quit

Parameter Description

machine IP The machine name or IP address or
the Siebel Server.

path to Siebel server bin The drive and directory path to the
Siebel Server Manager program on
the Siebel server.

gateway The Network address of the Siebel
Gateway Name Server machine.

enterprise Siebel Enterprise Server name.

username Siebel Server administrator
username.

password Siebel Server administrator
password.

input_File The name of a file containing
commands to run in the Server
Manager program.

Load Testing Siebel Applications

11-8 Oracle Application Testing Suite OpenScript User's Guide

The configure list statistics show STAT_ALIAS, CURR_VAL command
specifies which Siebel Statistics to return from the srvrmgr program. STAT_ALIAS,
CURR_VAL are the column names of the data values to return. STAT_ALIAS is the alias
for the Statistic name. CURR_VAL is the current value for the statistic. quit closes the
Siebel Server Manager session.

The list statistics command returns the statistics to Siebel Server terminal. The
Oracle Load Testing for Web Applications Data Collector uses the Regular Expressions
defined in the ServerStats metrics to extract specific data from the statistics returned
from the srvrmgr program.

You can configure the srvrmgr commands to provide any of the available statistics
data that can be returned by the srvrmgr program. See the Siebel System Administration
Guide Version 7.7 (or newer) documentation in the Siebel document bookshelf for
additional information about Siebel Server Manager commands.

11.1.10.3 Siebel Statistics
The srvrmgr program returns the following statistics:

Name Alias Description

Average Connect Time AvgConnTime Average connect time for
Object Manager sessions

Average Reply Size AvgRepSize Average size of reply
messages (in bytes)

Average Request Size AvgReqSize Average size of request
messages (in bytes)

Average Requests Per Session AvgReqs Average number of requests
per Object Manager session

Average Response Time AvgRespTime Average Object Manager
response time

Average Think Time AvgThinkTime Average end-user think time
between requests

Avg SQL Execute Time AvgSQLExecTime Average time for SQL execute
operations (in seconds)

Avg SQL Fetch Time AvgSQLFetchTime Average time for SQL fetch
operations (in seconds)

Avg SQL Parse Time AvgSQLParseTime Average time for SQL parse
operations (in seconds)

CPU Time CPUTime Total CPU time for component
tasks (in seconds)

Elapsed Time ElapsedTime Total elapsed (running) time
for component tasks (in
seconds)

Maximum Peak Memory
Usage

MaxPeakMemory Peak Mem used by task. Rolls
up differently from
MinPeakMemory

Minimum Peak Memory
Usage

MinPeakMemory Peak Mem used by task. Rolls
up differently than
MaxPeakMemory

Num of DBConn Retries NumDBConnRtrs Number of Retries due to DB
Connection Loss

Load Testing Siebel Applications

Using the Siebel Load Test Module 11-9

Num of DLRbk Retries NumDLRbkRtrs Number of Retries due to
Deadlock Rollbacks

Num of Exhausted Retries NumExhstRtrs Number of Times All Retries
are Exhausted

Number of SQL Executes SQLExecs Total number of SQL execute
operations

Number of SQL Fetches SQLFetches Total number of SQL fetch
operations

Number of SQL Parses SQLParses Total number of SQL parse
operations

Number of Sleeps Sleeps Total number of sleeps for
component tasks

Object Manager Errors Errors Number of errors encountered
during Object Manager
session

Reply Messages RepMsgs Number of reply messages
sent by the server

Request Messages ReqMsgs Number of request message
received by the server

SQL Execute Time SQLExecTime Total elapsed time for SQL
execute operations (in
seconds)

SQL Fetch Time SQLFetchTime Total elapsed time for SQL
fetch operations (in seconds)

SQL Parse Time SQLParseTime Total elapsed time for SQL
parse operations (in seconds)

Sleep Time SleepTime Total amount of sleep time for
component tasks (in seconds)

Tasks Exceeding Configured
Cap

TskXcdCfgCpt Number of tasks stated that
exceeded configured capacity

Tests Attempted TestsAttempted Number of tests that were
started

Tests Failed TestsFailed Number of tests that failed

Tests Successful TestsSuccessful Number of tests that were
successful

Total Database Response Time DBRespTime Total Database
Response/Processing Time
(milliseconds)

Total Reply Size RepSize Total size (in bytes) of reply
messages

Total Request Size ReqSize Total size (in bytes) of request
messages

Total Response Time RespTime Total Object Manager
response time (in seconds)

Total Tasks TotalTasks Total number of tasks
completed for server
components

Name Alias Description

Load Testing Siebel Applications

11-10 Oracle Application Testing Suite OpenScript User's Guide

For additional information about monitoring Siebel servers, see the System Monitoring
and Diagnostics Guide for Siebel eBusiness Applications Version 7.7 (or newer)
documentation in the Siebel document bookshelf.

11.1.10.4 Batch File Location
Once you create the batch file and command input file, copy the files to the Oracle
Load Testing for Web Applications local host in the C:\Oracle\DataCollector
directory.

11.1.11 Defining ServerStats Metrics
Oracle Load Testing for Web Applications ServerStats metrics are used to collect the
data from the Siebel Server Manager program. This section explains how to set up
Virtual Agents in ServerStats (Oracle Load Testing for Web Applications) to run the
Siebel Server Manager program (srvrmgr) from the command-line interface.

1. Start the Oracle Load Testing for Web Applications application.

2. Select ServerStats from the Tools menu.

3. Select the Metrics node to view the metric categories.

4. Click New.

5. Enter a name for the metric.

6. Enter a description for the metric.

7. Select Virtual Agent as the Metric type.

8. Click Next.

9. Enter the name of the batch file you created to run the srvrmgr program in the
Command Line field.

10. Enter a Regular expression to parse the data returned from the srvrmgr program
in the Matching Regexp field. For the Server Manager srvrmgr program
commands:

configure list statistics show STAT_ALIAS, CURR_VAL
list statistics
quit

use the following format for the Regular Expression:

/aliasName\s+([0-9]+)/

For example, for the server statistic Average Connect Time, the Regular
Expression would be as follows:

/AvgConnTime\s+([0-9]+)/

11. Enter the Key of value to use to parse the Regular Expression. The key of value
specifies which set of parenthesis in the Regular Expression is the value to return.
For Siebel statistics using the above Regular Expression, set the value to 1.

Total Think Time ThinkTime Total end-user think time (in
seconds)

Name Alias Description

Load Testing Siebel Applications

Using the Siebel Load Test Module 11-11

12. Enter the Sample Multiplier value. The following window shows a metric
configured to retrieve the Average Connect Time.

13. Click the Test button to get to the Test Setup window:

14. Click OK to start the test.

15. Verify the results returned the correct data value for the statistic from the Siebel
Server Manager program and did not return any errors.

Note: Manually run the srvrmgr program and list statistics on the Siebel Server
to verify the Regular Expression returns the correct data value/format.

16. Click Close.

17. Click Finish. The New metric appears in the Metrics tree under the User Defined
node.

18. Repeat steps 4-17 to configure additional Siebel metrics in ServerStats.

For additional information about monitoring Siebel servers, see the System Monitoring
and Diagnostics Guide for Siebel eBusiness Applications Version 7.7 (or newer)
documentation in the Siebel document bookshelf.

11.1.12 Defining a ServerStats Configuration
Oracle Load Testing for Web Applications ServerStats configurations are used to
specify which metrics to include when collecting the data from the Siebel Server
Manager program and update Oracle Load Testing for Web Applications graphs and
reports. You can also create a metric profile for Siebel metric and use the profile as part
of the configuration. This section explains how to define a ServerStats configuration
and add metrics to the configuration.

1. If necessary, start Oracle Load Testing for Web Applications and select ServerStats
from the Tools menu.

2. Click the Configurations node to view existing configurations.

3. Click New.

4. Enter a name for the configuration.

5. Enter a description for the configuration.

6. Click Save. The configuration window adds new options for adding and updating
monitors:

7. Click Add a new monitor.

8. Expand the User defined node and select a Siebel metric.

9. Click Next.

10. Set the monitored system, data collector, and collection interval.

11. Click Next. The metric is added to the list of monitors in the configuration.

12. Click Finish.

13. Repeat steps 7-12 to add additional metrics to the configuration.

14. Click Test.

15. Verify the results returned the correct data values for the statistics from the Siebel
Server Manager program and did not return any errors.

16. Click Close.

Load Testing Siebel Applications

11-12 Oracle Application Testing Suite OpenScript User's Guide

17. Click Update.

11.1.13 Importing Pre-Configured Metrics and Profiles to Oracle Load Testing for Web
Applications

If you have pre-configured files for Siebel metrics and metric profiles, you can import
the files into Oracle Load Testing for Web Applications rather than manually configure
the metrics and profiles.

1. If necessary, start the Oracle Load Testing for Web Applications application.

2. Select Import File from the Tools menu.

3. Select the File Type. The ServerStats file types are as follows:

4. Click Browse to select the file location.

5. Select the drive and directory location.

6. Select the file to import.

7. Click Open.

8. Click Upload.

9. Click OK.

10. Repeat steps 4-9 for each file to upload.

11.1.14 Running Load Tests in the Oracle Load Testing for Web Applications Console
Select the script or a user-defined profile from the Select scripts & user-defined
profiles list.

1. Select a script.

2. Click Add to scenario.

3. Set the # VUs.

4. Set the System to use to test.

5. Set the User Mode to Java Client.

6. Set the Iteration Delay to 1.

7. Set the VU Pacing (Think Time) to Recorded.

8. Click Add to Autopilot.

9. Set the Start and Stop test options.

10. Set the Virtual User Rampup.

11. Select the ServerStats configuration you defined earlier.

12. Click the Run Test button.

13. Specify the Session to Save.

Type Extension

ServerStats Metric .metric

ServerStats Metric Profile .hwm

ServerStats Configuration .config

Load Testing Siebel Applications

Using the Siebel Load Test Module 11-13

14. Click OK.

11.1.14.1 Viewing VU Grid
The Virtual User grid lets you view the progress of the script playback for each virtual
user. If necessary, click the Watch VU Grid tab to switch to the grid.

11.1.14.2 Viewing ServerStats
The ServerStats display lets you view the Siebel Server statistics in real time using the
ServerStats display window. Select ServerStats Display from the Tools menu to open
the ServerStats display.

11.1.15 Generating Graphs and Reports Using Oracle Load Testing for Web
Applications

You can generate graphs from Virtual User and ServerStats data during run time and
for post testing analysis.

11.1.15.1 Creating Custom Runtime Graphs
The View Run Graphs tab lets you generate custom graphs during test runtime.

1. While the load test is running, click the View Run Graphs tab.

2. Click New Graph. A new blank graph tab is added to the Reports and Graphs
section.

3. Scroll down to the Filters section.

4. Enter a graph name.

5. Expand ServerStats Monitors in the Available Data Series tree.

6. Select the data series to add to the graph.

7. Click Add Data Series.

8. Repeat to add other monitors to the data series.

9. Specify the Plot Data Series and Y-Axis Scaling options.

10. Click Generate Graphs. The custom graph appears as a new tab in the Reports
and Graphs section.

11.1.15.2 Creating Custom Reports
The Create Reports tab lets you generate custom reports and graphs after the test for
post-testing analysis.

1. Click Create Reports tab.

2. Click New Graph.

3. Select the ServerStats session as the Available Data Series.

4. Expand Available Data Series tree.

5. Select the data series to add to the graph.

6. Click Add Data Series.

7. Click Generate Graph. The custom graph appears as a new tab in the Reports and
Graphs section.

Setting Siebel Correlation Preferences

11-14 Oracle Application Testing Suite OpenScript User's Guide

You can export the graph to Adobe PDF, Microsoft Excel, or Comma Separated
Value formats.

The Create Reports tab also lets you retrieve session performance reports after the test
for post-testing analysis.

1. If necessary, click Create Reports tab.

2. Click the Sessions tab in the Reports and Graphs section.

3. Select the Session. The report appears in the Reports and Graphs section.

You can export or print the session report.

11.2 Setting Siebel Correlation Preferences
To set Setting Siebel Correlation preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Correlation category.

4. Expand the Siebel 7.7 library.

5. Select or clear the check boxes to enable or disable specific rules.

6. Click the Add or Edit buttons to modify rules in the library. See "Siebel Correlation
Library" on page 11-14 for a list of correlation rules.

7. Click OK.

11.3 Siebel Correlation Library
The Siebel correlation library defines the correlation rules for Siebel 7.7. The
correlation rules specify the variable names and regular expressions to use to replace
dynamic data in Siebel applications and navigations.

The default Siebel correlation library provided with the OpenScript Siebel Module
includes the following correlation rules:

■ Siebel SWEACn - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern SWEACn=(\d+) and replaces it with the
variable name SWEACn in all locations.

■ Siebel SWEACn - Function/Text Substitution - this rule locates text in the HTML
matching the Regular Expression pattern SWEACn=((\d+))and replaces it with
the function {{SWEACn}} in the specified location.

■ Siebel SN - Variable Substitution - this rule locates text in the HTML matching
the Regular Expression pattern _sn=((.+?))& and replaces it with the variable
name siebelsn in the specified location. The variable name siebelsn uses the
Regular Expression pattern name="_sn" value="(.+?)".

■ Siebel SN - Variable Substitution - this rule locates text in the HTML matching
the Regular Expression pattern _sn=((.+?))& and replaces it with the variable
name siebelsn in the specified location. The variable name siebelsn uses the
Regular Expression pattern _sn=(.+?)".

■ Siebel SN - Variable Substitution - this rule locates text in the HTML matching
the Regular Expression pattern _sn=((.+?))& and replaces it with the variable
name siebelsn in the specified location. The variable name siebelsn uses the
Regular Expression pattern _sn=(.+?)&.

Siebel Correlation Library

Using the Siebel Load Test Module 11-15

■ Siebel SWEBID - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern SWEBID=((\d+)) and replaces it with
the variable name SWEBID in the specified location. The variable name SWEBID
uses the Regular Expression pattern navigator.id = ([0-9]+?);.

■ Siebel SWEBID - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern SWEBID=((\d+)) and replaces it with
the variable name SWEBID in the specified location. The variable name SWEBID
uses the Regular Expression pattern navigator.id =
"([0-9]+?)".

■ Siebel SWEBMC - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern
SWEBMC=(((|%3d|%3D)\d+([&%]|$|\s))) and replaces it with the
variable name SWEBMC in the specified location. The variable name SWEBMC uses
the Regular Expression pattern SWEBMC(?:=|%3d|%3D)(\d+)[?&?%].

■ Siebel SWEBRS - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern
SWEBRS=(((|%3d|%3D)\d+([&%]|$|\s))) and replaces it with the
variable name SWEBRS in the specified location. The variable name SWEBRS uses
the Regular Expression pattern <input type = "hidden"
name="SWEBRS"\s+?value="(\d+?)">.

■ Siebel SWEFI - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern
SWEFI=(((|%3d|%3D)\d+([&%]|$|\s))) and replaces it with the
variable name SWEFI in the specified location. The variable name SWEFI uses the
Regular Expression pattern (.)SWEFI\1(\d+)\1.

■ SWETS - Function/Text Substitution - this rule locates text in the HTML matching
the Regular Expression pattern SWETS=((\d{13,})) and replaces it with the
function {{@timestamp}} in the specified location.

■ SWSECancelID - Function/Text Substitution - this rule locates text in the HTML
matching the Regular Expression pattern
SWSECancelID=(=|%3d|%3D)((\d{10,})) and replaces it with the function
{{@timestampsecs}} in the specified location.

■ Siebel Correlation Rule - this rule locates all Siebel SWEC and RowIDs.

■ currentDate - Substitute Recorded Date - this rule locates the date the script was
recorded and replaces it with the function {{@today(M/dd/yyyy)}}.

Siebel Correlation Library

11-16 Oracle Application Testing Suite OpenScript User's Guide

12

Using the Utilities Module 12-1

12Using the Utilities Module

This chapter provides instructions on using the OpenScript Utilities Module, which
provides commonly used testing functions.

12.1 About the Utilities Module
The Utilities Module provides commonly used testing functions. The Utilities Module
is an extension to the Basic Module. The OpenScript Utilities module includes the
following features:

12.1.1 Key Features of the Utilities Module
■ Text File Processing. Read values from text files including CSV and XML files as

well as copy and move files in the file system.

■ Databases. Read values from various databases such as Oracle as well as other
JDBC-ODBC Compliant databases

■ XML XPath Expressions. Generate XPath expressions from valid XML files.

You can use the Utilities Module API to enhance recorded scripts with additional
testing functionality. Commands that are specific to the Utilities Module are part of
the "utilities" class.

12.2 Using Text File Processing
You can use the utilities API to read values from text files including CSV and
XML. The following sections explain how to use the utilities API.

12.2.1 Reading Lines of Text from a File
The Utilities API includes a method for reading lines of text from a file.

To add code that reads text from a file:

1. Record a Web Functional Test script.

2. Open the Java Code view.

3. Add the readLines() method to specify the file to read. The following example
shows how to parse the lines of text in a file and print to the OpenScript console
view:

String[] lines = utilities.getFileService().readLines("C:/Sample.txt");
for (String line : lines) {
getLogger().info(line);

Using Text File Processing

12-2 Oracle Application Testing Suite OpenScript User's Guide

}

12.2.2 Reading Text from a CSV File
The Utilities API includes a method for reading text from a Comma Separated Value
text file.

To add code that reads text from a .CSV file:

1. Record a Web Functional Test script.

2. Open the Java Code view.

3. Add the loadCSV method to specify the file to read. For this example the file,
"C:\customer.csv" contains this data:

FirstName,LastName,MiddleInitial
John,James,R
Mary,Simpson,J

The following example shows how to parse a table of text in a .CSV file and print
values to the OpenScript console view:

Table table = utilities.loadCSV("C:/customer.csv");
Row row = table.getRow(0);
getLogger().info(row.get("LastName"));

12.2.3 Reading Text from an XML File
The Utilities API includes a method for reading text from a XML formatted text file.

To add code that reads text from a .XML file:

1. Record a Web Functional Test script.

2. Open the Java Code view.

3. Add the loadXML method to specify the file to read. For this example the file,
"C:\oceans.xml" contains this data:

<?xml version="1.0" encoding="utf-8"?>
<Oceans>

<ocean name="Artic"/>
<ocean name="Atlantic"/>
<ocean name="Indian"/>
<ocean name="Pacific"/>
<ocean name="Southern"/>

</Oceans>

The following example shows how to parse a table of text in a .XML file and print
values to the OpenScript console view:

XML xml = utilities.loadXML("C:/oceans.xml");
XML root = xml.getChildren()[0];
getLogger().info(root.getTagName());
XML[] oceans = root.getChildren();

for (XML ocean : oceans){
getLogger().info(ocean.getAttribute("name"));
}

Getting Values from a Database

Using the Utilities Module 12-3

12.3 Getting Values from a Database
Getting values from a database requires a database definition, a database SQL query or
SQL execute and a disconnect from the database.

To get values from a database:

1. Open or create a Web Functional Test script project.

2. Select the node where you want to add the database definition.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Database node and select Database Definition.

5. Click OK.

6. Specify the database definition information.

7. Click Test to verify a successful connection.

8. Click OK.

9. Select the node where you want to add the database connection. The OpenScript
database connect method is optional. The database connect is invoked
automatically when calling execute or query methods

10. Select the Script menu and then select Other from the Add sub menu.

11. Expand the Database node and select Connect.

12. Select the database alias and click OK.

13. Select the node where you want to add the database query or execute statement.

14. Select the Script menu and then select Other from the Add sub menu.

15. Expand the Database node and select SQL Query or SQL Execute.

16. Specify the SQL statement to query or execute and click Add.

17. Specify a data type and define a name for the parameter.

18. Click OK.

19. Click OK.

20. Select the node where you want to add the database disconnect.

21. Select the Script menu and then select Other from the Add sub menu.

22. Expand the Database node and select Disconnect.

23. Select the database alias and click OK.

In the Java Code view, the utilities.getSQLService() methods will be
added to the script code for each database script action:

utilities.getSQLService().define("oracledb ",
"oracle.jdbc.driver.OracleDriver", "00.000.000.000", "myuserID",
decrypt("ZgEQLMIUx8EVDAhfAenvyg=="));

utilities.getSQLService().connect("oracledb ");
utilities.getSQLService().query("oracledb ",

"SELECT * FROM Users", list("testdb"));
utilities.getSQLService().execute("oracledb ",

"SELECT * FROM Users", list("sqlexecute1"));
utilities.getSQLService().disconnect("oracledb ");

Using the XPath Generator

12-4 Oracle Application Testing Suite OpenScript User's Guide

12.4 Using the XPath Generator
The Utilities Module includes an XPath generator utility that you can use to generate
an XPath Expression to a selected element from a valid XML file.

To use the XPath Generator:

1. Create an XML file that contains the tags and values to use to generate the XPath
expression. The following is an example of a simple XML file that can be used with
the XPath Generator:

<?xml version="1.0" encoding="utf-8"?>
<Oceans>

<ocean name="Artic"/>
<ocean name="Atlantic"/>
<ocean name="Indian"/>
<ocean name="Pacific"/>
<ocean name="Southern"/>

</Oceans>

2. Create and record a test script. The Tools menu appears on the OpenScript menu
bar for functional and load test scripts.

3. Select XPath Generator from the Tools menu.

4. Click Browse and select the XML file to load.

5. Expand the XML tree under the Tags section of the XML file.

6. Select the XML tag to use to generate the XPath. The generated XPath appears in
the XPath Expression field in a form similar to /Oceans/ocean[1]/@name.

7. Use the Ctrl+C and Ctrl+V keyboard combinations to copy and paste the
generated XPath to a method in the Java Code tab of the script view.

The XPath Expression can be used in the utilities findByXPath API method, as
follows:

utilities.loadXML("filePath").findByXPath(xpath, xml)

A

Command Line Reference A-1

A Command Line Reference

This appendix lists the parameters for running OpenScript scripts from the command
line. All OpenScript scripts may be run from the command line assuming that:

■ All resources that the script depends on, including databank files, object library
files, and other scripts it runs, must be accessible from the machine where the
script is run.

■ The installed version of OpenScript or agent is newer or the same as the version
used to create the script.

To run a script from the command line, type:

[OpenScript Install Dir]\runScript.bat Path\ScriptName.jwg
[options]

If OpenScript is not installed, but the OATS agent is installed, type:

[OATS Install Dir]\agent\runScript.bat Path\ScriptName.jwg
[options]

Path is the full drive and directory path of the file location.

[options] may consist of any number of agent command line settings.

A.1 Specifying Command Line Settings
This section describes how to use the command line settings.

■ Zero or more agent command line settings may be specified using the following
format:

-settingId settingValue

Example:

runScript -jwg
"C:\OracleATS\OpenScript\DefaultRepository\Default!\script1\script1.jwg"
-iterations 5 -iterationDelay 5

■ If a settingValue contains spaces, the value may be enclosed inside
double-quotation marks.

■ If a setting specifies a boolean true/false value, and no settingValue is
specified, then a true value is assumed.

■ Except where specifically noted, all settingId values are NOT case-sensitive.
For example, -iterations 10 means the same thing as -ITERATIONS 10.

Supported Agent Command Line Settings

A-2 Oracle Application Testing Suite OpenScript User's Guide

■ It is possible to view all settings passed to a script by typing the following code
inside an OpenScript script:

info(getSettings().toString());

■ Custom settings may be used in a script and specified on the command line. For
example, consider a script with a setting "todaysURLToTest":

public void run() throws Exception {
info("Today we will test the URL " + getSettings().get("todaysURLToTest"));

}

The setting may be specified on the command line using:

-todaysURLToTest "http://www.oracle.com/"

■ The runScript program can only accept 9 command line arguments. Use the
-propertiesPath setting to specify a file containing a larger number of
properties.

A.2 Supported Agent Command Line Settings
Certain settings only apply to scripts that have a particular module applied. For
example, HTTP load test script settings do not apply to Web functional test scripts.

A.2.1 General Settings
The following table lists the General command line settings.

Setting Description

-dboptions
alias:index:mode,alias:index:
mode,...

Specify which databank records to use when playing
back the script. Use

-dboptions
alias:index:mode,alias:index:mode,...
where alias is a databank alias, index is the first
databank record to retrieve (first record is 1), and
mode is one of the following strings:

■ FIRST_RECORD_ONLY - The Virtual User will
only use the first record assigned to it.

■ USE_ALL_RECORDS - Stop after all records are
used.

■ STOP_AFTER_LAST_RECORD - Stop after the
last record in the databank file is used.

■ LOOP_FOREVER - Loop over all records for as
many iterations are specified in -iterations.
This is the default mode if no mode is specified.

Regardless of the databank setting, the VU will never
run for more iterations than specified in the
-iterations setting.

For example, to loop over records starting at the 5th
row in the databank with alias "fmstocks_data", use:

-dboptions fmstocks_data:5:LOOP_FOREVER

Supported Agent Command Line Settings

Command Line Reference A-3

-delayPercentage mode Specify how long to delay between steps in a script.
Depending on the mode, this setting may be used in
conjunction with other settings. mode should be one
of the following numbers:

-2 No Delay.

1 Use Recorded Delay. Optionally specify a
minimum and maximum amount of delay using
-delayMinSeconds n and -delayMaxSeconds
m, where n and m are given in seconds. If unspecified,
the default minimum and maximum amount of delay
to use are 0 and 5 seconds, respectively.

-1 Delay for a random number of seconds.
Optionally specify a minimum and maximum
amount of delay using -delayMinSeconds n and
-delayMaxSeconds m, where n and m are given in
seconds. If unspecified, the default minimum and
maximum amount of delay to use are 0 and 5
seconds, respectively.

0 Delay for a random number of seconds using a
percentage threshold range around the recorded
delay. Optionally specify a lower and upper
percentage delay range using -delayLower p and
-delayUpper q, where p and q are a decimal value
between 0 and 1. If unspecified, 0 will be used for the
percentage threshold, resulting in the actual recorded
delay being used.

-iterationDelay n Pause for n seconds between iterations.

-iterations n Run n iterations of the script.

-loglocalvudisplay true|false Create VUDisplay.txt and VUDisplay.csv result
output files in the folder from which the agent was
launched. The Virtual User Display output is not
supported by functional test modules. The
loglocalvudisplay setting is case-sensitive and
must be exactly loglocalvudisplay.

-preserveVariables true|false Set to true to preserve variables between iterations,
false to clear variables between iterations. Variables
refer to variables set using the Variables service, i.e.
getVariables().set(), not local Java code
variables.

-propertiesPath path Specify the full path of a Java .properties file
containing additional command line setting
name=value pairs to add.

Example usage:

-propertiesPath
"C:\additionalSettings.properties"

-resultReportFolder path Specify the output folder for all result report files.

If it is not specified, the default output folder will be:
[script folder]\SessionId

Example usage:

-resultReportFolder "C:\result"

The output folder would be:
C:\result\SessionId

Setting Description

Supported Agent Command Line Settings

A-4 Oracle Application Testing Suite OpenScript User's Guide

A.2.2 Browser Settings
The following table lists the Browser command line settings.

-reportName name Override the file name used when generating the
result report HTML file. Specify the name of the
report including an extension, but excluding any
path information. For example:

-reportName results.html

If not specified, OpenScript will determine a
meaningful name for the result report HTML file
based on the type of script being run. For example,
an HTTP load test script calls its report
httpReport.htm. A functional test script such as a
Web functional test script calls its report
FTReport.htm.

-stopVUserOnFailure
true|false

Specify whether or not the virtual user will continue
running more iterations after a fatal error. Use the
Error Recovery settings to control which errors
should be fatal.

-repository repositoryString Specify the physical locations of one or more named
repositories. repositoryString takes the form
repositoryName=fullPathToRepository,rep
ositoryName2=fullPathToRepository2,...
This setting is useful if a script contains a runScript
command that references a script by its repository
name. Always specify the repositoryString
inside double-quotes.

Example usage:

-repository
"Default=D:\OracleATS\OFT,SharedRepository=X:\
OurScripts"

Setting Description

-browser.type type Specify the browser type to use for script playback
where type is one of the following (use exact case
and no spaces):

■ InternetExplorer

■ FireFox

The default is InternetExplorer.

-browser.startupTimeout n Specify n seconds to wait for the browser to start
before timing out. The default is 15 seconds.

Setting Description

Supported Agent Command Line Settings

Command Line Reference A-5

A.2.3 HTTP Settings
The following tables list the HTTP command line settings.

A.2.3.1 Proxy
The following table lists the proxy command line settings.

-browser.overridePath path OpenScript automatically detects where Internet
Explorer and Firefox browser processes physically
exist in the file system. In case the path to one of
these browsers is incorrect, specify an alternative
path to use when launching the specified browser
type. This setting is not intended to be used to
specify the path to an unsupported browser.

Example usage:

-browser.pathOverride
"D:/Programs/Firefox/firefox.exe"

-browser.extraArgs args Specify any additional startup arguments that
OpenSript should use when launching the browser
process on playback. The default is no additional
arguments other than what OpenScript may require
internally.

-browser.hide true|false For Internet Explorer browser only, specify true to
hide the browser during playback. This setting has
no effect on Firefox. If certain actions in the script
require the browser to be visible, such as key presses
and physical mouse clicks, the script will not
playback correctly. The default is false; browser is
visible.

Setting Description

-http.proxyHost host Set the proxy host to the specified host. If no proxy
host is specified, then no proxy is used.

Example usage:

-http.proxyHost "proxyserver.mycompany.com"

-http.proxyPort port_number Set the proxy port to the specified port_number.

Example usage:

-http.proxyPort 1234

-http.proxyUsername username If the proxy host requires authentication, provide the
username. Ignored if http.proxyHost and
http.proxyPort are not set.

-http.proxyPassword password If the proxy host requires authentication, provide the
password. Ignored if http.proxyHost and
http.proxyPort are not set. The password is not
encrypted when provided on the command line.

Setting Description

Supported Agent Command Line Settings

A-6 Oracle Application Testing Suite OpenScript User's Guide

A.2.3.2 Compression
The following table lists the compression command line settings.

A.2.3.3 Headers
The following table lists the header command line settings.

A.2.3.4 Connections
The following table lists the connection command line settings.

-http.nonProxyHosts hostsList Specify a list of host names that the agent should not
forward through the specified proxy defined by
http.proxyHost and http.proxyPort. Separate
multiple host names by a | delimeter. The host name
must match the host being requested, as seen in the
Host HTTP request header.

Setting Description

-http.useGzip true|false Enable GZIP compression. The client will add gzip
to every Accept-Encoding HTTP request header. If
the server responds with GZIP-compressed data,
OpenScript will decompress it. The default value is
true.

-http.useDeflate true|false Enable Deflate compression. The client will add
deflate to every Accept-Encoding HTTP request
header. If the server responds with
Deflate-compressed data, OpenScript will
decompress it. The default value is false.

Setting Description

-http.userAgentHeader Browser Emulation. Specify the User-Agent header
string to use when making requests. It is not required
and harmless to include the User-Agent: prefix in
the value itself. Most OpenScript scripts override this
setting with the User-Agent header value found
during recording.

Example usage:

-http.userAgentHeader "Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.0)"

-http.language language Set the value of the Accept-Language HTTP
header. If no value specified, the agent tries to
determine the language header by looking at the
system language.

-http.version version Specify the HTTP version string to append to each
request, i.e. HTTP/1.1 or HTTP/1.0. If no value
specified, agent will use HTTP/1.1

-http.accept acceptString Specify the HTTP Accept header to send by default
for all requests.

Setting Description

Supported Agent Command Line Settings

Command Line Reference A-7

A.2.3.5 Other
The following table lists other HTTP command line settings.

Setting Description

-http.useKeepAlive true|false Specify whether or not to keep HTTP connections
alive after using them. Default is true to enable
keep-alive connections.

-http.maxKeepAliveRequests n Specify an integer n number of requests to make
before closing a keep-alive connection. Must be used
together with http.useKeepAlive.

-http.maxConnections n Specify an integer n maximum number of
connections a single virtual user may have open
concurrently before blocking (waiting) for a new
connection to become available. This setting only
applies in OpenScript when concurrent sections are
used in the script. The default value if not set is 2
connections per virtual user.

-http.connectionSpeed n Specify the number of bytes/sec n to limit the
download speed. For example, to download at
56KBps, specify 56000. If no value specified, or an
empty string is specified, this method assumes true
line speed should be used.

Setting Description

-http.ignoredUrls list_of_
urls

Specify a comma-separated list of case-insensitive
URLs not to request during playback. The URLs only
need to be the ENDS of URLs, not the entire URLs.

Example usage:

-http.ignoredUrls ".jpg,.gif,.css."

-http.cacheEmulation mode Specify if/how the browser should cache
downloaded contents. Each virtual user maintains its
own cache. The mode value is one of the following
values:

■ 1 - Repeat User; use a cache and do not clear the
cache after each iteration.

■ 2 - First Time User; use a cache and clear the
cache after each iteration.

■ 3 - Do Not Cache; do not cache any contents.

The default value is 3, do not cache.

-http.useCookies true|false Specify whether or not to allow the browser to
remember and use session or persistent cookies
during playback. The default value is true, use
cookies.

-http.downloadLocalFiles
true|false

Specify whether or not the agent should download
files that exist in the local file system. When local files
are not downloaded, the contents are not displayed
in the Oracle Load Testing Virtual User Display, and
it is not possible to solve variables against the
contents, for example. The default value is false, do
not download local files.

Supported Agent Command Line Settings

A-8 Oracle Application Testing Suite OpenScript User's Guide

A.2.4 Functional Test Settings
The following table lists the functional test command line settings.

A.2.5 Oracle EBS/Forms Functional Test Settings
The following table lists the Oracle EBS/Forms functional test command line settings.

A.2.6 Web Functional Test Settings
The following table lists the Web functional test command line settings.

-http.preserveCookies
true|false

Set to true if cookies should be preserved between
iterations. Set to false if cookies will be cleared
between iterations. The default value is false, do
not preserve cookies between iterations.

-http.preserveConnections
true|false

Set to true if the browser should attempt to reuse
any open browser connections if possible between
iterations. Each virtual user maintains its own set of
connections that it never shares with other virtual
users. The default value is true, preserve
connections between iterations.

-http.maxContentSize n Specify the maximum number of kilobytes (KB) to
download from a server for a given request. Set to -1
to mean unlimited download size. The default value
is -1, unlimited.

-http.socketTimeout n Specify the socket timeout in n seconds. The default
value is 120 seconds.

Setting Description

-ft.smartMatch true|false When true, the OpenScript Smart Match object
identification ranking feature is enabled. The default
value is true, enabled.

Setting Description

-formsft.startup_timeout n Specify n seconds to wait for the Forms applet to
start up before failing the script due to a timeout. The
default value is 30 seconds.

-formsft.action_timeout n Specify n seconds to wait when trying to play an
action before timing out because the object required
could not be found. The default value is 30 seconds.

-formsft.capture_screenshot
true|false

Set to true to capture screenshots of the Forms
applet during playback. The default value is true.

-formsft.replay_port n Specify the port used for communication between the
Forms applet and the agent. The default value is
44444.

Setting Description

-web.event_time_out n Specify the Object Timeout n in seconds. If an object
cannot be found in n seconds, the action will fail. The
default value is 60.

Setting Description

Supported Agent Command Line Settings

Command Line Reference A-9

A.2.7 Error Recovery Settings
All Error Recovery settings are specified using the form:

-errorRecoverySettingId action

action is one of the following constants (case-sensitive):

■ Ignore - proceed with the script as if the error did not occur. The error will still be
logged to the console/log file.

■ Warn - report the error, but continue running the script.

■ Fail - report the error and fail the current iteration of the script.

A.2.7.1 General
The following table lists the general error recovery settings.

A.2.7.2 Functional Testing
The following table lists the functional testing error recovery settings.

-web.capture_html true|false Specify whether or not to capture the browser HTML
during playback.

-web.capture_screenshot
true|false

Specify whether or not to capture screenshots during
playback.

-web.clear_cookies true|false Specify whether or not to clear browser cookies
between iterations.

-web.clear_cache true|false Specify whether or not to clear the browser cache
between iterations.

-web.webdom_proxy_port n Specify the port used for communication between the
web browser and the agent. The default value is
7666.

-web.capture_screenshot_
interval n

Specify the number of milliseconds to wait after a
new page is detected and the screenshot is captured.
The default value is 500.

-web.date_format date_format_
string

Specify a date format string to override the default
date format string used when performing date
validation tests.

Setting Description

err.basic.VARIABLE_NOT_FOUND Variable Not Found.

err.basic.CREATE_VARIABLE_ERROR Create Variable Failed

err.basic.FILE_NOT_FOUND File Not Found

err.basic.SEGMENT_PARSER_ERROR Segment Parser Failed

err.basic.BINARY_DECODING_EXCEPTION Binary Decode Failed

err.basic.ENCRYPTION_SERVICE_NOT_
INITIALIZED

Encryption Service Not Initialized

err.basic.GENERAL_SCRIPT_EXCEPTION Unexpected Script Error

Setting Description

Supported Agent Command Line Settings

A-10 Oracle Application Testing Suite OpenScript User's Guide

A.2.7.3 HTTP
The following table lists the HTTP error recovery settings.

A.2.7.4 Oracle EBS/Forms Functional Testing
The following table lists the Oracle EBS/Forms Functional Testing error recovery
settings.

A.2.7.5 Oracle EBS/Forms Load Testing
The following table lists the Oracle EBS/Forms Load Testing error recovery settings.

A.2.7.6 Web Functional Testing
The following table lists the Web Functional Testing error recovery settings.

Setting Description

err.functionalTest.FT_MATCH_ERROR Text Matching Test failed

err.functionalTest.OBJECT_TEST_ERROR Object Test failed

err.functionalTest.TABLE_TEST_ERROR Table Test failed

Setting Description

err.http.ZERO_LENGTH_DOWNLOAD Zero Length Downloads

err.http.MATCH_ERROR Text Matching Test failed

err.http.RESPONSE_TIME_ERROR Response Time error

err.http.SOLVE_ERROR Solve Variable failed

err.http.HTML_PARSING_ERROR HTML Parsing error

err.http.INTERNET_INVALID_URL Invalid URL

err.http.INVALID_HTTP_RESPONSE_CODE Invalid HTTP Response Code

err.http.KEYSTORE_LOAD_ERROR Client Certificate Keystore error

Setting Description

err.formsFT.FORMS_FT_ERROR Oracle Forms Error

Setting Description

err.formsLT.CONNECT_ERROR Forms Connect Error

err.formsLT.IO_ERROR Forms Input/Output Communication
Error

err.formsLT.MATCH_ERROR Forms Content Match Failed

err.formsLT.PLAYBACK_ERROR Forms Playback Error

err.formsLT.COMPONENT_NOT_FOUND Forms Component Not Found

Setting Description

err.webdom.RESPONSE_TIME_ERROR Response Time Error

err.webdom.WEBDOM_SOLVE_ERROR Solve Variable Failed

Supported Agent Command Line Settings

Command Line Reference A-11

A.2.7.7 Utilities
The following table lists the Utilities error recovery settings.

Setting Description

err.utilities.SQL_ERROR SQL Execute Error

err.utilities.XML_PARSING_ERROR XML Parsing Error

err.utilities.CSV_LOADING_ERROR CSV Loading Error

Supported Agent Command Line Settings

A-12 Oracle Application Testing Suite OpenScript User's Guide

B

Error Message Reference B-1

B Error Message Reference

This appendix lists the error messages for the OpenScript Workbench Platform and
HTTP and Siebel Modules.

B.1 Basic Module Error Messages
This section list the Error messages for the OpenScript Workbench Basic Module.

B.1.1 General Script Exceptions

B.1.2 Binary Decoding Exceptions

Error Message Description

File not found: {0} The file was not found.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: ERR_FILE_NOT_FOUND

Failed to create variable {0}, path={1} Failed to create the specified variable.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: ERR_CREATE_VARIABLE_
ERRORCODE

An unexpected exception occurred in
the script. Script section: {0}.

Represents an unexpected exception in the user's
script code.

Error Component ID:
oracle.oats.scripting.modulesbasic.api

Error Code ID: ERR_GENERIC_ERROR_CODE

Error Message Description

Failed to decode character at offset {1}
in string "{0}"

This exception may be thrown while converting a
string into binary using the {@link
oracle.oats.scripting.modules.basic.api.utilities.Binary
Util#hexString2Binary(String)} method.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: ERR_BINARY_DECODE

Basic Module Error Messages

B-2 Oracle Application Testing Suite OpenScript User's Guide

B.1.3 Script Creation Exceptions

Error Message Description

Could not find script "{0}" in
workspace "{1}" in repository "{2}"

Indicates that the specified script could not be found in
the indicated workspace and repository.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: SCRIPT_NOT_FOUND

Script not found: {0} Indicates that the specified script could not be found in
the path.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: SCRIPT_PATH_NOT_FOUND

Exception occurred while reading
script {0}.

An exception occurred while reading the specified
script.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: EXCEPTION_READING_SCRIPT

Failed to load script class {0}. Class
not found.

Indicates that a script class failed to load.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: FAILED_TO_LOAD_SCRIPT_CLASS_
NOT_FOUND

Failed to load virtual user class {0}. Indicates that a virtual user class failed to load.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: FAILED_TO_LOAD_VUSER_CLASS

Failed to create instance of virtual
user class {0}.

Indicates that an instance of a virtual user class failed
to be created.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: FAILED_TO_CREATE_VUSER_
INSTANCE

Failed to load script class {0}. {1} Indicates that a script class failed to load.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: FAILED_TO_LOAD_SCRIPT_CLASS

Failed to create instance of script "{0}". Indicates that an instance of script class failed to be
created.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: FAILED_TO_CREATE_SCRIPT_
INSTANCE

Basic Module Error Messages

Error Message Reference B-3

B.1.4 Segment Parser Exceptions

Error Message Description

Parameter missing: {0} Indicates that a parameter was not found when
parsing {{ }} syntax calling
Transforms.transform(String, Variables)

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: PARAMETER_NOT_FOUND

Unknown segment type: {0} Indicates that a parameter was not recognized when
parsing {{ }} syntax calling
Transforms.transform(String, Variables)

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: UNKNOWN_SEGMENT_TYPE

Unexpected end of string found while
parsing string "{0}"

Indicates that an end of string was not recognized
when parsing {{ }} syntax calling
Transforms.transform(String, Variables)

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: UNEXPECTED_END_OF_STRING

Unexpected parent segment type {0}
found while parsing string "{1}"

Indicates that a parent type was not recognized when
parsing {{ }} syntax calling
Transforms.transform(String, Variables)

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: UNEXPECTED_PARENT_SEGMENT

Unexpected end of function found near
character offset {0} while parsing string
"{1}"

Indicates that a function was not recognized when
parsing {{ }} syntax calling
Transforms.transform(String, Variables)

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: UNEXPECTED_END_OF_
FUNCTION

Function name not registered: {0}. Indicates that a function was not registered. Use
SegmentParser.addCustomTransformFunction(oracle
.oats.scripting.main.CustomFunction functionName)
to register custom transform functions.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: UNREGISTERED_FUNCTION

The following characters cannot be
escaped: {0}

Indicates that a invalid characters were found when
parsing {{ }} syntax.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: INVALID_CHARACTERS_IN_
SEGMENT

Platform Error Messages

B-4 Oracle Application Testing Suite OpenScript User's Guide

B.1.5 Script Service Exceptions

B.1.6 URL Encoding Exceptions

B.1.7 Variable Exceptions

B.2 Platform Error Messages
This section lists the error messages for the OpenScript Workbench platform.

Error Message Description

Failed to create script service {0} Indicates that the specified script service failed.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: FAILED_TO_CREATE_SCRIPT_
SERVICE

Error Message Description

Failed to URL-encode string "{0}" Indicates that the specified URL encoding failed.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: URL_ENCODING_EXCEPTION

Error Message Description

Variable not found: {0} Indicates that a variable could not be found when
evaluating a string containing curly brace {{ }}
formatted data. This exceptions is typically thrown
when {@link
oracle.oats.scripting.modules.basic.api.Transforms#tra
nsform(String,
oracle.oats.scripting.modules.basic.api.Variables)} is
invoked using a string that references a non-existent
variable.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: ERR_VARIABLE_NOT_FOUND

Variable "{0}" not found for string: {1} Indicates that a variable could not be found when
evaluating a string containing curly brace {{ }}
formatted data. This exceptions is typically thrown
when {@link
oracle.oats.scripting.modules.basic.api.Transforms#tra
nsform(String,
oracle.oats.scripting.modules.basic.api.Variables)} is
invoked using a string that references a non-existent
variable.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: VARIABLE_NOT_FOUND_FOR_
STRING

Platform Error Messages

Error Message Reference B-5

B.2.1 Browser Exceptions

B.2.2 SSL Exceptions

B.2.3 TCP Exceptions

Error Message Description

Exception parsing NTLM response: {0} Indicates an error parsing the NTLM response
authentication protocol.

Error Component ID: oracle.oats.lbrowser

Error Code ID: BROWSER_NTLM_EXCEPTION

Cache look-up error. Could not find document with host {0}, file {1} in the
local browser cache. Indicates an error looking for a
document in the browser cache.

Error Component ID: oracle.oats.lbrowser

Error Code ID: BROWSER_CACHE_LOOKUP_
ERROR

Too many redirects. Browser will not redirect more than {0} times.
Comparable WinInet error code: Error 12156:
Redirect Failed. The redirection failed because either
the scheme changed (for example HTTP to FTP) or
all attempts to redirect failed (default is five
attempts).

Error Component ID: oracle.oats.lbrowser

Error Code ID: BROWSER_TOO_MANY_
REDIRECTS

Error Message Description

Error creating new SSL session. Indicates an error creating a Secure Socket Layer
session.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_CREATING_SSL_SESSION

Failed to prepare SSL socket factory. Indicates an error preparing a Secure Socket Layer
socket factory.

Error Component ID: oracle.oats.lbrowser

Error Code ID: FAILED_TO_PREPARE_SOCKET_
FACTORY

Error Message Description

The server name {0} could not be
resolved.

Comparable WinInet error code: Error 12007: Name
Not resolved. The server name could not be
resolved. This happens when Java throws an
UnknownHostException.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_NAME_NOT_
RESOLVED

Platform Error Messages

B-6 Oracle Application Testing Suite OpenScript User's Guide

The attempt to connect to the server {0}
on port {1} failed.

Comparable WinInet error code: Error 12029: Cannot
Connect. The attempt to connect to the server failed.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_CANNOT_
CONNECT

The request to the proxy was invalid. Comparable to WinInet error code: Error 12033:
Invalid Proxy Request. The request to the proxy was
invalid.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_INVALID_
PROXY_REQUEST

Invalid response received from proxy
server: {0}.

Comparable to WinInet error code: Error 12033:
Invalid Proxy Request. The request to the proxy was
invalid.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_INVALID_
PROXY_RESPONSE

The connection with the server has been
terminated.

Comparable to WinInet error code: Error 12030:
Connection aborted. The connection with the server
has been terminated.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_
CONNECTION_ABORTED

Timeout occurred while sending request
to server.

Comparable to WinInet error code: Error 12002:
Timeout. The request has timed out.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_REQUEST_
TIMEOUT

Timeout occurred while waiting for
server response.

Comparable to WinInet error code: Error 12002:
Timeout. The request has timed out.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_RESPONSE_
TIMEOUT

SSL exception occurred while
connecting to {0} on port {1}. {2}

Indicates a Secure Socket Layer exception while
connecting to the indicated server and port.

Error Component ID: oracle.oats.lbrowser

Error Code ID: SSL_CONNECT_EXCEPTION

Failed to bind socket to local port {0} Indicates a failure to bind to the socket on the
indicated local port.

Error Component ID: oracle.oats.lbrowser

Error Code ID: FAILED_TO_BIND

Error Message Description

HTTP Error Messages

Error Message Reference B-7

B.2.4 HTTP Exceptions

B.3 HTTP Error Messages
This section lists the error messages for the HTTP Module.

B.3.1 HTTP Service Exceptions

Error Message Description

The URL is invalid. Comparable to WinInet error code: Error 12005:
Invalid URL. The Uniform Resource Locator (URL) is
invalid.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_INVALID_URL

Failed to write HTTP request header:
{0}.

Comparable to WinInet error code: Error 12030:
Connection Aborted. The connection with the server
has been terminated.

Error Component ID: oracle.oats.lbrowser

Error Code ID: WRITE_REQUEST_EXCEPTION_
HEADER

Failed to write request HTTP postdata:
{1}.

Comparable to WinInet error code: Error 12030:
Connection Aborted. The connection with the server
has been terminated.

Error Component ID: oracle.oats.lbrowser

Error Code ID: WRITE_REQUEST_EXCEPTION_
POSTDATA

Failed to read HTTP response header
from server.

Comparable to WinInet error code: Error 12152:
Invalid Server Response. The server response could
not be parsed.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_READING_HTTP_
RESPONSE_HEADER

Failed to read HTTP response contents
from server.

Comparable to WinInet error code: Error 12152:
Invalid Server Response. The server response could
not be parsed.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_READING_HTTP_
RESPONSE_CONTENTS

Error Message Description

Comparable to WinInet error code: Error
12005: Invalid URL. The Uniform
Resource Locator (URL) is invalid.

Indicates a failure when attempting to validate the
contents of a Siebel page.

Error Component ID:
oracle.oats.scripting.modules.http.api

Error Code ID: ERROR_INTERNET_INVALID_
URL

Oracle Forms Load Test Error Messages

B-8 Oracle Application Testing Suite OpenScript User's Guide

B.4 Oracle Forms Load Test Error Messages
This section lists the error messages for the Oracle Forms Load Test Module.

B.4.1 Connect Errors

Invalid HTTP response code: {0} The HTTP Service browser returns this error if an
HTTP response is received from a web server
containing a response code greater than or equal to
400.

Error Component ID:
oracle.oats.scripting.modules.http.api

Error Code ID: ERROR_INVALID_HTTP_
RESPONSE_CODE

Error parsing HTML. {0} Indicates an unexpected parsing failure in the
HTTP service while parsing HTML.

Error Component ID:
oracle.oats.scripting.modules.http.api

Error Code ID: HTML_PARSING_ERROR

Failed to solve variable {0} Indicates a failure during a match() operation. See
oracle.oats.scripting.modules.http.api.ThinIteratin
gVUserScript#match(String, String, String,
oracle.oats.scripting.modules.http.api.ThinIteratin
gVUserScript.Source, boolean, boolean). The actual
error message is defined by the script. The error
message shown is an example default error
message.

Error Component ID:
oracle.oats.scripting.modules.http.api

Error Code ID: MATCH_ERROR

Error Message Description

Connection Error (Generic): "{0}" Indicates a failure when attempting connect to the
Oracle Forms server.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_GENERIC

Connection Error: Failed to connect to
forms server at URL "{0}

Indicates a failure when attempting connect to the
Oracle Forms server at the specified URL.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_HTTP_
CONNECT_EXCEPTION

Connection Error: Failed to connect to
forms server over socket at "{0}:{1}".

Indicates a failure when attempting connect to the
Oracle Forms server over the specified socket.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_SOCKET_
CONNECT_EXCEPTION

Error Message Description

Oracle Forms Load Test Error Messages

Error Message Reference B-9

Connection Error: No servlet session id
found.

Indicates the session ID for a servlet was not
found.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_
NOSERVLETSESSIONID

Connection Error: Invalid Session Cookie
found.

Indicates the session cookie was invalid.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_NEED_COOKIE

Connection Error: Unable to initialize
runtime process.

Indicates the runtime process for the forms server
could not be initialized.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_FAILED_TO_
INITIALIZE_PROCESS

Connection Error: Runtime process has
unexpectedly terminated.

Indicates an unexpected runtime process
termination.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_PROCESS_
STARTUP_TERMINATED

Connection Error: Session migration in
progress.

Indicates the JSessionID you are using to post
forms navigations to the server is incorrect.

EBS/Forms module plays back a script which is a
combination of HTTP/Forms navigations. After
playing the HTTP navigations successfully a
JSessionID captured from the navigation right
before the Forms Connect statement is used as the
URL to send Forms navigations to the server. If this
URL is not correlated correctly you will see the
error string.

The most common way to fix this issue is to revert
script to recorded and re-correlate it. This should
automatically correlate the Connect statement.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_SESSION_
MIGRATION_IN_PROGRESS

Connection Error: Cannot connect to OID
server.

Indicates a failure connecting to the Oracle Internet
Directory server.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_OID_
CONNECTION_ERROR

Connection Error: The user does not have
proper credentials for OID.

Indicates the user does not have proper
authentication credentials to connect to the Oracle
Internet Directory server.

Error Message Description

Oracle Forms Load Test Error Messages

B-10 Oracle Application Testing Suite OpenScript User's Guide

B.4.2 I/O Errors

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_OID_
AUTHENTICATION_ERROR

Connection Error: SSO user information is
invalid.

Indicates the user Single Sign On authentication
credentials are not valid.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_INVALID_SSO

Connection Error: Multiple Sessions are
disallowed in this transaction.

Indicates that multiple session are not allows for
the transaction attempted.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_MULTIPLE_
SESSIONS

Connection Error: Could not create the
runtime process.

Indicates a failure to create a runtime process on
the Forms server.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_RUNTIME_
PROCESS_CREATION_ERROR

Error Message Description

Unexpected exception occurred while
serializing a Forms Message.

Indicates an error occurred while transferring an
Oracle Forms message between the client and the
server.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR_MESSAGE_
SERIALIZATION_EXCEPTION

Failed to read more than 10 server
messages.

Indicates failed to read server message after ten
tries.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR_FAILED_TO_READ_
TEN_DATA_STREAMS

Forms input/output exception occurred. Indicates an unexpected input/output exception
occurred.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR

Forms encryption exception occurred. Indicates an encryption exception occurred.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Message Description

Oracle Forms Load Test Error Messages

Error Message Reference B-11

B.4.3 Match Errors

Error Code ID: IO_ERROR_ENCRYPTION_
EXCEPTION

Communication with server is broken.
Check nohup logs for detailed error.

Indicates a communication problem with the server.
Run the nohup (no hang up) command an view thee
error log.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR_COMM_BROKEN

Throttling requested with a non-integer
value "{0}".

Indicates Bandwidth throttling (limiting quantity of
data) was requested using and non-integer value.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR_THROTTLING_
NUMBER_FORMAT_EXCEPTION

Failed to read message from server. Indicates an exception occurred when trying to read
an Oracle Forms message from the server.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR_MESSAGE_READ_
EXCEPTION

Failed to read terminal message from
server.

Indicates an exception occurred when trying to read
an Oracle Forms terminal message from the server.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR_TERMINAL_
MESSAGE_READ_EXCEPTION

Error Message Description

Text Matching Test "{0}" failed. Failed to
match "{1}".

Indicates a Text Matching Test failure and shows the
test name and the text to match.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: MATCH_ERROR_TEXT_FAILED_
TO_MATCH

StatusBar Text Matching Test "{0}" failed.
Failed to match "{1}".

Indicates a Status bar Text Matching Test failure and
shows the test name and the text to match.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: MATCH_ERROR_STATUSBAR_
FAILED_TO_MATCH

Error Message Description

Oracle Forms Load Test Error Messages

B-12 Oracle Application Testing Suite OpenScript User's Guide

B.4.4 Component Not Found Errors

B.4.5 Playback Errors

Error Message Description

Component "{0}" does not exist. Indicates an Oracle Forms component does not exist.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: COMPONENT_DOES_NOT_EXIST

Component with handler ID "{0}" does
not exist.

Indicates an Oracle Forms component with the
specified handler ID does not exist.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: MATCH_ERROR_STATUSBAR_
FAILED_TO_MATCH

Component with handler ID "{0}" does
not exist. Last seen alert message: "{1}".

Indicates an Oracle Forms component with the
specified handler ID does not exist and shows the
last alert message.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: COMPONENT_ID_DOES_NOT_
EXIST_WITH_STATUS

Error Message Description

Control "{0}" not initialized. Indicates that control between client and server
could not be initialized.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONTROL_INITIALIZE_ERROR

Cannot send forms messages. Not
connected to forms server.

Indicates no connection to the Oracle Forms server.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: NOT_CONNECTED_ERROR

Invalid state exception. Indicates an invalid state.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: INVALID_STATE_EXCEPTION

Invalid state exception. Server sent the
client a CREATE message for a
component that was already created.
Component handler ID is "{0}".

Indicates an invalid state because the server sent the
client a CREATE message for a component that was
already created and shows the handler ID.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: INVALID_STATE_EXCEPTION_
COMPONENT_ALREADY_EXISTS

Web Error Messages

Error Message Reference B-13

B.5 Siebel Error Messages
This section lists the error messages for the Siebel Module.

B.5.1 Siebel Exceptions

B.6 Web Error Messages
This section lists the error messages for the Web Functional Test Module.

B.6.1 Web Service Exceptions

Malformed Forms message exception.
Forms could not parse the message,
"{0}".

Indicates an incorrectly formed Oracle Forms
message stream and could not parse the message,
"<Message... />" XML.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: MALFORMED_MESSAGE_
EXCEPTION

Unexpected error occurred. {0}. Indicates any other exception error.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: UNEXPECTED_ERROR

Error Message Description

Siebel content failure. {0} Indicates a failure when attempting to validate the
contents of a Siebel page.

Error Component ID:
oracle.oats.scripting.modules.siebel.api

Error Code ID: SIEBEL_CONTENT_FAILURE

Error Message Description

Invalid object path: {0}. Indicates the object identification path is invalid,
where {0} is the full path to the object.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: ERR_INVALID_PATH

Error Message Description

Web Error Messages

B-14 Oracle Application Testing Suite OpenScript User's Guide

Object not found: {0}. Indicates the object identified by {0} was not found.

1. Select OpenScript Preferences from the View
menu.

2. Expand OpenScript and the Playback section.

3. Select Web Functional and increase the Object
Timeout value.

-or-

Verify that object path is correct.

Some window.close() actions may be triggered
by a previous action and playback of a previous
action may close the window automatically. You
may need to remove the window.close()
manually from the Java Code.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: ERR_OBJECT_NOT_FOUND

Timeout occurred waiting for page to
load.

Indicates a timeout occurred waiting for any page
or specific page.

1. Select OpenScript Preferences from the View
menu.

2. Expand OpenScript and the Playback section.

3. Select Web Functional and increase the Object
Timeout value.

-or-

Change
web.browser("<path>").waitForPage(nul
l) to a specific duration. For example,
web.browser("<path>").waitForPage(120
) means wait for 120 seconds. Modify the <path>
to a specific path or set it to use wait for any page.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: ERR_TIMEOUT_WAITING_FOR_
PAGE

Cannot playback the {0} action on this
element.

Indicates the action is not supported by the
element identified by {0}.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: INVALID_ACTION_ON_
ELEMENT

Failed to playback: {0}. Indicates a failure to execute an action on the object
identified by {0}.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: FAIL_TO_PLAYBACK

Failed to get a response after sending the
message: {0}.

Indicates a failure to get a playback result from the
browser after sending the request identified by {0}.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: FAIL_TO_GET_RESULT

Error Message Description

Web Error Messages

Error Message Reference B-15

Launch browser timeout after {0} seconds. Indicates a failure to find a browser within the
duration of 'Startup Timeout' setting ({0} seconds)
in the browser preferences.

1. Select OpenScript Preferences from the View
menu.

2. Expand OpenScript and the General section.

3. Select Browsers and increase the Startup
Timeout value.

-or-

Check if the "Oracle Application Testing Suite
Helper Service" is running, or restart it.

-or-

Close all browsers (IE, FF), run
<installdir>\OpenScript\UninstallBrowserHelpers.
bat and InstallBrowserHelpers.bat.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: FAIL_TO_GET_RESULT

Fail to build message: {0}. Indicates a failure to build a message specified by
{0}. The attributes or Identification of a custom
DOM element is not correct.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: ERR_BUILD_MESSAGE

Error Message Description

Web Error Messages

B-16 Oracle Application Testing Suite OpenScript User's Guide

C

Troubleshooting C-1

C Troubleshooting

This chapter provides information and possible solutions to known issues in
OpenScript.

C.1 Installation
In some instances, the OpenScript Internet Explorer and/or FireFox browser plug-ins
fail to install properly. You can manually install and uninstall Internet Explorer and/or
FireFox browser plug-ins using batch files provided with OpenScript to resolve the
issue.

The following batch files are located in <installdir>\OpenScript

■ InstallBrowserHelpers.bat

■ UninstallBrowserHelpers.bat

Usage: file.bat installation path [install|uninstall] [IE|FF|both]

The following example shows the usage and default values:

InstallBrowserHelpers.bat C:\OracleATS\OpenScript\ install both

See the remarks in the batch files for additional information.

C.2 OpenScript Script Execution in Oracle Test Manager for Web
Applications

The following additional steps are required in order to run the following types of
OpenScript scripts from Oracle Test Manager for Web Applications:

■ Siebel Functional

■ Oracle Forms Functional

■ Web Functional scripts that rely on system input events, such as key press or
mouse click

It is necessary to run these scripts using an interactive desktop of a named Windows
user account that is always logged in.

1. For Siebel and Oracle Forms, the named user's account must have visited the
Siebel or Oracle Forms site at least once to ensure that all necessary ActiveX
controls and plug-ins are installed in the named user's browser.

2. On the Oracle Test Manager for Web Applications agent machine that will run the
scripts, stop the "Oracle Agent Starter Service" and configure it to start manually.

Manual Installation of FireFox Extension

C-2 Oracle Application Testing Suite OpenScript User's Guide

3. On the Oracle Test Manager for Web Applications agent machine, login as the
named Windows user account that will run the scripts. From a command prompt,
run:

C:\OracleATS\agentmanager\bin\AgentManagerService.exe -c
C:\OracleATS\agentmanager\bin\AgentManagerService.conf

where C:\OracleATS is the OATS installed folder.

4. The named user account must remain logged into the system at all times that
scripts will be run.

C.3 Manual Installation of FireFox Extension
In some cases, if Firefox was installed by upgrading from previous version, when
recording scripts of Web Functional Test with Firefox, Firefox is launched but Firefox
does not have the Web DOM extension and Web navigation actions are not recorded.
In this case, you may have to install the extension manually/separately.

The FireFox extension is located in
"<installdir>\OpenScript\plugins\oracle.oats.scripting.modules.webdom.firefoxExten
sion_2.3.0.0400\xpi"

To install the FF extension by manually:

1. Go to the extension directory of the FireFox profile "default". (Usually
C:\Documents and Settings\<username>\Application
Data\Mozilla\Firefox\Profiles\9iusc98z.default\extensions

2. Create a file named "webdom@openscript" in the extension directory.

3. Copy the path of the FireFox extension
("<installdir>\OpenScript\plugins\oracle.oats.scripting.modules.webdom.firefox
Extension_2.3.0.0400\xpi") as the content of file "webdom@openscript".

D

Third-Party Licenses D-1

DThird-Party Licenses

This appendix contains licensing information about certain third-party products
included with Oracle Application Testing Suite 9.00. Unless otherwise specifically
noted, all licenses herein are provided for notice purposes only.

The sections in this appendix describe the following third-party licenses:

■ Apache 2.0 (Apache BCEL, Apache Jakarta, Apache WSS4J XML, Tomcat, TrueZip,
Xalan, XMLBeans)

■ Cryptix

■ GubuSoft Treeview Icons

■ Apache 1.1 (IBM XML Parser)

■ Intel Utilities

■ JaWin

■ JDOM

■ John McTainsh Utility

■ "Generic MIT" (MIT HTML Parser)

■ OpenSSH [IGNORE PARTS WHERE CODE ISN'T USED]

■ Pradeep Sahu Job Scheduler

■ Tanuki Java Service Wrapper

■ TidyCom

■ Tim Taylor Utility

■ Vincent Rijmen's AES Encryption

■ Xstream

■ Zlib

Apache 2.0 (Apache BCEL, Apache Jakarta, Apache WSS4J XML, Tomcat, TrueZip,
Xalan, XMLBeans)
All recipients must receive a copy of the Apache 2.0 license (see the Appendix below
for attachment of the license http://www.apache.org/licenses/LICENSE-2.0.html);

All distributed source code, documentation, and configuration files must retain all
copyright, patent, trademark and attribution notices contained in the Apache
materials;

If the Apache code retains a "NOTICE" text file, then Oracle must include in
distributions of such Apache code the "NOTICE" text file in at least one of the

D-2 Oracle Application Testing Suite OpenScript User's Guide

following locations: (i) within a"NOTICE" text file, (ii) within the source code or
documentation if distributed with the Apache code, (iii) within a display generated by
the distributed code in recognizable third party notice locations; and

Cryptix
"Copyright (c) 1995-2005 The Cryptix Foundation Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: 1. Redistributions of source
code must retain the copyright notice, this list of conditions and the following
disclaimer. 2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. THIS SOFTWARE IS
PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE CRYPTIX FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE."

Doug Lea License
"The Java Software technologies are Copyright © 1994-2000 Sun Microsystems, Inc.
All rights reserved. This software is provided"AS IS", without a warranty of any kind.
ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
EXCLUDED. SUN MICROSYSTEMS, INC. AND ITS LICENSORS SHALL NOT BE
LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO
EVENT WILL SUN MICROSYSTEMS, INC. OR ITS LICENSORS BE LIABLE FOR
ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTIAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN MICROSYSTEMS,
INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. You
acknowledge that Software is not designed, licensed or intended for use in the design,
construction, operation or maintenance of any nuclear facility."

GubuSoft Treeview Icons
"Copyright (C) 2006 Conor O'Mahony (gubusoft@gubusoft.com). All rights reserved.
This application includes the TreeView script. You are not authorized to download
and/or use the TreeView source code from this application for your own purposes. For
your own FREE copy of the TreeView script, please visit the http://www.treeview.net
Web site. THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE."

Third-Party Licenses D-3

Apache 1.1 (IBM XML Parser)
"This product includes software developed by the Apache Software Foundation
(http://www.apache.org/). Copyright © 2000-2003 The Apache Software Foundation.
All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the notice"Copyright © 2000-2003 The
Apache Software Foundation. All rights reserved.", this list of conditions and the
disclaimer below. 2. Redistributions in binary form must reproduce the
notice"Copyright © 2000-2003 The Apache Software Foundation. All rights reserved.",
this list of conditions and the disclaimer below in the documentation and/or other
materials provided with the distribution. 3. The end-user documentation included
with the redistribution, if any, must include the following acknowledgment:"This
product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4.
Neither the component name nor Apache Software Foundation may be used to
endorse or promote products derived from the software without specific prior written
permission. 5. Products derived from the software may not be called"Apache", nor
may"Apache" appear in their name, without prior written permission. THIS
SOFTWARE IS PROVIDED"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
ERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE."

Intel Utilities
"Copyright © 1996 Intel Corporation. All Rights Reserved. Permission is granted to
use, copy and distribute this software and its documentation for any purpose and
without fee, provided, that the above copyright notice and this statement appear in all
copies. Intel makes no representations about the suitability of this software for any
purpose. This software is provided "AS IS." Intel specifically disclaims all warranties,
express or implied, and all liability, including consequential and other indirect
damages, for the use of this software, including liability for infringement of any
proprietary rights, and including the warranties of merchantability and fitness for a
particular purpose. Intel does not assume any responsibility for any errors which may
appear in this software nor any responsibility to update it., this list of conditions and
the disclaimer below in the documentation and/or other materials provided with the
distribution."

JaWin
"This product includes software developed by the DevelopMentor OpenSource Project
(http://www.develop.com/OpenSource). Copyright (c) 2001 DevelopMentor. All
rights reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any,

D-4 Oracle Application Testing Suite OpenScript User's Guide

must include the following acknowlegement: "This product includes software
developed by the DevelopMentor OpenSource Project
(http://www.develop.com/OpenSource)." Alternately, this acknowlegement may
appear in the software itself if and wherever such third-party acknowlegements
normally appear. 4. The name "DevelopMentor" may not be used to name, endorse, or
promote products derived from this software without prior written permission. For
written permission, please contact opensource@develop.com. THIS SOFTWARE IS
PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL DEVELOPMENTOR OPENSOURCE OR ITS
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

JDOM
"This product includes software developed by the JDOM Project
(http://www.jdom.org/). Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: 1. Redistributions of source
code must retain the above copyright notice, this list of conditions, and the following
disclaimer. 2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact <request_
AT_jdom_DOT_org>. 4. Products derived from this software may not be called
"JDOM", nor may "JDOM" appear in their name, without prior written permission
from the JDOM Project Management <request_AT_jdom_DOT_org>. In addition, we
request (but do not require) that you include in the end-user documentation provided
with the redistribution and/or in the software itself an acknowledgement equivalent
to the following: "This product includes software developed by the JDOM Project
(http://www.jdom.org/)." Alternatively, the acknowledgment may be graphical using
the logos available at http://www.jdom.org/images/logos. THIS SOFTWARE IS
PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE."

John McTainsh Utility
"Copyright 1999 © John McTainsh."

Third-Party Licenses D-5

"Generic MIT" (MIT HTML Parser)
"Copyright © <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions: The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS
IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."

OpenSSH [IGNORE PARTS WHERE CODE ISN'T USED]
Part 1: Tatu Ylonen

"Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland. All rights reserved/"

Part 2: CORE SDI

"Cryptographic attack detector for ssh - source code. Copyright (c) 1998 CORE SDI
S.A., Buenos Aires, Argentina. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that this
copyright notice is retained. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES ARE DISCLAIMED. IN NO EVENT SHALL
CORE SDI S.A. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR
MISUSE OF THIS SOFTWARE. Ariel Futoransky <futo@core-sdi.com>
http://www.core-sdi.com"

Part 3: David Mazieres

"Copyright 1995, 1996 by David Mazieres <dm@lcs.mit.edu>. Modification and
redistribution in source and binary forms is permitted provided that due credit is
given to the author and the OpenBSD project by leaving this copyright notice intact."

Part 4: Vincent Rijmen (see separate summary below)

Part 5: UC Berkeley (BSD)

"Copyright (c) 1983, 1990, 1992, 1993, 1995 The Regents of the University of California.
All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the
distribution. 3. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission. THE SOFTWARE IS PROVIDED BY THE REGENTS
AND CONTRIBUTORS "AS-IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDINGBUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL SPECIAL, EXEMPLARY, OR

D-6 Oracle Application Testing Suite OpenScript User's Guide

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS AND SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, ARISING IN ANY WAY OUT OF THE USE OF THE
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

Part 6: BSD-Type License

NOTE: Remaining components of the software are provided under a standard 2-term
BSD license with the following names as copyright holders:

■ Markus Friedl

■ Theo de Raadt

■ Niels Provos

■ Dug Song

■ Aaron Campbell

■ Damien Miller

■ Kevin Steves

■ Daniel Kouril

■ Wesley Griffin

■ Per Allansson

■ Nils Nordman

■ Simon Wilkinson

"Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: 1. Redistributions of source
code must retain the above copyright notice, this list of conditions and the following
disclaimer. 2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. THIS SOFTWARE IS
PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

Pradeep Sahu Job Scheduler
Redistributions of source code or binary form must retain the notice"You are free to
use the code, and modify. Provided you don't remove this comments. It will be great
if you can provide your feedback."

Tanuki Java Service Wrapper
"Copyright © 1999, 2006 Tanuki Software, Inc. Permission is hereby granted, free of
charge, to any person obtaining a copy of the Java Service Wrapper and associated
documentation files (the"Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,

Third-Party Licenses D-7

sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above
copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software. THE SOFTWARE IS PROVIDED"AS IS",
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright © 2001 Silver Egg Technology. Permission is hereby granted, free of charge,
to any person obtaining a copy of this software and associated documentation files
(the"Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions: The above copyright notice and
this permission notice shall be included in all copies or substantial portions of the
Software. THE SOFTWARE IS PROVIDED"AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE."

NOTE

Applications which are distributed with the Wrapper must include the license in a file
called license-wrapper.txt. The file should be located in a location that is obvious to the
user. Furthermore, the Wrapper may not be modified in a way which suppresses the
copyright banner displayed on startup.

"Copyright © 1999, 2006 Tanuki Software, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the Java
Service Wrapper and associated documentation files (the"Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED"AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE."

Portions of the Software have been derived from source code developed by Silver Egg
Technology under the following license:

BEGIN Silver Egg Technology License --

D-8 Oracle Application Testing Suite OpenScript User's Guide

Copyright © 2001 Silver Egg Technology

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the"Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED"AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE."

TidyCom
"Copyright © 1998-2000 World Wide Web Consortium."

Tim Taylor Utility
"Copyright © 2005 Tim Taylor Consulting <http://tool-man.org/> Permission is
hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the"Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions: The
above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software. THE SOFTWARE IS PROVIDED"AS IS",
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."

Vincent Rijmen's AES Encryption
"rijndael-alg-fst.c. @version 3.0 (December 2000). Optimised ANSI C code for the
Rijndael cipher (now AES). @author Vincent Rijmen
vincent.rijmen@esat.kuleuven.ac.be @author Antoon Bosselaers
antoon.bosselaers@esat.kuleaven.ac.be @author Paulo Barreto
paulo.barreto@terra.com.br This code is hereby places in the public domain. THE
SOFTWARE IS PROVIDED BY THE AUTHORS"AS IS", AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMTED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

Third-Party Licenses D-9

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE."

Xstream
"Copyright (c) 2003-2006, Joe Walnes. Copyright (c) 2006-2007, XStream Committers.
All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the
distribution. Neither the name of XStream nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE."

Zlib
"Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler. This software is provided
'as-is', without any express or implied warranty. In no event will the authors be held
liable for any damages arising from the use of this software. Permission is granted to
anyone to use this software for any purpose, including commercial applications, and
to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of
this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the
product documentation would be appreciated but is not required. 2. Altered source
versions must be plainly marked as such, and must not be misrepresented as being the
original software. 3. This notice may not be removed or altered from any source
distribution. Jean-loup Gailly jloup@gzip.org. Mark Adler
madler@alumni.caltech.edu"

D-10 Oracle Application Testing Suite OpenScript User's Guide

Index-1

Index

A
alias, 4-3
AllowAnonUsers setting, 10-3
Apache AXIS parsers, 2-15
Attachments

adding to Web Services, 9-6
authentication, 6-20

B
binary coding exceptions, B-1
Binary Decode Failed setting, 2-6
binary file data

posting, 6-15
boundary, 6-28
Breakpoint View, 1-4, 1-13
browser exceptions, B-5
Browsers preferences, 2-3

C
cache emulation, 6-12
callFunction statement

adding to script, 3-6
chaining scripts, 3-12
Client Certificate Keystore Error setting, 2-7
command line settings, A-1

agent settings, A-2
browser, A-4
compression, A-6
connections, A-6
error recovery, A-9
functional test, A-8
general, A-2
headers, A-6
HTTP, A-5
Oracle EBS/Forms functional test, A-8
other, A-7
proxy, A-5
specifying, A-1
Web functional test, A-8

comments
adding to script results, 3-10

Component Not Found Errors, B-12
compression group, 6-11

Connect errors, B-8
connections group, 6-12
Console View, 1-3, 1-4, 1-12
Control Cannot Be Initialized setting, 2-7
cookies

adding to script, 6-23
enabling, 6-12
preserving between iterations, 6-12
removing from script, 6-24

correlation, 6-25
Create Variable Failed setting, 2-6
CSV Loading Error setting, 2-7

D
Data Driven Testing

See also parameterization, 4-1
data input parameterization, 4-1
data input sources, 4-1
data parameterization GUI view, 4-1
databank files, 4-3
databank variables

substituting, 6-22
databanks

configuring, 4-2
definition, 1-2, 4-2
getting records, 4-3
using, 4-1

debug logging
enabling, 3-14

Debug View, 1-13
delay

adding to script, 3-5
Details View, 1-3, 1-4, 1-11
Developer Perspective, 1-3

available options, 1-5
Breakpoint View, 1-4, 1-13
Console View, 1-4, 1-12
Debug View, 1-4, 1-13
Details View, 1-4, 1-11
Error Log View, 1-4
Navigator View, 1-4, 1-13
Package Explorer View, 1-4, 1-13
Problems View, 1-4, 1-12
Properties View, 1-4, 1-12
Results View, 1-4, 1-12

Index-2

Script View, 1-4, 1-10
Variables View, 1-4, 1-13

DIME, 9-7
Direct Internet Message Encapsulation, 9-7

E
EnableAutomation setting, 10-3
encode strings, 6-28, 6-29
encoding

resetting, 6-14
encryption preferences, 2-3
Encryption Service Not Initialized setting, 2-6
Error Log View, 1-3, 1-4
error recovery

adding to script, 3-11
functional testing, A-9
general, A-9
HTTP, A-10
Oracle EBS/Forms functional testing, A-10
Oracle EBS/Forms load testing, A-10
setting preferences, 2-5
utilities, A-11
Web functional testing, A-10

exceptions, 2-5

F
File Not Found setting, 2-6
filter

See URL filter, 6-10
Finish section

definition, 1-2
for statement

adding to script, 3-6
Form Server Connect Failed setting, 2-7
Forms Functional Test module

setting playback preferences, 2-10
setting record preferences, 2-13

Forms Load Test module
setting record preferences, 2-14

function statement
adding to script, 3-6

Functional Test module
setting playback preferences, 2-8

G
General preferences, 2-2

H
headers group, 6-11
High-Interactivity components, 10-2
HTML Parsing Error setting, 2-7
HTTP error messages, B-7
HTTP exceptions, B-7
HTTP Get Navigation, 6-27
HTTP module

about, 6-1
key features, 6-1

setting playback preferences, 2-9, 6-11
setting record preferences, 2-12, 6-8
using, 6-1

HTTP scripts
adding a DOM variable, 6-19
adding authentication, 6-20
adding cookies, 6-23
adding Get Navigation, 6-27
adding Multipart Post Navigation, 6-28
adding Post Navigation, 6-27
adding server response tests, 6-22
adding text matching tests, 6-21
adding user agent, 6-24
adding variables, 6-19
adding XML Post Navigation, 6-29
deleting cookie, 6-24
deleting variables from, 6-20
finding variable in, 6-20
modifying, 6-16
playing back, 6-11, 6-13
recording, 6-8, 6-10
viewing playback results, 6-13

HTTP service exceptions, B-7

I
Initialize section

definition, 1-2
installation, 1-2

troubleshooting, C-1
Invalid HTTP Response Code setting, 2-7
Invalid URL setting, 2-7
I/O Errors, B-10
iterations, 6-13

J
Java Code Editor, 1-5, 1-11

finish(), 1-11
initialize(), 1-11
run(), 1-11

Java Code Script
creating new project, 3-3

L
log message

adding to script, 3-5

M
Match Errors, B-11
Menu options

Edit, 1-5
File, 1-4
Help, 1-8
Navigate, 1-8
Project, 1-9
Run, 1-7
Script, 1-6
Search, 1-6

Index-3

Tools, 1-8
View, 1-7
Window, 1-9

module error messages, B-1
modules

Oracle Forms Functional Test, 7-1
Oracle Forms Load Test, 8-1
Web Functional Test, 5-1

MTOM, 9-7
Multipart Post Navigation, 6-28

N
navigation

adding, 5-8, 6-25
adding browser navigation, 5-8
adding HTTP Get, 6-27
adding HTTP Post, 6-27
adding multipart Post, 6-28
adding XML Post, 6-29

Navigator View, 1-4, 1-13
nodes

moving in a script, 3-14
Nonce, 9-6

O
object identification

editing libraries, 5-17
setting preferences, 2-8, 2-13, 2-14, 2-15

object identifiers
adding/editing, 5-3

Object Test Failed setting, 2-6
OpenScript

Breakpoint View, 1-13
Console View, 1-12
Correlation interface, 1-2
Data Banking, 1-2
Debug View, 1-13
definition, 1-1
Details View, 1-11
Developer Perspective, 1-3
installing, 1-2
Java Code View, 1-2
menu options, 1-4
Navigator and Package Explorer Views, 1-13
preferences, 1-2
Problems View, 1-12
Properties View, 1-2, 1-12
Results View, 1-12
starting, 1-3
tool bar, 1-10
tree view, 1-2
Variables View, 1-13

OpenScript Workbench, 1-3
options

Configure Databank, 4-2
Substitute Variable, 4-2

Oracle EBS/Forms
creating new project, 3-3

Oracle Forms Functional Test module
about, 7-1
adding Oracle Forms object identifiers, 7-3
editing Oracle Forms object identifiers, 7-3
key features, 7-1
prerequisites, 7-2
setting playback preferences, 2-10, 7-5
setting record preferences, 2-13, 7-3
using, 7-1

Oracle Forms Functional Test scripts
adding Forms actions, 7-6
modifying, 7-6
playing back scripts, 7-5, 7-6
playing back scripts with iterations, 7-6
recording scripts, 7-2, 7-4
using Forms Functional Test API, 7-7

Oracle Forms Load Test error messages, B-8
Oracle Forms Load Test module

Correlation Library, 8-6
key features, 8-1
prerequisites, 8-2
setting Correlation preferences, 8-6
setting record preferences, 2-14, 8-3
using, 8-1

Oracle Forms Load Test scripts
adding Forms actions, 8-5
analyzing Message Logs, 8-8
debugging using the Message Log, 8-7
modifying, 8-5
playing back scripts, 8-4
playing back scripts with iterations, 8-4
recording scripts, 8-2, 8-3
troubleshooting, 8-7
troubleshooting ifError messages, 8-8
using Forms Functional Test API, 6-30, 8-5

Oracle Forms setting, 2-7
Oracle Load Testing for Web Applications

playing back HTTP scripts, 6-14

P
Package Explorer View, 1-4, 1-13
parameterization, 4-1, 6-25
password digest, 9-6
password text, 9-6
platform error messages, B-4
Playback Errors, B-12
playback HTTP scripts

using iterations, 6-13
using Oracle Load Testing for Web

Applications, 6-14
Playback preferences, 2-4

Action Settings, 2-11
Agent Port, 2-11
Capture Screenshot Interval, 2-11
Compression, 2-9
Connections, 2-9
Error Handling, 2-5
Event Timeout, 2-10
General, 2-4

Index-4

Headers, 2-9
Miscellaneous, 2-11
Object Enumeration, 2-8
Object Identification, 2-8
Object Timeout, 2-11
Other, 2-10
Replay Port, 2-11
setting, 6-11
SSL, 2-9
System, 2-5, 2-9

playback results
comparing, 6-14

post data variables, 6-23
Post Navigation, 6-27
preferences, 2-1

Browsers, 2-3
encryption, 2-3
error recovery, 2-5
Forms functional test, 2-10, 2-13
Forms load test, 2-14
functional test, 2-8
general, 2-4
General category, 2-2
HTTP, 2-9, 2-12
playback, 6-11
Playback category, 2-4
Record category, 2-12
repository settings, 2-4
setting, 2-1
setting project, 2-21
setting Siebel Correlation, 11-14
Siebel functional test, 2-14
Step Group category, 2-16
Web functional test, 2-11, 2-14
Web Services, 2-15
workbench settings, 2-4

Problems View, 1-3, 1-4, 1-12
project preferences, 2-21
Properties View, 1-3, 1-4, 1-12
proxy group, 6-11
proxy recording preferences, 6-9
Proxy Settings tab, 6-9

R
Read or Write Message Failed setting, 2-7
record HTTP script, 6-10
record Oracle Forms Functional Test, 7-2
record Oracle Forms Load Test, 8-2
Record preferences, 2-12

Forms load test, 2-14
General, 2-12, 2-13, 2-14, 2-15
Object Identification, 2-13, 2-14, 2-15
Parser Tools, 2-15
Proxy Configuration, 2-16
Proxy Settings, 2-12
URL Filters, 2-13

record Web Functional Test, 5-2
recorded results

comparing, 6-14

regular expression option, 6-21
repository

creating, 3-1
definition, 3-1
managing, 3-2
setting preferences, 2-4

response charset, 6-28
Response Time Error setting, 2-7
Result View

toolbar buttons, 1-13
Results View, 1-3, 1-4, 1-12
Run section

definition, 1-2
runScript statement

adding to script, 3-9

S
script

commands, 1-2
steps, 1-2

script creation exceptions, B-2
script databanks

using, 4-2
script exceptions, B-1
script project

creating, 3-2
script service exceptions, B-4
script variables

using, 6-17
Script View, 1-4, 6-16

Java Code, 1-11
Tree View, 1-11

Scripting Workbench, 1-1
scripts

creating, 3-1
managing, 3-2
modifying, 3-1, 3-4
storing, 3-1

Security Extensions
adding to Web Services, 9-5

Security SOAP Messages with Attachments, 9-7
segment parser exceptions, B-3
Segment Parser Failed setting, 2-6
server response tests, 5-10, 6-22
set variable

adding to script, 3-10
Siebel

creating new project, 3-3
Siebel Correlation Library, 11-14
Siebel error messages, B-13
Siebel exceptions, B-13
Siebel Functional Test module

adding Siebel Object Identifiers, 10-6
editing Siebel Object Identifiers, 10-6
enabling Siebel test automation, 10-3
High-Interactivity components, 10-2
key features, 10-1
setting browser options, 10-4
setting up Siebel environment, 10-2

Index-5

Standard-Interactivity applications, 10-2
testing Siebel applications, 10-2
using, 10-1

Siebel Functional Test scripts
adding Siebel actions, 10-8
creating Siebel scripts, 10-3
determining a Siebel component type, 10-5
modifying scripts, 10-8
recording Siebel functional test scripts, 10-5
setting record preferences, 10-6
starting the Siebel application, 10-4

Siebel Load Test module
using, 11-1

Smart Match
setting preferences, 2-8

SOAP Message Transmission Optimization
Mechanism, 9-7

Solve Variable Failed setting, 2-7
SQL Execute Error setting, 2-7
SSL exceptions, B-5
ssl group, 6-12
Standard-Interactivity applications, 10-2
Step Group preferences, 2-16

basic module, 2-16
Forms functional test, 2-17
Forms load test, 2-18
HTTP, 2-18
Siebel functional test, 2-19, 2-20
Siebel load test, 2-20

step groups
adding to script, 3-4
definition, 3-4

SWA, 9-7
SWECmd=AutoOn, 10-4

T
Table Test Failed setting, 2-6
TCP exceptions, B-5
test cases

adding object tests, 5-12
adding server response test, 5-10, 6-22
adding table tests, 5-14
adding text matching, 5-11, 6-21

Test Modules, 1-1
Tester Perspective, 1-3

Console View, 1-3, 1-12
Details View, 1-3, 1-11
Error Log View, 1-3
Problems View, 1-3, 1-12
Properties View, 1-3, 1-12
Results View, 1-3, 1-12
Script View, 1-3, 1-10

text file encoding
changing, 3-14

Text Matching Failed setting, 2-6
text matching tests

adding, 5-11, 6-21
Tree View, 6-16

Finish section, 1-11

Initialize section, 1-11
Run section, 1-11

troubleshooting, C-1

U
Unexpected Script Error setting, 2-6
URL encoding exceptions, B-4
URL filter

creating, 6-10
setting preferences, 2-13

user agent
adding to script, 6-24

Utilities module
getting database values, 12-3
key features, 12-1
reading CSV files, 12-2
reading text files, 12-1
reading XML files, 12-2
using, 12-1
using XPath generator, 12-4

V
variable

deleting from script, 6-20
finding in script, 6-20

variable exceptions, B-4
Variable Not Found setting, 2-6
Variables View, 1-4, 1-13

W
Web

creating new project, 3-3
Web error messages, B-13
Web Functional Test module

about, 5-1
adding Web object identifiers, 5-3
editing Web object identifiers, 5-3
key features, 5-2
setting playback preferences, 2-11, 5-7
setting record preferences, 2-14, 5-2
using, 5-1

Web Functional Test scripts
adding browser navigation, 5-8
adding object libraries to scripts, 5-10
adding object tests, 5-12
adding server response tests, 5-10
adding table tests, 5-14
adding text matching tests, 5-11
adding wait for page, 5-15
adding web actions, 5-9
editing object libraries, 5-17
inspecting object paths, 5-16
modifying, 5-8
playing back scripts, 5-7, 5-8
playing back scripts with iterations, 5-8
recording scripts, 5-2, 5-6
setting properties, 5-16
substituting databank variables, 5-16

Index-6

using Web Functional Test API, 5-17
Web Service exceptions, B-13
Web Services module

adding WSDL files, 9-2
key features, 9-1
setting record preferences, 2-15, 9-8
using, 9-1

Web Services scripts
adding attachments, 9-6
adding methods to scripts, 9-2
adding post navigation, 9-3
adding security extensions, 9-5
adding Text Matching tests, 9-4
creating new project, 3-3
creating scripts using WSDL Manager, 9-2
editing method parameters, 9-3
modifying scripts, 9-3
recording scripts, 9-8

Web/HTTP
creating new project, 3-3

Workbench
Developer Perspective, 1-3
overview, 1-3
setting preferences, 2-4
Tester Perspective, 1-3

workspaces
creating, 3-1
definition, 3-1
managing, 3-2

WSDL Manager
adding WSDL files, 9-2

X
XML file data

posting, 6-15
reading files, 12-2

XML Parsing Error setting, 2-7
XML Post Navigation, 6-29
XPath Generator, 12-4

Z
Zero Length Downloads setting, 2-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Getting Started With OpenScript
	1.1 OpenScript Features
	1.2 Installing OpenScript
	1.3 Starting the OpenScript Workbench
	1.4 Overview of the OpenScript Main Window (Workbench)
	1.4.1 Tester Perspective
	1.4.2 Developer Perspective
	1.4.3 OpenScript Menu Options
	1.4.3.1 File
	1.4.3.2 Edit
	1.4.3.3 Search
	1.4.3.4 Script
	1.4.3.5 View
	1.4.3.6 Run
	1.4.3.7 Tools
	1.4.3.8 Help
	1.4.3.9 Navigate
	1.4.3.10 Project
	1.4.3.11 Window

	1.4.4 OpenScript Tool Bar
	1.4.5 Script View
	1.4.5.1 Tree View
	1.4.5.2 Java Code

	1.4.6 Details View
	1.4.7 Problems View
	1.4.8 Properties View
	1.4.9 Console View
	1.4.10 Results View
	1.4.11 Navigator and Package Explorer Views
	1.4.12 Debug View
	1.4.13 Variables and Breakpoints Views

	2 Setting Preferences
	2.1 Setting OpenScript Preferences
	2.2 Correlation Category
	2.2.1 Module Correlation Preferences
	2.2.2 Add Library
	2.2.3 Add/Edit Rule

	2.3 General Category
	2.3.1 General Preferences
	2.3.2 Browser Preferences
	2.3.3 Encryption Preferences
	2.3.4 Repository Preferences
	2.3.5 Workbench Preferences

	2.4 Playback Category
	2.4.1 General Playback Preferences
	2.4.1.1 General
	2.4.1.2 Error Handling
	2.4.1.3 System

	2.4.2 Error Recovery Preferences
	2.4.2.1 General
	2.4.2.2 Functional Test
	2.4.2.3 HTTP
	2.4.2.4 Oracle Forms Functional Test
	2.4.2.5 Oracle Forms Load Test
	2.4.2.6 Utilities
	2.4.2.7 Web Functional Test

	2.4.3 Functional Test Preferences
	2.4.3.1 Object Enumeration

	2.4.4 HTTP Preferences
	2.4.4.1 Proxy
	2.4.4.2 Compression
	2.4.4.3 Headers
	2.4.4.4 Connections
	2.4.4.5 SSL
	2.4.4.6 Other

	2.4.5 Oracle EBS/Forms Functional Test Preferences
	2.4.5.1 Event Timeout
	2.4.5.2 Miscellaneous
	2.4.5.3 Replay Port

	2.4.6 Web Functional Test Preferences
	2.4.6.1 Object Timeout
	2.4.6.2 Miscellaneous
	2.4.6.3 Agent Port
	2.4.6.4 Capture Screenshot Interval
	2.4.6.5 Object Tests

	2.5 Record Category
	2.5.1 HTTP Preferences
	2.5.1.1 General
	2.5.1.2 Proxy Settings
	2.5.1.3 URL Filters

	2.5.2 Oracle EBS/Forms Functional Test Preferences
	2.5.2.1 General
	2.5.2.2 Object Identification

	2.5.3 EBS/Forms Load Test Preferences
	2.5.4 Siebel Functional Test Preferences
	2.5.4.1 Object Identification

	2.5.5 Web Functional Test Preferences
	2.5.5.1 General
	2.5.5.2 Object Identification

	2.5.6 Web Services Preferences
	2.5.6.1 General
	2.5.6.2 Parser Tools
	2.5.6.3 Proxy Configuration

	2.6 Step Group Category
	2.6.1 Basic Module Preferences
	2.6.2 Forms Functional Test Preferences
	2.6.3 Forms Load Test Preferences
	2.6.4 HTTP Preferences
	2.6.5 Siebel Functional Test Preferences
	2.6.6 Siebel Load Test Preferences
	2.6.7 Web Functional Test Preferences

	2.7 Setting Project Preferences

	3 Creating and Modifying Scripts
	3.1 Creating Repositories and Workspaces
	3.1.1 Creating a Repository
	3.1.2 Managing Repositories
	3.1.3 Managing Workspaces
	3.1.4 Managing Scripts

	3.2 Creating a Script Project
	3.3 Modifying Scripts
	3.3.1 Adding Step Groups to a Script
	3.3.2 Adding a Delay to a Script
	3.3.3 Adding a Log Message to a Script
	3.3.4 Adding a For Statement to a Script
	3.3.5 Adding a Function to a Script
	3.3.6 Adding a Script to Run from a Script
	3.3.7 Adding a Set Variable to a Script
	3.3.8 Adding Comments to Script Results
	3.3.9 Adding Error Recovery to a Script
	3.3.9.1 Script Types
	3.3.9.2 Constants
	3.3.9.3 Actions

	3.3.10 Chaining Multiple Scripts
	3.3.10.1 Setting the Browser Preferences
	3.3.10.2 Recording Scripts
	3.3.10.3 Creating a Shell Script

	3.3.11 Moving Nodes in a Script

	3.4 Changing Text File Encoding
	3.5 Enabling Debug Logging

	4 Using Databanks
	4.1 Understanding Data Driven Testing (Parameterization)
	4.2 Using Script Databanks
	4.3 Configuring Databanks
	4.4 Getting Databank Records

	5 Using the Web Functional Test Module
	5.1 About the Web Functional Test Module
	5.1.1 Key Features of the Web Functional Test Module

	5.2 Recording Web Functional Tests
	5.2.1 Setting Web Functional Test Record Preferences
	5.2.2 Adding/Editing Object Identifiers
	5.2.2.1 Available Attributes for Web DOM Elements

	5.2.3 Recording Web Functional Test Scripts

	5.3 Playing Back Scripts
	5.3.1 Setting Web Functional Test Playback Preferences
	5.3.2 Playing Back Web Functional Scripts
	5.3.3 Playing Back Web Functional Scripts with Iterations

	5.4 Modifying Scripts
	5.4.1 Adding Browser Navigation to a Script
	5.4.2 Adding Web Actions on Browser Objects
	5.4.3 Adding Object Libraries to a Script
	5.4.4 Adding a Server Response Test
	5.4.5 Adding Text Matching Tests to a Script
	5.4.6 Adding Object Tests
	5.4.7 Adding Table Tests
	5.4.8 Adding a Wait for Page
	5.4.9 Inspecting Object Paths
	5.4.10 Setting Script Properties
	5.4.11 Substituting Databank Variables

	5.5 Editing Object Libraries
	5.5.1 Using the Web Functional Test Module API

	6 Using the HTTP Module
	6.1 About the HTTP Module
	6.1.1 Key Features of the HTTP Module

	6.2 Navigation Editing (Correlation)
	6.2.1 Setting Correlation Preferences
	6.2.2 Adding Correlation Libraries
	6.2.3 Adding and Editing Correlation Rules
	6.2.3.1 Client Set Cookie
	6.2.3.2 Correlate Header
	6.2.3.3 Correlate Referer Header
	6.2.3.4 DOM Correlation Rules
	6.2.3.5 Function/Text Substitution Rules
	6.2.3.6 Substitute Recorded Date
	6.2.3.7 Variable Substitution Rules

	6.3 Recording Scripts
	6.3.1 Setting HTTP Record Preferences
	6.3.2 Recording a New HTTP Script

	6.4 Playing Back Scripts
	6.4.1 Setting HTTP Playback Preferences
	6.4.2 Playing Back HTTP Scripts
	6.4.3 Playing Back HTTP Scripts With Iterations
	6.4.4 Viewing Script Playback Results
	6.4.5 Resetting Encoding
	6.4.6 Comparing Recorded/Playback Results
	6.4.7 Playing Back HTTP Scripts In Oracle Load Testing for Web Applications
	6.4.8 Posting Binary or XML File Data

	6.5 Modifying Scripts
	6.5.1 Understanding the HTTP Module Script View
	6.5.2 Using Script Variables
	6.5.3 Adding a Variable to a Script
	6.5.4 Adding a Solve XPath to a Script
	6.5.5 Finding a Variable in a Script
	6.5.6 Deleting Variables from a Script
	6.5.7 Adding Authentication to a Script
	6.5.8 Adding Text Matching Tests to a Script
	6.5.9 Adding Server Response Tests to a Script
	6.5.10 Substituting Databank Variables
	6.5.11 Substituting Post Data Variables
	6.5.12 Adding a Cookie to a Script
	6.5.13 Removing a Cookie From Script
	6.5.14 Adding a User Agent to a Script

	6.6 Adding Navigation
	6.6.1 Understanding Navigation Editing (Correlation)
	6.6.2 Adding HTTP Get Navigation
	6.6.3 Adding HTTP Post Navigation
	6.6.4 Adding an HTTP Multipart Post Navigation
	6.6.5 Adding an HTTP XML Post Navigation
	6.6.6 Using the HTTP Module API

	7 Using the Oracle Forms Functional Test Module
	7.1 About the Oracle Forms Functional Test Module
	7.1.1 Key Features of the Oracle Forms Functional Test Module
	7.1.2 Prerequisites

	7.2 Recording Oracle EBS/Forms Functional Tests
	7.2.1 Setting Oracle Forms Functional Test Record Preferences
	7.2.2 Adding/Editing Object Identifiers
	7.2.3 Recording Oracle EBS/Forms Functional Test Scripts

	7.3 Playing Back Scripts
	7.3.1 Setting Oracle Forms Functional Test Playback Preferences
	7.3.2 Playing Back Oracle EBS/Forms Functional Scripts
	7.3.3 Playing Back Oracle EBS/Forms Functional Scripts with Iterations

	7.4 Modifying Scripts
	7.4.1 Adding Forms Actions
	7.4.2 Using the Oracle Forms Functional Test Module API

	8 Using the Oracle Forms Load Test Module
	8.1 About the Oracle Forms Load Test Module
	8.1.1 Key Features of the Oracle Forms Load Test Module
	8.1.2 Prerequisites

	8.2 Recording Oracle EBS/Forms Load Tests
	8.2.1 Setting Oracle Forms Load Test Record Preferences
	8.2.2 Recording Oracle EBS/Forms Load Test Scripts

	8.3 Playing Back Scripts
	8.3.1 Playing Back Oracle EBS/Forms Functional Scripts
	8.3.2 Playing Back Oracle EBS/Forms Functional Scripts with Iterations

	8.4 Modifying Scripts
	8.4.1 Adding Forms Actions
	8.4.2 Using the Oracle Forms Load Test Module API

	8.5 Setting Oracle Forms Load Test Correlation Preferences
	8.6 Oracle Forms Load Test Correlation Library
	8.7 Troubleshooting Oracle EBS/Forms Load Test Scripts
	8.7.1 Debugging Using the Message Log
	8.7.1.1 During Recording
	8.7.1.2 Format of the Recorded Log
	8.7.1.3 During Playback

	8.7.2 Analyzing Message Logs
	8.7.3 Troubleshooting Forms ifError Messages

	9 Using the Web Services Module
	9.1 About the Web Services Module
	9.1.1 Key Features of the Web Services Module

	9.2 Creating Web Services Scripts Using WSDL Manager
	9.2.1 Creating the Web Services Script Tree
	9.2.2 Adding WSDL Files to the WSDL Manager View
	9.2.3 Adding Methods to the Script Tree
	9.2.4 Editing Method Parameters in the Details View

	9.3 Modifying Scripts
	9.3.1 Adding a Web Services Post Navigation
	9.3.2 Adding a Text Matching Test
	9.3.3 Adding Security Extensions
	9.3.4 Adding Attachments

	9.4 Recording Web Services Scripts
	9.4.1 Setting Web Services Record Preferences
	9.4.2 Recording Web Services Scripts

	10 Using the Siebel Functional Test Module
	10.1 About the Siebel Functional Test Module
	10.1.1 Key Features of the Siebel Functional Test Module

	10.2 Functional Testing Siebel Applications
	10.2.1 Prerequisites
	10.2.2 Setting up the Siebel Test Environment
	10.2.3 Enabling Siebel Test Automation
	10.2.3.1 Siebel 7.x
	10.2.3.2 Siebel 8.0

	10.2.4 Script Creation Techniques
	10.2.5 Setting Browser Options
	10.2.6 Starting the Siebel Application
	10.2.7 Determining a Siebel Component Type

	10.3 Recording Siebel Functional Test Scripts
	10.3.1 Setting Siebel Functional Test Record Preferences
	10.3.2 Adding/Editing Object Identifiers
	10.3.3 Recording Siebel Functional Test Scripts

	10.4 Modifying Scripts
	10.4.1 Adding Siebel Actions

	11 Using the Siebel Load Test Module
	11.1 Load Testing Siebel Applications
	11.1.1 Prerequisites
	11.1.2 Setting Up Siebel Load Test Environments
	11.1.2.1 Basic Configuration
	11.1.2.2 Floating Load Balancing Test Server
	11.1.2.3 Clustered Web Server Configuration
	11.1.2.4 Clustered Siebel Servers Configuration
	11.1.2.5 Clustered Database Server Configuration

	11.1.3 Siebel Correlation Library
	11.1.4 Script Creation Techniques
	11.1.5 Recording Scripts for Load Tests
	11.1.6 Starting the Siebel Application
	11.1.7 Playing Back Scripts
	11.1.8 Resolving Script Issues
	11.1.8.1 Siebel Entities to Parameterize

	11.1.9 Using Data Banks with Siebel
	11.1.10 Preparing the Siebel Server Manager Commands
	11.1.10.1 Creating the Batch File
	11.1.10.2 Creating the Command Input File
	11.1.10.3 Siebel Statistics
	11.1.10.4 Batch File Location

	11.1.11 Defining ServerStats Metrics
	11.1.12 Defining a ServerStats Configuration
	11.1.13 Importing Pre-Configured Metrics and Profiles to Oracle Load Testing for Web Applications
	11.1.14 Running Load Tests in the Oracle Load Testing for Web Applications Console
	11.1.14.1 Viewing VU Grid
	11.1.14.2 Viewing ServerStats

	11.1.15 Generating Graphs and Reports Using Oracle Load Testing for Web Applications
	11.1.15.1 Creating Custom Runtime Graphs
	11.1.15.2 Creating Custom Reports

	11.2 Setting Siebel Correlation Preferences
	11.3 Siebel Correlation Library

	12 Using the Utilities Module
	12.1 About the Utilities Module
	12.1.1 Key Features of the Utilities Module

	12.2 Using Text File Processing
	12.2.1 Reading Lines of Text from a File
	12.2.2 Reading Text from a CSV File
	12.2.3 Reading Text from an XML File

	12.3 Getting Values from a Database
	12.4 Using the XPath Generator

	A Command Line Reference
	A.1 Specifying Command Line Settings
	A.2 Supported Agent Command Line Settings
	A.2.1 General Settings
	A.2.2 Browser Settings
	A.2.3 HTTP Settings
	A.2.3.1 Proxy
	A.2.3.2 Compression
	A.2.3.3 Headers
	A.2.3.4 Connections
	A.2.3.5 Other

	A.2.4 Functional Test Settings
	A.2.5 Oracle EBS/Forms Functional Test Settings
	A.2.6 Web Functional Test Settings
	A.2.7 Error Recovery Settings
	A.2.7.1 General
	A.2.7.2 Functional Testing
	A.2.7.3 HTTP
	A.2.7.4 Oracle EBS/Forms Functional Testing
	A.2.7.5 Oracle EBS/Forms Load Testing
	A.2.7.6 Web Functional Testing
	A.2.7.7 Utilities

	B Error Message Reference
	B.1 Basic Module Error Messages
	B.1.1 General Script Exceptions
	B.1.2 Binary Decoding Exceptions
	B.1.3 Script Creation Exceptions
	B.1.4 Segment Parser Exceptions
	B.1.5 Script Service Exceptions
	B.1.6 URL Encoding Exceptions
	B.1.7 Variable Exceptions

	B.2 Platform Error Messages
	B.2.1 Browser Exceptions
	B.2.2 SSL Exceptions
	B.2.3 TCP Exceptions
	B.2.4 HTTP Exceptions

	B.3 HTTP Error Messages
	B.3.1 HTTP Service Exceptions

	B.4 Oracle Forms Load Test Error Messages
	B.4.1 Connect Errors
	B.4.2 I/O Errors
	B.4.3 Match Errors
	B.4.4 Component Not Found Errors
	B.4.5 Playback Errors

	B.5 Siebel Error Messages
	B.5.1 Siebel Exceptions

	B.6 Web Error Messages
	B.6.1 Web Service Exceptions

	C Troubleshooting
	C.1 Installation
	C.2 OpenScript Script Execution in Oracle Test Manager for Web Applications
	C.3 Manual Installation of FireFox Extension

	D Third-Party Licenses
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Symbol
 /ZapfDingbats
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (Use these settings to create PDF suitable for publishing as Oracle documentation.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

