

Oracle® Functional Testing
OpenScript User's Guide

Version 9.30

E15488-06

June 2011

Oracle Functional Testing OpenScript User's Guide Version 9.30

E15488-06

Copyright © 2009, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Rick Santos

Contributing Author: Theresa Bandy, Orlando Cabrero, Leo Cloutier, Matt Demeusy, Joe Fernandes, Dan
Hynes, Rich Kuzsma.

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Oracle Enterprise Manager Application Testing Suite contains Classic IDE 3.2.2 with the OpenScript product
and certain Equinox jar files from the Eclipse SDK (the "EPL Programs"). The authors and/or contributors
to the EPL Programs disclaim (i) all warranties and conditions, express and implied, including warranties or
conditions of title and non-infringement, and implied warranties or conditions of merchantability and
fitness for a particular purpose and (ii) all liability for damages, including direct, indirect, special, incidental
and consequential damages, such as lost profits. Any provision of any license provided by Oracle is offered
by Oracle alone and not by any other party. The source code for the EPL Programs and a copy of the Eclipse
Public License is available from Oracle at the following URL:
http://oss.oracle.com/projects/eclipse-member-downloads/.

iii

Contents

Preface .. xvii

Audience.. xvii
Documentation Accessibility ... xviii
Related Documents ... xix
Conventions ... xix

1 Getting Started With OpenScript

1.1 OpenScript Features ... 1-1
1.2 Installing OpenScript.. 1-3
1.3 Starting the OpenScript Workbench .. 1-3
1.4 Overview of the OpenScript Main Window (Workbench)... 1-4
1.4.1 Tester Perspective .. 1-4
1.4.2 Developer Perspective .. 1-4
1.4.3 OpenScript Menu Options ... 1-5
1.4.3.1 File... 1-5
1.4.3.2 Edit.. 1-6
1.4.3.3 Search ... 1-7
1.4.3.4 Script... 1-7
1.4.3.5 View.. 1-9
1.4.3.6 Run... 1-10
1.4.3.7 Tools .. 1-10
1.4.3.8 Help ... 1-11
1.4.3.9 Navigate.. 1-11
1.4.3.10 Project .. 1-12
1.4.3.11 Window... 1-12
1.4.4 OpenScript Tool Bar ... 1-13
1.4.5 Script View... 1-14
1.4.5.1 Tree View.. 1-15
1.4.5.2 Java Code .. 1-15
1.4.6 Details View... 1-15
1.4.7 Problems View .. 1-16
1.4.8 Properties View... 1-16
1.4.9 Console View... 1-16
1.4.10 Results View .. 1-16
1.4.11 Error Log View.. 1-17

iv

1.4.12 Data Table View.. 1-17
1.4.13 Object Details View .. 1-18
1.4.14 Script Variables View ... 1-19
1.4.15 Treeview Breakpoint View.. 1-19
1.4.16 Navigator and Package Explorer Views.. 1-19
1.4.17 Debug View ... 1-20
1.4.18 Declaration View .. 1-20
1.4.19 Variables and Breakpoints Views... 1-20
1.5 About Multi-User Execution .. 1-20
1.6 About Script Assets.. 1-21

2 Setting Preferences

2.1 Setting OpenScript Preferences... 2-1
2.2 Correlation and Validation Category... 2-1
2.2.1 Module Correlation Preferences.. 2-1
2.2.2 Add Library .. 2-2
2.2.3 Add/Edit Rule ... 2-2
2.3 General Category .. 2-2
2.3.1 General Preferences ... 2-3
2.3.2 Browser Preferences .. 2-4
2.3.3 Encryption Preferences ... 2-4
2.3.4 Repository Preferences.. 2-5
2.4 Playback Category .. 2-5
2.4.1 General Playback Preferences .. 2-5
2.4.1.1 General ... 2-5
2.4.1.2 Error Handling.. 2-7
2.4.1.3 System .. 2-7
2.4.2 Debug Preferences ... 2-7
2.4.3 Error Recovery Preferences .. 2-8
2.4.3.1 General ... 2-8
2.4.3.2 Flex Load Test (AMF) .. 2-9
2.4.3.3 Functional Test.. 2-9
2.4.3.4 HTTP .. 2-9
2.4.3.5 Oracle Forms Functional Test ... 2-9
2.4.3.6 Oracle Forms Load Test.. 2-10
2.4.3.7 Utilities .. 2-10
2.4.3.8 Web Functional Test.. 2-10
2.4.4 Functional Test Preferences... 2-10
2.4.4.1 Object Enumeration... 2-11
2.4.4.2 Browser ... 2-12
2.4.5 HTTP Preferences ... 2-12
2.4.5.1 Proxy.. 2-12
2.4.5.2 Compression... 2-12
2.4.5.3 Headers ... 2-13
2.4.5.4 Connections .. 2-13
2.4.5.5 SSL ... 2-14
2.4.5.6 Download Manager .. 2-14

v

2.4.5.7 Caching ... 2-15
2.4.5.8 Miscellaneous... 2-15
2.4.6 Oracle EBS/Forms Functional Test Preferences .. 2-16
2.4.6.1 Event Timeout.. 2-16
2.4.6.2 Miscellaneous... 2-17
2.4.7 Oracle EBS/Forms Load Test Preferences .. 2-17
2.4.7.1 Connection.. 2-17
2.4.7.2 Miscellaneous... 2-17
2.4.8 Shared Data Service Preferences .. 2-17
2.4.9 Web Functional Test Preferences.. 2-18
2.4.9.1 Object Timeout... 2-18
2.4.9.2 Capture Screenshot Interval... 2-18
2.4.9.3 Miscellaneous... 2-18
2.5 Record Category... 2-19
2.5.1 General Preferences .. 2-19
2.5.2 HTTP Preferences ... 2-19
2.5.2.1 General .. 2-19
2.5.2.2 Proxy Settings... 2-21
2.5.2.3 URL Filters.. 2-21
2.5.2.4 Certificates .. 2-22
2.5.2.5 Object Identification .. 2-22
2.5.3 Oracle ADF Functional Test Preferences... 2-23
2.5.3.1 Object Identification .. 2-23
2.5.4 Oracle EBS/Forms Functional Test Preferences .. 2-23
2.5.4.1 General .. 2-24
2.5.4.2 Object Identification .. 2-24
2.5.5 Oracle EBS/Forms Load Test Preferences .. 2-24
2.5.6 Siebel Functional Test Preferences ... 2-25
2.5.6.1 General .. 2-25
2.5.7 Web Functional Test Preferences.. 2-26
2.5.7.1 General .. 2-26
2.5.7.2 Object Identification .. 2-27
2.5.8 Web Services Preferences .. 2-28
2.5.8.1 General .. 2-28
2.5.8.2 Parser Tools .. 2-28
2.5.8.3 Proxy Configuration.. 2-28
2.6 Step Group Category... 2-29
2.6.1 ADF Load Test Preferences ... 2-29
2.6.2 Basic Module Preferences .. 2-29
2.6.3 Flex (AMF) Load Test Preferences ... 2-30
2.6.4 HTTP Preferences ... 2-31
2.6.5 Oracle EBS/Forms Functional Test Preferences .. 2-31
2.6.6 Oracle EBS/Forms Load Test Preferences .. 2-32
2.6.7 Siebel Functional Test Preferences ... 2-33
2.6.8 Siebel Load Test Preferences ... 2-34
2.6.9 Web Functional Test Preferences.. 2-34
2.7 Setting Project Preferences.. 2-35

vi

3 Creating and Modifying Scripts

3.1 Creating Repositories and Workspaces ... 3-1
3.1.1 Creating a Repository.. 3-2
3.1.2 Managing Repositories ... 3-2
3.1.3 Managing Folders (Workspaces)... 3-3
3.1.4 Managing Scripts ... 3-3
3.2 Creating a Script Project... 3-3
3.2.1 Opening Existing Scripts .. 3-6
3.2.1.1 Opening Older Scripts in OpenScript.. 3-6
3.2.1.2 Migrating Older Scripts in OpenScript ... 3-7
3.2.1.3 Running Mixed Versions of Scripts ... 3-7
3.2.1.4 Multiple Users Opening Scripts ... 3-7
3.2.2 Migrating Scripts ... 3-8
3.2.3 Saving Scripts as Templates ... 3-8
3.2.4 Creating New Scripts from Templates ... 3-9
3.2.5 Setting Script Properties ... 3-9
3.2.5.1 Correlation and Validation ... 3-9
3.2.5.2 Modules .. 3-10
3.2.5.3 Script Assets ... 3-10
3.2.5.4 Step Groups .. 3-10
3.2.6 Importing Database Capture Files ... 3-10
3.2.7 Importing Oracle Real User Experience Insight (RUEI) Session Logs...................... 3-13
3.2.8 Exporting Script Playback Settings .. 3-13
3.3 Modifying Scripts... 3-14
3.3.1 Adding Step Groups to a Script.. 3-14
3.3.2 Adding a Delay to a Script .. 3-15
3.3.3 Adding a Log Message to a Script.. 3-15
3.3.4 Adding a For Statement to a Script .. 3-15
3.3.5 Adding a Function to a Script ... 3-16
3.3.6 Adding Script Assets.. 3-19
3.3.7 Adding a Script to Run from a Script .. 3-20
3.3.8 Adding a Function Library.. 3-21
3.3.9 Adding a Synchronization Point to a Script .. 3-22
3.3.10 Adding a Set Variable to a Script ... 3-23
3.3.10.1 Variables with Scope... 3-23
3.3.11 Removing Unchanging Variables... 3-24
3.3.12 Parameterizing URLs ... 3-25
3.3.13 Adding Comments to Script Results.. 3-26
3.3.14 Adding Error Recovery to a Script... 3-26
3.3.14.1 Script Types .. 3-27
3.3.14.2 Constants .. 3-27
3.3.14.3 Actions... 3-28
3.3.15 Verifying Script Actions... 3-28
3.3.15.1 Adding an Error Recovery Action .. 3-28
3.3.15.2 Adding a Has Error Control Statement.. 3-29
3.3.15.3 Adding a Result Object Message... 3-29
3.3.15.4 Actions That Can Be Verified .. 3-30

vii

3.3.16 Chaining Multiple Scripts.. 3-30
3.3.16.1 Setting the Browser Preferences .. 3-30
3.3.16.2 Recording Scripts... 3-30
3.3.16.3 Creating a Shell Script... 3-31
3.3.17 Moving Nodes in a Script .. 3-31
3.3.18 Aborting and Resuming a Script Programmatically ... 3-32
3.4 Changing Text File Encoding... 3-33
3.5 Debugging Scripts.. 3-33
3.5.1 Adding Views to the Tester Perspective ... 3-34
3.5.2 Adding Breakpoints to a Script .. 3-34
3.5.3 Adding a Java Exception Breakpoint... 3-36
3.5.4 Pausing and Resuming Script Playback in Debug Mode ... 3-36
3.5.5 Inspecting and Changing Script Variable Values .. 3-37
3.6 Enabling Debug Logging .. 3-38

4 Using Data Parameterization

4.1 Understanding Data Driven Testing (Parameterization).. 4-1
4.2 Using Script Databanks.. 4-2
4.2.1 Configuring Databanks... 4-3
4.2.2 Creating or Editing Databank Files... 4-6
4.2.3 Getting Databank Records.. 4-7
4.2.3.1 Getting Databank Records Using the API .. 4-8
4.2.3.1.1 Databank API Usage Notes ... 4-8
4.2.3.1.2 Getting a Record Count .. 4-8
4.2.3.1.3 Getting a Specific Record ... 4-8
4.2.3.1.4 Getting the First Record ... 4-8
4.2.3.1.5 Getting the Last Record .. 4-9
4.2.4 Playing Back Scripts With Iterations... 4-9
4.2.4.1 Notes and Limitations... 4-11
4.3 Using Data Tables .. 4-12
4.3.1 Enabling the Data Table Service .. 4-12
4.3.2 Entering Data Manually .. 4-13
4.3.3 Importing Data from a Spreadsheet File ... 4-14
4.3.4 Exporting Data to a Spreadsheet File... 4-14
4.3.5 Changing Data During Script Playback .. 4-14
4.3.5.1 Getting and Setting Cell Values .. 4-15
4.3.5.1.1 Getting Data by Row and Column Value... 4-15
4.3.5.1.2 Getting Data by Sheet, Row, and Column Value .. 4-15
4.3.5.1.3 Setting Data by Row and Column Value.. 4-15
4.3.5.1.4 Setting Data by Sheet, Row, and Column Value ... 4-15
4.3.5.2 Adding and Deleting Rows and Columns... 4-16
4.3.5.2.1 Adding Columns .. 4-16
4.3.5.2.2 Deleting Columns... 4-16
4.3.5.2.3 Adding Rows .. 4-16
4.3.5.2.4 Deleting Rows... 4-16
4.3.5.3 Adding and Deleting Worksheets... 4-17
4.3.5.3.1 Adding Worksheets ... 4-17

viii

4.3.5.3.2 Deleting Worksheets .. 4-17
4.3.5.4 Getting Worksheet, Row, and Column Counts .. 4-17
4.3.5.4.1 Getting Worksheet Counts.. 4-17
4.3.5.4.2 Getting Row Counts... 4-17
4.3.5.4.3 Getting Column Counts .. 4-17
4.3.5.5 Getting the Current Sheet and Row.. 4-18
4.3.5.5.1 Getting the Current Sheet.. 4-18
4.3.5.5.2 Getting the Current Row... 4-18
4.3.5.6 Setting Next and Previous Rows... 4-18
4.3.5.6.1 Getting the Next Row .. 4-18
4.3.5.6.2 Setting the Previous Row .. 4-18
4.3.5.7 Importing and Exporting Documents and Sheets .. 4-18
4.3.5.7.1 Importing an Excel Spreadsheet Document ... 4-18
4.3.5.7.2 Importing Worksheets ... 4-19
4.3.5.7.3 Exporting an Excel Spreadsheet Document ... 4-19
4.3.5.7.4 Exporting Worksheets ... 4-19

5 Using the Web Functional Test Module

5.1 About the Web Functional Test Module ... 5-1
5.1.1 Key Features of the Web Functional Test Module.. 5-2
5.2 Recording Web Functional Tests .. 5-2
5.2.1 Setting Web Functional Test Record Preferences.. 5-2
5.2.2 Adding/Editing Object Identifiers.. 5-3
5.2.2.1 Available Attributes for Web DOM Elements.. 5-5
5.2.3 Recording Web Functional Test Scripts.. 5-6
5.3 Playing Back Scripts ... 5-7
5.3.1 Setting Web Functional Test Playback Preferences .. 5-7
5.3.2 Playing Back Web Functional Scripts ... 5-7
5.3.3 Playing Back Web Functional Scripts with Iterations .. 5-7
5.4 Modifying Scripts.. 5-8
5.4.1 Path Editor Toolbar ... 5-8
5.4.2 Adding Browser Navigation to a Script ... 5-9
5.4.3 Adding Web Actions on Browser Objects.. 5-9
5.4.4 Adding Object Libraries to a Script.. 5-10
5.4.5 Adding a Server Response Test .. 5-11
5.4.6 Adding Text Matching Tests to a Script .. 5-12
5.4.7 Adding Object Tests ... 5-13
5.4.8 Adding Table Tests... 5-15
5.4.8.1 Testing Images in Tables .. 5-16
5.4.9 Adding a Page Title Test.. 5-17
5.4.10 Adding an HTML Test... 5-18
5.4.11 Adding an XML Test .. 5-19
5.4.12 Adding a Wait for Page ... 5-21
5.4.13 Inspecting Object Paths.. 5-22
5.4.14 Using the Object Details View .. 5-22
5.4.14.1 Viewing the Object Path ... 5-24
5.4.14.2 Adding an Object Test .. 5-24

ix

5.4.14.3 Adding a Table Test .. 5-24
5.4.14.4 Saving an Object Path to an Object Library ... 5-24
5.4.15 Setting Script Properties .. 5-25
5.4.16 Substituting Databank Variables.. 5-25
5.4.17 Using the Web Functional Test Module API .. 5-25
5.5 Editing Object Libraries .. 5-26

6 Using the HTTP Module

6.1 About the HTTP Module ... 6-1
6.1.1 Key Features of the HTTP Module.. 6-1
6.2 Navigation Editing (Correlation) ... 6-2
6.2.1 Setting Correlation Preferences ... 6-3
6.2.2 Adding Correlation Libraries... 6-3
6.2.3 Adding and Editing Correlation Rules... 6-3
6.2.3.1 Client Set Cookie... 6-4
6.2.3.2 Correlate Cookie Header... 6-4
6.2.3.3 Correlate Header .. 6-4
6.2.3.4 Correlate Referer Header .. 6-5
6.2.3.5 DOM Correlation Rules ... 6-5
6.2.3.6 Function/Text Substitution Rules.. 6-6
6.2.3.7 Java Session id... 6-8
6.2.3.8 Substitute Recorded Date .. 6-9
6.2.3.9 Title Verification ... 6-9
6.2.3.10 Variable Substitution Rules.. 6-10
6.3 Recording Scripts ... 6-11
6.3.1 Setting HTTP Record Preferences .. 6-11
6.3.2 Recording a New HTTP Script ... 6-12
6.4 Playing Back Scripts .. 6-12
6.4.1 Setting HTTP Playback Preferences... 6-12
6.4.2 Playing Back HTTP Scripts.. 6-13
6.4.3 Playing Back HTTP Scripts With Iterations .. 6-13
6.4.4 Viewing Script Playback Results .. 6-13
6.4.5 Resetting Encoding... 6-14
6.4.6 Comparing Recorded/Playback Results... 6-14
6.4.7 Playing Back HTTP Scripts In Oracle Load Testing .. 6-14
6.4.8 Posting Binary or XML File Data.. 6-15
6.5 Modifying Scripts... 6-16
6.5.1 Understanding the HTTP Module Script View.. 6-16
6.5.2 Using Script Variables.. 6-17
6.5.3 Adding a Variable to a Script.. 6-19
6.5.4 Adding a Solve XPath to a Script ... 6-19
6.5.5 Finding a Variable in a Script.. 6-20
6.5.6 Deleting Variables from a Script... 6-20
6.5.7 Adding Authentication to a Script ... 6-20
6.5.8 Adding Text Matching Tests to a Script .. 6-21
6.5.9 Adding Server Response Tests to a Script... 6-22
6.5.10 Substituting Databank Variables.. 6-22

x

6.5.11 Substituting Post Data Variables .. 6-23
6.5.12 Adding a Cookie to a Script .. 6-24
6.5.13 Removing a Cookie From Script... 6-24
6.5.14 Adding a User Agent to a Script... 6-25
6.6 Adding Navigation.. 6-25
6.6.1 Understanding Navigation Editing (Correlation) ... 6-25
6.6.2 Adding HTTP Get Navigation.. 6-28
6.6.3 Adding HTTP Post Navigation .. 6-28
6.6.4 Adding an HTTP Multipart Post Navigation... 6-29
6.6.5 Adding an HTTP XML Post Navigation ... 6-30
6.6.6 Using the HTTP Module API ... 6-31

7 Using the Oracle EBS/Forms Functional Test Module

7.1 About the Oracle EBS/Forms Functional Test Module .. 7-1
7.1.1 Key Features of the Oracle EBS/Forms Functional Test Module................................. 7-1
7.1.2 Prerequisites ... 7-2
7.2 Recording Oracle EBS/Forms Functional Tests ... 7-2
7.2.1 Setting Oracle EBS/Forms Functional Test Record Preferences................................... 7-3
7.2.2 Adding/Editing Object Identifiers.. 7-3
7.2.3 Recording Oracle EBS/Forms Functional Test Scripts .. 7-4
7.3 Playing Back Scripts ... 7-5
7.3.1 Setting Oracle EBS/Forms Functional Test Playback Preferences 7-5
7.3.2 Playing Back Oracle EBS/Forms Functional Scripts .. 7-6
7.3.3 Playing Back Oracle EBS/Forms Functional Scripts with Iterations 7-6
7.4 Modifying Scripts.. 7-6
7.4.1 Adding Forms Actions.. 7-6
7.4.2 Using the Oracle EBS/Forms Functional Test Module API .. 7-7

8 Using the Oracle EBS/Forms Load Test Module

8.1 About the Oracle EBS/Forms Load Test Module .. 8-1
8.1.1 Key Features of the Oracle EBS/Forms Load Test Module... 8-1
8.1.2 Prerequisites ... 8-2
8.2 Recording Oracle EBS/Forms Load Tests... 8-3
8.2.1 Setting Oracle EBS/Forms Load Test Record Preferences .. 8-3
8.2.2 Recording Oracle EBS/Forms Load Test Scripts .. 8-3
8.3 Playing Back Scripts ... 8-4
8.3.1 Setting Oracle EBS/Forms Load Test Playback Preferences... 8-4
8.3.2 Playing Back Oracle EBS/Forms Load Scripts .. 8-5
8.3.3 Playing Back Oracle EBS/Forms Load Scripts with Iterations 8-5
8.4 Modifying Scripts.. 8-5
8.4.1 Adding Forms Actions.. 8-5
8.4.2 Converting Forms Actions to XML Messages ... 8-6
8.4.3 Using the Oracle EBS/Forms Load Test Module API.. 8-7
8.5 Setting Oracle EBS/Forms Load Test Correlation Preferences.. 8-8
8.6 Oracle EBS/Forms Load Test Correlation Library .. 8-8
8.7 Troubleshooting Oracle EBS/Forms Load Test Scripts ... 8-11
8.7.1 Debugging Using the Message Log ... 8-11

xi

8.7.1.1 During Recording .. 8-11
8.7.1.2 Format of the Recorded Log .. 8-11
8.7.1.3 During Playback .. 8-11
8.7.1.4 After Playback.. 8-12
8.7.2 Analyzing Message Logs ... 8-12
8.7.3 Resolving "Component does not exist" Errors ... 8-12
8.7.4 Troubleshooting Forms ifError Messages... 8-13

9 Using the Oracle Fusion/ADF Functional Test Module

9.1 About the Oracle Fusion/ADF Functional Test Module .. 9-1
9.1.1 Prerequisites ... 9-1
9.1.2 Key Features of the Oracle Fusion/ADF Functional Test Module............................... 9-2
9.2 Configuring the ADF Server ... 9-2
9.2.1 Configuring the WEB-INF/web.xml File... 9-2
9.2.2 Configuring the trinidad-config.xml File ... 9-3
9.2.3 Verifying the Compression Settings ... 9-3
9.3 Recording Oracle Fusion/ADF Functional Tests... 9-3
9.3.1 Setting Oracle ADF Functional Test Record Preferences... 9-4
9.3.2 Adding/Editing Object Identifiers.. 9-4
9.3.3 Recording Oracle Fusion/ADF Functional Test Scripts .. 9-5
9.4 Playing Back Scripts ... 9-6
9.4.1 Playing Back Oracle Fusion/ADF Functional Scripts .. 9-6
9.4.2 Playing Back Oracle Fusion/ADF Functional Scripts with Iterations 9-6
9.5 Modifying Scripts.. 9-7
9.5.1 Adding Fusion/ADF Actions .. 9-7
9.5.2 Oracle Fusion/ADF Functional Test Module API.. 9-8

10 Using the Oracle Fusion/ADF Load Test Module

10.1 About the Oracle Fusion/ADF Load Test Module... 10-1
10.1.1 Key Features of the Oracle Fusion/ADF Load Test Module 10-1
10.2 Recording Oracle Fusion/ADF Load Tests.. 10-2
10.2.1 Recording Oracle Fusion/ADF Load Test Scripts ... 10-2
10.3 Playing Back Scripts .. 10-3
10.3.1 Playing Back Oracle Fusion/ADF Load Scripts... 10-3
10.3.2 Playing Back Oracle Fusion/ADF Load Scripts with Iterations................................ 10-3
10.4 Setting Oracle Fusion/ADF Load Test Correlation Preferences....................................... 10-4
10.5 Oracle Fusion/ADF Load Test Correlation Library ... 10-4
10.6 Oracle Fusion/ADF Load Test Module API.. 10-5

11 Using the Adobe Flex Functional Test Module

11.1 About the Adobe Flex Functional Test Module .. 11-1
11.1.1 Key Features of the Adobe Flex Functional Test Module... 11-1
11.1.2 Prerequisites .. 11-2
11.2 Recording Adobe Flex Functional Tests ... 11-3
11.2.1 Recording Adobe Flex Functional Test Scripts .. 11-3
11.3 Playing Back Scripts .. 11-4

xii

11.3.1 Adobe Flex Object Identification .. 11-4
11.3.2 Playing Back Adobe Flex Functional Scripts .. 11-5
11.3.3 Playing Back Adobe Flex Functional Scripts with Iterations 11-5
11.4 Modifying Scripts... 11-6
11.4.1 Adding Flex Actions... 11-6
11.4.2 Adobe Flex Action Dialog Box.. 11-7
11.4.3 Using the Adobe Flex Functional Test Module API .. 11-10

12 Using the Adobe Flex (AMF) Load Test Module

12.1 About the Adobe Flex (AMF) Load Test Module ... 12-1
12.1.1 Key Features of the Adobe Flex (AMF) Load Test Module.. 12-1
12.2 Recording Adobe Flex (AMF) Load Tests .. 12-2
12.2.1 Recording Adobe Flex (AMF) Load Test Scripts ... 12-2
12.3 Playing Back Scripts .. 12-3
12.3.1 Playing Back Adobe Flex (AMF) Load Scripts ... 12-3
12.3.2 Playing Back Adobe Flex (AMF) Load Scripts with Iterations 12-3
12.4 Modifying Scripts... 12-4
12.4.1 Adding Adobe Flex (AMF) Load Actions... 12-4
12.4.2 Using the Adobe Flex (AMF) Load Test Module API ... 12-5
12.5 Setting Adobe Flex (AMF) Load Test Correlation Preferences ... 12-5
12.6 Adobe Flex (AMF) Load Test Correlation Library.. 12-5

13 Using the Web Services Module

13.1 About the Web Services Module ... 13-1
13.1.1 Key Features of the Web Services Module.. 13-1
13.2 Creating Web Services Scripts Using WSDL Manager... 13-2
13.2.1 Creating the Web Services Script Tree... 13-2
13.2.2 Adding WSDL Files to the WSDL Manager View... 13-2
13.2.3 Adding Methods to the Script Tree.. 13-2
13.2.4 Editing Method Parameters in the Details View.. 13-3
13.3 Modifying Scripts... 13-3
13.3.1 Adding a Web Services Post Navigation .. 13-4
13.3.2 Adding a Text Matching Test.. 13-4
13.3.3 Adding Security Extensions .. 13-5
13.3.4 Adding Attachments .. 13-6
13.3.5 Web Services Module API ... 13-8
13.4 Recording Web Services Scripts... 13-8
13.4.1 Setting Web Services Record Preferences ... 13-8
13.4.2 Recording Web Services Scripts ... 13-9

14 Using the Siebel Functional Test Module

14.1 About the Siebel Functional Test Module .. 14-1
14.1.1 Key Features of the Siebel Functional Test Module .. 14-1
14.2 Functional Testing Siebel Applications .. 14-2
14.2.1 Prerequisites .. 14-2
14.2.2 Setting up the Siebel Test Environment .. 14-2

xiii

14.2.3 Enabling Siebel Test Automation ... 14-3
14.2.3.1 Siebel 7.x.. 14-3
14.2.3.2 Siebel 8.x.. 14-3
14.2.4 Script Creation Techniques ... 14-3
14.2.5 Setting Browser Options .. 14-4
14.2.6 Starting the Siebel Application ... 14-4
14.2.7 Determining a Siebel Component Type .. 14-5
14.3 Recording Siebel Functional Test Scripts ... 14-5
14.3.1 Setting Siebel Functional Test Record Preferences .. 14-6
14.3.2 Adding/Editing SI Element and Site Map Link Paths.. 14-6
14.3.3 Recording Siebel Functional Test Scripts .. 14-7
14.4 Modifying Scripts... 14-7
14.4.1 Adding Siebel Actions.. 14-7
14.4.2 Handling Non-Standard Siebel Dialog Boxes .. 14-8
14.4.3 Siebel Functional Test Module API.. 14-10

15 Using the Siebel Load Test Module

15.1 About the Siebel Load Test Module.. 15-1
15.1.1 Key Features of the Siebel Load Test Module .. 15-1
15.1.2 Prerequisites .. 15-2
15.2 Load Testing Siebel Applications .. 15-2
15.2.1 Setting Up Siebel Load Test Environments .. 15-2
15.2.1.1 Basic Configuration... 15-2
15.2.1.2 Floating Load Balancing Test Server .. 15-3
15.2.1.3 Clustered Web Server Configuration ... 15-3
15.2.1.4 Clustered Siebel Servers Configuration ... 15-3
15.2.1.5 Clustered Database Server Configuration ... 15-3
15.2.2 Siebel Correlation Library ... 15-3
15.2.3 Script Creation Techniques ... 15-3
15.2.4 Recording Scripts for Load Tests.. 15-4
15.2.5 Starting the Siebel Application ... 15-4
15.2.6 Playing Back Scripts ... 15-4
15.2.7 Resolving Script Issues... 15-5
15.2.7.1 Siebel Entities to Parameterize .. 15-5
15.2.8 Using Databanks with Siebel .. 15-6
15.2.9 Preparing the Siebel Server Manager Commands... 15-7
15.2.9.1 Creating the Batch File.. 15-7
15.2.9.2 Creating the Command Input File .. 15-8
15.2.9.3 Siebel Statistics ... 15-8
15.2.9.4 Batch File Location .. 15-10
15.2.10 Defining ServerStats Metrics... 15-10
15.2.11 Defining a ServerStats Configuration.. 15-11
15.2.12 Importing Pre-Configured Metrics and Profiles to Oracle Load Testing............... 15-12
15.2.13 Running Load Tests in the Oracle Load Testing Console... 15-13
15.2.13.1 Viewing VU Grid... 15-13
15.2.13.2 Viewing ServerStats .. 15-13
15.2.14 Generating Graphs and Reports Using Oracle Load Testing................................... 15-13

xiv

15.2.14.1 Creating Custom Runtime Graphs ... 15-13
15.2.14.2 Creating Custom Reports ... 15-14
15.3 Setting Siebel Correlation Preferences .. 15-14
15.4 Siebel Correlation Library... 15-15
15.5 Siebel Script Functions .. 15-16

16 Using the Utilities Module

16.1 About the Utilities Module... 16-1
16.1.1 Key Features of the Utilities Module ... 16-1
16.2 Using Text File Processing.. 16-1
16.2.1 Working with Text Files... 16-1
16.2.2 Working with CSV Files .. 16-2
16.2.3 Working with XML Files ... 16-3
16.3 Getting Values from a Database .. 16-3
16.4 Using the XPath Generator... 16-5

17 Using the Shared Data Module

17.1 About the Shared Data Module ... 17-1
17.1.1 Key Features of the Shared Data Module ... 17-1
17.2 Setting Shared Data Preferences .. 17-1
17.3 Using the Shared Data Service ... 17-2
17.3.1 Basic Scenarios .. 17-2
17.3.2 Enabling the Shared Data Service .. 17-2
17.3.3 Setting the Password Encryption ... 17-3
17.3.4 Setting the Connection Parameters .. 17-3
17.3.5 Creating a Shared Data Queue ... 17-4
17.3.6 Inserting Data into a Shared Data Queue ... 17-4
17.3.7 Getting Data from a Shared Data Queue .. 17-5
17.3.8 Clearing a Shared Data Queue ... 17-6
17.3.9 Destroying a Shared Queue .. 17-6
17.3.10 Creating a Shared Data Hash Map... 17-6
17.3.11 Inserting Data into a Shared Data Hash Map... 17-6
17.3.12 Getting Data from a Shared Data Hash Map.. 17-7
17.3.13 Clearing a Shared Data Hash Map... 17-8
17.3.14 Destroying a Shared Data Hash Map .. 17-8
17.4 Using The Shared Data API.. 17-8

A Command Line Reference

A.1 Specifying Command Line Settings ... A-1
A.2 Supported Agent Command Line Settings ... A-2
A.2.1 General Settings .. A-2
A.2.2 Browser Settings .. A-10
A.2.3 HTTP Settings ... A-11
A.2.3.1 Proxy ... A-11
A.2.3.2 Compression .. A-12
A.2.3.3 Headers .. A-12

xv

A.2.3.4 Connections ... A-13
A.2.3.5 Other ... A-13
A.2.3.6 Download Manager ... A-15
A.2.4 Functional Test Settings .. A-15
A.2.5 Oracle EBS/Forms Functional Test Settings .. A-16
A.2.6 Oracle EBS/Forms Load Test Settings .. A-16
A.2.7 Shared Data Settings ... A-17
A.2.8 Web Functional Test Settings ... A-18
A.2.9 Error Recovery Settings .. A-19
A.2.9.1 General ... A-20
A.2.9.2 Flex Load Testing (AMF) ... A-20
A.2.9.3 Functional Testing .. A-20
A.2.9.4 HTTP .. A-20
A.2.9.5 Oracle EBS/Forms Functional Testing .. A-21
A.2.9.6 Oracle EBS/Forms Load Testing .. A-21
A.2.9.7 Web Functional Testing ... A-21
A.2.9.8 Utilities ... A-21

B Error Message Reference

B.1 Basic Module Error Messages .. B-1
B.1.1 General Script Exceptions.. B-1
B.1.2 Binary Decoding Exceptions ... B-1
B.1.3 Script Creation Exceptions .. B-2
B.1.4 Segment Parser Exceptions ... B-3
B.1.5 Script Service Exceptions ... B-4
B.1.6 URL Encoding Exceptions... B-4
B.1.7 Variable Exceptions .. B-4
B.2 Platform Error Messages... B-4
B.2.1 Browser Exceptions .. B-5
B.2.2 SSL Exceptions .. B-5
B.2.3 TCP Exceptions ... B-5
B.2.4 HTTP Exceptions .. B-7
B.3 HTTP Error Messages.. B-7
B.3.1 HTTP Service Exceptions... B-7
B.4 Oracle EBS/Forms Functional Test Error Messages... B-8
B.4.1 Oracle EBS/Forms Functional Test.. B-8
B.5 Oracle Forms Load Test Error Messages.. B-10
B.5.1 Connect Errors... B-10
B.5.2 I/O Errors .. B-12
B.5.3 Match Errors .. B-13
B.5.4 Component Not Found Errors.. B-13
B.5.5 Playback Errors ... B-14
B.6 Shared Data Error Messages .. B-14
B.6.1 Shared Data Exceptions ... B-15
B.7 Siebel Error Messages.. B-16
B.7.1 Siebel Exceptions... B-16
B.8 Web Error Messages .. B-16

xvi

B.8.1 Web Service Exceptions ... B-16

C Troubleshooting

C.1 Installation .. C-1
C.2 OpenScript Script Execution in Oracle Test Manager .. C-1
C.3 Manual Installation of Firefox Extension ... C-2
C.4 Installation of Security Certificate in Internet Explorer ... C-2

D Third-Party Licenses

Index

xvii

Preface

Welcome to the Oracle OpenScript User's Guide. Oracle OpenScript is an extensible,
standards-based test automation platform designed to test the next generation of Web
applications. This guide explains how to use the features and options of Oracle
OpenScript for testing Web applications.

Audience
This document is intended for test engineers who will be developing Oracle
OpenScript scripts for regression and performance (load and scalability) testing of a
Web site or application. The guide does require an understanding of software or Web
application testing concepts. Test engineers using Oracle OpenScript should be
familiar with the concepts of regression testing, load testing, and scalability testing.

The record/playback paradigm of Oracle OpenScript does not require any
programming experience to develop scripts for testing. However, the advanced
programming features available in Oracle OpenScript do require experience with the
Java programming language. The programming sections and code examples of this
manual assume that you understand programming concepts in Java.

Using This Guide
This guide is organized as follows:

Chapter 1, "Getting Started With OpenScript" introduces OpenScript and provides an
overview of the features and user interface.

Chapter 2, "Setting Preferences" explains the available options in the OpenScript
Preferences categories.

Chapter 3, "Creating and Modifying Scripts" explains the procedures for creating and
modifying basic scripts in OpenScript.

Chapter 4, "Using Data Parameterization" explains the concepts and procedures of
Data Driven Testing using Databanks.

Chapter 5, "Using the Web Functional Test Module" provides instructions on
configuring and using the OpenScript Web Functional Test Module for functional
testing of applications through the Document Object Model (DOM) of the Web
browser.

Chapter 6, "Using the HTTP Module" provides instructions on configuring and using
the OpenScript HTTP Module for load testing of Web applications through the
underlying HTTP protocol traffic.

xviii

Chapter 7, "Using the Oracle EBS/Forms Functional Test Module" provides
instructions on configuring and using the OpenScript Oracle Forms Functional Test
Module for functional testing of Oracle Forms web applications.

Chapter 8, "Using the Oracle EBS/Forms Load Test Module" provides instructions on
configuring and using the OpenScript Oracle Forms Load Test Module for load testing
of Oracle Forms web applications.

Chapter 9, "Using the Oracle Fusion/ADF Functional Test Module" provides
instructions on configuring and using the OpenScript Oracle Fusion/ADF Functional
Test Module, which provides support for functional testing of Oracle Application
Development Framework (ADF)-based applications.

Chapter 10, "Using the Oracle Fusion/ADF Load Test Module" provides instructions
on configuring and using the OpenScript Oracle Fusion/ADF Load Test Module,
which provides support for load testing of Oracle Application Development
Framework (ADF)-based applications.

Chapter 11, "Using the Adobe Flex Functional Test Module" provides instructions on
configuring and using the OpenScript Adobe Flex Functional Test Module, which
provides support for functional testing of Adobe Flex-based web applications that use
the Adobe Flex Automation Framework.

Chapter 12, "Using the Adobe Flex (AMF) Load Test Module" provides instructions on
configuring and using the OpenScript Adobe Flex (AMF) Load Test Module, which
provides support for load testing of Adobe Flex-based web applications that use the
Action Message Format (AMF).

Chapter 13, "Using the Web Services Module" provides instructions on using the
OpenScript Web Services Module for testing Web Services.

Chapter 14, "Using the Siebel Functional Test Module" provides instructions on
configuring and using the OpenScript Siebel Functional Test Module for testing Siebel
applications through the Document Object Model (DOM) of the Web browser and the
Siebel test automation framework.

Chapter 15, "Using the Siebel Load Test Module" provides instructions on configuring
and using the OpenScript Siebel Load Test Module for load testing Siebel web
applications through the underlying HTTP protocol traffic.

Chapter 16, "Using the Utilities Module" provides instructions on using the
OpenScript Utilities Module, which provides commonly used testing functions.

Chapter 17, "Using the Shared Data Module" provides instructions for using the
Shared Data Module for transferring data using message queues and hash maps.

Appendix A, "Command Line Reference" provides reference information for command
line settings.

Appendix B, "Error Message Reference" provides reference information for error
messages.

Appendix C, "Troubleshooting" provides basic troubleshooting information.

Appendix D, "Third-Party Licenses" contains copyright information about certain
third-party products used with Oracle Application Testing Suite.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

xix

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Application Testing
Suite documentation set:

■ Oracle Application Testing Suite Release Notes

■ Oracle Application Testing Suite Getting Started Guide

■ Oracle Functional Testing OpenScript User’s Guide

■ Oracle Load Testing Load Testing User’s Guide

■ Oracle Load Testing Load Testing ServerStats Guide

■ Oracle Test Manager Test Manager User’s Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xx

1

Getting Started With OpenScript 1-1

1 Getting Started With OpenScript

OpenScript is an updated scripting platform for creating automated extensible test
scripts in Java. Combining an intuitive graphical interface with the robust Java
language, OpenScript serves needs ranging from novice testers to advanced QA
automation experts.

OpenScript is built on a standards-based platform and provides the foundation for
OpenScript Modules and Application Programming Interfaces (APIs). OpenScript
APIs are used to build scripts for testing Web applications. The OpenScript API
consists of a set of procedures that can be used to customize the scripts within the
development environment. The API can also be used by advanced technical users to
enhance scripts for unique testing needs.

1.1 OpenScript Features
OpenScript is the next generation environment for developing Oracle Application
Testing Suite scripts for Web application testing. OpenScript provides the following
features:

■ Scripting Workbench - OpenScript provides an Eclipse -based scripting
Workbench where you can create and run your automated test scripts. Users can
use the Tree View graphical scripting interface for creating and editing scripts
through the UI. Users can also switch to the Java Code View programming
interface and leverage the integrated Eclipse IDE for creating and editing their
scripts programmatically.

Functional test scripts created in OpenScript can be played back to test and
validate application functionality. Load test scripts created in OpenScript will run
in Oracle Load Testing for application load testing, allowing users to simulate
hundreds our thousands of users executing scripts at the same time.

■ Test Modules - The OpenScript Test Modules provide application-specific test
automation capabilities. Each Test Module is custom built to test a specific
application or protocol. OpenScript includes several functional and load testing
modules for testing Web-based applications. Additional modules can be
developed for the OpenScript platform.

OpenScript’s Test Module interface is completely open and extendable by
end-users. Users can leverage the Test Module API to build their own modules for
testing specific applications or can extend an existing module to add custom
functionality.

■ Graphical/Tree View Scripting Interface - The OpenScript Tree View scripting
interface provides a graphical representation of the test script. Multiple script

OpenScript Features

1-2 Oracle Functional Testing OpenScript User's Guide

windows can actually be open at the same time. Within each script window, the
Tree View is broken down into 3 main script sections:

■ Initialize: For script commands that only execute once on the first iteration

■ Run: Main body of the script for commands that will run on every iteration

■ Finish: For script commands that only execute once on the last iteration

Within each section, script Steps and Navigation nodes can be created
automatically during script recording or manually through the Tree View user
interface. Additional script commands will also be represented as nodes in Tree
View including test cases, data inputs, log messages, etc. Each Tree View node has
a corresponding representation in the Java Code View.

■ Programming/Code View Scripting Interface - The OpenScript Java Code View
scripting interface provides a Java representation of the test script. This view
provides full access to Eclipse IDE for creating, editing & debugging script code.
Script commands in Java are mapped to a corresponding representation in the Tree
View. Users can edit their script in either the code or tree view and changes will be
automatically reflected in both views.

■ Properties View & Results View - The OpenScript Properties View allows users to
view detailed properties for selected script nodes in the Tree View. The Results
View shows detailed step-by-step results of script playback which are linked to the
OpenScript display window.

■ Data Parameterization - OpenScript allows users to parameterize script data
inputs to perform data driven testing. OpenScript uses the following types of data
sources:

– Databank - one or more external comma-separated value (CSV) or text (TXT)
files that provides inputs to script parameters. Multiple Databank files can be
attached to a single script and users can specify how OpenScript assigns data
during script playback. Script playback iterations can cycle through the
Databank sequentially, randomly, and by shuffling the data. Databanks can be
used with functional and load test scripts. See Section 4.2, "Using Script
Databanks" for additional information.

– Database - a SQL query that extracts data from an Oracle Database in the same
format as a Databank CSV or TXT file. See Section 4.2, "Using Script
Databanks" for additional information.

– Data Table - a spreadsheet table that specifies the data by row and column.
The data in the table can be entered manually of imported from an Excel
spreadsheet file. The Data Table API provides methods for accessing the data
in the table programmatically. See Section 4.3, "Using Data Tables" for
additional information.

– Shared Data Service - a Shared Data Module API that provides methods for
sharing data between Virtual User agents using a shared data queue or hash
map. See Chapter 17, "Using the Shared Data Module" for additional
information.

Users can select any data inputs for their script and then substitute a variable to
drive the input from the data source during playback.

■ Correlation - The OpenScript Correlation interface allows users to create
correlation libraries to automatically parameterize dynamic requests during
playback. Correlation libraries contain rules for automatically handling dynamic
request parameters such as urls, query strings and post data for the load testing
modules.

Starting the OpenScript Workbench

Getting Started With OpenScript 1-3

■ OpenScript Preferences - The OpenScript Preferences interface is where users
specify settings to control script recording, script playback, correlation and general
preferences for the OpenScript Workbench.

■ Multi-User Execution - launch more than one OpenScript instance under separate
named Windows user accounts. Playback for multiple scripts is supported using
any of the following:

– OpenScript Playback button

– Command-Line Interface

– Oracle Load Testing

– Oracle Test Manager

1.2 Installing OpenScript
To install OpenScript:

1. Go to: http://www.oracle.com/technetwork/oem/app-test/index.html.

2. Download the product Zip file from the Web site and save it to a temporary
directory on your hard disk. See the Oracle Application Testing Suite Release Notes for
additional information about the product zip files.

3. Unzip the download Zip file and run setup.bat.

4. Follow the setup instructions to install the Oracle Application Testing Suite.

During the Oracle Application Testing Suite installation, you will be required to
enter a master password to be used with Oracle Application Testing Suite
products. Remember this password. It will be required to log in to the Administrator,
Oracle Load Testing, and Oracle Test Manager. The password is not required for
OpenScript.

5. Select OpenScript from the Oracle Application Testing Suite start menu to start
the OpenScript Workbench.

1.3 Starting the OpenScript Workbench
To start the OpenScript workbench:

From the Start menu:

■ Select Programs from the Start menu and then select OpenScript from the Oracle
Application Testing Suite menu.

Note: OpenScript requires Administrator Privileges to be installed
and uninstalled. It does not require Administrator Privileges to run.

Note: A product establishes its Default Repository in
$installDir/OFT, where $installDir is the directory where Oracle
Application Testing Suite is installed or, if Oracle Application Testing
Suite is not installed, where OpenScript is installed.

Overview of the OpenScript Main Window (Workbench)

1-4 Oracle Functional Testing OpenScript User's Guide

1.4 Overview of the OpenScript Main Window (Workbench)
The OpenScript main window (Workbench) is where you perform the majority of your
test development activities. The main window consists of the perspectives used for
developing scripts. OpenScript includes a Tester Perspective and a Developer
Perspective. The menu bar, toolbar, and the views and editors vary depending upon
which perspective is being used. The following sections describe the functionality and
various elements of the OpenScript Workbench.

Some dialogs and views require the user to hit the popup menu keyboard button in
order to access some features in the UI that are normally accessible using the
right-click menu.

1.4.1 Tester Perspective
The OpenScript Tester Perspective provides a convenient way to record and edit
scripts and view the playback results. The Tester Perspective opens the following
views by default.

■ Script View: Shows the recorded script in two tabs: Tree View and Java Code. The
Tree View tab shows the steps and pages and the Initialize, Run, and Finish nodes
of each step using a graphical tree view. The Java Code tab shows the underlying
Java code used for the script.

■ Details View: Shows the content details for URL navigations or pages added to
the script.

■ Problems View: Shows any problems in the script code that may produce errors
or prevent compiling the script.

■ Properties View: Shows the properties for the selected node in the script.

■ Console View: Shows the playback command output and status information for
the script. Script log message also appear in the Console.

■ Results View: Shows the results of script playback.

The following views are also available from the View menu but do not open by
default:

■ Error Log View: Shows the error log information for the project and script.

■ Data Table View: Shows a spreadsheet-like data table for Functional testing
scripts.

■ Object Details View: Shows the attributes and values for the object selected in the
browser connected to the view.

■ Script Variables View: Shows the name and value of script variables. The script
variables are only shown when a running script is paused during playback.

■ Treeview Breakpoint View: Shows the location of breakpoints set in the script tree
view.

The views are described in more detail in the following sections.

1.4.2 Developer Perspective
The OpenScript Developer Perspective provides advanced options for developers
when creating and editing scripts using the advanced features of OpenScript and the
Eclipse development platform. The Developer Perspective opens the following views
by default:

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-5

■ Navigator and Package Explorer Views: Shows hierarchical views of the script
project resources. You can open the resource files in an editor to view and edit the
contents.

■ Script View: Shows the recorded script in two tabs: Tree View and Java Code. The
Tree View tab shows the steps and pages and the Initialize, Run, and Finish nodes
of each step using a graphical tree view. The Java Code tab shows the underlying
Java code used for the script.

■ Debug View: Shows the debugging options and provides options for stepping
through code.

■ Variables and Breakpoint Views: Shows the script variables and breakpoints set
in the code.

■ Problems View: Shows any problems in the script code that may produce errors
or prevent compiling the script.

■ Declaration View: shows the source of the element selected in the Java code view.

The following views are also available but do not open by default:

■ Details View: Shows recorded page details in three tabs: HTML, Browser, and
Header. The HTML tab shows the page HTML source. The Browser tab shows the
page. The Header tab shows the page response header.

■ Properties View: Shows the properties for the selected node in the script.

■ Console View: Shows the playback command output and status information for
the script. Script log message also appear in the Console.

■ Results View: Shows the results of script playback.

■ Error Log View: Shows the error log information for the project and script.

■ Data Table View: Shows a spreadsheet-like data table for Functional testing
scripts.

■ Object Details View: Shows the attributes and values for the object selected in the
browser connected to the view.

■ Script Variables View: Shows the name and value of script variables. The script
variables are only shown when a running script is paused during playback.

■ Treeview Breakpoint View: Shows the location of breakpoints set in the script tree
view.

The views are described in more detail in the following sections.

1.4.3 OpenScript Menu Options
The menu options that appear change depending upon which perspective is set in the
Workbench (Tester or Developer) and which view is the active view. Specific test
modules may also add or remove menu options.

1.4.3.1 File
■ New - opens the New Project wizard. You can select the type of project including

OpenScript scripts, jobs and modules

■ Open Script - opens a window for selecting the OpenScript Repository,
workspace, and script to open.

■ Open Object Library - opens a dialog box for selecting the object library file to
open. This option only appears for functional test scripts.

Overview of the OpenScript Main Window (Workbench)

1-6 Oracle Functional Testing OpenScript User's Guide

■ Open File - opens a window for selecting the file to open.

■ Close - closes the script editor.

■ Close All - closes all script editors.

■ Save - saves the data in the currently active editor.

■ Save As - saves the data in the currently active editor using a new name.

■ Save As Template - saves the current script as a template script. Template scripts
can be used as a baseline for creating new scripts.

■ Save All - saves the data in all open editors.

■ Restart - restarts the OpenScript application and the Eclipse IDE.

■ Import Script - opens a window for importing an archived OpenScript script
project from a .zip file.

■ Export Script - opens a window for exporting the OpenScript script project to an
archive .zip file.

■ Exit - exits OpenScript.

■ [Recent files list] - shows the most recent script files/repository location opened on
OpenScript Click a file name to open it in OpenScript. You can set the number of
files in the list using the Workbench Preferences (select Preferences from the
Window menu in the Developer Perspective. Expand the General preferences and
then select Editors).

The following options are also available in the Developer Perspective:

■ Revert - reverts changes to the last saved file contents.

■ Move - opens a dialog box for selecting where to move the resource.

■ Rename - opens a dialog box for specifying a new name for the resource.

■ Refresh - refreshes the resources in the Navigator or Package view.

■ Convert Line Delimiters To - opens a sub menu for selecting the type of line
delimiters for the conversion: Windows, UNIX, or Mac OS.

■ Print - prints the contents of the selected editor view.

■ Switch Workspace - opens a dialog box for selecting the workspace to use.

■ Restart - restarts OpenScript.

■ Import - opens a window for selecting the type of project to import.

■ Export - opens a window for exporting the type of project to export.

■ Properties - opens the properties information for the selected resource.

1.4.3.2 Edit
■ Undo - undoes the last action.

■ Redo - redoes the last action.

■ Cut - cuts the selected text/data to the clipboard.

■ Copy - copies the selected text/data to the clipboard.

■ Paste - pasted text/data on the clipboard to cursor location.

■ Delete - deletes the selected text/data.

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-7

■ Select All - selects all text/data in the currently active editor.

■ Find/Replace - opens a dialog box for setting the text search and replace options.
The menu option is available when an editor is open.

■ Search - opens a dialog box for specifying the search criteria.

The following options are also available when the Java Code editor is open in the
Script view.

■ Expand Selection To - opens a sub menu for selecting which element to use to
expand the selection.

■ Find/Replace - opens a dialog box for specifying the text to find and replace. You
can specify the search direction, scope, and search options.

■ Find Next - finds the next instance of the Find text specified in the Find/Replace
settings.

■ Find Previous - finds the previous instance of the Find text specified in the
Find/Replace settings.

■ Incremental Find Next - finds the next instance of the Find text specified in the
Find/Replace settings.

■ Incremental Find Previous - finds the previous instance of the Find text specified
in the Find/Replace settings.

■ Add Bookmark - opens a dialog box for specifying the bookmark name.

■ Add Task - opens a dialog box for defining a task to perform on a resource.

■ Smart Insert Mode - when selected, code typing aids such as automatic
indentation and closing of brackets are enabled in the code view.

■ Show Tooltip Description - opens a description for the current selection in the
Code View.

■ Content Assist - opens a context assist menu to bring up Java code assist
proposals and templates. See the Templates preference page for available
templates (Window > Preferences > Java > Editor > Templates) and go to the
Editor preference page (Window > Preferences > Java > Editor > Code Assist) for
configuring the behavior of code assist.

■ Word Completion - completes typing of a partial word.

■ Quick Fix - If the cursor is located at a location with problem indication this opens
a context assist dialog at the current cursor to present possible corrections.

■ Set Encoding - opens a dialog box for setting the type of text file encoding.

1.4.3.3 Search
■ Search - opens a dialog box for specifying the search criteria.

■ File - opens a dialog box for specifying the file search criteria.

■ Text - opens a sub menu for selecting the text search location.

1.4.3.4 Script
■ Add - opens a sub menu for adding options to the script tree.

■ Record - starts the selected OpenScript script recorder.

■ Playback - plays back the currently open OpenScript

Overview of the OpenScript Main Window (Workbench)

1-8 Oracle Functional Testing OpenScript User's Guide

■ Iterate - plays back the script repeatedly, with or without a Databank.

■ Pause/Resume - pauses and resumes script playback. These options are only
active during script playback.

■ Stop - stops the OpenScript script recorder.

■ Step - runs the currently selected node and moves the execution point to the next
sibling node. If the selected node has a child node, the execution pointer is moved
to the first child node. This option is only active during script playback and script
execution is suspended while stepping through the script code.

■ Step Into - steps into the function or sub procedure. This option is only active
during script playback and script execution is suspended while stepping through
the script code. The execution pointer is moved into the beginning of the function.

■ Configure Recorders - opens a window for pausing and restarting the current
script recorder. This option is only available while in Record mode.

■ Set Record Section - opens a submenu for selecting the section of the script where
script recording will begin. The selected section will be highlight in bold in the
script tree. The Run section is the default. The submenu has the following options:

– Initialize - starts script recording in the Initialize section of the script.

– Run - starts script recording in the Run section of the script.

– Finish - starts script recording in the Finish section of the script.

■ Add Step Group - opens a dialog box for manually adding a Step Group to a
script. This option is only available when a script is open.

■ Revert all Navigations to Recorded - reverts changes back to the recorded version
of the script.

■ Update Step Groups - opens a dialog box for specifying the Update Step Group
options.

■ Create/Update Step Groups - creates step groups in the script based on page
navigations.

■ Correlate Script - opens a dialog box for selecting a defined correlation library to
manually apply to the script. Correlation libraries are used to convert dynamic
data in page navigations to variable values for script playback. Use the Correlation
options in the OpenScript Preferences to define the correlation libraries and rules.

■ Remove Unchanging Variables - opens a window for selecting and removing
script variables that it is known will never change. Removing unchanging
variables can improve script playback performance because unchanging variables
will not need to be evaluated during script playback.

■ Script Properties - opens a window for setting script-related properties such as
correlation, databanks, modules, object libraries, and step groups. Script properties
will vary depending upon the script type.

The Script menu includes additional options for functional test scripts:

■ Select Browser - opens a submenu for selecting the browser to use for recording
functional test scripts. The list of browsers shows all running browsers that belong
to the current user that are not in record, capture, or playback status. When you
record, playback, or capture, OpenScript will use the selected browser. The default
browser is the browser instance started by OpenScript.

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-9

■ Inspect Path - starts the object capture mode and opens a browser for selecting the
object path to capture. The object path is used by functional test scripts for object
identification.

■ Apply Object Libraries - opens a dialog box for selecting an object library to
apply to the current functional test script.

■ Add Object Test - opens a dialog box for defining an object test for a functional
test script.

■ Add Table Test - opens a dialog box for defining a table test for a functional test
script.

■ Add Text Matching Test - opens a dialog box for defining a Text Matching test for
a functional test script.

■ Add Capture Page - opens a dialog box for specifying a page to capture for a
functional test script. The Capture Page option captures a screenshot and the page
HTML.

1.4.3.5 View
■ Tester Perspective - changes the Workbench to the Tester Perspective.

■ Developer Perspective - changes the Workbench to the Developer Perspective.

■ Reset Perspective - resets the current perspective to the default settings.

■ Error Log - toggles the Error Log View. When selected, the Error Logs view is
displayed. When cleared, the Error Log View is hidden.

■ Properties - toggles the Properties View. When selected, the Properties view is
displayed. When cleared, the Properties View is hidden.

■ Problems - toggles the Problems View. When selected, the Problems view is
displayed. When cleared, the Problems View is hidden.

■ Details - toggles the Details View. When selected, the Details view is displayed.
When cleared, the Details View is hidden.

■ Console - toggles the Console View. When selected, the Console view is displayed.
When cleared, the Console View is hidden.

■ Results - toggles the Results View. When selected, the Results view is displayed.
When cleared, the Results View is hidden.

■ Data Table - toggles the Data Table View. When selected, the Data Table view is
displayed. When cleared, the Data Table View is hidden.

■ Object Details - toggles the Object Details View. When selected, the Object Details
view is displayed. When cleared, the Object Details View is hidden.

■ Script Variables - toggles the Script Variables View. When selected, the Script
Variables view is displayed. When cleared, the Script Variables view is hidden.

■ Treeview Breakpoint - toggles the breakpoint indicators in the script tree view
and the Treeview Breakpoint view. When selected, any breakpoints set in the script
are displayed and the Treeview Breakpoint view is shown. When cleared, the
breakpoints in the script tree and the Treeview Breakpoint view are hidden.

■ OpenScript Preferences - opens the OpenScript Preferences dialog box for
specifying default settings and options.

Overview of the OpenScript Main Window (Workbench)

1-10 Oracle Functional Testing OpenScript User's Guide

1.4.3.6 Run
■ Resume - resumes suspended code execution or script playback.

■ Suspend - suspends the current code execution or script playback.

■ Terminate - ends the current code execution or script playback.

■ Step Into - single steps code execution into the highlighted statement or method.
The Step options are active in debug mode.

■ Step Over - single steps code execution over the current statement or method to
the next statement or method.

■ Step Return - steps code execution out of the current method and stops after
exiting the current method.

■ Run to Line - resumes execution until the specified line is executed. Used When a
thread is suspended.

■ Use Step Filters - toggles step filters on and off. When set to on, all step functions
apply step filters.

■ External Tools - opens a sub menu for selecting the external tools option.

The following options are also available in the Developer Perspective:

■ Run - runs the last launched code or script playback.

■ Debug - opens the debug configuration options for the last launched code or
script playback. You can customize the debug configuration before launching the
code or script playback for debugging.

■ Run History - opens a sub menu listing run configurations. Selecting a run
configuration shows the run history in the debug view.

■ Run As - opens a sub menu listing available external run tools. External tools need
to be configured to appear on the sub menu by selecting External Tools from the
Run menu.

■ Run Configurations - opens the run configuration options for the last launched
code or script playback. You can customize the run configuration before launching
the code or script playback.

■ Debug History - opens a sub menu listing debug configurations. Selecting a
debug configuration shows the run history in the debug view.

■ Debug As - opens a sub menu listing available external run tools. External tools
need to be configured to appear on the sub menu by selecting External Tools from
the Run menu.

■ Debug Configurations - opens the debug configuration options for the last
launched code or script playback. You can customize the debug configuration
before launching the code or script playback.

1.4.3.7 Tools
■ Manage Scripts - opens a window for managing OpenScript scripts.

■ Manage Folders - opens a window for managing folders used for OpenScript
Workspaces.

■ Manage Repositories - opens a window for managing OpenScript Repositories.

■ Import Database File - opens the Import Database File Wizard for importing a
Database Replay capture file, SQL statements from a plain SQL and PL/SQL

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-11

statements .SQL script file, or SQL statements captured and stored in an SQL
Tuning Set (STS) in Oracle Database to generate an OpenScript load testing script.

■ Merge Object Libraries - opens a dialog box for specifying two Object Library
files to merge and the resulting output file.

■ Parameterize URLs - opens a window for specifying a variable name to use to
replace a URL.

■ Generate XPaths - opens a dialog box for generating an XPath from an XML file.

■ Export Playback Settings - opens a file save dialog box for specifying the folder
and file name of the playback properties file to save.

■ Import Oracle Real User Experience Insight (RUEI) Session Log - opens a dialog
box for selecting a RUEI captured user session .tab log file and specifying the
script creation options. The imported RUEI session log files record to HTTP-based
OpenScript scripts.

■ Migrate Scripts - opens the Script Migration Manager for migrating pre-version
9.10 scripts to the current version. The Script Migration Manager provides options
for migrating top-level scripts and locating all dependent child scripts.

1.4.3.8 Help
■ Welcome opens the welcome page with links to the Workbench product

documentation.

■ OpenScript Diagnosis Tool - opens the Diagnosis Wizard for verifying the
connection status of the OpenScript Internet Explorer Browser Helper Object
(BHO), Firefox extensions, and Forms Internet Explorer helper object.

■ Help Contents - opens the help table of contents.

■ Search - opens the help search view.

■ Dynamic Help - opens the available help topics for the currently active view and
perspective.

■ Key Assist - opens the list of keyboard shortcuts.

■ Tips and Tricks - opens the help tip and tricks window.

■ Cheat Sheets - opens the Cheat Sheets view.

■ About OpenScript - provides version and copyright information and
configuration details.

1.4.3.9 Navigate
The Navigate menu appears when the Developer perspective is open.

■ Go Into - refocuses the active view so that the current selection is at the root. This
allows web browser style navigation within hierarchies of artifacts.

■ Go To - opens a sub menu with options for selecting the location to which to
navigate. The sub menu options change depending upon the current view.

■ Open Type - opens a dialog box for selecting the type library to open in an editor
view.

■ Open Type in Hierarchy - opens a dialog box for selecting the type library to open
in a hierarchy view.

■ Open Resource - opens a dialog box for selecting the resource file to open in an
editor view.

Overview of the OpenScript Main Window (Workbench)

1-12 Oracle Functional Testing OpenScript User's Guide

■ Show In - opens a sub menu for selecting where to show the statement or method
selected in the code view: Package Explorer, Navigator, or Outline view.

■ Next Annotation - moves the selection to the next annotation in the Code View.

■ Previous Annotation - moves the selection to the next annotation in the Code
View.

■ Last Edit Location - moves the selection to the location of the last edit made in the
Code View.

■ Go to Line - opens a dialog box for specifying the Java code line number to go to
when in the Java Code view.

■ Back - moves the selection back through the list of locations previously selected in
the Code view.

■ Forward - moves the selection forward through the list of locations previously
selected in the Code view.

Additional menu options may appear depending upon the current Java Code editor
selection.

1.4.3.10 Project
The Project menu appears when the Developer perspective is open.

■ Open Project - opens the project selected in the Navigator View.

■ Close Project - closes the project selected in the Navigator View.

■ Build All - builds all projects. This option is only available if the Build
Automatically option is not selected.

■ Build Project - builds the current project. This option is only available if the Build
Automatically option is not selected.

■ Build Working Set - opens a sub menu for selecting or creating a working set of
projects. Working set projects are only available if the Build Automatically option
is not selected.

■ Clean - opens a dialog box for selecting the project to clean of build problems.

■ Build Automatically - toggles the automatic build option on and off.

■ Generate Javadoc - opens the Generate Javadoc window.

■ Properties - opens the properties window for the current project.

1.4.3.11 Window
■ New Window opens a new OpenScript window.

■ New Editor opens a new editor view of the current file.

■ Open Perspective opens a sub menu for selecting the perspective to open.

■ Show View opens a sub menu for selecting the view to show.

■ Customize Perspective opens a window for selecting the shortcuts and commands
to customize.

■ Save Perspective As opens a dialog box for specifying a name for the saved
perspective.

■ Reset Perspective resets the current perspective to the default settings.

■ Close Perspective closes the currently open perspective.

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-13

■ Close All Perspectives closes all perspectives.

■ Navigation opens a sub menu for selecting navigation options.

■ Preferences opens a window for specifying the project preferences.

1.4.4 OpenScript Tool Bar
The following toolbar buttons are available in the Tester and Developer Perspectives:

■ New - opens a Wizard for creating new OpenScript scripts or Java platform objects
and resources.

■ Open - opens a dialog box for selecting an existing OpenScript script.

■ Save - saves the changes in the currently active editor. The button is only active if
an editor is open with changes to be saved.

■ Print - prints the information in the currently selected editor. The button is only
active if an editor with printable content is open.

■ Record - starts OpenScript script recording using the selected script recorder.
Clicking the menu button opens the a menu listing the available recorder types.

■ Playback - starts playback of the currently open Visual Script.

■ Iterate - opens a dialog box for specifying the playback iterations options.

■ Pause/Resume - pauses and resumes script playback. These buttons are only
active during script playback.

■ Stop - stops OpenScript script recording.

■ Step - runs the currently selected node and moves the execution point to the next
sibling node. If the selected node has a child node, the execution pointer is moved
to the first child node. This button is only active during script playback and script
execution is suspended while stepping through the script code.

■ Step Into - steps into the function or sub procedure. This button is only active
during script playback and script execution is suspended while stepping through
the script code. The execution pointer is moved into the beginning of the function.

■ Select Browser - opens a submenu for selecting the browser to use for recording
functional test scripts. The list of browsers shows all running browsers that belong
to the current user that are not in record, capture, or playback status. When you
record, playback, or capture, OpenScript will use the selected browser. The default
browser is the browser instance started by OpenScript.

■ Configure Recorders - opens a window for pausing and restarting the current
script recorder. This option is only available while in Record mode.

■ Set Record Section - opens a submenu for selecting the section of the script where
script recording will begin. The selected section will be highlight in bold in the
script tree. The Run section is the default.

– Initialize - starts script recording in the Initialize section of the script.

– Run - starts script recording in the Run section of the script.

– Finish - starts script recording in the Finish section of the script.

■ Add Step Group - opens a dialog box for manually adding a Step Group to a
script. This option is only available when a script is open.

Overview of the OpenScript Main Window (Workbench)

1-14 Oracle Functional Testing OpenScript User's Guide

■ Inspect Path - starts the object capture mode and opens a browser for selecting the
object path to capture. The object path is used by functional test scripts for object
identification.

■ Add Object Test - opens a dialog box for defining an object test for a functional
test script.

■ Add Table Test - opens a dialog box for defining a table test for a functional test
script.

■ Add Text Matching Test - opens a dialog box for defining a Text Matching test for
a functional test script.

■ Add Capture Page - opens a dialog box for specifying a page to capture for a
functional test script.

■ Toolbar - opens the floating toolbar.

■ Debug - opens a dialog box for specifying a debug configuration. This button is
only available when the Developer Perspective is open.

■ Run - Runs the selected configuration type or application. This button is only
available when the Developer Perspective is open.

■ Run External Tools - Runs an external application. This button is only available
when the Developer Perspective is open.

■ New Java Project - opens a window for creating a new Java project.This button is
only available when the Developer Perspective is open.

■ New Java Package - opens a window for creating a new Java package. This button
is only available when the Developer Perspective is open.

■ New Java Class - opens a window for creating a new Java class. This button is
only available when the Developer Perspective is open.

■ Open Type - opens a window for specifying the type library to open. This button
is only available when the Developer Perspective is open.

■ Search - opens a dialog box for specifying search options.

■ Next Annotation - goes to the next annotation in the Java code. This button is only
available when the Developer Perspective is open. and a Java Code view is open.

■ Previous Annotation - goes to the previous annotation in the Java code. This
button is only available when the Developer Perspective is open. and a Java Code
view is open.

■ Last Edit Location - opens the edit view that was open and goes to the last edit
location. This button is only active when a Java Code view is open.

■ Back to (location) - browses back to the last OpenScript script view. This button is
only available when the Developer Perspective is open.

■ Forward - browses forward to the previous OpenScript script view. This button is
only available when the Developer Perspective is open.

1.4.5 Script View
Shows the recorded script in two tabs: Tree View and Java Code. The Tree View tab
shows the steps and pages and the Initialize, Run, and Finish nodes of each step using
a graphical tree view. The Java Code tab shows the underlying Java code used for the
script.

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-15

The script view is where you perform the majority of script editing actions. The Script
view has the following tab views:

1.4.5.1 Tree View
The Tree View shows the script navigations and data as nodes in a collapsible tree
view. The Tree View corresponds to the Java Code view. Any changes in the Tree View
will be automatically updated in the Java Code view. The Tree View has the following
standard nodes:

■ Initialize - specifies script actions to perform once at the beginning of script
playback.

■ Run - specifies script actions to perform one or more times during script playback
depending upon databanks or other custom programming.

■ Finish - specifies script actions to perform once at the end of script playback.

Use the Record options and right-click shortcut menu to add options to script nodes or
modify the properties of script nodes in the Tree View.

1.4.5.2 Java Code
The Java Code view shows the script navigations and data as Java programming code.
The Java Code view corresponds to the Tree View. Any changes in the Code View will
be automatically updated in the Tree View. The Java Code view has the following
standard procedures:

■ initialize() - corresponds to the Initialize node of the Tree View and executes
any custom code added once at the beginning of script playback.

■ run() - corresponds to the Run node of the Tree View and executes recorded and
custom code one or more times during script playback depending upon databanks
or other custom programming.

■ finish() - corresponds to the Finish node of the Tree View and executes any
custom code added once at the end of script playback.

Use Ctrl-space to open an Intellisense window listing available procedures. See the
API Reference in the OpenScript Platform Reference help for additional programming
information.

1.4.6 Details View
The Details view shows the content details for URL navigations added to the script.
The Details view may have the following tab views depending upon the selected script
node and type of script:

■ ScreenShot - shows a screen capture of the web page.

■ Browser - shows the Browser rendered page for the script navigation selected in
the tree view.

■ HTML - shows the HTML source for the script navigation selected in the tree view.

■ Headers - shows the Request Header and Response Header source for the script
navigation selected in the tree view.

■ Comparison - shows the recorded and playback text for the Content, Request
Header, or Response Header selected in the Compare list. The Comparison tab
appears only after a script is played back and a navigation is selected in the
Results View.

Overview of the OpenScript Main Window (Workbench)

1-16 Oracle Functional Testing OpenScript User's Guide

■ Results Report - shows the results report for the script playback. The Results
Report tab appears only after a script is played back and a navigation is selected in
the Results View.

1.4.7 Problems View
The Problems view shows any problems in the script code that may produce errors or
prevent compiling the script. The Problems view shows the following information:

■ # error, # warnings, # infos - shows the number of errors, warning messages, and
information messages in the problems view.

■ Description - shows a description of the errors, warning messages, and
information messages.

■ Resource - shows the name of the resource file where the error, warning, or
information message was generated.

■ Path - shows the script name, workspace, and repository path where the resource
file is located.

■ Location - shows the location/line number where the error, warning, or
information message was generated.

The following toolbar button is available in the Problems View:

■ Configure the filters to be applied to this view - opens a dialog box for configuring
the filters to apply to the Problems View.

1.4.8 Properties View
The Properties view shows the properties for the selected node in the script. The
Properties view shows the following information:

■ Property - shows the names of the properties for the script node. The properties
vary depending upon which type of script node is selected.

■ Value - shows the value of the script node properties. Property values can be
edited in the properties view.

The following toolbar buttons are available in the Properties View:

■ Show Categories - toggles the property categories.

■ Show Advanced Properties - toggles the advanced properties.

■ Restore Default Value - restores any changed property values to the default values.

1.4.9 Console View
The Console view shows the playback command output and status information for the
script. Script log message also appear in the Console. See the Process Console View
topics in the reference section of the Java development user guide online help for
additional information about console toolbar options.

1.4.10 Results View
The Results view shows the playback results for the script. The Results View shows
the following information:

■ Name - shows the test date or navigation name.

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-17

■ Duration (sec) - shows the absolute time delta in secondsbetween when the action
began and when it ended.

■ Response Time (sec) - shows the DNS Lookup time plus Establish Connect time
plus Write Request time plus Read Response time.

■ Result - shows the playback result: Passed or Failed.

■ Summary - shows the data values from the Databank that are passed to
parameters or it shows failure descriptions.

The following toolbar buttons are available in the Results View:

■ Delete Result - deletes the selected result row.

■ Delete All Results - deletes all rows from the Results View.

■ Scroll Lock - toggles scroll lock on and off for the Result View.

■ Properties - opens the Properties for the selected result.

1.4.11 Error Log View
The Error Log view shows the error log information for the project and script. The
following toolbar buttons are available in the Error Log View:

■ Export Log - exports the error log to a text file.

■ Import Log - imports an error log text file to the Error Log View.

■ Clear Log Viewer - clears all entries from the Error Log View.

■ Delete Log - deletes all logged events.

■ Open Log - opens the log file in a text editor.

■ Restore Log - restores the error log entries from the log file.

You can right-click on a log entry to open the shortcut menu. The shortcut menu
includes the same options as the toolbar. The following additional options are
available on the shortcut menu:

■ Copy - copies the text for the selected log entry to the clipboard.

■ Event Details - opens the event details dialog with the details for the selected log
entry.

1.4.12 Data Table View
The Data Table view is a spreadsheet-like data table for Functional testing scripts. The
Data Table content can be changed by manually inputting data into cells or by
importing an Excel file before playback. The Data Table content can be changed at
runtime using the datatable API or using the user interface when playback is
paused by a breakpoint, paused by exception, or paused by clicking the Pause toolbar
button. Changes to the Data Table are saved as part of script playback results only. The
Data Table and Result Data Table can be exported to an Excel file. See Section 4.3,
"Using Data Tables" for additional information.

The following toolbar buttons are available in the Data Table view:

■ Import - opens a dialog for selecting an Excel spreadsheet file to import into the
Data Table.

■ Export - opens a dialog for specifying where to save the Data Table as an Excel
spreadsheet.

Overview of the OpenScript Main Window (Workbench)

1-18 Oracle Functional Testing OpenScript User's Guide

You can right-click on a data table cell to open the shortcut Edit menu. The following
additional options are available on the shortcut menu:

■ Edit - changes the selected cell to text edit mode. Type data into the cell and press
Enter.

■ Cut - cuts the data from the selected cell.

■ Copy - copies the text for the selected cell to the clipboard.

■ Paste - pastes text from the clipboard to the selected cell.

■ Delete - deletes the text from the selected cell.

■ Insert Row Before - inserts a new row into the table before the selected row.

■ Insert Row After - inserts a new row into the table after the selected row.

■ Delete Row - deletes the selected row from the table.

■ Insert Column Before - inserts a new column into the table before the selected
column.

■ Insert Column After - inserts a new column into the table after the selected
column.

■ Rename Column - opens a dialog box for specifying a new heading name for the
selected column.

■ Delete Column - deletes the selected column from the table.

You can right-click on a worksheet tab in the Data Table view to open the worksheet
shortcut menu. The following additional options are available on the shortcut menu:

■ Insert Sheet Before - inserts a worksheet tab into the Data Table before the selected
worksheet tab.

■ Insert Sheet After - inserts a worksheet tab into the Data Table after the selected
worksheet tab.

■ Rename Sheet - opens a dialog box for specifying a new name for the selected
worksheet tab.

■ Delete Sheet - deletes the selected worksheet from the Data Table. A confirmation
dialog box appears to confirm the deletion.

1.4.13 Object Details View
The Object Details view provides options for viewing the attributes and values for the
object selected in the browser connected to the view. The Object Details view is
available for Functional tests. See Section 5.4.14, "Using the Object Details View" for
additional information about using the Object Details view.

The following toolbar buttons are available in the Object Details view:

■ Refresh Tree - refreshes the Object Details tree pane.

■ Find a node to inspect by selecting in browser - starts the capture mode for
selecting the Web page object in the browser. Highlight the object in the browser
and press F10 to select it and show the attributes in the Object Details View.

■ Connect to browser/Disconnect from browser - connects or disconnects the Object
Details View to the browser. The Object Details View must be connected to the
browser to capture objects.

The following options are available in the Object Details view:

Overview of the OpenScript Main Window (Workbench)

Getting Started With OpenScript 1-19

■ Module - selects the type of OpenScript module. The opjects in the tree view
change to the specific module type. For example, the Web module shows the
HTML DOM tree. The ADF module shows the ADF object tree.

■ Find - provides search capabilities to locate specific text in the Object Details. Type
the text to find and click Next or Previous to locate the attributes and values
within the tree.

■ Partial Match - when selected the Next or Previous search will match partial text
strings specified in Find. When cleared, the Next or Previous search will match
the entire Find string.

■ Next - searches down the tree for the next object that matches the Find string.

■ Previous - searches up the tree for the previous object that matches the Find
string.

■ Tree pane - shows a tree view of the Document Object Model (DOM). The
right-click shortcut menu includes the following options for working with the
object selected in the tree:

– View Object Path - opens a dialog box showing the full path of the object.

– Add Object Test - opens the Object Test dialog for defining an object test for
the object selected in the tree.

– Add Table Test - opens the Table test dialog box for defining a table test for the
table object selected in the tree. This option is only available for table objects.

– Save to Object Library - opens the Save to Object Library dialog box for saving
the object path to an object library.

■ Attribute - shows the attribute name of the object selected in the DOM tree.

■ Value - shows the value of the object attribute selected in the DOM tree.

1.4.14 Script Variables View
The Script Variables view shows the name value of script variables. The script
variables are only shown when a running script is paused during playback. To view
the script variable values select Script Variables from the View menu, playback the
script and click the pause button on the toolbar.

1.4.15 Treeview Breakpoint View
The Treeview Breakpoint view shows the location of breakpoints set in the script tree
view. To add a breakpoint to the script tree view, right-click on a script tree node and
select Add Breakpoint from the shortcut menu. The Treeview Breakpoint view shows
the node, file name, and line number of the breakpoint.

1.4.16 Navigator and Package Explorer Views
The Navigator and Package Explorer view shows the Java resources for the script and
Java package. Double-click on a resource to open it in an editor view. See the Package
Explorer View topics in the reference section of the Java development user guide
online help for additional information about Package Explorer toolbar options.

About Multi-User Execution

1-20 Oracle Functional Testing OpenScript User's Guide

1.4.17 Debug View
The Debug view provides options for debugging script playback. See the Debug View
topics in the reference section of the Java development user guide online help for
additional information about debugging toolbar options.

1.4.18 Declaration View
The Declaration view shows the source of the element selected in the Java code view.
You can open the Java code view of a script and select a script method to view the
declaration.

1.4.19 Variables and Breakpoints Views
The Variables and Breakpoints view shows variable values and breakpoints for
debugging script playback. See the Breakpoints and Variables View topics in the
reference section of the Java development user guide online help for additional
information about breakpoints and variables toolbar options.

1.5 About Multi-User Execution
The Multi-User Execution feature lets multiple users run OpenScript from a single
installation using multiple concurrent interactive desktop sessions (for example,
Terminal Server or Remote Desktop sessions). All users must have Administrator
privileges.

Users must login as a different, unique user accounts for each instance of OpenScript
they want to run. One installation serves all user accounts on the machine. Users
manage their settings and private data in their own workspaces. Any user who opens
OpenScript creates a workspace under their "User Profile Folder", for example,
C:\Documents and Settings\username\osworkspace. All of the user's OpenScript
Settings and private data are stored under this workspace, including the user's Http
Trust Stores (ostruststore).

If more than one user attempts to open the same the script in the same workspace, the
second or subsequent users will receive a message indicating the script is in use and
locked. The second or subsequent users can make a copy of the script and files in use.

Only load-test scripts can be played in the same desktop session. There no script type
limitations for playback in different desktop sessions.

You configure the port range to use for each user in the OpenScript General
Preferences. The ports within the configured port range are checked and if none are
available, an error message will appear.

Note: Teams should enable Write access on their root Repository
folders for all users and encourage teams to store their databanks and
object library files in the Repository. This way, by default all newly
created scripts, databanks, and object library files inherit the
permissions of the Repository folder and be "Writeable" by all users.

About Script Assets

Getting Started With OpenScript 1-21

1.6 About Script Assets
Script assets are resources that can be used by scripts such as, databanks, generic Jar
files, object libraries, or other scripts containing recorded steps or custom functions.
Assets have the following characteristics:

■ They are external resources that a script can use or run.

■ They are resources that are not part of a script like the java code itself.

■ They are resources that can be shared among a team of users.

■ They are resources that can be added or removed from one or more scripts.

Script assets can be used for testing projects that include multiple users executing a
suite of tests or any QA team that uses a complex structure of scripts and assets
developed and used by different people.

Script assets provide for the following:

■ Creating, editing and obtaining (discovering and assigning) assets independently
from scripts.

■ Assigning or removing assets from the script using the script properties GUI.

■ Viewing all assets associated with a script, and all dependent assets using the
script properties GUI.

■ Viewing and editing asset properties (alias, location, etc.) from the script
properties GUI.

■ Creating self-contained script .zip files that include all assets referenced by a script
and its assets. Self-contained .zip files can be used as a script export file for
Customer support or script execution on computers other than the computer
where script was created.

■ Importing self-contained script .zip files and running them without having to
manually resolve file locations of assets.

■ Running self-contained .zip files from the Command line or Oracle Load Testing.

■ Notification of missing assets before a script run starts.

■ Storing scripts inside subfolders X levels deep in a workspace.

■ Loading object libraries and/or databanks into a script without concern about
modifying the behavior of a parent script because of conflicting object libraries
and/or databanks.

■ Understanding the order in which assets are loaded to know which object in
which library has precedence.

Note: Any scripts you plan to run, along with any associated assets,
in the Oracle Load Testing application must be stored in a
repository/workspace that can be accessed by the Oracle Load Testing
Controller. If you create new repositories in OpenScript, you should
also add the new repositories in Oracle Load Testing.

About Script Assets

1-22 Oracle Functional Testing OpenScript User's Guide

2

Setting Preferences 2-1

2 Setting Preferences

The OpenScript Preferences let you specify default values and settings to use for
OpenScript options. This chapter explains the available options in the OpenScript
Preferences categories. The OpenScript preferences are under the OpenScript node.
The available preferences may vary depending upon installed modules.

2.1 Setting OpenScript Preferences
To set OpenScript preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and select the preference category.

4. Specify the preferences as necessary for the selected category.

The following sections explain the available options for each category.

2.2 Correlation and Validation Category
The OpenScript Correlation and Validation interface allows users to create correlation
libraries to automatically parameterize dynamic requests during playback. Correlation
libraries contain rules for automatically handling dynamic request parameters such as
urls, query strings and post data for the specific modules.

This category lets you specify libraries and rules for transforming dynamic data in
recorded script URLs and related parameters (headers, post data, etc.) to variable
names that will be recognized by the script playback engine (OpenScript or Oracle
Load Testing). Correlation rules must be defined within OpenScript modules and are
not available with the basic platform.

2.2.1 Module Correlation Preferences
Selected Module: Shows the names of the defined correlation libraries. Use the Add
Library button to define libraries. After you define a library you can use the Add Rule
button to specify the rules to include in the library.

■ Add Library: Opens a dialog box for adding a correlation library name.

■ Add Rule: Opens a dialog box for adding a correlation rule to the selected library.

■ Edit: Opens a dialog box for editing the selected correlation library name.

General Category

2-2 Oracle Functional Testing OpenScript User's Guide

■ Delete: Deletes the selected correlation library from the Preferences list. The
defined rules for the library are also removed from the preferences. The correlation
library .XML file is not deleted from disk.

■ Up: Moves the correlation rule up in the priority list.

■ Down: Moves the correlation rule down in the priority list.

■ Import: Opens a dialog box for selecting the correlation library file to import.

■ Export: Opens a dialog box for selecting the location where you want to export the
selected correlation library .XML file.

■ Revert: Reverts the library to the default values.

Tab view: Shows the library or rule details for the selected correlation library or rule.
The tab view information changes depending upon whether a library or rule node is
selected and which type of correlation rule is selected. See the module chapters for
details about specific correlation libraries.

2.2.2 Add Library
This dialog box lets you specify a new correlation library for transforming dynamic
data in recorded script URLs and related parameters (headers, post data, etc.) to
variable names that will be recognized by the script playback engine (OpenScript or
Oracle Load Testing).

■ Name: Specifies the name of the correlation library. After you define a library you
can use the Add Rule button to specify the rules to include in the library. The
name is required. You can also select Copy rules to copy correlation rules from an
existing library.

■ Copy rules from existing library: Lets you copy correlation rules from an existing
library to a new library.Specifies the name of the correlation library. After you
define a library you can use the Add Rule button to specify the rules to include in
the library. The name is required. You can also select Copy rules to copy
correlation rules from an existing library.

– Copy Rules: When selected, a list of existing correlation rule libraries will be
enabled for copying.

– Library: Lists the correlation rule libraries available for copying.

2.2.3 Add/Edit Rule
This dialog box lets you specify or edit a correlation rule for transforming dynamic
data in recorded script URLs and related parameters (headers, post data, etc.) to
variable names that will be recognized by the script playback engine (OpenScript or
Oracle Load Testing).

■ Type: Specifies the type of correlation rule. The available Source and Target
options change depending upon the rule type.

■ Name: Specifies the name of the correlation rule. The name is required.

■ Source: Specifies which object(s) to substitute as dynamic data.

■ Target: Specifies which object(s) to use as the target location of the transform.

2.3 General Category
This category lets you specify general preferences.

General Category

Setting Preferences 2-3

2.3.1 General Preferences
These preferences set the default general preferences. The resulting dialog presents the
following fields:

Maximum Number of Results to Save: Specifies the maximum number of script
playback session results to save. The script playback session results appear in the
Results view and are saved to the results subdirectory under the script directory.
When the maximum number has been reached, subsequent playback sessions delete
the oldest playback results.

■ Results: Specifies the number of results to save.

Record and Playback Port Range: Specifies the range of ports to use to avoid port
conflicts when multiple users run OpenScript from a single installation using multiple
concurrent interactive desktop sessions (for example, Terminal Server or Remote
Desktop sessions).

■ Minimum: Specifies the port number to use as the minimum.

■ Maximum: Specifies the port number to use as the maximum.

Opening Script that is Already Opened by Another User: Specifies the response to a
user attempting to open a script that is currently opened by another user in a multiple
user installation.

■ Ask to open a copy of the script: When selected, the second or subsequent users
attempting to open a script that is in use by another user will receive a prompt
asking if they want to open a copy of the script.

■ Do not allow opening a copy of the script: When selected, the second or
subsequent users attempting to open a script that is in use by another user will
receive a prompt indicating the script is in use and cannot be opened.

Date Format: Specifies the date format to use for all modules and tests.

■ Use the default short date format for this locale: When selected, the Date Pattern
follows standard Java SimpleDateFormat string conventions. The default value is
MMM d, yyyy h:mm:ss a (month, day, year, hour, minutes, seconds, am/pm).

■ Use a specific date format: When selected, the Date Pattern follows the selected
format.

Databanks: Specifies the databank preferences.

■ Databank Setup Timeout: Specifies how much time to spend preparing a
databank for use before timing out. The value is in seconds. This setting includes
the total time to do all of the following activities:

If using a Database-backed databank:

– Connect to the database

– Query

– Read records, write into the file

– Create the index simultaneously

– Disconnect

If using a CSV-backed databank:

– Time required to parse the CSV file and create the index

If using Random Unique:

General Category

2-4 Oracle Functional Testing OpenScript User's Guide

– Time to shuffle the index

■ Use system editor for opening Databanks: When selected, the databank file
opens in the system defined editor for the file type. If there is no system defined
editor registered for the file type (for example, Excel for CSV files), OpenScript
produces an OLE Exception error when you try to open the file with this option
selected. When cleared, the databank file opens in a text editor view. You can open
the databank from the Script Assets pane of the Script Properties (select Script
Properties from the Script menu, select Script Assets, select the databank and
click Open). See Section 4.2.1, "Configuring Databanks" for more information
about adding databanks to scripts.

Confirm exit when closing last window: When selected, a confirmation message
appears when closing the OpenScript workbench.

Automatically upgrade scripts: When selected, scripts that were created in OpenScript
prior to version 9.10 will be automatically upgraded to the current version. When
cleared, the user will be prompted when opening scripts that were created in
OpenScript prior to version 9.10 if they want to upgrade the script.

2.3.2 Browser Preferences
The Browser preferences specify the browser and any additional arguments. The
resulting dialog presents the following fields:

Browser Type: Select which browser to use.

■ Internet Explorer: When selected, OpenScript uses the Internet Explorer browser.

– Path Override: Specifies the path and file name to use to override the default
Internet Explorer browser location.

– Additional Arguments: Specifies any additional command arguments to
include when starting the browser.

■ Firefox: When selected, OpenScript uses the Firefox browser.

– Path Override: Specifies the path and file name to use to override the default
Firefox browser location.

– Additional Arguments: Specifies any additional command arguments to
include when starting the browser.

Start Up: Specifies the browser start up settings.

■ Startup Timeout: Specifies the amount of time, in seconds, to use for the browser
startup timeout.

2.3.3 Encryption Preferences
These preferences set the default encryption preferences. The resulting dialog presents
the following fields:

Do not encrypt script data: When selected, passwords are stored and displayed as
plain text in the script.

Obfuscate script data: When selected, passwords are obfuscated before storing and
displaying in the script. Obfuscated passwords are hidden but not securely encrypted.

Encrypt script data: When selected, passwords are encrypted in the script. Specify an
encryption password to use.

Playback Category

Setting Preferences 2-5

■ Password: Specifies the password to use when encrypting and decrypting data
strings using the encrypt() and decrypt() functions. Only users who use the
same encryption password in their copy of OpenScript will be able to decrypt
script passwords. This same encryption password must be used for authentication
on all agent machines that will run or open the script in Oracle Load Testing
Authentication Manager or Oracle Test Manager.

2.3.4 Repository Preferences
These preferences lets you specify the name and location of the repository to use to
store script files. The resulting dialog presents the following fields:

Name: Shows the names of the defined repositories. Use the Add button to define
repositories and locations.

Location: Shows the location of defined repositories.

Add: Opens a dialog box for specifying a repository and location.

Edit: Opens a dialog box for editing the selected repository and location. The Default
repository location can be changed but it cannot be renamed.

Delete: Deletes the selected repository and location from the Preferences list. The
script files and directory are not deleted. The Default repository cannot be deleted.

2.4 Playback Category
This category lets you specify script playback preferences.

2.4.1 General Playback Preferences
This category lets you specify general playback preferences. The resulting dialog box
displays the following sections and fields:

2.4.1.1 General
This section lets you specify general playback preferences and displays the following
fields:

VU Pacing (Think Time): Specifies the script playback delay between pages for each
virtual user. This is the amount of time the user looks at a page before making the next
request and is commonly referred to as "think time." There are four options:

■ Recorded: Uses the delay times that were recorded in the Script. You can set
minimum and maximum delay times (in seconds) that override the script delay
times in the Minimum and Maximum edit boxes.

■ Recorded/Random: Uses random delay times based upon the recorded user delay.
The low end of the random range as the actual recorded user delay minus the
Lower percentage setting. The high end of the random range as the actual
recorded user delay plus the Upper percentage setting. For example, if the actual
recorded delay time was 100 seconds and the Lower and Upper settings are 10%
and 25% respectively, Oracle Load Testing uses random delay times between 90
and 125 seconds.

Caution: HTTP scripts do not automatically obfuscate/encrypt
sensitive script passwords.

Playback Category

2-6 Oracle Functional Testing OpenScript User's Guide

■ Random: Uses random times for Virtual User pacing. You can set minimum and
maximum delay times for random delay in the Minimum and Maximum edit
boxes.

■ No Delay: Plays back the Visual Scripts at the fastest possible speed with no time
between page requests.

Preserve variables between iterations: Used to preserve or automatically clear
variables defined in the Run section between successive iterations of the Run section.

Variables defined in the Initialize section will be preserved forever, unless explicitly
removed in script code.

Variables set in the Run section will always be preserved between the final iteration of
the Run section and the Finish section.

Variables include all items that are added into the script variables collection (see:
getVariables() script method). This includes variables for elements such as HTTP
form fields defined using http.solve(...) and http.solveXPath(...).

Execute User Defined Tests: When selected, user defined tests (such as text matching,
server response, title, and XPath tests) are executed during playback. When cleared,
user defined tests are not executed.

Multiple Playback Warning: When selected, OpenScript generates a warning.

Additional Arguments: Used to specify custom OpenScript script.java code
arguments. You can create your own settings in OpenScript scripts. For example, you
can create custom settings in OpenScript script.java code, as follows.

if (getSettings().get("MyCustomSetting").equals("abc")) {
info("We're running in ABC mode.");

}

You can then set the additional arguments in the Additional Arguments field as
follows:

-MyCustomSetting abc

Replace URLs: Specifies the URL replacement string in the form:

originalURL1=replacementURL1, originalURL2=replacementURL2,[...]

During playback, anytime the agent makes a request to a URL starting with a segment,
originalURL, the agent replaces the original URL segment with replacementURL.
This feature is only supported for Load Test scripts.

■ originalURL - Specify the starting segment of the URL:port that appears in the
script that should be replaced. This value is case-sensitive.

■ replacementURL - Specify the new starting segment URL:port that the agent
requests instead of originalURL.

For both parameters, if the protocol is omitted, HTTP protocol is assumed. If no port is
specified after the host, port 80 is assumed for HTTP protocol, and port 443 is assumed
for HTTPS protocol. URLs are replaced after all correlations are applied. One or more
URL replacement pairs may be specified, separating each replacement pair with a
comma. The following examples show the format of Replace URLs strings:

test_server:7789=production_server:7789

test:7789=prod:7789,https://stage.oracle.com/main=https://prod.oracle.com/home

Playback Category

Setting Preferences 2-7

2.4.1.2 Error Handling
This section specifies the default playback error handling settings.

On iteration failure, do not run more iterations: When selected, virtual user playback
is stopped if an error occurs between playback iterations.

Use recorded value if variable is not found: When selected, the recorded data value
will be used if a variable is not found. Databank variables will always use the recorded
value if the databank attached to the script cannot be found. If the databank cannot be
found and Use recorded value if variable is not found is not selected, the recorded
data value will still be used.

2.4.1.3 System
This section specifies the default playback system settings.

Maximum JVM Heap Size: Specifies the maximum size of the JVM heap. The default
is 256MB. This value cannot be more than 90% of the total memory size.

JVM Arguments: Used to specify additional Java Virtual Machine (JVM) or program
arguments to pass to a script upon playback. It can accept all standard JVM
arguments. For example, if you specify a custom argument -Dmyvariable=myvalue
in the Additional Arguments, the argument will be passed to the script upon playback.
Within the script code you can use System.getProperty("myvariable") to get
"myvalue".

If the specified argument conflicts with existing OpenScript playback setting, (for
example the "Maximum Heap Size" playback setting) the playback setting replaces the
setting being specified in the JVM Arguments.

Debug logging: When selected, debug logging is enabled and DEBUG messages
appear in the Console view during script playback. When cleared, debug logging is
disabled and DEBUG messages do not appear in the console view during script
playback.

2.4.2 Debug Preferences
This category lets you specify the default playback debug settings. The resulting
dialog presents the following options:

■ Pause on exceptions: When selected, script playback is paused if an
AbstractScriptException occurs during playback. You can use the Execute debug
option to run actions after an error occurs. You may also be able to modify the
script and save it to reposition execution pointer at start of the function where the
exception occurred.

■ Suspend action in child script by Pause: When selected, script playback in child
scripts is paused if an AbstractScriptException occurs during playback. You can
use the Execute debug option to run actions after an error occurs. You may also be
able to modify the script and save it to reposition execution pointer at start of the
function where the exception occurred.

■ Activate the workbench when a breakpoint is hit: When selected, the OpenScript
workbench becomes the active window when a breakpoint is reached during
script execution. When cleared, The OpenScript workbench does not become the
active window.

■ Activate the debug view when a breakpoint is hit: When selected, the Debug
view becomes the active view when a breakpoint is reached during script
execution. When cleared, the Debug view remains in its current state.

Playback Category

2-8 Oracle Functional Testing OpenScript User's Guide

2.4.3 Error Recovery Preferences
This category lets you specify error recovery actions for exceptions that occur during
playback. You can set the error recovery action for individual playback exceptions.
Expand specific sections and set the error recovery action. You can set the action as
Fail, Warn, or Ignore, as follows:

■ Fail: Report the error as failure and stop script execution.

■ Warn: Report the error as a warning and continue script execution.

■ Ignore: Ignore the error and continue script execution.

■ ReportErrorAndContinue: Report the error to the results log and continue script
execution.

■ Pause: Pause playback and wait for user's decision to continue or abort script
execution.

You can use the options on the Set All menu to set all the error recovery options to the
same setting with a single selection.

Error Recovery playback preferences specified in the OpenScript Preferences are
stored on the local machine and only apply when the script is played back from inside
OpenScript on that machine. If you upload your script to Oracle Load Testing on
another server and your script depends on an error recovery setting being a certain
way in order for it to work, then you can set the error recovery setting in the
OpenScript script Java code.

In OpenScript scripts, error settings can be turned on and off at any time, overriding
the default Oracle Load testing and OpenScript Preferences using script Java code. For
example:

getSettings().setErrorRecovery("http.zeroLengthDownloads", "IGNORE");
// user code executed in script, such as http.get(), http.post(), ...
getSettings().setErrorRecovery("http.zeroLengthDownloads", "FAIL");

2.4.3.1 General
This section lets you specify the default General error recovery actions, as follows:

Variable Not Found - specifies the error recovery action if a variable cannot be found
when parsing transformed strings.

Create Variable Failed - specifies the error recovery action if a script fails to create a
variable.

File Not Found - specifies the error recovery action if a file is not found.

Segment Parser Failed - specifies the error recovery action if the XPath Segment
Parser cannot verify the correctness of an XPath.

Binary Decode Failed - specifies the error recovery action if a binary post data
parameter error occurs.

Encryption Service Not Initialized - specifies the error recovery action when the
password encryption service was not initialized.

Unexpected Script Error - specifies the error recovery action if any unexpected script
error occurs.

Child Script Failed - specifies the error recovery action if a child (a script called from
another script) script fails during playback.

Playback Category

Setting Preferences 2-9

Function Failed - specifies the error recovery action if a called function fails during
playback.

2.4.3.2 Flex Load Test (AMF)
This section lets you specify the default Flex Load Test error recovery actions, as
follows:

Playback Error - specifies the error recovery action if a playback error occurs.

Operation Invocation Error - specifies the error recovery action if an error occurs
while invoking an operation on an object.

2.4.3.3 Functional Test
This section lets you specify the default Functional Test error recovery actions, as
follows:

Text Matching Failed - specifies the error recovery action if a text matching test fails.

Object Test Failed - specifies the error recovery action if an object test fails.

Table Test Failed - specifies the error recovery action if a table test fails.

XML Test Failed - specifies the error recovery action if an XML test fails.

2.4.3.4 HTTP
This section lets you specify the default HTTP error recovery actions, as follows:

Zero Length Downloads - specifies the error recovery action if a server response
indicates zero bytes length.

Text Matching Failed - specifies the error recovery action if a text matching test fails.

Response Time Error - specifies the error recovery action if a Server Response Time
test fails.

Solve Variable Failed - specifies the error recovery action if the value of any variable
cannot be solved.

HTML Parsing Error - specifies the error recovery action if an HTML parsing error
occurs.

Invalid URL - specifies the error recovery action if the server returns an Invalid URL
response code.

Invalid HTTP Response Code - specifies the error recovery action if the sever returns
an invalid HTTP response code.

Client Certificate Keystore Error - specifies the error recovery action if the Client
Certificate Keystore indicates an error.

Element node not found with xpath - specifies the error recovery action if a node for
an object element is not found with the specified XPath notation.

Failure to create DOM object - specifies the error recovery action if there is a failure to
create a Document Object Model object.

2.4.3.5 Oracle Forms Functional Test
This section lets you specify the default Oracle Forms Functional test error recovery
actions, as follows:

Oracle Forms Error - specifies the error recovery action if any Oracle Forms Functional
test error occurs.

Playback Category

2-10 Oracle Functional Testing OpenScript User's Guide

Status Bar Test Error - specifies the error recovery action if an Oracle Forms Status Bar
test error occurs.

2.4.3.6 Oracle Forms Load Test
This section lets you specify the default Oracle Forms Load test error recovery actions,
as follows:

Form Connect Error - specifies the error recovery action if a server connection error
occurs.

Forms Input/Output Communication Error - specifies the error recovery action if a
read or write error occurs with an Oracle Forms message.

Forms Content Match Failed - specifies the error recovery action if the content of a
form does not match on playback.

Forms Playback Error - specifies the error recovery action if there is an error playing
back a form.

Forms Component Not Found - specifies the error recovery action if a component of a
form is not found.

2.4.3.7 Utilities
This section lets you specify the default Utilities error recovery actions, as follows:

SQL Execute Error - specifies the error recovery action if an SQL execute error occurs.

XML Parsing Error - specifies the error recovery action if any XML parsing error
occurs.

CSV Loading Error - specifies the error recovery action if an error occurs while
loading a CSV file.

SQL Validation Row Count Error - specifies the error recovery action if an error
occurs while validating the row count using a SQL statement.

2.4.3.8 Web Functional Test
This section lets you specify the default Web Functional Test error recovery actions, as
follows:

Response Time Error - specifies the error recovery action if a Server Response Time
test fails.

Solve Variable Failed - specifies the error recovery action if the value of any variable
cannot be solved.

Wait for Page Timeout - specifies the error recovery action if a page timeout error
occurs.

Object Not Found - specifies the error recovery action if a web page object is not
found.

Playback Failed - specifies the error recovery action if script playback fails.

Title Test Failed - specifies the error recovery action if a page Title test fails.

HTML Test Failed - specifies the error recovery action if an HTML test fails.

2.4.4 Functional Test Preferences
This category lets you specify playback preferences that apply to all Functional Test
scripts. The resulting dialog box displays the following sections and fields:

Playback Category

Setting Preferences 2-11

2.4.4.1 Object Enumeration
This section lets you specify the default Match Format and Object Enumeration
setting.

Object Identification: specifies which Object Identification method to use. Select one
of the following options:

■ Use XPath: When selected, the OpenScript object identification uses the standard
XPath query language to find an object within a page by searching for it in the
HTML based on its tag + attributes.

■ Use XPath with Smart Match: When selected, the OpenScript uses an XPath with
OpenScript Smart Match, which provides additional functionality to rank the
choices in cases where XPath alone returns multiple matches. The following
example explains how the Smart Match ranking feature enhances object
identification in an XPath. With the following XPath,

/web:a[@text='Search' OR @href='search.jsp' OR @index='0']

it is possible for multiple links on a page to match the XPath criteria. For example:

link A: text='Logout', href='logout.jsp', index=0
link B: text='Search', href='search.jsp', index=3
link C: text='Search', href='doNotSearch.jsp', index=15
link D: text='Find', href='search.jsp', index=22

When Smart Match is not enabled, OpenScript returns the first result found on the
page (Link A in the above example).

When Smart Match is enabled, OpenScript ranks all the results based on how well
they match the specified attributes in the XPath. OpenScript evaluates the XPath
from left-to-right and produce a list of attribute name=value pairs. For example:

Attribute 1: text=Search
Attribute 2: href=search.jsp
Attribute 3: index=0

OpenScript then builds a table and assigns a score to each attribute for each result.
OpenScript assigns a 0 or a 1 based on whether or not each result matches a
particular attribute name=value pair. The result with the highest numerical
ranking will be used during playback. For example:

Logical operators (AND, OR) in the XPath are ignored when Smart Match is
enabled during playback. In Smart Match mode, all attributes are matched as one
group in left-highest priority.

You can specify required attributes by using the Logical AND operator. All
attributes joined together using the Logical OR operator are optional. The AND
operator has a higher priority than the OR operator when both operators are used
in a single XPath. Parenthetical groups of attributes are also permitted. For
example:

Link
Attr 1
text=Search

Attr 2
href=search.jsp Attr 3 index=0

Smart Mode
Score

A 0 0 1 001

B 1 1 0 110 (Best Match)

C 1 0 0 100

D 0 1 0 010

Playback Category

2-12 Oracle Functional Testing OpenScript User's Guide

/web:a[@text='Search' AND (@alt='Find' OR @title='Find')]

In this XPath, the text attribute is required, and the alt and title attributes are
ranked using the Smart Match ranking system.

You can turn on/off Smart Mode for an individual action(s) by using the
getSettings().set() API.

Match Format: Specifies which format to use to match attributes in an object path.
The match format can be a wildcard-formatted or a regular-expression-formatted
expression. format is one of the following settings:

■ Wildcard: (default) Attributes in the given path may contain wildcards for
unknown characters. For example, title="Welcome, user *". An asterisk "*"
matches any number of characters. A question mark "?" matches any single
character.

■ Wildcard then Regular Expression: Attributes in the given path may contain a
wildcard-formatted expression, or a regular-expression-formatted expression.
During playback, an attempt is first made to find the object assuming a
wildcard format, then an attempt is made to find the object assuming a
regular-expression format.

■ Regular Expression: Attributes in the given path may contain a regular
expression.

2.4.4.2 Browser
This section lets you specify the browser settings for functional tests.

Hide browser during playback: Specifies if the browser appears or is hidden during
script playback. However, the browser will be changed to be visible automatically
when focus is set to an element inside of that browser by a mouse click or key press
event.

Close browser after playback: Specifies if the browser automatically closes after
playback.

2.4.5 HTTP Preferences
This category lets you specify HTTP playback preferences. The resulting dialog box
displays the following sections and fields:

2.4.5.1 Proxy
This section lets you specify HTTP playback preferences and displays the following
fields:

Proxy Host: Specifies the host name of the proxy server.

Proxy Port: Specifies the port to use on the proxy server.

Username: Specify the user name to use for authentication.

Password: Specify the password to use for authentication.

Non-Proxy Hosts: Specifies the host name of the non-proxy servers.

2.4.5.2 Compression
This section lets you specify specifies the default HTTP compression playback settings.

Playback Category

Setting Preferences 2-13

Enable GZIP: When selected, support for gzip compression is enabled. The browser
Request includes the Accept-Encoding: gzip header indicating a gzip
compressed page response will be accepted. If the server uses gzip compression, the
response includes the Content-Encoding: gzip header indicating the returned
page is in gzip compressed format. The browser unzips the compressed file before
rendering the HTML page. Gzip compression is typically used to provide faster
transfer of large HTML pages between the browser and the server.

Enable Deflate: When selected, when selected, support for deflate compression is
enabled. The browser Request includes the Accept-Encoding: deflate header
indicating a deflate compressed page response will be accepted. If the server uses
deflate compression, the response includes the Content-Encoding: deflate
header indicating the returned page is in deflate compressed format. The browser
inflates the compressed file before rendering the HTML page. Deflate compression is
typically used to provide faster transfer of large HTML pages between the browser
and the server.

2.4.5.3 Headers
This section specifies the default HTTP header playback settings.

Browser Emulation: Specifies which browser to emulate for script playback. The
Default is the recorded browser.

Language: Specifies which language to use for script playback. The default is the
locale assigned by the JVM.

HTTP Version: Specifies the HTTP protocol version to specify in the GET or POST
request/response between client and server. The HTTP/1.0 protocol is an early
implementation of the Hypertext Transfer Protocol. HTTP/1.1 is a standards-based
enhancement to the HTTP/1.0 protocol. See the Key Differences between HTTP/1.0
and HTTP/1.1 at
http://www8.org/w8-papers/5c-protocols/key/key.html.

Accept String: Specifies the Accept: HTTP header value looks like. The default in the
JavaAgent.properties file is: text/html, image/gif, image/jpeg, */*. If you modify a
navigation in a script by adding a custom Accept: header, the custom header value
from the script is used instead.

Global Headers: Specifies any custom "Global Headers: string to use in the Request
header for script playback. The format is in the form:
name1:value1;name2:value2;name3:value3. For example:
x-oracle-slm-message-id: bcn=<beacon_name>; svc=<service_
name>;test=<test_name>;step={{@getTopLevelStepName())}}.

2.4.5.4 Connections
This section specifies the default HTTP playback connections settings.

Enable Keep Alive: When selected, the Connection: Keep-Alive header is set to
indicate requests should use a persistent connection. The "Keep-Alive" keyword
indicates that the request should keep the connection open for multiple requests. For
HTTP/1.0, the socket connection is kept open until either the client or the server drops
the connection. For HTTP/1.1 all connections are kept alive unless a Connection: close
header is specified.

Max Number of Keep Alive Requests: Specifies the maximum number of requests to
make on a keep alive connection before closing it or select Unlimited for an unlimited
number.

Playback Category

2-14 Oracle Functional Testing OpenScript User's Guide

Max HTTP Connections Per User: Specifies the maximum number of server
connections per process per server. Each VU makes multiple connections to request
additional resources for images and additional frames for example. Setting this option
specifies a limit on the total number of connections that the VUs can make to the
server. The default setting is 'Default', which means use the default connection limits
as configured on the agent machine. (See Microsoft KBase article Q183110 for more
information.)

2.4.5.5 SSL
This section specifies the default HTTP playback Secure Sockets Layer (SSL) settings.

SSL Version: Specifies the Secure Socket Layer version to use for the proxy server.
When recording a secure site in the browser, the user only sees the Proxy Recorder's
certificate not the secure web site's certificate. The Browser, Proxy Recorder, and Secure
Server each have their own private and public keys which are used to encrypt/decrypt
data.

■ SSL: Use Secure Socket Layer protocol with the proxy server. OpenScript uses Sun
Java Secure Socket Extension (JSSE). Sun JSSE by default supports SSLv2, ASSLv3,
ASSL, ATLSv1, ATLS, and SSL_TLS.

■ SSL without TLS: Use Secure Socket Layer without Transport Layer Security. In
some cases, a JSSE issue may cause a TLS Protocol connect failure. Use this option
if a protocol connect failure occurs when using the SSL option.

2.4.5.6 Download Manager
This section lets you specify the default settings for which resources (embedded
objects, images, css, js, jars, etc.) to download for a page during playback of a script.

The Download Manager does the following:

■ Parses resource URLs embedded in an HTML page during playback.

■ Simplifies scripts by filtering out resource URLs from scripts.

■ Provides user control over which resource URLs are downloaded or executed
during playback.

The resource downloads will be included in the playback results in the Results view
and the HTML Results report. Each downloaded resource counts as a hit in the Hits
per Second and Total Hits reports. The size in kilobytes for each resource is included in
the Kilobytes per Second and Total Kilobytes reports.

The Download Manager section has the following options:

Use Download Manager: When selected, the Download Manager is enabled during
playback. When cleared, the Download Manager is not enabled during playback.

Note: Certain resource URLs that do not appear directly in the
HTML page contents are not parsed by the Download Manager. For
example, an HTML page that imports a '.css' file. When the browser
loads the HTML page, it automatically loads the '.css' file and
downloads any '.gif' resources.

Certain resource URLs that are not inside an HTML tag are not parsed
by the Download Manager. For example, a resource URL that is
dynamically composed by Javascript cannot be parsed by Download
Manager.

Playback Category

Setting Preferences 2-15

CSS Resource: When selected, css resources in <Link> tags are downloaded during
playback. When cleared, css resources are not downloaded during playback.

Image Resource: When selected, image resources in tags, in the "background"
attribute of a tag, or in <style> tags with "background:url" patterns are downloaded
during playback. When cleared, image resources are not downloaded during
playback.

Embedded Object Resource: When selected, object resources in <Embed> tags or in
<Object> tags are downloaded during playback. When cleared, object resources are
not downloaded during playback.

Script Resource: When selected, script resources in <Script> tags are downloaded
during playback. When cleared, script resources are not downloaded during playback.

Applet Resources: When selected, applet resources in <Applet> tags are downloaded
during playback. When cleared, applet resources are not downloaded during
playback.

2.4.5.7 Caching
This section specifies the default HTTP caching playback settings.

Cache download pages: When selected, downloaded pages are stored in a local cache
and caching options are enabled. Caching places less of a load on the server as only
newer pages are requested and brought down from the Web server. When cleared,
caching is not used. No caching places more of a load on the Web server because pages
and images are brought down from the Web server for every request.

■ Clear cache each iteration: When selected, the browser's cache is cleared after the
script completes each iteration of its run() section.

■ Check for newer versions of cached pages: Specifies when to check for newer
versions of cached pages.

– Automatically (when page is out of date): When selected, the web server is
checked for newer versions if the page is out of date. The Web server is not
checked for newer versions of unexpired cached pages. This setting behaves
like the "Automatically" cache setting in Internet Explorer.

– Every visit to the page: When selected, the Web server is always checked for
newer versions of all cached pages. This setting behaves like the "Every time I
visit the web page" cache setting in Internet Explorer.

Maximum In-Memory Cache Size - Specifies the maximum amount of in-memory
storage to allocate for cached document contents. This setting applies to all virtual
users in the process, even though each virtual user keeps its own cached documents.
After the in-memory cache is exhausted, document contents will be cached to a
temporary folder on disk in <installDir>\agent\cache. There is no upper bound on
how much disk storage may be used to store cached documents. The disk cache is
cleared every time the agent process starts. The default value is 16MB.

2.4.5.8 Miscellaneous
This section specifies the default miscellaneous HTTP playback settings.

Do Not Request URLs Ending In: Specifies the URLs that will not be requested when
the URL ends with one of the specified patterns or file types. Specify the ending
pattern or file type separated by commas.

Ignore URLs that Match Regex: Specifies the Regular Expression(s) string to use to
ignore specific resources. For example, the expression Login_Banner(.+?) would

Playback Category

2-16 Oracle Functional Testing OpenScript User's Guide

not download resources such as Login_Banner1.gif and Login_Banner2.gif. Multiple
Regular Expressions can be separated using a comma (,).

Enable Cookies: When selected, the virtual user profiles will use cookies. Use this
setting if your Web application uses cookies to manage session and other context
information.

Download Local Files: When selected, the Java Agent retrieves the requested local file
contents.

Preserve Cookies between iterations: Used to preserve or automatically clear cookies
added to the browser in the Run section between successive iterations of the Run
section.

■ Cookies added to the browser in the Initialize section will be preserved forever,
unless explicitly removed in script code.

■ Cookies added to the browser in the Run section will always be preserved
between the final iteration of the Run section and the Finish section.

Preserve Connections Between Iterations: Used to preserve connections between
OpenScript and the browser between successive iterations of the script. When selected,
the browser should attempt to reuse any open browser connections if possible between
iterations. Each virtual user maintains its own set of connections that it never shares
with other virtual users.

Max Content Size (KB): Specifies the maximum number of KB to download from a
server for a given request. The default value of this option is "Unlimited". However,
the maximum Virtual User Display Size is set to 1024KB, which may cause content in
the Details view to be truncated if the content size exceeds the Virtual User Display
Size. You can configure the Maximum Virtual User Display Size by adding the
following setting in the Additional Arguments field of the General Playback
Preferences:

-MAX_VUDATA_BYTES xxxxxxxx

Where xxxxxxxx is the size in KB to set as the Maximum Virtual User Display Size.
For example:

-MAX_VUDATA_BYTES 10000000

See Section 2.4.1, "General Playback Preferences" for additional information about
specifying Additional Arguments.

Socket Timeout: Specifies the maximum number of seconds to wait for a socket
connection before timing out.

2.4.6 Oracle EBS/Forms Functional Test Preferences
This category lets you specify playback preferences for Oracle EBS/Forms Functional
Tests. The resulting dialog box displays the following sections and fields:

2.4.6.1 Event Timeout
This section lets you specify the default forms event timeout setting.

Forms Startup Timeout: Specifies the maximum number of seconds OpenScript
should wait for a form to appear before considering the form not found. This is the
default timeout when waiting for a form to appear before invoking an action against it.
This is also the default timeout when waiting for a form to appear before continuing
the script.

Playback Category

Setting Preferences 2-17

Forms Action Timeout: Specifies the maximum number of seconds OpenScript should
wait for forms action playback until success.

Forms Response Timeout: Specifies the maximum number of seconds OpenScript
should wait for forms response before timing out.

2.4.6.2 Miscellaneous
This section lets you specify screenshot capture preferences.

Capture screenshots: When selected, screenshots of the pages are captured during
playback. Screenshots can be viewed by selecting a WaitForPage result in the Results
view and then selecting the Screenshot tab in the Details view. Captured screenshots
will increase the size of scripts when exported to zip files.

2.4.7 Oracle EBS/Forms Load Test Preferences
This category lets you specify playback preferences for Oracle EBS/Forms Load Tests.
The resulting dialog box displays the following sections and fields:

2.4.7.1 Connection
This section lets you specify playback connection preferences.

Disconnect Forms automatically: Specifies if the script finish event of each script is
monitored to disconnect Forms automatically if the Forms connection is not closed
after all steps are executed. Selecting this option helps avoid invalid server forms
sessions.

Clear this setting if you have any chained Forms Load Test scripts and you do not
want the Forms connection closed automatically in the child scripts.

2.4.7.2 Miscellaneous
This section lets you specify playback log preferences.

Capture Message Details: Specifies if forms message details are captured during
playback. When selected, OpenScript captures and stores Forms message requests,
responses, and information about all loaded Forms components during playback. This
information is useful to have when debugging the script.

OpenScript displays captured details in the "Messages" and "Object Details" tabs of the
Details view. Oracle Load Testing displays this information in the Virtual User Display
based on the "Virtual User Display" settings.

Capturing message details is a memory-intensive operation. During heavy load
testing, it is recommended to clear this setting to reduce the amount of heap space
required by the agent.

Show Message Log In the Console: Specifies if forms message log details are shown it
the Console tab. When selected, the message log details are shown in the console.
When cleared, the message log details are not shown in the console.

2.4.8 Shared Data Service Preferences
This category lets you specify playback preferences for the agent Shared Data Service.
The resulting dialog box displays the following fields:

OATS Credential: Specifies the authentication credentials to use to establish the
communication between the shared queue and the Virtual User.

Playback Category

2-18 Oracle Functional Testing OpenScript User's Guide

■ Enable global shared data access credentials: When selected, when selected, the
shard data access credentials are enabled. Specify the Address, User Name, and
Password.

■ Address: Specifies the address of the Oracle Load Testing for Web Application
server to use for the shared data service.

■ User name: Specifies the user name to use for authentication. The default name is
oats unless changed in the Oracle Application Testing Suite configuration.

■ Password: Specifies the password to use for authentication. This should be the
same password specified in the Encryption setting of the General preferences if the
Encrypt script data setting is selected.

Actions on Shared Data: Specifies actions on shared data.

■ Timeout: Specifies the maximum number of seconds to wait for actions on shared
data to occur before timing out.

2.4.9 Web Functional Test Preferences
This category lets you specify the default preferences for Web Functional Test script
playback. The resulting dialog box displays the following sections and fields:

2.4.9.1 Object Timeout
This section lets you specify the default object playback timeout setting.

Timeout: Specifies the maximum number of seconds OpenScript should wait for an
object to appear before considering the object not found. This is the default timeout
when waiting for an object to appear before invoking an action against it. This is also
the default timeout when waiting for an object to appear before continuing the script.

You can override individual object wait timeouts in waitForPage() or
object.waitFor() by editing their "timeout" properties. Action timeouts cannot be
overridden.

2.4.9.2 Capture Screenshot Interval
This section lets you specify the default screen capture delay setting.

Delay time for capture screenshot: Specifies the amount of time to wait before
capturing a screenshot of the page.

2.4.9.3 Miscellaneous
This section lets you specify the default playback settings for Web functional test-type
scripts.

Capture HTML: When selected, the page HTML will be captured.

Capture screenshots: When selected, screenshots of the pages are captured during
playback. Screenshots can be viewed by selecting a WaitForPage result in the Results
view and then selecting the Screenshot tab in the Details view. Captured screenshots
will increase the size of scripts when exported to zip files.

Capture URLs: When selected, the page URL will be captured.

Capture frames: When selected, the HTML frames on the page will be captured.

Clear session cookies between iterations: When selected, session cookies are cleared
from cache between playback iterations.

Record Category

Setting Preferences 2-19

Clear persistent cookies between iterations: When selected, persistent cookies are
cleared from cache between playback iterations.

Clear cache between iterations: When selected, pages are cleared from cache between
playback iterations.

Clear session cookies before playing back: When selected, session cookies are cleared
from cache before playback.

Clear persistent cookies before playing back: When selected, persistent cookies are
cleared from cache before playback.

Clear cache before playing back: When selected, pages are cleared from cache before
playback.

Log JavaScript event for actions: When selected, script playback creates a log of the
Javascript events (such as onmouseover, onmousedown, click, etc.) fired on HTML
elements. This is useful for troubleshooting scripts that do not playback properly
pages that include Dynamic HTML(DHTML) using javascript.

With Internet Explorer browsers, the log file is save to <installdir>\OpenScript\Oracle
IE ToolBar\WebDOMToolBar*.log. With Fire Fox browsers, the logs can be accessed
from the Tools menu. Select Error Console then Message.

The Web Functional Test module API provides these API methods that can be added
to the script Java Code, if necessary, to handle events that do not playback properly:
web.element("path").fireEvent("eventName") and
web.element.setSelectedJSElement().

When cleared, no logs are created.

Always launch a new browser when playing back a different script: When selected,
script playback always launches a new browser when playing back a different script.
When cleared, a script never reuses a browser launched by a previously run script.

2.5 Record Category
This category lets you specify recording preferences.

2.5.1 General Preferences
Selecting the Record preferences node let you specify the following general recording
preference:

■ Show external toolbar while recording: When selected, the floating recording
toolbar will be shown while recording. When cleared the floating toolbar is not
shown.

■ Do not record any think time: When selected, think time is not added to the script
during recording. When cleared think time is added to the script during recording.

2.5.2 HTTP Preferences
This dialog box lets you specify recording preferences for the HTTP module. The
resulting dialog box displays the following sections and fields:

2.5.2.1 General
This tab lets you specify the general browser recorder settings.

Setup: Specifies the network settings for proxy recording.

Record Category

2-20 Oracle Functional Testing OpenScript User's Guide

■ Network Interface: Enter or select the network IP address of the proxy server.

■ Additional Arguments: Specify any additional command line arguments to use
when starting the proxy server.

■ Maximum Download Size (MB): Specify the maximum file size for file
downloads.

■ Only record requests originating from the local machine: When selected, only
requests originating from the local machine are recorded by the HTTP proxy
recorder. When cleared, OpenScript can record requests originating from another
machine or device (phone, tablet pc, etc.) which has the proxy in Internet Explorer
configured to use the IP address of the OpenScript machine.

For example, with two machines as machine A and machine B:

On machine A,

– launch OpenScript,

– create an HTTP script,

– clear Only record requests originating from the local machine,

– Start recording.

On machine B,

– launch Internet Explorer browser,

– set the proxy in Internet Explorer to the IP address of machine A,

– open a web site in the browser and navigate pages.

OpenScript records HTTP requests that originate from machine B.

Miscellaneous: Specifies various settings for proxy recording.

■ Record Mode: Specifies the record mode to use for HTTP scripts.

– Web: When selected, the script recorder generates the Web mode HTTP script
Java code with for the requests. This Java code is less verbose than the HTTP
mode to simplify Java coding of the scripts. The advantage of the Web mode
compared to the HTTP mode is that it simplifies script creation and makes the
script easier to read when testing Web browser applications. The Web mode
can be used for any Web browser application that communicates via HTTP.

– HTTP: When selected, the script recorder generates the verbose HTTP script
Java code with detailed GET and POST requests. This can be used for any
HTTP application including Web browser applications and other applications
that communicate via HTTP. This is the record mode used for HTTP scripts
prior to version 9.20 of OpenScript.

■ SSL Version: Specifies the Secure Socket Layer version to use for the proxy server.
When recording a secure site in the browser, the user only sees the Proxy
Recorder's certificate not the secure web site's certificate. The Browser, Proxy
Recorder, and Secure Server each have their own private and public keys which
are used to encrypt/decrypt data.

– SSL: Use Secure Socket Layer protocol with the proxy server. OpenScript uses
Sun Java Secure Socket Extension (JSSE). Sun JSSE by default supports SSLv2,
ASSLv3, ASSL, ATLSv1, ATLS, and SSL_TLS.

– SSL without TLS: Use Secure Socket Layer without Transport Layer Security.
In some cases, a JSSE issue may cause a TLS Protocol connect failure. Use this
option if a protocol connect failure occurs when using the SSL option.

Record Category

Setting Preferences 2-21

■ IE Cache - specifies the clear cache option for the Internet Explorer browser.

– Prompt to clear the cache: When selected, a prompt dialog box appears when
you start recording a script asking if you want to clear the Internet Explorer
browser cache.

– Always clear the cache: When selected the Internet Explorer browser cache is
always cleared when recording is started.

– Never clear the cache: When selected the Internet Explorer browser cache is
never cleared when recording is started.

■ Clear persistent cookies before browser starts: When selected, all persistent
cookies are cleared before the browser starts when recording scripts.

■ Always Launch a new browser when starting recorder: When selected, the
browser launches automatically when recording is started.

■ Close browser when stopping recorder: When selected, the browser closes
automatically when recording is stopped.

■ Record navigations that return error code 404: When selected, the HTTP recorder
records navigations that return a Server Status Code 404: Not Found

■ Capture screenshots: When selected, screenshots of the pages are captured during
recording. Screenshots can be viewed by selecting a Wait For Page node in the Tree
view and then selecting the Screenshot tab in the Details view. Captured
screenshots will increase the size of scripts when exported to zip files.

2.5.2.2 Proxy Settings
This tab lets you specify the default Proxy recorder settings.

Chain Proxy: Specifies if the OpenScript proxy is chained to another proxy.

■ Chain Proxy: When selected, the OpenScript proxy is chained to another proxy.

■ Use browser's proxy: When selected, the HTTP recorder uses the proxy
configuration specified by the browser.

■ Use specified proxy: When selected, OpenScript uses the specified proxy.

– Use proxy configuration script: When selected, the specified configuration
scripts will be used.

– Address: Specify the URL to the JavaScript file containing the
FindProxyForURL JavaScript function supplied by the system administrator
for the intranet environment.

– Use proxy server: When selected, the specified proxy server will be used.

– Address: specify the network IP address of the proxy server to which to chain
the OpenScript proxy.

– Port: Specify the port to use on the chained proxy server.

Proxy Authentication: Specifies the log in credentials for authentication.

■ Username: Specify the user name to use for authentication.

■ Password: Specify the password to use for authentication.

2.5.2.3 URL Filters
This tab lets you specify the URL type(s) to filter during recording.

Record Category

2-22 Oracle Functional Testing OpenScript User's Guide

Name: Shows the name(s) of the defined filters. Select the checkbox to enable the filter.
Clear the checkbox to disable the filter.

Pattern: Shows the pattern(s) specified for the defined filters.

Match by: Shows the match setting(s) (Content Type or URL) specified for the defined
filters.

Add: Opens a dialog box for specifying a URL filter.

Edit: Opens a dialog box for editing the selected URL filter.

Delete: Deletes the selected URL filter.

Automatically filter download manager resources: When selected, the proxy recorder
automatically filters the URL resources based upon the settings specified in the
Download Manager section of the HTTP Playback preferences. When cleared, the
Download Manager settings are not used during recording.

2.5.2.4 Certificates
This tab lets you specify the Client-Side Digital Certificate Store to use when recording.

Store Client-Side Digital Certificate File (.PFX format): Specifies the .PFX-formatted
digital certificate information.

■ Last stored certificate: Specifies the name of the certificate PFX file. Enter the
name or click Store Certificate to select the file from a drive and directory
location. Click Store Certificate and enter the file name and private-key password
defined for the client certificate PFX file when the certificate was exported from
Internet Explorer.

2.5.2.5 Object Identification
This tab lets you specify the HTTP/Web object identification attributes. Object
identification attributes define how OpenScript recognizes and records specific
controls used in HTTP/Web-based applications.

Active Profile: Specifies which object identification profile to use as the active profile
when recording scripts. Profiles define a specific set of object identifiers to use when
recording HTTP/Web tests. Use the Add Profile option to create a new custom profile.
Once you have created a profile, select the profile name in the Name column and use
Add Object to define custom objects and attributes in the custom profile.

Name: Shows the name(s) of the defined HTTP/Web object identifiers and profiles.

Attributes: Shows the pattern(s) specified for the defined HTTP/Web object
identifiers.

Add Profile: Opens a dialog box for specifying a new HTTP/Web object identifier
profile.

Add Object: Opens a dialog box for specifying a new HTTP/Web object identifier.

Edit: Opens a dialog box for editing the selected HTTP/Web object identifier.

Delete: Deletes the selected HTTP/Web object identifier or custom profile. The default
profile cannot be deleted.

Export: Opens a dialog box for exporting the currently selected HTTP/Web object
identifier profile to an XML file.

Import: Opens a dialog box for importing a saved object identifier profile XML file.

Record Category

Setting Preferences 2-23

Revert: Reverts the default HTTP/Web object identification profile to the default
profile. Any changes to the default profile are removed. Select the default profile name
in the Name column to activate the revert option.

For each object element, you specify a name (typically an HTTP/Web object attribute),
an operator, a value and a value type. As you add object elements, OpenScript builds
the object identifier using logical OR between each object identifier element. Click Edit
to change between logical OR and AND.

2.5.3 Oracle ADF Functional Test Preferences
This dialog box lets you specify recording preferences for the Oracle Application
Development Framework (ADF) Functional Test module. The resulting dialog box
displays the following sections and fields:

2.5.3.1 Object Identification
This tab lets you specify the Oracle ADF object identification attributes. Object
identification attributes define how OpenScript recognizes and records specific
controls used in ADF-based applications.

Active Profile: Specifies which object identification profile to use as the active profile
when recording scripts. Profiles define a specific set of object identifiers to use when
recording ADF functional tests. Use the Add Profile option to create a new custom
profile. Once you have created a profile, select the profile name in the Name column
and use Add Object to define custom objects and attributes in the custom profile.

Name: Shows the name(s) of the defined Oracle ADF object identifiers and profiles.

Attributes: Shows the pattern(s) specified for the defined Oracle ADF object
identifiers.

Add Profile: Opens a dialog box for specifying a new Oracle ADF object identifier
profile.

Add Object: Opens a dialog box for specifying a new Oracle ADF object identifier.

Edit: Opens a dialog box for editing the selected Oracle ADF object identifier.

Delete: Deletes the selected Oracle ADF object identifier or custom profile. The default
profile cannot be deleted.

Export: Opens a dialog box for exporting the currently selected ADF object identifier
profile to an XML file.

Import: Opens a dialog box for importing a saved object identifier profile XML file.

Revert: Reverts the default ADF object identification profile to the default profile. Any
changes to the default profile are removed. Select the default profile name in the Name
column to activate the revert option.

For each object element, you specify a name (typically an Oracle ADF object attribute),
an operator, a value and a value type. As you add object elements, OpenScript builds
the object identifier using logical OR between each object identifier element. Click Edit
to change between logical OR and AND.

2.5.4 Oracle EBS/Forms Functional Test Preferences
This dialog box lets you specify recording preferences for the Oracle EBS/Forms
Functional Test module. The resulting dialog box displays the following sections and
fields:

Record Category

2-24 Oracle Functional Testing OpenScript User's Guide

2.5.4.1 General
This tab lets you specify the general Oracle Forms recorder settings.

Miscellaneous: Specifies if screenshots are captured.

■ Capture screenshots: When selected, screenshots are captured during recording.

■ Suppress JRE Plug-in Security Dialog: When selected, "Java Security Windows"
and "Warning - Security" pop up windows are not shown during either script
recording or play back when the client machine has Java Runtime Environement
(JRE) that is 1.6.0_24 or newer. If the client machine has JRE that is 1.6.0_23 or
older, no matter if this setting is enabled or disabled, "Java Security Windows" and
"Warning - Security" pop up windows will not show during either script recording
or play back.

2.5.4.2 Object Identification
This tab lets you specify the Oracle Forms object identification attributes. Object
identification attributes define how OpenScript recognizes and records specific
controls used in EBS/Forms-based applications.

Active Profile: Specifies which object identification profile to use as the active profile
when recording scripts. Profiles define a specific set of object identifiers to use when
recording EBS/Forms functional tests. Use the Add Profile option to create a new
custom profile. Once you have created a profile, select the profile name in the Name
column and use Add Object to define custom objects and attributes in the custom
profile.

Name: Shows the name(s) of the defined Oracle EBS/Forms object identifiers.

Attributes: Shows the pattern(s) specified for the defined Oracle EBS/Forms object
identifiers.

Add Profile: Opens a dialog box for specifying a new Oracle EBS/Forms object
identifier profile.

Add Object: Opens a dialog box for specifying a new Oracle EBS/Forms object
identifier.

Edit: Opens a dialog box for editing the selected Oracle EBS/Forms object identifier or
profile.

Delete: Deletes the selected Oracle Forms object identifier.

Export: Opens a dialog box for exporting the currently selected Forms object identifier
profile to an XML file. Select the profile name in the Name column to activate the
export option.

Import: Opens a dialog box for importing a saved object identifier profile XML file.

Revert: Reverts the default EBS/Forms object identification profile to the default
profile. Any changes to the default profile are removed. Select the default profile name
in the Name column to activate the revert option.

2.5.5 Oracle EBS/Forms Load Test Preferences
This dialog box lets you specify recording preferences for the Oracle Forms Load Test
module. The resulting dialog box displays the following section and fields:

Mode: Specifies the Forms message recording mode.

Record Category

Setting Preferences 2-25

■ Record all forms messages: When selected, all forms messages between the client
and the server are recorded. This option creates a verbose script which generates
the same load as an actual user environment.

■ Record critical forms messages only: When selected, only forms messages that are
considered critical between the client and the server are recorded. "Critical"
messages are the minimum amount of messages needed by the EBS/Forms Load
Test module to be able simulate a business flow as an actual user scenario. The
EBS/Forms Load Test recorder marks all critical messages according to known
Forms protocol.

This option creates a less verbose script with fewer recorded statements than the
Record all forms messages option and generates less (approximately 60-80
percent) of the load as an actual user environment. In some cases, the critical only
mode may experience record/playback issues if unknown Forms protocol
messages are not recorded as critical messages.

In some circumstances, this option may also be useful if a script requires a large
amount of custom logic and programming as the script is less verbose and does
not require knowing how or where to add terminal messages.

Applet Parameters: Specifies the Forms Applet Class property to use to record Forms
applications.

■ EBS Forms: When selected, the OpenScript Applet Class property
oracle.forms.engine.main is used to record EBS/Forms applications.

■ Custom Forms: When selected, the specified Applet Class property is used to
record custom non-Web deployed Forms applications.

Miscellaneous: Specifies the miscellaneous record preferences.

■ Force HTTP Recording: When selected, recording communicates over HTTP
disregarding the connection parameter values of the Applet page. This setting may
be necessary if the site has an Applet loading page that is set to communicate over
a socket instead of using HTTP. If the contents of the Applet loading page are set
to Socket, OpenScript cannot record the socket traffic.

2.5.6 Siebel Functional Test Preferences
This dialog box lets you specify recording preferences for the Siebel Functional Test
module. The resulting dialog box displays the following sections:

2.5.6.1 General
This tab lets you specify the Siebel general preferences.

SI Elements Paths: Specifies if the Siebel script recorder uses Siebel specific object
identifier paths for the webdom elements that are marked in the Siebel application as
Standard Interactivity (SI) controls instead of normally recorded attributes such as text,
href, and index.

■ Use special paths for SI elements: When selected, the Siebel script recorder
records only the Siebel tag attributes when normal html elements (A, TD, INPUT,
DIV, etc.) are used as SI controls in a Siebel application.

■ Path: Specifies the object identifier path to use for Siebel SI controls. The Siebel
attributes are RN (repository name), OT (object type) and UN (unique name).

■ Edit: Opens a dialog box for editing the object identifier path.

Record Category

2-26 Oracle Functional Testing OpenScript User's Guide

Sitemap Links: Specifies if the Siebel script recorder uses Siebel site map page specific
object identifier paths when recording actions on links within the Siebel site map page
instead of normally recorded object identifier paths that use the standard path. The
standard path includes a particular document index or frame name, which may
change dynamically on playback of the script.

■ Use global paths for Sitemap link: When selected, the Siebel script recorder
records only a site map page specific path for the object identifier path.

■ Path: Specifies the object identifier path to use for Siebel site map page links. The
Siebel attributes are RN (repository name), OT (object type) and UN (unique
name).

■ Edit: Opens a dialog box for editing the object identifier path.

Miscellaneous: Specifies the miscellaneous Siebel record preferences.

■ Record "waitForPage" actions: When selected, the script recorder generates "wait
for page" actions for test steps that generate a page transition in the browser. When
cleared, the script recorder generates a "capture page" action for test steps in Siebel
applications. Some Siebel actions may not generate the page transition needed to
reliably play back "wait for page" actions. Clearing this setting for Siebel
Functional test scripts allows scripts to record the "capture page" action instead of
the "wait for page" action for more accurate script playback.

2.5.7 Web Functional Test Preferences
This dialog box lets you specify recording preferences for the Web Functional Test
module. The resulting dialog box displays the following sections and fields:

2.5.7.1 General
This tab lets you specify the general Web Functional test recorder settings.

Browser: Specify the browser options that will be used during Web Functional test
recording.

■ Always launch a new browser when recording a different script: When selected,
a new instance of the Internet Explorer browser is launched for each new script
recording. When cleared, a new browser is launched only for the first script
recording of the OpenScript session. The general case is to launch a new browser
instance for each specific script. However, when chaining scripts using a shell
script where each script needs to use the same instance of the browser, clearing
this setting will cause subsequent scripts recordings to use the same browser
instance as the first recording.

Miscellaneous: Specifies the miscellaneous record settings.

■ Capture screenshots: When selected, screen images are captured during
recording.

■ Capture HTML: When selected, page source HTML is captured during recording.

■ Capture URLs: When selected, the page URL will be captured.

■ Capture frames: When selected, the HTML frames on the page will be captured.

■ Ignore auto page: When selected, server-side auto pages are ignored during
recording.

■ Action cache interval(s): Specifies how often to cache page actions during
recording. The following cases are determined by this setting:

Record Category

Setting Preferences 2-27

If while recording, the text on the same Web page element is changed within the
Action Cache Interval time setting, the previously recorded value will be replaced
by the changed value. In the Java code, the setText action will be replaced with
the changed value.

If while recording, a browser window closes within the Action Cache Interval after
a user performs an action on a web page (for example, a button click) the window
close event will not be recorded, as the window close event is considered to be
caused by the previously performed action.

■ Record "waitForPage" actions: When selected, the script recorder generates "wait
for page" actions for test steps that generate a page transition in the browser. When
cleared, the script recorder generates a "capture page" action for test steps that
generate a page transition in the browser. For Web functional test scripts, the "wait
for page" action is the normal record option. See Section 2.5.6, "Siebel Functional
Test Preferences" for additional information.

■ Record "mouseClick" actions: When selected, the script recorder generates mouse
click actions to support record and playback of actions against embedded browser
objects such as Flash or ActiveX.

■ Create Title Test for every Page: When selected, The Web Functional Test recorder
automatically inserts a page title test for every page recorded. The page title test
compares the recorded page title to the page title received during playback. The
default test does not stop playback if the page title comparison fails. When cleared,
page title tests are not inserted during recording.

■ Create HTML Test for every Page: When selected, The Web Functional Test
recorder automatically inserts an HTML test for every page recorded. The HTML
test compares the recorded HTML to the HTML received during playback. The
default test stops playback if the HTML comparison fails. Select the result in the
Results view and view the differences in the Comparison tab of the Details view.
When cleared, page HTML tests are not inserted during recording.

2.5.7.2 Object Identification
This tab lets you specify recording preferences for the Web Functional Test module.

Active Profile: Specifies which object identification profile to use as the active profile
when recording scripts. Profiles define a specific set of object identifiers to use when
recording Web functional tests. Use the Add Profile option to create a new custom
profile. Once you have created a profile, select the profile name in the Name column
and use Add Object to define custom objects and attributes in the custom profile.

Name: Shows the name(s) of the defined Web object identifiers.

Attributes: Shows the pattern(s) specified for the defined Web object identifiers.

Add Profile: Opens a dialog box for specifying a new Web object identifier profile.

Add Object: Opens a dialog box for specifying a new Web object identifier.

Edit: Opens a dialog box for editing the selected Web object identifier or profile.

Delete: Deletes the selected Web object identifier or profile. The default profile cannot
be deleted.

Export: Opens a dialog box for exporting the currently selected Web object identifier
profile to an XML file. Select the profile name in the Name column to activate the
export option.

Record Category

2-28 Oracle Functional Testing OpenScript User's Guide

Import: Opens a dialog box for importing the currently selected Web object identifier
profile to an XML file. Select a profile name in the Name column to activate the import
option.

Revert: reverts the default Web object identification profile to the default profile. Any
changes to the default profile are removed. Select the default profile name in the Name
column to activate the revert option.

2.5.8 Web Services Preferences
This tab lets you specify recording preferences for the Web Services module. The
resulting dialog box displays the following sections and fields:

2.5.8.1 General
This tab lets you specify the general browser recorder settings.

Request Timeout: Specifies the amount of time in seconds to wait for a response to a
request before timing out.

Generate default values for requests: When selected, the OpenScript XML parser
generates the specified values for the primitive data types by default. The values may
be empty. (For other Axis or Oracle parsers the parameters of the methods must be
specified.)

■ xsd:string: Specifies the default value for String data type parameters.

■ xsd:int: Specifies the default value for Integer data type parameters.

■ xsd:long: Specifies the default value for Long data type parameters.

■ xsd:float: Specifies the default value for Float data type parameters.

■ xsd:double: Specifies the default value for Double data type parameters.

■ xsd:boolean: Specifies the default value for Boolean data type parameters.

2.5.8.2 Parser Tools
This tab lets you specify additional Apache AXIS parsers to use with the Web Services
module.

Apache AXIS 1.X: Specifies the root folder of the Apache AXIS 1.X implementation of
the SOAP ("Simple Object Access Protocol") parser. Download "AXIS 1.4 Final" binary
ZIP file (axis-bin-1_4.zip) from http://ws.apache.org/axis/, unpack the zip file,
and then specify the AXIS 1.X root folder using the Browse button.

Apache AXIS 2: Specifies the root folder of the Apache AXIS 2 implementation of the
SOAP ("Simple Object Access Protocol") parser. Download the AXIS 2 Standard Binary
Distribution ZIP file (axis2-1.3-bin.zip) from http://ws.apache.org/axis2/,
unpack the zip file, and specify the AXIS 2 root folder using the Browse button.

2.5.8.3 Proxy Configuration
The Web Services module uses the integrated HTTP Proxy recorder to record
SOAP/HTTP protocol requests. Specify the proxy settings for the parsers to be able to
parse the internet WSDL file from an internal network using the HTTP Record
Preferences Proxy Settings tab.

Step Group Category

Setting Preferences 2-29

2.6 Step Group Category
This category lets you specify script step group creation, naming, and numbering
preferences. Step groups allow you to optionally organize your OpenScript script
commands into logical groupings based on the type of script you are creating. If step
groups are enabled during recording, your script commands will be listed within a
step group node (or sections) in the tree view (or code view) of the script. Step groups
can also be added or modified manually or completely disabled if you prefer not to
use them.

2.6.1 ADF Load Test Preferences
This dialog box lets you specify how step groups are created for ADF Load Tests. See
the Basic module Step Group preferences on on page 2-29 for additional information.
The resulting dialog box displays the following options:

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ ADF Load: When selected, step groups will be created based on the ADF
component. Groups are created whenever an ADF component is changed.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

■ By page navigation: When selected, step groups are created based upon page
navigation in the browser.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ By page title: When selected, step groups are named based upon the title of the
Web page as defined in the HTML <Title> tag for the main page and the page URL
will also be shown in parentheses in the step group name. If a title is not specified
then the step group will be named "No Title" but URL will still be displayed.

■ ADF Component: When selected, step groups are named based upon the
component title specified by the ADF JavaScript. If no title is found in the ADF
Javascript, step groups are named based upon the title of the Web page as defined
in the HTML <Title> tag. If no is title found, step groups are named based upon
the subsequent child elements.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number steps: When selected, step groups will not be numbered
automatically during script recording.

2.6.2 Basic Module Preferences
This dialog box lets you specify how step groups are created. The resulting dialog box
displays the following options:

Step Group Category

2-30 Oracle Functional Testing OpenScript User's Guide

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time interval threshold. Specify the Threshold time value in
seconds. Script commands that occur within the specified time interval relative to
each other, will be organized into the same step group. For example, if a user
performs multiple actions on a page within the specified time interval would
result in those action commands being grouped into the same step group. This
may be useful for grouping commands into step groups for AJAX applications
where full Web page transitions may not occur which would allow you to group
commands by page.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording. Step names will be displayed in the step nodes of the tree view and also
shown in the code view. Step names can also be edited manually in either view.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number steps: When selected, step groups will not be numbered
automatically during script recording.

2.6.3 Flex (AMF) Load Test Preferences
This dialog box lets you specify how step groups are created for Flex (AMF) Load
Tests. See the Basic module Step Group preferences on on page 2-29 for additional
information. The resulting dialog box displays the following options:

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

■ By page navigation: When selected, step groups are created based upon page
navigation in the browser.

■ Flex LT (AMF): When selected, step groups will be created based on the windows
in which the actions occur. Groups are created whenever a Window Activate
action is recorded.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ By page title: When selected, step groups are named based upon the title of the
Web page as defined in the HTML <Title> tag for the main page and the page URL
will also be shown in parentheses in the step group name. If a title is not specified
then the step group will be named "No Title" but URL will still be displayed.

Step Group Category

Setting Preferences 2-31

■ Flex LT (AMF): When selected, step groups will be named the same as the
window titles. Groups will be named the same as the window that is active.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number steps: When selected, step groups will not be numbered
automatically during script recording.

2.6.4 HTTP Preferences
This dialog box lets you specify how step groups are created, named, and numbered
for HTTP scripts. See the Basic module Step Group preferences on on page 2-29 for
additional information. The resulting dialog box displays the following options:

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

■ By page navigation: When selected, step groups are created based upon page
navigation in the browser.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ By page title: When selected, step groups include the title of the web page.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number step: When selected, step groups will not be numbered
automatically during script recording.

2.6.5 Oracle EBS/Forms Functional Test Preferences
This dialog box lets you specify how step groups are created for EBS Forms Functional
Tests. See the Basic module Step Group preferences on on page 2-29 for additional
information. The resulting dialog box displays the following options:

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

Step Group Category

2-32 Oracle Functional Testing OpenScript User's Guide

■ Forms Functional Test: When selected, step groups will be created based on the
windows in which the actions occur. Groups are created whenever a Window
Activate action is recorded.

■ Web Functional: When selected, step groups are created based upon the loading
of a new Web page being loaded in the browser. When a new page is finished
loading, the page and subsequent user actions performed on that page prior to the
next page load will be grouped into the same step group.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ Forms Functional Test: When selected, step groups will be named the same as the
window titles. Groups will be named the same as the window that is active.

■ Web Functional: When selected, step groups are named based upon the title of the
Web page as defined in the HTML <Title> tag for the main page and the page URL
will also be shown in parentheses in the step group name, If a title is not specified
then the step group will be named "No Title" but the URL will still be displayed.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number steps: When selected, step groups will not be numbered
automatically during script recording.

2.6.6 Oracle EBS/Forms Load Test Preferences
This dialog box lets you specify how step groups are created for EBS Forms Load Tests.
See the Basic module Step Group preferences on on page 2-29 for additional
information. The resulting dialog box displays the following options:

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

■ By page navigation: When selected, step groups are created based upon page
navigation in the browser.

■ Oracle EBS/Forms Load: When selected, step groups will be created based on the
windows in which the actions occur. Groups are created whenever a Window
Activate action is recorded.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ By page title: When selected, step groups are named based upon the title of the
Web page as defined in the HTML <Title> tag for the main page and the page URL

Step Group Category

Setting Preferences 2-33

will also be shown in parentheses in the step group name. If a title is not specified
then the step group will be named "No Title" but URL will still be displayed.

■ Oracle EBS/Forms Load: When selected, step groups will be named the same as
the window titles. Groups will be named the same as the window that is active.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number steps: When selected, step groups will not be numbered
automatically during script recording.

2.6.7 Siebel Functional Test Preferences
This dialog box lets you specify how step groups are created for Siebel Functional
Tests. See the Basic module Step Group preferences on on page 2-29 for additional
information. The resulting dialog box displays the following options:

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

■ Web Functional: When selected, step groups are created based upon the loading
of a new Web page being loaded in the browser. When a new page is finished
loading, the page and subsequent user actions performed on that page prior to the
next page load will be grouped into the same step group.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ Siebel Functional: When selected, step groups will be named based upon the
Siebel URL pattern. OpenScript uses a heuristic to evaluate the recorded URL of
pages to determine a meaningful title.

■ Web Functional: When selected, step groups are named based upon the title of the
Web page as defined in the HTML <Title> tag for the main page and the page URL
will also be shown in parentheses in the step group name, If a title is not specified
then the step group will be named "No Title" but the URL will still be displayed.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number steps: When selected, step groups will not be numbered
automatically during script recording.

Step Group Category

2-34 Oracle Functional Testing OpenScript User's Guide

2.6.8 Siebel Load Test Preferences
This dialog box lets you specify how step groups are created, named, and numbered
for Siebel scripts. See the Basic module Step Group preferences on on page 2-29 for
additional information. The resulting dialog box displays the following options:

Step Creation: if step groups are created or not by default during script recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

■ By page navigation: When selected, step groups are created based upon page
navigation in the browser.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ By Siebel URL Pattern: When selected, step groups will be named based upon the
Siebel URL pattern. OpenScript uses a heuristic to evaluate the recorded URL of
pages to determine a meaningful title.

■ By page title: When selected, step groups include the title of the web page.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number step: When selected, step groups will not be numbered
automatically during script recording.

2.6.9 Web Functional Test Preferences
This dialog box lets you specify how step groups are created for Web Functional Tests.
See the Basic module Step Group preferences on on page 2-29 for additional
information. The resulting dialog box displays the following options:

Step Creation: Specifies if step groups are created or not by default during script
recording.

■ Based on time threshold: When selected, step groups are created based upon the
specified recording time threshold. Specify the Threshold time value in seconds.

■ Web Functional: When selected, step groups are created based upon the loading
of a new Web page being loaded in the browser. When a new page is finished
loading, the page and subsequent user actions performed on that page prior to the
next page load will be grouped into the same step group.

■ Do not create steps: When selected, step groups will not be created automatically
during script recording.

Step Naming: Specifies if step groups are named or not by default during script
recording.

■ Web Functional: When selected, step groups are named based upon the title of the
Web page as defined in the HTML <Title> tag for the main page and the page URL

Setting Project Preferences

Setting Preferences 2-35

will also be shown in parentheses in the step group name, If a title is not specified
then the step group will be named "No Title" but the URL will still be displayed.

■ Do not name steps: When selected, step groups will not be named automatically
during script recording.

Step Numbering: Specifies if step groups are numbered or not by default during script
recording.

■ Auto number: When selected, step groups are numbered sequentially starting
with step 1.

■ Do not number steps: When selected, step groups will not be numbered
automatically during script recording.

2.7 Setting Project Preferences
To set Project preferences:

1. Start OpenScript.

2. Switch to the Developer Perspective.

3. Select Preferences from the Window menu.

4. Expand the desired node and select the Preferences category.

5. Specify the preferences as necessary for the selected category.

Setting Project Preferences

2-36 Oracle Functional Testing OpenScript User's Guide

3

Creating and Modifying Scripts 3-1

3 Creating and Modifying Scripts

This chapter explains the procedures for creating and modifying basic scripts in
OpenScript. The module chapters provide additional information about creating
scripts using the features and capabilities provided within specific modules.

3.1 Creating Repositories and Workspaces
Repositories and workspaces store project related script files and results log files. You
can use repositories and workspaces to organize your various testing projects.
OpenScript lets you create multiple workspaces.You can create repositories to organize
the storage of your script projects.

A repository is the directory location where you store workspaces. Workspaces are
user-specified subdirectories of the repository. As of version 9.10, OpenScript no
longer uses an exclamation point at the end of the directory name to identify the
directory as a Workspace directory. Any folder (directory) below the specified
repository can be a workspace folder.

When you record and save scripts, or play back a script and save the log file,
OpenScript stores the script or log file in the specified Workspace.

OpenScript does not create any new repository if you have at least 1 repository kept
from a previous installation. If there was no Open Script installed on this machine by
the current User, then OpenScript will create a repository named "Default" in the
location <installDir>/OFT. You can create your own repositories and workspaces using
OpenScript.

Repositories specify the location to use to store scripts and related asset files.
Repositories also provide a way to share files between OpenScript and Oracle Load
Testing. Oracle Load Testing requires that all assets live inside of a named Repository.
Oracle Load Testing will not be able to find an asset located in the local file system
outside of a repository. Any shared directory can be used as a repository. However, all
repositories shared between Oracle Load Testing, Oracle Test Manager, OpenScript,
and team members must share the same repository name. For example, if one member
of a team calls a shared repository SharedRepo1, but another member of a team calls
the same shared repository Shared_Repository_1, it is possible that some script
assets may not be found when the team members share scripts.

Note: Any scripts you plan to run, along with any associated assets,
in the Oracle Load Testing application must be stored in a
repository/workspace.

Creating Repositories and Workspaces

3-2 Oracle Functional Testing OpenScript User's Guide

To reduce the chance of local repository name conflicts, it is recommended that you
create a new local repository named something unique to the user, such as
<machineName>.<windowsUserName>.MyRepository. Store in this folder all scripts that
are not intended to be shared among team members.

Best Practices:

■ Always store scripts and assets (i.e. databanks, .jar files, etc.) inside named
repositories.

■ Avoid selecting the Save path relative to current script option in OpenScript when
saving scripts.

■ Establish a consistent repository naming scheme across all Oracle Load Testing,
Oracle Test Manger, and OpenScript installations.

■ Avoid using the repository named "Default" for storing local scripts. Use
"machineName.Default" instead.

3.1.1 Creating a Repository
To create a repository:

1. Select OpenScript Preferences from the View menu.

2. Expand the OpenScript node.

3. Expand the General node.

4. Select the Repository node.

5. Click Add.

This dialog box lets you specify the name and location of the repository to use to
store script files.

6. Enter a repository name. The name is required.

Name: Enter any name to identify the repository.

7. Enter the drive and directory location or click Browse to select the location to use
for the repository.

Location: Enter the drive and directory path to the repository or use the Browse
button to select a location. The location must be a valid drive and directory path.

8. Click OK to add the new repository to the list of repositories.

9. Click OK to close the preferences.

When you create new a script project, you can select the repository to use to store the
project.

3.1.2 Managing Repositories
To add, edit, or delete repositories:

1. Select Manage Repositories from the Tools menu.

2. Select the repository where you want to create the workspace.

Note: If you plan to use OpenScript scripts with Oracle Load Testing,
the repository names you specify should match the repository name
specified in Oracle Load Testing (including case).

Creating a Script Project

Creating and Modifying Scripts 3-3

3. Click the Add, Edit or Delete buttons to manage repositories.

4. Click Close when finished.

3.1.3 Managing Folders (Workspaces)
When starting a new testing project, you should create a project-specific workspace
folder to store related files.

To create, rename, or delete workspace folders:

1. Select Manage Folders from the Tools menu. OpenScript opens a dialog box for
managing workspace folders in repositories.

2. Expand the tree and select the workspace folder to manage.

3. Click New, Rename, or Delete buttons to manage workspace folders.

4. Click Close when finished.

3.1.4 Managing Scripts
To rename or delete scripts:

1. Select Manage Scripts from the Tools menu.

2. Select the script.

3. Click the Rename or Delete buttons to manage script files.

4. Click Close when finished.

3.2 Creating a Script Project
You must create a script project to generate the basic structure that you can then
customize.

To create a script project:

1. Select New from the File menu.

2. Expand a group node and select the type of asset or script to create:

Functional Testing (Browser/GUI Automation): The Functional Testing group
contains the following script types:

■ Adobe Flex: This option lets you create a new script for automated functional
testing of web applications that use the Adobe Flex Automation Framework at
the browser/gui level. The resulting script will contain the Initialize, Run, and
Finish nodes. The Run node will contain recorded Web navigations based
upon the defined Web Functional test Step Group preferences and the Web
navigations and Flex actions performed during recording. You can edit the
script tree or Java code to customize the script.

■ Oracle EBS/Forms: This option lets you create a new script for automated
functional testing of Oracle E-Business Suite and other applications that utilize
Web and Oracle Forms components at the browser/gui level. The resulting
script will contain the Initialize, Run, and Finish nodes. The Run node will
contain recorded Web navigations based upon the defined Step Group
preferences and the Web navigations and Forms actions performed during
recording. You can edit the script tree or Java code to customize the script.

Creating a Script Project

3-4 Oracle Functional Testing OpenScript User's Guide

■ Oracle Fusion/ADF: This option lets you create a new script for automated
functional testing of Oracle Application Development Framework
(ADF)-based applications and other applications that utilize Web and ADF
components at the browser/gui level. The resulting script will contain the
Initialize, Run, and Finish nodes. The Run node will contain recorded Web
navigations based upon the defined Step Group preferences and the Web
navigations and ADF actions performed during recording. You can edit the
script tree or Java code to customize the script.

■ Siebel: This option lets you create a new script for automated functional
testing of Siebel applications that utilize Siebel High Interactivity and
Standard Interactivity/Web controls at the browser/gui level. The resulting
script will contain the Initialize, Run, and Finish nodes. The Run node will
contain recorded Web navigations based upon the defined Step Group
preferences and the Web navigations performed during recording. You can
edit the script tree or Java code to customize the script.

■ Web: This option lets you create a new script for automated functional testing
of Web applications at the browser/gui level. The resulting script will contain
the Initialize, Run, and Finish nodes. The Run node will contain recorded Web
navigations based upon the defined Step Group preferences and the Web
navigations performed during recording. You can edit the script tree or Java
code to customize the script.

General: The General group contains the following script types:

■ Database: This option lets you create the basic structure of a Database script
for automated testing of SQL statements to test a database and run them in the
Oracle Load Testing application. A basic script structure contains only the
Initialize, Run, and Finish nodes. You can use the Import Database Capture
File option on the Tools menu to import an Oracle Database Replay capture
workload file, plain SQL and PL/SQL statement .SQL script file, or SQL
statements captured and stored in an SQL Tuning Set (STS) into a script.

■ Java Code Script: This option lets you create a new automated test script
using your own custom Java code through the OpenScript Eclipse IDE. A basic
script structure contains only the Initialize, Run, and Finish nodes. You can
edit the script tree or Java code to develop your own custom script.

■ Script from Template: This option lets you create a new script from a script
that has previously been saved as a template script. When you select this
option, you select from a list of previously saved template scripts before
specifying the name for the new script. The resulting script will contain the
Initialize, Run, and Finish nodes and include any custom code that was added
to the template script. You can edit the script tree or Java code to customize the
script.

■ Web Services: This option lets you create the basic structure of a Web Services
script for automated testing of Web Services at the SOAP/HTTP protocol
level. A Web Services script structure contains only the Initialize, Run, and
Finish nodes. You can use the WSDL Manager to add WSDL files and edit the
script tree or Java code to customize the script. If you have a Web Services
client application written already that communicates over HTTP and which
communicates through a proxy, you can record the traffic using the
OpenScript HTTP recorder.

Load Testing (Protocol Automation): The Load Testing group contains the
following script types:

Creating a Script Project

Creating and Modifying Scripts 3-5

■ Adobe Flex (AMF): This option lets you create a new script for load testing of
Web applications that utilize HTTP and the Adobe Flex Action Message
Format (AMF) protocols at the protocol level. The resulting script will contain
the Initialize, Run, and Finish nodes. The Run node will contain recorded Flex
AMF and HTTP protocol navigations based upon the defined Step Group
preferences and the navigations protocol for actions performed during
recording. You can edit the script tree or Java code to customize the script.

■ Oracle EBS/Forms: This option lets you create a new script for load testing of
Oracle E-Business Suite and other applications that utilize HTTP and Oracle
Forms (NCA) protocols at the protocol level. The resulting script will contain
the Initialize, Run, and Finish nodes. The Run node will contain recorded
HTTP protocol navigations based upon the defined Step Group preferences
and the navigations and Forms protocol for actions performed during
recording. You can edit the script tree or Java code to customize the script.

■ Oracle Fusion/ADF: This option lets you create a new script for load testing of
Oracle Application Development Framework (ADF)-based applications and
other applications that utilize HTTP and ADF protocols at the protocol level.
The resulting script will contain the Initialize, Run, and Finish nodes. The Run
node will contain recorded HTTP protocol navigations based upon the defined
Step Group preferences and the navigations and ADF protocol for actions
performed during recording. You can edit the script tree or Java code to
customize the script.

■ Siebel This option lets you create a Siebel script structure of a new OpenScript
script project. A Siebel script lets you record Siebel Web navigations using a
browser for load testing Siebel applications. The resulting script will contain
the Initialize, Run, and Finish nodes. The Run node will contain recorded
HTTP protocol navigations based upon the defined Step Group preferences
and the Web and Siebel navigations performed during recording. You can edit
the script tree or Java code to customize the script.

■ Web/HTTP This option lets you create a new script for load testing of Web
Applications at the HTTP protocol level. The resulting script will contain the
Initialize, Run, and Finish nodes. The Run node will contain recorded Web
navigations based upon the defined Step Group preferences and the Web
navigations performed during recording. You can edit the script tree or Java
code to customize the script. This script type has two recording modes: Web
and HTTP. The recording mode is specified in the HTTP module Recording
preferences, which you should set before recording new scripts. See
Section 2.5.2, "HTTP Preferences" for additional information about setting the
recording mode.

Script Asset: The Script Asset group contains the following script asset types:

■ Databank: This option lets you create a new databank or open an existing
databank file. The new asset wizard lets you navigate to the databank file
location of an existing databank file or enter the name of a new databank file.
When you click Finish in the wizard, the existing or new databank file opens
in a text editor view.

■ Object Library: This option lets you create a new Object Library or open an
existing Object Library. The new asset wizard lets you navigate to the Object
Library file location of an existing Object Library file or enter the name of a
new Object Library file. When you click Finish in the wizard, the existing or
new Object Library file opens in the Object Library editor view.

3. Click Next.

Creating a Script Project

3-6 Oracle Functional Testing OpenScript User's Guide

4. Select the location where you want to store the script project. Scripts can be stored
in repositories and workspaces. Load test scripts developed for use with Oracle
Load Testing must be stored in a repository/workspace.

■ Path: Shows the file path of the selected repository/workspace.

■ My Repositories: Specifies the repository where the script project will be
saved. Select a repository and workspace from the tree. Repositories can be
managed using Manage Repositories on the Tools menu.

■ [file list]: List the names of the existing files or scripts in the selected
repository/workspace.

■ Script: Specify a name for the script project. The script name is required and
must be unique.

5. Enter a script name.

6. Click Finish. For Java Code Scripts, a basic script tree will be created in the script
view. You can edit the Java code in the code view. For module scripts, a script tree
will be created in the script view. After you record the script, the tree view will
contain the navigations and actions depending upon the type script.

3.2.1 Opening Existing Scripts
The introduction of Script Assets (in Script Properties) requires pre-version 9.10 scripts
to be migrated to the current version of 9.10 or higher. This section provides
information about backwards compatibility of OpenScript scripts and upgrading
OpenScript scripts.

Scripts created in older versions of OpenScript will always run in new versions of the
product without modification from the command-line, Oracle Load Testing, and
Oracle Test Manager.

Older OpenScript scripts may not be opened or played back in the newer version of
the OpenScript User Interface without upgrading them first.

Previously published script API functions are supported in the latest release. Some
published API may be marked as deprecated, but will still work in the new release in
order to maintain backwards compatibility.

3.2.1.1 Opening Older Scripts in OpenScript
OpenScript requires that scripts be upgraded to the latest release in order to open them
in the OpenScript User Interface. You are not required to upgrade a script to the new
version unless you want to open the script in the OpenScript User Interface. Older
versions of OpenScript scripts can be run without modification from the
command-line, Oracle Load Testing, and Oracle Test Manager. However, for version
9.0x scripts, you must maintain the Repository/Workspace structure as
repositoryLocation/workspace!/script. It is not possible to copy 9.0x scripts
directly to a Version 9.1+ repository.

Caution: Version 9.10 and higher scripts cannot be played back in
earlier versions of OpenScript, Oracle Load Testing, and Oracle Test
Manager. If you want to maintain pre-version 9.10 scripts, you should
make a back up copy of your scripts before opening and saving them in
version 9.10 or higher. OpenScript automatically migrates any
pre-version 9.10 scripts when the script is opened and saved in
OpenScript version 9.10 or higher.

Creating a Script Project

Creating and Modifying Scripts 3-7

OpenScript automatically prompts you to upgrade older version scripts to the current
version whenever the script is opened in the OpenScript User Interface. When opening
an older script, you can choose not to open the script and the script will not be
upgraded.

When prompted to upgrade a script, if the script depends on any child scripts or
function libraries, OpenScript provides an option to upgrade the child scripts or
function libraries to the new version also.

Once a script is upgraded to a new release, the script cannot be opened or run using
older versions of Oracle Application Testing Suite (OpenScript, Oracle Load Testing, or
Oracle Test Manager).

3.2.1.2 Migrating Older Scripts in OpenScript
If you wish to upgrade scripts without opening them individually in OpenScript, you
can use the Migrate Scripts upgrade option on the Tools menu. The Migrate Scripts
tool lets you migrate pre-version 9.10 scripts to the current version without having to
open scripts individually.

The Migrate Scripts tool provides options for migrating top-level scripts and locating
all dependent child scripts. The Migrate Scripts tool lets you select which scripts to
migrate to the current version and find any child scripts that also need to be migrated.

Since version 9.10, scripts that will be run in Oracle Load Testing may not specify
absolute paths for their repositories or script assets. However, if your pre-9.10 scripts
use absolute paths, you may continue to run the same scripts, unmodified, in the
current version of Oracle Load Testing. As soon as you upgrade the pre-9.10 scripts to
the current version using either the OpenScript User Interface or the Migrate Script
tool, the script will not playback in Oracle Load Testing until the absolute paths are
changed to relative paths. The Migrate Scripts tool does not migrate absolute paths to
relative paths or to repository paths. The absolute paths must be changed in the scripts
manually.

3.2.1.3 Running Mixed Versions of Scripts
You are advised not to run mixed versions of "job" scripts where a parent script calls
child scripts or function libraries. This may happen in cases where you may have 9.1x
"parent" scripts that run 9.0x "child" scripts or function libraries. Although this
configuration has been tested and is supported, the combination of mixed versions
scripts may lead to unpredictable results and some confusion as to which scripts are
the latest version. In addition, mixed version job scripts may not be able to take
advantage of certain new version 9.10 improvements, such as:

■ Version 9.10 provides an option to visually inspect and add child script functions
into a parent script. If child scripts are not upgraded to 9.10, OpenScript will not
display their available functions in the user interface options.

■ Version 9.10 scripts no longer require that parent scripts add all child script
databanks as their own databanks. If child scripts are not upgraded to 9.10, then
parent scripts still must have child script databanks added as their own databanks.

3.2.1.4 Multiple Users Opening Scripts
For existing scripts, the file concurrency control prevents multiple users from editing
the same script. If you try to open a script that is in use by another user, The script
copy wizard opens and you will be asked if you want to make a copy of the script and
additional files.

Creating a Script Project

3-8 Oracle Functional Testing OpenScript User's Guide

3.2.2 Migrating Scripts
To migrate scripts to the current version:

1. Select Migrate Scripts from the Tools menu.

This dialog box lets you migrate pre-version 9.10 OpenScript scripts to the current
version. The Prompt on the top of the dialog box shows if the selected script is
current or should be migrated and prompts for the appropriate action. The Script
Migration Manager has the following options:

■ Path: Shows the file path of the selected repository/workspace.

■ My Repositories: Specifies the repository for selecting scripts to migrate or
search. Select a repository and workspace from the tree.

■ [file list]: List the names of the existing files or scripts in the selected
repository/workspace.

■ Script: Specify a name of a script to migrate or search.

■ Migrate: When enabled, the selected script is a pre-version 9.10 script and can
be migrated to the current version. When disabled, the script is already a
version 9.10 or higher script and doe not require migration.

■ Find child scripts: When enabled, the selected script is a pre-version 9.10
script and can be migrated to the current version. When disabled, the script is
already a version 9.10 or higher script and does not require migration.

2. Expand the My Repositories tree to navigate to a workspace folder containing the
script files.

3. Select the script.

If Migrate is enabled, the script is a pre-version 9.10 and can be migrated. If
Migrate is disabled, the script is already a version 9.10 or higher script and does
not require migration.

If Find child scripts is enabled, the script is already a version 9.10 or higher script
and you can use the Find child scripts feature to locate any child scripts that may
be assets for the currently selected script. If child scripts are located, you can use
the Migrate Child Scripts options to migrate child scripts or search for additional
child scripts. If Find child scripts is disabled, the script is a pre-version 9.10 script
and must be migrated to the current version.

4. Click Migrate or Find child scripts as required for the selected script file.

5. Click Close when finished.

3.2.3 Saving Scripts as Templates
Existing scripts can be saved as template scripts. Template scripts can be used as a
baseline for creating new scripts. Any new script created from a template will contain
the same structure and custom code as the template script.

To save an existing script as a template:

1. Open the script to save as template or create a new script.

2. Customize the script with any recording, options, or custom code you want to
include in the template.

3. Select Save As Template from the File menu.

4. Enter a file name for the template and click OK.

Creating a Script Project

Creating and Modifying Scripts 3-9

When naming templates, be sure to specify the type of script (for example HTTP load,
Web functional, Siebel load, etc.) as part of the template name. This is useful when
creating new script from templates.

3.2.4 Creating New Scripts from Templates
You can create a new script from a script that has previously been saved as a template
script. The resulting script will contain the Initialize, Run, and Finish nodes and
include any custom code that was added to the template script.

To create a new script from a template:

1. Select New from the File menu or click the toolbar button.

2. Expand the General section and select Script from Template.

3. Click Next.

4. Select the template to use to create the new script and click Next.

5. Enter a script name for the new script and click Finish.

3.2.5 Setting Script Properties
Script properties specify the property settings for a specific script. You can set script
properties at any time when a script is open. Script properties include the following:

■ Script assets including Databanks, Object Libraries, Generic Jar files, and other
scripts to run as child scripts.

■ Correlation properties for Load Testing (protocol automation)-type scripts.

■ Module properties specifying which module services to include with a script.

■ Step Group properties specifying how step groups are created during recording.

To set Script Properties:

1. Open or a create a script project.

2. Select Script Properties from the Script menu.

3. Select the property type in the left pane.

4. Use the options in the right pane to set specific properties.

5. Click OK when finished.

The script property panes are described in the following sections.

3.2.5.1 Correlation and Validation
This dialog box lets you specify correlation properties for Load Testing (protocol
automation)-type scripts. The Correlation pane has the following options:

■ Module: Specifies the module type the script will use for the correlation rules.

■ Selected Module's Settings: Shows the current script's Correlation library and
rules settings. Expand the tree view to view the selected libraries and rules.

– Edit: Opens the correlation properties window for the specified module type.

Note: You must have previously saved an existing script as a
template before you can create a new script from a template.

Creating a Script Project

3-10 Oracle Functional Testing OpenScript User's Guide

3.2.5.2 Modules
This dialog box lets you specify which module services to include with a script. The
Modules pane has the following options:

■ Modules: Shows which module services are included with the current script. The
Basic and Utilities modules are common to all script types. The Shared Data
module can also be used with all script types. The HTTP module is common to all
load testing (protocol automation)-type scripts. The Functional Test and Web
Functional Test modules are common to functional test-type scripts. Other
modules are specific to a script type.

3.2.5.3 Script Assets
This dialog box lets you specify assets to a script. The Script Assets pane has the
following options:

■ Asset: Lists the Assets added to a script by type in a tree view. Script Assets can be
Databanks, Object Libraries, Generic Jar files, and other scripts.

■ File: Shows the files added as Assets to the current script. Expand the tree view in
the Assets column to view the files.

■ Add: Opens a file selection dialog box for selecting the file to add as an asset.
Expand the My Repositories tree to navigate to a workspace folder containing the
file.

■ Edit: Opens a file selection dialog box for changing which file is added as an asset.

■ Open: Opens the selected asset file in the appropriate editor.

■ Remove: Removes the selected asset file from the Assets tree. The file still exists in
repository/workspace.

3.2.5.4 Step Groups
This dialog box lets you specify Step Group properties for the current script. The Step
Group pane has the following options:

■ Module: Specifies the module type the script will use for the step group rules.

■ Selected Module's Settings: Shows the current script's Step Group settings. The
settings are specific to the script type.

– Edit: Opens the Step Group properties window for the specified module type.

3.2.6 Importing Database Capture Files
You can import a Database Replay capture file, plain SQL and PL/SQL statements
.SQL script file, or SQL statements captured and stored in an SQL Tuning Set (STS) to
generate an OpenScript load testing script that connects to a database and executes the
SQL statements.

To set the Database preferences:

Note: Any scripts you plan to run, along with any associated assets,
in the Oracle Load Testing application must be stored in a
repository/workspace that can be accessed by the Oracle Load Testing
Controller. If you create new repositories in OpenScript, you should
also add the new repositories in Oracle Load Testing.

Creating a Script Project

Creating and Modifying Scripts 3-11

1. Select OpenScript Preferences from the View menu.

2. Expand the OpenScript node.

3. Select the General node.

4. Select the Date Format. See Chapter 2.3.1, "General Preferences" for additional
information.

5. Click OK.

To create a script from Database Capture file:

1. Select New from the File menu.

2. Expand the General group and select the Database script type.

3. Click Next.

4. Select the repository and workspace where you want to store the script.

5. Enter a script name and click Finish. A new basic script project is created in the
Script tree.

6. Select Import Database Capture File from the Tools menu. The Import Database
Capture File Wizard opens for specifying the file format type, source file, and SQL
statement parameterization for imported database capture files or SQL statement
files.

7. Select the Database file format to import:

■ Database Replay Capture File: When selected, an Oracle DBReplay capture
workload file can be imported.

■ SQL and PL/SQL Statement Script: When selected, a plain SQL and PL/SQL
statements .SQL script file can be imported.

■ STS in Oracle Database: When selected, SQL statements captured and stored
in an SQL Tuning Set (STS) can be imported.

8. Specify the maximum number of items to import.

9. Click Next.

10. Enter the file path and name of the Database Replay capture file (.rec file
extension), SQL and PL/SQL statement script file (.sql file extension), or SQL
Tuning Set (STS), or click Browse to select the file.

11. Click Next.

12. Select the alias name of the database connection to use or click New to specify a
new connection. If you select New, enter the Database Driver, URL, username,
password, and alias information. The alias is the name used in the script to
reference the database connection. Click Test to verify the connection and click OK
to use the new connection.

13. Select or clear individual SQL statements to include in the script and set the
parameterization for the SQL statements.

■ Edit: Opens a dialog box for editing a specific SQL query. You can edit the SQL
query or use the edit options to Parameterize specific values of the query.

■ Parameterize: Creates SQL bindings for all literal parameters of the selected
SQL query. This is used to make the database parse the SQL statements more
efficiently. For example, an application that makes the following three
database queries:

Creating a Script Project

3-12 Oracle Functional Testing OpenScript User's Guide

BEGIN DBMS_OUTPUT.GET_LINES(1, 100); END;
BEGIN DBMS_OUTPUT.GET_LINES(5, 100); END;
BEGIN DBMS_OUTPUT.GET_LINES(7, 100); END;

The above statements require the database to parse the entire query 3 times,
even though the structure of the query does not change. It is more efficient for
database parsing to pass parameter arguments to the queries. For example:

BEGIN DBMS_OUTPUT.GET_LINES(?, ?); END;
BEGIN DBMS_OUTPUT.GET_LINES(?, ?); END;
BEGIN DBMS_OUTPUT.GET_LINES(?, ?); END;

When executing the above SQL statements, the application would separately
specify the literal parameter values to input to the database (that is: 1, 100, 5,
100, 7, 100).

If you insert a new SQL query manually using Edit, the Parameterize button
parameterizes all literals and named parameters. For example, the following
statement:

BEGIN DBMS_OUTPUT.GET_LINES(5, :NUMLINES); END;

will be parameterized as:

BEGIN DBMS_OUTPUT.GET_LINES(?, ?); END;

In certain cases, using the Parameterize button may produce unwanted
parameterization of a literal. For example, in the following statement:

SELECT 1 FROM EMPLOYEES

will be parameterized as:

SELECT ? FROM EMPLOYEES

In the above example, if the you did not intend for the "1" to be parameterized,
you would have to manually adjust the parameterization using Revert.

When importing a DBReplay file, or .SQL file, OpenScript will only
parameterize things that are already parameterized in the file itself.

■ Revert: Reverts the selected parameterized SQL query back to the original
imported statement.

■ Check All: Selects all imported SQL statements.

■ Uncheck All: Clears the check marks from all imported SQL statements.

■ Automatically Add Row Count Tests: When selected, a row count test is
automatically inserted for each SQL statement added to the script.

■ Parameterize Checked: Creates SQL bindings for all literal parameters in all
checked statements.

■ Revert Checked: Reverts to the original imported SQL statement for all
checked statements.

14. Click Finish.

The Database capture or SQL file import recorder parses the file and generates an
OpenScript script using the specified Parameterize settings. The script creation time
can vary depending upon the size of the capture file.

Creating a Script Project

Creating and Modifying Scripts 3-13

The resulting script contains the Java code required to connect to the database and
execute the SQL queries selected in the import wizard. The script uses the OpenScript
utilities.getSQLService() methods to execute the SQL statements.

3.2.7 Importing Oracle Real User Experience Insight (RUEI) Session Logs
You can import a RUEI captured user session log file to generate an HTTP-based
OpenScript load testing script. The RUEI User Session log must be generated using
RUEI version 6 or higher.

To create a script from RUEI user session log:

1. Select New from the File menu.

2. Expand the Load Testing (Protocol Automation) group and select the Web/HTTP
script type.

3. Click Next.

4. Select the repository and workspace where you want to store the script.

5. Enter a script name and click Finish. A new HTTP protocol script project is created
in the Script tree.

6. Select Import Oracle Real User Experience Insight (RUEI) Session Log from the
Tools menu.

7. Enter the file path and name of the RUEI User Session log (.tab file extension) or
click Browse to select the file.

8. Set the Correlate script and Create step groups options.

9. Click OK.

The RUEI Session log import recorder parses the log file and generates an HTTP-based
OpenScript script using the specified Correlate script and Create step groups settings.
The script creation time can vary depending upon the size of the log file and if the
Correlate script and Create step groups settings are set or not. Generally, when
Correlate script and Create step groups are set, the script creation time increases.

The RUEI User Session Log consists of the following files and folder:

■ data.tab file: This file contains the url, host and port, method, postdata, etc.

■ version.txt: This files contains the export version number which determines the
version of the OpenScript RUEI User Session Log importer to use.

■ content folder: This folder contains text content that corresponds to the entries in
the data.tab file.

To get the necessary files to be exported from RUEI, URL prefix masking should be set
to "Complete logging". Complete logging is not turned on by default in RUEI. In
addition, the session exported from RUEI should not be older than the Full Session
Replay (FSR) setting specified in the Collector data retention policy settings.
Otherwise, no (or only partial) data will be available. See the Oracle Real User
Experience Insight User's Guide for details about URL prefix masking and the Collector
data retention policy settings.

3.2.8 Exporting Script Playback Settings
You can export the script playback settings to a properties file. The playback setting
properties file lists all of the options and settings that were specified for the script. You

Modifying Scripts

3-14 Oracle Functional Testing OpenScript User's Guide

can use the properties file for Command Line execution of the script using the
-propertiesPath setting. See Appendix A, "Command Line Reference" for
additional information about using the -propertiesPath setting.

To export script playback settings:

1. Open the script in OpenScript.

2. Select Export Playback Settings from the Tools menu.

3. Select the directory location and specify a file name.

4. Click Save. The file name is filename.properties.

3.3 Modifying Scripts
Once you have created a script project, you can customize the script for your specific
testing purposes using the available menu options or editing your own code in the
Java Code view.

3.3.1 Adding Step Groups to a Script
Step groups provide a way to group multiple procedures into a single reporting step.

To add a manual step group to a script:

1. Open or create a script project.

2. Select the script node where you want to add the step group.

3. Select the Script menu and then select Step Group from the Add sub menu.

This dialog box lets you specify or modify a step group node in a script tree.

4. Enter a name for the Step Group.

Title: Specify the title text of the step group. The title text will appear in the script
tree.

5. Enter any think time delay to add to the Step Group.

Think time: Specify the amount of time in milliseconds to use as a think time
delay for the step group.

6. Click OK. The Step Group is added to the script tree.

To add a step groups to a script based upon preferences:

1. Open or create a script project.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node.

4. Expand the Record node.

5. Select the Step Groups node.

6. Specify the Step Group preferences and click OK.

7. Select Create Step Groups from the Script menu. The Step Groups will be
automatically added to the script tree.

8. In the Java Code view, the step group consists of the code executed between
beginStep and endStep:

beginStep("Step Group 1", 10);
{

Modifying Scripts

Creating and Modifying Scripts 3-15

 /**
 * Add code to be executed for the step group.
 */
 info("Step Group 1");
}
endStep();

3.3.2 Adding a Delay to a Script
To add a delay to a script:

1. Open or create a script project.

2. Select the script node where you want to add the delay.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the General node and select Think Time.

This dialog box lets you specify or modify a delay time in seconds.

5. Enter a valid integer to use as the think time in seconds.

6. Click OK. The Think node is added to the script tree.

7. In the Java Code view, the think(time;) (the time is in seconds) statement will
be added to the script code:

think(10.0);

3.3.3 Adding a Log Message to a Script
To add a log message to a script:

1. Open or create a script project.

2. Select the script node where you want to add the log message.

3. Select the Script menu and then select Message from the Add sub menu.

This dialog box lets you specify or modify a log message in a script tree.

4. Enter the message text.

Message: Specify the text of the log message. The text will appear in the Console
view on script playback.

5. Click OK. The log message node is added to the script tree.

6. In the Java Code view, the type("log message") method will be added to the
script code:

info("Message");
warn("Message");
fail("Message");

The log message text appears in the Console View when the script is played back.

3.3.4 Adding a For Statement to a Script
To add a For statement to a script:

1. Open or create a script project.

2. Select the script node where you want to add the For statement.

3. Select the Script menu and then select Other from the Add sub menu.

Modifying Scripts

3-16 Oracle Functional Testing OpenScript User's Guide

4. Expand the Control Statements node and select For.

This dialog box lets you specify or modify the For statement loop count.

5. Enter a valid integer to use as the loop count.

Loop Count: Specify the number of times to loop though the For statement.

6. Click OK. The For node is added to the script tree.

7. In the Java Code view, the for (int i=0; i < loop count; i++) statement
will be added to the script code:

for (int i=0; i < 10; i++)

3.3.5 Adding a Function to a Script
You can add your own custom functions to your script and specify the arguments to
pass to the function. Custom functions can be in the current script or in another script
that has been added to the current script’s Scripts Assets Properties.

To add a function to a script:

1. Create a script project.

2. Record a complete script.

3. Select the Run node in the script tree.

4. Select the Script menu and then select Other from the Add sub menu.

5. Expand the General node and select Function.

This dialog box lets you specify a custom function name with multiple arguments.

Name: Specifies the name of the custom function. Click Add to define the names
and data type of an argument.

Description: Specifies a user-defined description for the custom function.

Argument: Lists the defined function arguments for the custom function.

Type: Lists the data type for the defined argument for the custom function.

Description: Lists the user-defined description for the argument defined for the
custom function.

Add: Opens a dialog box for defining a new argument for the custom function.

Edit: Opens a dialog box for editing the selected argument.

Delete: Removes the selected argument from the list.

Up: Moves the selected argument up one place in the list.

Down: Moves the selected argument down one place in the list.

6. Enter the function name.

7. Enter a description for the function.

8. Click Add.

This dialog box lets you specify a custom function argument to use to pass data to
the function.

Name: Specify a name of the custom function argument.

Type: Select the data type: String, Integer, Double, Long, or Boolean.

Modifying Scripts

Creating and Modifying Scripts 3-17

Description: Specify a description for the argument (you may want to include the
data type in the description so that it is indicated in the Substitute Variable list).

9. Enter an argument name.

10. Select the data type for the argument.

11. Click OK.

12. Click Add and add more arguments or click OK to add the function to the script.
The function name node is added to the script tree.

13. In the Java Code view, the public void function name statement will be
added to the script code followed by the arguments with the data types:

/**
* My custom Function
* @param argString Description of argString
* @param argInt Description of argInt
* @param argDouble Description of argDouble
* @param argLong Description of argLong
* @param argBool Description of argBool
*/
public void MyFunction(@Arg("argString") String argString,

@Arg("argInt") int argInt,
@Arg("argDouble") double argDouble,
@Arg("argLong") long argLong,
@Arg("argBool") boolean argBool)

throws Exception {

14. Add items into the Function. You can use the Tree View drag/drop or cut/paste
features to move Tree View items to the function. You can use the Script Add
option to add variable items to the function. You can also use the Code View to
add custom code to the function.

To pass arguments into a function:

Define the variables to use to pass values to the custom function arguments
somewhere in the script before where the Call Function statement will be placed in the
script:

1. Select the script node where you want to add variables.

2. Select the Script menu and then select Other from the Add sub menu.

3. Expand the Variables node and select Set Variable.

This dialog box lets you define a variable in a script.

4. Enter the variable name and value.

■ Name: Specify the name of the variable.

■ Value: Specify the value to assign to the variable.

5. Enter a value or click the Substitute Variable icon to select a variable value to
assign to the variable.

6. Click OK.

7. In the Java Code view, the getVariables().set() statement will be added to
the script code followed by the variable name and value for each variable:

getVariables().set("MyString", "String");
getVariables().set("MyInt", "1");
getVariables().set("MyDouble", "12.34");

Modifying Scripts

3-18 Oracle Functional Testing OpenScript User's Guide

getVariables().set("MyLong", "1234560");
getVariables().set("MyBool", "True");

The following is an example of a variable set to a Databank value:

getVariables().set("MyString", "{{db.customer.FirstName,String}}");

8. Select the Function node (your custom function name) in the script.

9. Select the Script menu and then select Other from the Add sub menu.

10. Expand the tree and select the item to add. For example Message under the
General node or Set Variable under the Variables node.

11. Click the Substitute Variable icon to select a custom variable or function argument.
The Select Variable tree lists the custom function with all of is defined arguments.

12. Select an argument for the custom function.

13. Click OK.

14. In the Java Code view, the message statement (info, warn or fail) or
getVariables().set() statement will be added to the script code followed by
the variable name and value for each variable:

public void MyFunction(@Arg("argString") String argString,
@Arg("argInt") int argInt,
@Arg("argDouble") double argDouble,
@Arg("argLong") long argLong,
@Arg("argBool") boolean argBool)

throws Exception {
info("{{arg.argString}}");
getVariables().set("MyArgString", "{{arg.argString}}");
getVariables().set("MyArgInt", "{{arg.argInt}}");
getVariables().set("MyArgDouble", "{{arg.argDouble}}");
getVariables().set("MyArgLong", "{{arg.argLong}}");
getVariables().set("MyArgBool", "{{arg.argBool}}");

}

To call a custom function in a script:

1. Select the node in the script tree here you want to call the function.

2. Select the Script menu and then select Other from the Add sub menu.

3. Expand the Script Function Calls node and the sub node where the custom
function is located. Custom functions can be in the local (currently open) script or
in another script added to the Script Assets Properties (select Script Properties
from the Script menu to add other scripts to the Script Assets Properties).

4. Select the function to call and click OK.

This dialog box lets you specify a custom function to call and specify the argument
values.

5. Enter the argument data to pass to the custom function or click the Substitute
Variable icon to select a custom variable or databank variable.

■ Function: Select the name of the custom function. The names of custom
functions that were added to the script will appear in this list.

■ Arguments: A field for each custom function argument will appear for the
selected function. Enter the argument value or click the Substitute Variable
icon to select a custom variable or databank variable.

Modifying Scripts

Creating and Modifying Scripts 3-19

6. Click OK.

7. In the Java Code view, the callFunction or getScript().callFunction()
statement will be added to the script code followed by the function name and
arguments as String data types. If the function is in the same script the
callFunction statement is added:

callFunction("MyFunction", "MyStringArg");

To pass data types other than String, enclose a defined variable name in double
curly braces as follows, "{{VarName}}".

callFunction("MyFunction", "{{MyString}}", "{{MyInt}}", "{{MyDouble}}",
"{{MyLong}}", "{{MyBool}}");

If the function is in a child script (a script asset script), the
getScript().callFunction() statement is added:

getScript("myAlias").callFunction("MyFunction", "myString", "myInt",
"myDouble", "myLong", "myBool");

3.3.6 Adding Script Assets
You can add assets to a script such as, databanks, generic Jar files, object libraries, or
other scripts containing recorded steps or custom functions. The asset must exist
before it can be added. Select New from the File menu to record scripts or create
databanks and object libraries. You also use the Add option in the Script Properties to
create databanks and object libraries.

To add assets to a script:

1. Open or create a script project.

2. Select a script node and select Script Properties from the Script menu.

3. Select Assets in the property type list. The Assets pane has the following options:

■ Asset: Lists the Assets added to a script by type in a tree view. Assets can be
databanks, object libraries, generic Jar files, and other scripts.

■ File: Shows the files added as Assets to the current script. Expand the tree
view in the Assets column to view the files.

■ Add: Opens a file selection dialog box for selecting the file to add as an asset.
Expand the My Repositories tree to navigate to a folder containing the file.

■ Edit: Opens a file selection dialog box for changing which files is added as an
asset.

■ Open: Opens the selected asset file in the appropriate editor.

■ Remove: Removes the selected asset file from the Assets tree. The file still
exists in the repository/workspace.

4. Select the type of asset to add and click Add.

Note: Any scripts you plan to run, along with any associated assets,
in the Oracle Load Testing application must be stored in a
repository/workspace that can be accessed by the Oracle Load Testing
Controller. If you create new repositories in OpenScript, you should
also add the new repositories in Oracle Load Testing.

Modifying Scripts

3-20 Oracle Functional Testing OpenScript User's Guide

5. Select the asset to add from a repository.

6. Set the Relative to option. The Relative to current script and Relative to a
repository options specify how the current script will locate the specified script
asset. The Relative to a repository option locates the script asset by a repository
path such as, [Repository: Default] Default!/WebTutor, if the asset is
selected from a repository. The Relative to current script option locates the script
asset by a relative path such as ../WebTutor. Selecting the The Relative to
current script option is not recommended as script-relative paths are more brittle
than repository-relative paths if scripts are moved or shared.

The following are guidelines when using script assets in a team or distributed
environment:

■ Do not use Absolute Paths when referring to assets or saving assets. Oracle
Load Testing does not support absolute paths.

■ OpenScript, Oracle Test Manager, Oracle Load Testing, and all command-line
agents should all use the same shared repository names and paths.

■ Do not refer to an asset in another repository by a relative path.

7. Click OK to add the asset to the script properties.

8. Click OK when finished adding script assets to close the script properties.

Script asset information is stored in the assets.xml file located in the script project
directory.

3.3.7 Adding a Script to Run from a Script
To add a script to run to a script:

1. Open or create a script project.

2. Select the script node where you want to add the script to run.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the General node and select Run Script.

5. Click OK.

This dialog box lets you specify the script to run from within another script.

Script: Specifies the OpenScript script to run.

New: Opens the script properties for selecting the script asset to run.

Sections of script to run: Specifies which script sections to run during playback.

■ Initialize Section: When selected, the code in the Initialize section of the
selected script to run is executed during playback. When cleared, the code in
the Initialize section is skipped.

■ Run Section: When selected, the code in the Run section of the selected script
to run is executed during playback. When cleared, the code in the Run section
is skipped.

■ Finish Section: When selected, the code in the Finish section of the selected
script to run is executed during playback. When cleared, the code in the Finish
section is skipped.

Iterations: Specify the number of script iterations to run.

6. Select the script using New next to the Script field.

Modifying Scripts

Creating and Modifying Scripts 3-21

7. Select the next script to run from the available script assets in the Script properties.
Use the Add button to add scripts to the script assets properties.

8. Select or clear the Sections of script to run option.

9. Set the iteration count.

10. Click OK. The script name node is added to the script tree.

11. In the Java Code view, the getScript().run(); statement will be added to the
script code, as follows:

getScript(alias=String).run(interation count = int, initialize = true|false,
run = true|false, finish = true|false);

Example

getScript("Web1").run(1, true, true, true);

3.3.8 Adding a Function Library
You can create a script to use as a function library that contains custom functions that
can be called from other scripts. When creating function libraries, you should make the
library script either generic or the same type of script (that is, Web, HTTP, Siebel, etc.)
as the script that will be calling functions from the library.

To create a function library:

1. Create a new script project (for example, myScriptFunctions).

2. Select the script node (Initialize, Run, or Finish) where you want to add custom
functions.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Script Functions and Local Script nodes.

5. Select [New Function] and click OK.

6. Enter a function name and description.

7. Click Add to add any arguments to the function.

■ Enter a name, specify the data type, and enter a description for the argument.

■ Click OK to add the argument.

8. Repeat step 7 for each argument to add to the function.

9. Click OK to add the function to the script.

10. Add your custom code to the function.

■ Use the script recorder to record steps.

■ Switch to the Java Code view and edit the code in the function.

11. Repeat steps 3 through 10 to add additional functions to the library script.

12. Save the library script.

To call functions from the library script:

1. Create a new script project (for example, masterScript).

2. Select the Script menu and then select Properties.

3. Select the Script Assets type and then select Scripts.

4. Click Add.

Modifying Scripts

3-22 Oracle Functional Testing OpenScript User's Guide

5. Select your custom functions library script and click OK.

6. Click OK to close the Script Properties.

7. Select the Script menu and then select Other from the Add sub menu.

8. Expand the Script Functions and Script: scriptLibraryName nodes.

9. Select the function name from the library script and click OK.

10. If the Call Function dialog box appears, enter the function arguments and click
OK.

The function name appears in the script tree as
scriptLibraryname.functionName(args, [...])

In the Java Code view, the getScript().callFunction() statement will be
added to the script code followed by the function name and arguments, as follows:

getScript("scriptLibraryNmae").callFunction("functionName", "args", "[...]")

11. Save the master script and play it back to execute the custom functions. See
Section 3.3.5, "Adding a Function to a Script" for additional information about
passing arguments to functions.

3.3.9 Adding a Synchronization Point to a Script
A sync point allows multiple scripts being run as virtual users in Oracle Load Testing
to synchronize their actions and interactions with the application under test. Sync
points provide the ability to create realistic multi-user situations that may expose
resource conflicts such as deadlocks. When you specify a sync point, multiple virtual
users executing the script will reach this sync point at various times depending on a
number of factors (for example, the speed of the machine).

Sync points cause each virtual user to wait until all virtual users have reached that
sync point. Each of the virtual users notifies the master upon reaching the sync point.
The master waits for all of the virtual users to notify it and then issues the go-ahead
for all the virtual users to continue past that sync point.

Sync points are added to individual scripts (parent or child scripts) when they are
created in OpenScript. The execution parameters for sync points are defined in the
Oracle Load Testing application.

To add a sync point to an OpenScript script:

1. Create or open a script in OpenScript.

2. Select the script node where you want to add the sync point.

3. Select Add from the Script menu then select Other.

4. Select the Synchronization Point node and click OK.

This dialog box lets you specify the name to use for the sync point.

Name: Specifies the name used to reference the sync point in the Oracle Load
Testing application.

5. Enter a name for the synchronization point and click OK.

Note: In the master script, be sure to add a “Launch Browser”
command to the Initialize section if it is not in the first function called
from the master script.

Modifying Scripts

Creating and Modifying Scripts 3-23

6. In the Java Code view, the syncPointWait("name"); method will be added to
the script code, as follows:

syncPointWait("MySyncPoint");

7. Save the script in OpenScript.

8. Load the script into the Oracle Load Testing application and specify the execution
parameters for the sync point(s) in the load test scenario. See the Oracle Load
Testing User’s Guide for additional information about specifying the sync point
execution parameters.

3.3.10 Adding a Set Variable to a Script
To add a Set Variable to a script:

1. Open or create a script project.

2. Select the script node where you want to add the set variable.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Variable node and select Set Variable.

This dialog box lets you set a variable value in a script.

5. Enter the variable name and value.

■ Name: Specify the name of the variable.

■ Value: Specify the value to assign to the variable.

6. Click OK. The Set variable = value node is added to the script tree.

7. In the Java Code view, the getVariables().set("variable name",
"value"); method will be added to the script code:

getVariables().set("sVar_MyVar", "My_Value");

If you want to set the variable with a value from an OpenScript transform variable
(i.e. a variable value contained in {{}} syntax), use the Transforms.transform
method with the getVariables().set, as follows (requires HTTP module):

http.solve("varTitle", "<TITLE>(.+)</TITLE>", "Page Title Error", false,
Source.Html, 0);

getVariables().set("sVar_MyVar", Transforms.transform("{{varTitle}}",
getVariables()));

3.3.10.1 Variables with Scope
You can use the variables method in the Java code to get or set variable with scope.
For example:

variables.set(String name, String Value, Variables.Scope.scope)
variables.get(String name, Variables.Scope.scope)

Script variables are global for all scripts and functions for a single Oracle Load Testing
Virtual User.

■ Each Virtual User keeps its own map of script variables.

■ One Virtual User cannot read/write another Virtual User's script variables. The
exception is that a Child Virtual User (i.e. a Virtual User as a child script) has
access to all variables in its parent Virtual User.

Modifying Scripts

3-24 Oracle Functional Testing OpenScript User's Guide

■ All scripts and functions that a Virtual User runs will have read/write access to all
the Virtual User's variables.

■ In Functional Testing, a script typically represents only one Virtual User. In
Functional Testing, script variables are generally global variables.

There are three scopes:

■ Local - all variables that the current script explicitly defines as local variables.

■ Parent - all variables that the parent (calling) script defines as its own local
variables.

■ Global - all other variables not defined in an explicit scope. This is the default
scope when no scope is specified. The Global scope is the parent scope of top-level
VUser (top-level script). So a top-level script will have two scopes (Global and
Parent) that coincide.

Scope can be used to avoid confusion. If an author of a child script wants to
change variables in global or parent scope, the script author should do it explicitly.
If the author of a child script wants to change local script-level variables, then
Scope Local should be used.

Child scripts inherit its entire parent script variables. It is not a copy of the
variables, it is a reference to the same variables, i.e.
getParentVUSer().variables.

The following examples show uses of the Variable Scope:

//local variable
variables.set("user", "rich", Variables.Scope.Local);

//global variable (same as set("myData", "globalData", Variables.Scope.Global);)
variables.set("myData", "globalData");

//parent variable
variables.set("anotherData", "parentData", Variable.Scope.Parent);

getScript("Script2").run();

// "globalData" as parent and global scope for top-level script coincide.
variables.get("myData", Variables.Scope.Parent)

3.3.11 Removing Unchanging Variables
You can select and remove script variables that it is known will never change.
Removing unchanging variables can improve script playback performance because
unchanging variables will not need to be evaluated during script playback. The script
will use the value captured during recording as a fixed value rather than a variable.

To remove unchanging variable from a script:

1. Record a script.

2. Play back the script at least once to compare the recorded values to the playback
values to determine which variables are unchanged.

3. Select Remove Unchanging Variables from the Script menu.

This dialog box lets you specify the variables to remove from the script:

Variable Name - shows the name of the script variable.

Recorded Value - shows the variable value set during recording.

Modifying Scripts

Creating and Modifying Scripts 3-25

Playback Value - shows the variable value set during playback.

Check All - selects all of the variables in the table.

Check Unchanged - selects only the unchanged variables in the table.

Uncheck All - unselects all of the variables in the table.

4. Select the variables to remove using the Check/Uncheck buttons.

5. Click OK when finished.

3.3.12 Parameterizing URLs
You can create variables to use for URLs in a script. In cases where you need to change
the base URL of a script, paramterizing the URLs provides a quick way to re-baseline a
script to use a new URL. The URL will only need to be changed in one place.

To parameterize URLs:

1. Record a script.

2. Select Parameterize URLs from the Tools menu.

This wizard lets you create variable names to use for URLs contained in the script.
The Enter URL panel lets you specify the URL and variable name to parameterize:

URL - specifies the URL to parameterize. Use the dropdown selector to select from
URLs that have been recorded to the current script.

Variable Name - specifies the name to use as the script variable.

3. Select the URL to parameterize.

4. Enter a variable name to use for the URL.

5. Click Next.

The Verify Changes panel lets you verify and select the which instances of the URL
in the script will be changed:

Tree view - shows the script nodes with the URL instances.

Check All - selects all of the URL nodes in the tree.

Uncheck All - unselects all of the URL nodes in the tree.

Original URL - shows the original value of the URL before parameterizing as a
script variable.

New URL - shows the value of the URL after parameterizing as a script variable.
For example, if you parameterize the URL http://myServer.com as the
variable name myServerVar, the new URL will be the parameterized script
variable {{myServerVar,http://myServer.com}}.

6. Select which instances of the URL in the script will be changed by selecting or
clearing the check boxes in the Tree view or using the Check/Uncheck buttons.

7. Click Finish.

8. In the Java Code view, the getVariables().set("variable name",
"value",scope); method will be added to the script code in the
initialize() section:

getVariables().set("myServerVar", "http://myServer.com",
Variables.Scope.GLOBAL);

Modifying Scripts

3-26 Oracle Functional Testing OpenScript User's Guide

9. Repeat steps 2-7 to parameterize other URLs in the script.

3.3.13 Adding Comments to Script Results
To add comments to script results:

1. Open or create a script.

2. Click the Code view tab.

3. Add comments or warnings using one of the following code examples:

■ Using a step group:

beginStep("Any comment string", 0);
{
//The comment string appears in the Name column of the Results view.
}
endStep();

■ Using the getStepResult().addComment method:

//The comment string appears in the Summary column of the Results view
getStepResult().addComment("Any comment string");

■ Using the getStepResult().addWarning method:

//The warning string appears in the Summary column of the Results view.
//addWarning overides addcomment.
getStepResult().addWarning("Any warning string");

3.3.14 Adding Error Recovery to a Script
To add error recovery to a script:

1. Open or create a script project.

2. Select the script node where you want to add the log message.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the General node and select Error Recovery Action.

Exception: Select the type of exception error. The list will vary depending upon
the script type.

Action: Select the error recovery action: Fail, Warn, Ignore, Report , or P:ause as
follows:

■ Fail: Report the error as failure and stop script execution.

■ Warn: Report the error as a warning and continue script execution.

■ Ignore: Ignore the error and continue script execution.

■ ReportErrorAndContinue: Report the error to the results log and continue
script execution.

■ Pause: Pause playback and wait for user's decision to continue or abort script
execution.

5. Click OK. The log message node is added to the script tree.

6. In the Java Code view, the setErrorRecovery(scriptType.constant,
ErrorRecoveryAction.action); method will be added to the script code:

setErrorRecovery(BasicErrorRecovery.ERR_VARIABLE_NOT_FOUND,

Modifying Scripts

Creating and Modifying Scripts 3-27

ErrorRecoveryAction.Fail);

3.3.14.1 Script Types
The following are the possible values for scriptType in the Java code statements:

BasicErrorRecovery (Basic module)

FormsErrorRecovery (EBS/Forms Functional module)

FTErrorRecovery (Generic Functional module)

HttpErrorRecovery (HTTP module)

NcaErrorRecovery (EBS/Forms Load module)

UtilitiesErrorRecovery (Generic Utilities)

WebErrorRecovery (Web Functional module)

3.3.14.2 Constants
The following are the possible values for constant in the Java code statements:

BasicErrorRecovery (Basic module)

ERR_VARIABLE_NOT_FOUND
ERR_CREATE_VARIABLE_ERRORCODE
ERR_FILE_NOT_FOUND
ERR_SEGMENT_PARSER_ERROR
ERR_BINARY_DECODE
ERR_ENCRYPTION_SERVICE_NOT_INITIALIZED
ERR_GENERIC_ERROR_CODE

FormsErrorRecovery (EBS/Forms Functional module)

ERR_FORMS_FT_ERROR
STATUSBAR_TEST_ERROR

FTErrorRecovery (Generic Functional Module)

ERR_FT_MATCH_ERROR
ERR_OBJECT_TEST_ERROR
ERR_TABLE_TEST_ERROR

HttpErrorRecovery (HTTP Module)

ERR_ZERO_LENGTH_DOWNLOAD
ERR_MATCH_ERROR
ERR_RESPONSE_TIME_ERROR
ERR_SOLVE_ERROR
ERR_HTML_PARSING_ERROR
ERR_INTERNET_INVALID_URL
ERR_INVALID_HTTP_RESPONSE_CODE
ERR_KEYSTORE_LOAD_ERROR

NcaErrorRecovery (EBS/Forms Load Module)

CONNECT_ERROR
MESSAGE_IO_ERROR
CONTROL_INITIALIZE_ERROR

UtilitiesErrorRecovery (Generic Utilities)

ERR_SQL_EXECUTE_ERROR
ERR_XML_PARSING_ERROR

Modifying Scripts

3-28 Oracle Functional Testing OpenScript User's Guide

ERR_CSV_LOADING_ERROR

WebErrorRecovery (Web Functional module)

ERR_RESPONSE_TIME_ERROR
ERR_WEBDOM_SOLVE_ERROR
ERR_WAIT_FOR_PAGE_TIMEOUT_ERROR

3.3.14.3 Actions
The following are the possible values for action in the Java code statements:

Fail
Ignore
Warn
ReportErrorAndContinue
Pause

3.3.15 Verifying Script Actions
You can verify script actions to check the result of a script action and adjust the
behavior of the script based on the result of the action.

The basic process to use verify script actions is as follows:

1. Add an Error Recovery Action before the script node where you want to verify the
result code. You can add the Error Recovery Action from the script Add sub menu
or in the Java Code view. Set the error recovery action to Warn or Ignore to ensure
that the Has Error block gets executed. This allows script execution to continue
past the code where an exception occurred to the next statement in the script code.

2. Add a 'Has Error' Control Statement after the script node where you want to verify
the result code. You can add the Has Error Control Statement from the script Add
sub menu or in the Java Code view. The if(hasLastError()) block is added to
the script code directly after the script node where you want to verify the result
code.

3. Add your custom code into the if(hasLastError()) block in the Java Code
view.

4. Add Results Object messages to return the result values. The Result Code
Verification features provide access to a Results object. The Result Object provides
Result Code, Summary, Error Message, and Duration information.

The following sections explain the steps in more detail.

3.3.15.1 Adding an Error Recovery Action
To add an Error Recovery Action:

1. Select the script node before the script node where you want to verify the result
code.

2. Select the Script menu and then select Other from the Add sub menu.

3. Expand the General node.

4. Select Error Recovery Action and click OK.

5. Select the Exception type. See Section 3.3.14, "Adding Error Recovery to a Script"
for additional information.

6. Select the Action type and click OK.

Modifying Scripts

Creating and Modifying Scripts 3-29

7. Add the Has Error condition to the script. See Section 3.3.15.2, "Adding a Has
Error Control Statement" for additional information.

3.3.15.2 Adding a Has Error Control Statement
The Has Error Control Statement can be added to the script using the Tree view.
However, the conditional behavior must be specified in the Java Code view.

To add a Has Error condition:

1. Select the script node after the script node where you want to verify the result
code.

2. Select the Script menu and then select Other from the Add sub menu.

3. Expand the Control Statements node.

4. Select Has Error? and click OK. The if (hasLastError()) node is added to
the script tree.

5. Add a Result Object or add your custom code in the if (hasLastError())
block in the Java Code view. See Section 3.3.15.3, "Adding a Result Object
Message" for additional information.

3.3.15.3 Adding a Result Object Message
The Result Object can be used to return result values.

To add a Result Object message:

1. Select the if (hasLastError()) node in the script tree.

2. Right-click the if (hasLastError()) node and then select Other from the
Add sub menu.

3. Expand the General node.

4. Select Message and click OK.

5. Select Info or Warn as the Message Type.

6. Click Substitute Variable.

7. Expand Last Result.

8. Expand All Actions or assertions and Verifications.

9. Select the Result to add to the message and click Finish.

10. Click OK to add the message to the script.

In the Java Code view, the message code with the result type is added to the if
(hasLastError()) block:

info("{{result.summary}}");

You can customize the message string in the Java Code view. For example:

info("Summary of last action: {{result.summary}}");

11. If necessary drag the message node into the if (hasLastError()) node so the
message is a child node of the if (hasLastError()) block. For example:

if (hasLastError()) {
info("Summary of last action: {{result.summary}}");

}

Modifying Scripts

3-30 Oracle Functional Testing OpenScript User's Guide

3.3.15.4 Actions That Can Be Verified
Only specific OpenScript actions provide the ability to verify their results. In general,
all actions that are available for adding from the tree view UI, including all
verifications and assertions, support verification.

The following types of actions typically do not support verification:

■ Java methods that are only available from code and not from the UI

■ Deprecated methods

■ "Get" methods

■ Methods that interact with OpenScript internal code such as Logger, VUDisplay,
Settings, Counters

■ Methods that don't throw any exceptions, such as http.removeCookie

3.3.16 Chaining Multiple Scripts
You can run multiple scripts from within a single script to chain playback of scripts
together.

The procedure involves the following major steps:

■ Setting the browser preferences

■ Recording scripts

■ Creating a shell script

3.3.16.1 Setting the Browser Preferences
The browser preferences specify if a new browser will launch when recording a
different script. Because the navigation sequence between multiple scripts is
important, the same instance of the browser should run all scripts if the scripts are a
continuation of each other. If each script is self-contained and there is no navigation
between scripts, each script can launch its own browser and you can skip the Browser
Preferences steps.

1. Select Preferences from the View menu.

2. Expand the General category and select Browsers.

3. Clear the Always launch a new browser when recording a different script
option.

4. Click OK.

3.3.16.2 Recording Scripts
When recording scripts for chained playback, it is important to plan the start and stop
points between scripts. This is especially true if session state needs to be maintained
between scripts. All of the scripts must be of the same type.

1. Create and record the first script, for example a Web Functional test log in script.

2. Stop the recording but do not close the browser.

3. Save the script.

4. Create and record the next script. The navigation in this script should start from
the point in the browser where the first script stopped.

5. Stop the recording and save the script.

Modifying Scripts

Creating and Modifying Scripts 3-31

6. Create and record any additional scripts to chain. The navigation in these script
should start from the point in the browser where the previous script stopped.

3.3.16.3 Creating a Shell Script
The shell script is used to run the previously recorded scripts in sequence.

1. Create a new script to use as the shell script.

2. Select the script node where you want to add the first script. This could be either
the Initialize or Run nodes.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the General node and select Run Script.

5. Click OK.

6. Click New.

7. Select the script to run from the available script assets in the Script properties. Use
the Add button to add scripts to the script assets properties.

8. Click OK.

9. Select or clear the script sections to run and the iteration count.

10. Click OK.

11. Select the script node where you want to add the next script. This could be either
the Initialize, Run, or Finish nodes.

12. Select the Script menu and then select Other from the Add sub menu.

13. Expand the General node and select Run Script.

14. Click OK.

15. Click New.

16. Select the next script to run from the available script assets in the Script properties.
Use the Add button to add scripts to the script assets properties.

17. Click OK.

18. Select or clear the script sections to run and the iteration count.

19. Click OK.

20. Repeat the Add script steps for each additional script to run.

21. Save and playback the shell script to verify the script navigations work together
correctly.

22. In the Java Code view, the getScript().run() methods will be added to the
script code:

getScript("Web1").run(1, true, true, true);
getScript("Web2").run(1, true, true, true);

3.3.17 Moving Nodes in a Script
You can click and drag a node in the script tree view to move the node to another
location in the script tree. For example, you move a step group node from the Run
section to the Initialize section or move a navigation node.

To move script nodes in the script tree:

Modifying Scripts

3-32 Oracle Functional Testing OpenScript User's Guide

1. Open or create a script project.

2. Select the script node to move in the Tree View tab of the Script View.

3. Click and drag the mouse to move the node in the script tree. The script tree shows
an indicator line that points to the location in the script tree where the node will be
moved.

4. Release the mouse button when the indicator line is at the location where you
want to move the script node.

When moving Step Groups between script sections (i.e. between Run and Initialize,
etc.) you may need to move the node to the section node.

You can also switch to the code view and move lines of code manually.

3.3.18 Aborting and Resuming a Script Programmatically
The Application Programming Interface (API) includes methods for aborting and
resuming a script programmatically.

The abort() method immediately aborts the Virtual User as soon as possible. The
remaining actions in the iteration, including any parent scripts and functions, will not
complete. The Finish section will not be run. The currently running script will return
a failed result indicating that the Virtual User was aborted.

If a Virtual User is aborted, it is possible to resume the script by catching the abort user
exception and calling resume().

The resume() method allows the caller to reset a previously fired abort() request
so that script execution can successfully continue from that point on. The caller must
first catch the StopScriptRuntimeException that gets thrown by the abort()
request and then call resume().

The resume() method works together with the abort() method. Calling resume()
will only recover from a previously called abort().

The following examples show how to use the abort() and resume() methods.

//Example Use Case 1 - Abort a script at any point
info("Running a script...");
abort();
info("This line will not be run.");

//Example Use Case 2 - Abort a script and resume
try {
info("Perform any steps inside a try-catch block...");
abort();
info("This line will not be run.");

}
catch (StopScriptRuntimeException e) {
 // optionally take any corrective action and optionally resume script
resume();

}

//Example Use Case 3 - Abort Script after 5 Minutes and Execute the Finish Section
public void initialize() throws Exception {
abortAfter(5*60); // Abort after 5 minutes
try {

// Insert script Initialize section here
info("initializing resources");

}
catch (StopScriptRuntimeException e) {

Debugging Scripts

Creating and Modifying Scripts 3-33

// ignore this and continue to run()
}

}

public void run() throws Exception {
try {

// Insert script Run section here
http.get(null, "http://myServer/longrunningtask?length=10min");

}
catch (StopScriptRuntimeException e) {

// ignore the exception; OpenScript will run the finish()
}

}

public void finish() throws Exception {
resume();
info("cleanup resources");
// Insert real customer script Finish section here

}

//Example Use Case 4 - abort() after waiting for the specified amount of time
// Usage Example:
//abortAfter(5); to abort after 5 seconds
//abortAfter(5*60); to abort after 5 minutes
private void abortAfter(int seconds) {
new Timer().schedule(new TimerTask() {

public void run() {
try {

abort();
}
catch (StopScriptRuntimeException e) { /* ignore exception thrown */ }

}
}, seconds*1000);

}

3.4 Changing Text File Encoding
Before recording sites with international characters on an English OS, users should
change the default character set encoding to a character set that supports the desired
character set.

To change the text file encoding:

1. Start OpenScript and select Developer Perspective from the View menu.

2. Select Preferences from the Windows menu.

3. Expand the General node.

4. Select the Workspace node.

5. Select the Other option under Text file encoding.

6. Select desired text file encoding (i.e. UTF-8 for Japanese language Web sites, etc.).

7. Click Close when finished.

3.5 Debugging Scripts
You can use features of the Eclipse IDE to debug scripts. For debugging purposes, it is
not always necessary to switch to the Debug Perspective to debug a script. You can

Debugging Scripts

3-34 Oracle Functional Testing OpenScript User's Guide

add views to the Tester Perspective, such as Breakpoints, Debug, and Expressions
views. In most cases, you do not need to use the Outline, Variables, and Tasks views.
This section provides tips for basic script debugging techniques.

3.5.1 Adding Views to the Tester Perspective
In some cases, you may want to add additional views to the Tester Perspective for
debugging purposes. You select the view to open using the shortcut keys to get to the
Show View window.

To open the Show View window:

1. Press and hold the Shift and Alt keys, then press the Q key (Shift+Alt+Q).

2. Press the Q key again. The Show View window opens.

3. If necessary, expand the Debug tree.

4. Select the View(s) you want to open:

■ Press and hold the Shift key and click to select multiple contiguous view
names.

■ Press and hold the Ctrl key and click to select multiple non-contiguous view
names.

5. Click OK.

The selected views open in the Tester Perspective.

3.5.2 Adding Breakpoints to a Script
You can add breakpoints to the script tree view or in the Java Code to halt script
execution at a specific line of code in the script.

To add a breakpoint to the script tree view:

1. Create a script project.

2. Record the script.

3. In the Script view, click the Tree View tab.

4. Expand the script tree and select the node where you want to add a breakpoint.

5. Click the right mouse button and select Add Breakpoint from the shortcut menu.
The "[Breakpoint]" indicator appears at the end of the script node text.

6. Play back the script.

When you play back the script, code execution will stop at the breakpoint. The
Confirm Perspective Switch message appears the when the code execution
arrives at a breakpoint. Select the Remember my decision option if you do not
want the message to appear again during future script playback.

7. Click No to stay in the Tester perspective or Yes to switch to the Debug
Perspective. You can use the following Script menu options to debug scripts:

■ Step - runs the currently selected node and moves the execution pointer to the
next sibling node. If the selected node has a child node, the execution pointer

Note: If you are in the Developer Perspective, you can add a view by
selecting Show View from the Window menu and then selecting
Other.

Debugging Scripts

Creating and Modifying Scripts 3-35

is moved to the first child node. This option is only active during script
playback and script execution is suspended while stepping through the script
code.

■ Step Into - steps into the function or sub procedure. This option is only active
during script playback and script execution is suspended while stepping
through the script code. The execution pointer is moved into the beginning of
the function.

■ Pause/Resume - pauses and resumes script playback. These options are only
active during script playback.

8. You can use the following right-click shortcut menu options to debug scripts

■ Skip/Unskip - set the code to skip or unskip.

■ Playback to Here - starts playback from the beginning of the script and halts
playback at selected node in the script tree.

■ Playback from Here - starts playback from the selected node in the script tree
and plays to the end or the next breakpoint.

■ Add Breakpoint/Remove Breakpoint - adds or removes a breakpoint in the
script tree view. Script tree nodes with a breakpoint set show the
"[Breakpoint]" indicator at the end of the script node text.

■ Execute - executes the code for the selected node in the script tree. This option
is only active during script playback and the script is paused. Execute
compiles the highlighted code in the editor or tree view and runs it in the
currently paused thread. However, the original running program code isn't
changed and the current execution pointer does not move when using
Execute. You can use Execute to test changes to a script while debugging. For
changes to be permanent, you must save the script which recompiles the code
and returns the execution pointer back to the beginning of the run() section.

■ Step - runs the currently selected node and moves the execution pointer to the
next sibling node. If the selected node has a child node, the execution pointer
is moved to the first child node. This option is only active during script
playback and script execution is suspended while stepping through the script
code.

■ Step Into - steps into the function or sub procedure. This option is only active
during script playback and script execution is suspended while stepping
through the script code. The execution pointer is moved into the beginning of
the function.

To add a breakpoint to the script code:

1. Create a script project.

2. Record the script.

3. In the Script view, click the Java Code tab.

4. Double-click in the right-most column of the code view frame next to the code line
where you want to add a breakpoint. The breakpoint indicator appears as a round
dot in the frame. You can add as many breakpoints as needed.

5. Play back the script.

When you play back the script, code execution will stop at the breakpoint. The
Confirm Perspective Switch message appears the when the code execution
arrives at a breakpoint. Select the Remember my decision option if you do not
want the message to appear again during future script playback.

Debugging Scripts

3-36 Oracle Functional Testing OpenScript User's Guide

6. Click No to stay in the Tester perspective or Yes to switch to the Debug
Perspective. You can use the following keyboard debug features to execute code
while in debugging mode:

■ Single-step (F6) - executes the next line of code.

■ Step-into (F5) - opens the method/function class file.

■ Resume (F8) - resumes code execution to the script end or to the next
breakpoint.

3.5.3 Adding a Java Exception Breakpoint
 You can pause a script when any error occurs by adding a "Java Exception Breakpoint"
to the Breakpoints list.

To add a Java Exception Breakpoint:

1. Create a script project.

2. Record the script.

3. Open the Breakpoints view.

4. Click the Add Java Exception Breakpoint icon on the Breakpoints View toolbar.

5. Type "AbstractScriptException" and click OK to add this exception to the
breakpoint list.

6. Right-click on the breakpoint in the Breakpoints view and select Breakpoint
Properties.

7. Select the Suspend on Subclasses of this Exception option in the breakpoint
properties and click OK.

During script playback, if an exception occurs, you can correct the problem and then
continue script playback.

3.5.4 Pausing and Resuming Script Playback in Debug Mode
You can pause and resume script playback using the Tree view or the Debug view.

To pause and resume play back in the Tree view:

1. Create a script project.

2. Record the script.

3. Play back the script.

4. Click the Pause toolbar button to pause playback.

5. Click the Resume toolbar button to resume playback of a paused script.

To pause and resume play back in Debug mode:

1. Create a script project.

Note: Source code for the JRE or for the Eclipse IDE is not included
with the product. When stepping into code, an editor may appear that
does not contain source code. In this case, close the editor and resume
script playback. You can use the Step-into feature to step into your
own custom functions that you have added to a script.

Debugging Scripts

Creating and Modifying Scripts 3-37

2. Record the script.

3. In the Script view, click the Java code tab.

4. If necessary, add a Debug view to the Tester Perspective. If the Developer
Perspective is open the Debug view should already be open.

5. Play back the script.

6. In the Debug view tree, select the Thread [Iterating Agent 1] thread and
click the Pause toolbar button. The Thread [Iterating Agent 1] thread is
the Virtual User's thread. You can ignore the others.

7. In the Debug view tree, select script.run() and click the Resume toolbar
button to resume playback.

If you want to resume from a specific point in a script, comment out all lines
before the current one, save the script, and then resume.

You can also execute portions of the script without having to comment out lines and
restart the playback.

1. Insert a breakpoint at the first line of the run() section.

2. Playback the script. You can execute or inspect any line when playback halts a the
breakpoint.

3. Select the specific line(s) of code you want to playback, right-click and select
Execute. You can modify the code and re-execute without having to save the
script.

4. Repeat the select code, right-click, Execute process until the script works the way
you want it to work.

5. Stop playback, or select the Resume button on the Debug view to replay from the
breakpoint.

3.5.5 Inspecting and Changing Script Variable Values
You can inspect or watch script variable values to debug scripts. The script must be
running or stopped at a breakpoint.

There is a difference between Java local variables and script variables. Java local
variables are declared using standard Java syntax, such as String x or int i. Script
variables are set using the OpenScript API methods, such as
getVariables().set("someVariable", "123" or http.solve().

To inspect the value of a script variable:

1. Create a script project.

2. Record the script.

3. Add a breakpoint to the script.

4. Play back the script.

5. At the breakpoint highlight the script code containing the variable or type the
following code and highlight the code:

getVariables().get("someVariable")

6. Right-click and select Inspect or Watch.

■ Inspect opens a pane that shows the variable (Shift-Alt-I adds the variable to
the Expressions view).

Enabling Debug Logging

3-38 Oracle Functional Testing OpenScript User's Guide

■ Watch copies the variable to the Expressions view.

7. To change the value of a script variable, type the following code:

getVariables().set("someVariable", "newValue")

8. Highlight the code.

9. Right-click and select Execute.

3.6 Enabling Debug Logging
OpenScript provides debug logging capability using Jakarta Log4j.

To enable debug logging:

1. Close OpenScript.

2. Open the file log4j.xml located in C:\OracleATS\OpenScript.

3. Locate the following section at the end of the file:

<!-- ======================= -->
 <!-- Setup the Root category -->
 <!-- ======================= -->

 <!-- For production -->
 <root>
 <priority value="WARN"/>
 <appender-ref ref="AGENTFILE" />
 </root>

 <!-- For debugging
 <root>
 <priority value="DEBUG"/>
 <appender-ref ref="AGENTFILE" />
 <appender-ref ref="CONSOLE" />
 </root>
 -->

4. Move the ending comment brackets from:

<!-- For production -->
 <root>
 <priority value="WARN"/>
 <appender-ref ref="AGENTFILE" />
 </root>

 <!-- For debugging
 <root>
 <priority value="DEBUG"/>
 <appender-ref ref="AGENTFILE" />
 <appender-ref ref="CONSOLE" />
 </root>
 -->

to:

Note: You can also test individual web actions by pausing the script,
selecting the code for the action to test, then right-clicking and
selecting Execute (or pressing Ctrl+U).

Enabling Debug Logging

Creating and Modifying Scripts 3-39

<!-- For production
 <root>
 <priority value="WARN"/>
 <appender-ref ref="AGENTFILE" />
 </root>
 -->

 <!-- For debugging -->
 <root>
 <priority value="DEBUG"/>
 <appender-ref ref="AGENTFILE" />
 <appender-ref ref="CONSOLE" />
 </root>

5. Save the file log4j.xml and restart OpenScript.

6. Run scripts.

The debug messages are stored in the file OpenScript.log located in
<installdir>\OpenScript.

To turn off debugging, move the ending comment braces back to the original locations.

Enabling Debug Logging

3-40 Oracle Functional Testing OpenScript User's Guide

Using Data Parameterization 4-1

4
Using Data Parameterization

OpenScript allows users to parameterize script data inputs to perform data driven
testing. OpenScript uses the following types of data sources:

■ Databank - one or more external comma-separated value (CSV) or text (TXT) files
that provides inputs to script parameters. Multiple Databank files can be attached
to a single script and users can specify how OpenScript assigns data during script
playback. Script playback iterations can cycle through the Databank sequentially,
randomly, and by shuffling the data. Databanks can be used with functional and
load test scripts. See Section 4.2, "Using Script Databanks" for additional
information.

■ Database - a SQL query that extracts data from an Oracle Database in the same
format as a Databank CSV or TXT file. See Section 4.2, "Using Script Databanks"
for additional information.

■ Data Table - a spreadsheet table that specifies the data by row and column. The
data in the table can be entered manually or imported from an Excel spreadsheet
file. The Data Table API provides methods for accessing the data in the table
programmatically within functional test scripts. Data Tables are used with
functional test scripts. See Section 4.3, "Using Data Tables" for additional
information.

■ Shared Data Service - a Shared Data Module API that provides methods for
sharing data between Virtual User agents using a shared data queue or hash map.
The Shared Data Service is used with load testing scripts. See Chapter 17, "Using
the Shared Data Module" for additional information about using the Shared Data
Service.

4.1 Understanding Data Driven Testing (Parameterization)
Data Driven Testing, or parameterization, allows you to quickly and efficiently create
automated data-driven tests.

The OpenScript Modules record parameters defined by each page of the
application-under-test to a script. Data sources are used to hold input data that can be
automatically fed as parameters into your application when the script is run. You can
use the OpenScript Data Parameterization features to define variable values in script
parameters and substitute values from Databank files, Databases, or Data Tables for
the variable values.

During playback, the parameters in the application are filled with values from the
Data source. Databank files can be easily created or modified using any simple text
editor, spreadsheet, word processor, or database application. Users can create

Using Script Databanks

4-2 Oracle Functional Testing OpenScript User's Guide

sophisticated unattended regression tests to thoroughly exercise the application by
using varied input data.

Data Input Parameterization enables users to parameterize recorded script inputs to
perform data driven testing in either the script GUI view or code view. These inputs
could be form field inputs for Web applications but could also be other types of script
inputs that users may parameterize. Types of inputs users may parameterize include:

■ Any user entered input data (i.e. parameterize the data I entered for the search
field)

■ Test case values (i.e. parameterize a text string for validation so I can use different
inputs for comparison during playback)

■ Recorded navigations (i.e. parameterize a starting navigation so I can navigate to
different host servers during playback)

■ Recorded user actions/object identified (i.e. parameterize a link object path so I
can click on different links during playback)

Data Input Sources enables users to drive input values from an external CSV file, Data
Table/Excel file or other external data source such as a database (i.e. using a database
query to pull inputs from a database table).

Data Parameterization GUI View enables users to configure the inputs they want to
parameterize and the data source they want to drive the inputs from through a
substitute variable GUI interface. For example, the "ticker" query string parameter for
"Page [4] Ticker List" in the Tree View is set to the variable value "{{fmstocks_
data.ticker,orcl}}".

Within the variable "{{fmstocks_data.ticker,orcl}}", "fmstocks_data" is the name of the
Databank file, ".ticker" identifies the field name within the Databank file, and "orcl" is
the recorded value.

Data Parameterization Code View Commands enable users to specify the inputs they
want to parameterize and the data source they want to drive the inputs from through
data parameterization in the code view.

For example, the "ticker" query string parameter for "Page [4] Ticker List" in the Tree
View appears as http.querystring(http.param("ticker", "{{fmstocks_
data.ticker,orcl}}") in the http.get method code in the Code View, as
follows (line breaks and spacing added for clarity):

beginStep("[4] Ticker List", 3422);
{
 http.get(6, "http://testserver2/fmstocks/{{LINK_1_3,TickerList.asp}}",
 http.querystring(http.param("ticker", "{{fmstocks_data.ticker,orcl}}"),
 http.param("company", "")), null, true, "ASCII", "ASCII");
}
endStep()

4.2 Using Script Databanks
Databanks are used to hold unlimited amounts of input data that can be automatically
fed into your Web application. During playback, the parameters in the Web page are
filled with values from the Databank file. The Databank and script parameter shortcut
menu options allow you to map parameters in a script to fields in a Databank file as
variable names.

Using Script Databanks

Using Data Parameterization 4-3

Scripts must be configured to use Databanks. Use the Script Properties option on the
Script menu to specify the Databank file(s) to use with a script in the Assets
properties. Scripts can be configured to use more than one Databank file.

When you record a script that has a navigation that uses parameters, the parameter
nodes appear under the Query String node:

In the Code View, the parameters appear in the http.param parameters of the
http.querystring parameter.

When you configure the Databank(s) to use with the script, the Get next Databank
record from databank name node and Java code are added to the script.

Select the script parameter node to map to a Databank and use the Substitute Variable
option on the right-click shortcut menu to select the Databank field name to map to the
parameter. The Databank file and field name appear in the parameter node of the
script tree.

The variable appears in the Code view in the http.param parameters of the
http.querystring parameter.

Use the Playback iterations to playback using the records in the Databank. You can
also use custom code to loop through Databank records and assign values to variables.

4.2.1 Configuring Databanks
You must configure the Databank to use with a script before you can get records from
the Databank to use in a script.

To configure Databanks to use with a script:

1. Open or create a Script project.

2. Select Script Properties from the Script menu.

3. Select the Script Assets type. See Section 3.3.6, "Adding Script Assets" for
additional information about adding script assets.

4. Select Databanks.

5. Click Add.

6. Select Databank.

7. Select CSV file or Database. Once a databank is defined as CSV or Database
(SQL), the databank type cannot be changed to the other type.

8. For CSV files:

a. Select the Repository from the My Repositories tree.

b. Select the Databank file from the repository.

c. Set the Type to Databanks (*.csv, *.txt).

Type: Specifies the type of databank file to add to the script (*.csv, *.txt).

d. Select the Charset to use.

Charset - specifies the character set encoding used for the databank file. The
suggested charset encoding of the databank .csv file is the native charset of
user machine. For US machines the suggested encoding is cp1252. For East
European machines, the suggested charset is cp1251. If a databank file was
saved with UTF-8 encoding with Unicode byte order mark (BOM), OpenScript
detects it, and sets encoding to UTF-8. If the charset used for the databank file
is different from the charset of the user machine or UTF-8 with BOM, then you

Using Script Databanks

4-4 Oracle Functional Testing OpenScript User's Guide

must the correct charset. Otherwise, the databank will not be read correctly
and may cause a script failure. You can select the correct charset from the
Charset list or enter the correct Charset in the field.

During playback, the Agent will define the charset for reading the databank
file in following order:

– If file has UTF-8 encoding with BOM, then it will be used.

– The Charset specified during asset configuration will be used.

– If no charset specified (case of 9.1 scripts), then UTF-8 encoding will be
used.

e. Enter an alias name to use for the Databank or leave the default alias name.
The default alias name is the name of the .CSV Databank file.

Alias: Specifies an alias name to use for the Databank. The Databank file name
is the default. The Databank alias name is the name that appears when you
add a Databank record retrieval node to a script tree.

f. Set the Relative to option. The Relative to current script and Relative to a
repository options specify how the current script will locate the specified
script asset. The Relative to a repository option locates the script asset by a
repository path such as, [Repository: Default] Default!/WebTutor,
if the asset is selected from a repository. The Relative to current script option
locates the script asset by a relative path such as ../WebTutor. Selecting the
The Relative to current script option is not recommended as script-relative
paths are more brittle than repository-relative paths if scripts are moved or
shared.

The following are guidelines when using script assets in a team or distributed
environment:

– Do not use Absolute Paths when referring to assets or saving assets.
Oracle Load Testing does not support absolute paths.

– OpenScript, Oracle Test Manager, Oracle Load Testing, and all
command-line agents should all use the same shared repository names
and paths.

– Do not refer to an asset in another repository by a relative path.

g. Click OK.

h. Click OK to add the Databank file.

9. For Databases, a Databanks Database Assets dialog box appears. This dialog box
lets you specify the database and query to use as a databank. Contact your
Database Administrator for the appropriate settings for your database. The
following options are available:

a. Specify the Database Driver.

Oracle Thin - This driver option applies to Oracle databases.

– Hostname - Specify the host name of the machine running the database.
This is not required for a JDBC:ODBC or Custom driver setting.

– Port - Specify the port for the driver you selected. For example, the default
port for an Oracle Thin JDBC driver is 1521. Modify the port number if
necessary. This is not required for a JDBC:ODBC or Custom driver setting.

– SID - Specify the database or server ID.

Using Script Databanks

Using Data Parameterization 4-5

– Service name - Enter the Service name used for the Oracle database.

ODBC - This driver option is available as an option for SQL and Oracle
databases and any other database for which you have a JDBC:ODBC Bridge
driver.

– Data Source - Specifies the data source for the ODBC driver.

b. Specify the URL, username, password, query string, and databank alias.

– URL - Specifies the URL to use to connect to the database.

– Username - Enter the username for connecting to the database, if required
for authentication.

– Password - Enter the password for connecting to the database, if required
for authentication.

– Query - Specify a single SQL query that returns all the rows needed as
databank values. The SQL query cannot contain PL/SQL or SQL*Plus
code. Only pure SQL is supported. You must ensure that the query returns
the column names (i.e. databank fields) that the script expects.

If you have a large database-backed databank, but will only use a small
portion of the records in the test, then use the "Where" clause in the SQL
query to minimize the amount of records retrieved from the database. For
example, if you have database with 200000 records and only need to have
100 iterations retrieving records 201 through 301 sequentially starting from
record 201. use a query such as Select * From LargeTable Where
id > 200 AND id < 302. The start record will be 1 and no is range set.
This reduces the databank preparation time and minimizes the amount of
records retrieved from the database.

Use the "Order By" clause in the query to make sure the results returned
from the database are ordered as intended. For example, if you have a
database table with Columns id, firstName, and lastName that is
populated it with the following data:

1, John, Smith
2, Jane, Doe
[...]
400, Maria, Sanchez
[...]
200000, Sachin, Rajaram

If you use the query Select * From users, the results of query could
be unordered, meaning the first record in databank could be 400, Maria,
Sanchez instead of 1, John, Smith. Using the query Select * From
users Order By id would order the first databank record as 1, John,
Smith as expected.

– Alias: Specifies an alias name to use for the Databank. The Databank alias
name is the name that appears when you add a Databank record retrieval
node to a script tree.

c. Click Test to verify the connection to the database.

d. Click OK.

e. Click OK to add the Databank file. For Databases used as databanks, a copy of
all data is retrieved and indexed before the start of the test. The data is not
read live during the test. See Section 4.2.4, "Playing Back Scripts With

Using Script Databanks

4-6 Oracle Functional Testing OpenScript User's Guide

Iterations" for additional information about playing back scripts with
databanks.

4.2.2 Creating or Editing Databank Files
Databank files are comma-separated value (".csv" or ".txt") files with the addition of
formatting rules specific for databanks and rules derived from Excel formatting.
Databanks can also be data retrieved from a database using an appropriate query to
that generates data that conforms to the .csv databank file formatting rules.

 When you open a Databank file from the Assets Script Properties, the Databank file
opens in a text editor view. You can edit the Databank file directly in the text editor
view. You can also create or edit databank files using another text editor or spreadsheet
that can export to .csv formatted text files.

The general databank file formatting rules are as follows:

■ The first line of the databank defines the field headers (column titles). A comma is
used as the field header delimiter (no spaces). The field header names are user
defined. For example, FirstName,LastName,Mail,Phone defines four field
headers for a databank file. The field headers can be referenced in the script code
to specify valid databank variables. For example, if the first line of a databank with
the alias name "myDB" contains the field headers user and password, the
following databank variables are valid in a script configured to use the "myDB"
databank: db.myDB.user and db.myDB.password.

■ Each line in the file following the field headers defines a databank record.

■ A line can end with a Line Feed (LF) character or Carriage Return/Line Feed (CR
LF) characters.

■ Each databank record consists of field data (columns). A comma is used as the
field delimiter (different line for each record, no spaces around commas). For
example, John,Smith,JohnS@company.com,x993 defines the field data for a
databank record corresponding to the field headers
FirstName,Lastame,Mail,Phone.

■ Each databank record must have the same number of fields as the number of field
headers. For example, if a databank file has four field headers in line 1 as
FirstName,LastName,Mail,Phone, each databank record on lines 2 through n
must have four field data columns in each record. The databank field data record
john,smith,JohnS@company.com,x993 is correct. However,
john,smith,JohnS@company.com is incorrect as this record contains only
three fields. Insert an extra comma to leave a field column blank. For example
Sachin,Bhat,,x783. As follows:

FirstName,LastName,Mail,Phone
John,Smith,JohnS@company.com,x993
Mary,Ellen,MaryE@company.com,x742
Sachin,Bhat,,x783

■ A quotation mark (") is used as an escape character for embedding new line
characters (LF, CR) or comma (,) inside of a databank record. All escaped records,
regardless if it has embedded LF, CR, or comma or not, should start with a
quotation mark and end with a quotation mark followed by comma or CR/LF. For
example, if a data value contains a comma, place quotation marks around the
value, as follows:

John,Smith,"Anytown, MA",(603) 993-0000

Using Script Databanks

Using Data Parameterization 4-7

New lines may be embedded inside of quotation marks, as follows:

field1,"field2 contains two lines: Line one.
Line two.",field3

To use a quotation mark as itself not as an escaped character, escape the quotation
mark. The correct format is "". Quotation marks in the middle of a record should
be escaped always. For example the following record,

THIS IS BEGINNING AND ""THIS IS END""

is formatted correctly. The following record,

THIS IS BEGINNING AND "THIS IS END"

is not formatted correctly.

■ Blank lines are stripped out and ignored.

The character encoding of the CSV file is determined by an (optional) byte-order-mark
(BOM) at the beginning of the file. Programs such as Notepad++ or Excel set this
byte-order mark when users save a text document with a specific encoding character
set like UTF-8. If no byte-order mark is specified, the CSV reader uses character set
assigned to a databank asset, when the user adds the databank asset to a script, or uses
the current platform's default character set to read the file (for example, cp1252 on
most Windows English installations) for legacy databanks prior to Version 9.2.

4.2.3 Getting Databank Records
To get Databank records to use with a script:

1. Open or create a script project.

2. Configure the Databank to use with a script in the Script Assets Properties.

3. Select the script node where you want to use the Databank record.

4. Select the Script menu and then select Other from the Add sub menu.

5. Expand the General node and select Get Next Databank Record.

6. Select the databank or click New to add a new databank.

7. Select the Record.

8. Click OK.

9. Select the Databank alias to specify the Databank file to get the record from.

10. Click OK. A GetNextDatabankRecord: databank alias node will be added to the
script.

In the Java Code view, a getDatabank("databank alias").method (); will
be added to the script code depending upon the type of record selected:

getDatabank("customer").getNextDatabankRecord();
getDatabank("customer").getFirstRecord();
getDatabank("customer").getLastRecord();
getDatabank("customer").getRecord(5);

11. Right click the parameter node in the script tree that you want to substitute with a
Databank variable and select Substitute Variable.

12. If necessary, expand the Databanks node and select the Databank field you want to
use as the input parameter data.

Using Script Databanks

4-8 Oracle Functional Testing OpenScript User's Guide

13. Click Finish.

14. The script node name/value pair changes to show the Databank alias name, field
name, and recorded value as a variable value. For example:

login = {{db.customer,login,ta906}}

In the Java Code view, the parameter code changes to show the Databank alias
name, field name, and recorded value as a variable value. For example:

http.postdata(http.param("login", "{{db.customer,login,ta906}}")

15. Click the Playback toolbar button to playback the script once to verify the it plays
back correctly.

4.2.3.1 Getting Databank Records Using the API
You can use the additional API methods available with getDatabank("databank
alias")in the Java Code view to retrieve specific records from the databank. This
section provides examples of the available methods.

4.2.3.1.1 Databank API Usage Notes

These API methods are not compatible with databank's iteration settings Randomly or
Shuffle Records. The Databank Exception "incompatible with db setting" will be
thrown if these methods are used with the Randomly or Shuffle Records iteration
settings.

The records obtained through these API calls are not counted against the usage count
of all records. It is possible for an infinite script loop to occur if the When Out of
Records iteration setting is set to Stop the User, but the script only uses these API calls
to read records.

4.2.3.1.2 Getting a Record Count

The following example uses the getDatabankRecordCount() method to get the
record count from the "customer" databank and prints the value to the Results view:

int recordCount = getDatabank("customer").getDatabankRecordCount();
String count = Integer.toString(recordCount);
info("Record Count = " + count);

4.2.3.1.3 Getting a Specific Record

The following example uses the getRecord(n) method to get a specific record from
the "customer" databank and prints the value to the Results view:

getDatabank("customer").getRecord(5);

The following code example use a For statement to loop through all records in the
databank:

int recordCount = getDatabank("customer").getDatabankRecordCount();
for (int i=1; i<=recordCount; i++) {

info("Record count = " +
Integer.toString(i) +
" of " +
Integer.toString(recordCount));

getDatabank("fmstocks_data").getRecord(i);
}

4.2.3.1.4 Getting the First Record

Using Script Databanks

Using Data Parameterization 4-9

The following example uses the getFirstRecord() method to get the first record in
the "customer" databank:

getDatabank("customer").getFirstRecord();

4.2.3.1.5 Getting the Last Record

The following example uses the getLastRecord() method to get the last record in
the "customer" databank:

getDatabank("customer").getLastRecord();

4.2.4 Playing Back Scripts With Iterations
OpenScript allows repetitive playback of navigations in a script. The iterations can be
performed with or without databanks.

1. Start OpenScript.

2. Open the script to play back.

3. Configure the script to use a databank as described in Section 4.2.1, "Configuring
Databanks".

4. Select Iterate from the Script menu or click the toolbar button. The resulting
dialog box has the following options:

Use Databanks: When selected, databanks will be used for script playback.
Databanks configured for the script show the following settings:

■ Name: Lists the alias name(s) for the databank file(s).

■ Range: Lists the range of databank records to use for script playback. This list
corresponds to the Range option selected for each databank file.

■ Start: Lists the starting databank record to use for script playback. This list
corresponds to the Starting Record specified for each databank file.

■ Select Record: Lists the how databank records are selected for script playback.
This list corresponds to the Select Next Record setting selected for each
databank file.

■ When Out of Records: Lists the action to take when the databank file is out of
records during script playback. This list corresponds to the When Out of
Records setting selected for each databank file.

■ Data: Lists the data in the Starting Record of each databank file.

Databank Source: This section shows the following information about the selected
databank:

■ Alias: Shows the alias name of the selected databank file and the number of
rows in the file.

■ Type: Shows the type of the selected databank file. Databanks can be CSV text
files or databases.

■ Source: Shows the path and filename of CSV text files or the database query
used for database databanks. While there is not a maximum file size, the
recommended maximum sizes is 200 MB. The only limitation is how long it
takes to generate the index. The databank must be indexable within 30
seconds, by default. This setting is configurable in the "Databank Setup
Timeout" setting in the General Preferences.

Using Script Databanks

4-10 Oracle Functional Testing OpenScript User's Guide

Databank Settings: This section specifies the settings to use for the selected
databank:

■ Advance to Next Record: Specifies when the virtual user should advance to
the next databank record during script playback. The master script being
played is always the script that triggers when an iteration occurs. The
following options are available:

– When Script Requests a Record: The databank record advances every
time a script explicitly requests a record during script playback. A record
request corresponds to the script Java code calling the
getDatabank(alias).getNextRecord() method. This is the default
behavior.

– Each Occurance: The databank record advances when a script refers to a
databank column (i.e. databank field) in the script. A record request
corresponds to the script Java code evaluating a parameterized value such
as {{db.fmstocks_data.ticker}}. You can specify that any column
advances to the next record or specify a particular databank column
advances to the next record. For example, if you have an employee
databank with a firstName field and the firstName column is
specified as the Column value, the databank record advances only when
the {{db.employees.firstName}} value in the script Java code is
evaluated on script playback. Select the databank field name as the
Column value or select <Any> to allow any field to advance the databank
record.

– Each Iteration of Script: The databank record advances before a script
containing the databank starts another playback iteration.

■ Select Next Record: Specifies how a new record is selected from the databank
when the databank record advances. The following options are available:

– Sequentially: The databank records increment one by one in sequential
order from the start of the specified range. When multiple virtual users are
running, records are distributed in sequential order across all virtual users.

– Randomly: The databank records are selected at random from the
databank. The same record may be used multiple times before all records
are exhausted. Random record selection is only provided for databanks
that can be indexed. When configuring databank settings, if the databank
file is too large to index, the Randomly or Shuffle record options may not
be available. The When Out of Records setting does not apply when
Random is selected.

– By Shuffling: The databank records are selected at random from the
databank ensuring that once a record is selected, it is never selected again.
The setting works similar to selecting a random card from a deck until no
cards are left. Shuffle mode only supports databanks containing fewer
than 200,000 records. For databanks containing more than 200,000 records,
you can shuffle the values in the actual data file or you should use the
Randomly mode.

– Use Seed: Specifies a randomization seed value to use when using the
Randomly or Shuffle modes. Use the same seed across multiple tests to
create the same sequence of random numbers for all tests. If 0 or not
specified, a seed is generated automatically based on the current time.

Using Script Databanks

Using Data Parameterization 4-11

■ When Out of Records: Specifies the action the virtual user takes if all
databank records in the specified range have been used and a new record is
requested. The following options are available:

– Loop Over Range: Loops back to the first record in the range after all
records in the range are used and continues distributing records. Use the
Maximum Iterations settings to prevent the virtual user from running
forever.

– Keep the Same Record: Continues to use the last record requested after all
records in the range are used. No additional records are requested from
the databank. Any calls in the Java code to getNextDatabankRecord()
are ignored after all records are used. Custom Java code may be used in
the script to have Virtual users request an individual record using
getRecord(n), getLastRecord(), or getFirstRecord().

– Stop the User: The virtual user immediately stops running the next time a
record is requested from the databank after all records in the range are
used. The virtual user will stop regardless of how many iterations are
specified by the Maximum Iterations settings.

■ Range: Specifies the range of records to use. The following options are
available:

– All Records: When selected, the virtual user uses all records in the
databank. The first record is 1.

– Specific Records: When selected, the virtual user uses a subset of records
in the databank. Specify the first and last records to use for the range. The
range includes both the starting and ending record in the specified range.

■ Starting Record: Specifies which databank record to use first. The first record
in a databank is 1. The starting record must be within the specified range of
records. For example if you select Specific Records and set the range to 5:10,
the starting record must be at least 5, but not more than 10.

Maximum Iterations: This section specifies the maximum number of iterations of
a main script's run() section to complete:

■ Run no more than [] iterations: Specifies the maximum number of iterations.
If a databank exhausts all records and When Out of Records specifies Stop
the User, the virtual user will always stop running, even if the specified
number of iterations has not completed.

5. Select Use Databanks.

6. Select which databank file to specify the settings for if more than one database is
configured for the script.

7. Specify the settings for the databank file.

8. Select the Run no more than [] iterations option and set the iteration count to the
desired number of playback iterations.

9. Click OK.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

4.2.4.1 Notes and Limitations
Certain setting combinations are not allowed, or may cause exceptions when the script
is run. The following are situations to be aware of when using iteration options.

Using Data Tables

4-12 Oracle Functional Testing OpenScript User's Guide

1. The When Out of Records option is not available when Select Next Record is set
to Randomly. When random is selected, an infinite supply of random records
exists.

2. Virtual users may still request an individual record using getRecord(n) after all
records are used up, and When Out of Records is set to Keep the Same Record.

3. The getRecord(n), getFirstRecord(), and getLastRecord() Java code
methods do not advance the record cursor used by
getNextDatabankRecord(). Therefore:

getNextDatabankRecord();// returns 1
getRecord(7);// returns 7
getNextDatabankRecord();//returns 2, not 7

4. The getRecord(n), getFirstRecord(), and getLastRecord() Java code
methods throw an exception when they are invoked if Select Next Record is set to
Shuffle Records or Randomly.

5. The getRecord(n), getFirstRecord(), and getLastRecord() Java code
methods throw an exception if they are invoked and the databank is not indexed.

6. Use Seed is only available when Select Next Record is set to Shuffle Records or
Randomly.

7. A specific databank range and starting index may not be set if the databank cannot
be indexed.

8. The Select Next Record: Shuffle Records and Randomly options are only allowed
when the databank can be indexed.

9. The Select Next Record: Shuffle Records is only allowed when the databank can
be indexed and when there are fewer than 200,000 records.

4.3 Using Data Tables
The Data Table view is a spreadsheet-like data table for Functional testing scripts. The
Data Table content can be changed by manually inputting data into cells or by
importing an Excel file before playback.

The Data Table API provides methods for accessing the data in the table
programmatically within functional test scripts during playback of a script.

When you play back a script and select the results in the Results view, the Details view
includes a Result Data Table tab that shows the data resulting from the playback of the
script. The Data Table and Result Data Table can be exported to an Excel file.

The following sections explain how to use Data Tables within functional test scripts.

4.3.1 Enabling the Data Table Service
The Data Table Service provides programmatic access to data stored in a Data Table
using the Data Table API.

To enable the Data Table Service:

1. Record a functional test script.

2. Select Script Properties from the Script menu.

3. Select Modules.

4. Select the Data Table option and click OK.

Using Data Tables

Using Data Parameterization 4-13

5. Select Data Table from the View menu to show the Data Table view.

4.3.2 Entering Data Manually
Data can be entered into a Data Table manually by editing individual cell contents.
You can right-click on a data table cell to open the shortcut Edit menu.

To enter data into the Data Table manually:

1. Enable the Data Table service for the functional test script and show the Data Table
view.

2. Right-click on the table cell and select from the shortcut menu. The Data Table
right-click edit menu can be used to add data to the Data Table manually. The
following options are available on the shortcut menu:

■ Edit: Changes the selected cell to text edit mode. Type data into the cell and
press Enter.

■ Cut: Cuts the data from the selected cell.

■ Copy: Copies the text for the selected cell to the clipboard.

■ Paste: Pastes text from the clipboard to the selected cell.

■ Delete: Deletes the text from the selected cell.

■ Insert Row Before: Inserts a new row into the table before the selected row.

■ Insert Row After: Inserts a new row into the table after the selected row.

■ Delete Row: Deletes the selected row from the table.

■ Insert Column Before: Inserts a new column into the table before the selected
column.

■ Insert Column After: Inserts a new column into the table after the selected
column.

■ Rename Column: Opens a dialog box for specifying a new heading name for
the selected column.

■ Delete Column: Deletes the selected column from the table.

3. Type the data into the table cell and press Enter.

Additional worksheets can be added to the Data Table or removed from the Data Table
using the options on the worksheet shortcut menu.

To add worksheets to or remove worksheets from a Data Table:

1. Right-click on a worksheet tab in the Data Table view to open the worksheet
shortcut menu. The Data Table right-click worksheet menu can be used to add
worksheets to and remove worksheets from the Data Table manually. The
worksheet shortcut menu has the following options:

■ Insert Sheet Before: Inserts a worksheet tab into the Data Table before the
selected worksheet tab.

■ Insert Sheet After: Inserts a worksheet tab into the Data Table after the
selected worksheet tab.

■ Rename Sheet: Opens a dialog box for specifying a new name for the selected
worksheet tab.

■ Delete Sheet: Deletes the selected worksheet from the Data Table. A
confirmation dialog box appears to confirm the deletion.

Using Data Tables

4-14 Oracle Functional Testing OpenScript User's Guide

2. Use the worksheet shortcut menu options as needed to add or remove worksheets
in the Data Table.

4.3.3 Importing Data from a Spreadsheet File
Data can be loaded into a Data Table from an Excel spreadsheet file.

To load data from an Excel spreadsheet file:

1. Enable the Data Table service for the functional test script and show the Data Table
view.

2. Click the Import toolbar button in the Data Table View. The Data Table Import
dialog box has the following options:

File: Specifies the name of the file to import. Click the Browse button to select a
file.

Sheets: Lists the worksheets in the selected spreadsheet file. Select or clear the
check boxes to specify which worksheets to import.

Overwrite existing sheet: When selected, existing worksheets with the same name
will be overwritten in the Data Table.

Use first row as column name: When selected the first row of the imported
spreadsheet file is used as the column name, replacing the default column names.

3. Enter or select the file to import.

4. Select the worksheets to import.

5. Select or clear the Overwrite and Use first row options.

6. Click OK.

4.3.4 Exporting Data to a Spreadsheet File
Data in a Data Table can be exported to an Excel spreadsheet file.

To Export data from a Data Table to an spreadsheet file:

1. Enable the Data Table service for the functional test script and show the Data Table
view.

2. Click the Export toolbar button in the Data Table View. The Export Data Table to
Excel document dialog box has the following options:

Sheets: Lists the worksheets in the Data Table. Select or clear the check boxes to
specify which worksheets to export.

File: Specifies the name of the file to import. Click the Browse button to specify
the name and location to save the file.

Full path: Shows the full path and file name where the Data Table data will be
exported.

3. Specify a file name or use the Browse button to save a new file.

4. Click OK.

4.3.5 Changing Data During Script Playback
The Data Table content can be changed during script playback in the following ways:

■ manually when playback is paused by a breakpoint

Using Data Tables

Using Data Parameterization 4-15

■ manually when playback is paused by an exception

■ manually when playback is paused using the Pause toolbar button

■ programmatically at runtime using the datatable API

Changes to the Data Table are saved as part of script playback results only. The Data
Table and Result Data Table can be exported to an Excel file.

The following sections provide examples of how to change data in a Data Table
programmatically using the datatable API.

4.3.5.1 Getting and Setting Cell Values
You can use the datatable API to get and set Data Table values programmatically
during playback of a script. The following examples show how to get and set values
using the datatable API getValue() and setValue() methods.

4.3.5.1.1 Getting Data by Row and Column Value

The following example script code retrieves the value in the cell at row 1, column A of
the current worksheet and prints the value to the Results view:

Object cellValue1 = datatable.getValue(1, "A");
info("cell value = " + cellValue1.toString());

4.3.5.1.2 Getting Data by Sheet, Row, and Column Value

The following example script code retrieves the value in the cell at row 1, column A of
the worksheet named "Sheet1" and prints the value to the Results view:

Object cellValue2 = datatable.getValue("Sheet1", 1, "A");
info("cell value = " + cellValue2.toString());

4.3.5.1.3 Setting Data by Row and Column Value

The following example script code sets the value in the cell at row 1, column A to a
boolean value of true:

datatable.setValue(1, "A", true);

The following example script code sets the value in the cell at row 1, column A to a
double value of 10.5:

datatable.setValue(1, "A", 10.5);

The following example script code sets the value in the cell at row 1, column A to a
String value of myString:

datatable.setValue(1, "A", "myString");

4.3.5.1.4 Setting Data by Sheet, Row, and Column Value

The following example script code sets the value in the cell at row 1, column A of
"Sheet1" to a boolean value of true:

datatable.setValue("Sheet1", 1, "A", true);

The following example script code sets the value in the cell at row 1, column A of
"Sheet1" to a double value of 10.5:

datatable.setValue("Sheet1", 1, "A", 10.5);

Using Data Tables

4-16 Oracle Functional Testing OpenScript User's Guide

The following example script code sets the value in the cell at row 1, column A of
"Sheet1" to a String value of myString:

datatable.setValue("Sheet1", 1, "A", "myString");

4.3.5.2 Adding and Deleting Rows and Columns
You can use the datatable API to add and delete Data Table rows and columns
programmatically during playback of a script. The following examples show how to
add and delete rows and columns using the datatable API addColumn(),
deleteColumn(), insertRow(), and deleteRow() methods.

4.3.5.2.1 Adding Columns

The following example script code adds a new column named New Column to the
current worksheet after the last column in the worksheet:

datatable.addColumn("New Column");

The following example script code adds a new column named New Column to the
current worksheet before the column with an index value of 0:

datatable.addColumn("New Column", 0);

The following example script code adds a new column named New Column to the
worksheet named "Sheet1" after the last column in the worksheet:

datatable.addColumn("Sheet1", "New Column");

The following example script code adds a new column named New Column to the
worksheet named "Sheet1" before the column with an index value of 0:

datatable.addColumn("Sheet1", "New Column", 0);

4.3.5.2.2 Deleting Columns

The following example script code deletes the column named A from the current
worksheet:

datatable.deleteColumn("A");

The following example script code deletes the column named A from the current
worksheet named "Sheet1":

datatable.deleteColumn("Sheet1", "A");

4.3.5.2.3 Adding Rows

The following example script code adds a new row to the current worksheet before the
row with an index value of 0:

datatable.insertRow(0);

The following example script code adds a new row to the worksheet named "Sheet1"
before the row with an index value of 0:

datatable.insertRow("Sheet1", 0);

4.3.5.2.4 Deleting Rows

The following example script code deletes the row before the row with an index value
of 1 from the worksheet named "Sheet1":

datatable.deleteRow("Sheet1", 1);

Using Data Tables

Using Data Parameterization 4-17

4.3.5.3 Adding and Deleting Worksheets
You can use the datatable API to add and delete worksheets programmatically
during playback of a script. The following examples show how to add and delete
worksheets using the datatable API addSheet() and deleteSheet() methods.

4.3.5.3.1 Adding Worksheets

The following example script code adds a new worksheet named "Sheet1" to the Data
Table:

datatable.addSheet("Sheet1");

The following example script code adds a new worksheet named "Sheet1" to the Data
Table before "Sheet2":

datatable.addSheet("Sheet1", "Sheet2");

4.3.5.3.2 Deleting Worksheets

The following example script code deletes the worksheet named "Sheet1" from the
Data Table:

datatable.deleteSheet("Sheet1");

4.3.5.4 Getting Worksheet, Row, and Column Counts
You can use the datatable API to get sheet, row, and column counts
programmatically during playback of a script. The following examples show how to
get sheet, row, and column counts using the datatable API getSheetCount(),
getRowCount(), and getColumnCount() methods.

4.3.5.4.1 Getting Worksheet Counts

The following example script code gets the sheet count from the Data Table and prints
the value to the Results view:

int sheetCount = datatable.getSheetCount();
info("Sheet count = " + sheetCount);

4.3.5.4.2 Getting Row Counts

The following example script code gets the row count from the current worksheet and
prints the value to the Results view:

int rowCount = datatable.getRowCount();
info("row count = " + rowCount);

The following example script code gets the row count from the worksheet named
"Sheet1" and prints the value to the Results view:

int rowCount1 = datatable.getRowCount("Sheet1");
info("row count Sheet1 = " + rowCount1);

4.3.5.4.3 Getting Column Counts

The following example script code gets the column count from the worksheet named
"Sheet1" and prints the value to the Results view:

int columnCount = datatable.getColumnCount("Sheet1");
info("column count Sheet1 = " +columnCount);

The following example script code gets the column count from the worksheet with an
index of 0 and prints the value to the Results view:

Using Data Tables

4-18 Oracle Functional Testing OpenScript User's Guide

int columCount0 = datatable.getColumnCount(0);
info("column count Sheet index 0 = " + columnCount);

4.3.5.5 Getting the Current Sheet and Row
You can use the datatable API to get the current sheet, row, and column
programmatically during playback of a script. The following examples show how to
get the current sheet, row, and column using the datatable API
getCurrentSheet() and getCurrentRow() methods.

4.3.5.5.1 Getting the Current Sheet

The following example script code gets the name of the current sheet from the Data
Table and prints the value to the Results view:

String currentSheet = datatable.getCurrentSheet();
info("Current Sheet = " + currentSheet)

4.3.5.5.2 Getting the Current Row

The following example script code gets the current row from the current worksheet
and prints the value to the Results view:

int currentRow = datatable.getCurrentRow();
info("Current row = " + currentRow);

4.3.5.6 Setting Next and Previous Rows
You can use the datatable API to set the next and previous row programmatically
during playback of a script. The following examples show how to set the next and
previous rows using the datatable API setNextRow() and getCurrentRow()
methods.

4.3.5.6.1 Getting the Next Row

The following example script code sets the next row of the current sheet in the Data
Table:

datatable.setNextRow();

4.3.5.6.2 Setting the Previous Row

The following example script code sets the previous row of the current sheet in the
Data Table:

datatable.setPreviousRow();

4.3.5.7 Importing and Exporting Documents and Sheets
You can use the datatable API to get the import and export spreadsheet documents
and worksheets programmatically during playback of a script. The following
examples show how to import and export spreadsheet files and worksheets using the
datatable API importExcel(), importSheet(), exportToExcel() and
exportSheet() methods.

4.3.5.7.1 Importing an Excel Spreadsheet Document

The following example script code imports the myXls.xls Excel spreadsheet
document into the Data Table:

datatable.importExcel("c:\\myXls.xls");

Using Data Tables

Using Data Parameterization 4-19

4.3.5.7.2 Importing Worksheets

The following example script code imports the single worksheet named "SourceSheet"
from the myXls.xls Excel spreadsheet document and adds it to the Data Table with
the name "DestinationSheet":

datatable.importSheet("c:\\myXls.xls", "SourceSheet", "DestinationSheet");

The following example script code imports all worksheet from the myXls.xls Excel
spreadsheet document and adds them to the Data Table overwriting any sheets with
the same names:

datatable.importSheets("c:\\myXls.xls", true);

The following example script code imports the specified list of worksheets from the
myXls.xls Excel spreadsheet document and adds them to the Data Table overwriting
any sheets with the same names:

import java.util.List;
import java.util.ArrayList;
//[...]
List<String> sheetList = new ArrayList<String>();
sheetList.add("Sheet1");
sheetList.add("Sheet2");
datatable.importSheets("c:\\myXls.xls", sheetList, true);

The following example script code imports the specified list of worksheets from the
myXls.xls Excel spreadsheet document and adds them to the Data Table overwriting
any sheets with the same names using the first row:

import java.util.List;
import java.util.ArrayList;
//[...]
List<String> sheetList = new ArrayList<String>();
sheetList.add("Sheet1");
sheetList.add("Sheet2");
datatable.importSheets("c:\\myXls.xls", sheetList, true, true);

4.3.5.7.3 Exporting an Excel Spreadsheet Document

The following example script code exports the myXls.xls Excel spreadsheet
document from the Data Table to a file:

datatable.exportToExcel("c:\\myXls.xls");

4.3.5.7.4 Exporting Worksheets

The following example script code exports the single worksheet named "SourceSheet"
from the Data Table to the myXls.xls Excel spreadsheet document with the name
"DestinationSheet":

datatable.exportSheet("c:\\myXls.xls", "SourceSheet", "DestinationSheet");

The following example script code imports all worksheet from the myXls.xls Excel
spreadsheet document and adds them to the Data Table overwriting any sheets with
the same names:

datatable.importSheets("c:\\myXls.xls", true);

The following example script code exports the specified list of worksheets from the
Data Table to the myXls.xls Excel spreadsheet document:

import java.util.List;

Using Data Tables

4-20 Oracle Functional Testing OpenScript User's Guide

import java.util.ArrayList;
//[...]
List<String> sheetList = new ArrayList<String>();
sheetList.add("Sheet1");
sheetList.add("Sheet2");
datatable.exportSheets("c:\\myXls.xls", sheetList);

5

Using the Web Functional Test Module 5-1

5Using the Web Functional Test Module

This chapter provides instructions on configuring and using the OpenScript Web
Functional Test Module, which tests Web-based applications by accessing objects
through the Document Object Model (DOM) of the Web browser.

5.1 About the Web Functional Test Module
The OpenScript Web Functional Test Module is an application module that supports
functional testing of Web-based applications that uses the Web Document Object
Model (DOM). OpenScript provides a flexible and easy-to-use scripting interface for
both Technical Testers and Non-Technical Testers. The OpenScript Functional Test
Module enables script creation from both the code view and GUI view scripting
interfaces.

The Functional Test Module extends the OpenScript platform with Document Object
Model (DOM) recording and playback capabilities. The DOM recorder automatically
captures Web page objects, actions, and navigations and records them as tree view
nodes (with the underlying code in the Code View) in the script. The Functional Test
Module also provides additional GUI script modification options. Web Functional Test
Scripts differ from HTTP Scripts. Even though both are used to test web applications,
HTTP scripts automate the underlying HTTP network protocol, whereas Web
Functional Test scripts automate the browser UI.

The Web Functional Test Module is an extension module to the Oracle OpenScript
platform that extends the platform with Web Functional Test recording and playback
capabilities. The Web Functional Test Module is fully integrated with the OpenScript
platform including the Results view, Details view, Properties view, Console/Problems
views, Preferences, Step Groups, Script Manager, and Workspace Manager.

The Web Functional Test recorder displays commands in the Tree View in
easy-to-understand commands. By default, script commands are grouped into Steps
Groups by the Web page on which they were performed. Each Step Group contains
one or more script commands corresponding to recorded actions that were performed
on the page. The default name for the Step Group is the Web page Title (as specified in
the "Title" tag).

OpenScript shows the results of Web Functional Test script playback in the Results
view. The Results view shows results for each script command (including duration
and summary for failures). The Results Report compiles the same information into an
HTML Results Report. Results can be exported from the OpenScript GUI in standard
format (CSV / HTML). Results are also generated for unattended playback through
the command line.

The Web Functional Test Module API includes a "Web" class that provides additional
programming functionality.

Recording Web Functional Tests

5-2 Oracle Functional Testing OpenScript User's Guide

5.1.1 Key Features of the Web Functional Test Module
The Web Functional Test Module provides the following functionality:

■ Records Document Object Model objects and actions for playback automation. The
objects and actions can be generated by a Web browser (i.e. IE or Firefox).

■ Plays back functional testing scripts to validate proper functionality. Playback runs
interactively in the OpenScript user interface and is also supported in Oracle Test
Manager.

■ Provides full script code view integration to support script generation for the Web
Functional Test Module. The Web Functional Test Module includes an additional
API to support Web Functional Test protocol code scripting.

■ Allows users to parameterize user inputs to Functional Test scripts and drive those
inputs from an external data file (Databank).

■ Allows users to insert test cases for validation of objects and actions.

■ Provides additional options/settings that are specific to Functional Test scripts
within the Functional Test categories in the preferences interface.

■ Reports playback results for Functional Test scripts in the Results and Console
views.

5.2 Recording Web Functional Tests
The Web Functional Test Module records Document Object Model objects and actions
in a Web browser for playback automation. The Recorder creates functional and
regression test scripts for automating GUI applications in a browser.

OpenScript records standard Web DOM objects (links, images, forms, form elements,
etc.) and events (click, mousedown, focus, etc.) for playback. Web DOM objects are
identified by one or more attribute as configured through the Web Functional Test
Record Preferences under Object Identification. Object Identification attributes can
later be modified by users through the Preferences global settings for new scripts or
for already recorded commands in the tree view or code view. All Web DOM objects,
events and attributes should be supported. Recording can be configured through
Internet Explorer or Firefox. You can set the browser type in the Preferences.

The Web Functional Test Module provides a record toolbar button that lets you initiate
the Web DOM recorder and capture Web page actions to the script view. The record
toolbar includes start and stop recording toolbar buttons. OpenScript recorders also
open a floating toolbar that can be used while recording without having to switch
between the browser and OpenScript.

5.2.1 Setting Web Functional Test Record Preferences
Before recording Web Functional Test scripts, set Web record preferences.

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Record category.

4. Select Web Functional Test.

5. Click the tabs and set the preferences. See Section 2.5.7, "Web Functional Test
Preferences" for descriptions of the Record Preferences settings.

6. Click OK when finished.

Recording Web Functional Tests

Using the Web Functional Test Module 5-3

5.2.2 Adding/Editing Object Identifiers
The Web Functional Module uses object identification to specify attributes used to
identify Web objects. The Web Functional Test Module includes predefined path
attributes for common Web objects. Object paths are specified in XPath format. For
example, for web objects, the object identification path appears as follows in Java code
commands:

/web:window[@index='0']
/web:document[@index='0']
/web:form[@index='0']
/web:input_text[@id='ticker' or @name='ticker' or @index='0']

You can set the default object attributes in the Web Functional Test Module Record
Preferences. You can also edit object attributes in recorded scripts in the tree view or
the code view.

In addition to the predefined object identification, you can add an Object Library to the
script to record paths into a library file. Object Library files may be shared and reused
across other scripts. The Object Library files provide a more convenient "short name"
for objects to provide for more convenient programming. See Section 5.5, "Editing
Object Libraries" and Section 5.4.4, "Adding Object Libraries to a Script" for additional
information.

The Web Functional Test Module includes object identifiers that specify how the
recorder identifies Browser objects. You can add object identifiers or edit the existing
object identifiers in the Record preferences.

To add or edit an object identifier:

1. Select the OpenScript Preferences from the View menu.

2. Expand the Record node and select Web Functional Test.

3. Click the Object Identification tab.

4. Click Add or select an existing object identifier and click Edit.

The Object Element dialog box lets you define an object identifier for a Web
Functional Test recorder. The object identifier specifies how the OpenScript Web
Functional Test recorder module identifies web objects in the Document Object
Model on a Web page.

Active Profile: Specifies which object identification profile to use as the active
profile when recording scripts. Profiles define a specific set of object identifiers to
use when recording Web Functional tests. Use the Add Profile option to create a
new custom profile. Once you have created a profile, select the profile name in the
Name column and use Add Object to define custom objects and attributes in the
custom profile.

Name: Shows the name(s) of the defined Web object identifiers.

Attributes: Shows the pattern(s) specified for the defined Web object identifiers.

Add Profile: Opens a dialog box for specifying a new Web object identifier profile.

Add Object: Opens a dialog box for specifying a new Web object identifier.

Edit: Opens a dialog box for editing the selected Web object identifier or profile.

Delete: Deletes the selected Web object identifier or profile. The default profile
cannot be deleted.

Recording Web Functional Tests

5-4 Oracle Functional Testing OpenScript User's Guide

Export: Opens a dialog box for exporting the currently selected Web object
identifier profile to an XML file. Select the profile name in the Name column to
activate the export option.

Import: Opens a dialog box for importing the currently selected Web object
identifier profile to an XML file. Select a profile name in the Name column to
activate the import option.

Revert: Reverts the default Web object identification profile to the default profile.
Any changes to the default profile are removed. Select the default profile name in
the Name column to activate the revert option.

For each object element, you specify a name (typically a Web object attribute), an
operator, a value and a value type. As you add object elements, OpenScript builds
the object identifier using logical OR between each object identifier element. Click
Edit to change between logical OR and AND.

5. If adding a new object identifier, click Add Object and specify the path segments
for the object identifier.

The Path Segment dialog box lets you define a segment of an object identifier for a
Web Functional Test recorder. The object identifier specifies how the OpenScript
Web Functional Test recorder module identifies web objects in the Document
Object Model on a Web page.

Attribute: When selected, specify the name, operator, value, and value type for the
object identifier.

■ Name: Specify the name of the Web object attribute to use to identify the
object.

■ Operator: Specify the logical operator to use to identify the object value.

■ Value: Specify the value of the Web object attribute to use to identify the
object.

■ Value Type: Specify the value type to use to identify the object. The value type
can be a string, a number, or by variable reference. Set the Value type to match
the specified value.

– String: The value in the Value field will be matched as a text string to
identify the Web object.

– Number: The value in the Value field will be matched as a numeric value
to identify the Web object.

– Reference: The value in the Value field will be matched as a variable
name to identify the Web object.

Group: When selected the Web object identifier can be specified as a string
representing a logical group of Names, Operators, and Values.

6. If editing an existing segment, click Edit and specify the path attributes for the
object identifier.

The Path Attribute dialog box lets you edit an element of an object identifier.

Name: Specify the name of the Web object attribute to use to identify the object.

Operator: Specify the logical operator to use to identify the object value.

Value: Specify the value of the Web object attribute to use to identify the object.

Recording Web Functional Tests

Using the Web Functional Test Module 5-5

Value Type: Specify the value type to use to identify the object. The value type can
be a string, a number, or by variable reference. Set the Value type to match the
specified value.

■ String: The value in the Value field will be matched as a text string to identify
the Web object.

■ Number: The value in the Value field will be matched as a numeric value to
identify the Web object.

■ Reference: The value in the Value field will be matched as a variable name to
identify the Web object.

And/Or: specifies logical OR or AND between object elements. This option does
not appear if the object element being edited is the last object element in the object
identifier group.

7. If editing an existing path, click Edit and specify the path attributes for the object
identifier.

The Path Attribute Group dialog box lets you edit an object identifier group as a
string value.

Group: A text string of the object identifier group. The object identifier group
syntax follows the @name operator value/type format. Values by reference
are enclosed in double curly braces {{}}. String values are enclosed in single
quotation marks. Numeric values are not enclosed. Logical OR or AND are used
between object elements. Parenthesis are used for logical grouping of multiple
object elements. Object identifiers can use the wildcard characters * (asterisk) for
multiple characters and ? (question mark) for single characters. For example,
@text="Login*". The following are examples of object identifier group syntax:

@index={{index}} or @title='title' or @number=5

@text={{text}} or @href={{href}} or @index={{index}}

(@id={{id}} or @name={{name}} or @index={{index}}) and multiple mod
{{multiple}}

8. Click OK when finished adding or editing segments or attributes. The object
identifier is added to the record preferences.

9. If you have the browser open when adding or editing object identifiers, close and
restart the browser.

5.2.2.1 Available Attributes for Web DOM Elements
The following table lists the attributes available for Web Document Object Model
objects.

Element Attributes

Common attributes for all web DOM elements tag, id, index, title, style, class, html, _
adftrueval, rn, un, ot

web:window index, title

web:document index, url

web:a disabled, text, href

web:button type, name, value, disabled, text

web:input_button type, name, value, disabled, text

Recording Web Functional Tests

5-6 Oracle Functional Testing OpenScript User's Guide

5.2.3 Recording Web Functional Test Scripts
To record Web Functional Test scripts:

1. Start OpenScript.

2. Set the Web Functional Test Recording preferences.

3. Select New from the File menu.

4. Expand the Functional Testing group.

5. Select Web.

6. Click Next.

7. Select the Repository and Workspace.

8. Enter a script name.

9. Click Finish. A new Script tree is created in the Script View.

10. Select Record from the Script menu. The browser automatically opens when you
start recording.

11. Load the web page where you want to start recording into the browser.

12. Navigate the web site to record page objects, actions, and navigations. The page
objects, actions, and navigations will be added to the node of the script tree
specified by the Set Record Section setting (the Run node is the default).

13. When finished navigating pages, close the browser.

14. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

15. Expand the Run node of the script to view the page objects, actions, and
navigation nodes in the script tree.

web:input_file type, name, value, index, disabled, size

web:input_hidden type, name, value, index, disabled

web:input_image type, name, disabled, alt, align, border, height,
hspace, src, lowsrc

web:input_submit type, name, value, disabled, text

web:input_text type, name, value, defaultValue, disabled,
maxlength, readOnly, size

web:input_check type, name, value, disabled, checked,
defaultChecked, readOnly, size

web:input_radio type, name, value, disabled, checked,
defaultChecked, readOnly, size

web:img alt, height, longdesc, name, src, width

web:option value, text, optionIndex(index in the select),
defaultSelected, selected

web:select name, disabled, value, selectedIndex

web:textarea name, disabled, value, defaultValue, readonly,
cols, rows

Element Attributes

Playing Back Scripts

Using the Web Functional Test Module 5-7

You can customize the script using the menu options or the Code View for specific
testing requirements.

5.3 Playing Back Scripts
OpenScript plays back recorded Web actions/commands which consist of an event
plus an object identified by its attributes (for example: click
link(text="Home")). The actions used for playback will either be those that are
recorded or are specified manually in the Java Code view. Playback can be configured
through Internet Explorer or Firefox. Unattended playback is supported through
Oracle Test Manager or third-party tools using OpenScript's command line interface.
Web Functional Test scripts do not play in Oracle Load Testing.

The Web Functional Test Module provides playback and iterate toolbar buttons that
allows users to start the script playback for either a single playback through the script
or multiple iterations using data from a databank file. Playback results for Web
Functional scripts can be viewed in the Results and Console views.

5.3.1 Setting Web Functional Test Playback Preferences
To set Web Functional Test Playback preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Playback category.

4. Select Web Functional Test.

5. Expand the groups and set the preferences. See Section 2.4.9, "Web Functional Test
Preferences" for descriptions of the Playback Preferences settings.

6. Click OK when finished.

5.3.2 Playing Back Web Functional Scripts
To play back Web Functional scripts:

1. Start OpenScript.

2. Open the Web Functional script to play back.

3. Select Playback from the Script menu or click the toolbar button.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

5.3.3 Playing Back Web Functional Scripts with Iterations
To play back Web Functional scripts with iterations:

1. Start OpenScript.

2. Open the Web Functional script to play back.

3. Select Iterate from the Script menu or click the toolbar button.

Note: Do not close the script editor view or script project while
recording or playing back scripts. Doing so could result in
unpredictable behavior in the OpenScript application.

Modifying Scripts

5-8 Oracle Functional Testing OpenScript User's Guide

4. Select Use Databanks.

5. Select which databank file to specify the settings for if more than one database is
configured for the script.

6. Specify the settings for the databank file.

7. Select the Run no more than [] iterations option and set the iteration count to the
desired number of playback iterations. See Section 4.2.4, "Playing Back Scripts
With Iterations" for additional information about iteration settings.

8. Click OK.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

5.4 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

5.4.1 Path Editor Toolbar
Several dialog boxes used to add tests use a common toolbar for editing object paths.
See Section 5.2.2, "Adding/Editing Object Identifiers" for additional information about
adding or editing object identification paths.The toolbar options are as follows:

Path/Window: Specifies the path to the object to test. The options available on the
object path toolbar are as follows:

■ Toggle between tree and text: Toggles the path between a tree view and a text
view. In the tree view, you can add, edit or delete segments of the object path using
the toolbar or use the Up and Down arrows to reorder segments of the object path.
In the text view, you can edit the object path directly in the text box.

■ Add: Opens a dialog box for adding a new path segment to the object path. This
toolbar button is only available when the path is in tree view.

■ Edit: Opens a dialog box for editing the attributes of the currently selected path
segment in the object path. This toolbar button is only available when the path is
in tree view.

■ Delete: Deletes the currently selected path segment from the object path. This
toolbar button is only available when the path is in tree view.

■ Up: Moves the currently selected path segment up one level in the tree. This
toolbar button is only available when the path is in tree view and the selected path
segment is not the highest level segment.

■ Down: Moves the currently selected path segment up one level in the tree. This
toolbar button is only available when the path is in tree view and the selected path
segment is not the lowest level segment.

■ Capture object in browser: Opens a capture object dialog box and starts the
capture mode. Navigate to the object to capture and use options in the capture
dialog box to capture the object path.

■ View object path from Object Library: Opens a dialog box for viewing both the
tree view and text view of the currently selected object path.

■ Select from Object Library: Opens a dialog box for selecting an object from a
saved library.

Modifying Scripts

Using the Web Functional Test Module 5-9

■ Save to Object Library: Opens a dialog box for saving the current object to a
library.

5.4.2 Adding Browser Navigation to a Script
To add a Browser Navigation to a Script:

1. Record a Web Functional Test script.

2. Select the script node where you want to add the navigation.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Web Actions node.

5. Expand the Browser node and select Navigate.

6. Click OK.

7. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path. See Section 5.4.1, "Path
Editor Toolbar" for additional information about the Path Editing Toolbar.

8. Enter the URL.

9. Click OK. The navigate node is added to the script tree.

In the Java Code view, the web.window(objectId).navigate method will be
added to the script code:

web.window(1,
"/web:window[@index='0']").navigate("http://testserver2/fmstocks");

The Browser web actions includes additional options for browser navigation such
as Back, Forward, Close, Refresh, Wait for Page, etc. Additional browser actions
have corresponding Java code methods:

web.window(1,
"/web:window[@index='0']").waitForPage("http://testserver2/fmstocks/",
"Stocks", true, null)
web.window("/web:window[@index='0']").close();
web.window("/web:window[@index='0']").back();
web.window("/web:window[@index='0']").forward();
web.window("/web:window[@index='0']").refresh();
web.window("/web:window[@index='0']").capturePage();
web.window("/web:window[@index='0']").solve("MyVariable", "(.+?)", true, 1);
web.window("/web:window[@index='0']").storeResponseTime("MyRespTime");
web.window("/web:window[@index='0']").waitFor(10);
web.window("/web:window[@index='0']").storeAttribute("MyAttribVar",
"MyAttribute");

5.4.3 Adding Web Actions on Browser Objects
The Web Functional Test Module includes actions for Browser objects that can be
added to a script.

To add Web actions on Browser objects to a script:

1. Record a Web Functional Test script.

2. Select the script node where you want to add the action.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Web Actions node.

Modifying Scripts

5-10 Oracle Functional Testing OpenScript User's Guide

5. Expand an action node and select the action.

6. Click OK.

7. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path. See Section 5.4.1, "Path
Editor Toolbar" for additional information about the Path Editing Toolbar.

8. Click OK. The action node is added to the script tree.

In the Java Code view, a web.object(objectId).action() method will be
added to the script code:

web.button("/web:window[@index='0']
/web:document[@index='0']
/web:form[@index='0'
or @id='loginform'
or @name='loginform']

/web:input_submit[@name='LoginButton'
or @value='Login'
or @index='0']").click()

The Web Actions node includes actions for objects such as buttons, check boxes,
dialogs, images, links, tables, etc. Other object actions have corresponding Java
code methods:

web.link("/web:window[@index='0']
/web:document[@index='0']
/web:a[@text='Open a new account.'
or @href='http://testserver2/fmstocks/_NewAccount.asp'
or @index='0']").click()

or

web.select("/web:window[@index='0']
/web:document[@index='0']
/web:form[@index='0']
/web:select[(@id='namespace'
or @name='namespace'
or @index='0')
and multiple mod 'False']").selectOptionByText("[select product]");

or

web.clearSessionCookies();
web.clearAllPersistentCookies();
web.clearPersistentCookies("domain");
web.clearCache("domain");

5.4.4 Adding Object Libraries to a Script
To add Object Libraries to a script:

1. Open or create a Web Functional Test script project.

2. Select the Script menu and then select Script Properties.

3. Select the Script Assets category and select Object Libraries.

4. Click Add.

5. Specify the library file and alias:

■ If you have already created an Object library file, select the file in a repository.

Modifying Scripts

Using the Web Functional Test Module 5-11

■ If you have not created a library file, enter a file name, and click OK. A new
file will be created. When you record a Web Functional Test script, the browser
actions will be automatically added to the object library file.

6. Click OK. The Object Library file is added as a script test asset under the Object
Libraries tree. Script test assets are referenced in the assets.xml file located in the
script directory of the repository.

7. Click OK.

8. Record a Web Functional Test script to use the object library.

The object identification paths for browser objects will be automatically added to
the object library file during recording. You can open and edit the object library file
using the Object Library Editor. Select Open Object Library from the File menu,
select the Object Library .properties file and click Open. The Object Library
editor view opens in the Workbench with the objects and details included in the
selected Object Library. You can add objects to and delete objects from the Object
list. You edit the object attributes in the object string or in the tree hierarchy of the
Details section. The tree hierarchy lets you move attributes up or down in the
priority order.

9. Save the object library and script when finished.

5.4.5 Adding a Server Response Test
You can use Server Response Tests to report an error and/or abort the script if a Web
page does not return back to the client within a specified time range.

To add a Server Response Test to a script:

1. Record a Web Functional Test script.

2. Expand the Run node.

3. Select the script node where you want to add the Server Response test.

4. Select the Script menu and then select Other from the Add sub menu.

5. Expand the Web Tests group.

6. Select Server Response Test and click OK.

7. Enter the object identification path for the window. You can use the Capture or
Select menu options to capture or select an object path. See Section 5.4.1, "Path
Editor Toolbar" for additional information about the Path Editing Toolbar.

8. Enter a name for the test.

9. Enter the minimum and maximum time values.

10. Set the Verify only, never fail option.

11. Click OK to add the Server Response node to the script tree.

Note: Any scripts you plan to run, along with any associated assets,
in the Oracle Load Testing application must be stored in a
repository/workspace that can be accessed by the Oracle Load Testing
Controller. If you create new repositories in OpenScript, you should
also add the new repositories in Oracle Load Testing.

Modifying Scripts

5-12 Oracle Functional Testing OpenScript User's Guide

In the Java Code view, the Server Response Test consists of the code executed in
the web.window(objectId).verifyResponseTime() or
web.window(objectId).assertResponseTime()method:

web.window("/web:window[@index='0']").verifyResponseTime("MyserverResp", 10.0,
20.0);

or

web.window("/web:window[@index='0']").assertResponseTime("MyserverResp2", 10.0,
50.0);

In the above code examples, verify means "do not stop on failure" and assert
means "stop on failure".

5.4.6 Adding Text Matching Tests to a Script
To add a Text Matching Test to a Script:

1. Open or create a Web Functional Test script project.

2. Select the script node where you want to add the Text Matching Test.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Web Tests node.

5. Select Text Matching Test.

6. Click OK.

7. Select the Look in location:

All Browsers: When selected, the Text Matching Test looks for the text to match in
all open browsers.

Specified Browser: When selected, the Text Matching Test looks for the text to
match by the browser ID specified in the Path.

Specified Document: When selected, the Text Matching Test looks for the text to
match in the document specified by the object ID in the Path.

8. If you selected Specified Browser or Specified Document, enter the object
identification path for the browser, document, or frame in the Path. You can use
the Capture or Select buttons to capture or select an object path. See Section 5.4.1,
"Path Editor Toolbar" for additional information about the Path Editing Toolbar

9. Enter a name for the test.

10. Enter the text string or Regular Expression to match or click the Substitute Variable
icon to select a databank or script variable to find in the source.

11. Select the source location that will be searched for the matching text:

HTML Display Contents: Search the browser rendered text of the page.

Note: The pound (#) character and double brace ({{ and }})
character sequences need to be escaped with a preceding pound (#)
character if used in the Text Matching Test as a literal string (not a
string specifying an OpenScript databank or script variable). For
example, the pound character should be doubled (##) and double
braces should be preceded by a pound character (#{{ and #}}).

Modifying Scripts

Using the Web Functional Test Module 5-13

Raw HTML: Search HTML source of the page.

12. Select the Pass when setting.

Selected text is present: The test case passes if the Text to Match string is found in
the selected source.

Selected text is absent: The test case passes if the Text to Match string is not found
in the selected source.

13. Select the Match type.

Exact: Matches the Text to Match string exactly.

Regular Expression: Matches using the Regular Expression specified in Text to
Match.

Wildcard: Matches using the wildcard characters specified in Text to Match.

14. Set the Verify only, never fail option.

15. Click OK. The Text Matching Test node is added to the script tree.

In the Java Code view, the web.assertText or
web.document(specifiedDoc).assertText method will be added to the
script code if the Verify only, never fail option is not selected:

web.assertText("MyTextMatchTest", "Home", TextPresence.PassIfPresent,
MatchOption.Exact)

web.document("Main").assertText("MyTextMatchTest2", "Home",
TextPresence.PassIfPresent, MatchOption.RegEx);

In the Java Code view, the web.verifyText or
web.document(specifiedDoc).verifyText method will be added to the
script code if the Verify only, never fail option is selected:

web.verifyText("MyTextMatchTest", "Home", TextPresence.PassIfPresent,
MatchOption.Exact)

web.document("Main").verifyText("MyTextMatchTest2", "Home",
TextPresence.PassIfPresent, MatchOption.RegEx);

5.4.7 Adding Object Tests
The Web Functional Test Module includes an object test case for Browser objects that
can be added to a script.

To add an object test to a script:

1. Record a Web Functional Test script.

2. Select the script node where you want to add the object test.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Web Tests node and select Object Test.

5. Click OK.

6. If necessary, select the Object Type.

7. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path. See Section 5.4.1, "Path
Editor Toolbar" for additional information about the Path Editing Toolbar.

8. Enter a test name.

Modifying Scripts

5-14 Oracle Functional Testing OpenScript User's Guide

9. Select or clear the Verify only, never fail option.

10. Select an Attribute/Value pair and specify the test details.

Attributes: Shows the attributes of the selected object. Select an attribute and
specify the test details.

■ Attribute: Shows the name of the attribute. When selected, the attribute is
included in the object test. When cleared, the attribute is not included in the
object test.

■ Value: Shows either the recorded value or the test criteria for the attribute
depending upon which Display option is selected.

■ Enable All: Enables all properties for inclusion in the test criteria.

■ Disable All: Disables all properties for exclusion from the test criteria.

■ Add Row: Adds a new row to the table.

■ Display: Selects which values appear in the properties list.

– Tests: When selected, the Value list shows the test criteria defined for each
attribute.

– Recorded Values: When selected, the Value list shows the recorded value
for each attribute.

Test Details: Specifies the test criteria for the selected attribute.

■ Recorded Value: Shows the recorded value of the attribute.

■ Enable: When selected, the attribute is included in the object test. When
cleared, the attribute is not included in the object test.

■ Value Type: Specifies the data type to use as the test criteria for the attribute.
The available options in the Operator list depend upon the selected value type
to test: String, Boolean, Date, or Numeric.

■ Operator: Specifies the operator to use for the playback test criteria. The list of
operators changes depending upon the selected Value Type.

The following options are available for String values:

– Exact: The test passes if the text or attribute value matches exactly the
current value of the text string during playback of the script.

– Wildcard: The test passes if the text or attribute value matches the current
value of the Like operator pattern during playback of the script.

– Regular Expression: The test passes if the text or attribute value matches
the current value of the Regular Expression pattern during playback of the
script.

The following options are available for Numeric and Date values:

– [Relational Operators]: Lists the relational operators. Select the type of
comparison to use during playback of the script. If you select the Range
operator, the Object Test adds a field for specifying the range. Specify the
from-to range.

The following option is available for Boolean values:

– Equals: The test passes if the text or attribute value matches the True or
False value specified in the Value field during playback of the script.

■ Value: Specifies the value to use for the test criteria for the attribute.

Modifying Scripts

Using the Web Functional Test Module 5-15

■ [Substitute Variable]: Opens a window for selecting a databank variable to
substitute as the value to use for the test criteria for the attribute.

11. Specify the test details for each Attribute/Value pair as required for the test.

12. Click OK. The object test node is added to the script tree.

In the Java Code view, a web.element(objectId).verifyAttributes
method will be added to the script code:

web.element(15, "/web:window[@index='0']
/web:document[@index='0']
/web:form[@index='0'
or @id='loginform'
or @name='loginform']

/web:input_password[@name='password' or @index='0']").verifyAttributes(
"MyObjectTest", web.attributes(
web.attribute("index", "0", TestOperator.StringExact),
web.attribute("tag", "INPUT", TestOperator.StringExact),
web.attribute("name", "password", TestOperator.StringExact),
web.attribute("value", "ta", TestOperator.StringExact),
web.attribute("type", "password", TestOperator.StringExact),
web.attribute("checked", "False", TestOperator.StringExact),
web.attribute("disabled", "False", TestOperator.StringExact)));

5.4.8 Adding Table Tests
The Web Functional Test Module includes a table test case for HTML tables that can be
added to a script.

To add a table test to a script:

1. Record a Web Functional Test script.

2. Select the script node where you want to add the table test.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Web Tests node select Table Test.

5. Click OK.

6. If necessary, select the Object Type.

7. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path. See Section 5.4.1, "Path
Editor Toolbar" for additional information about the Path Editing Toolbar.

8. Enter a test name.

9. Select or clear the Verify only, never fail option.

10. Select a row and column cell and specify the test details.

Test Details: Specifies the test to perform for each value. Select a value in the row
and column list to set the details for that specific value.

■ Row: Shows the row number of the selected table value.

■ Column: Shows the column number of the selected table value.

■ Enable: When selected, the table value is included in the comparison test.

■ Recorded value: Shows the selected attribute's recorded value.

■ Value Type: Specifies the data type of the selected value: String, Numeric,
Date, or Boolean.

Modifying Scripts

5-16 Oracle Functional Testing OpenScript User's Guide

■ Operator: Specifies how to compare the value. The Operator options change
depending upon the selected value type. For relational operators, if you select
the Range operator, a field is added for specifying the numeric or date range.
Specify the from-to range.

■ Value: Specifies the value to test.

■ [Substitute Variable] - opens a dialog box for selecting the variable to use as
the value to test.

11. Specify the test details for each table cell as required for the test.

12. Click OK. The table test node is added to the script tree.

In the Java Code view, a web.table(objectId).assertCells or a
web.table(objectId).verifyCells method will be added to the script code
depending upon the Verify only, never fail setting:

web.table(24, "/web:window[@index='0']
/web:document[@index='0']
/web:table[@index='6']").verifyCells("MyTableTest", web.cells(
web.cell(1, 1, "Ticker ", TestOperator.StringExact),
web.cell(1, 2, "Company ", TestOperator.StringExact),
web.cell(2, 1, "ORCL ", TestOperator.StringExact),
web.cell(2, 2, "Oracle Corporation ", TestOperator.StringExact)))

or

web.table(24, "/web:window[@index='0']
/web:document[@index='0']
/web:table[@index='6']").assertCells("MyTableTest", web.cells(
web.cell(1, 1, "Ticker ", TestOperator.StringExact),
web.cell(1, 2, "Company ", TestOperator.StringExact),
web.cell(2, 1, "ORCL ", TestOperator.StringExact),
web.cell(2, 2, "Oracle Corporation ", TestOperator.StringExact)))

5.4.8.1 Testing Images in Tables
You can use the Table test to create tests that check for the existence of one or more
images in a Web page table.

To add an image existence test to a script using a table test:

1. Record a Web Functional Test script that has a Web page table with one or more
images in the table.

2. When the Web page table with the image is displayed, select the Script menu and
then select Other from the Add sub menu.

3. Expand the Web Tests node and select Table Test.

4. Click OK.

5. Click the Capture object in browser toolbar button. See Section 5.4.1, "Path Editor
Toolbar" for additional information about the Path Editing Toolbar.

6. Select the image in the Web page table and press the F10 key to capture the object
path.

7. Click OK. The Table Test dialog box opens with a web.table Object Type.

8. Enter a test name.

9. Select or clear the Verify only, never fail option.

Modifying Scripts

Using the Web Functional Test Module 5-17

10. Select an table cell and specify the test details. The Table Test uses the text of the
SRC=http://path/imageName for the image existence test.

11. Specify the test details for each table cell as required for the test. For images, the
value specifies the path and name of the image file. Other table cell values for the
table may also be included depending upon the Web page source.

12. Click OK. The table test node is added to the script tree.

In the Java Code view, a web.table(objectId).assertCells or a
web.table(objectId).verifyCells method will be added to the script code
depending upon the Verify only, never fail setting:

web.table(7,"/web:window[@index='0' or @title='MyImageTable']
/web:document[@index='0']
/web:table[@firstTableCell='http://my.com/img1.gif' or @index='28']")
.verifyCells("ImageTableTest",
web.cells(web.cell(1, 1,"http://my.com/img2.gif", TestOperator.StringExact),
web.cell(2, 1, "http://my.com/img3.gif", TestOperator.StringExact),
web.cell(3, 1, "http://my.com/img4.gif", TestOperator.StringExact),
web.cell(4 ,1, "http://my.com/img5.gif", TestOperator.StringExact)));

or

web.table(7,"/web:window[@index='0' or @title='MyImageTable']
/web:document[@index='0']
/web:table[@firstTableCell='http://my.com/img1.gif' or @index='28']")
.assertCells("ImageTableTest",
web.cells(web.cell(1, 1,"http://my.com/img2.gif", TestOperator.StringExact),
web.cell(2, 1, "http://my.com/img3.gif", TestOperator.StringExact),
web.cell(3, 1, "http://my.com/img4.gif", TestOperator.StringExact),
web.cell(4 ,1, "http://my.com/img5.gif", TestOperator.StringExact)));

13. Click the Stop toolbar button when finished recording.

5.4.9 Adding a Page Title Test
You can use Title Tests to report a page title error and/or abort the script if a Web page
does not return back to the client a page with the expected title. The page title test
compares the recorded page title to the title received on playback of the script.

To add a Title Test to a script:

1. Record a Web Functional Test script.

2. Expand the Run node.

3. Select the script node where you want to add the Title test. Selecting the
WaitForPage node will add the object identification path ID to the test
automatically.

4. Select the Script menu and then select Other from the Add sub menu.

5. Expand the Web Tests group and select Title Test.

6. Click OK.

7. Select the Add to option:

■ Specific Page: When selected, the page title test will be added to the specified
or currently selected page in the script.

■ All Pages in Script: When selected, a page title test will be added to each page
in the script specifying the recorded title as the title to compare on playback.

Modifying Scripts

5-18 Oracle Functional Testing OpenScript User's Guide

8. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path. See Section 5.4.1, "Path
Editor Toolbar" for additional information about the Path Editing Toolbar.

9. Enter a name for the test.

10. Enter the page title. If you selected the WaitForPage node the page title is added to
the test automatically.

11. Set the Verify Only, never fail option.

12. Click OK to add the Page Title Test node to the script tree.

In the Java Code view, the Page Title Test consists of the code executed in the
web.window(objectId).verifyTitle() or
web.window(objectId).assertTitle()method:

web.window("/web:window[@index='0' or @title='Stocks']")
.verifyTitle("MyTitleTest", "Home");

or

web.window("/web:window[@index='0' or @title='Stocks']")
.assertTitle("MyTitleTest2", "Home");

In the above code examples, verify means "do not stop on failure" and assert
means "stop on failure".

5.4.10 Adding an HTML Test
You can use HTML Tests to report an HTML error and/or abort the script if a Web
page does not return back to the client a page with the expected HTML. The HTML
test compares the recorded HTML to the HTML received on playback of the script.

To add a HTML test to a script:

1. Record a Web Functional Test script.

2. Expand the Run node.

3. Select the script node where you want to add the HTML test. Selecting the
WaitForPage node will add the object identification path ID to the test
automatically.

4. Select the Script menu and then select Other from the Add sub menu.

5. Expand the Web Tests group and select HTML Test.

6. Click OK.

7. Select the Add to option:

■ Specific Document: When selected, the HTML test will be added to the
specified or currently selected HTML document in the script.

■ All Documents in Script: When selected, am HTML test will be added to each
HTML document in the script.

8. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path. See Section 5.4.1, "Path
Editor Toolbar" for additional information about the Path Editing Toolbar.

9. Enter a name for the test.

10. Set the Verify Only, never fail option.

Modifying Scripts

Using the Web Functional Test Module 5-19

11. Click OK to add the HTML Test node to the script tree.

In the Java Code view, the HTML Test consists of the code executed in the
web.document(objectId).verifyHTML() or
web.document(objectId).assertHTML()method:

web.document("/web:window[@index='0' or @title='Stocks']
/web:document[@index='0']")
.verifyHTML("MyHTMLTest","e6306c5cf8f6697d9ba7bb2110888a50");

or

web.document("/web:window[@index='0' or @title='Stocks']
/web:document[@index='0']")
.assertHTML("MyHTMLTest2","e6306c5cf8f6697d9ba7bb2110888a50");

In the above code examples, verify means "do not stop on failure" and assert
means "stop on failure".

If an HTML test fails on playback, you can select the HTML test result in the Results
view and view the differences in the Comparison tab of the Details view.

5.4.11 Adding an XML Test
You can use XML Tests to report an XML error and/or abort the script if an XML file
does not return back to the client a file with the expected XML. The XML test
compares the recorded XML to the XML received on playback of the script.

To add an XML test to a script:

1. Record a Web Functional Test script.

2. Navigate to a URL for an XML file.

3. Expand the Run node.

4. Select the script node where you want to add the XML test. Selecting the
WaitForPage node will show the file in the Details view with tabs for Screenshot
XML, XML tree, and DOM Tree. The XML tab shows the content of the XML file.
The XML Tree tab shows the content of the XML file in tree format with the
attributes and elements for each node. The DOM Tree tab show the HTML
representation of the XML.

5. Select the Script menu and then select Other from the Add sub menu.

6. Expand the Web Tests group and select XML Test.

7. Click OK.

8. Enter a name for the test.

9. Set the Verify Only, never fail option.

10. If necessary, select the Object Type: web.XMLDocument.

11. Enter the window path. You can use the Capture or Select menu options to
capture or select an object path. See Section 5.4.1, "Path Editor Toolbar" for
additional information about the Path Editing Toolbar.

12. Select an XML node to test in the XML tree and enable or disable the test for the
node by selecting or clearing the check box. The XML tree has the following
navigation toolbar options:

■ Filter disabled items: Clears unselected items from view in the XML test
dialog box.

Modifying Scripts

5-20 Oracle Functional Testing OpenScript User's Guide

■ Next enabled node: Moves the selection pointer to the next enabled node in
the XML tree.

■ Previous enabled node: Moves the selection pointer to the previous enabled
node in the XML tree.

13. Select an XML node to test and select the Tests attributes for each selected XML
node.

Tests: Shows the attributes of the selected XML node. Select an attribute and
specify the test details.

■ Attribute: Shows the name of the attribute. When selected, the attribute is
included in the XML test. When cleared, the attribute is not included in the
XML test.

■ Expected Value: Shows either the recorded value or the test criteria for the
attribute depending upon which Display option is selected.

■ Enable All: Opens a menu for selecting which types of XML or attributes to
enable all.

■ Disable All: Opens a menu for selecting which types of XML or attributes to
disable all.

■ Display: Selects which values appear in the Test Detail section.

– Tests: When selected, the Value list shows the test criteria defined for each
attribute.

– Recorded Values: When selected, the Value list shows the recorded value
for each attribute.

14. If necessary, expand the Test Details section and edit the details for the selected
XML node.

Test Details: Specifies the test details for the select XML node in the tree:

■ Recorded Value: Shows the recorded value for the selected XML node.

■ Attribute: Shows the attribute name of the selected XML node.

■ Value Type: Specifies the data value type of the selected XML node.

■ Operator: Specifies the test operator to use for the selected XML node.

■ Expected Value: Specifies the value to compare to the recorded value for the
selected XML node.

15. Click OK to add the XML Test node to the script tree.

In the Java Code view, the XML Test consists of the code executed in the
web.xmlDocument(objectId).verifyXML() or
web.xmlDocument(objectId).assertXML()method:

web.xmlDocument(5, "/web:window[@index='0' or
@title='http://myServer/myFile.xml']
"/web:document[@index='0']")
.verifyXML("XMLTest", web.nodeTests());

or

web.xmlDocument(5, "path").verifyXML("testXML",
web.nodeTests(web.node("/root").attrCountTest("0", TestOperator.IntEqual),
web.node("/root").childCountTest("2", TestOperator.IntEqual),
web.node("/root/testNode[2]").attrTest("id", "testNode2",
TestOperator.StringExact),

Modifying Scripts

Using the Web Functional Test Module 5-21

web.node("/root/testNode[2]").attrCountTest("1", TestOperator.IntEqual),
web.node("/root/testNode[2]").childCountTest("2", TestOperator.IntEqual),
web.node("/root/testNode[2]/testSubNode[1]").attrTest("id","testSubNode1",
TestOperator.StringExact),

web.node("/root/testNode[2]/testSubNode[1]").attrCountTest("1",
TestOperator.IntEqual),

web.node("/root/testNode[2]/testSubNode[1]");.childCountTest("0",
TestOperator.IntEqual)));

or

web.xmlDocument(5, "/web:window[@index='0' or
@title='http://myServer/myFile.xml']
"/web:document[@index='0']")
.assertXML("XMLTest", web.nodeTests());

or

web.xmlDocument(5, "path").assertXML("testXML",
web.nodeTests(web.node("/root").attrCountTest("0", TestOperator.IntEqual),
web.node("/root").childCountTest("2", TestOperator.IntEqual),
web.node("/root/testNode[2]").attrTest("id", "testNode2",
TestOperator.StringExact),

web.node("/root/testNode[2]").attrCountTest("1", TestOperator.IntEqual),
web.node("/root/testNode[2]").childCountTest("2", TestOperator.IntEqual),
web.node("/root/testNode[2]/testSubNode[1]").attrTest("id","testSubNode1",
TestOperator.StringExact),

web.node("/root/testNode[2]/testSubNode[1]").attrCountTest("1",
TestOperator.IntEqual),

web.node("/root/testNode[2]/testSubNode[1]");.childCountTest("0",
TestOperator.IntEqual)));

In the above code examples, verify means "do not stop on failure" and assert
means "stop on failure".

If an XML test fails on playback, you can select the XML test result in the Results view
and view the differences in the Comparison tab of the Details view.

5.4.12 Adding a Wait for Page
You can use the Wait for Page browser option to cause the script playback to wait until
a page is returned by the server before continuing playback.

To add a Wait for Page command to a script:

1. Record a Web Functional Test script.

2. Expand the Run node.

3. Select the script node where you want to add the Wait for Page node.

4. Select the Script menu and then select Other from the Add sub menu.

5. Expand the Web Actions group.

6. Expand the Browser group.

7. Select Wait For Page and click OK.

8. Enter the document ID in XPath format.

9. Select or clear the Wait for any page option.

10. If you clear the Wait for any page option, specify the URL and Match option.

Modifying Scripts

5-22 Oracle Functional Testing OpenScript User's Guide

11. Set the Timeout value.

12. Click OK to add the Server Response node to the script tree.

In the Java Code view, a web.window(objectId).waitForPage() method
will be added to the script code:

web.window(6,
"/web:window[@index='0']").waitForPage("http://testserver2/fmstocks/home.asp",
null, null)

5.4.13 Inspecting Object Paths
To inspect a Web object path:

1. Record a Web Functional Test script.

2. Select the Script menu and then select Inspect Path. OpenScript opens the capture
mode. This dialog box lets you capture the object path for an object on a Web page.

Path: Shows the Object Identification path of the object highlighted with the
mouse cursor.

The following options are available on the pulldown menu after you press F10 to
capture an object path:

■ Capture Object: Opens a capture object dialog box and starts the capture
mode. Navigate to the object to capture and use options in the capture dialog
box to capture the object path.

■ View Object Path: Opens a dialog box for viewing the currently selected
object path.

■ Save to Object Library: Opens a dialog box for specifying the Object Library
in which to save the object path.

Position: Shows the x, y coordinates for the entire screen. The upper left
coordinate of entire screen is {0,0}. This position coordinate is used with Functional
tests that include object types, such as Flash, where screen positions are required
to perform mouse actions on the object. The position coordinates are used with the
functional test methods, ft.mouseClick(), ft.mouseDown(), and
ft.mouseUp().

Offset: Shows the x, y coordinates relative to the currently highlighted object. The
upper left coordinate of highlighted object is {0,0}. This offset coordinate is used
with Web Functional tests that include object types, such as Flash, where screen
positions are required to perform a mouse click on the object. The position
coordinates are used with the Web functional test method,
web.element().mouseClick().

3. Navigate to the Web object and place the mouse cursor on the object.

4. Press F10 to capture the path.

5. Highlight the path with the mouse cursor and press the Ctrl+C keys to copy the
path to the clipboard.

6. Click OK when finished.

5.4.14 Using the Object Details View
The Object Details view provides options for viewing the attributes and values for the
objects selected in the browser connected to the view. The Object Details view is
available for Functional tests.

Modifying Scripts

Using the Web Functional Test Module 5-23

To view object details:

1. Create a Functional Test script.

2. Select the View menu and then select Object Details. OpenScript opens the Object
Details view for capturing and viewing objects in the Document Object Model.
This dialog box lets you connect to a browser, capture the object path for an object
on a Web page.

The following toolbar buttons are available in the Object Details view:

■ Refresh Tree - refreshes the Object Details tree pane.

■ Find a node to inspect by selecting in browser - starts the capture mode for
selecting the Web page object in the browser. Highlight the object in the
browser and press F10 to select it and show the attributes in the Object Details
View.

■ Connect to browser/Disconnect from browser - connects or disconnects the
Object Details View to the browser. The Object Details View must be
connected to the browser to capture objects.

3. Click the Connect to Browser toolbar button. A new browser opens.

4. Navigate to the page containing the object you wish to view. The tree view loads
the DOM tree for the page in the browser.

The following options are available in the Object Details view:

■ Module: Selects the type of OpenScript module. The objects in the tree view
change to the specific module type. For example, the Web module shows the
HTML DOM tree. The ADF module shows the ADF object tree.

■ Find: Provides search capabilities to locate specific text in the Object Details.
Type the text to find and click Next or Previous to locate the attributes and
values within the tree.

■ Partial Match: When selected the Next or Previous search will match partial
text strings specified in Find. When cleared, the Next or Previous search will
match the entire Find string.

■ Next: Searches down the tree for the next object that matches the Find string.

■ Previous: Searches up the tree for the previous object that matches the Find
string.

■ Tree pane: Shows the Document Object Model (DOM) tree of a Web
application, the ADFUIComponents tree of an ADF page, and the Forms
element tree of a forms application. You can use the Find/Next/Previous
options to locate objects in the tree or use the Find a node to inspect by
selecting in browser toolbar button to locate the object by selecting it in the
connected browser. The right-click shortcut menu includes the following
options for working with the object selected in the tree:

– View Object Path: Opens a dialog box showing the full path of the object.

– Add Object Test: Opens the Object Test dialog for defining an object test
for the object selected in the tree.

– Add Table Test: Opens the Table test dialog box for defining a table test
for the table object selected in the tree. This option is only available for
table objects.

– Save to Object Library: Opens the Save to Object Library dialog box for
saving the object path to an object library.

Modifying Scripts

5-24 Oracle Functional Testing OpenScript User's Guide

■ Attribute: Shows the attribute name of the object selected in the tree.

■ Value: Shows the value of the object attribute selected in the tree.

5. Use the Find/Next/Previous options to locate objects in the tree or use the Find a
node to inspect by selecting in browser toolbar button to locate the object by
selecting it in the connected browser.

If you use the Find a node to inspect by selecting in browser toolbar button,
highlight the object you wish to view in the browser and press F10. The tree view
expands and selects the object.

6. Use the tree view shortcut menu to view the object path, add tests, or save the
object path to an Object Library.

7. Select the Disconnect from Browser toolbar button when finished.

5.4.14.1 Viewing the Object Path
To view the path for an object:

1. Open the Object Details view and select an object in the tree.

2. Right-click on the object and select View Object Details. The View Object Details
dialog box has the following option:

■ Path: Shows the path of the object. Click the toolbar button to switch between
the tree view and the XPath view.

5.4.14.2 Adding an Object Test
To add an object test:

1. Open the Object Details view and select an object in the tree.

2. Right-click on the object and select Add Object Test. The Object Test dialog box
opens for defining an object test for the object selected in the tree. See Section 5.4.7,
"Adding Object Tests" for additional information about defining an Object Test.

5.4.14.3 Adding a Table Test
To add a table test:

1. Open the Object Details view and select a Table object in the tree.

2. Right-click on the object and select Add Table Test. The Table Test dialog box
opens for defining a table test for the table object selected in the tree. This option is
only available for table objects. See Section 5.4.8, "Adding Table Tests" for
additional information about defining a Table Test.

5.4.14.4 Saving an Object Path to an Object Library
To save an object path to an object library:

1. Open the Object Details view and select an object in the tree.

2. Right-click on the object and select Save to Object Library. The Save to Object
Library dialog box opens for saving the object path to an object library. The Save to
Object Library dialog box has the following options:

■ Object Library: Lists the saved object libraries where the selected path can be
saved.

■ New: Opens a dialog for specifying a new Object Library file.

■ Name: Specifies a name for the object path.

Modifying Scripts

Using the Web Functional Test Module 5-25

■ Description: Specifies a description for the object path.

3. Select the library where you want to save the path or create a new library.

4. Enter a new name and description.

5. Click OK.

5.4.15 Setting Script Properties
To set script properties:

1. Record a Web Functional Test script.

2. Select the Script menu and then select Script Properties.

3. Select the properties category.

4. Specify the properties for the category.

5. Click OK when finished.

5.4.16 Substituting Databank Variables
To substitute a databank variable for a query string parameter in a script:

1. Record a Web Functional test script that has text string parameters.

2. Expand the Run node.

3. Expand the node containing text parameters.

4. Right-click a text parameter node and select Properties from the shortcut menu.

5. If you have already configured the script with one or more databanks, select the
click the [Substitute Variable] icon and select the databank field to substitute for
the text parameter from the desired databank file and click Finish.

6. If you have not already configured the script with a databank, select Add new
databank and click Next.

a. Click the Browse button and select the databank file to use.

b. Select the column (field name) to substitute for the text parameter and click
Finish.

In the Tree View, the databank variable appears in place of the recorded value as
{{db.databankFileName.field,recordedValue}}.

In the Java Code view, the databank variable appears as
{{db.databankFileName.field,recordedValue}} in the
web.text(objectId).setText method:

web.text(1, "/web:window[@index='0']
/web:document[@index='0']
/web:form[@index='0']
/web:input_text[@id='ticker'
or @name='ticker'
or @index='0']").setText("{{db.fmstocks_data.ticker,orcl}}")

5.4.17 Using the Web Functional Test Module API
The Web Functional Module includes a script Application Programming Interface
(API) specific to Web DOM functional testing. The Web Functional Test Module
recorder creates the Java code that corresponds to the Tree View and displays the Web

Editing Object Libraries

5-26 Oracle Functional Testing OpenScript User's Guide

Functional Test commands in the Java Code view using easy-to-understand function
names. The Java Code view commands correspond to the Tree View and you can edit
your scripts in either view.

You can use the Web Functional Test API to enhance recorded scripts with additional
testing functionality. Commands that are specific to the Web Functional Testing
Module are part of the "web" class. Additional functional test methods are available in
the "ft" class. You can also leverage other commands from other enabled classes
(services) or general Java commands in your scripts.

Some examples of the Web Testing Module API include:

■ Adding control statements

■ Adding think time

■ Launching and closing the Browser

■ Navigating to a URL

■ Performing actions on Web objects (click, double click, etc.)

■ Setting text fields

■ Waiting for a page to load

Many API methods can be added using the Web Functional Test Module Tree View.
Additional methods can be added using the Java Code view. Use Ctrl-space in the Java
Code view to open an Intellisense window listing available procedures and code
examples. See the API Reference in the OpenScript help for additional programming
information.

5.5 Editing Object Libraries
To edit an object library:

1. Create a Web Functional Test script project.

2. Add an Object Library to the script and record the Web application under test.

3. Select Open Object Library from the File menu.

4. Select the libraryName.properties file and click Open.

5. If necessary, click the Object Library tab.

6. Select an object in the Objects list. The Objects list section has the following toolbar
buttons:

Sort the paths alphabetically - sorts the object XPaths alphabetically.

Add: Adds a new object to the list. After adding a new object, specify the name
and object identification path in the Details section.

Delete: Deletes an object from the object list. A confirmation message appears.

Inspect Path: Starts the object capture mode and opens a browser for selecting the
object path to capture.

7. Edit the object attributes in the Details section.

You can add objects to and delete objects from the Object list. You edit the object
attributes in the object string or in the tree hierarchy of the Details section. The tree
hierarchy lets you move attributes up or down in the priority order.

Editing Object Libraries

Using the Web Functional Test Module 5-27

Details: Specifies the name and object identification path segments and attributes
for the selected object in the object list.

■ Name: Specifies the name of an object. A name is required for each object. The
name is used in the script code to reference the object path in the object library.
For example, an object in the Object Library named web_window_0 may have
a path defined as follows:

/web:window[@index='0' or @title='Home']"

In the script code, the object path in an Object Library is referenced using the
script variable format {{obj.libraryName.objectName}}. For example, a
script navigation command references an object path in an Object Library as
follows:

web.window(44, "{{obj.MyObjLib.web_window_0}}")
.navigate("http://myServer/home");

■ Description: Specifies any description for the object. A description is optional.

■ Path: Specifies the full object identification path segments and attributes that
the Web Functional Test Module uses to identify an object on a Web page
during play back of a script. The following toolbar buttons are available for
working with object paths:

– Toggle between tree and text: Toggles the Path editor between tree view
mode and text mode. In tree view mode, the object path is represented as
tree hierarchy. Use the toolbar buttons to add, edit, or delete path
attributes in the tree hierarchy or the change the priority order of the
attributes. Click the arrows next to the path segments to expand and
collapse specific tree segments. When fully collapsed, a path tree may
appear as follows:

web:window
web:document
web:form
web:input_submit

When full expanded, a path tree may appear as follows:

web:window
@index='0' or
@title='Stocks'

web:document
@index='0'

web:form
@id='loginform' or
@name='loginform' or
@index='0'

web:input_submit
@name='LoginButton' or
@value='Login' or

@index='0'

Select a path segment or attribute in the tree and click the Edit toolbar but-
ton or double-click on a path segment to open the edit dialog box.

In text mode, the object path is represented as an XPath text string as fol-
lows:

/segment[@attr1='value' and|or @attr2='value' and|or @attrN='value']
/nextsegment[...]/segmentN[...]

Editing Object Libraries

5-28 Oracle Functional Testing OpenScript User's Guide

The following example XPath shows the full path to a Submit Input but-
ton of a Web form:

/web:window[@index='0' or @title='Stocks']/web:document
[@index='0']/web:form[@id='loginform' or @name='loginform' or
@index='0']/web:input_submit[@name='LoginButton' or @value='Login'
or @index='0']

You can edit the object XPath text directly in the edit box. The edit box
includes an auto-complete feature that lists available options to select
when editing an object path. Typing the / (forward slash) character opens
the list of path segments available for selection. Typing the @ character
opens the list of path attributes available for selection. Typing additional
text narrows down the list of available selections to only those matching
the text entered.

– Add: Opens a dialog box for adding a path segment or attribute to the
object identification tree.

– Edit: Opens a dialog box for changing the value of the object path segment
or attribute selected in the tree.

– Delete: Deletes the selected object path segment or attribute from the tree.

– Up: Moves the selected object path segment or attribute up in the tree
hierarchy. This button is only active if the object path segment or attribute
is able to be moved up in the tree hierarchy.

– Down: Moves the selected object path segment or attribute down in the
tree hierarchy. This button is only active if the object path segment or
attribute is able to be moved down in the tree hierarchy.

– View Full Path: Opens a dialog box for viewing the full object path.

■ Use a different path for identifying the object during record time: When
selected, a secondary path editing box opens for specifying the object path to
use when recording a script. The object path specified is used only when
recording a script and can include Regular Expression, Wildcard and Exact
matching for specific path segments and attributes.

■ Record Path: Specifies the full object identification path and attributes that the
Web Functional Test Module recorder uses to identify an object on a Web page.
The Recorded Path toolbar buttons are the same as the Path toolbar button
except for View Full Path. The object path specified is used only when
recording a script and can include Regular Expression, Wildcard, and Exact
matching for specific path segments and attributes. Specify the Match type to
use for the Record Path path segments and attributes.

■ Match: Specifies the matching type to use the record time object identification
path segments and attributes. Regular Expression and Wildcard matching can
only be used for Record object identification paths.

– Exact: When selected, the object identification matches the full path
exactly as specified.

– RegEx: When selected, the object identification matches using Regular
Expression matching. Edit the path segments and attributes to include a
Regular Expression where you want to use Regular Expression matching.

– Wildcard: When selected, the object identification matches using Wildcard
matching. Use ? (question mark) to match single characters or * (asterisk)

Editing Object Libraries

Using the Web Functional Test Module 5-29

to match multiple characters. Edit the path segments and attributes to
include a Wildcard where you want to use Wildcard matching.

You can click the libraryName.properties tab to view or edit the object/object
attribute text strings in the object library file source. The basic format of a
object/object attribute text string is as follows:

objectName=path

objectName can be any user-defined name. This name corresponds to the Name
specified in the Details section of an object in the library. objectName can also
include names that specify the match option and recorded path strings for specific
objects.

path is an XPath formatted string. path can also include the match option and
recorded path strings for specific objects.

8. Select Save from the File menu or click the Save toolbar button to save changes to
the object library file.

Editing Object Libraries

5-30 Oracle Functional Testing OpenScript User's Guide

6

Using the HTTP Module 6-1

6 Using the HTTP Module

This chapter provides instructions on configuring and using the OpenScript HTTP
Module, which tests Web-based applications by automating the underlying HTTP
protocol traffic.

6.1 About the HTTP Module
The OpenScript HTTP Module is an application/protocol module that supports load
testing of Web-based applications that communicate via http(s) protocol. OpenScript
provides a flexible and easy-to-use scripting interface for both Technical Testers and
Non-Technical Testers. The OpenScript HTTP Module enables script creation from
both the code view and GUI view scripting interfaces.

The HTTP Module extends the OpenScript platform with HTTP Proxy recording and
playback capabilities. The proxy recorder automatically captures Web page
navigations and records them as tree view nodes (with the underlying code in the
Code View) in the script. The HTTP Module also provides additional GUI script
modification options for HTTP navigation.

The HTTP Module provides two recording modes which can be specified in the HTTP
recording preferences.

■ Web: When selected, the script recorder generates the Web mode HTTP script Java
code for the requests. This Java code is less verbose than the HTTP mode to
simplify Java coding of the scripts. The advantage of the Web mode compared to
the HTTP mode is that it simplifies script creation and makes the script easier to
read when testing Web browser applications. The Web mode can be used for any
Web browser application that communicates via HTTP.

■ HTTP: When selected, the script recorder generates the verbose HTTP script Java
code with detailed GET and POST requests. This can be used for any HTTP
application including Web browser applications and other applications that
communicate via HTTP. This is the record mode used for HTTP scripts prior to
version 9.20 of OpenScript.

6.1.1 Key Features of the HTTP Module
The HTTP module provides the following functionality:

■ Records HTTP protocol requests for playback automation. The requests can be
generated by a Web browser (i.e. IE) or by a plug-in (i.e. AJAX XMLHTTP
plug-in).

Navigation Editing (Correlation)

6-2 Oracle Functional Testing OpenScript User's Guide

■ Plays back HTTP scripts to validate proper functionality. Playback runs
interactively in the OpenScript user interface and is also supported in the Oracle
Load Testing Agents (i.e. Java Agent).

■ Provides full script code view integration to support script generation for the
HTTP Module. The commands include (but are not limited to) methods to
generate GET requests, POST requests, correlation substitutions, validation, etc.
The HTTP Module includes an additional API to support HTTP protocol code
scripting.

■ Allows users to parameterize user inputs to HTTP scripts and drive those inputs
from an external data file (Databank).

■ Provides additional options/settings that are specific to HTTP scripts within the
HTTP categories in the preferences interface.

■ Reports playback results for HTTP scripts in the Results and Console views.

6.2 Navigation Editing (Correlation)
The HTTP Module enables users to view and edit all recorded navigations and related
parameters (headers, post data, etc.) in either the script GUI Tree view or Code View. It
also enables them to view and edit any default correlation/parameterization of
dynamic navigations and apply their own correlation to handle dynamic navigations.

Navigation Editing GUI View: Configures the navigations they want to parameterize
and the correlation rules they want to apply through a navigation editing GUI view
interface. The GUI allows viewing and editing properties for different types of
navigations (for both Web/HTTP applications and non-Web/HTTP applications) and
data inputs. This GUI View includes:

■ Display & Editing for Recorded Navigations: Includes recorded navigations and
any navigation parameters like headers, etc. and a mechanism for users to
edit/add/delete navigations including dynamic parameter sources/targets.

■ Display & Editing for Correlation Rules Library & Editing: Includes a list of all
default correlation rules included in the module(s) (listed by application type) and
a mechanism for users to add/edit/delete correlation rules.

Navigation Editing Code View Commands: Users are able to specify the navigations
they want to parameterize and the data source they want to drive the inputs from
through navigation editing commands in the code view. These commands map to the
navigation editing GUI view.

beginStep("[2] Home", 3266);
{

http.post(4, "http://testserver2/fmstocks/{{FORMACTION_0,default.asp}}",
null,
http.postdata(http.param("login", "{{INPUT_0,ta616}}"),

http.param("password", "{{INPUT_1,ta}}"),
http.param("LoginButton", "{{INPUT_2,Login}}")),

null, true, "ASCII", "ASCII");
{
http.solveXpath("LINK_1_3", ".//A[text()='research a company']

/@href", "TickerList.asp", 0);
http.solveXpath("LINK_1_2", ".//A[text()='Logout']

/@href", "logout.asp", 0);
}

}
endStep();

Navigation Editing (Correlation)

Using the HTTP Module 6-3

6.2.1 Setting Correlation Preferences
To set correlation preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Correlation and Verification category.

4. Select HTTP.

5. Select or clear the check boxes for defined rules.

6. Select Add Library, Add Rule, or Edit Rule to define custom correlation rules.

7. Click OK.

6.2.2 Adding Correlation Libraries
Selecting Add Library in the Correlation Rules Preferences opens the Add Library
dialog box. This dialog box lets you specify a new correlation library for transforming
dynamic data in recorded script URLs and related parameters (headers, post data, etc.)
to variable names that will be recognized by the script playback engine (OpenScript or
Oracle Load Testing). The dialog box has the following options:

Name: Specifies the name of the correlation library. After you define a library you can
use the Add Rule button to specify the rules to include in the library. The name is
required. You can also select Copy rules to copy correlation rules from an existing
library.

Copy rules from existing library: Lets you copy correlation rules from an existing
library to a new library.

■ Copy Rules: When selected, a list of existing correlation rule libraries will be
enabled for copying.

■ Library: Lists the correlation rule libraries available for copying.

6.2.3 Adding and Editing Correlation Rules
Selecting Add Rule or Edit Rule in the Correlation Rules Preferences opens the Add
Rule or Edit Rule dialog box. This dialog box lets you specify or edit a correlation rule
for transforming dynamic data in recorded script URLs and related parameters
(headers, post data, etc.) to variable names that will be recognized by the script
playback engine (OpenScript or Oracle Load Testing). The dialog box has the
following options:

Type: Specifies the type of correlation rule. The available Source and Target options
change depending upon the rule type. The following rule types are available:

■ Client Set Cookie: This rule type automatically transforms web page cookie objects
with dynamic data.

■ Correlate Cookie Header: This rule type automatically transforms web page
cookie header objects with dynamic data.

■ Correlate Headers: This rule type automatically transforms web page header
objects with dynamic data.

■ Correlate Referer Header: This rule type automatically transforms web page
referer header objects with dynamic data.

Navigation Editing (Correlation)

6-4 Oracle Functional Testing OpenScript User's Guide

■ DOM Correlation: This rule type automatically transforms web page Document
Object Model (DOM) objects with dynamic data.

■ Function/Text Substitution: This rule type lets you specify a user-defined function
to replace a specific parameter or parameters.

■ Java Session id: This rule type automatically transforms Java Session ID objects
and replaces the ID with a variable value.

■ Substitute Recorded Date: This rule type lets you specify a Regular Expression
pattern to find and replace date parameters with a variable value.

■ Title Verification: This rule type lets you specify the type of title verification test to
add to each page.

■ Variable Substitution: This rule type lets you specify a Regular Expression pattern
to find and replace a specific parameter or parameters with a variable value.

Name: Specifies the name of the correlation rule. The name is required.

The following sections describe the rule types.

6.2.3.1 Client Set Cookie
When Client Set Cookie is selected, the Source and Target show the following options:

Source: Always cookies.

Target: Specifies which document object(s) to use as the target location of the
transform.

■ Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

■ Replace specified location: When selected, the correlation rule applies only to the
object matching the Location criteria.

■ Location: Specifies the cookie parameter(s) to which to apply the correlation rule
using a Regular Expression. (See Variable Substitution Rules below for examples.)

6.2.3.2 Correlate Cookie Header
When Correlate Cookie Header is selected, the Source and Target show the following
options:

Source: Always cookie header.

Target: Specifies which document object(s) to use as the target location of the
transform.

■ Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

■ Replace specified location: When selected, the correlation rule applies only to the
object matching the Location criteria.

■ Location: Specifies the cookie parameter(s) to which to apply the correlation rule
using a Regular Expression. (See Variable Substitution Rules below for examples.)

6.2.3.3 Correlate Header
When Correlate Header is selected, the Source and Target show the following options:

Source: Always web page headers.

Target: Specifies which header object(s) to use as the target location of the transform.

Navigation Editing (Correlation)

Using the HTTP Module 6-5

■ Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

■ Replace specified location: When selected, the correlation rule applies only to the
object matching the Location criteria.

■ Location: Specifies the header parameter(s) to which to apply the correlation rule
using a Regular Expression. (See Variable Substitution Rules below for examples.)

6.2.3.4 Correlate Referer Header
When Correlate Referer Header is selected, the Source and Target show the following
options:

Source: Always web page referer headers.

Target: Specifies which referer header object(s) to use as the target location of the
transform.

■ Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

■ Replace specified location: When selected, the correlation rule applies only to the
object matching the Location criteria.

■ Location: Specifies the referer header parameter(s) to which to apply the
correlation rule using a Regular Expression. (See Variable Substitution Rules below
for examples.)

6.2.3.5 DOM Correlation Rules
When DOM Correlation Rules is selected, the Source and Target show the following
options:

Source: Specifies which document object(s) to substitute as dynamic data.

■ Links: When selected, web page link objects with dynamic data will automatically
transformed to variable values.

■ Action: When selected, web page action objects with dynamic data will be
automatically transformed to variable values.

■ Input: When selected, web page input objects with dynamic data will be
automatically transformed to variable values.

■ TextArea: When selected, web page TextArea objects with dynamic data will be
automatically transformed to variable values.

■ JavaScript: When selected, web page JavaScript objects with dynamic data will be
automatically transformed to variable values.

■ Frame: When selected, web page Frame objects with dynamic data will be
automatically transformed to variable values.

■ Option: When selected, web page Option objects with dynamic data will be
automatically transformed to variable values.

■ XML Text: When selected, XML pages with dynamic data will be automatically
transformed to variable values.

Target: Specifies which referer header object(s) to use as the target location of the
transform.

■ Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

Navigation Editing (Correlation)

6-6 Oracle Functional Testing OpenScript User's Guide

■ Replace specified location: When selected, the correlation rule applies only to the
object matching the Location criteria.

■ Location: Specifies the web page object(s)/parameter(s) to which to apply the
correlation rule using a Regular Expression. (See Variable Substitution Rules below
for examples.)

6.2.3.6 Function/Text Substitution Rules
When Function/Text Substitution Rules is selected, the Source and Target show the
following options:

Source: Specifies the function name or text to use as the substitute for dynamic data.

■ Function/Text: Specifies the name of the function to use to search the source
location. The following functions are available:.

– {{@decode({{myVariable}})}}: Searches the source using the specified
Target Regular Expression and replaces the data with the script variable
{{@decode({{myVariable}})}}. The value is the encoded text string
specified by the Target Regular Expression.

– {{@decrypt({{myVariable}})}}: Searches the source using the specified
Target Regular Expression and replaces the data with the script variable
{{@decrypt({{myVariable}})}}. The value is the encrypted text string
specified by the Target Regular Expression.

– {{@deobfuscate({{myVariable}})}}: Searches the source using the
specified Target Regular Expression and replaces the data with the script
variable {{@deobfuscate({{myVariable}})}}. The value is the
obfuscated text string specified by the Target Regular Expression.

– {{@encode({{myVariable}})}}: Searches the source using the specified
Target Regular Expression and replaces the data with the script variable
{{@encode({{myVariable}})}}. The value is the text string specified by
the Target Regular Expression.

– {{@encrypt({{myVariable}})}}: Searches the source using the specified
Target Regular Expression and replaces the data with the script variable
{{@encrypt({{myVariable}})}}. The value is the text string specified
by the Target Regular Expression.

– {{@file({{myVariable}})}}: Searches the source using the specified
Target Regular Expression and replaces the data with the script variable
{{@file({{myVariable}})}}. The value is the text string contained in the
file specified by myVariable or a hard coded path such as
{{@file(c:\\OpenScript_Sample.txt)}}.

– {{@getAndIncrement({{myVariable}},delta)}}: Searches the source
using the specified Target Regular Expression and replaces the data with the
script variable {{@getAndIncrement({{myVariable}}, delta)}}. The
value is the numeric value specified by the Target Regular Expression. delta
is the amount to increment the value by each time.

– {{@hostip}}: Searches the source using the specified Target Regular
Expression and replaces the data with the script variable {{@hostip}}. The
value is the host IP address.

– {{@hostname}}: Searches the source using the specified Target Regular
Expression and replaces the data with the script variable {{@hostname}}.
The value is the host name.

Navigation Editing (Correlation)

Using the HTTP Module 6-7

– {{@iterationnum}}: Searches the source using the specified Target Regular
Expression and replaces the data with the script variable
{{@iterationnum}}. The value is the script playback iteration number.

– {{@jstr({{myVariable}})}}: Searches the source using the specified
Target Regular Expression and replaces the data with the script variable
{{@jstr({{myVariable}})}}. The value is a serialized Java string that
specifies a Hexadecimal length value followed by the string contained in
myVariable in the format \00\09var_value.

– {{@len({{myVariable}})}}: Searches the source using the specified
Target Regular Expression and replaces the data with the script variable
{{@len({{myVariable}})}}. The value is the length of the string
contained in myVariable.

– {{@obfuscate({{myVariable}})}}: Searches the source using the
specified Target Regular Expression and replaces the data with the script
variable {{@obfuscate({{myVariable}})}}. The value is the text string
specified by the Target Regular Expression.

– {{@random(max)}}: Searches the source using the specified Target Regular
Expression and replaces the data with the script variable
{{@random(max)}}. The value is the numeric value specified by the Target
Regular Expression. The default minimum value is 0. max is the maximum
value limit for the random number. The generated random number is a
uniformly distributed pseudorandom integer value between 0 (inclusive) and
max value (exclusive), drawn from this random number generator's sequence.
For example, {{@random(2)}} will return a number between 0 (inclusive)
and 2 (exclusive). The random value is an integer from the formula
randomValue = min + m_random.nextInt(max - min), where m_
random.nextInt uses the java.util.Random.nextInt method.

– {{@random(min,max)}}: Searches the source using the specified Target
Regular Expression and replaces the data with the script variable
{{@random(min, max)}}. The value is the numeric value specified by the
Target Regular Expression. min is the minimum value limit for the random
number. max is the maximum value limit for the random number. The
generated random number is a uniformly distributed pseudorandom integer
value between min value (inclusive) and max value (exclusive), drawn from
this random number generator's sequence. For example, {{@random(1,4)}}
will return a number between 1 (inclusive) and 4 (exclusive). The random
value is an integer from the formula randomValue = min + m_
random.nextInt(max - min), where m_random.nextInt uses the
java.util.Random.nextInt method.

– {{@sessionname}}: Searches the source using the specified Target Regular
Expression and replaces the data with the script variable
{{@sessionname}}. The value is the script playback session number.

Note: For @jstr, @file, and @len functions, myVariable is an
OpenScript script variable defined using the http.solve or
http.solveXpath methods. The variable name must be enclosed in
double {{ }} braces within the function parenthesis. For example:

{{@len({{myVariable}})}}

Navigation Editing (Correlation)

6-8 Oracle Functional Testing OpenScript User's Guide

– {{@timestamp}}: Searches the source using the specified Target Regular
Expression and replaces the data with the script variable {{@timestamp}}.
The timestamp value is the difference, measured in milliseconds, between the
current time and Midnight, January 1, 1970 UTC.

– {{@timestampsecs}}: Searches the source using the specified Target
Regular Expression and replaces the data with the script variable
{{@timestampsecs}}. The value is the current timestamp in seconds
instead of milliseconds.

– {{@today(MM/dd/yyyy)}}: Searches the source using the specified Target
Regular Expression and replaces the data with the script variable
{{@today(MM/dd/yyyy)}}. The value is the current date in
month/day/year format.

– {{@topLevelStepName}}: Searches the source using the specified Target
Regular Expression and replaces the data with the script variable
{{@topLevelStepName}}. The value is the top level step group name.

– {{@urlEncode({{myVariable}})}}: Searches the source using the
specified Target Regular Expression and replaces the data with the script
variable {{@urlEncode({{myVariable}})}}. The value is the text string
specified by the Target Regular Expression. For example, the string, 'the file
"abc" is in \root\etc', would be encoded as:
the+file+%22abc%22+is+in+%5Croot%5Cetc.

– {{@vuid}}: Searches the source using the specified Target Regular
Expression and replaces the data with the script variable {{@vuid}}. The
value is the virtual user ID specified by the Target Regular Expression.

– {{@xmlDecode({{myVariable}})}}: Searches the source using the
specified Target Regular Expression and replaces the data with the script
variable {{@xmlDecode({{myVariable}})}}. The value is the encoded
text string specified by the Target Regular Expression.

– {{@xmlEncode({{myVariable}})}}: Searches the source using the
specified Target Regular Expression and replaces the data with the script
variable {{@xmlEncode({{myVariable}})}}. The value is the text string
specified by the Target Regular Expression.

Target: Specifies which referer header object(s) to use as the target location of the
transform.

■ Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

■ Replace specified location: When selected, the correlation rule applies only to the
object matching the Location criteria.

■ Location: Specifies the web page object(s)/parameter(s) to which to apply the
correlation rule using a Regular Expression. (See Variable Substitution Rules below
for examples.)

6.2.3.7 Java Session id
When Java Session id is selected, the Source and Target show the following options:

Source: Specifies the attributes to use as the substitute for Java Session ID.

■ Variable Name: Specifies the name of the variable to use as the substitute for
dynamic data.

Navigation Editing (Correlation)

Using the HTTP Module 6-9

■ Pattern: Specifies the Regular Expression to use to locate the dynamic data to
replace. This rule searches the raw HTML for the Java Sesion ID Regular
Expression pattern jsessionid=(.+?)(?:"|&) and replaces it with the
variable name http.jsessionid.

■ Result Index: Specifies a 0-based index value defining the specific result to
retrieve if the Pattern returns multiple results.

■ Error Message: Specifies an error message to report if the source data is not found
on playback.

■ Source: Specifies where to search for the dynamic data to replace: HTML Display
Contents, Raw HTML or Response Header.

■ Encoding: Specifies if encoding should be used for the search and the type.

Target: Specifies which object(s) to use as the target location of the transform.

■ Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

■ Replace specified location: When selected, the correlation rule applies only to the
object matching the Location criteria.

■ Location: Specifies the web page object(s)/parameter(s) to which to apply the
correlation rule using a Regular Expression. (See Variable Substitution Rules below
for examples.)

6.2.3.8 Substitute Recorded Date
When Substitute Recorded Date is selected, the Source and Target show the following
options:

Source: Specifies the attribute to use as the substitute for dynamic data.

■ Attribute Name: for internal use only and should only be set to "value" (without
quotations).

■ Date Pattern: Specifies the date pattern in the form M/dd/yyyy. The Date Pattern
follows standard Java Date format string conventions. When correlating scripts,
the time that the navigation was recorded is converted to a date using the
specified Date Pattern. If the current date is found in a request, it is replaced with:
{{@today(date_pattern)}}.

Target: Specifies which which document object(s) to use as the target location of the
transform.

■ Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

■ Replace specified location: When selected, the correlation rule applies only to the
object matching the Location criteria.

■ Location: Specifies the referer header parameter(s) to which to apply the
correlation rule using a Regular Expression. (See Variable Substitution Rules below
for examples.)

6.2.3.9 Title Verification
When Title Verification is selected, the Source and Target show the following options:

Source: Specifies the type of title verification test to add to each page. When Verify
only, never fail is selected, the title verification test is a verify only, never fail title
verification test reporting a warning if a test fails. When Verify only, never fail is

Navigation Editing (Correlation)

6-10 Oracle Functional Testing OpenScript User's Guide

cleared, the title verification test is a title verification test reporting a failure if a test
fails.

Target: Specifies which document object(s) to use as the target location of the
transform.

■ Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

■ Replace specified location: When selected, the correlation rule applies only to the
object matching the Location criteria.

■ Location: Specifies the referer header parameter(s) to which to apply the
correlation rule using a Regular Expression. (See Variable Substitution Rules below
for examples.)

6.2.3.10 Variable Substitution Rules
When Variable Substitution Rules is selected, the Source and Target show the
following options:

Source: Specifies the attribute to use as the substitute for dynamic data.

■ Variable Name: Specifies the name of the variable to use as the substitute for
dynamic data.

■ Pattern: Specifies the Regular Expression to use to locate the dynamic data to
replace.

■ Error Message: Specifies an error message to report if the source data is not found
on playback.

■ Source: Specifies where to search for the dynamic data to replace: HTML Display
Contents, Raw HTML or Response Header.

■ Encoding: Specifies if encoding should be used for the search and the type.

Target: Specifies which referer header object(s) to use as the target location of the
transform.

■ Replace all locations: When selected, the correlation rule applies to any object
matching the source criteria.

■ Replace specified location: When selected, the correlation rule applies only to the
object matching the Location criteria.

■ Location: Specifies the web page object(s)/parameter(s) to which to apply the
correlation rule using a Regular Expression. Specify a regular expression to narrow
down which part of a target request may be replaced with the correlated variable.
All or part of a url, query string, and/or postdata may be substituted. Use
((.+?)) to indicate where the variable should be substituted.

– The expression may be used to substitute a variable into a specific
name=value pair. For example, to substitute the session ID in this post data:
Post Data: sessionId=123456&color=blue.

Specify the following expression: sessionId=((.+?)).

Using the above expression, if the correlation rule's variable is found on a page
and its value matches "123456", then the post data will become:
sessionId={{correlationRuleVariableName,123456}}&color=blu
e.

– If the name=value pair appears URL-encoded in the post data or query string,
do NOT URL-encode the expression. For example, to substitute the

Recording Scripts

Using the HTTP Module 6-11

"file/folder" parameter in this post data: Post Data:
file%2Ffolder=folderXYZ%2FfileABC&session=ABC%2FDEF.

Specify the following expression: file/folder=((.+?)).

– If substituting a variable into a non-URL-encoded postdata or querystring, do
not URL-encode the expression. For example, to substitute the "id" value of the
following unencoded XML post data: Post Data: <xml><session
id="12345"/></xml>.

Specify the following expression: <session id="((.+?))"/>.

Using the above expression, if the correlation rule's variable is found on a page
and its value matches "12345", then the entire post data will become:
<xml><session
id="{{correlationRuleVariableName,12345}}"/></xml> .

– If substituting a variable into a range of URL-encoded Name=Value pairs, then
URL-encode the expression. For example, to replace all but the first parameter
of the following URL-encoded query string data with one value: Query String:
file=root%2Fdata.txt&sessionId=123%2Fxyz&color=blue.

Specify the following expression: file=root%2Fdata.txt((.+?)).

Using the above expression, if the correlation rule's variable is found on a page
and its value matches "&sessionId=123%2Fxyz&color=blue", then the
entire query string will become:

file=root%2Fdata.txt{{correlationRuleVariableName,&session
Id=123%2Fxyz&color=blue}}

6.3 Recording Scripts
The OpenScript HTTP Module records parameters defined by each page of the Web
application to a script which can then be played back, with parameters in the Web
page filled in with values from a Databank file.

The HTTP Module records HTTP protocol requests generated by a Web browser for
playback automation. The HTTP Recorder records Web browser events for playback
correlation which allows users to correlate dynamic HTTP requests based on
knowledge of the GUI events which generated the navigation (i.e. dynamic GET
request originated from click on link "x").The HTTP Module provides a Record toolbar
button that allows users to initiate the HTTP proxy recorder and captures Web page
navigations to the script view. The toolbar includes start and stop recording toolbar
buttons.

6.3.1 Setting HTTP Record Preferences
Before recording HTTP scripts, first set the HTTP record preferences.

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node, then expand the Record category.

4. Select HTTP.

5. Click the tabs and set the preferences. See Section 2.5.2, "HTTP Preferences" for
descriptions of the Record Preferences settings.

6. Click OK when finished.

Playing Back Scripts

6-12 Oracle Functional Testing OpenScript User's Guide

6.3.2 Recording a New HTTP Script
To create a new HTTP script, you essentially record the script.

1. Start OpenScript.

2. Set the HTTP Recording preferences if you haven’t already.

3. Select New from the File menu.

4. Expand the Load Testing (Protocol Automation) node and select Web/HTTP.

5. Click Next.

6. Select the Repository and Workspace.

7. Enter a script name.

8. Click Finish. A new Script tree is created in the Script View.

9. Select Record from the Script menu or click the arrow on the Record toolbar
button and select Proxy Recorder.

10. If you set the Always launch a new browser option in the HTTP Record
preferences, the browser automatically opens when you start recording with the
HTTP Proxy recorder. If you did not set the Always launch a new browser option,
you will have to open a browser manually.

11. Load the web page where you want to start recording into the browser.

12. Navigate the web site to record page navigations. The page navigations will be
added to the node of the script tree specified by the Set Record Section setting
(the Run node is the default).

13. When finished navigating pages, stop the script by selecting Stop from the Script
menu or clicking the Stop button on the OpenScript toolbar.

14. If you set the Close browser option in the HTTP Record preferences, the browser
automatically closes when you stop recording. If you did not set the Close
browser option, you will have to close the browser manually.

15. Expand the nodes of the script to view the page navigation nodes in the script tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

Note: Do not close the script editor view or script project while recording or
playing back scripts. Doing so could result in unpredictable behavior in the
OpenScript application.

6.4 Playing Back Scripts
Once HTTP scripts have been recorded, you can play them back to validate
functionality. Playback runs interactively in the OpenScript user interface and is also
supported in the Oracle Load Testing.

The HTTP Module provides playback and iterate toolbar buttons that allows users to
start the HTTP script playback for either a single playback through the script, or run
through multiple iterations using data from a databank file. Playback results for HTTP
scripts can be viewed in the Results and Console views.

6.4.1 Setting HTTP Playback Preferences
Before playing back scripts, you should set the playback preferences.

Playing Back Scripts

Using the HTTP Module 6-13

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node, then select the Playback category.

4. Select HTTP.

5. Expand the groups and set the preferences. See Section 2.4.5, "HTTP Preferences"
for descriptions of the Playback Preferences settings.

6. Click OK when finished.

6.4.2 Playing Back HTTP Scripts
Once an HTTP script has been recorded, you can play it back.

1. Start OpenScript.

2. Open the HTTP script to play back.

3. Select Playback from the Script menu or click the toolbar button.

4. You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

See"Viewing Script Playback Results" on page 6-13 for more information.

6.4.3 Playing Back HTTP Scripts With Iterations
OpenScript allows repetitive playback of navigations in a script. The iterations can be
performed with or without databanks.

1. Start OpenScript.

2. Open the HTTP script to play back.

3. Configure the script to use a databank as described in Section 4.2.1, "Configuring
Databanks".

4. Select Iterate from the Script menu or click the toolbar button.

5. Select Use Databanks.

6. Select which databank file to specify the settings for if more than one database is
configured for the script.

7. Specify the settings for the databank file.

8. Select the Run no more than [] iterations option and set the iteration count to the
desired number of playback iterations. See Section 4.2.4, "Playing Back Scripts
With Iterations" for additional information about iteration settings.

9. Click OK.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

6.4.4 Viewing Script Playback Results
To view HTTP script play back results:

1. Start OpenScript.

2. Open the HTTP script to play back.

3. Select Playback from the Script menu or click the toolbar button.

Playing Back Scripts

6-14 Oracle Functional Testing OpenScript User's Guide

4. When playback is finished, click the Results view. If necessary, select Results from
the View menu to open the Results View.

5. In the Name column, expand the results nodes to view the results.

6. Select script result nodes in the Results View to view specific navigation results in
the Details View. If necessary, select Details from the View menu to open the
Details View.

The Details View includes tabs for viewing the browser rendered content, HTML
source, request and response headers, and a comparison tab for comparing
playback details for content, request and response headers, cookies, and resources.

7. Click the top level script result in the Results View to view the Results Report in
the Details view. You can view the report and export an HTML file of the report.

6.4.5 Resetting Encoding
The Reset Encoding menu option changes the character set used when displaying the
recorded HTML. Use this option to reset the encoding for non-English web sites where
the correct character encoding may not be set automatically.

To reset encoding:

1. Start OpenScript.

2. Open the HTTP script.

3. Expand the HTTP script and select a navigation node.

4. Right-click on the navigation node and select Reset Encoding from the shortcut
menu.

5. Enter the encoding value for the recorded HTML page and click OK.

6.4.6 Comparing Recorded/Playback Results
To compare HTTP script play back results with the recorded navigations:

1. Start OpenScript.

2. Switch to the Tester Perspective and make sure the Details View is open. If not,
select Details from the View menu to open the Details View.

3. Open the HTTP script to play back.

4. Select Playback from the Script menu or click the toolbar button.

5. When playback is finished, view the results. If necessary, select Results from the
View menu to open the Results View.

6. In the Name column, expand the results node to view the results.

7. In the Name column, click a navigation node for a page.

8. In the Detail View, click the Comparison tab.

9. In the Comparison tab, select Content, Request Headers or Response Headers to
view the Recorded and Playback text to compare in the lower panes.

6.4.7 Playing Back HTTP Scripts In Oracle Load Testing
Once recorded, you can play back HTTP scripts in Oracle Load Testing.

If OpenScript and Oracle Load Testing are on the same machine:

Playing Back Scripts

Using the HTTP Module 6-15

1. Start Oracle Load Testing.

2. Select the Repository and Workspace where the OpenScript scripts are located.

3. Select the script to play back.

4. Set the User Mode to Java Client.

5. Configure the scenario parameters as required for the test.

6. Run the scenario in the Autopilot mode.

If OpenScript and Oracle Load Testing are on the different machines:

1. Select Export Script from the File menu.

2. Select the additional files to export to a Zip file and click OK.

3. Copy the exported Zip file to the Oracle Load Testing machine.

4. Start Oracle Load Testing.

5. Select Upload File from the Tools menu.

6. Select OpenScript Zip as the file type.

7. Enter the name and location of the exported OpenScript Zip file.

8. Select the Repository and Workspace where the OpenScript scripts is to be
uploaded.

9. Click Upload to upload the file.

10. In the Build Scenarios tab, select the script to play back.

11. Set the User Mode to Java Client.

12. Configure the scenario parameters as required for the test.

13. Run the scenario in the Autopilot.

Note: Any external files, such as databanks files, must available to Oracle Load Testing
(i.e. located in the path in specified in script file).

6.4.8 Posting Binary or XML File Data
To post Binary or XML File Data:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-12.

2. Open the Java Code view.

3. Use the following code to specify a binary data variable and the
http.navigate() method to post the data:

byte[] data =
oracle.oats.utilities.FileUtil.readBytesFromFile("c:\\image.jpg");
http.navigate(0, "http://www.mysite.com/", null, data, null, true);

The same solution works for an XML file:

byte[] data = oracle.oats.utilities.FileUtil.readBytesFromFile("c:\\file.xml");
http.navigate(0, "http://www.mysite.com/", null, data, null, true);

If you want to store your binary or XML file inside the script itself:

1. Switch to the Developer perspective.

Modifying Scripts

6-16 Oracle Functional Testing OpenScript User's Guide

2. In the Navigator View, create a folder in the script project called "resources".

3. Add your jpg or XML file into the new "resources" folder.

4. Change the first line of the above code sample to this:

byte[] data =
getScriptPackage().getResourceFile("resources/yourfile.jpg").getData();

By storing the file locally with the script, the file will always be available to the
agent, even if it is run on a remote agent machine through Oracle Load Testing.

6.5 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

6.5.1 Understanding the HTTP Module Script View
The default display for an HTTP proxy recorded script is the Tree View GUI in the
Script View. The HTTP Recorder generates the Tree View and code based upon the
Step Group preferences set in OpenScript. The default Step Group settings will
generate Step Groups based upon page navigations in the HTTP web application.

Figure 6–1 Script Tree View

Below each navigation will be child nodes for additional information about a page
navigation, such as query strings and form action inputs. The right-click shortcut
menu includes additional script modification options specific to the script generated
using the HTTP Module.The Tree View is a graphical representation of the underlying
code in the Code View. For example, "Page [4] Ticker List" in the above Tree View
appears as Step Group and http.get method code in the Code View, as follows
(line breaks and spacing added for clarity):

Modifying Scripts

Using the HTTP Module 6-17

beginStep("[4] Ticker List", 3422);
{
 http.get(6, "http://testserver2/fmstocks/{{LINK_1_3,TickerList.asp}}",
 http.querystring(http.param("ticker", "ter"),
 http.param("company", "")),
 null, true, "ASCII", "ASCII");
}
endStep();

Changes made in the Tree View are automatically updated in the Code View. Changes
made in the Code View are automatically updated in the Tree View. The HTTP Module
includes an API with HTTP protocol-specific methods. The commands include (but are
not limited to) methods to generate GET requests, POST requests, correlation
substitutions, validation, etc.

6.5.2 Using Script Variables
OpenScript scripts use variables to pass dynamic data between navigations. The
navigation can be in step groups or another code sequence. You can use the Tree view
and Script menu options to add custom variables to a script or code them manually
using the Code view. The HTTP Proxy recorder also defines variables when recording.
The following example shows how the HTTP Proxy recorder's default settings record
Step Groups, navigations and variables for form inputs and links.

The script is a three page script. the first page is a login page. The second page is the
page returned after login which includes links to other pages. The page in the script is
the page returned by a click on a link.

Step Group 1 (beginStep("[1] Stocks", 0);) gets the page navigation and form
input parameters. The http.solveXpath method assigns the input values to script
variables using XPaths (for example, ".//INPUT[@name='login']/@value") to
find the input value in the page source.

beginStep("[1] Stocks", 0);
{
 http.get(2, "http://testserver2/fmstocks/", null, null, true, "ASCII", "ASCII");
 {
 http.solveXpath("FORMACTION_0", ".//FORM[@name='loginform']/@action",
 "default.asp", 0);
 http.solveXpath("INPUT_0", ".//INPUT[@name='login']/@value", "ta496", 0);
 http.solveXpath("INPUT_1", ".//INPUT[@name='password']/@value", "ta", 0);
 http.solveXpath("INPUT_2", ".//INPUT[@name='LoginButton']/@value", "Login", 0);
 }
}
endStep();
beginStep("[2] Home", 3246);
{
 http.post(4, "http://testserver2/fmstocks/{{FORMACTION_0,default.asp}}",
 null, http.postdata(http.param("login", "{{INPUT_0,ta496}}"),
 http.param("password", "{{INPUT_1,ta}}"),
 http.param("LoginButton", "{{INPUT_2,Login}}")),
 null, true, "ASCII", "ASCII");
 {
 http.solveXpath("LINK_1_3", ".//A[text()='research a company']/@href",
 "TickerList.asp", 0);
 }
}
endStep();
beginStep("[3] Ticker List", 1703);
{

Modifying Scripts

6-18 Oracle Functional Testing OpenScript User's Guide

 http.get(13, "http://testserver2/fmstocks/{{LINK_1_3,TickerList.asp}}", null,
 null, true, "ASCII", "ASCII");
}
endStep();

In step Group 2 (beginStep("[2] Home", 3264);), the page navigation uses the
variables defined in Step Group 1 to pass the data values as parameters to the
http.post method. The he http.solveXpath method assigns links HREF values
to variables using XPaths.

beginStep("[1] Stocks", 0);
{
 http.get(2, "http://testserver2/fmstocks/", null, null, true, "ASCII",
 "ASCII");
 {
 http.solveXpath("FORMACTION_0", ".//FORM[@name='loginform']/@action",
 "default.asp", 0);
 http.solveXpath("INPUT_0", ".//INPUT[@name='login']/@value", "ta496", 0);
 http.solveXpath("INPUT_1", ".//INPUT[@name='password']/@value", "ta", 0);
 http.solveXpath("INPUT_2", ".//INPUT[@name='LoginButton']/@value",
 "Login", 0);
 }
}
endStep();
beginStep("[2] Home", 3246);
{
 http.post(4, "http://testserver2/fmstocks/{{FORMACTION_0,default.asp}}",
 null, http.postdata(http.param("login", "{{INPUT_0,ta496}}"),
 http.param("password", "{{INPUT_1,ta}}"),
 http.param("LoginButton", "{{INPUT_2,Login}}")),
 null, true, "ASCII", "ASCII");
 {
 http.solveXpath("LINK_1_3", ".//A[text()='research a company']/@href",
 "TickerList.asp", 0);
 }
}
endStep();
beginStep("[3] Ticker List", 1703);
{
 http.get(13, "http://testserver2/fmstocks/{{LINK_1_3,TickerList.asp}}",
 null, null, true, "ASCII", "ASCII");
}
endStep();

In Step Group 3 (beginStep("[3] Ticker List", 1703);), the page navigation
uses a variable defined in Step Group 2 to pass the data values as parameters to the
http.get method.

beginStep("[1] Stocks", 0);
{
 http.get(2, "http://testserver2/fmstocks/", null, null, true, "ASCII",
 "ASCII");
 {
 http.solveXpath("FORMACTION_0", ".//FORM[@name='loginform']/@action",
 "default.asp", 0);
 http.solveXpath("INPUT_0", ".//INPUT[@name='login']/@value", "ta496", 0);
 http.solveXpath("INPUT_1", ".//INPUT[@name='password']/@value", "ta", 0);
 http.solveXpath("INPUT_2", ".//INPUT[@name='LoginButton']/@value",
 "Login", 0);
 }
}

Modifying Scripts

Using the HTTP Module 6-19

endStep();
beginStep("[2] Home", 3246);
{
 http.post(4, "http://testserver2/fmstocks/{{FORMACTION_0,default.asp}}",
 null, http.postdata(http.param("login", "{{INPUT_0,ta496}}"),
 http.param("password", "{{INPUT_1,ta}}"),
 http.param("LoginButton", "{{INPUT_2,Login}}")),
 null, true, "ASCII", "ASCII");
 {
 http.solveXpath("LINK_1_3", ".//A[text()='research a company']/@href",
 "TickerList.asp", 0);
 }
}
endStep();
beginStep("[3] Ticker List", 1703);
{
 http.get(13, "http://testserver2/fmstocks/{{LINK_1_3,TickerList.asp}}",
 null, null, true, "ASCII", "ASCII");
}
endStep();

6.5.3 Adding a Variable to a Script
The following describes how to add a variable to a script. A regular expression is used
to search a specified location for a value to set for the variable.

1. Open or create a script project.

2. Select the script node in which you want to add the variable.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Variable node and select Set Variable.

5. Enter the variable name.

6. Enter the variable value.

7. Click OK. The Set: variableName = value node is added to the script tree.

8. In the Java Code view, the getVariables().set("varName", "value");
method will be added to the script code.

6.5.4 Adding a Solve XPath to a Script
To add a SolveXpath to a script:

1. Open or create a script project.

2. Select the script node where you want to add the XPath value.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Variable node and select Solve XPath.

5. Enter the variable name.

6. Enter the XPath to use to search for the value for the variable.

7. Enter the Result index value to use for the variable method.

8. Click OK. The SolveXpath: name node is added to the script tree.

9. In the Java Code view, the http.solveXpath(); method will be added to the
script code:

Modifying Scripts

6-20 Oracle Functional Testing OpenScript User's Guide

http.solveXpath("var_MyDomVar", ".//INPUT[@name='login']/@value", "ta610", 0);

Example:
http.solveXpath("FORMACTION_0", ".//FORM[@name='loginform']/@action",
"default.asp", 0);

getLogger().info("Form Name: {{FORMACTION_0}}");

6.5.5 Finding a Variable in a Script
To find a variable in a script:

1. Open or create a script.

2. Right-click on a post data or query string parameter containing {{ }} syntax and
select Find Variable Source.

The variable referenced inside the {{ }} will be selected in the script tree node.

If more than one variable exists inside the given parameter, OpenScript will display a
dialog box from which to pick which variable to find.

6.5.6 Deleting Variables from a Script
Deleting a variable from the tree view causes references to the variable using {{ }}
notation in any string in the script to be reverted to their recorded values. Variable
references in the Java code are also reverted.

To delete a variable from a script:

1. Open or create a script.

2. Right-click on a post data or query string parameter containing {{ }} syntax and
select Delete.

The variable referenced inside the {{ }} syntax will be reverted to its recorded value.

To delete similar variables from a script:

1. Open or create a script.

2. Right-click on a post data or query string parameter containing {{ }} syntax and
select Delete all type_ Variables. This menu option appears for any variables
whose name is prefixed with a word followed by an underscore (_) character.

All variables of type_ referenced inside the {{ }} syntax will be reverted to their
recorded values.

6.5.7 Adding Authentication to a Script
Scripts can support Basic, NTLM, and Digest authentication. To add authentication to
an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-12.

2. Select the Run node.

3. Select the Script menu and then select Other from the Add sub menu.

4. Select the Authentication node and click OK.

5. Enter the URL to access for authentication.

6. Enter a username.

Modifying Scripts

Using the HTTP Module 6-21

7. Enter the password for the user. Passwords are encrypted using the Base-64 Crypt
algorithm.

8. Click OK to add the Authentication node to the script tree.

9. In the Java Code view, the Authentication consists of the code executed in the
http.addAuthentication procedure:

http.addAuthentication("http://testserver2", "username",
decrypt("KRT|J|xJPDP"));

6.5.8 Adding Text Matching Tests to a Script
You can use Text Matching Tests to report an error and/or abort the script if a single
HTTP request does not match the Text Matching Test criteria.

To add a Text Matching Test to an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-12.

2. Expand the Run node.

3. Select the HTTP navigation node where you want to add the Text Matching test.

4. Select the Script menu and then select Text Matching Test from the Add menu.

5. Enter a name for the test.

6. Enter the text string or Regular Expression to match or click the Substitute Variable
icon to select a databank or script variable to find in the source.

7. Select the source location that will be searched for the matching text:

■ HTML Display Contents: Search the browser rendered text of the page.

■ Raw HTML: Search HTML source of the page.

■ Response Header: Search the page Response Header.

8. Select the Pass when setting.

■ Selected text is present: The test case passes if the Text to Match string is
found in the selected source.

■ Selected text is absent: The test case passes if the Text to Match string is not
found in the selected source.

9. Select the Match type.

■ Exact: Matches the Text to Match string exactly.

■ Regular Expression: Matches using the Regular Expression specified in Text
to Match.

■ Wildcard: Matches using the wildcard characters specified in Text to Match.

10. Set the Verify only, never fail option.

Note: The pound (#) character and double brace ({{ and }})
character sequences need to be escaped with a preceding pound (#)
character if used in the Text Matching Test as a literal string (not a
string specifying an OpenScript databank or script variable). For
example, the pound character should be doubled (##) and double
braces should be preceded by a pound character (#{{ and #}}).

Modifying Scripts

6-22 Oracle Functional Testing OpenScript User's Guide

11. Click OK. The Text Matching Test node is added to the script tree.

In the Java Code view, the http.assertText method will be added to the script
code if the Verify only, never fail option is not selected:

http.assertText("MyTextMatchTest", "Home", TextPresence.PassIfPresent,
MatchOption.Exact)

In the Java Code view, the http.verifyTextmethod will be added to the script
code if the Verify only, never fail option is selected:

http.verifyText("MyTextMatchTest", "Home", TextPresence.PassIfPresent,
MatchOption.Exact)

6.5.9 Adding Server Response Tests to a Script
You can use Server Response Tests to report an error and/or abort the script if a single
HTTP request does not return back to the client within a specified time range.

To add a Server Response Test to an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-12.

2. Expand the Run node.

3. Select the HTTP navigation node where you want to add the Server Response test.

4. Select the Script menu and then select Other from the Add sub menu.

5. Select Server Response Test from the Validation group.

6. Enter a name for the test.

7. Enter the minimum and maximum time values.

8. Enter any error message text to log if the test fails.

9. Set the Stop Iteration on Failure option.

10. Click OK to add the Server Response node to the script tree.

6.5.10 Substituting Databank Variables
During playback, the parameters in the Web page are filled with values from the
Databank file. However, you can substitute a databank variable for a query string
parameter in an HTTP script.

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-12 that has query string parameters.

2. Expand the Run node.

3. Expand the node containing query string parameters.

4. Right-click a query string parameter node and select Substitute Variable from the
shortcut menu.

■ If you have already configured the script with one or more databanks, select
the databank field to substitute for the query string parameter from the
desired databank file and click Finish.

■ If you have not already configured the script with a databank, select Add new
databank and click Next.

– Click the Browse button and select the databank file to use.

Modifying Scripts

Using the HTTP Module 6-23

– Select the column (field name) to substitute for the query string parameter
and click Finish.

In the Tree View, the databank variable appears in place of the recorded value as
{{databankFileName.field,recordedValue}}.

In the Java Code view, the databank variable appears as
{{databankFileName.field,recordedValue}} in the
http.querystring(http.param() parameter of the http.get method for scripts
recorded using the HTTP record mode:

http.get(6, "http://testserver2/fmstocks/TickerList.asp",
http.querystring(http.param("ticker", "{{db.fmstocks_data.ticker,orcl}}"),
http.param("company", "")),
null, true, "ASCII", "ASCII");

Or in the http.postdata(http.param() parameter of the
http.form().submit() method for scripts recorded using the Web record mode:

http.form(27,"window[@index='0']//form[@action='{{web.link.researchacompany
,http://testserver2/fmstocks/TickerList.asp}}']")
.submit(http.querystring(http.param("ticker",
"{{db.fmstocks_data.ticker,orcl}}")), null, null, true, null, null, null,
null, null);

6.5.11 Substituting Post Data Variables
To substitute a variable for a Post Data parameter in an HTTP script:

1. Record an HTTP script that has Post Data parameters.

2. Expand the Run node.

3. Expand the node containing Post Data parameters.

4. Right-click a Post Data parameter node and select Substitute Variable from the
shortcut menu.

■ If you have already defined custom variables in the script, select the variable
name to substitute for the Post Data parameter and click Finish.

■ If you have not already defined custom variables in the script, select Create
new script variable and click Next.

The Search for Value panel lists the navigation(s) that contain the post data
value. If there are more than one navigation that contain the post data value,
select the navigation were you want to substitute a variable. When you select a
navigation, the data for that navigation appears below with the specific source
highlighted along with a suggested Regular Expression.

– Specify the Regular Expression to use for the substitute variable for the
Post Data parameter and click Next.

– Click Test to verify the Regular Expression locates the correct data value to
substitute.

– If the Regular Expression locates the correct data value to substitute, click
Next to continue. If the Regular Expression does not return the correct
data value, modify and test the Regular Expression until the desired data
value is located and click Next to continue.

– Enter a name for the substitute variable.

Modifying Scripts

6-24 Oracle Functional Testing OpenScript User's Guide

– If you want to add the variable as a variable rule in a correlation library,
click Add to library and specify the rule information. If not, click Finish to
insert the substitute script variable into the script

In the Tree View, the script variable appears in place of the recorded value as
{{variableName,recordedValue}}.

In the Java Code view, the script variable appears as variableName,Regular
Expression parameters in the http.solve method:

http.solve("MY_VAR", "<INPUT id=login name=login value=\"(.+?)\">", null,
false, Source.Html, 0);

6.5.12 Adding a Cookie to a Script
To add a cookie to a script:

1. Open or create a script project.

2. Select the script node where you want to add the cookie.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Cookie node and select Add Cookie.

This dialog box lets you add a cookie to a script.

5. Enter a valid cookie string.

■ Cookie String: Specifies the cookie string to add

■ Cookie String Charset: Specifies the character set to use for the cookie string

6. Click OK. The Cookie node is added to the script tree.

7. In the Java Code view, the http.addCookie method will be added to the script
code:

http.addCookie("cookieString", "charset");

Example:

http.addCookie("username=testCookie", "ASCII");
java.util.List <Cookie> cookies =
http.getBrowser().getCookieJar().getAllCookies();
for (Cookie cookie : cookies) {
 info(cookie.getUrl());
 info(cookie.getCookieString());
 }

6.5.13 Removing a Cookie From Script
To remove a cookie from a script:

1. Open or create a script project.

2. Select the script node where you want to place the remove cookie node.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Cookie node and select Remove Cookie.

5. Enter the cookie string to remove.

6. Click OK. The Remove Cookie node is added to the script tree.

Adding Navigation

Using the HTTP Module 6-25

7. In the Java Code view, the http.removeCookie method will be added to the
script code:

http.removeCookie("cookieString");

6.5.14 Adding a User Agent to a Script
To add a user agent to a script:

1. Open or create a script project.

2. Select the script node where you want to add the user agent.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the HTTP node and select Set User Agent.

5. Enter the user agent details.

6. Click OK. The user agent node is added to the script tree.

7. In the Java Code view, the http.setUserAgent("agent"); method will be
added to the script code:

http.setUserAgent("Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET
CLR 1.1.4322; InfoPath.1; .NET CLR 2.0.50727)");

6.6 Adding Navigation
The HTTP Module allows you to view and edit all recorded navigations and related
parameters (headers, post data, etc.) in either the script GUI Tree view or the Code
View. It also enables you to view and edit any default correlation/parameterization of
dynamic navigations and apply your own correlation to handle dynamic navigations.

6.6.1 Understanding Navigation Editing (Correlation)
You can use the Navigation Editing GUI View to configure the navigations you want
to parameterize and the correlation rules you want to apply. The GUI allows viewing
and editing properties for different types of navigations (for both Web/HTTP
applications and non-Web/HTTP applications) and data inputs.

The Display & Editing for Recorded Navigations view includes recorded navigations
and any navigation parameters like headers, etc. It also provides a mechanism for
users to edit/add/delete navigations including dynamic parameter sources/targets.

Adding Navigation

6-26 Oracle Functional Testing OpenScript User's Guide

Figure 6–2 Display & Editing for Recorded Navigations view

The Display & Editing for Correlation Rules Library & Editing view includes a list of
all default correlation rules included in the module(s), listed by application type. It
also provides a mechanism for adding, editing or deleting correlation rules.

Adding Navigation

Using the HTTP Module 6-27

Figure 6–3 The Display & Editing for Correlation Rules Library & Editing view

You can specify the navigations you want to parameterize and the data source you
want to drive the inputs from through navigation editing commands in the code view.
These commands map to the navigation editing GUI view.

beginStep("[2] Home", 3266);
{
 http.post(4, "http://testserver2/fmstocks/{{FORMACTION_0,default.asp}}",
 null, http.postdata(http.param("login", "{{INPUT_0,ta616}}"),
 http.param("password", "{{INPUT_1,ta}}"),
 http.param("LoginButton", "{{INPUT_2,Login}}")),
 null, true, "ASCII", "ASCII");
 {
 http.solveXpath("LINK_1_3", ".//A[text()='research a
 company']/@href", "TickerList.asp", 0);
 http.solveXpath("LINK_1_2", ".//A[text()='Logout']/@href",
 "logout.asp", 0);
 }
}
endStep();

Adding Navigation

6-28 Oracle Functional Testing OpenScript User's Guide

6.6.2 Adding HTTP Get Navigation
To add an HTTP Get Navigation to an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-12.

2. Select the Run node.

3. Select the Script menu, then select HTTP Get Navigation from the Add sub menu.

4. On the Base URL tab, specify the following:

Path: The base URL path to use for the navigation.

Request charset: The character set to use for the request.

Response charset: The character set to use for the response.

Encode strings: When selected, control and special characters in string are
encoded to the Character entity references. When cleared, control and special
characters in string are not encoded.

5. On the Query String tab, use the Add button to add the requested name/value
pairs to the Base URL. Note that you can use the Up and Down buttons to move
the selected query string parameter up or down one place in the search order.

6. On the Headers tab, use the Add button to add name/value pairs and actions to
the Base URL.

7. Click OK to add the HTTP Get Navigation node to the script tree.

8. In the Java Code view, the HTTP Get Navigation consists of the code executed in
the http.Get method (line breaks and spacing added for clarity):

http.Get(1, "http://testserver2",
 http.querystring(http.param("QueryString1", "QueryValue1"),
 http.param("QueryString2", "QueryValue2"),
 http.param("QueryString3", "QueryValue3")),
 http.headers(http.header("HeaderString1", "HeaderValue1NoActions",
 Header.HeaderAction.Add),
 http.header("HeaderString2", "HeaderValue2SetifNotSet",
 Header.HeaderAction.SetIfNotSet),
 http.header("HeaderString3", "HeaderValue3ApplytoAll",
 Header.HeaderAction.GlobalAdd),
 http.header("HeaderString4", "HeaderValue4BothActions",
 Header.HeaderAction.GlobalSetIfNotSet)),
 false, "ASCII", "ASCII");

6.6.3 Adding HTTP Post Navigation
To add an HTTP Post Navigation to an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-12.

2. Select the Run node.

3. Select the Script menu and then select Other from the Add sub menu.

4. Select the HTTP Post Navigation node and click OK.

5. On the Base URL tab, specify the following:

Path: The base URL path to use for the navigation.

Request charset: The character set to use for the request.

Adding Navigation

Using the HTTP Module 6-29

Encode strings: When selected, control and special characters in string are
encoded to the Character entity references. When cleared, control and special
characters in string are not encoded.

6. On the Query String tab, use the Add button to add the requested name/value
pairs to the Base URL. Note that you can use the Up and Down buttons to move
the selected query string parameter up or down one place in the search order.

7. On the Post Data tab, use the Add button to add name/value pairs to the Base
URL.

8. On the Headers tab, use the Add button to add name/value pairs and actions to
the Base URL.

9. Click OK to add the HTTP Post Navigation node to the script tree.

10. In the Java Code view, the HTTP Post Navigation consists of the code executed in
the http.Post method (line breaks and spacing added for clarity):

http.Post(12, "http://testserver2",
 http.querystring(http.param("QueryString1", "QueryValue1"),
 http.param("QueryString2", "QueryValue2"),
 http.param("QueryString3", "QueryValue3")),
 http.postdata(param("PostString1", "PostValue1"),
 http.param("PostString2", "PostValue2"),
 http.param("PostString3", "PostValue3")),
 http.headers(http.header("HeaderString1", "HeaderValue1NoActions",
 Header.HeaderAction.Add),
 http.header("HeaderString2", "HeaderValue2SetifNotSet",
 Header.HeaderAction.SetIfNotSet),
 http.header("HeaderString3", "HeaderValue3ApplytoAll",
 Header.HeaderAction.GlobalAdd),
 http.header("HeaderString4", "HeaderValue4BothActions",
 Header.HeaderAction.GlobalSetIfNotSet)),
 true, "ASCII", "ASCII");

6.6.4 Adding an HTTP Multipart Post Navigation
To add an HTTP Multipart Post Navigation to an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-12.

2. Select the Run node.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the HTTP Multipart Navigation node and select the Multipart Post
Navigation node and click OK.

5. On the Base URL tab, enter the following:

Path: The base URL path to use for the navigation.

Boundary: Specify the boundary to use to identify parts of a multipart form input
navigation (file navigations). The boundary is used within the Content-Type:
multipart/form-data; boundary="" response sent by the user agent. The specified
boundary should not occur in any of the file data.

Request charset: The character set to use for the request.

Response charset: The character set to use for the response.

Adding Navigation

6-30 Oracle Functional Testing OpenScript User's Guide

Encode strings: Select this option so that control and special characters in string
are encoded to the Character entity references. When cleared, control and special
characters in string are not encoded

6. On the Query String tab, use the Add button to add name/value pairs to the Base
URL.

7. On the Post Data tab, use the Add button to add postdata to the Base URL. You
can specify standard Postdata name/value pairs or postdata files. If you select
File, specify the path, filename, and content type for each postdata file parameter.

8. On the Headers tab, use the Add button to add name/value pairs and actions to
the Base URL.

9. Click OK to add the HTTP Multipart Post Navigation node to the script tree.

10. In the Java Code view, the HTTP Multipart Post Navigation consists of the code
executed in the http.multipartPost method (line breaks and spacing added
for clarity):

http.multipartPost(13, "http://testserver2",
 http.querystring(http.param("QueryString1", "QueryValue1"),
 http.param("QueryString2", "QueryValue2"),
 http.param("QueryString3", "QueryValue3")),
 http.postdata(http.param("PostDataString1", "PostDataValue1Standard"),
 http.param("PostDataString2", "PostDataValue2FilePath",
 "PostDataValue2FileName", "ASCII"),
 http.param("PostDataString3",
 "C:\\Oracle\\OFT\\DataBank\\fmstocks_data.csv",
 "C:\\Oracle\\OFT\\DataBank\\fmstocks_data.csv", "CSV")),
 http.headers(http.header("HeaderString1", "HeaderValue1NoActions",
 Header.HeaderAction.Add),
 http.header("HeaderString2", "HeaderValue2IfNotSet",
 Header.HeaderAction.SetIfNotSet),
 http.header("HeaderString3", "HeaderValue3ApplytoAll",
 Header.HeaderAction.GlobalAdd),
 http.header("HeaderString4", "HeaderValue4Both",
 Header.HeaderAction.GlobalSetIfNotSet)),
 "boundary", false, "ASCII", "ASCII");

6.6.5 Adding an HTTP XML Post Navigation
To add an HTTP XML Post Navigation to an HTTP script:

1. Record an HTTP script as described in "Recording a New HTTP Script" on
page 6-12.

2. Select the Run node.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the XML Post Navigation node and select the XML Post Navigation node
and click OK.

5. On the Base URL tab, specify the following:

Path: The base URL path to use for the navigation.

Request charset: The character set to use for the request.

Response charset: The character set to use for the response.

Adding Navigation

Using the HTTP Module 6-31

Encode strings: When selected, control and special characters in string are
encoded to the Character entity references. When cleared, control and special
characters in string are not encoded.

6. On the Query String tab, use the Add button to add the requested name/value
pairs to the Base URL. Note that you can use the Up and Down buttons to move
the selected query string parameter up or down one place in the search order.

7. On the Post Data tab, enter the XML post data to add to the Base URL.

8. On the Headers tab, use the Add button to add name/value pairs and actions to
the Base URL.

9. Click OK to add the HTTP XML Post Navigation node to the script tree.

10. In the Java Code view, the HTTP XML Post Navigation consists of the code
executed in the http.xmlPost method (line breaks and spacing added for
clarity):

http.xmlPost(0, "http://xmltest2",
 http.querystring(http.param("xmlQueryString1", "xmlQueryValue1"),
 http.param("xmlQueryString2", "xmlQueryValue2"),
 http.param("xmlQueryString3", "xmlQueryValue3")),
 "xmlPostDataString",
 http.headers(http.header("xmlHeaderString1", "xmlHeaderValue1NoAction",
 Header.HeaderAction.Add),
 http.header("xmlHeaderString2", "xmlHeaderValue2IfNotSet",
 Header.HeaderAction.SetIfNotSet),
 http.header("xmlHeaderString3",
 "xmlHeaderValue3ApplytoAll", Header.HeaderAction.GlobalAdd),
 http.header("xmlHeaderString4", "xmlHeaderValue4Both",
 Header.HeaderAction.GlobalSetIfNotSet)),
 false, "ASCII", "ASCII");

6.6.6 Using the HTTP Module API
The Web Functional Module includes a script Application Programming Interface
(API) specific to Web HTTP protocol testing. The HTTP Module recorder creates the
Java code that corresponds to the Tree View and displays the HTTP commands in the
Java Code view using easy-to-understand function names. The Java Code view
commands correspond to the Tree View and you can edit your scripts in either view.

You can use the HTTP API to enhance recorded scripts with additional testing
functionality. Commands that are specific to the HTTP Module are part of the "http"
class. You can also leverage other commands from other enabled classes (services) or
general Java commands in your scripts.

Some examples of the HTTP Module API include:

■ Adding authentication

■ Adding and removing cookies

■ Adding HTTP navigation (Get and Post)

■ Adding HTTP Multipart Post navigation

■ Adding HTTP Multipart name/value pairs

■ Adding name/value pairs

■ Adding XML Post navigation

Adding Navigation

6-32 Oracle Functional Testing OpenScript User's Guide

■ Setting the user agent

Many API methods can be added using the HTTP Module Tree View. Additional
methods can be added using the Java Code view. Use Ctrl-space in the Java Code view
to open an Intellisense window listing available procedures and code examples. See
the API Reference in the OpenScript help for additional programming information.

7

Using the Oracle EBS/Forms Functional Test Module 7-1

7Using the Oracle EBS/Forms Functional Test
Module

This chapter provides instructions on configuring and using the OpenScript Oracle
EBS/Forms Functional Test Module, which provides support for functional testing of
Oracle EBS/Forms web applications.

7.1 About the Oracle EBS/Forms Functional Test Module
The Oracle EBS/Forms Functional Test Module provides support for functional testing
of Oracle EBS/Forms web applications. The Oracle EBS/Forms Functional Test
Module is an extension to the Web Functional Test Module.

The Oracle EBS/Forms Functional Test Module is an extension module to the
OpenScript Web Functional Test Module that extends the Web testing with Oracle
EBS/Forms Functional Test recording and playback capabilities. The Oracle
EBS/Forms Functional Test Module is fully integrated with the OpenScript platform
including the Results view, Details view, Properties view, Console/Problems views,
Preferences, Step Groups, Script Manager, and Workspace Manager.

The Oracle EBS/Forms Functional Test recorder displays commands in the Tree View
in easy-to-understand commands. By default, script commands are grouped into Steps
Groups by the Web page on which they were performed. Each Step Group contains
one or more script commands corresponding to recorded actions that were performed
on the page. The default name for the Step Group is the Web page Title (as specified in
the "Title" tag).

OpenScript shows the results of Oracle EBS/Forms Functional Test script playback in
the Results view. The Results view shows results for each script command (including
duration and summary for failures). The Results Report compiles the same
information into an HTML Results Report. Results can be exported from the
OpenScript GUI in standard format (CSV / HTML). Results are also generated for
unattended playback through the command line.

The Oracle EBS/Forms Functional Test Module API includes a "forms" class that
provides additional programming functionality.

7.1.1 Key Features of the Oracle EBS/Forms Functional Test Module
■ Supports Oracle E-Business Suite Release 12 (Forms 10g) running on Sun JRE and

E-Business Suite Release 11i (Forms 6i) running on Jinitiator.

■ Records Forms actions in the applet.

Recording Oracle EBS/Forms Functional Tests

7-2 Oracle Functional Testing OpenScript User's Guide

■ Plays back recorded Forms actions/commands which consist of an event plus
object identified by its attributes (for example: forms.textField(28,
"//forms:textField[(@name='DIST_LIST_NAME_0')]").input("LOREM
IPSUM")).

■ Provides full script code view integration to support script generation for the
Oracle EBS/Forms Functional Test Module. The Oracle EBS/Forms Functional
Test Module includes an additional API to support Oracle EBS/Forms Functional
Test protocol code scripting.

■ Allows users to parameterize user inputs to Oracle EBS/Forms Functional Test
scripts and drive those inputs from an external data file (Databank).

■ Allows users to insert Tests to validate Oracle EBS/Forms content on playback.

■ Provides additional automation of all Oracle EBS/Forms GUI components using
options/settings that are specific to Oracle EBS/Forms Functional Test scripts
within the Oracle EBS/Forms Functional Test categories in the preferences
interface.

■ Reports playback results for Oracle EBS/Forms Functional Test scripts in the
Results and Console views.

■ The Oracle EBS/Forms Functional Test Script Module API. The Oracle EBS/Forms
Functional Test Application Programming Interface include Java code methods
specific to functional testing of Oracle EBS/Forms applications.

The New Project wizard (Select New from the File menu) includes an "Oracle
EBS/Forms " option in the Functional Test group to use when creating Oracle
EBS/Forms functional testing projects in OpenScript. The Oracle EBS/Forms
Functional Test Script Module records Oracle EBS/Forms applications using Object
Identification. OpenScript captures user actions and records them to the OpenScript
script nodes in a highly readable sequence of navigations and actions.

7.1.2 Prerequisites
The Oracle EBS/Forms Functional Test Module recorder has the following
prerequisites:

■ Before recording any script in Forms Functional Test Module, you must run the
Forms/EBS application at least once before attempting to record a script with
OpenScript on that machine. This ensures that required JRE/Jinitiator has been
installed and also verifies that forms applications can run successfully on that
machine inside of Internet Explorer.

7.2 Recording Oracle EBS/Forms Functional Tests
The Oracle EBS/Forms Functional Test Module records standard Oracle EBS/Forms
components for Oracle E-Business Suite Release 12 (Forms 10g) running on Sun JRE
and E-Business Suite Release 11i (Forms 6i). The Recorder creates functional and
regression test scripts for automating testing of Oracle EBS/Forms applications.

Oracle EBS/Forms are applet based controls and the Oracle EBS/Forms Functional
Test Module provides the object/attribute information for OpenScript to record
interactions with those controls. Actions will be captured in the test script as
OpenScript "forms" commands. Other components are standard Web controls which
are captured as standard OpenScript "web" commands using Web Functional Test
object attributes. Object Identification attributes can later be modified by users through
the Preferences global settings for new scripts or for already recorded commands in

Recording Oracle EBS/Forms Functional Tests

Using the Oracle EBS/Forms Functional Test Module 7-3

the tree view or code view. Recording can be configured through Internet Explorer
only as the Oracle EBS/Forms Functional Test Module does not support Firefox.

The Oracle EBS/Forms Functional Test Module provides a record toolbar button that
lets you initiate the Oracle EBS/Forms recorder and capture Web/Oracle EBS/Forms
page actions to the script view. The record toolbar includes start and stop recording
toolbar buttons. OpenScript recorders also open a floating toolbar that can be used
while recording without having to switch between the browser and OpenScript.

7.2.1 Setting Oracle EBS/Forms Functional Test Record Preferences
To set Oracle EBS/Forms Functional Test record preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Record category.

4. Select Oracle EBS/Forms Functional.

5. Click the tabs and set the preferences. See Section 2.5.4, "Oracle EBS/Forms
Functional Test Preferences" for descriptions of the Record Preferences settings.

6. Click OK.

7.2.2 Adding/Editing Object Identifiers
The Oracle EBS/Forms Functional Test Module uses object identification to specify
attributes used to identify Oracle EBS/Forms objects. The Oracle EBS/Forms
Functional Test Module uses the same predefined path attributes for common Web
objects as the Web Functional Test Module; however, Oracle EBS/Forms Test
Automation provides additional attributes to identify forms controls. Object paths are
specified in XPath format. For example the object identification path appears as
follows in Java code commands:

//forms:textField[(@name='DIST_LIST_NAME_0')]

You can set the default Web object attributes in the Oracle EBS/Forms Functional Test
Module Record Preferences. You can also edit object attributes in recorded scripts in
the tree view or the code view.

In addition to the predefined object identification, you can add an Object Library to the
script to record paths into a library file. Object Library files may be shared and reused
across other scripts. The Object Library files provide a more convenient "short name"
for objects to provide for more convenient programming.

The Oracle EBS/Forms Functional Test Module includes object identifiers that specify
how the recorder identifies Browser objects. You can add object identifiers or edit the
existing object identifiers in the Record preferences.

To add or edit an object identifier:

1. Select the OpenScript Preferences from the View menu.

2. Expand the Record node and select Forms Functional Test.

3. Click the Object Identification tab. This tab lets you specify the Oracle
EBS/Forms object identification attributes, as follows:

Active Profile: Specifies which object identification profile to use as the active
profile. Profiles define a specific set of object identifiers to use when recording

Recording Oracle EBS/Forms Functional Tests

7-4 Oracle Functional Testing OpenScript User's Guide

EBS/Forms functional tests. Use the Add Profile option to create a new custom
profile.

Name: Shows the name(s) of the defined Oracle EBS/Forms object identifiers.

Attributes: Shows the pattern(s) specified for the defined Oracle EBS/Forms
object identifiers.

Add Profile: Opens a dialog box for specifying a new Oracle EBS/Forms object
identifier profile.

Add Object: Opens a dialog box for specifying a new Oracle EBS/Forms object
identifier.

Edit: Opens a dialog box for editing the selected Oracle EBS/Forms object
identifier.

Delete: Deletes the selected Oracle Forms object identifier.

Export: Opens a dialog box for exporting the currently selected Forms object
identifier profile to an XML file.

Import: Opens a dialog box for importing a saved object identifier profile XML
file.

Revert: Reverts the default EBS/Forms object identification profile to the default
profile. Any change to the default profile are removed.

For each object element, you specify a name (typically an Oracle Forms object
attribute), an operator, a value and a value type. As you add object elements,
OpenScript builds the object identifier using logical OR between each object
identifier element. Click Edit to change between logical OR and AND.

4. Click Add or select an existing object identifier and click Edit.

5. If adding a new object identifier, enter a name for the object identifier.

6. Add or edit object elements for the object identifier.

See the Web Functional Test Module for additional information about adding and
editing Object Identifiers.

7. Click OK. The object identifier is added to the record preferences.

7.2.3 Recording Oracle EBS/Forms Functional Test Scripts
To record Oracle EBS/Forms Functional Test scripts:

1. Start OpenScript.

2. Set the Oracle EBS/Forms Functional Test Recording preferences.

3. Select New from the File menu.

4. Expand the Functional Testing group.

5. Select Oracle EBS/Forms (The Oracle EBS/Forms script combines both Web and
Oracle EBS/Forms technologies as part of the same script).

6. Click Next.

7. Select the Repository and Workspace.

8. Enter a script name.

9. Click Finish. A new Script tree is created in the Script View.

Playing Back Scripts

Using the Oracle EBS/Forms Functional Test Module 7-5

10. Select Record from the Script menu. The browser automatically opens when you
start recording.

11. Load the web page where you want to start recording into the browser.

12. Navigate the web site to record page objects, actions, and navigations. The page
objects, actions, and navigations will be added to the node of the script tree
specified by the Set Record Section setting (the Run node is the default).

13. When finished navigating pages, close the browser.

14. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

15. Expand the Run node of the script to view the page objects, actions, and
navigation nodes in the script tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

7.3 Playing Back Scripts
OpenScript plays back recorded Oracle EBS/Forms actions/commands which consist
of an event plus an object identified by its attributes (for example:
forms.textField(28, "//forms:textField[(@name='DIST_LIST_NAME_
0')]").input("LOREM IPSUM")). The actions used for playback will either be
those that are recorded or specified manually in the Java Code view. Playback can be
configured through IE only as the Oracle EBS/Forms Functional Test Module does not
support Firefox. Unattended playback is supported through Oracle Test Manager or
third-party tools using OpenScript's command line interface. Oracle EBS/Forms
Functional Test scripts do not play in Oracle Load Testing.

The Oracle EBS/Forms Functional Test Module provides playback and iterate toolbar
buttons that allows users to start the script playback for either a single playback
through the script or multiple iterations using data from a databank file. Playback
results for Oracle EBS/Forms Functional scripts can be viewed in the Results and
Console views.

7.3.1 Setting Oracle EBS/Forms Functional Test Playback Preferences
To set Oracle EBS/Forms Functional Test Playback preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Playback category.

4. Select Oracle EBS/Forms Functional Test.

5. Expand the groups and set the preference. See Section 2.4.6, "Oracle EBS/Forms
Functional Test Preferences" for descriptions of the Playback Preferences settings.

6. Click OK.

Note: Do not close the script editor view or script project while
recording or playing back scripts. Doing so could result in
unpredictable behavior in the OpenScript application.

Modifying Scripts

7-6 Oracle Functional Testing OpenScript User's Guide

7.3.2 Playing Back Oracle EBS/Forms Functional Scripts
To play back Oracle EBS/Forms Functional scripts:

1. Start OpenScript.

2. Open the Oracle EBS/Forms Functional script to play back.

3. Select Playback from the Script menu or click the toolbar button.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

7.3.3 Playing Back Oracle EBS/Forms Functional Scripts with Iterations
To play back Oracle EBS/Forms Functional scripts with iterations:

1. Start OpenScript.

2. Open the Oracle EBS/Forms Functional script to play back.

3. Select Iterate from the Script menu or click the toolbar button.

4. Select Use Databanks.

5. Select which databank file to specify the settings for if more than one database is
configured for the script.

6. Specify the settings for the databank file.

7. Select the Run no more than [] iterations option and set the iteration count to the
desired number of playback iterations. See Section 4.2.4, "Playing Back Scripts
With Iterations" for additional information about iteration settings.

8. Click OK.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

7.4 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

7.4.1 Adding Forms Actions
The Oracle EBS/Forms Module includes actions for Oracle EBS/Forms objects that can
be added to a script.

To add Forms actions to a script:

1. Record a EBS/Forms Functional Test script.

2. Select the script node where you want to add the action.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Forms Action node.

5. Expand an action node and select the action.

6. Click OK.

7. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path.

Modifying Scripts

Using the Oracle EBS/Forms Functional Test Module 7-7

8. Enter any required values to use for the object action.

9. Click OK. The action node is added to the script tree.

In the Java Code view, a forms.object(objectId).action() method will be
added to the script code:

forms.textField(27, "//forms:textField[(@name='DIST_LIST_APPLICATION_
0')]").openDialog();

The Forms Action node includes actions for objects such as BlockScroller, Button,
Calendar, CheckBox, ChoiceBox, EditBox, EditorDialog, FlexWindow, HelpDialog,
InfoBox, List, ListOfValues, Notification, Calculator, RadioGroup, ResponseBox,
SchedulingDataClient, SpreadTable, StatusBar, TabbedRegion, TextField, Tree,
TreeList. Other object actions have corresponding Java code methods.

7.4.2 Using the Oracle EBS/Forms Functional Test Module API
The Oracle EBS/Forms Functional Test Module includes a script Application
Programming Interface (API) specific to Oracle EBS/Forms functional testing. The
Oracle EBS/Forms Functional Test Module recorder creates the Java code that
corresponds to the Tree View and displays the Oracle EBS/Forms Functional Test
commands in the Java Code view using easy-to-understand function names. The Java
Code view commands correspond to the Tree View and you can edit your scripts in
either view.

You can use the Oracle EBS/Forms Functional Test API to enhance recorded scripts
with additional testing functionality. Commands that are specific to the Oracle
EBS/Forms Functional Testing Module are part of the "forms" class. Additional
functional test methods are available in the "web" and "ft" classes. You can also
leverage other commands from other enabled classes (services) or general Java
commands in your scripts.

Some examples of the Oracle EBS/Forms Testing Module API include:

■ Forms Action

■ Button

■ Calendar

■ Checkbox

■ Choice Box

■ Edit Box

■ Editor Dialog

■ Flex Window

■ Form Window

■ HelpDialog

■ Info Box

■ List

■ ListOfValues

■ Notification

■ RadioGroup

■ ResponseBox

Modifying Scripts

7-8 Oracle Functional Testing OpenScript User's Guide

■ SchedulingDataClient

■ SpreadTable

■ StatusBar

■ TabbedRegion

■ TextField

■ Tree

■ TreeList

Many API methods can be added using the Oracle EBS/Forms Functional Test Module
Tree View. Additional methods can be added using the Java Code view. Use Ctrl-space
in the Java Code view to open an Intellisense window listing available procedures. See
the API Reference in the OpenScript help for additional programming information.

8

Using the Oracle EBS/Forms Load Test Module 8-1

8Using the Oracle EBS/Forms Load Test
Module

This chapter provides instructions on configuring and using the OpenScript Oracle
EBS/Forms Load Test Module, which provides support for load testing of Oracle
EBS/Forms web applications.

8.1 About the Oracle EBS/Forms Load Test Module
The Oracle EBS/Forms Load Test Module is an extension module to the OpenScript
HTTP Module that extends the Web testing with Oracle EBS/Forms Load Test
recording and playback capabilities. The Oracle EBS/Forms Load Test Module is fully
integrated with the OpenScript platform including the Results view, Details view,
Properties view, Console/Problems views, Preferences, Step Groups, Script Manager,
and Workspace Manager.

The Oracle EBS/Forms Load Test recorder displays commands in the Tree View in
easy-to-understand commands. By default, script commands are grouped into Steps
Groups by the Web page on which they were performed. Each Step Group contains
one or more script commands corresponding to recorded actions that were performed
on the page. The default name for the Step Group is the Web page Title (as specified in
the "Title" tag).

OpenScript shows the results of Oracle EBS/Forms Load Test script playback in the
Results view. The Results view shows results for each script command (including
duration and summary for failures). The Results Report compiles the same
information into an HTML Results Report. Results can be exported from the
OpenScript GUI in standard format (CSV / HTML). Results are also generated for
unattended playback through the command line.

The Oracle EBS/Forms Load Test Module API includes a "nca" class that provides
additional programming functionality.

8.1.1 Key Features of the Oracle EBS/Forms Load Test Module
■ The Oracle EBS/Forms Load Test Script Module. The New Project wizard (New

from the File menu) includes an "Oracle EBS/Forms" option in the Load Test
Group to use when creating Oracle EBS/Forms load testing projects in OpenScript.
The Oracle EBS/Forms Load Test Script Module records Oracle EBS/Forms
applications at the protocol level. OpenScript captures user actions and records
them to the OpenScript script based upon HTTP requests and post data or query
strings.

About the Oracle EBS/Forms Load Test Module

8-2 Oracle Functional Testing OpenScript User's Guide

■ Correlation Library. The Oracle EBS/Forms Load Test Module includes an Oracle
EBS/Forms-specific library of correlation rules for parameterizing scripts.

■ Test Cases (Validation). The Oracle EBS/Forms Load Test Module includes a
Status Bar test for validating validate Oracle EBS/Forms application content on
playback.

■ Oracle EBS/Forms-Specific Application Programming Interface (API). The Oracle
EBS/Forms Load Test Module includes a Oracle EBS/Forms Load Test Module
API Specification that can be used to customize Oracle EBS/Forms-specific scripts.

8.1.2 Prerequisites
The Oracle EBS/Forms Load Test Module recorder has the following prerequisites:

■ Before recording any script in Forms Functional Test Module, you must run the
Forms/EBS application at least once before attempting to record a script with
OpenScript on that machine. This ensures that required JRE/Jinitiator has been
installed and also verifies that forms applications can run successfully on that
machine inside of Internet Explorer.

■ You must set Use Browser Settings (selected) in the control panel proxy for all
installed JVMs. Depending upon the Java version, the Use Browser Settings is
either here:

– Control Panel - Select JInitiator/Sun Java - Proxies tab

or here:

– Control Panel - Select Java - General tab - Network Settings

■ If you want to report Forms End-User Performance Monitoring (EUM) metrics in
Oracle Load Testing graphs, you must enable End User Monitoring metrics on the
EBS R12 system being monitored. Go to the OAM configuration page for EBS and
add the following two parameters to the desired configuration section in the EBS
appsweb.cfg file:

– EndUserMonitoringEnabled: Set to "true" to enable Chronos logging. The
default value is NULL.

– EndUserMonitoringURL: Specify the default value of the URL for the Web
Listener associated with the Oracle Applications Web Server. This can be
amended to an alternative URL which points to a WebCache or HTTP Server
instance which may be located on another machine.

Sample URL format:

http://<hostname>:<portnumber>/oracle_smp_chronos/oracle_smp_chronos_
sdk.gif.

See the Installation and Configuration section of the Oracle Real User Experience
Insight Accelerator for Oracle E-Business Suite Guide for additional information.

Notes:

Values are only reported when EUM metrics are enabled on the Forms server.

Values are only reported in Oracle Load Testing if you set Generate Timers for All
Resources to TRUE in your Oracle Load Testing script scenario preferences.

Values are only reported to Oracle Load Testing graphs. They do not appear in the
Oracle Load Testing session report.

Recording Oracle EBS/Forms Load Tests

Using the Oracle EBS/Forms Load Test Module 8-3

8.2 Recording Oracle EBS/Forms Load Tests
The Oracle EBS/Forms Load Test Module records standard Oracle EBS/Forms
components for Oracle E-Business Suite Release 12 (Forms 10g) running on Sun JRE
and E-Business Suite Release 11i (Forms 6i). The Recorder creates load test scripts for
automating testing of Oracle EBS/Forms applications.

Oracle EBS/Forms are applet based controls and the Oracle EBS/Forms Load Test
Module provides the object/attribute information for OpenScript to record
interactions with those controls. Actions will be captured in the test script as
OpenScript "nca" commands. Other components are standard Web controls which are
captured as standard OpenScript "http" navigation commands. Correlation rules can
be modified by users through the Preferences settings for new scripts. Recording can
be configured through Internet Explorer only as the Oracle EBS/Forms Load Test
Module does not support Firefox.

The Oracle EBS/Forms Load Test Module provides a record toolbar button that lets
you initiate the Oracle EBS/Forms recorder and capture Web/Oracle EBS/Forms page
actions to the script view. The record toolbar includes start and stop recording toolbar
buttons. OpenScript recorders also open a floating toolbar that can be used while
recording without having to switch between the browser and OpenScript.

When an recording Oracle EBS/Forms script determining the type of communication
is important. Oracle EBS/Forms client can communicate with the server using the
following modes:

■ Socket Mode: All the communication exchanged between the server and client is
performed at a socket level therefore the proxy recorder will not capture any
transactions that occur between the server and client.

■ HTTP Mode: All the communication happens over the HTTP protocol and gets
captured by both the proxy recorder and the Oracle EBS/Forms Load Test module.
The duplication of HTTP requests is filtered out by the Oracle EBS/Forms Load
Test module and the message log only retains the requests captured by Oracle
EBS/Forms Load Test module and not the request captured by proxy recorder.

■ HTTPS Mode: This mode the communication is very similar to that of HTTP
except the connection is made over the HTTP protocol on port 443 using SSL.

8.2.1 Setting Oracle EBS/Forms Load Test Record Preferences
To set Oracle EBS/Forms Load Test record preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Record category.

4. Select Oracle EBS/ Forms Load Test.

5. Set the parameters. See Section 2.5.5, "Oracle EBS/Forms Load Test Preferences"
for descriptions of the Record Preferences settings.

6. Click OK.

8.2.2 Recording Oracle EBS/Forms Load Test Scripts
To record Oracle EBS/Forms Load Test scripts:

1. Start OpenScript.

2. Set the Oracle EBS/Forms Load Test Correlation preferences.

Playing Back Scripts

8-4 Oracle Functional Testing OpenScript User's Guide

3. Set the Oracle EBS/Forms Load Test Recording preferences.

4. Select New from the File menu.

5. Expand the Load Testing group.

6. Select Oracle EBS/Forms (The Oracle EBS/Forms script combines both HTTP and
Oracle EBS/Forms technologies as part of the same script).

7. Click Next.

8. Select the Repository and Workspace.

9. Enter a script name.

10. Click Finish. A new Script tree is created in the Script View.

11. Select Record from the Script menu. The browser automatically opens when you
start recording.

12. Load the web page where you want to start recording into the browser.

13. Navigate the web site to record page objects, actions, and navigations. The page
objects, actions, and navigations will be added to the node of the script tree
specified by the Set Record Section setting (the Run node is the default).

14. When finished navigating pages, close the browser.

15. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

16. Expand the Run node of the script to view the page objects, actions, and
navigation nodes in the script tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

8.3 Playing Back Scripts
OpenScript plays back recorded Oracle EBS/Forms actions/commands which consist
of an object identified by its attributes (for example:
nca.treeList("handlerName").selectByIndex(0);). The actions used for
playback will either be those that are recorded or specified manually in the Java Code
view. Playback can be configured through IE only as the Oracle EBS/Forms Load Test
Module does not support Firefox. Unattended playback is supported through Oracle
Test Manager or third-party tools using OpenScript's command line interface.

The Oracle EBS/Forms Load Test Module provides playback and iterate toolbar
buttons that allows users to start the script playback for either a single playback
through the script or multiple iterations using data from a databank file. Playback
results for Oracle EBS/Forms Load scripts can be viewed in the Results and Console
views.

8.3.1 Setting Oracle EBS/Forms Load Test Playback Preferences
To set Oracle EBS/Forms Load Test playback preferences:

1. Start OpenScript.

Note: Do not close the script editor view or script project while
recording or playing back scripts. Doing so could result in
unpredictable behavior in the OpenScript application.

Modifying Scripts

Using the Oracle EBS/Forms Load Test Module 8-5

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Playback category.

4. Select Oracle EBS/Forms Load Test.

5. Select or clear the message options. See Section 2.4.7, "Oracle EBS/Forms Load
Test Preferences" for descriptions of the Playback Preferences settings.

6. Click OK.

8.3.2 Playing Back Oracle EBS/Forms Load Scripts
To play back Oracle EBS/Forms Load scripts:

1. Start OpenScript.

2. Open the Oracle EBS/Forms Load script to play back.

3. Select Playback from the Script menu or click the toolbar button.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

8.3.3 Playing Back Oracle EBS/Forms Load Scripts with Iterations
To play back Oracle EBS/Forms Load scripts with iterations:

1. Start OpenScript.

2. Open the Oracle EBS/Forms Load script to play back.

3. Select Iterate from the Script menu or click the toolbar button.

4. Select Use Databanks.

5. Select which databank file to specify the settings for if more than one database is
configured for the script.

6. Specify the settings for the databank file.

7. Select the Run no more than [] iterations option and set the iteration count to the
desired number of playback iterations. See Section 4.2.4, "Playing Back Scripts
With Iterations" for additional information about iteration settings.

8. Click OK.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

8.4 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

8.4.1 Adding Forms Actions
The Oracle EBS/Forms Module includes actions for Oracle EBS/Forms objects that can
be added to a script.

To add Forms actions to a script:

1. Record a EBS/Forms Functional Test script.

2. Select the script node where you want to add the action.

Modifying Scripts

8-6 Oracle Functional Testing OpenScript User's Guide

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Forms Load Action node.

5. Expand an action node and select the action.

6. Click OK.

7. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path.

8. Enter any required values to use for the object action.

9. Click OK. The action node is added to the script tree.

In the Java Code view, a nca.object(handlerName).action() method will
be added to the script code:

nca.treeList("handlerName").selectByIndex(0);

The Forms Load Action node includes actions for objects such as Application,
Button, CheckBox, ChoiceBox, List Item, List of Values, Pop List Item, Radio
Button, Tab, Text Field, Window, Generic Client, and Alert Dialog. Other object
actions have corresponding Java code methods.

8.4.2 Converting Forms Actions to XML Messages
In some cases, you may want to convert EBS/Forms actions recorded to the script into
the raw XML client messages to troubleshoot playback issues. For example, the script
recorder creates actions in the script tree such as Activate window
("WindowName"). The Java code for the action would be similar to
nca.window(id, "WindowName").activate().

However, the actual XML message traffic between the application server and the Web
client is more verbose. For example, the message traffic for a window activate action
could be similar to the following:

<Messages>
<ClientMessage Object="HEADER">
<Message mActionString="MSG_UPDATE" mActionCode="2" mHandlerClassId="0"

mHandlerId="170">
<Property actionString="WINDOW_ACTIVATED" action="247"

type="java.lang.Boolean" value="true"/>
</Message>

</ClientMessage>
<ClientMessage Object="HEADER_ORIGINATING_BAL_SEG_VALUE_0">
<Message mActionString="MSG_UPDATE" mActionCode="2" mHandlerClassId="0"

mHandlerId="566">
<Property actionString="CURSOR_POSITION" action="193"

type ="java.lang.Integer" value="0"/>
</Message>

</ClientMessage>
</Messages>

If you need to troubleshoot specific script actions, you can convert the script action to
the raw XML messages and try playing back the script again to see if the XML
messages resolve the issue.

To convert EBS/Forms actions to XML client messages:

1. Right-click the script node you want to convert and select Properties. The Form
Window opens with the following options:

Modifying Scripts

Using the Oracle EBS/Forms Load Test Module 8-7

Automatically generate the Forms client messages: When selected, the script uses
the recorded Forms action on playback.

■ Path: Shows the recorded Forms action path.

Send recorded Forms client messages: When selected, the script uses the recorded
raw XML client messages on playback.

■ Description: Shows a description of the client messages.

Recorded Messages: Shows the raw XML client and server messages generated
between the application server and the web client during recording.

2. Select the Send recorded Forms client messages option. If necessary, you can edit
the raw XML messages.

3. Click OK.

The script node changes to a Send Message action action. The Java Code for
the action will change to a method in the following form:

nca.sendMessages(id,"description","<Messages>XML string</Messages>");

The raw XML message string can be very long and can increase script size.

8.4.3 Using the Oracle EBS/Forms Load Test Module API
The Oracle EBS/Forms Load Test Module includes a script Application Programming
Interface (API) specific to Oracle EBS/Forms load testing. The Oracle EBS/Forms Load
Test Module recorder creates the Java code that corresponds to the Tree View and
displays the Oracle EBS/Forms Load Test commands in the Java Code view using
easy-to-understand function names. The Java Code view commands correspond to the
Tree View and you can edit your scripts in either view.

You can use the Oracle EBS/Forms Load Test API to enhance recorded scripts with
additional testing functionality. Commands that are specific to the Oracle EBS/Forms
Functional Testing Module are part of the "nca" class. Additional functional test
methods are available in the "http" class. You can also leverage other commands from
other enabled classes (services) or general Java commands in your scripts.

Some examples of the Oracle EBS/Forms Testing Module API include:

■ Application

■ Alert Dialog

■ Button

■ CheckBox

■ ChoiceBox

■ Generic Client

■ List Item

■ List of Values

■ Pop List Item

■ Radio Button

Note: Converting the script action to XML messages cannot be
undone unless you close the script without saving.

Setting Oracle EBS/Forms Load Test Correlation Preferences

8-8 Oracle Functional Testing OpenScript User's Guide

■ Tab

■ Text Field

■ Window

Many API methods can be added using the Oracle EBS/Forms Load Test Module Tree
View. Additional methods can be added using the Java Code view. Use Ctrl-space in
the Java Code view to open an Intellisense window listing available procedures. See
the API Reference in the OpenScript help for additional programming information.

8.5 Setting Oracle EBS/Forms Load Test Correlation Preferences
To set Setting Oracle EBS/Forms Load Test Correlation preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Correlation category.

4. Expand the Oracle EBS/Forms Load Test library.

5. Select or clear the check boxes to enable or disable specific rules.

6. Click the Add or Edit buttons to modify rules in the library.

7. Click OK.

8.6 Oracle EBS/Forms Load Test Correlation Library
The Oracle EBS/Forms correlation library defines the correlation rules for Oracle
EBS/Forms-based applications. The correlation rules specify the variable names and
regular expressions to use to replace dynamic data in Oracle EBS/Forms applications
and navigations. The default Oracle EBS/Forms correlation library provided with the
OpenScript Oracle EBS/Forms Load Test Module includes the following correlation
rules:

■ formsload.location - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern document.location='(.+?)' and
replaces it with the variable name formsload.location in all locations.

■ Link and Form Action - DOM Correlation - this rule implements the Web
Document Object Model correlation rules for Links and Form actions for Oracle
EBS/Forms applications.

■ ICX Ticket 11i - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern icx_ticket='(.+?)' and replaces it
with the variable name formsload:icx_ticket_11i in all locations.

■ ICX Ticket R12 - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern icx_ticket&gv15=(.+?)& and
replaces it with the variable name formsload:icx_ticket_r12 in all locations.

■ ICX Ticket R12s - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern gv15\s*=\s*"(.+?)" and replaces it
with the variable name formsload.icx_ticket_r12s in all locations.

■ formsload.module - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern <PARAM
(?:name|NAME)=(?:|'|")serverArgs(?:|'|")\s+(?:value|VALUE)="m
odule=(.+?) and replaces it with the variable name formsload.module in all
locations.

Oracle EBS/Forms Load Test Correlation Library

Using the Oracle EBS/Forms Load Test Module 8-9

■ formsload.config - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern config='(.+?)' and replaces it with
the variable name formsload.config in all locations.

■ SSO FormsID - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern sso_formsid=(.+?) and replaces it
with the variable name formsload.ssoformsId in all locations.

■ formsload.objectCategoryId - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern
,\{'ObjectCategoryId':'(.+?)','DetailObjectId':'.+?' and
replaces it with the variable name formsload.objectCategoryId in all
locations.

■ formsload.detailObjectId - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern
,\{'ObjectCategoryId':'.+?','DetailObjectId':'(.+?)' and
replaces it with the variable name formsload.detailObjectId in all locations.

■ formsload.HzPuiCustAccountId - Variable Substitution - this rule locates text in
the HTML matching the Regular Expression pattern
'HzPuiCustAccountId':'(.+?)' and replaces it with the variable name
formsload.HzPuiCustAccountId in all locations.

■ formsload.evtSrcRowIdx - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern 'evtSrcRowIdx':'(.+?)'
and replaces it with the variable name formsload.evtSrcRowIdx in all
locations.

■ formsload.evtSrcRowId - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern 'evtSrcRowId':'(.+?)' and
replaces it with the variable name formsload.evtSrcRowId in all locations.

■ formsload.value - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern
'DefaultFormName','goto','OIENavBar',0,'(.+?)' and replaces it with
the variable name formsload.value in all locations.

■ Correlate Headers - Correlate Headers - this rule implements the default
Correlate Headers correlation rules for Oracle EBS/Forms applications that use
dynamic headers.

■ Correlate Referer Headers - Correlate Headers - this rule implements the default
Correlate Headers correlation rules for Oracle EBS/Forms applications that use
dynamic Referer Headers. This rule adds a http.solveRefererHeader method
to store the requested url for referer headers in later navigations to use.

■ formsload.loginsave - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern
submitForm\('DefaultFormName',1,\{'_FORM_SUBMIT_
BUTTON':'(.+?)' and replaces it with the variable name
formsload.loginsave in all locations.

■ formsload.loginsubmit - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern FORM_SUBMIT_
BUTTON':'(.+?)' and replaces it with the variable name
formsload.loginsubmit in all locations.

■ formsload.submit backslash - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern \{\\'_FORM_SUBMIT_

Oracle EBS/Forms Load Test Correlation Library

8-10 Oracle Functional Testing OpenScript User's Guide

BUTTON\\':\\'(.+?)\\'\} and replaces it with the variable name
formsload.submit.backslash in all locations.

■ FormsLT Global Substitution - Oracle EBS/Forms Variable Substitution - this
rule adds the appropriate Connect Statement for Forms implementations running
in HTTP mode. Substitute Forms URL transform and ICX Ticket transform.

■ formsload.oas - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern oas=(.+?\.\.) and replaces it with
the variable name formsload.oas in all locations.

■ formsload.ti - Variable Substitution - this rule locates text in the HTML matching
the Regular Expression pattern &_ti=(.+?)& and replaces it with the variable
name formsload.ti in all locations.

■ formsload.resultsVOName - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern
'ResultsVOName':'(.+?)','ItemKey' and replaces it with the variable
name formsload.resultsVOName in all locations.

■ formsload.ItemKey - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern
'ResultsVOName':'.+?','ItemKey':'(.+?)','evtSrcRowId':'','evt
SrcRowIdx' and replaces it with the variable name formsload.ItemKey in all
locations.

■ formsload.SDP_RLID - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern &SDP_RLID=(.+?)& and replaces it
with the variable name formsload.SDP_RLID in all locations.

■ formsload.SDP_RHID - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern &SDP_RHID=(.+?)& and replaces it
with the variable name formsload.SDP_RHID in all locations.

■ formsload.SDP_RHID - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern &SDP_RHID=(.+?)& and replaces it
with the variable name formsload.SDP_RHID in all locations.

■ formsload.QotFrmEvtVal - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern 'QotFrmEvtVal':'(.+?)',
and replaces it with the variable name formsload.QotFrmEvtVal in all
locations.

■ formsload.QotFrmEvt - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern 'QotFrmEvt':'(.+?)', and replaces
it with the variable name formsload.QotFrmEvt in all locations.

■ formsload.QotFrmEvtVal2 - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern 'QotFrmEvtVal2':'(.+?)',
and replaces it with the variable name formsload.QotFrmEvtVal2 in all
locations.

■ formsload.serverValidate - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern 'serverValidate':'(.+?)',
and replaces it with the variable name formsload.serverValidate in all
locations.

■ formsload.QotFrmSvMdlFg - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern 'QotFrmSvMdlFg':'(.+?)',
and replaces it with the variable name formsload.QotFrmSvMdlFg in all
locations.

Troubleshooting Oracle EBS/Forms Load Test Scripts

Using the Oracle EBS/Forms Load Test Module 8-11

■ Web Default Correlation - DOM Correlation - this rule implements the default
Web Document Object Model correlation rules for Oracle EBS/Forms applications.

8.7 Troubleshooting Oracle EBS/Forms Load Test Scripts
The following are key concepts, tools, and functions you can use when debugging
Oracle EBS/Forms Load Test scripts recorded during recording as well as playback.

8.7.1 Debugging Using the Message Log
This section explains how to use the Message Log for debugging Oracle EBS/Forms
Load Test Scripts.

8.7.1.1 During Recording
When recording EBS/Forms Load scripts, the Oracle EBS/Forms Load Test module
generates a complete log of messages that were exchanged between the forms server
and the client browser. The log is generated for all types of communication (See
Recording Oracle EBS/Forms Load Tests):

■ Socket Connection - numerically identified by a 0

■ HTTP Connection - numerically identified by a 1

■ HTTPS Connection - numerically identified by a 2

This recorded log is located in
<installdir>/OFT/<ScriptName>/recordedData/FormsLT_Recorded_
FormsMessage_Logs/RecordedMessages.log.

8.7.1.2 Format of the Recorded Log
The format in the log is as follows:

■ MESSAGE FROM CLIENT: indicates a Message sent from client to server,
followed by an XML string representation of the message object.

■ TERMINAL MESSAGE FROM CLIENT: indicates a Terminal Message sent from
client to server, followed by an XML string representation of the terminal message
object.

■ MESSAGE FROM SERVER: indicates a response message sent from the server to
client, followed by an XML string representation of the message object.

■ TERMINAL MESSAGE FROM SERVER: indicates a Terminal Message indicating
the end of a response sent from the server to the client, followed by an XML string
representation of the terminal message object.

8.7.1.3 During Playback
If a script fails during playback, you can enable the message log for debug purposes.

To enable the message log:

1. Open the Oracle EBS/Forms load test script.

2. Enable the Capture Playback Log option in the EBS/Forms Playback Preferences.

After enabling message logging, click the play button to run the script. During script
play back, all forms messages exchanged between server and the client are printed to
the console window in OpenScript.

Troubleshooting Oracle EBS/Forms Load Test Scripts

8-12 Oracle Functional Testing OpenScript User's Guide

This is a rather large log of messages and using the recorded log as a reference,
compare the messages being sent to the server by OpenScript. Check for messages that
appear in the recorded log but not in the playback log. It is normal to have messages
such as OUTERSIZE, LOCATION missing. The reason for this is because the
EBS/Forms load script recorder was designed keeping in mind that the user should
see actions being recorded in the script instead of messages.

8.7.1.4 After Playback
Message playback logs can be used to compare the recorded vs. played back forms
messages to troubleshoot script problems. Select a result in the Results view and
compare the recorded vs. playback messages in the Comparison tab of the Details
view.

The Details view for EBS/Forms load scripts can have the following tabs:

■ Object Details Tree: Shows a text-based representation of the property names and
values of an EBS/Forms object in a tree hierarchy. You can right click a property to
add a Text Matching test.

■ Screenshot: Shows an image of the EBS/Forms window for visual identification.
The Screenshot is taken on Window Activate actions.

■ Messages: Shows the raw XML EBS/Forms messages recorded for the selected
script node.

■ Message Tree: Shows the XML EBS/Forms message parameters and values for the
selected script node in a tree hierarchy.

■ Comparison: Shows a comparison of the recorded vs. playback XML EBS/Forms
messages or object details for the selected item in the Results view. Select the
comparison type from the Compare list.

8.7.2 Analyzing Message Logs
Messages to check for when analyzing recorded and playback logs are as follows:

■ FOCUS messages: Make sure the correct component has focus. The script cannot
execute an action on a component without correctly setting a focus on it. For
example, a text field component contains a button which displays a list of values
dialog when pressed. This button is not enabled until the focus is correctly set on
the text field. In this case, if OpenScript tries to execute a press button action and
the focus in not correct, you will encounter an error such as "Component not
available".

■ WINDOW_ACTIVATED messages: Make sure the correct window is the currently
active windows for the script action on a component. If the correct window is not
currently active, the script will not be able to execute any actions on the
components within that window.

8.7.3 Resolving "Component does not exist" Errors
"Component {0} does not exist" error messages (error code COMPONENT_DOES_
NOT_EXIST) may occur when initially creating an Oracle Forms Load Testing script.
This error is reported Possible causes:

1. If the error appears on the first action of the script, it could be indicative of "Issue
1. Connection Failures and ICX_Ticket Correlation" above.

2. The object specified in the script truly does not exist in the application at the time
the action was performed on it.

Troubleshooting Oracle EBS/Forms Load Test Scripts

Using the Oracle EBS/Forms Load Test Module 8-13

For example, when recording the script, if the tester searches for an order and
deletes it, then during playback the script will fail because the order number no
longer exists to delete. In some situations it may be helpful to insert status bar text
validations, in cases where a status bar text message is expected.

In other cases, the Forms application may display an unexpected dialog box error
message indicating some validation failure or other business flow error in the
application itself. If such a dialog did not appear during recording, then any
subsequent actions will fail. Check the error log in the script to see if any error
dialog messages appeared. Check that all data inputs in the script are valid, and
carefully review the actions specified in the script.

3. In other cases, it may be difficult to diagnose the root cause of the problem without
technical support. For example, it could be that the application being tested is
using a custom forms object that sends a custom message to the server that the
Forms playback engine does not recognize.

8.7.4 Troubleshooting Forms ifError Messages
When playing the script in HTTP mode, the server can respond with error messages in
plain/text which would require special handling by the VU. The following are the
most common types of ifError messages returned by the server.

IfError Messages
These messages are returned as a response of any forms request against the server
when playing the script in HTTP mode. The response content type for these messages
is 'plain/text' and the response code is '200 OK'

ifError:3
The client does not handle cookies. Enable cookie handling for that virtual user.

ifError:4
The server was unable to create an Oracle EBS/Forms process. Problem exists on the
server-side.

ifError:5
The server was unable to start the Oracle EBS/Forms process. Problem exists on the
server-side.

ifError:6
The Oracle EBS/Forms session was aborted and the VU is unable to communicate
with the server. In most cases this would occur when the server is experiencing a
heavy load or if there is a problem with the script.

ifError:7
The server is currently busy, re-try the request later. The VU will re-try this request
<n> number of times where <n> is a value specified in Forms Load Test playback
preferences before it throws an error/stops playback.

ifError:11/<n>
The server is busy, re-try the request in <n> milliseconds. This type of message will not
be displayed to the user, the VU will automatically re-try this request after <n>
milliseconds.

Troubleshooting Oracle EBS/Forms Load Test Scripts

8-14 Oracle Functional Testing OpenScript User's Guide

9

Using the Oracle Fusion/ADF Functional Test Module 9-1

9Using the Oracle Fusion/ADF Functional Test
Module

This chapter provides instructions on configuring and using the OpenScript Oracle
Fusion/ADF Functional Test Module, which provides support for functional testing of
Oracle Application Development Framework (ADF)-based applications.

9.1 About the Oracle Fusion/ADF Functional Test Module
The Oracle Fusion/ADF Functional Test Module provides support for functional
testing of Oracle Application Development Framework (ADF) applications. The Oracle
Fusion/ADF Functional Test Module is an extension to the Web Functional Module.
The Oracle Fusion/ADF Functional Test Module is fully integrated with the
OpenScript platform including the Results view, Details view, Properties view,
Console/Problems views, Preferences, Step Groups, Script Manager, and Workspace
Manager.

The Oracle Fusion/ADF Functional Test recorder displays commands in the Tree View
in easy-to-understand commands. By default, script commands are grouped into Steps
Groups by the Web page on which they were performed. Each Step Group contains
one or more script commands corresponding to recorded actions that were performed
on the page. The default name for the Step Group is the ADF component name.

OpenScript shows the results of Oracle Fusion/ADF Functional Test script playback in
the Results view. The Results view shows results for each script command (including
duration and summary for failures). The Results Report compiles the same
information into an HTML Results Report. Results can be exported from the
OpenScript GUI in standard format (CSV / HTML). Results are also generated for
unattended playback through the command line.

The Oracle Fusion/ADF Functional Test Module API includes a "adf" class that
provides additional programming functionality.

9.1.1 Prerequisites
The Oracle Fusion/ADF Functional Test Module recorder has the following
prerequisite:

■ Before recording any script in Oracle Fusion/ADF Functional Test Module, you
must configure the ADF Server so that the ADF application uses uncompressed
class names.

Configuring the ADF Server

9-2 Oracle Functional Testing OpenScript User's Guide

9.1.2 Key Features of the Oracle Fusion/ADF Functional Test Module
■ The Oracle Fusion/ADF Functional Test Script Module. The New Project wizard

(Select New from the File menu) includes an "Oracle Fusion/ADF" option in the
Functional Test Group to use when creating Oracle Fusion/ADF functional testing
projects in OpenScript. The Oracle Fusion/ADF Functional Test Script Module
records functional scripts against ADF Faces applications (Oracle Application
Development Framework 11g Release 1 (11.1.1)).

■ ADF Functional-Specific Application Programming Interface (API). The Oracle
Fusion/ADF Functional Test Module includes an ADF Functional Test Module
API Specification that can be used to customize ADF Functional test-specific
scripts.

9.2 Configuring the ADF Server
The Oracle Fusion/ADF Fusion Test Module recorder requires that the ADF
application use uncompressed class names. You must configure the application server
to specify that uncompressed class names are used for testing purposes.

There are three settings that must be configured in the following files on the ADF
server:

■ WEB-INF/web.xml

■ trinidad-config.xml

9.2.1 Configuring the WEB-INF/web.xml File
This section explains the settings that must be specified in the ADF server web.xml
file.

In the ADF server's WEB-INF/web.xml file, set the oracle.adf.view.rich.
automation.ENABLED parameter to true. This is required in order for the Oracle
Fusion/ADF Functional Test Module to find objects using scope IDs (also known as
test IDs or Sub IDs).

The following XML shows how the oracle.adf.view.rich.
automation.ENABLED parameter must be specified in the web.xml file before
recording Oracle Fusion/ADF Functional Test scripts:

<context-param>
<param-name>oracle.adf.view.rich.automation.ENABLED</param-name>
<param-value>true</param-value>
</context-param>

In the ADF server's WEB-INF/web.xml file, set the org.apache.myfaces.
trinidad.DISABLE_CONTENT_COMPRESSION parameter to true. This is required
in order for the Oracle Fusion/ADF Functional Test Module to identify ADF
component class names.

The following XML shows how the org.apache.myfaces.trinidad.DISABLE_
CONTENT_COMPRESSION parameter must be specified in the web.xml file before
recording Oracle Fusion/ADF Functional Test scripts:

<context-param>
<param-name>org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION</param-name>
<param-value>true</param-value>
</context-param>

Recording Oracle Fusion/ADF Functional Tests

Using the Oracle Fusion/ADF Functional Test Module 9-3

9.2.2 Configuring the trinidad-config.xml File
This section explains the settings that must be specified in the ADF server
trinidad-config.xml file.

In the ADF server's trinidad-config.xml, set the animation-enabled element to
false.

The following XML shows how the animation-enabled element must be specified in
the trinidad-config.xml file before recording Oracle Fusion/ADF Functional Test
scripts:

<animation-enabled>false</animation-enabled>

9.2.3 Verifying the Compression Settings
This section explains how to verify that the ADF application is using uncompressed
class names.

To verify the ADF application is using uncompressed class names:

1. Navigate to the ADF site.

2. Press F12 or select Developer Tools from the Tools menu.

3. Click the HTML tab and check the elements of the DOM Tree. If the majority of the
class names are in the form class="af_name", the ADF application is using
uncompressed class names. If the majority of the class names are in the form
class="x??", the ADF application is using compressed class names.

9.3 Recording Oracle Fusion/ADF Functional Tests
The Oracle Fusion/ADF Functional Test Module records standard ADF components
for Oracle Application Development Framework 11g Release 1 (11.1.1). The Recorder
creates functional test scripts for automating testing of Oracle Fusion/ADF
applications.

ADF components are applet based controls and the Oracle Fusion/ADF Functional
Test Module provides the object/attribute information for OpenScript to record
interactions with those controls. Actions will be captured in the test script as
OpenScript "adf" commands. Other components are standard Web controls which are
captured as standard OpenScript "web" and "ft" navigation commands. Correlation
rules can be modified by users through the Preferences settings for new scripts.

OpenScript plays back recorded ADF actions/commands which consist of an event
plus an object identified by its attributes (for example:
adf.inputText(11,"/web:window[@index='0' or @title='inputText
Demo']/web:document[@index='0']/web:ADFInputText[@id='dmoTpl:idI
nputText' and @label='String value']").setValue("String"). The
actions used for playback will either be those that are recorded or specified manually
in the Java Code view. Playback can be configured through IE only as the Oracle
Fusion/ADF Functional Test Module does not support Firefox. Unattended playback
is supported through Oracle Test Manager or third-party tools using OpenScript's
command line interface. Oracle Fusion/ADF Functional Test scripts do not play in
Oracle Load Testing.

The Oracle Fusion/ADF Functional Test Module provides a record toolbar button that
lets you initiate the ADF recorder and capture Web/ADF page actions to the script
view. The record toolbar includes start and stop recording toolbar buttons. OpenScript

Recording Oracle Fusion/ADF Functional Tests

9-4 Oracle Functional Testing OpenScript User's Guide

recorders also open a floating toolbar that can be used while recording without having
to switch between the browser and OpenScript.

9.3.1 Setting Oracle ADF Functional Test Record Preferences
To set Oracle ADF Functional Test record preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Record category.

4. Select Oracle ADF Functional.

5. Click the tab and set the preferences. See Section 2.5.3, "Oracle ADF Functional
Test Preferences" for descriptions of the Record Preferences settings.

6. Click OK.

9.3.2 Adding/Editing Object Identifiers
The Oracle ADF Functional Test Module uses object identification to specify attributes
used to identify Oracle ADF objects. The Oracle ADF Functional Test Module uses the
same predefined path attributes for common Web objects as the Web Functional Test
Module; however, Oracle ADF Test Automation provides additional attributes to
identify ADF controls. Object paths are specified in XPath format. For example the
object identification path appears as follows in Java code commands:

//web:ADFCommandButton[(@name='DIST_LIST_NAME_0')]

You can set the default Web object attributes in the Oracle ADF Functional Test
Module Record Preferences. You can also edit object attributes in recorded scripts in
the tree view or the code view.

In addition to the predefined object identification, you can add an Object Library to the
script to record paths into a library file. Object Library files may be shared and reused
across other scripts. The Object Library files provide a more convenient "short name"
for objects to provide for more convenient programming.

The Oracle ADF Functional Test Module includes object identifiers that specify how
the recorder identifies Browser objects. You can add object identifiers or edit the
existing object identifiers in the Record preferences.

To add or edit an object identifier:

1. Select the OpenScript Preferences from the View menu.

2. Expand the Record node and select ADF Functional Test.

3. Click the Object Identification tab. This tab lets you specify the Oracle ADF object
identification attributes, as follows:

Active Profile: Specifies which object identification profile to use as the active
profile when recording scripts. Profiles define a specific set of object identifiers to
use when recording ADF functional tests. Use the Add Profile option to create a
new custom profile. Once you have created a profile, select the profile name in the
Name column and use Add Object to define custom objects and attributes in the
custom profile.

Name: Shows the name(s) of the defined Oracle ADF object identifiers.

Recording Oracle Fusion/ADF Functional Tests

Using the Oracle Fusion/ADF Functional Test Module 9-5

Attributes: Shows the pattern(s) specified for the defined Oracle EBS/Forms
object identifiers.

Add Profile: Opens a dialog box for specifying a new Oracle ADF object identifier
profile.

Add Object: Opens a dialog box for specifying a new Oracle ADF object identifier.

Edit: Opens a dialog box for editing the selected Oracle ADF object identifier.

Delete: Deletes the selected Oracle ADF object identifier or custom profile. The
default profile cannot be deleted.

Export: Opens a dialog box for exporting the currently selected ADF object
identifier profile to an XML file.

Import: Opens a dialog box for importing a saved object identifier profile XML
file.

Revert: Reverts the default ADF object identification profile to the default profile.
Any changes to the default profile are removed. Select the default profile name in
the Name column to activate the revert option.

For each object element, you specify a name (typically an Oracle ADF object
attribute), an operator, a value and a value type. As you add object elements,
OpenScript builds the object identifier using logical OR between each object
identifier element. Click Edit to change between logical OR and AND.

4. Click Add or select an existing object identifier and click Edit.

5. If adding a new object identifier, enter a name for the object identifier.

6. Add or edit object elements for the object identifier.

See the Web Functional Test Module for additional information about adding and
editing Object Identifiers.

7. Click OK. The object identifier is added to the record preferences.

9.3.3 Recording Oracle Fusion/ADF Functional Test Scripts
To record ADF Functional Test scripts:

1. Start OpenScript.

2. Set the Oracle Fusion/ADF Functional Test Correlation preferences.

3. Select New from the File menu.

4. Expand the Functional Testing group.

5. Select ADF (The Oracle Fusion/ADF script combines both Web and ADF
technologies as part of the same script).

6. Click Next.

7. Select the Repository and Workspace.

8. Enter a script name.

9. Click Finish. A new Script tree is created in the Script View.

10. Select Record from the Script menu. The browser automatically opens when you
start recording.

11. Load the web page where you want to start recording into the browser.

Playing Back Scripts

9-6 Oracle Functional Testing OpenScript User's Guide

12. Navigate the web site to record page objects, actions, and navigations. The page
objects, actions, and navigations will be added to the node of the script tree
specified by the Set Record Section setting (the Run node is the default).

13. When finished navigating pages, close the browser.

14. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

15. Expand the Run node of the script to view the page objects, actions, and
navigation nodes in the script tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

9.4 Playing Back Scripts
OpenScript plays back recorded ADF actions/commands which consist of an object
identified by its attributes. The actions used for playback will either be those that are
recorded or specified manually in the Java Code view. Unattended playback is
supported through Oracle Test Manager or third-party tools using OpenScript's
command line interface.

The Oracle Fusion/ADF Functional Test Module provides playback and iterate toolbar
buttons that allows users to start the script playback for either a single playback
through the script or multiple iterations using data from a databank file. Playback
results for Oracle Fusion/ADF Functional scripts can be viewed in the Results and
Console views.

9.4.1 Playing Back Oracle Fusion/ADF Functional Scripts
To play back Oracle Fusion/ADF Functional scripts:

1. Start OpenScript.

2. Open the Oracle Fusion/ADF Functional script to play back.

3. Select Playback from the Script menu or click the toolbar button.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

9.4.2 Playing Back Oracle Fusion/ADF Functional Scripts with Iterations
To play back Oracle Fusion/ADF Functional scripts with iterations:

1. Start OpenScript.

2. Open the Oracle Fusion/ADF Functional script to play back.

3. Select Iterate from the Script menu or click the toolbar button.

4. Select Use Databanks.

5. Select which databank file to specify the settings for if more than one database is
configured for the script.

6. Specify the settings for the databank file.

Note: Do not close the script editor view or script project while
recording or playing back scripts. Doing so could result in
unpredictable behavior in the OpenScript application.

Modifying Scripts

Using the Oracle Fusion/ADF Functional Test Module 9-7

7. Select the Run no more than [] iterations option and set the iteration count to the
desired number of playback iterations. See Section 4.2.4, "Playing Back Scripts
With Iterations" for additional information about iteration settings.

8. Click OK.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

9.5 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

9.5.1 Adding Fusion/ADF Actions
The Oracle Fusion/ADF Module includes actions for Oracle Fusion/ADF objects that
can be added to a script.

To add Fusion/ADF actions to a script:

1. Record a Fusion/ADF Functional Test script.

2. Select the script node where you want to add the action.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the ADF Action node.

5. Expand an action node and select the action.

6. Click OK.

7. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path.

8. Enter any required values to use for the object action.

9. Click OK. The action node is added to the script tree.

In the Java Code view, an adf.object(objectId).action() method will be
added to the script code:

adf.inputText("/web:window[@index='0' or @title='inputText Demo']
/web:document[@index='0' or @name='w0']
/web:ADFInputText[@id='dmoTpl:idInputText'

and @label='']").setValue("My Text Input");

The ADF Action node includes actions for objects such as Calendar, Command
Button, Command Image Link, Command Link, Command Menu Item, Command
Toolbar, Dialog, Go Menu Item, Input Color, Input Combobox List of Values, Input
dateSelect ManyChoice, Input List of Values, Input Number Slider, Input Number
Spinbox, Input Range Slider, Input Text, Menu, Navigation Page, Page, Panel
Accordion, Panel Box, Panel, Splitter, Panel Tabbed, Panel window, Query, Quick
Query, Reset Button, Rich Text Editor, Select Boolean Checkbox, Select Boolean
Radio, Select Many Checkbox, Select Many Choice, Select Many Listbox, Select
Many Shuttle, Select One Choice, Select One Listbox, Select One Radio, Select
Order Shuttle, Show Detail, Show Detail Header, Table, Toolbar, Train, Train
Button Bar, Tree, Tree Table. Other object actions have corresponding Java code
methods.

Modifying Scripts

9-8 Oracle Functional Testing OpenScript User's Guide

9.5.2 Oracle Fusion/ADF Functional Test Module API
The Oracle Fusion/ADF Functional Test Module includes a script Application
Programming Interface (API) specific to ADF functional testing. The Oracle
Fusion/ADF Functional Test Module recorder creates the Java code that corresponds
to the Tree View and displays the Oracle Fusion/ADF Functional Test commands in
the Java Code view using easy-to-understand function names. The Java Code view
commands correspond to the Tree View and you can edit your scripts in either view.

You can use the Oracle Fusion/ADF Functional Test API to enhance recorded scripts
with additional testing functionality. Commands that are specific to the Oracle
Fusion/ADF Functional Testing Module are part of the "adf" class. Additional test
methods are available in the "web" or "ft" classes. You can also leverage other
commands from other enabled classes (services) or general Java commands in your
scripts.

Some examples of the Oracle Fusion/ADF Testing Module API include:

■ Calendar

■ Command Button

■ Command Image Link

■ Command Link

■ Command Menu Item

■ Command Toolbar

■ Dialog

■ Go Menu Item

■ Input Color

■ Input Combobox List of Values

■ Input dateSelect ManyChoice

■ Input List of Values

■ Input Number Slider

■ Input Number Spinbox

■ Input Range Slider

■ Input Text

■ Menu

■ Navigation Page

■ Page

■ Panel Accordion

■ Panel Box

■ Panel Splitter

■ Panel Tabbed

■ Panel window

■ Query

■ Quick Query

Modifying Scripts

Using the Oracle Fusion/ADF Functional Test Module 9-9

■ Reset Button

■ Rich Text Editor

■ Select Boolean Checkbox

■ Select Boolean Radio

■ Select Many Checkbox

■ Select Many Choice

■ Select Many Listbox

■ Select Many Shuttle

■ Select One Choice

■ Select One Listbox

■ Select One Radio

■ Select Order Shuttle

■ Show Detail

■ Show Detail Header

■ Table

■ Toolbar

■ Train

■ Train Button Bar

■ Tree

■ Tree Table

Many API methods can be added using the Oracle Fusion/ADF Testing Module Tree
View. Additional methods can be added using the Java Code view. Use Ctrl-space in
the Java Code view to open an Intellisense window listing available procedures. See
the API Reference in the OpenScript help for additional programming information.

Modifying Scripts

9-10 Oracle Functional Testing OpenScript User's Guide

10

Using the Oracle Fusion/ADF Load Test Module 10-1

10Using the Oracle Fusion/ADF Load Test
Module

This chapter provides instructions on configuring and using the OpenScript Oracle
Fusion/ADF Load Test Module, which provides support for load testing of Oracle
Application Development Framework (ADF)-based applications.

10.1 About the Oracle Fusion/ADF Load Test Module
The Oracle Fusion/ADF Load Test Module provides support for load testing of Oracle
Application Development Framework (ADF) applications. The Oracle Fusion/ADF
Load Test Module is an extension to the HTTP Module. The Oracle Fusion/ADF Load
Test Module is fully integrated with the OpenScript platform including the Results
view, Details view, Properties view, Console/Problems views, Preferences, Step
Groups, Script Manager, and Workspace Manager.

The Oracle Fusion/ADF Load Test recorder displays commands in the Tree View in
easy-to-understand commands. By default, script commands are grouped into Steps
Groups by the Web page on which they were performed. Each Step Group contains
one or more script commands corresponding to recorded actions that were performed
on the page. The default name for the Step Group is the ADF component name.

OpenScript shows the results of Oracle Fusion/ADF Load Test script playback in the
Results view. The Results view shows results for each script command (including
duration and summary for failures). The Results Report compiles the same
information into an HTML Results Report. Results can be exported from the
OpenScript GUI in standard format (CSV / HTML). Results are also generated for
unattended playback through the command line.

The Oracle Fusion/ADF Load Test Module API includes a "adfload" class that
provides additional programming functionality.

10.1.1 Key Features of the Oracle Fusion/ADF Load Test Module
■ The Oracle Fusion/ADF Load Test Script Module. The New Project wizard (New

from the File menu) includes an "Oracle Fusion/ADF" option in the Load Test
Group to use when creating Oracle Fusion/ADF load testing projects in
OpenScript. The Oracle Fusion/ADF Load Test Script Module records load scripts
against ADF Faces applications (Oracle Application Development Framework 11g
Release 1 (11.1.1)). OpenScript captures user actions and records them to the
OpenScript script based upon HTTP requests and post data or query strings.

Recording Oracle Fusion/ADF Load Tests

10-2 Oracle Functional Testing OpenScript User's Guide

■ Correlation Library. The Oracle Fusion/ADF Load Test Module includes an Oracle
ADF-specific library of correlation rules for parameterizing scripts that allows
playback of standard ADF Faces applications without manual correlation.

■ ADF Load-Specific Application Programming Interface (API). The Oracle
Fusion/ADF Load Test Module includes an ADF Load Test Module API
Specification that can be used to customize ADF Load test-specific scripts.

10.2 Recording Oracle Fusion/ADF Load Tests
The Oracle Fusion/ADF Load Test Module records standard ADF components for
Oracle Application Development Framework 11g Release 1 (11.1.1). The Recorder
creates load test scripts for automating testing of Oracle Fusion/ADF applications.

ADF components are applet based controls and the Oracle Fusion/ADF Load Test
Module provides the object/attribute information for OpenScript to record
interactions with those controls. Actions will be captured in the test script as
OpenScript "adfload" commands. Other components are standard Web controls which
are captured as standard OpenScript "http" navigation commands. Correlation rules
can be modified by users through the Preferences settings for new scripts.

The Oracle Fusion/ADF Load Test Module provides a record toolbar button that lets
you initiate the ADF recorder and capture Web/ADF page actions to the script view.
The record toolbar includes start and stop recording toolbar buttons. OpenScript
recorders also open a floating toolbar that can be used while recording without having
to switch between the browser and OpenScript.

10.2.1 Recording Oracle Fusion/ADF Load Test Scripts
To record ADF Load Test scripts:

1. Start OpenScript.

2. Set the Oracle Fusion/ADF Load Test Correlation preferences.

3. Select New from the File menu.

4. Expand the Load Testing group.

5. Select ADF (The Oracle Fusion/ADF script combines both HTTP and ADF
technologies as part of the same script).

6. Click Next.

7. Select the Repository and Workspace.

8. Enter a script name.

9. Click Finish. A new Script tree is created in the Script View.

10. Select Record from the Script menu. The browser automatically opens when you
start recording.

11. Load the web page where you want to start recording into the browser.

12. Navigate the web site to record page objects, actions, and navigations. The page
objects, actions, and navigations will be added to the node of the script tree
specified by the Set Record Section setting (the Run node is the default).

13. When finished navigating pages, close the browser.

14. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

Playing Back Scripts

Using the Oracle Fusion/ADF Load Test Module 10-3

15. Expand the Run node of the script to view the page objects, actions, and
navigation nodes in the script tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

10.3 Playing Back Scripts
OpenScript plays back recorded ADF actions/commands which consist of an object
identified by its attributes. The actions used for playback will either be those that are
recorded or specified manually in the Java Code view. Unattended playback is
supported through Oracle Test Manager or third-party tools using OpenScript's
command line interface.

The Oracle Fusion/ADF Load Test Module provides playback and iterate toolbar
buttons that allows users to start the script playback for either a single playback
through the script or multiple iterations using data from a databank file. Playback
results for Oracle Fusion/ADF Load scripts can be viewed in the Results and Console
views.

10.3.1 Playing Back Oracle Fusion/ADF Load Scripts
To play back Oracle Fusion/ADF Load scripts:

1. Start OpenScript.

2. Open the Oracle Fusion/ADF Load script to play back.

3. Select Playback from the Script menu or click the toolbar button.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

10.3.2 Playing Back Oracle Fusion/ADF Load Scripts with Iterations
To play back Oracle Fusion/ADF Load scripts with iterations:

1. Start OpenScript.

2. Open the Oracle Fusion/ADF Load script to play back.

3. Select Iterate from the Script menu or click the toolbar button.

4. Select Use Databanks.

5. Select which databank file to specify the settings for if more than one database is
configured for the script.

6. Specify the settings for the databank file.

7. Select the Run no more than [] iterations option and set the iteration count to the
desired number of playback iterations. See Section 4.2.4, "Playing Back Scripts
With Iterations" for additional information about iteration settings.

8. Click OK.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

Note: Do not close the script editor view or script project while
recording or playing back scripts. Doing so could result in
unpredictable behavior in the OpenScript application.

Setting Oracle Fusion/ADF Load Test Correlation Preferences

10-4 Oracle Functional Testing OpenScript User's Guide

10.4 Setting Oracle Fusion/ADF Load Test Correlation Preferences
To set Setting Oracle Fusion/ADF Load Test Correlation preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Correlation category.

4. Expand the ADF Load Test library.

5. Select or clear the check boxes to enable or disable specific rules.

6. Click the Add or Edit buttons to modify rules in the library.

7. Click OK.

10.5 Oracle Fusion/ADF Load Test Correlation Library
The Oracle Fusion/ADF correlation library defines the correlation rules for ADF-based
applications. The correlation rules specify the variable names and regular expressions
to use to replace dynamic data in ADF applications and navigations. The default
Oracle Fusion/ADF correlation library provided with the OpenScript Oracle
Fusion/ADF Load Test Module includes the following correlation rules:

■ Correlate ADF Headers - Correlate Headers - this rule implements the default
Correlate Headers correlation rules for ADF applications that use dynamic
headers.

■ Substitute ADFViewState - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern <input type="hidden"
name="javax\.faces\.ViewState" value="(.+?)"> and replaces it with
the variable name javax.faces.ViewState in all locations.

■ Substitute _afrLoop - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern _afrLoop=(\d{10,16}) and replaces
it with the variable name _afrLoop in all locations.

■ Substitute _afPfm - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern _afPfm=(.+?)& and replaces it with
the variable name _afPfm in all locations.

■ Substitute _rtrnId - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern _rtrnId=(\d+) and replaces it with
the variable name _rtrnId in all locations.

■ Substitute _adf.ctrl-state - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern \?_
adf\.ctrl-state=(.+?)"> and replaces it with the variable name _
adf.ctrl-state in all locations.

■ Substitute ADFvDlg_adf.ctrl-state - Variable Substitution - this rule locates text
in the HTML matching the Regular Expression pattern __ADFvDlg__\?_
adf\.ctrl-state=(.+?)& and replaces it with the variable name ADFvDlg_
adf.ctrl-state in all locations.

■ Substitute stateToken - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern <<input type="hidden"
name="oracle\.adf\.faces\.STATE_TOKEN" value="(.+?)"> and
replaces it with the variable name stateToken in the locations specified by
oracle.adf.faces.STATE_TOKEN=((.+?))&.

Oracle Fusion/ADF Load Test Module API

Using the Oracle Fusion/ADF Load Test Module 10-5

■ Substitute AdfCompnent - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern new AdfRich\w+\('(.+?)',
and replaces it with the variable name AdfComponent in all locations.

■ ADF Web Correlation - DOM Correlation - this rule implements the default Web
Document Object Model correlation rules for ADF applications.

10.6 Oracle Fusion/ADF Load Test Module API
The Oracle Fusion/ADF Load Test Module includes a script Application Programming
Interface (API) specific to ADF load testing. The Oracle Fusion/ADF Load Test
Module recorder creates the Java code that corresponds to the Tree View and displays
the Oracle Fusion/ADF Load Test commands in the Java Code view using
easy-to-understand function names. The Java Code view commands correspond to the
Tree View and you can edit your scripts in either view.

You can use the Oracle Fusion/ADF Load Test API to enhance recorded scripts with
additional testing functionality. Commands that are specific to the Oracle Fusion/ADF
Load Testing Module are part of the "adfload" class. Additional test methods are
available in the "http" class. You can also leverage other commands from other enabled
classes (services) or general Java commands in your scripts.

Many API methods can be added using the Oracle Fusion/ADF Testing Module Tree
View. Additional methods can be added using the Java Code view. Use Ctrl-space in
the Java Code view to open an Intellisense window listing available procedures. See
the API Reference in the OpenScript help for additional programming information.

Oracle Fusion/ADF Load Test Module API

10-6 Oracle Functional Testing OpenScript User's Guide

11

Using the Adobe Flex Functional Test Module 11-1

11Using the Adobe Flex Functional Test
Module

This chapter provides instructions on configuring and using the OpenScript Adobe
Flex Functional Test Module, which provides support for functional testing of Adobe
Flex-based web applications.

11.1 About the Adobe Flex Functional Test Module
The OpenScript Adobe Flex Functional Test Module provides support for functional
testing of web applications that use the Adobe Flex Automation Framework. The
OpenScript Adobe Flex Functional Test Module provides the ability to record,
playback and validate transactions inside Adobe Flex applications embedded in web
pages. The OpenScript Adobe Flex Functional Test Module is an extension to the Web
Functional Test Module.

The Adobe Flex Functional Test Module is an extension module to the OpenScript Web
Functional Test Module that extends the Web testing with Adobe Flex Functional Test
recording and playback capabilities. The Adobe Flex Functional Test Module is fully
integrated with the OpenScript platform including the Results view, Details view,
Properties view, Console/Problems views, Preferences, Step Groups, Script Manager,
and Workspace Manager.

The Adobe Flex Functional Test recorder displays commands in the Tree View in
easy-to-understand commands. Script commands correspond to Adobe Flex events
generated by the Adobe Flex Automation Framework as OpenScript actions. By
default, script commands are recorded sequentially. Step groups can be added
manually but are not created by default.

OpenScript shows the results of Adobe Flex Functional Test script playback in the
Results view. The Results view shows results for each script command (including
duration and summary for failures). The Results Report compiles the same
information into an HTML Results Report. Results can be exported from the
OpenScript GUI in standard format (CSV / HTML). Results are also generated for
unattended playback through the command line.

The Adobe Flex Functional Test Module API includes a "flexFT" class that provides
additional programming functionality.

11.1.1 Key Features of the Adobe Flex Functional Test Module
■ The OpenScript Adobe Flex Functional Test Module is based on the Adobe Flex

Automation Framework. The Flex Automation Framework (the framework)
provides the following features:

About the Adobe Flex Functional Test Module

11-2 Oracle Functional Testing OpenScript User's Guide

– A wide range of reliable record and playback functionality across the broad
suite of built-in Flex controls.

– Documented and supported means of extending the record and playback
functionality to custom controls.

– Standardized object identification.

– Product behavior consistent with Adobe's documentation about how to test
Flex applications.

■ Records Adobe Flex actions for automation and validation of Flex applications of
any version (2, 3, 4) using any browser (IE or FF). Supports Flash application
created with Flex framework.

■ Plays back recorded Adobe Flex actions/commands which consist of a Flex control
and event plus the object identified by its attributes (for example:
flexFT.textarea(138, "Path").input("LOREM IPSUM");).

■ Provides full script code view integration to support script generation for the
OpenScript Adobe Flex Functional Test Module. The OpenScript Adobe Flex
Functional Test Module includes an additional API to support Flex Functional Test
protocol code scripting.

■ Allows users to parameterize user inputs to OpenScript Adobe Flex Functional
Test scripts and drive those inputs from an external data file (Databank).

■ Allows users to insert Tests to validate Adobe Flex content on playback.

■ Reports playback results for OpenScript Adobe Flex Functional Test scripts in the
Results and Console views.

■ The OpenScript Adobe Flex Functional Test Script Module API. The OpenScript
Adobe Flex Functional Test Application Programming Interface include Java code
methods specific to functional testing of Adobe Flex applications. The API
provides support for the MX component classes available in Flex 3.

The New Project wizard (Select New from the File menu) includes an "Adobe Flex "
option to use when creating Flex functional testing projects in OpenScript. OpenScript
captures user actions and records them to the OpenScript script nodes in a highly
readable sequence of navigations and actions.

11.1.2 Prerequisites
The Adobe Flex Functional Test Module recorder has the following prerequisites:

■ The Flex application must include the Adobe Flex automation libraries either at
compiles time or at run time. You need at least automation.swc and
automation_agent.swc from the Adobe <flex
builder>\sdks\3.5.0\frameworks\libs folder (3.5.0 is an Adobe sdk version).
Also, automation_dmv.swc is required for charts, advanceddatagrid and
olapdatagrid support. See the Creating Applications for Testing section of the
Adobe Flex Data Visualization Developer's Guide for additional information about
the tasks required to include the Flex automation libraries.

Creating Applications for Testing:

Note: The automation libraries/swc files are required for Flex
Functional Testing only. This does not apply for Adobe Flex (AMF)
load testing which records at the protocol level.

Recording Adobe Flex Functional Tests

Using the Adobe Flex Functional Test Module 11-3

http://livedocs.adobe.com/flex/3/html/help.html?content=funct
est_components2_15.html#178953

Adobe Flex Data Visualization Developer's Guide:

http://livedocs.adobe.com/flex/3/html/help.html?content=funct
est_components2_15.html#178953

■ The Oracle OpenScript openscript_agent.swc file must be included when
re-compiling Flex applications. The Flex application must be linked with the
OpenScript Flex agent located in
<installdir>\OpenScript\plugins\oracle.oats.scripting.modules.flexFT_
version\flexagent\openscript_agent.swc or equivalent.

11.2 Recording Adobe Flex Functional Tests
The Adobe Flex Functional Test Module records web applications that use the Adobe
Flex Automation Framework. The Recorder creates functional and regression test
scripts for automating testing of Adobe Flex applications.

Events are recorded as they are generated by the Adobe Flex Automation Framework
and played back through the framework.

The Adobe Flex Functional Test Module provides the object/attribute information for
OpenScript to record interactions with those controls. Actions will be captured in the
test script as OpenScript "flexFT" commands. Other components are standard Web
controls which are captured as standard OpenScript "web" commands using Web
Functional Test object attributes. Object Identification attributes can later be modified
by users through the Preferences global settings for new scripts or for already recorded
commands in the tree view or code view.

The Adobe Flex Functional Test Module provides a record toolbar button that lets you
initiate the Adobe Flex recorder and capture Web/Adobe Flex events to the script
view. The record toolbar includes start and stop recording toolbar buttons. OpenScript
recorders also open a floating toolbar that can be used while recording without having
to switch between the browser and OpenScript.

11.2.1 Recording Adobe Flex Functional Test Scripts
To record Adobe Flex Functional Test scripts:

1. Start OpenScript.

2. Set the Adobe Flex Functional Test Recording preferences.

3. Select New from the File menu.

4. Expand the Functional Testing group.

5. Select Adobe Flex (The Adobe Flex script combines both Web and Adobe Flex
technologies as part of the same script).

6. Click Next.

7. Select the Repository and Workspace.

8. Enter a script name.

9. Click Finish. A new Script tree is created in the Script View.

10. Select Record from the Script menu. The browser automatically opens when you
start recording.

Playing Back Scripts

11-4 Oracle Functional Testing OpenScript User's Guide

11. Load the web page where you want to start recording into the browser.

12. Navigate the web site to record page objects, actions, and navigations. The page
objects, actions, and navigations will be added to the node of the script tree
specified by the Set Record Section setting (the Run node is the default).

13. When finished navigating pages, close the browser.

14. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

15. Expand the Run node of the script to view the page objects, actions, and
navigation nodes in the script tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

11.3 Playing Back Scripts
OpenScript plays back recorded Adobe Flex actions/commands which consist of an
event plus an object identified by its attributes (for example:
flexFT.combobox(objectId Path).select("Visa",
TriggerEvent.Mouse, KeyModifier.None);). The objectId Path are
hierarchical sets of object properties used to identify a specific UI component in the
flex application.

The actions used for playback will either be those that are recorded or specified
manually in the Java Code view. Unattended playback is supported through Oracle
Test Manager or third-party tools using OpenScript's command line interface. Adobe
Flex Functional Test scripts do not play in Oracle Load Testing.

The Adobe Flex Functional Test Module provides playback and iterate toolbar buttons
that allows users to start the script playback for either a single playback through the
script or multiple iterations using data from a databank file. Playback results for
Adobe Flex Functional scripts can be viewed in the Results and Console views.

11.3.1 Adobe Flex Object Identification
The Adobe Flex Functional Test Module uses object identification to specify attributes
used to identify Adobe Flex objects. The Adobe Flex Functional Test Module uses the
same predefined path attributes for common Web objects as the Web Functional Test
Module; however, Adobe Flex Test Automation provides additional attributes to
identify Flex controls. Object paths are specified in XPath format. For example the
object identification path appears as follows in Java code commands:

flexFT.tree(8,"/web:window[@index='0' or @title='Adobe Flex 3 Component Explorer']
/web:document[@index='0']
/flex:application[@automationIndex='index:-1' and
@automationName='explorer' and
@automationClassName='FlexApplication' and
@className='explorer' and
@label='' and
@id='explorer']

/flex:dividedBox[@className='mx.containers.HDividedBox' and
@id='null' and

Note: Do not close the script editor view or script project while
recording or playing back scripts. Doing so could result in
unpredictable behavior in the OpenScript application.

Playing Back Scripts

Using the Adobe Flex Functional Test Module 11-5

@automationIndex='index:0' and
@automationName='index:0' and
@automationClassName='FlexDividedBox' and
@label='']

/flex:panel[@automationIndex='index:0' and
@automationName='Adobe%20Flex%203%20Component%20Explorer' and
@automationClassName='FlexPanel' and
@className='mx.containers.Panel' and
@label='' and
@id='null']

/flex:tree[@automationIndex='index:0' and
@automationName='compLibTree' and
@automationClassName='FlexTree' and
@className='mx.controls.Tree' and
@id='compLibTree']")

.select("Visual Components>Button Controls>CheckBox",
TriggerEvent.Mouse, KeyModifier.None);

You can set the default Web object attributes in the Web Functional Test Module
Record Preferences. You can also edit object attributes in recorded scripts in the tree
view or the code view. The Adobe Flex object identification is provided by the Adobe
Flex Automation Framework when recording a component and are not set in
OpenScript Preferences.<

In addition to the predefined object identification, you can add an Object Library to the
script to record paths into a library file. Object Library files may be shared and reused
across other scripts. The Object Library files provide a more convenient "short name"
for objects to provide for more convenient programming.

11.3.2 Playing Back Adobe Flex Functional Scripts
To play back Adobe Flex Functional scripts:

1. Start OpenScript.

2. Open the Adobe Flex Functional script to play back.

3. Select Playback from the Script menu or click the toolbar button.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

11.3.3 Playing Back Adobe Flex Functional Scripts with Iterations
To play back Adobe Flex Functional scripts with iterations:

1. Start OpenScript.

2. Open the Adobe Flex Functional script to play back.

3. Select Iterate from the Script menu or click the toolbar button.

4. Set the iteration count.

5. Select which databank file to use, if necessary.

6. Set the starting record for the selected databank in the Databank Settings section.
See Section 4.2.4, "Playing Back Scripts With Iterations" for additional information
about iteration settings.

7. Click OK.

Modifying Scripts

11-6 Oracle Functional Testing OpenScript User's Guide

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

11.4 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

11.4.1 Adding Flex Actions
The Adobe Flex Module includes actions for Adobe Flex objects that can be added to a
script.

To add Forms actions to a script:

1. Record a Adobe Flex Functional Test script.

2. Select the script node where you want to add the action.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Flex Action node.

5. Expand an action node and select the action.

6. Click OK.

7. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path.

8. Enter any required values to use for the object action.

9. Click OK. The action node is added to the script tree.

In the Java Code view, a flexFT.object(objectId).action() method will
be added to the script code:

flexFT.tree(8,"/web:window[@index='0' or @title='Adobe Flex 3 Explorer']
/web:document[@index='0']
/flex:application[@automationIndex='index:-1' and
@automationName='explorer' and
@automationClassName='FlexApplication' and
@className='explorer' and
@label='' and
@id='explorer']

/flex:dividedBox[@className='mx.containers.HDividedBox' and
@id='null' and
@automationIndex='index:0' and
@automationName='index:0' and
@automationClassName='FlexDividedBox' and
@label='']

/flex:panel[@automationIndex='index:0' and
@automationName='Adobe%20Flex%203%20Explorer' and
@automationClassName='FlexPanel' and
@className='mx.containers.Panel' and
@label='' and
@id='null']

/flex:tree[@automationIndex='index:0' and
@automationName='compLibTree' and
@automationClassName='FlexTree' and
@className='mx.controls.Tree' and
@id='compLibTree']")

.select("Visual Components>Button Controls>CheckBox",

Modifying Scripts

Using the Adobe Flex Functional Test Module 11-7

TriggerEvent.Mouse, KeyModifier.None);

The Adobe Flex Functional Test Module can also perform actions on Adobe
Flex-specific objects such as Accordion, AdvancedDataGrid, Alert, Application,
AreaChart, AreaSeries, AxisRenderer, BarChart, BarSeries, Box, BubbleSeries,
Button, ButtonBar, Canvas, CartesianChart, Chart, ChartLegend, ChartSeries,
Checkbox, ColorPicker, ColumnChart, ColumnSeries, ComboBase, ComboBox,
Container, DataGrid, DateChoser, DateField, DisplayObject, DivideBox, Form,
FormItem, HLOChart, Image, Label, LineChart, LineSeries, LinkBar, List, ListBase,
ListLabel, Loader, Menu, MenuBar, NavigationBar, NumericStepper,
OLAPDataGrid, Panel, PieChart, PlotSeries, PopUpButton, ProgressBar,
RadioButton, Repeater, Rule, ScrollBar, ScrollBase, Slider, TabNavigator, TextArea,
TitleWindow, ToggleButtonBar, Tree, UIMovieClip, VideoDisplay, ViewStack.

11.4.2 Adobe Flex Action Dialog Box
The Adobe Flex Action Dialog Box lets you specify actions to perform on Flex-specific
objects. The available options and settings depend upon the type of Flex object and the
specific action to perform on the object. The resulting dialog box can display the
following sections and fields:

Action: Shows the type of action to perform on the Flex object.

Object: Shows the type of Flex object on which to perform on the action.

Path: Specifies the object identification path used to identify the object in the
application.

Value/Values: Specifies the values to use to perform an action on a Flex object. The
values vary depending upon the object type and action. All index values are
zero-based.

■ Action: A String that specifies the action for drag and drop operations on controls.

■ Begin Index: An Integer that specifies the beginning index of the SelectText action
for ColorPicker, ComboBase, ComboBox, DateField, NumericStepper, and
TextArea controls.

■ Click Target: Specifies the target of a click action. Enter "thumb" or "track" to
specify either the slider track or slider thumb. This setting is used with the Change
action for Slider controls.

■ Color: A String that specifies the Hexadecimal RGB (i.e. #003366) color value for
change actions on ColorPicker controls.

■ Column Index: An Integer that specifies the index of the column being clicked,
edited, or stretched in Grid-type controls.

■ Data Field: A String that specifies the Header data field for click actions on
Grid-type controls.

■ Delta: An Integer value that specifies the change in value for mouse scroll actions.

Note: When adding Table, Object, or other OpenScript tests on Flex
controls, you should add some Think time to the script between the
OpenScript test node and the Flex control being tested. The Think
time should be enough time to allow the Flex control to load
completely before the OpenScript test is executed. If the OpenScript
test is executed before the Flex control loads, an error will occur.

Modifying Scripts

11-8 Oracle Functional Testing OpenScript User's Guide

■ Dragged Item: A String that specifies the item dragged in DragStart and
DragDrop actions on controls.

■ End Index: An Integer that specifies the ending index of the SelectText action for
ColorPicker, ComboBase, ComboBox, DateField, NumericStepper, and TextArea
controls.

■ Header Part: A String that specifies the headerTextPart or headerIconPart for
HeaderClick actions on AdvancedDataGrid and OLAPDataGrid controls.

■ Hit Set: A Double that represents chart series data point for ClickSeries,
DoubleClick, or ItemRollOver actions on AreaSeries, BarSeries, BubbleSeries,
ChartSeries, ColumnSeries, LineSeries, PieSeries, and PlotSeries controls.

■ Item Renderer: A String that specifies the item within Combo, Grid, Tree, and
List-type controls.

■ Key Code: A String that specifies the key code to use for Type actions on controls.
The Key Codes correspond to the Adobe ActionScript key codes.

■ Key Modifier: Specifies the modifier to use for keyboard trigger events. Keyboard
actions can include modifiers such as Ctrl, Alt, Shift, or combinations of modifiers
such as Ctrl-Alt, or Shift-Alt.

– None: When selected, no keyboard modifier is used for keyboard trigger
events.

– Ctrl: When selected, the Ctrl key is used as the keyboard modifier for
keyboard trigger events. For example, Ctrl-key.

– CtrlShift: When selected, the Ctrl-Shift key combination is used as the
keyboard modifier for keyboard trigger events. For example, Ctrl-Shift-key.

– Alt: When selected, the Alt key is used as the keyboard modifier for keyboard
trigger events. For example, Alt-key.

– CtrlAlt: When selected, the Ctrl-Alt key combination is used as the keyboard
modifier for keyboard trigger events. For example, Ctrl-Alt-key.

– ShiftAlt: When selected, the Shift-Alt key combination is used as the keyboard
modifier for keyboard trigger events. For example, Shift-Alt-key.

– CtrlShiftAlt: When selected, the Ctrl-Shift-Alt key combination is used as the
keyboard modifier for keyboard trigger events. For example, Ctrl-Shift-Alt-key.

■ Local X: Specifies the mouse coordinate X position within the control for
ColumnStretch and MouseMove actions on controls.

■ Local Y: Specifies the mouse coordinate X position within the control for
MouseMove actions on controls.

■ Moving Column Index: An Integer that specifies the index of the
ColumGroupedADGHeader being shifted in AdvancedDataGrid and
OLAPDataGrid controls.

■ New Column Index: An Integer that specifies the new index of the
ColumGroupedADGHeader being shifted in AdvancedDataGrid and
OLAPDataGrid controls.

■ New Index: An Integer that specifies the new index of the header being shifted in
AdvancedDataGrid and OLAPDataGrid controls.

■ Old Column Index: An Integer that specifies the old index of the
olumGroupedADGHeader being shifted in AdvancedDataGrid and
OLAPDataGrid controls.

Modifying Scripts

Using the Adobe Flex Functional Test Module 11-9

■ Old Index: An Integer that specifies the old index of the header being shifted in
AdvancedDataGrid and OLAPDataGrid controls.

■ Position: An Integer that specifies the position number within scroll-type controls.

■ Scroll Direction: Specifies the direction to scroll an object.

– vertical: When selected, the scroll action is vertical.

– horizontal: When selected, the scroll action is horizontal.

■ Scroll Detail: Specifies the scroll bar detail within scroll-type controls.

– atLeft: When selected, the scroll bar is put to the left of its scrolling range.

– atTop: When selected, the scroll bar is put to the top of its scrolling range.

– atRight: When selected, the scroll bar is put to the right of its scrolling range.

– atBottom: When selected, the scroll bar is put to the bottom of its scrolling
range.

– lineLeft: When selected, the scroll bar is moved one line to the left in the
scrolling range.

– lineUp: When selected, the scroll bar is moved one line up in the scrolling
range.

– lineRight: When selected, the scroll bar is moved one line to the right in the
scrolling range.

– lineDown: When selected, the scroll bar is moved one line down in the
scrolling range.

– pageLeft: When selected, the scroll bar is moved one page to the left in the
scrolling range.

– pageUp: When selected, the scroll bar is moved one page up in the scrolling
range.

– pageRight: When selected, the scroll bar is moved one page to the right in the
scrolling range.

– pageDown: When selected, the scroll bar is moved one page down in the
scrolling range.

– thumbTrack: When selected, the scroll action is moving.

– thumbPosition: When selected, the scroll action is stopped.

■ Related Object: Specifies a related object for container-type controls such as
Accordion, ButtonBar, LinkBar, NavigationBar, NumericStepper, TabNavigator,
and ToggleButtonBar.

■ Row Index: An Integer that specifies the index of the row being edited in
AdvancedDataGrid and OLAPDataGrid controls.

■ Shift Key: Specifies if the Shift Key should be used with the Key code. Valid
values are True and False. This setting is used with the ChangeFocus action in all
control types.

■ Text: A String that specifies the text or password text use for Input or Password
Input actions on TextArea controls.

■ Thumb Index: Specifies the index of the thumb on which to perform Change
actions on Slider controls.

■ Trigger Event: Specifies the action to use to trigger the event on the object.

Modifying Scripts

11-10 Oracle Functional Testing OpenScript User's Guide

– Mouse: When selected, a mouse action triggers the event on the object.

– Keyboard: When selected, a keyboard action triggers the event on the object.
Specify the Key Modifier to use with the keyboard event trigger.

■ Value: A Double that specifies the value to use for Change actions on Slider
controls.

11.4.3 Using the Adobe Flex Functional Test Module API
The Adobe Flex Functional Test Module includes a script Application Programming
Interface (API) specific to Adobe Flex functional testing. The Adobe Flex Functional
Test Module recorder creates the Java code that corresponds to the Tree View and
displays the Adobe Flex Functional Test commands in the Java Code view using
easy-to-understand function names. The Java Code view commands correspond to the
Tree View and you can edit your scripts in either view.

You can use the Adobe Flex Functional Test API to enhance recorded scripts with
additional testing functionality. Commands that are specific to the Adobe Flex
Functional Testing Module are part of the "flexFT" class. Additional functional test
methods are available in the "web" and "ft" classes. You can also leverage other
commands from other enabled classes (services) or general Java commands in your
scripts.

Some examples of the Adobe Flex Testing Module API include:

■ Accordion

■ AdvancedDataGrid

■ Alert

■ Application

■ AreaChart

■ AreaSeries

■ AxisRenderer

■ BarChart

■ BarSeries Box

■ BubbleSeries

■ Button

■ ButtonBar

■ Canvas

■ CartesianChart

■ Chart

■ ChartLegend

■ ChartSeries

■ Checkbox

■ ColorPicker

■ ColumnChart

■ ColumnSeries

Modifying Scripts

Using the Adobe Flex Functional Test Module 11-11

■ ComboBase

■ ComboBox

■ Container

■ DataGrid

■ DateChoser

■ DateField

■ DisplayObject

■ DivideBox

■ Form

■ FormItem

■ HLOChart

■ Image

■ Label

■ LineChart

■ LineSeries

■ LinkBar

■ List

■ ListBase

■ ListLabel

■ Loader

■ Menu

■ MenuBar

■ NavigationBar

■ NumericStepper

■ OLAPDataGrid

■ Panel

■ PieChart

■ PlotSeries

■ PopUpButton

■ ProgressBar

■ RadioButton

■ Repeater

■ Rule

■ ScrollBar

■ ScrollBase

■ Slider

■ TabNavigator

Modifying Scripts

11-12 Oracle Functional Testing OpenScript User's Guide

■ TextArea

■ TitleWindow

■ ToggleButtonBar

■ Tree

■ UIMovieClip

■ VideoDisplay

■ ViewStack

Many API methods can be added using the Adobe Flex Functional Test Module Tree
View. Additional methods can be added using the Java Code view. Use Ctrl-space in
the Java Code view to open an Intellisense window listing available procedures. See
the API Reference in the OpenScript help for additional programming information.

12

Using the Adobe Flex (AMF) Load Test Module 12-1

12Using the Adobe Flex (AMF) Load Test
Module

This chapter provides instructions on configuring and using the OpenScript Adobe
Flex (AMF) Load Test Module, which provides support for load testing of Adobe Flex
(AMF) web applications.

12.1 About the Adobe Flex (AMF) Load Test Module
The Adobe Flex (AMF) Load Test Module is an extension module to the OpenScript
HTTP Module that extends the Web testing with Adobe Flex Action Message Format
Load Test recording and playback capabilities. The Adobe Flex (AMF) Load Test
Module is fully integrated with the OpenScript platform including the Results view,
Details view, Properties view, Console/Problems views, Preferences, Step Groups,
Script Manager, and Workspace Manager. The Adobe Flex (AMF) Load Test Module
provides the following features:

The Adobe Flex (AMF) Load Test recorder displays commands in the Tree View in
easy-to-understand commands. By default, script commands are grouped into Steps
Groups by the Web page on which they were performed. Each Step Group contains
one or more script commands corresponding to recorded actions that were performed
on the page. The default name for the Step Group is the Web page Title (as specified in
the "Title" tag) or the Flex application operation name.

OpenScript shows the results of Adobe Flex (AMF) Load Test script playback in the
Results view. The Results view shows results for each script command (including
duration and summary for failures). The Results Report compiles the same
information into an HTML Results Report. Results can be exported from the
OpenScript GUI in standard format (CSV / HTML). Results are also generated for
unattended playback through the command line.

The Adobe Flex (AMF) Load Test Module API includes an "amf" class that provides
additional programming functionality.

12.1.1 Key Features of the Adobe Flex (AMF) Load Test Module
■ The Adobe Flex (AMF) Load Test Script Module. The New Project wizard (New

from the File menu) includes an "Adobe Flex (AMF)" option in the Load Test
Group to use when creating Adobe Flex (AMF) load testing projects in OpenScript.
The Adobe Flex (AMF) Load Test Script Module records Adobe Flex (AMF)
applications by converting binary AMF streams to XML/text format during
recording to allow easy editing of parameters. XML/text format is converted back
to binary AMF streams during playback.

Recording Adobe Flex (AMF) Load Tests

12-2 Oracle Functional Testing OpenScript User's Guide

■ Correlation Library. The Adobe Flex (AMF) Load Test Module includes an Adobe
Flex (AMF)-specific library of correlation rules for parameterizing scripts.

■ Test Cases (Validation). The Adobe Flex (AMF) Load Test Module can perform
Adobe Flex AMF requests, Text Matching tests, and solve variables by regular
expressions or XPath.

■ Adobe Flex (AMF)-Specific Application Programming Interface (API). The Adobe
Flex (AMF) Load Test Module includes a Adobe Flex (AMF) Load Test Module
API Specification that can be used to customize Adobe Flex (AMF)-specific scripts.

12.2 Recording Adobe Flex (AMF) Load Tests
The Adobe Flex (AMF) Load Test Module records Adobe Flex-based web applications
that use the Action Message Format (AMF). The Recorder creates load test scripts for
automating testing of Adobe Flex (AMF) applications.

Adobe Flex is a collection of technologies released by Adobe Systems for the
development and deployment of cross platform, rich Internet applications based on
the proprietary Adobe Flash platform. The OpenScript Adobe Flex (AMF) Load Test
Module captures the binary AMF and converts the stream to human-readable XML to
record interactions with those controls. Actions will be captured in the test script as
OpenScript "amf" commands. Other components are standard Web controls which are
captured as standard OpenScript "http" navigation commands. Correlation rules can
be modified by users through the Preferences settings for new scripts.

The Adobe Flex (AMF) Load Test Module provides a record toolbar button that lets
you initiate the Adobe Flex (AMF) recorder and capture Web/Adobe Flex (AMF) page
actions to the script view. The record toolbar includes start and stop recording toolbar
buttons. OpenScript recorders also open a floating toolbar that can be used while
recording without having to switch between the browser and OpenScript.

12.2.1 Recording Adobe Flex (AMF) Load Test Scripts
To record Adobe Flex (AMF) Load Test scripts:

1. Start OpenScript.

2. Set the Adobe Flex (AMF) Load Test Correlation preferences.

3. Select New from the File menu.

4. Expand the Load Testing group.

5. Select Adobe Flex (AMF) (The Adobe Flex (AMF) script combines both HTTP and
Adobe Flex (AMF) technologies as part of the same script).

6. Click Next.

7. Select the Repository and Workspace.

8. Enter a script name.

9. Click Finish. A new Script tree is created in the Script View.

10. Select Record from the Script menu. The browser automatically opens when you
start recording.

11. Load the web page where you want to start recording into the browser.

12. Navigate the web site to record page objects, actions, and navigations. The page
objects, actions, and navigations will be added to the node of the script tree
specified by the Set Record Section setting (the Run node is the default).

Playing Back Scripts

Using the Adobe Flex (AMF) Load Test Module 12-3

13. When finished navigating pages, close the browser.

14. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

15. Expand the Run node of the script to view the page objects, actions, and
navigation nodes in the script tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

12.3 Playing Back Scripts
OpenScript plays back recorded Adobe Flex (AMF) requests by converting the XML
post message (for example: amf.post("description","urlPath",
"postMessageXML");) back to a binary stream before sending it to the server. The
actions used for playback will either be those that are recorded or specified manually
in the Java Code view. Unattended playback is supported through Oracle Test
Manager or third-party tools using OpenScript's command line interface.

The Adobe Flex (AMF) Load Test Module provides playback and iterate toolbar
buttons that allows users to start the script playback for either a single playback
through the script or multiple iterations using data from a databank file. Playback
results for Adobe Flex (AMF) Load scripts can be viewed in the Results and Console
views.

12.3.1 Playing Back Adobe Flex (AMF) Load Scripts
To play back Adobe Flex (AMF) Load scripts:

1. Start OpenScript.

2. Open the Adobe Flex (AMF) Load script to play back.

3. Select Playback from the Script menu or click the toolbar button.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

12.3.2 Playing Back Adobe Flex (AMF) Load Scripts with Iterations
To play back Adobe Flex (AMF) Load scripts with iterations:

1. Start OpenScript.

2. Open the Adobe Flex (AMF) Load script to play back.

3. Select Iterate from the Script menu or click the toolbar button.

4. Select Use Databanks.

5. Select which databank file to specify the settings for if more than one database is
configured for the script.

6. Specify the settings for the databank file.

Note: Do not close the script editor view or script project while
recording or playing back scripts. Doing so could result in
unpredictable behavior in the OpenScript application.

Modifying Scripts

12-4 Oracle Functional Testing OpenScript User's Guide

7. Select the Run no more than [] iterations option and set the iteration count to the
desired number of playback iterations. See Section 4.2.4, "Playing Back Scripts
With Iterations" for additional information about iteration settings.

8. Click OK.

You can view the progress of the script playback in the Console View. You can
review the results of script playback in the Results View.

12.4 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

12.4.1 Adding Adobe Flex (AMF) Load Actions
The Adobe Flex (AMF) Load Module includes actions for Adobe Flex (AMF) requests
that can be added to a script.

To add Adobe Flex (AMF) Load actions to a script:

1. Record an Adobe Flex (AMF) Load Test script.

2. Select the script node where you want to add the action.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Flex LT (AMF) node.

5. Expand an action node and select the action.

6. Click OK.

7. Enter the object identification path for the object. You can use the Capture or
Select menu options to capture or select an object path.

8. Enter any required values to use for the object action.

9. Click OK.

10. For AMF Requests, enter the description, URL and XML post message for the
request.

11. Click OK. The action node is added to the script tree.

In the Java Code view, a amf.post("description","urlPath",
"postMessageXML") method will be added to the script code (line breaks and
spacing added for clarity):

amf.post("Click the button", "http://oracle-xyz:8080/openamf/gateway",
"<?xml version=\"1.0\" encoding=\"utf-8\"?>\r\n
<amf version=\"0\">
<headers><header name=\"amf_server_debug\" required=\"true\">
<asobject type=\"NetDebugConfig\">
<entry key=\"m_debug\" type=\"boolean\">true</entry>
<entry key=\"coldfusion\" type=\"boolean\">true</entry>
<entry key=\"error\" type=\"boolean\">true</entry>
<entry key=\"amf\" type=\"boolean\">false</entry>
<entry key=\"trace\" type=\"boolean\">true</entry>
<entry key=\"httpheaders\" type=\"boolean\">false</entry>
<entry key=\"recordset\" type=\"boolean\">true</entry>
<entry key=\"amfheaders\" type=\"boolean\">false</entry>
</asobject>
</header></headers>

Adobe Flex (AMF) Load Test Correlation Library

Using the Adobe Flex (AMF) Load Test Module 12-5

<bodies>
<body operation=\"org.openamf.examples.Test3.getNumber\" response=\"/1\">
<list><item type=\"double\">123.456</item></list>
</body>
</bodies>
</amf>");

12.4.2 Using the Adobe Flex (AMF) Load Test Module API
The Adobe Flex (AMF) Load Test Module includes a script Application Programming
Interface (API) specific to Adobe Flex (AMF) load testing. The Adobe Flex (AMF) Load
Test Module recorder creates the Java code that corresponds to the Tree View and
displays the Adobe Flex (AMF) Load Test commands in the Java Code view using
easy-to-understand function names. The Java Code view commands correspond to the
Tree View and you can edit your scripts in either view.<

You can use the Adobe Flex (AMF) Load Test API to enhance recorded scripts with
additional testing functionality. Commands that are specific to the Adobe Flex (AMF)
Load Testing Module are part of the "amf" class. Additional test methods are available
in the "http" class. You can also leverage other commands from other enabled classes
(services) or general Java commands in your scripts.

Some examples of the Adobe Flex (AMF) Testing Module API include:

■ AMF Request (post)

■ Text Matching Test

■ Solve Regular Expression Variable

■ Solve XPath Variables

Many API methods can be added using the Adobe Flex (AMF) Load Test Module Tree
View. Additional methods can be added using the Java Code view. Use Ctrl-space in
the Java Code view to open an Intellisense window listing available procedures. See
the API Reference in the OpenScript help for additional programming information.

12.5 Setting Adobe Flex (AMF) Load Test Correlation Preferences
To set Setting Adobe Flex (AMF) Load Test Correlation preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Correlation category.

4. Select Adobe Flex LT (AMF).

5. Expand the Adobe Flex (AMF) Load Test library.

6. Select or clear the check boxes to enable or disable specific rules.

7. Click the Add or Edit buttons to modify rules in the library.

8. Click OK.

12.6 Adobe Flex (AMF) Load Test Correlation Library
The Adobe Flex (AMF) Load Test Module includes a correlation library that
automatically recognizes and substitutes Adobe Flex (AMF) parameters with
OpenScript variables and functions during script recording. The script nodes show the
Adobe Flex (AMF) entities included in the page navigation. The Adobe Flex (AMF)

Adobe Flex (AMF) Load Test Correlation Library

12-6 Oracle Functional Testing OpenScript User's Guide

Load Testing recorder automatically recognizes and parameterizes Adobe Flex (AMF)
entities for Load testing.

The tree view nodes show the recorded description for Adobe Flex (AMF) operations.
The Java code view shows the post parameters for the AMF request. For example:

amf.solve("flex.dsid","<entry key=\"DSId\" type=\"string\">(.+?)</entry>",
"DSId is a required field", false, AmfSource.Content, 0, null);

amf.post(10,"Operation('todoService.getList')",
"http://oracle-xyz:8080/todolist-web/messagebroker/amf",
"<?xml version=\"1.0\" encoding=\"utf-8\"?>\r\n
<amf version=\"3\">
<headers />
<bodies>
<body operation=\"null\" response=\"/2\">
<list>
<item type=\"object\">
<flex.messaging.messages.RemotingMessage>
<body type=\"object\"><list /></body>
<clientId type=\"object\" isNull=\"true\" />
<correlationId type=\"object\" isNull=\"true\" />
<destination type=\"string\">todoService</destination>
<headers type=\"object\">
<map>
<entry key=\"DSId\" type=\"string\">
{{flex.dsid,FC6E956E-1309-78B0-B487-BB01891A57DD}}</entry>

<entry key=\"DSEndpoint\" type=\"string\">channel-amf</entry>
</map>
</headers>
<messageId type=\"string\">{{@guid()}}</messageId>
<operation type=\"string\">getList</operation>
<source type=\"string\" />
<timeToLive type=\"int\">0.0</timeToLive>
<timestamp type=\"int\">0.0</timestamp>
</flex.messaging.messages.RemotingMessage>
</item>
</list>
</body>
</bodies>
</amf>");

Additional libraries and rules can be added using the OpenScript Correlation library
Preferences for Adobe Flex (AMF) Load Test.

The Adobe Flex (AMF) correlation library defines the correlation rules for Adobe Flex
(AMF)-based applications. The correlation rules specify the variable names and
regular expressions to use to replace dynamic data in Adobe Flex (AMF) applications
and navigations. The default Adobe Flex (AMF) correlation library provided with the
OpenScript Adobe Flex (AMF) Load Test Module includes the following correlation
rules:

■ Java Session id - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern jsessionid=(.+?)(?:"|&;) and
replaces it with the variable name http.jsessionid in all locations.

■ Web Dom Correlation - DOM Correlation - this rule implements the default Web
Document Object Model correlation rules for Adobe Flex (AMF) applications.

■ Client Set Cookie - Client Set Cookie - this rule type automatically transforms
web page cookie objects with dynamic data.

Adobe Flex (AMF) Load Test Correlation Library

Using the Adobe Flex (AMF) Load Test Module 12-7

■ Correlate Header - Correlate Headers - this rule type automatically transforms
web page header objects with dynamic data.

■ Time Stamp - Function/Text Substitution - this rule locates text in the HTML
matching the Regular Expression pattern timestamp=((\d{13,})) and
replaces it with the {{@timestamp}} function in the specified locations.

■ Correlate Cookie Header - Correlate Cookie Header - this rule type automatically
transforms web page cookie header objects with dynamic data.

■ Correlate Destination Id - Variable Substitution - this rule locates text in the
HTML matching the Regular Expression pattern <entry key="DSId"
type="string">(.+?)</entry> and replaces it with the variable name
flex.dsid in all locations.

■ Message Id - Function/Text Substitution - this rule locates text in the HTML
matching the Regular Expression pattern <messageId
type="string">((.+?))</messageId> and replaces it with the {{@guid}}
function in the specified locations.

Adobe Flex (AMF) Load Test Correlation Library

12-8 Oracle Functional Testing OpenScript User's Guide

13

Using the Web Services Module 13-1

13Using the Web Services Module

This chapter provides instructions on using the OpenScript Web Services Module,
which supports testing of Web Services.

13.1 About the Web Services Module
The Web Services Module is an application module that supports testing of Web
Services. The Web Services Module is an extension to the HTTP Module. The
OpenScript Web Services module includes the following features:

■ The Web Services Module. The New Project wizard (select New from the File
menu) includes a "Web Services Script" option to use when creating Web Services
scripts in OpenScript.

■ Support for SOAP Protocols. The Web Service Module supports the SOAP 1.1 and
1.2 protocols.

■ Support for multiple parsers. The Web Service Module supports the multiple
WSDL parsers. In addition to the default OpenScript and Oracle parsers,
OpenScript can also be configure to use apache AXIS and .Net parsers.

■ WSDL Manager. The OpenScript WSDL Manager lets you import and store Web
Services Definition files for creating Web Services scripts. Using the WSDL
Manager, you add Web Services methods to the OpenScript tree.

■ XML Editor. The OpenScript XML Editor lets you edit Web Services requests to
include either static values or variables.

■ Web Services-specific Application Programming Interface (API). The Web Services
Module includes a Web Services Module API Specification that can be used to
customize Web Services scripts.

13.1.1 Key Features of the Web Services Module
The Web Services Module is an extension module to HTTP Module that extends the
platform with Web Services testing capabilities. The Web Services Module is fully
integrated with the OpenScript platform including the Results view, Details view,
Properties view, Console/Problems views, Preferences, Step Groups, Script Manager,
and Workspace Manager.

The Web Services methods are added to the Script tree using the WSDL Manager. Web
Services method postdata parameters can be edited using the XML Editor features of
the Details View.

OpenScript shows the results of Web Services script playback in the Results view. The
Results view shows results for each script command (including duration and

Creating Web Services Scripts Using WSDL Manager

13-2 Oracle Functional Testing OpenScript User's Guide

summary for failures). The Results Report compiles the same information into an
HTML Results Report. Results can be exported from the OpenScript GUI in standard
format (CSV / HTML). Results are also generated for unattended playback through
the command line.

The Web Services Module API includes a "ws" class that provides additional
programming functionality.

13.2 Creating Web Services Scripts Using WSDL Manager
Creating Web Services scripts using WSDL Manager involves the following major
steps:

1. Create a Web Services script tree.

2. Add WSDL files to the WSDL Manager view.

3. Add methods from the WSDL Manager to the script tree.

4. Edit method parameters in the Details view.

The following sections explain each of the major steps.

13.2.1 Creating the Web Services Script Tree
To create a Web Services script tree:

1. Start OpenScript.

2. Select New from the File menu.

3. Expand the General group and select Web Services.

4. Click Next.

5. Select the Repository and Workspace.

6. Enter a script name.

7. Click Finish. A new Script tree is created in the Script View and the WSDL
Manager view appears.

13.2.2 Adding WSDL Files to the WSDL Manager View
To add files to the WSDL Manager view:

1. Click the Add icon in the WSDL Manager view.

2. Enter the URL to a the WSDL file or click Browse to select a local file.

3. Select the parser to use and set the Roll over option.

4. Click Next. The parsed methods appear.

5. Click Finish to add the parsed methods to the WSDL Manager view.

13.2.3 Adding Methods to the Script Tree
To add WSDL file methods from the WSDL Manager view to the script tree:

1. Expand the WSDL file tree in the WSDL Manager view.

2. Right-click the method to add and select Add to script from the shortcut menu.
The method will be added to the Run node of the script tree.

Modifying Scripts

Using the Web Services Module 13-3

In the Java Code view, a ws.method(method)/ws.endMethod() group with a
ws.post() method will be added to the script code, as follows:

ws.method("findApprovedPatientsByLastName");
{
ws.post(2, "http://server:7011/medrec-jaxws-services/PatientFacadeService",
"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>
<soapenv:Envelope
xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\"
xmlns:med=\"http://www.oracle.com/medrec\">\r\n
<soapenv:Header/>\r\n
<soapenv:Body>\r\n
<med:findApprovedPatientsByLastName>\r\n
<!--Optional:-->\r\n
<arg0>String</arg0>\r\n
</med:findApprovedPatientsByLastName>\r\n

</soapenv:Body>\r\n
</soapenv:Envelope>", null, true, null, null);

}
ws.endMethod();

13.2.4 Editing Method Parameters in the Details View
To edit WSDL file methods in the Details View:

1. Expand the Run node in the Script tree view.

2. Expand the WSDL method node in the Script tree view.

3. Select an XML post data node in the Script tree view.

4. Open the Details view and select the XML Tree tab.

5. Click a value in the right column of the XML Tree tab to edit the value.

or

Right-click a parameter in the left column of the XML Tree tab and select
Substitute Variable to select a variable name or Databank value to substitute for
the parameter value. If you parameterize a value with a Databank, the databank
variable appears as {{db.databankFileName.field,recordedValue}} in
the SOAP parameters. For example, the optional argument <arg0> in the above
postdata example would appear as
<arg0>{{db.customer.LastName,String}}</arg0>\r\n.

The XML source in the XML tab is not decoded by default. Right-click the XML
source in the XML tab and select Format to format the contents. When you format
the xml contents, the inner text of an element will be decoded. The following is an
example of the inner text of an element before formatting:

<soapenv name="google"">google"</soapenv>

 The following is an example of the inner text of an element after formatting:

<soapenv name="google"">google"</soapenv>

13.3 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

Modifying Scripts

13-4 Oracle Functional Testing OpenScript User's Guide

13.3.1 Adding a Web Services Post Navigation
To add a Web Services Post Navigation to a script:

1. Create a Web Services script.

2. Select the Run node.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the HTTP node.

5. Select the Web Services Post Navigation node from the Web Services group and
click OK.

6. On the Base URL tab, enter the URL, request and response charsets, and set the
Encode strings option.

7. On the Post Data tab, enter the SOAP protocol postdata XML.

8. On the Headers tab, use the Add button to add name/value pairs and actions to
the Base URL.

9. Click OK to add the Web Services Post Navigation node to the script tree.

In the Java Code view, the Web Services Post Navigation consists of the code
executed in the ws.Post method (line breaks and spacing added for clarity):

ws.post(2, "http://testserver2/EmployeeLookup/EmployeeLookup.asmx",
"<?xml version=\"1.0\" encoding=\"utf-8\"?>\r\n\r\n
<soapenv:Envelope

xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\"
xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"
xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\"
xmlns:web=\"http://oracle.com/webservices\"> \r\n

<soapenv:Header/> \r\n
<soapenv:Body> \r\n
<web:findEmployee soapenv:
encodingStyle=\"http://schemas.xmlsoap.org/soap/encoding/\"> \r\n
<criteria xmlns:enc=\"http://oracle.com/webservices/encodedTypes\"
xsi:type=\"enc:SearchCriteria\"> \r\n
<FirstName xsi:type=\"xsd:string\">string</FirstName> \r\n
<LastName xsi:type=\"xsd:string\">string</LastName> \r\n
<EmployeeID xsi:type=\"xsd:int\">3</EmployeeID> \r\n

</criteria> \r\n
</web:findEmployee> \r\n

</soapenv:Body> \r\n
</soapenv:Envelope>",

http.headers(http.header("Content-Type", "text/xml",
Header.HeaderAction.Modify),
http.header("SOAPAction","\"http://oracle.com/webservices/findEmployee\"",
Header.HeaderAction.Add)),

false, "UTF-8", "UTF-8");

13.3.2 Adding a Text Matching Test
You can use Text Matching Tests to report an error and/or abort the script if a request
does not match the Text Matching Test criteria.

To add a Text Matching Test to a Web Services script:

1. Create a Web Services script.

2. Expand the Run node.

Modifying Scripts

Using the Web Services Module 13-5

3. Select the Web Services postdata node where you want to add the Text Matching
test.

4. Select the Script menu and then select Other from the Add menu.

5. Select Text Matching Test from the Validation group.

6. Enter a name for the test.

7. Enter the Text to Match.

8. Enter any error message text to log if the test fails.

9. Select the source location to look for the text to match: HTML or Response Header.

10. Select the Pass when setting.

Selected text is present: the test case passes if the Text to Match string is found in
the selected source.

Selected text is absent: the test case passes if the Text to Match string is not found
in the selected source.

11. Select the Regular Expression option if the Text to Match is a Regular Expression.
Clear the Regular Expression option if the Text to Match is plain text.

12. Click OK to add the Text Matching Test node to the script tree.

In the Java Code view, the Text Matching Test consists of the code executed in the
http.match method (line breaks and spacing added for clarity):

http.match("Test name", "Text to Match", "Error Message",
Source location = Source.Html | Source.ResponseHeader,
pass when present = false | pass when absent = true,
is not RegExp = false | is RegExp = true);

Example:

http.match("MyTXTMatch", "Login", "Could not find login", Source.Html, false,
false);

Set the default Error recovery setting for the HTTP Text Matching test in the
OpenScript playback preferences.

13.3.3 Adding Security Extensions
You can add security extensions to Web Services scripts.

To add security extensions to a Web Services script:

1. Create a Web Services script.

2. Expand the Run node.

3. Select the Web Services method node where you want to add the security and
attachments.

4. Select the Script menu and then select Other from the Add menu.

5. Expand the HTTP node.

6. Select Web Services Security Attachments from the Web Services group and click
OK.

7. If necessary click the WS-Security tab.

Modifying Scripts

13-6 Oracle Functional Testing OpenScript User's Guide

8. Enter a URL. If you selected a Web Services navigation node in the script tree, the
URL will be automatically entered.

9. Select User Username Token

10. Enter the user name and password.

Username: specifies the user name to use for the Username Token in the XML
request.

Password: specifies the password to use for the Username Token in the XML
request.

Confirm Password: confirms the password.

11. Select the password type: Password Text or Password Digest.

Password Text: when selected, the password in the XML request is included as
plain text. The URI attribute for the <wsse:Password> element is set to
#PasswordText.

Password Digest: when selected, the password is encrypted. The URI attribute for
the <wsse:Password> element is set to #PasswordDigest.

12. Select or clear the Add Created Header, Add Nonce and Add Timestamp options.

Add Created Header: when selected, a creation timestamp is included in the
Username Token of the XML request for use in setting the server cache limit of
used nonces.

Add Nonce: when selected, a cryptographically random nonce value is included
in the Username Token of the XML request to provide a countermeasure for replay
attacks.

Add Timestamp: when selected, a timestamp value is included in the Web
Services security element of the XML request. The timestamp includes both
Created and Expires elements. Specify the Valid For number of seconds.

13. Click OK to add the Security Attachment node to the script tree.

In the Java Code view, the Security Attachment consists of the code executed in the
ws.addSecurityAttachments method (line breaks and spacing added for
clarity), as follows:

ws.addSecurityAttachments("url",
ws.security("userName", deobfuscate("password"),addCreatedHeader,
addNonce, addTimestamp, validFor), null);

If you add security and file attachments together, the
ws.addSecurityAttachments method includes both the ws.security and
ws.attachments methods (line breaks and spacing added for clarity), as follows:

ws.addSecurityAttachments("url",
ws.security("userName", deobfuscate("password"),true, true, true, 10),
ws.attachments(AttachmentMechanism.transferType,
ws.attachment("filename","attachmentPart")));

13.3.4 Adding Attachments
You can add file attachments to Web Services scripts.

To add file attachments to a Web Services script:

1. Create a Web Services script.

Modifying Scripts

Using the Web Services Module 13-7

2. Expand the Run node.

3. Select the Web Services method node where you want to add the security and
attachments.

4. Select the Script menu and then select Other from the Add menu.

5. Select Web Services Security Attachments from the Web Services group.

6. If necessary click the WS-Security tab.

7. Enter a URL. If you selected a Web Services navigation node in the script tree, the
URL will be automatically entered.

8. Click the Attachments tab.

9. Select the Transfer Type.

■ DEFAULT - uses the default transfer type specified by the Content-Type
header.

■ SWA - Security SOAP Messages with Attachments

■ MTOM - SOAP Message Transmission Optimization Mechanism

■ DIME - Direct Internet Message Encapsulation

10. Click Add.

11. Enter the path and file name or click Browse to select a file.

12. If the Web Services method includes any Attachment Part object identifiers, select
an Attachment Part from the list. If the Web Services method does not include any
Attachment Part object identifiers, the list will be empty.

13. Click OK to add the Security Attachment node to the script tree.

In the Java Code view, the Security Attachment consists of the code executed in the
ws.addSecurityAttachments method (line breaks and spacing added for
clarity) as follows:

ws.addSecurityAttachments("url", null,
ws.attachments(AttachmentMechanism.transferType,
ws.attachment("filename","attachmentPart")));

If you add security and file attachments together, the
ws.addSecurityAttachments method includes both the ws.security and
ws.attachments methods (line breaks and spacing added for clarity), as follows:

ws.addSecurityAttachments("url",
ws.security("userName", deobfuscate("password"),true, true, true, 10),
ws.attachments(AttachmentMechanism.transferType,
ws.attachment("filename","attachmentPart")));

The following example Web Services script method shows the
ws.addSecurityAttachments method with a ws.post postdata method used
to upload a file. The ws.post method specifies the SOAP Envelope postdata,
Content-Type, and SOAP Action.

ws.method("upload");
{
ws.addSecurityAttachments("http://myurl.com:8080/services/MTOMService",
ws.security("username",deobfuscate("5blNah5kX/XuZnepYwInFw=="),
true, true, true, 20),

ws.attachments(AttachmentMechanism.MTOM,
ws.attachment("C:\\OracleATS\\OFT\\test.txt", "<upload>776598931581")));

Recording Web Services Scripts

13-8 Oracle Functional Testing OpenScript User's Guide

ws.post(15, "http://myurl.com:8080/services/MTOMService",
"<soapenv:Envelope

xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\"
xmlns:ser=\"http://service.interop.mtom.sample\">\r\n

<soapenv:Header/>\r\n
<soapenv:Body>\r\n
<ser:upload>\r\n
<!--Optional:-->\r\n
<ser:fileName>string</ser:fileName>\r\n
<!--Optional:-->\r\n
<ser:contents>cid:776598931581</ser:contents>\r\n

</ser:upload>\r\n
</soapenv:Body>\r\n

</soapenv:Envelope>",
http.headers(http.header("Content-Type", "text/xml;charset=UTF-8",

Header.HeaderAction.Modify),
http.header("SOAPAction", "\"urn:upload\"",
Header.HeaderAction.Modify)),

true, null, null);
}
ws.endMethod();

13.3.5 Web Services Module API
The Web Services Module includes a script Application Programming Interface (API)
specific to Web Services testing. The Web Services script creates the Java code that
corresponds to the Tree View and displays the Web Services commands in the Java
Code view using easy-to-understand function names. The Java Code view commands
correspond to the Tree View and you can edit your scripts in either view.

You can use the Web Services API to enhance scripts with additional testing
functionality. Commands that are specific to the Web Services Module are part of the
"ws" class. Additional functional test methods are available in the "http" class. You can
also leverage other commands from other enabled classes (services) or general Java
commands in your scripts.

Many API methods can be added using the Web Services Test Module Tree View.
Additional methods can be added using the Java Code view. Use Ctrl-space in the Java
Code view to open an Intellisense window listing available procedures. See the API
Reference in the OpenScript help for additional programming information.

13.4 Recording Web Services Scripts
If you have a Web Services client application written already that communicates over
HTTP and which communicates through a proxy, you can record the traffic using thee
OpenScript HTTP recorder.

13.4.1 Setting Web Services Record Preferences
To set Web Srvices record preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Record category.

4. Select Web Services.

Recording Web Services Scripts

Using the Web Services Module 13-9

5. Click the tabs and set the preferences.

6. Click OK.

13.4.2 Recording Web Services Scripts
To record Web Services script:

1. Start OpenScript.

2. Set the Web Services Recording preferences.

3. Select New from the File menu.

4. Expand the General group and select Web Services.

5. Click Next.

6. Select the Repository and Workspace.

7. Enter a script name.

8. Click Finish. A new Script tree is created in the Script View and the WSDL
Manager view appears.

9. Select Record from the Script menu. The browser automatically opens when you
start recording.

10. Load the web page where you want to start recording into the browser.

11. Navigate the web site to record navigations. The navigations will be added to the
node of the script tree specified by the Set Record Section setting (the Run node is
the default).

12. When finished navigating pages, close the browser.

13. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

14. Expand the Run node of the script to view the page navigation nodes in the script
tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

Note: Do not close the script editor view or script project while recording or
playing back scripts. Doing so could result in unpredictable behavior in the
OpenScript application.

Recording Web Services Scripts

13-10 Oracle Functional Testing OpenScript User's Guide

14

Using the Siebel Functional Test Module 14-1

14Using the Siebel Functional Test Module

This chapter provides instructions on configuring and using the OpenScript Siebel
Functional Test Module, which tests Siebel applications by accessing objects through
the Document Object Model (DOM) of the Web browser and the Siebel test automation
framework.

14.1 About the Siebel Functional Test Module
The Siebel Functional Test Module provides support for functional testing of Siebel
web applications. The Siebel Functional Test Module is an extension module to the
OpenScript Web Functional Test Module that extends the Web testing with Siebel
Functional Test recording and playback capabilities. The Siebel Functional Test Module
is fully integrated with the OpenScript platform including the Results view, Details
view, Properties view, Console/Problems views, Preferences, Step Groups, Script
Manager, and Workspace Manager.

14.1.1 Key Features of the Siebel Functional Test Module
The Siebel Functional Test Module includes the following features:

■ Records Standard Siebel High Interactivity (HI) and Standard Interactivity (SI)
components for Siebel versions 7.7, 7.8, 8.0 and 8.1 through integration with Siebel
Test Automation CAS Library.

■ Plays back recorded Siebel actions/commands which consist of an event plus
object identified by its attributes (for example: GotoScreenlink
pageTabs("SiebePageTabs") Accounts Screen).

■ Provides full script code view integration to support script generation for the
Siebel Functional Test Module. The Siebel Functional Test Module includes an
additional API to support Siebel Functional Test protocol code scripting.

■ Allows users to parameterize user inputs to Siebel Functional Test scripts and
drive those inputs from an external data file (Databank).

■ Allows users to insert Tests to validate Siebel HI and SI content on playback.

■ Provides additional options/settings that are specific to Siebel Functional Test
scripts within the Siebel Functional Test categories in the preferences interface.

■ Reports playback results for Siebel Functional Test scripts in the Results and
Console views.

■ The Siebel Functional Test Script Module API. The Siebel Functional Test
Application Programming Interface include Java code methods specific to
functional testing of Siebel applications.

Functional Testing Siebel Applications

14-2 Oracle Functional Testing OpenScript User's Guide

The New Project wizard (select New from the File menu) includes a "Siebel Functional
Test Script" option to use when creating Siebel functional testing projects in
OpenScript. The Siebel Functional Test Script Module records Siebel applications using
the Siebel test automation framework. OpenScript captures user actions and records
them to the OpenScript script nodes in a highly readable sequence of navigations and
actions.

14.2 Functional Testing Siebel Applications
The following is an outline of the procedures and best practices used to perform
functional testing of Siebel applications with the OpenScript application.

14.2.1 Prerequisites
The instructions in this document assume the following prerequisites:

■ Testing hardware/environment is available.

■ The Siebel applications are installed on a Siebel Server.

■ The Oracle Application Testing Suite applications have been installed on a testing
machine.

■ The test machine can access the Siebel applications.

■ Some steps may require system administrator level privileges for the Siebel Server.

■ License for Siebel Test Automation required.

14.2.2 Setting up the Siebel Test Environment
The functional test environment should approximate as closely as possible a working
Siebel deployment environment. However, hardware cost constraints may be a
limiting factor. This section provides recommendations about the basic test system
configuration. Additional test system configurations can be used based upon
hardware and network availability.

The basic n-tier configuration should consist of the following systems:

■ Web Server

■ Siebel Server

■ Database Server

■ Database Storage

See the Siebel Installation Guide in the in the Siebel document bookshelf for information
about hardware and Siebel installation requirements.

Notes:

■ Siebel applications can contain High-Interactivity (HI) components, which use
ActiveX controls, and Standard-Interactivity (SI) applications, which use standard
HTML. Applications may also use a combination of HI and SI components.
Testing methods vary depending upon the type of components being tested. See
the "Automating Functional Tests" chapter in the Testing Siebel eBusiness
Applications document in the Siebel document bookshelf for a description of the
component types.

Functional Testing Siebel Applications

Using the Siebel Functional Test Module 14-3

■ In general, Siebel applications are more memory intensive than CPU intensive. If
trade-offs need to be made in test hardware decisions, memory should be given
higher consideration than CPU speed.

■ Siebel web applications use Cookies to maintain the state information.

14.2.3 Enabling Siebel Test Automation
The Siebel test automation framework must be activated on the Siebel server for
OpenScript to access it. Changing the Siebel configuration file may require system
administrator level privileges for the Siebel server. A license is also required to use the
Siebel Test Automation framework. Contact your account representative for additional
information about licence requirements.

14.2.3.1 Siebel 7.x
To enable the test automation framework in Siebel 7.x:

1. Open the .CFG file for the Siebel application on the Siebel server.

2. Set the EnableAutomation and AllowAnonUsers switches in the [SWE]
section as follows:

[SWE]
EnableAutomation = TRUE
AllowAnonUsers = TRUE
...

See the Siebel Testing Siebel eBusiness Applications documentation if you need to set
up secure access to the Siebel Test Automation framework.

3. Restart the Siebel Server.

14.2.3.2 Siebel 8.x
To enable the test automation framework in Siebel 8.x:

1. Log into Siebel as Administrator.

2. Go to "Site Map".

3. Go to "Administration - Server Configuration".

4. Select "Call Center Object Manager" (provided you want to enable automation for
Call Center).

5. Under list of Components, click the Parameters tab.

6. Find EnableAutomation and AllowAnonUsers parameters and set both to TRUE.

7. Restart the Siebel Server.

14.2.4 Script Creation Techniques
The following are tips and techniques to use when creating Siebel load test scripts
using the OpenScript application:

■ Disable browser caching to make sure the pages are returned from the server
rather than the browser cache.

■ Record actions from login through logout to make sure parameters are passed
properly between page navigations.

Functional Testing Siebel Applications

14-4 Oracle Functional Testing OpenScript User's Guide

■ Record actions slowly in the Siebel environment to make sure the recorder records
all actions to the OpenScript script. If possible, watch as the OpenScript script
pages are added to the script tree.

■ Siebel Popup windows may initially appear incorrect. Resize the window slightly
to refresh the page in the popup window.

■ Do not insert Siebel Tests in Siebel popup windows unless the test is necessary.

■ Save the script in OpenScript using Save As on the File menu. When you save a
Siebel proxy-recorded script, OpenScript automatically creates a Java Agent
versions of the script in the workspace. Depending upon the size of the script, the
file save operation may take some time.

14.2.5 Setting Browser Options
When recording and playing back scripts to test an application, you want to make sure
the pages returned are from the server and not the browser cache. To verify or change
the browser settings:

1. Open Internet Options from the Control Panel.

2. Click Settings in the Temporary Internet files section.

3. Select Every visit to the page.

4. Click View Objects in the Temporary Internet files folder section.

5. Verify that the downloaded Program files directory does not contain multiple
versions of the Siebel High Interactivity Framework and Siebel Test Automation
programs installed.

6. If necessary, remove the duplicate or older versions.

7. Close the Downloaded Program Files window.

8. Click OK to close the Temporary Settings.

9. Click OK to close the Internet Properties.

14.2.6 Starting the Siebel Application
When you start the Siebel application in the browser, the URL must include the Siebel
Web Engine (SWE) command to generate the test automation framework information.
The AutoOn Siebel Web Engine command (SWECmd) is added to the URL as follows
(SWECmd is case-sensitive):

http://hostname/application/start.swe?SWECmd=AutoOn

where hostname is the machine name or IP address of the Siebel server and
application is the name of the Siebel application. For example, application
could be callcenter or callcenter_enu depending upon the Siebel version.

Enter the start URL and command into the browser address. for example:

http://siebelServer/callcenter_enu/start.swe?SWECmd=AutoOn

As you navigate pages, OpenScript records page navigation to the OpenScript script
tree.

Recording Siebel Functional Test Scripts

Using the Siebel Functional Test Module 14-5

14.2.7 Determining a Siebel Component Type
Siebel applications can include High-Interactivity (HI) object and
Standard-Interactivity (SI) object types. You can use the Inspect Path feature of
OpenScript to determine the type of an object in an application.

1. Click the Inspect Path toolbar button or the Capture button to open the Select
Object dialog box.

2. Move the mouse cursor over the page in the Siebel application to view the
component type. The current component is highlighted in the OpenScript browser
and the path appears in the Select Element dialog box. Siebel HI component types
are indicated by /siebelft:cas[ClassName= in the Path/Object fields:

3. The path to HI component types is also referred to as the Object Descriptor String
(ODS) and is used in OpenScript to recognize applets used with the Siebel
application.

SI component types are indicated by /web:window[index='0']... in the Path
field.

4. Press F10 to capture the object path. You can copy the path from the dialog box
using Ctrl-C and paste using Ctrl-V.

The following are examples of complete object paths (line breaks added for clarity):

High-Interactivity (HI) Path.

/siebelft:cas[ClassName='SiebApplication' and
RepositoryName='Siebel Universal Agent']

/siebelft:cas[ClassName='SiebScreen' and
RepositoryName='Web Call Center Home Screen']

/siebelft:cas[ClassName='SiebView' and
RepositoryName='Home Page View (WCC)']

/siebelft:cas[ClassName='SiebApplet' and
RepositoryName='Sales Message Alert List Applet Tiny']

/siebelft:cas[ClassName='SiebList' and
RepositoryName='SiebList']

Standard-Interactivity (SI) Path:

/web:window[index='0']
 /web:document[index='10']
 /web:span[text='Search' or index='1']

or

/web:window[index='0']/web:document[index='10']
 /web:form[index='0' or name='SWEForm1_0']
 /web:input_text[id='s_1_1_16_0' or name='s_1_1_16_0' or index='1']

14.3 Recording Siebel Functional Test Scripts
The Siebel Functional Test Module records standard Siebel High Interactivity (HI) and
Standard Interactivity (SI) components for Siebel versions 7.7, 7.8, 8.0 and 8.1 through
integration with Siebel Test Automation CAS Library. Siebel Test Automation must be
enabled on the Siebel server side in order to successfully record these events. The
Recorder creates functional and regression test scripts for automating testing of Siebel
applications.

Siebel HI components are Active-X based controls and Siebel Test Automation
provides the object/attribute information for OpenScript to record interactions with

Recording Siebel Functional Test Scripts

14-6 Oracle Functional Testing OpenScript User's Guide

those controls. Actions on HI controls will be captured in the test script as OpenScript
"siebelFT" commands. Siebel SI components are standard Web controls which are
captured as standard OpenScript "web" commands using Web Functional Test object
attributes; however, Siebel Test Automation may provide additional attributes to
identify SI controls which take precedence over standard Web object/attributes. Object
Identification attributes can later be modified by users through the Preferences global
settings for new scripts or for already recorded commands in the tree view or code
view. Recording can be configured through Internet Explorer only as Siebel does not
support Firefox.

The Siebel Functional Test Module provides a record toolbar button that lets you
initiate the Siebel recorder and capture Web/Siebel page actions to the script view. The
record toolbar includes start and stop recording toolbar buttons. OpenScript recorders
also open a floating toolbar that can be used while recording without having to switch
between the browser and OpenScript.

Before recording Siebel Functional test scripts, make sure the Siebel test automation
framework is activated on the Siebel server. See Functional Testing Siebel Applications
for details about Prerequisites and the Siebel Test Environment.

14.3.1 Setting Siebel Functional Test Record Preferences
To set Siebel Functional Test record preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Record category.

4. Select Siebel Functional Test.

5. Set the General preferences. See Section 2.5.6, "Siebel Functional Test Preferences"
for descriptions of the Record Preferences settings.

6. Click OK.

14.3.2 Adding/Editing SI Element and Site Map Link Paths
The Siebel Functional Test Module can use special object identifier paths when
recording Standard Interactivity (SI) Web objects and Sitemap links. The object
identifier paths specify the element attributes to use to identify Siebel SI controls or
Sitemap links. The Siebel attributes are RN (repository name), OT (object type) and
UN (unique name).

To add or edit an SI element or Sitemap link path:

1. Select the OpenScript Preferences from the View menu.

2. Expand the Record node and select Siebel Functional Test.

3. Click the General tab.

4. Click Edit for SI Element path or Sitemap path.

5. Click Add or select an existing attribute and click Edit.

6. If adding a new attribute, enter a name for the attribute.

7. Add or edit attributes for the path.

For each attribute, you specify a name (typically a Siebel object attribute), an
operator, a value and a value type. As you add attributes, OpenScript builds the

Modifying Scripts

Using the Siebel Functional Test Module 14-7

object identifier path using logical AND between each attribute. Click Edit to
change between logical OR and AND.

8. Click OK. The object identifier path is updated in the record preferences.

14.3.3 Recording Siebel Functional Test Scripts
To record Siebel Functional Test Scripts:

1. Start OpenScript.

2. Select New from the File menu.

3. Select Siebel Functional Test Script.

4. Click Next.

5. Select the Repository and Workspace.

6. Enter a script name.

7. Click Finish. A new Script tree is created in the Script View.

8. Select Record from the Script menu. The browser automatically opens when you
start recording.

9. Load the Siebel application using the AutoOn Siebel Web Engine command
(?SWECmd=AutoOn) in the URL into the browser.

10. Log in and navigate the web site to record page objects, actions, and navigations.
The page objects, actions, and navigations will be added to the node of the script
tree specified by the Set Record Section setting (the Run node is the default).

11. When finished navigating pages, log out and close the browser.

12. Select Stop from the Script menu or click the Stop button on the OpenScript
toolbar.

13. Expand the Run node of the script to view the page objects, actions, and
navigation nodes in the script tree.

You can customize the script using the menu options or the Code View for specific
testing requirements.

14.4 Modifying Scripts
Once a script has been created/recorded, you can make modifications to customize the
script for your specific testing needs.

14.4.1 Adding Siebel Actions
The Siebel Functional Test Module includes actions for Siebel objects that can be added
to a script.

To add Siebel actions to a script:

1. Record a Siebel Functional Test script.

2. Select the script node where you want to add the action.

Note: Do not close the script editor view or script project while
recording or playing back scripts. Doing so could result in
unpredictable behavior in the OpenScript application.

Modifying Scripts

14-8 Oracle Functional Testing OpenScript User's Guide

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Siebel Functional Test node.

5. Expand an action node and select the action.

6. Click OK.

The Siebel action dialog boxes let you define the action to perform during
playback of a Siebel Functional Test script. This dialog box is used for most Siebel
actions including Application, Button, Calculator, Calendar, Checkbox,
Communications Toolbar, Currency, List, Menu, Page Tabs, PDQ, Rich Text, Screen
Views, Task Assistant, Text, Text Area, Threadbar, Toolbar, Tree, and View Applets.
Specific values may be required for specific actions.

■ Action: Shows the action to perform. Additional values for variables or
attributes may be required depending upon the action to perform.

■ Path: Specify the object ID of the Siebel or Web object on which to perform the
action. You can use the Capture or Select menu options to capture or select an
object path.

■ Value(s): Specify the variables or attributes as required for the specific action
on an object.

7. Enter the object identification path for the object.

8. Enter any required values to use for the object action.

9. Click OK. The action node is added to the script tree.

In the Java Code view, a siebelFT.object(objectId).action() method
will be added to the script code:

siebelFT.menu(100,"/siebelft:cas[@ClassName='SiebApplication' and
@RepositoryName='Siebel Universal Agent']

/siebelft:cas[@ClassName='SiebMenu' and
@RepositoryName='SiebMenu']").select("File\\\\File - Logout");

The Siebel Functional Test node includes actions for objects such as Application,
Calculator, Calendar, Communications Toolbar, Page Tabs, Task Assistant,
Threadbar, and View Applets, etc. Other object actions have corresponding Java
code methods.

14.4.2 Handling Non-Standard Siebel Dialog Boxes
Most dialog boxes invoked in Siebel applications will be dismissed or closed properly
during script playback. However, in certain circumstances with customized Siebel
applications, some non-standard Alert/Confirmation dialog boxes may not be
dismissed or closed during script playback.

This may happen with custom dialog boxes written while customizing default Siebel
applications if the Siebel developer implements the custom dialog box in a way that
blocks callbacks from the server. Typically, the custom dialog boxes have the caption
“Internet Explorer” or something other than "Siebel" (the default caption for default
Siebel dialog boxes). The default Siebel dialog boxes are implemented in a way that
does not block callbacks.

For example, when recording a Siebel transaction, at a certain point you click a button
(or do something else) and an Alert/Confirmation dialog box appears. You dismiss the
Alert/Confirmation dialog box by clicking OK and proceed further. When you play
back the script, the script may halt because it is unable to dismiss or close the custom
Alert/Confirmation dialog box.

Modifying Scripts

Using the Siebel Functional Test Module 14-9

When OpenScript clicks the Button, it waits for a callback from the Siebel server before
considering the click event completed. If OpenScript does not receive a callback from
the server, OpenScript considers click event to have failed and throws an exception
and terminates script playback.

You can customize the script to handle non-standard Siebel dialog boxes during script
playback. This involves adding custom Java code to the script to dismiss the dialog
without relying on a callback call from the Siebel server.

In the Tree view, the click events for the dialog box actions will appear similar to the
following click events:

Figure 14–1 Script Tree View for Click Events

In the Java Code view, the click events for the dialog box actions will appear similar to
the following click events code:

siebelFT.button(311,"/siebelft:cas[@ClassName='SiebApplication' and
@RepositoryName='Siebel Power Communications']

/siebelft:cas[@ClassName='SiebScreen' and @RepositoryName='Orders']
/siebelft:cas[@ClassName='SiebView' and

@RepositoryName='Order Entry - Line Items View (Sales)']
/siebelft:cas[@ClassName='SiebApplet' and

@RepositoryName='Jawwal Order Entry - Order Form Applet Dashboard (Sales)']
/siebelft:cas[@ClassName='SiebButton' and

@RepositoryName='BSubmit']").click();

web.confirmDialog(312,"/web:dialog_confirm[@index='0' and
@text='You are about to submit the order #: 1-3832871\n\n Do you want to
continue?']").clickOk();

In the Java Code view, add the following code before the Submit button click event:

new Thread(new Runnable() {
 public void run() {
try {

Thread.sleep(4000);
java.awt.Robot robot = new java.awt.Robot();
robot.keyPress(java.awt.event.KeyEvent.VK_ENTER);
robot.keyRelease(java.awt.event.KeyEvent.VK_ENTER);
} catch(Exception x) {

}
}

}
).start();

Next, comment or delete the code for the recorded click event for dismissing the
Alert/Confirmation dialog box. The resulting code should appear similar to the
following code:

//initiate a new thread which will dismiss the Alert/Confirmation dialog box
new Thread(new Runnable() {

 public void run() {
try {

Modifying Scripts

14-10 Oracle Functional Testing OpenScript User's Guide

Thread.sleep(4000);
java.awt.Robot robot = new java.awt.Robot();
robot.keyPress(java.awt.event.KeyEvent.VK_ENTER);
robot.keyRelease(java.awt.event.KeyEvent.VK_ENTER);
} catch(Exception x) {

}
}

}
).start();

//invoke the dialog box that generates the Alert/Confirmation dialog box
siebelFT.button(311,"/siebelft:cas[@ClassName='SiebApplication' and

@RepositoryName='Siebel Power Communications']
/siebelft:cas[@ClassName='SiebScreen' and @RepositoryName='Orders']
/siebelft:cas[@ClassName='SiebView' and

@RepositoryName='Order Entry - Line Items View (Sales)']
/siebelft:cas[@ClassName='SiebApplet' and

@RepositoryName='Jawwal Order Entry - Order Form Applet Dashboard (Sales)']
/siebelft:cas[@ClassName='SiebButton' and

@RepositoryName='BSubmit']").click();

The above custom code does the following: before clicking the Siebel button that
generates the Alert/Confirmation dialog box, a new thread is started. The thread
sleeps for 4 seconds (4000 ms, which can be changed to your own delay). While the
thread is asleep, the Siebel button gets clicked (it happens in the major thread, so no
thread locks each other) and the Alert/Confirmation dialog box appears. The thread
wakes up after the specified delay and invokes an ENTER key event (the same as a
manual Enter key press). Since the Alert/Confirmation dialog box’s OK button always
has focus, it gets dismissed by the thread’s ENTER key call.

14.4.3 Siebel Functional Test Module API
The Siebel Functional Test Module includes a script Application Programming
Interface (API) specific to Siebel functional testing. The Siebel Functional Test Module
recorder creates the Java code that corresponds to the Tree View and displays the
Siebel Functional Test commands in the Java Code view using easy-to-understand
function names. The Java Code view commands correspond to the Tree View and you
can edit your scripts in either view.

You can use the Siebel Functional Test API to enhance recorded scripts with additional
testing functionality. Commands that are specific to the Siebel Functional Testing
Module are part of the "siebelFT" class. Additional functional test methods are
available in the "web" and "ft" classes. You can also leverage other commands from
other enabled classes (services) or general Java commands in your scripts.

Some examples of the Siebel Testing Module API include:

■ Applet

■ Application

■ Attribute

■ Button

■ Calculator

■ Calendar

■ Cells

■ Checkbox

Modifying Scripts

Using the Siebel Functional Test Module 14-11

■ Communications Toolbar

■ Currency

■ Page Tabs

■ PDQ

■ Pick List

■ Rich Text

■ Screen Views

■ Task Assistant

■ Text

■ Text Area

■ Threadbar

■ Toolbar

■ Tree

■ View Applets

Many API methods can be added using the Siebel Functional Test Module Tree View.
Additional methods can be added using the Java Code view. Use Ctrl-space in the Java
Code view to open an Intellisense window listing available procedures. See the API
Reference in the OpenScript help for additional programming information.

Modifying Scripts

14-12 Oracle Functional Testing OpenScript User's Guide

15

Using the Siebel Load Test Module 15-1

15Using the Siebel Load Test Module

This chapter provides instructions on configuring and using the OpenScript Siebel
Load Test Module, which tests Siebel-based applications by automating the
underlying HTTP protocol traffic.

15.1 About the Siebel Load Test Module
The Siebel Load Test Module provides support for load testing of Siebel web
applications. The Siebel module is an extension to the HTTP Module.

15.1.1 Key Features of the Siebel Load Test Module
The Siebel Load Test Module is an extension module to the OpenScript HTTP Module
that extends Web load testing with Siebel Load Test recording and playback
capabilities. The Siebel Load Test Module is fully integrated with the OpenScript
platform including the Results view, Details view, Properties view, Console/Problems
views, Preferences, Step Groups, Script Manager, and Workspace Manager. The
OpenScript Siebel Load Test module includes the following features:

■ The Siebel Load Test Script Module. The New Project wizard (Select New from the
File menu.) includes a "Siebel Load Test Script" option to use when creating Siebel
load testing projects in OpenScript. The Siebel Load Test Script Module records
Siebel applications at the protocol level. OpenScript captures user actions and
records them to the OpenScript script based upon HTTP requests and post data or
query strings.

■ Siebel-Specific Correlation Library. The Siebel module includes a transform library
for automatically finding dynamic values inside recorded Siebel pages and
substituting them into the appropriate Siebel HTTP requests.

■ Siebel-Specific Correlation Rules. These rules define various transform rules for
automatically finding/substituting Siebel parameters into a navigation. The Siebel
rules are specified in a Siebel-specific correlation library that is added to the
OpenScript correlation preferences.

■ Siebel-Specific Application Programming Interface (API). The Siebel module
includes a Siebel Module API Specification that can be used to customize
Siebel-specific scripts.

The Siebel Load Test recorder displays commands in the Tree View in
easy-to-understand commands. By default, script commands are grouped into Steps
Groups by the Web page on which they were performed. Each Step Group contains
one or more script commands corresponding to recorded actions that were performed
on the page. The default name for the Step Group is the Web page Title (as specified in
the "Title" tag).

Load Testing Siebel Applications

15-2 Oracle Functional Testing OpenScript User's Guide

OpenScript shows the results of Siebel Load Test script playback in the Results view.
The Results view shows results for each script command (including duration and
summary for failures). The Results Report compiles the same information into an
HTML Results Report. Results can be exported from the OpenScript GUI in standard
format (CSV / HTML). Results are also generated for unattended playback through
the command line.

The Siebel Load Test Module API includes a "siebel" class that provides additional
programming functionality.

15.1.2 Prerequisites
The instructions in this document assume the following prerequisites:

■ Testing hardware/environment is available.

■ The Siebel applications are installed on a Siebel Server.

■ The Oracle Application Testing Suite have been installed on a testing machine.

■ The test machine can access the Siebel applications.

■ Some steps may require system administrator level privileges for the Siebel Server.

15.2 Load Testing Siebel Applications
The following is an outline of the procedures and best practices used to load test Siebel
applications with the OpenScript application.

15.2.1 Setting Up Siebel Load Test Environments
The load test environment should approximate as closely as possible a working Siebel
deployment environment. However, hardware cost constraints may be a limiting
factor. The following sections provide recommendations about basic test system
configurations. Additional test system configurations can be used based upon
hardware and network availability.

15.2.1.1 Basic Configuration
The basic n-tier configuration should consist of the following systems:

■ Web Server

■ Siebel Server

■ Database Server

■ Database Storage

See the Siebel Installation Guide in the in the Siebel document bookshelf for information
hardware and Siebel installation and any licensing requirements.

Note: In general, Siebel applications are more memory intensive
than CPU intensive. If trade-offs need to be made in test hardware
decisions, memory should be given higher consideration than CPU
speed.

Load Testing Siebel Applications

Using the Siebel Load Test Module 15-3

15.2.1.2 Floating Load Balancing Test Server
In addition to the basic tier configuration, various load balancing tests should include
another system that can be configured on a single system as a movable server between
tiers. The floating load balancing server can be used to test fail-over of clustered
servers and recovery of servers if one server (on any one of the tiers) in a multiple
server configuration goes down.

A floating Server could be configured as Web Server, Siebel Server, and Database
Server on the same machine.

15.2.1.3 Clustered Web Server Configuration
The clustered Web server configuration tests two or more Web servers accessing a
single Siebel server. This configuration is used to test how Siebel and the database
server handles load balancing from multiple users accessing from multiple Web
browsers and systems.

15.2.1.4 Clustered Siebel Servers Configuration
The clustered Siebel server configuration tests two or more Siebel servers handing Web
traffic and accessing a single database server. This configuration is used to test Web
traffic load balancing on clustered Siebel servers and how the database server handles
load balancing from multiple Siebel servers accessing from multiple systems.

15.2.1.5 Clustered Database Server Configuration
The clustered database server configuration tests two or more database servers
handing Siebel data and accessing the database storage. This configuration is used to
test Siebel data load balancing on clustered database servers and how the database
storage handles load balancing from multiple database servers accessing from
multiple systems.

Notes:

■ Siebel web applications use Cookies to maintain the state information.

■ Each User must be logged into the same Siebel Application Server as first logged
into.

■ Do not use round robin load-balancing for clustered Siebel servers

15.2.2 Siebel Correlation Library
OpenScript includes a Siebel Test Automation library that Oracle Application Testing
Suite applications can communicate with when creating Scripts. The Siebel Correlation
Library is installed automatically as part of he OpenScript installation.

15.2.3 Script Creation Techniques
The following are tips and techniques to use when creating Siebel load test scripts
using the Oracle Functional Testing application:

■ Disable browser caching to make sure the pages are returned from the server
rather than the browser cache.

■ Record actions from login through logout to make sure parameters are passed
properly between page navigations.

Load Testing Siebel Applications

15-4 Oracle Functional Testing OpenScript User's Guide

■ Record actions slowly in the Siebel environment to make sure the recorder records
all actions to the OpenScript script. If possible, watch as the script pages are added
to the script tree.

■ Close the external browser window after recording.

■ Save the script. When you save a Siebel proxy-recorded script, OpenScript
automatically creates a Java Agent version of the script in the workspace.
Depending upon the size of the script, the file save operation may take some time.

15.2.4 Recording Scripts for Load Tests
Siebel load testing scripts are recording in an external browser window using the
OpenScript proxy recorder. When you record a Siebel Load Test Script, OpenScript
automatically starts the proxy recorder and opens an external browser window when
you click the Record button on the toolbar. Once the external browser opens, you can
load your Siebel application and start recording page navigation.

OpenScript does not support record and playback of the CTI Toolbar. URLS with the
SWECmd=WaitForCmd are filtered out by default.

15.2.5 Starting the Siebel Application
Start the Siebel application in the browser using the start URL:

http://hostname/application/start.swe

where hostname is the machine name or IP address of the Siebel server and
application is the Siebel application to start. For example:

http://siebelserver/callcenter_enu/start.swe

Enter the start URL and command into the browser address. As you navigate pages,
the OpenScript proxy recorder records page navigation to the Script tree. You can view
the nodes in the script tree and in the Java code.

15.2.6 Playing Back Scripts
OpenScript playback provides a convenient way to test and verify the page navigation
recorded to the script.

1. Open a Siebel load test script in OpenScript.

2. Select Playback from the Script menu or click the toolbar button to verify the
script plays back correctly.

3. Select items in the Results view and review the tabs in the Details view to check
for any errors. Click the Headers tab to view request and response header data.

4. Verify that the response headers do not contain content or data value errors. One
type of content error to check for is a "204 No Content" error. For example:

HTTP/1.1 100 Continue
Server: Microsoft-IIS/5.0
Date: Fri, 20 Mar 2009 15:51:47 GMT
X-Powered-By: ASP.NET
HTTP/1.1 200 OK:
Server: Microsoft-IIS/5.0
Date: Fri, 20 Mar 2009 15:51:47 GMT
X-Powered-By: ASP.NET
content-language: en

Load Testing Siebel Applications

Using the Siebel Load Test Module 15-5

cache-control: no-cache
content-type: text/html;charset=UTF-8
content-length: 3762

See the Troubleshooting Load Testing Issues section in the Testing Siebel eBusiness
Applications documentation in the Siebel document bookshelf for additional examples
of common issues to resolve for load test scripts.

15.2.7 Resolving Script Issues
Each navigation node in the script tree shows the URL, Post Data, Recorded Headers,
and Custom Dynamic values recorded to the script.

Expand nodes in the script tree to view the navigation sequence.

The PostData node shows the Siebel entities included in the page navigation.
OpenScript Siebel Load Testing recorder automatically recognizes and parameterizes
Siebel entities for Load testing. Playing back a script verifies that the recorder
parameterized the Siebel entities properly.

The tree view nodes show the automatically created dynamic value names and Siebel
path for parameters required for the next page. The name and Siebel path are shown as
variable nodes under the post data node. It also shows automatically parameterized
Siebel functions in curly braces, for example:

SWEC={{@SWECount}}

If a script does not playback correctly, or has errors, you may need to add custom
dynamic values for Siebel parameters.

Check the PostData name/value pairs for the page navigation to verify the Siebel
entities have been properly parameterized during recording. Any Siebel parameters
that pass dynamic data from one page to the next should have custom dynamic values.

The PostData on the next page shows the destination of the dynamic values passed
from the previous page.

15.2.7.1 Siebel Entities to Parameterize
The following table shows some common Siebel commands that may appear in the
PostData of the page navigation:

Siebel Command Name

SWEACn Application Count

SWEBMC Bookmark

SWEBRS Browser Retry Sequence

SWEBID Browser ID

_sn Cookie

SWEFI Form ID

SWEVLC View Layout Cache

SWETS Timestamp

SWEC SWE Count

SWERowId, SWERowIds Row IDs

s_#_#_#_# Record Data

Load Testing Siebel Applications

15-6 Oracle Functional Testing OpenScript User's Guide

See the SWE API section of the Siebel Portal Framework Guide in the Siebel document
bookshelf for additional information about Siebel Web Engine (SWE) commands,
methods, and arguments.

15.2.8 Using Databanks with Siebel
Data values in Siebel post data strings can be parameterized in a script and connected
to a Databank file that provides input data for data-driven tests. The OpenScript script
editing options let you specify additional Siebel method names that use parameterized
data.

1. Record or open a Siebel script in OpenScript.

2. Select Find/Replace from the Edit menu.

3. Type SWEMethod and click Find.

4. Continue clicking Find until you locate the SWEMethod that requires databanked
values.

For example, the PostData in a script page may contain the following record data
name=value pair:

s_1_2_49_0=doctest

The SWEMethod that posts the data is SWEMethod=Mirror Add GotoView.

To use Databank parameters for the data values:

1. Select Script Properties from the Script menu.

2. Select the Assets type.

3. Select Databanks.

4. Click Add.

5. Select the Repository from the My Repositories tree.

6. Select the Databank file from the repository or file folder.

7. Enter an alias name to use for the Databank or leave the default alias name. The
default alias name is the name of the .CSV Databank file.

8. Click OK.

9. Click OK to add the Databank file.

10. Right click the parameter node in the script tree that you want to substitute with a
databank variable and select Substitute Variable.

11. If necessary expand the Databanks node and select the databank field you want to
use as the input parameter data.

12. Click Finish.

13. The script node name/value pair changes to show the Databank alias name, field
name, and recorded value as a variable value. For example:

SWEUserName={{siebel_data.login,sadmin}}

14. Click the Playback toolbar button to playback the script once to verify the it plays
back correctly.

15. Click the Iterate toolbar button to playback the script with a Databank.

16. Set the Iteration count, starting record, and data usage and click OK.

Load Testing Siebel Applications

Using the Siebel Load Test Module 15-7

17. Verify the script plays back correctly.

18. Save the script.

19. In the Oracle Load Testing application, add the script to the Scenario.

20. Double-click the script name in the Scenario to define the Scenario details for the
script.

21. Make sure Java Client is selected as the User mode.

22. Set the Use Databanks setting is set to True (if the Use Databanks setting is not
shown, open the Scenario Details and set the option in the Main section).

23. Click Run Test and run the load test.

See the following sections of this document for details about defining ServerStats
metrics and running tests in the Oracle Load Testing console. See the Oracle Load
Testing User's Guide for additional information about using the features and options in
the Oracle Load Testing application.

15.2.9 Preparing the Siebel Server Manager Commands
The Oracle Load Testing ServerStats uses the Siebel Server Manager program to
retrieve statistics from the Siebel Server while running Virtual Users in a load test. The
ServerStats Metrics need to be configured to run the Siebel Server Manager with input
commands from a batch file and a file containing the input commands. The batch file
and command input file must be created and placed on the Siebel Server where the
ServerStats Metrics can access and run the batch file. This section explains the basic
requirements of the batch file and command input file.

15.2.9.1 Creating the Batch File
Use any ASCII editor to create a batch file and a commands file to run the Siebel
Server Manager program. The batch file name will be referenced in the Oracle Load
Testing ServerStats metrics. You can use any name for the batch file (for example
srvrmgr_cmds.txt).

Use the following syntax to specify the command in the batch file to start the Siebel
Server Manager program:

\\machine IP\path to Siebel server bin\srvrmgr -g gateway -e enterprise -u
username p password -i input_File

Note: Starting the Siebel command-line server-monitoring program
may require system administrator level privileges for the Siebel server.
The Oracle Load Testing system testing the Siebel server needs the
required user permissions to access the Siebel server and run the
Siebel Server Manager program from the local host.

Parameter Description

machine IP The machine name or IP address or
the Siebel Server.

path to Siebel server bin The drive and directory path to the
Siebel Server Manager program on
the Siebel server.

gateway The Network address of the Siebel
Gateway Name Server machine.

Load Testing Siebel Applications

15-8 Oracle Functional Testing OpenScript User's Guide

For additional information about using the Siebel command-line server-monitoring
program (srvrmgr) and command line flags, see the Siebel System Administration Guide
Version 7.7 (or newer) documentation in the Siebel document bookshelf.

The following is an example of a command in a batch file to start the Siebel Server
Manager:

\\10.16.111.00\c$\sea77\siebsrvr\bin\srvrmgr -g gateway -e siebel -u sadmin -p
sadmin -i srvrmgr_cmds.txt

15.2.9.2 Creating the Command Input File
The command input file contains the commands to run in the Siebel Server Manager
program. The command input file will be automatically run by the batch file at each
Oracle Load Testing ServerStats Collection Interval. The example in the previous
section uses the file name srvrmgr_cmds.txt as the input file in the srvrmgr
command. You can use any file name as long as the batch command matches the file
name of the input file.

srvrmgr_cmds.txt is a text file that contains the sequence of commands to run in
the Siebel Server Manager program. The following is an example of an input file with
Server Manager commands:

configure list statistics show STAT_ALIAS, CURR_VAL
list statistics
quit

The configure list statistics show STAT_ALIAS, CURR_VAL command
specifies which Siebel Statistics to return from the srvrmgr program. STAT_ALIAS,
CURR_VAL are the column names of the data values to return. STAT_ALIAS is the alias
for the Statistic name. CURR_VAL is the current value for the statistic. quit closes the
Siebel Server Manager session.

The list statistics command returns the statistics to Siebel Server terminal. The
Oracle Load Testing Data Collector uses the Regular Expressions defined in the
ServerStats metrics to extract specific data from the statistics returned from the
srvrmgr program.

You can configure the srvrmgr commands to provide any of the available statistics
data that can be returned by the srvrmgr program. See the Siebel System Administration
Guide Version 7.7 (or newer) documentation in the Siebel document bookshelf for
additional information about Siebel Server Manager commands.

15.2.9.3 Siebel Statistics
The srvrmgr program returns the following statistics:

enterprise Siebel Enterprise Server name.

username Siebel Server administrator
username.

password Siebel Server administrator
password.

input_File The name of a file containing
commands to run in the Server
Manager program.

Parameter Description

Load Testing Siebel Applications

Using the Siebel Load Test Module 15-9

Name Alias Description

Average Connect Time AvgConnTime Average connect time for
Object Manager sessions

Average Reply Size AvgRepSize Average size of reply
messages (in bytes)

Average Request Size AvgReqSize Average size of request
messages (in bytes)

Average Requests Per Session AvgReqs Average number of requests
per Object Manager session

Average Response Time AvgRespTime Average Object Manager
response time

Average Think Time AvgThinkTime Average end-user think time
between requests

Avg SQL Execute Time AvgSQLExecTime Average time for SQL execute
operations (in seconds)

Avg SQL Fetch Time AvgSQLFetchTime Average time for SQL fetch
operations (in seconds)

Avg SQL Parse Time AvgSQLParseTime Average time for SQL parse
operations (in seconds)

CPU Time CPUTime Total CPU time for component
tasks (in seconds)

Elapsed Time ElapsedTime Total elapsed (running) time
for component tasks (in
seconds)

Maximum Peak Memory
Usage

MaxPeakMemory Peak Mem used by task. Rolls
up differently from
MinPeakMemory

Minimum Peak Memory
Usage

MinPeakMemory Peak Mem used by task. Rolls
up differently than
MaxPeakMemory

Num of DBConn Retries NumDBConnRtrs Number of Retries due to DB
Connection Loss

Num of DLRbk Retries NumDLRbkRtrs Number of Retries due to
Deadlock Rollbacks

Num of Exhausted Retries NumExhstRtrs Number of Times All Retries
are Exhausted

Number of SQL Executes SQLExecs Total number of SQL execute
operations

Number of SQL Fetches SQLFetches Total number of SQL fetch
operations

Number of SQL Parses SQLParses Total number of SQL parse
operations

Number of Sleeps Sleeps Total number of sleeps for
component tasks

Object Manager Errors Errors Number of errors encountered
during Object Manager
session

Reply Messages RepMsgs Number of reply messages
sent by the server

Load Testing Siebel Applications

15-10 Oracle Functional Testing OpenScript User's Guide

For additional information about monitoring Siebel servers, see the System Monitoring
and Diagnostics Guide for Siebel eBusiness Applications Version 7.7 (or newer)
documentation in the Siebel document bookshelf.

15.2.9.4 Batch File Location
Once you create the batch file and command input file, copy the files to the Oracle
Load Testing local host in the C:\Oracle\DataCollector directory.

15.2.10 Defining ServerStats Metrics
Oracle Load Testing ServerStats metrics are used to collect the data from the Siebel
Server Manager program. This section explains how to set up Virtual Agents in
ServerStats (Oracle Load Testing) to run the Siebel Server Manager program
(srvrmgr) from the command-line interface.

1. Start the Oracle Load Testing application.

Request Messages ReqMsgs Number of request message
received by the server

SQL Execute Time SQLExecTime Total elapsed time for SQL
execute operations (in
seconds)

SQL Fetch Time SQLFetchTime Total elapsed time for SQL
fetch operations (in seconds)

SQL Parse Time SQLParseTime Total elapsed time for SQL
parse operations (in seconds)

Sleep Time SleepTime Total amount of sleep time for
component tasks (in seconds)

Tasks Exceeding Configured
Cap

TskXcdCfgCpt Number of tasks stated that
exceeded configured capacity

Tests Attempted TestsAttempted Number of tests that were
started

Tests Failed TestsFailed Number of tests that failed

Tests Successful TestsSuccessful Number of tests that were
successful

Total Database Response Time DBRespTime Total Database
Response/Processing Time
(milliseconds)

Total Reply Size RepSize Total size (in bytes) of reply
messages

Total Request Size ReqSize Total size (in bytes) of request
messages

Total Response Time RespTime Total Object Manager
response time (in seconds)

Total Tasks TotalTasks Total number of tasks
completed for server
components

Total Think Time ThinkTime Total end-user think time (in
seconds)

Name Alias Description

Load Testing Siebel Applications

Using the Siebel Load Test Module 15-11

2. Select ServerStats from the Tools menu.

3. Select the Metrics node to view the metric categories.

4. Click New.

5. Enter a name for the metric.

6. Enter a description for the metric.

7. Select Virtual Agent as the Metric type.

8. Click Next.

9. Enter the name of the batch file you created to run the srvrmgr program in the
Command Line field.

10. Enter a Regular expression to parse the data returned from the srvrmgr program
in the Matching Regexp field. For the Server Manager srvrmgr program
commands:

configure list statistics show STAT_ALIAS, CURR_VAL
list statistics
quit

use the following format for the Regular Expression:

/aliasName\s+([0-9]+)/

For example, for the server statistic Average Connect Time, the Regular
Expression would be as follows:

/AvgConnTime\s+([0-9]+)/

11. Enter the Key of value to use to parse the Regular Expression. The key of value
specifies which set of parenthesis in the Regular Expression is the value to return.
For Siebel statistics using the above Regular Expression, set the value to 1.

12. Enter the Sample Multiplier value. The following window shows a metric
configured to retrieve the Average Connect Time.

13. Click the Test button to get to the Test Setup window:

14. Click OK to start the test.

15. Verify the results returned the correct data value for the statistic from the Siebel
Server Manager program and did not return any errors.

Note: Manually run the srvrmgr program and list statistics on the Siebel Server
to verify the Regular Expression returns the correct data value/format.

16. Click Close.

17. Click Finish. The New metric appears in the Metrics tree under the User Defined
node.

18. Repeat steps 4-17 to configure additional Siebel metrics in ServerStats.

For additional information about monitoring Siebel servers, see the System Monitoring
and Diagnostics Guide for Siebel eBusiness Applications Version 7.7 (or newer)
documentation in the Siebel document bookshelf.

15.2.11 Defining a ServerStats Configuration
Oracle Load Testing ServerStats configurations are used to specify which metrics to
include when collecting the data from the Siebel Server Manager program and update

Load Testing Siebel Applications

15-12 Oracle Functional Testing OpenScript User's Guide

Oracle Load Testing graphs and reports. You can also create a metric profile for Siebel
metric and use the profile as part of the configuration. This section explains how to
define a ServerStats configuration and add metrics to the configuration.

1. If necessary, start Oracle Load Testing and select ServerStats from the Tools menu.

2. Click the Configurations node to view existing configurations.

3. Click New.

4. Enter a name for the configuration.

5. Enter a description for the configuration.

6. Click Save. The configuration window adds new options for adding and updating
monitors:

7. Click Add a new monitor.

8. Expand the User defined node and select a Siebel metric.

9. Click Next.

10. Set the monitored system, data collector, and collection interval.

11. Click Next. The metric is added to the list of monitors in the configuration.

12. Click Finish.

13. Repeat steps 7-12 to add additional metrics to the configuration.

14. Click Test.

15. Verify the results returned the correct data values for the statistics from the Siebel
Server Manager program and did not return any errors.

16. Click Close.

17. Click Update.

15.2.12 Importing Pre-Configured Metrics and Profiles to Oracle Load Testing
If you have pre-configured files for Siebel metrics and metric profiles, you can import
the files into Oracle Load Testing rather than manually configure the metrics and
profiles.

1. If necessary, start the Oracle Load Testing application.

2. Select Import File from the Tools menu.

3. Select the File Type. The ServerStats file types are as follows:

4. Click Browse to select the file location.

5. Select the drive and directory location.

6. Select the file to import.

7. Click Open.

Type Extension

ServerStats Metric .metric

ServerStats Metric Profile .hwm

ServerStats Configuration .config

Load Testing Siebel Applications

Using the Siebel Load Test Module 15-13

8. Click Upload.

9. Click OK.

10. Repeat steps 4-9 for each file to upload.

15.2.13 Running Load Tests in the Oracle Load Testing Console
Select the script or a user-defined profile from the Select scripts & user-defined
profiles list.

1. Select a script.

2. Click Add to scenario.

3. Set the # VUs.

4. Set the System to use to test.

5. Set the User Mode to Java Client.

6. Set the Iteration Delay to 1.

7. Set the VU Pacing (Think Time) to Recorded.

8. Click Add to Autopilot.

9. Set the Start and Stop test options.

10. Set the Virtual User Rampup.

11. Select the ServerStats configuration you defined earlier.

12. Click the Run Test button.

13. Specify the Session to Save.

14. Click OK.

15.2.13.1 Viewing VU Grid
The Virtual User grid lets you view the progress of the script playback for each virtual
user. If necessary, click the Watch VU Grid tab to switch to the grid.

15.2.13.2 Viewing ServerStats
The ServerStats display lets you view the Siebel Server statistics in real time using the
ServerStats display window. Select ServerStats Display from the Tools menu to open
the ServerStats display.

15.2.14 Generating Graphs and Reports Using Oracle Load Testing
You can generate graphs from Virtual User and ServerStats data during run time and
for post testing analysis.

15.2.14.1 Creating Custom Runtime Graphs
The View Run Graphs tab lets you generate custom graphs during test runtime.

1. While the load test is running, click the View Run Graphs tab.

2. Click New Graph. A new blank graph tab is added to the Reports and Graphs
section.

3. Scroll down to the Filters section.

4. Enter a graph name.

Setting Siebel Correlation Preferences

15-14 Oracle Functional Testing OpenScript User's Guide

5. Expand ServerStats Monitors in the Available Data Series tree.

6. Select the data series to add to the graph.

7. Click Add Data Series.

8. Repeat to add other monitors to the data series.

9. Specify the Plot Data Series and Y-Axis Scaling options.

10. Click Generate Graphs. The custom graph appears as a new tab in the Reports
and Graphs section.

15.2.14.2 Creating Custom Reports
The Create Reports tab lets you generate custom reports and graphs after the test for
post-testing analysis.

1. Click Create Reports tab.

2. Click New Graph.

3. Select the ServerStats session as the Available Data Series.

4. Expand Available Data Series tree.

5. Select the data series to add to the graph.

6. Click Add Data Series.

7. Click Generate Graph. The custom graph appears as a new tab in the Reports and
Graphs section.

You can export the graph to Adobe PDF, Microsoft Excel, or Comma Separated
Value formats.

The Create Reports tab also lets you retrieve session performance reports after the test
for post-testing analysis.

1. If necessary, click Create Reports tab.

2. Click the Sessions tab in the Reports and Graphs section.

3. Select the Session. The report appears in the Reports and Graphs section.

You can export or print the session report.

15.3 Setting Siebel Correlation Preferences
To set Setting Siebel Correlation preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Correlation category.

4. Expand the Siebel Load Library.

5. Select or clear the check boxes to enable or disable specific rules.

6. Click the Add or Edit buttons to modify rules in the library. See Section 15.4,
"Siebel Correlation Library" for a list of correlation rules.

7. Click OK.

Siebel Correlation Library

Using the Siebel Load Test Module 15-15

15.4 Siebel Correlation Library
The Siebel correlation library defines the correlation rules for Siebel (Siebel versions
7.7, 7.8, 8.0, 8.1). The correlation rules specify the variable names and regular
expressions to use to replace dynamic data in Siebel applications and navigations.

The default Siebel correlation library provided with the OpenScript Siebel Module
includes the following correlation rules:

■ Siebel SWEACn - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern SWEACn=(\d+) and replaces it with the
variable name SWEACn in all locations.

■ Siebel SN - Variable Substitution - this rule locates text in the HTML matching
the Regular Expression pattern _sn=((.+?))& and replaces it with the variable
name siebelsn in the specified location. The variable name siebelsn uses the
Regular Expression pattern name="_sn" value="(.+?)".

■ Siebel SN - Variable Substitution - this rule locates text in the HTML matching
the Regular Expression pattern _sn=((.+?))& and replaces it with the variable
name siebelsn in the specified location. The variable name siebelsn uses the
Regular Expression pattern _sn=(.+?)".

■ Siebel SN - Variable Substitution - this rule locates text in the HTML matching
the Regular Expression pattern _sn=((.+?))& and replaces it with the variable
name siebelsn in the specified location. The variable name siebelsn uses the
Regular Expression pattern _sn=(.+?)&.

■ Siebel SWEBID - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern SWEBID(=|%3d|%3D)((\d+)) and
replaces it with the variable name SWEBID in the specified location. The variable
name SWEBID uses the Regular Expression pattern navigator.id =
([0-9]+?);.

■ Siebel SWEBID - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern SWEBID(=|%3d|%3D)((\d+)) and
replaces it with the variable name SWEBID in the specified location. The variable
name SWEBID uses the Regular Expression pattern navigator.id =
"([0-9]+?)".

■ Siebel SWEBMC - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern
SWEBMC=(((|%3d|%3D)\d+([&%]|$|\s))) and replaces it with the
variable name SWEBMC in the specified location. The variable name SWEBMC uses
the Regular Expression pattern SWEBMC(?:=|%3d|%3D)(\d+)[?&?%].

■ Siebel SWEBRS - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern
SWEBRS=(((|%3d|%3D)\d+([&%]|$|\s))) and replaces it with the
variable name SWEBRS in the specified location. The variable name SWEBRS uses
the Regular Expression pattern <input type = "hidden"
name="SWEBRS"\s+?value="(\d+?)">.

■ Siebel SWEFI - Variable Substitution - this rule locates text in the HTML
matching the Regular Expression pattern
SWEFI=(((|%3d|%3D)\d+([&%]|$|\s))) and replaces it with the
variable name SWEFI in the specified location. The variable name SWEFI uses the
Regular Expression pattern (.)SWEFI\1(\d+)\1.

Siebel Script Functions

15-16 Oracle Functional Testing OpenScript User's Guide

■ SWETS - Function/Text Substitution - this rule locates text in the HTML matching
the Regular Expression pattern SWETS=((\d{13,})) and replaces it with the
function {{@timestamp}} in the specified location.

■ SWSECancelID - Function/Text Substitution - this rule locates text in the HTML
matching the Regular Expression pattern
SWSECancelID=(=|%3d|%3D)((\d{10,})) and replaces it with the function
{{@timestampsecs}} in the specified location.

■ RefID - Function/Text Substitution - this rule locates text in the HTML matching
the Regular Expression pattern refID(=|%3d|%3D)((\d+)) and replaces it
with the function {{@CounterRefID}} in the specified location.

■ Siebel Correlation Rule - this rule locates all Siebel SWEC and RowIDs.

■ alarmDate - Substitute Recorded Date - this rule locates the alarmDate in the
HTML matching ther Regular Expression pattern
alarmDate(((\d{1,2})*(\d{1,2})/(\d{1,2})/(\d{4}))) and replaces
it with the function {{@today(n,M/d/yyyy)}} in the specified location.

■ currentDate - Substitute Recorded Date - this rule locates the date the script was
recorded and replaces it with the date pattern M/dd/yyyy.

15.5 Siebel Script Functions
Dynamic values returned from a Siebel server can be replaced by Siebel-specific
OpenScript functions. The following script functions are available specifically for
Siebel scripts when you substitute a variable value:

■ {{@CounterRefID,x}}: this function is used to replace the refID parameter in
QueryString or Postdata strings. x is the recorded value.

■ {{@siebeltimestampsecs}}: this function is used to replace the Siebel time
stamp with the script variable {{@siebeltimestampsecs}}. The value is the
current timestamp in seconds instead of milliseconds.

■ {{@SWECount}}, {{@SWECInc(x)}}, {{@SWECSet()}}: these functions are
used to replace SWEC parameters in QueryString or Postdata strings.

16

Using the Utilities Module 16-1

16Using the Utilities Module

This chapter provides instructions on using the OpenScript Utilities Module, which
provides commonly used testing functions.

16.1 About the Utilities Module
The Utilities Module is an extension to the Basic Module. The OpenScript Utilities
module includes the following features:

16.1.1 Key Features of the Utilities Module
■ Text File Processing. Read values from text files including CSV and XML files as

well as copy and move files in the file system.

■ Databases. Read values from various databases such as Oracle as well as other
JDBC-ODBC Compliant databases

■ XML XPath Expressions. Generate XPath expressions from valid XML files.

You can use the Utilities Module API to enhance recorded scripts with additional
testing functionality. Commands that are specific to the Utilities Module are part of
the "utilities" class.

16.2 Using Text File Processing
You can use the utilities API to read values from text files including CSV and
XML. The following sections explain how to use the utilities API.

16.2.1 Working with Text Files
The Utilities API includes a getFileService()object with methods for working
with text files such as reading lines of text from a file or appending to a file. The
following examples show some ways to use getFileService.

To add code that reads text from a file:

1. Create a script project.

2. Open the Java Code view.

3. Add the readLines() method to specify the file to read. The following example
shows how to parse the lines of text in a file and print to the OpenScript console
view:

import java.io.File;
//[...]

Using Text File Processing

16-2 Oracle Functional Testing OpenScript User's Guide

String[] lines = utilities.getFileService().readLines("C:/Sample.txt");
for (String line : lines) {
info(line);
}

To add code that appends text to a file:

1. Create a script project.

2. Open the Java Code view.

3. Add the appendStringToFile() method to specify the file to which to append
text strings. The following example shows how to create a new file and append
lines of text to the file:

import java.io.File;
//[...]
utilities.getFileService().createDestinationFile("myFile.txt", false);
String line1 = "This is a new line 1";
String line2 = "This is a another new line 2";
String contents = "\n" + line1 + "\n" + line2;
utilities.getFileService().appendStringToFile("myFile.txt", contents);

16.2.2 Working with CSV Files
The Utilities API includes a loadCSV() object for working with data from a Comma
Separated Value text file.

To add code that loads and prints data from a .CSV file:

1. Create a script project.

2. Open the Java Code view.

3. Add the loadCSV method to specify the file to read. For this example the file,
"C:\customer.csv" contains this data:

FirstName,LastName,MiddleInitial
John,James,R
Mary,Simpson,J

The following example shows one way to parse a table of text in a .CSV file and
print values to the OpenScript console view:

import java.io.File;
import java.util.List;
//[...]
String filePath = "c:\\";
String csvFile = filePath + "fmstocks_data.csv";
File file = new File(csvFile);

Table table = utilities.loadCSV(csvFile);

//Print the CSV file
String columns = "";
int columnNumber = table.getColumns().getColumnCount();
String [] columnNames = table.getColumns().getColumnNames();
for (int index=0; index<columnNumber; index++)

columns += columnNames[index] + " ";
info(columns);

List <Row> rows = table.getRows();
for (int index=0; index<rows.size(); index++) {

Getting Values from a Database

Using the Utilities Module 16-3

String [] rowValue = rows.get(index).getAll();
String rowContent = "";
for (int columnIndex=0; columnIndex<rowValue.length; columnIndex++)

rowContent += rowValue[columnIndex] + " ";
info(rowContent);

}

16.2.3 Working with XML Files
The Utilities API includes a loadXML() object for reading text from a XML formatted
text file.

To add code that reads text from a .XML file:

1. Create a script project.

2. Open the Java Code view.

3. Add the loadXML method to specify the file to read. For this example the file,
"C:\grocery.xml" contains this data:

<?xml version="1.0" encoding="utf-8"?>
<Oceans>
<ocean name="Arctic"/>
<ocean name="Atlantic"/>
<ocean name="Indian"/>
<ocean name="Pacific"/>
<ocean name="Southern"/>

</Oceans>

The following example shows how to parse a table of text in a .XML file and print
values to the OpenScript console view:

XML xml = utilities.loadXML("C:/oceans.xml");
XML root = xml.getChildren()[0];
info(root.getTagName());
XML[] oceans = root.getChildren();

for (XML ocean : oceans){
info(ocean.getAttribute("name"));
}

16.3 Getting Values from a Database
Getting values from a database requires a database definition, a database SQL query or
SQL execute and a disconnect from the database. This section explains how to
manually add database actions to a script. See Section 3.2.6, "Importing Database
Capture Files" for additional information about importing a DBReplay capture file or
SQL statements from a plain SQL and PL/SQL statements .SQL script file to generate
an OpenScript load testing script.

To get values from a database:

1. Create a database script project.

2. Select the node where you want to add the database definition.

3. Select the Script menu and then select Other from the Add sub menu.

4. Expand the Database node and select Database Definition.

5. Click OK.

Getting Values from a Database

16-4 Oracle Functional Testing OpenScript User's Guide

6. Specify the database definition information.

7. Click Test to verify a successful connection.

8. Click OK.

9. Select the node where you want to add the database connection. The OpenScript
database connect method is optional. The database connect is invoked
automatically when calling execute or query methods

10. Select the Script menu and then select Other from the Add sub menu.

11. Expand the Database node and select Connect.

12. Select the database alias and click OK.

13. Select the node where you want to add the database query or execute statement.

14. Select the Script menu and then select Other from the Add sub menu.

15. Expand the Database node and select SQL Query or SQL Execute.

16. Specify the SQL statement to query or execute and click Add.

17. Specify a data type and define a name for the parameter.

18. Click OK.

19. Click OK.

20. Select the node where you want to add the database disconnect.

21. Select the Script menu and then select Other from the Add sub menu.

22. Expand the Database node and select Disconnect.

23. Select the database alias and click OK.

In the Java Code view, the utilities.getSQLService() methods will be
added to the script code for each database script action (additional code and
comments added):

//define database
utilities.getSQLService().define("oracledb",

"oracle.jdbc.driver.OracleDriver", "00.000.000.000", "myuserID",
decrypt("ZgEQLMIUx8EVDAhfAenvyg=="));

//connect to database
utilities.getSQLService().connect("oracledb");

//execute SQL statement
String query = "Create table Employee (ID number(4) not null unique, " +
"FirstName varchar2(40) not null, LastName varchar2(40) not null, " +
"Country varchar2(40), HireDate date)";
info("Query: " + query);
utilities.getSQLService().execute("oracledb", query);

//execute update SQL statement
query = "Insert into Employee (ID, FirstName, LastName, Country, HireDate) " +

"Values (101, 'Tom', 'Smith', 'USA', '01-JAN-95')";
utilities.getSQLService().executeUpdate("oracledb", query);

//query SQL statement
query = "Select * from Employee";
Table table = utilities.getSQLService().query("oracledb", query);

//print table

Using the XPath Generator

Using the Utilities Module 16-5

for (int i=0; i<table.getRowCount(); i++) {
Row row = table.getRow(i);
String [] rowValue = row.getAll();
String rowContent = "";
for (int col=0; col<rowValue.length; col++)

rowContent += rowValue[col] + " ";
info(rowContent);

}

//disconnect from database
utilities.getSQLService().disconnect("oracledb");

16.4 Using the XPath Generator
The Utilities Module includes an XPath generator utility that you can use to generate
an XPath Expression to a selected element from a valid XML file.

To use the XPath Generator:

1. Create an XML file that contains the tags and values to use to generate the XPath
expression. The following is an example of a simple XML file that can be used with
the XPath Generator:

<?xml version="1.0" encoding="utf-8"?>
<Oceans>

<ocean name="Artic"/>
<ocean name="Atlantic"/>
<ocean name="Indian"/>
<ocean name="Pacific"/>
<ocean name="Southern"/>

</Oceans>

2. Create and record a test script. The Tools menu appears on the OpenScript menu
bar for functional and load test scripts.

3. Select Generate XPaths from the Tools menu.

4. Click Browse and select the XML file to load.

5. Expand the XML tree under the Tags section of the XML file.

6. Select the XML tag to use to generate the XPath. The generated XPath appears in
the XPath Expression field in a form similar to /Oceans/ocean[1]/@name.

7. Use the Ctrl+C and Ctrl+V keyboard combinations to copy and paste the
generated XPath to a method in the Java Code tab of the script view.

The XPath Expression can be used in the utilities findByXPath API method, as
follows:

utilities.loadXML("filePath").findByXPath(xpath, xml)

Using the XPath Generator

16-6 Oracle Functional Testing OpenScript User's Guide

17

Using the Shared Data Module 17-1

17Using the Shared Data Module

This chapter provides instructions on using the OpenScript Shared Data Module,
which allows data to be passed between scripts using a shared data queue.

17.1 About the Shared Data Module
The Shared Data Module is an extension module to the OpenScript Basic Module that
extends the other testing modules with message queue and hash map capabilities.

Shared Data is typically used to pass data between load testing scripts running as
Virtual Users in Oracle Load Testing. The Shared Data can also be used to pass data
between functional testing scripts running from the command line.

Virtual users can put a message object in a queue, and take a message object from the
same queue. Virtual users can also create a hash map or get an existing map and put
key-values into the hash map. The virtual users can put or get message objects to the
same queue or hash map in different agents/machines.

17.1.1 Key Features of the Shared Data Module
The Shared Data module provides the following features:

■ Preferences - shared data connection preferences can be set under the OpenScript
Playback preferences.

■ Message Queue Manipulation - create, peek, and poll message queues.

■ Hash Map Manipulation - create, put, and get key-value data in hash maps.

■ Shared Data Module API - The Shared Data Module API includes a "sharedData"
class that provides additional programming functionality.

17.2 Setting Shared Data Preferences
To set Shared Data preferences:

1. Start OpenScript.

2. Select OpenScript Preferences from the View menu.

3. Expand the OpenScript node and the Playback category.

4. Select Shared Data.

5. Set the Shared Data Preferences as follows:

OATS Credentials: Specifies the authentication credentials to use to establish the
communication between the shared queue and the Virtual User.

Using the Shared Data Service

17-2 Oracle Functional Testing OpenScript User's Guide

■ Enable global shared data access credentials: When selected, when selected,
the shard data access credentials are enabled. Specify the Address, User
Name, and Password.

■ Address: Specifies the address of the Oracle Load Testing for Web Application
server to use for the shared data service.

■ User name: Specifies the user name to use for authentication. The default
name is oats unless changed in the Oracle Application Testing Suite
configuration.

■ Password: Specifies the password to use for authentication. This should be the
same password specified in the Encryption setting of the General preferences
if the Encrypt script data setting is selected.

Actions on Shared Data: Specifies actions on shared data.

■ Timeout: Specifies the maximum number of seconds to wait for actions on
shared data to occur before timing out.

6. Click OK.

17.3 Using the Shared Data Service
This section describes how to enable and use the Shared Data Service.

17.3.1 Basic Scenarios
The following are the basic scenarios for using the Shared Data Service:

■ Queue Mode: Items are stored sequentially in queues. Scripts can get the first or
last data item in the queue. Other items cannot be accessed randomly.

Script A is run by 100 Virtual Users, which act as message producers putting
message objects to the shared data queues.

Script B is run by another 100 Virtual Users, which act as consumers getting
message objects from the shared data queues.

Consumer Virtual Users can get an object from the beginning or end and the
information from a queue. If the queue is empty, the consumer Virtual User is
blocked until the timeout is reached. Once the object can be retrieved, the
consumer Virtual User is resumed.

■ Hash Map mode: Any item can be accessed using a key. The hash map may
already contain a mapping for a key. The hash map needs to be checked before a
new item is put into a hash map.

Script A is run by 100 Virtual Users, which put key-value objects to a shared data
hash map.

Script B is run by another 100 Virtual Users, which get values with keys from the
shared data hash map.

If a Virtual User cannot get the value to which the specified key is mapped, it will
be blocked until the timeout is reached or the key-value is added to the map.

17.3.2 Enabling the Shared Data Service
To enable the Shared Data Service:

1. Start OpenScript.

Using the Shared Data Service

Using the Shared Data Module 17-3

2. Open an existing script or create and record a new script.

3. Select Script Properties from the Script menu.

4. Select the Modules category.

5. Select the Shared Data module.

6. Click OK. The Shared Data Service will be added to the script class in the Java
Code as follows.

@ScriptService oracle.oats.scripting.modules.sharedData.api.SharedDataService
sharedData;

Once you have enabled the Shared Data service, you can set the password
encryption and the connection parameters and then use the Shared Data API to
manipulate message queues or hash maps. You use the sharedData class in the
Java code view to create manipulate message queues and hash maps.

17.3.3 Setting the Password Encryption
The Password encryption is set in the General Preferences. To set the password
encryption:

1. Select OpenScript Preferences from the View menu.

2. Expand the OpenScript node and the General category.

3. Select Encryption.

4. Select Obfuscate script data or Encrypt script data to make sure the connection to
the Shared Data Service uses an obfuscated or encrypted password.

5. If you select Encrypt script data, enter a password.

6. Click OK.

17.3.4 Setting the Connection Parameters
The connection parameters specify the Oracle Load Testing server to use for the
Shared Data Service and the authentication settings. During a load test, the Shared
Data Service is limited to running only on the Oracle Load Testing controller running
the test. To set the connection parameters:

1. Make sure the Shared Data Service is enabled and the password encryption is
specified as previously described.

2. Select the script node where you want to set the connection parameters.

3. Select Add from the Script menu and then select Other.

4. Expand the Shared Data folder.

5. Select Set Connection Parameters and click OK.

6. Set the connection parameters as follows:

Address: Specify the address of the machine to use for the Shared Data Service.
For example: t3://localhost:8088 or t3://machinename.us.oracle.com:8088.

User Name: Specify the user name to use for authentication. The default name is
oats unless changed in the Oracle Application Testing Suite configuration.

Password: Specify the password to use for authentication.

7. Click OK. A Connection Parameters node will be added to the script tree.

Using the Shared Data Service

17-4 Oracle Functional Testing OpenScript User's Guide

8. In the Java Code view, the Connection Parameters consist of the code executed in
the sharedData.setConnectionParameters procedure:

sharedData.setConnectionParameters("t3://localhost:8088", "oats",
decrypt("L4I57b+KpnI2BQSRKPG88w=="));

After setting the connection parameters, you can user the Shared Data API in the Java
Code view to manipulate data in message queues and hash maps.

17.3.5 Creating a Shared Data Queue
To create a shared data queue:

1. Create an script project.

2. Make sure the Shared Data Service is enabled, the password encryption, and
connection parameters are specified as previously described.

3. Open the Java Code view and insert the sharedData.createQueue code with a
life time value into the script where you want to create the queue, as follows:

info("Create queueA with life time of 10 minutes");
sharedData.createQueue("queueA", 10);

The maximum number of queues is 1000. The maximum capacity of a queue is
65535. If the maximum is exceeded, an exception occurs. Once the life time expires,
the queue is destroyed.

17.3.6 Inserting Data into a Shared Data Queue
The types of the "values" that can be put into a queue are as follows:

■ String

■ boolean

■ integer

■ long

■ double

■ float

■ a List of any of the above data types

■ User-defined serializable java objects.

To insert data into an existing queue:

1. Set up the shared data service and create a queue as previously described.

2. Open the Java Code view and insert the sharedData.offerFirst or
sharedData.offerLast code with a value into the script where you want to
insert data into the queue, as follows:

int iterationNum = getIteration().getTotalIterationsCompleted() + 1;
info("Insert data at the front of an existing queueA");
sharedData.offerFirst("queueA", "first" + iterationNum);

or

int iterationNum = getIteration().getTotalIterationsCompleted() + 1;
info("Insert data at the end of an existing queueA");
sharedData.offerLast("queueA", "last" + iterationNum);

Using the Shared Data Service

Using the Shared Data Module 17-5

info("parameter type - String");
sharedData.offerFirst("queueA", "value");

info("parameter type - list of Strings");
ArrayList<String> listOfStr = new ArrayList<String>();
listOfStr.add(0, "val1");
listOfStr.add(1, "val2");
sharedData.offerFirst("queueA", listOfStr);
ArrayList<String> queueValue = (ArrayList<String>)

sharedData.pollFirst("queueA");

info("parameter type - boolean");
sharedData.offerFirst("queueA", true);

info("parameter type - int");
sharedData.offerFirst("queueA", 10);

info("parameter type - double");
sharedData.offerFirst("queueA", 10.5);

info("parameter type - long");
sharedData.offerFirst("queueA", 100);

17.3.7 Getting Data from a Shared Data Queue
To get data from a queue:

1. Set up the shared data service, create a queue, and insert data to the queue as
previously described.

2. Open the Java Code view and insert the Shared Data method(s) to use to get data
into the script where you want to get data from the queue. The Shared Data
Service includes methods for getting the length and peeking (gets the data) and
polling (gets and removes the data) data, as follows:

info("Get the length of queueA");
int actualLength = sharedData.getLengthOfQueue("queueA");

info("Get the most current item of queueA");
String queueValue1 = (String) sharedData.peekFirst("queueA");

info("Get the most current item of queueA - timeout after 5 seconds");
String queueValue2 = (String) sharedData.peekFirst("queueA", 5000);

info("Get the oldest item of queueA");
String queueValue1 = (String) sharedData.peekLast("queueA");

info("Get the oldest item of queueA - timeout after 5 seconds");
String queueValue2 = (String) sharedData.peekLast("queueA", 5000);

info("Get and remove the most current item from queueA");
String pollValue1 = (String) sharedData.pollFirst("queueA");

info("Remove the most current item from queueA - Timeout after 5 seconds");
String pollValue2 = (String) sharedData.pollFirst("queueA", 5000);

info("Remove the oldest item from queueA");
String pollValue1 = (String) sharedData.pollLast("queueA");

info("Remove the oldest item from queueA - Timeout after 5 seconds");

Using the Shared Data Service

17-6 Oracle Functional Testing OpenScript User's Guide

String pollValue2 = (String) sharedData.pollLast("queueA", 5000);

info("Waiting for an existing value 100 in queueA");
boolean isFound1 = sharedData.waitFor("queueA", 100);

info("Waiting for an existing value 100 in queueA - timeout afer 5 seconds");
boolean isFound2 = sharedData.waitFor("queueA", 100, 5000);

3. Add other custom code to the script to use the data from the queue.

17.3.8 Clearing a Shared Data Queue
Clear queues when the script is finished using the data.

To clear a shared data queue:

1. Open the Java Code view and insert the sharedData.clearQueue code with a
the name of the queue to clear into the script where you want to clear the queue,
as follows:

info("Clear queueA");
sharedData.clearQueue("queueA");

17.3.9 Destroying a Shared Queue
Destroy queues when the script is finished using the data. Destroying queues releases
the queues’ data and its listeners and release the memory that is allocated to a queue.

To destroy a shared data queue:

1. Open the Java Code view and insert the sharedData.destroyQueue code with
a the name of the queue to destroy into the script where you want to destroy the
queue, as follows:

info("Destroy queueA");
sharedData.destroyQueue("queueA");

17.3.10 Creating a Shared Data Hash Map
To create a shared data hash map:

1. Create an script project.

2. Make sure the Shared Data Service is enabled, the password encryption, and
connection parameters are specified as previously described.

3. Open the Java Code view and insert the sharedData.createMap code with a
life time value into the script where you want to create the hash map, as follows:

info("Create mapA with life time of 10 minutes");
sharedData.createMap("mapA", 10);

The maximum number of hash maps is 1000. The maximum capacity of a hash
map is 65535. If the maximum is exceeded, an exception occurs. Once the life time
expires, the hash map is destroyed.

17.3.11 Inserting Data into a Shared Data Hash Map
The types of the "values" that can be put into a hash map are the same as for queues.
See "Inserting Data into a Shared Data Queue" on page 17-4 for a list of the data types.

To insert data into an existing hash map:

Using the Shared Data Service

Using the Shared Data Module 17-7

1. Set up the shared data service and create a hash map as previously described.

2. Open the Java Code view and insert the sharedData.putToMap code with a key
and value into the script where you want to insert data into the hash map, as
follows:

int iterationNum = getIteration().getTotalIterationsCompleted() + 1;
info("put key/value pair to an existing mapA");
sharedData.putToMap("mapA", "key" + iterationNum, "value" + iterationNum);

info("parameter type - String");
sharedData.putToMap("mapA", "key", "value");
String mapValue = (String) sharedData.getFromMap("mapA", "key");

info("parameter type - list of Strings");
ArrayList<String> listOfStr = new ArrayList<String>();
listOfStr.add(0, "val1");
listOfStr.add(1, "val2");
sharedData.putToMap("mapA", "key", listOfStr);
ArrayList<String> mapVal = (ArrayList<String>) sharedData.getFromMap("mapA",

"key");

info("parameter type - boolean");
sharedData.putToMap("mapA", "key", true);

info("parameter type - int");
sharedData.putToMap("mapA", "key", 10);

info("parameter type - double");
sharedData.putToMap("mapA", "key", 10.5);

info("parameter type - long");
sharedData.putToMap("mapA", "key", 100);

17.3.12 Getting Data from a Shared Data Hash Map
To get data from a hash map:

1. Set up the shared data service, create a queue, and insert data to the hash map as
previously described.

2. Open the Java Code view and insert the Shared Data method(s) to use to get data
into the script where you want to get data from the hash map. The Shared Data
Service includes methods for getting the keys of the hash map and getting data
and removing data from the hash map, as follows:

info("Get all keys of mapA");
String [] lsKey = sharedData.getKeysOfMap("mapA");

info("Get key/value pair from mapA");
String actualValue = (String) sharedData.getFromMap("mapA", "key");

info("Get key/value pair from mapA - timeout after 5 seconds");
String actualValue1 = (String) sharedData.getFromMap("mapA", "key", 5000);

info("Remove key/value pair from mapA");
String removeValue = (String) sharedData.removeFromMap("mapA", "key");

info("Remove key/value pair from mapA - timeout after 5 seconds");
String removeValue1 = (String) sharedData.removeFromMap("mapA", "key", 5000);

Using The Shared Data API

17-8 Oracle Functional Testing OpenScript User's Guide

3. Add other custom code to the script to use the data from the hash map.

17.3.13 Clearing a Shared Data Hash Map
Clear hash maps when the script is finished using the data.

To clear a shared data hash map:

1. Open the Java Code view and insert the sharedData.clearMap code with a the
name of the map to clear into the script where you want to clear the hash map, as
follows:

info("Clear mapA");
sharedData.clearMap("mapA");

17.3.14 Destroying a Shared Data Hash Map
Destroy hash maps when the script is finished using the data. Destroying hash maps
releases the map's data and its listeners and release the memory that is allocated to a
map.

To destroy a shared data hash map:

1. Open the Java Code view and insert the sharedData.destroyMap code with a
the name of the map to destroy into the script where you want to destroy the hash
map, as follows:

info("Destroy mapA");
sharedData.destroyMap("mapA");

17.4 Using The Shared Data API
The Shared Data Module includes a script Application Programming Interface (API)
for Shared Data actions. You can use the Shared Data API to pass data between load
testing scripts running as Virtual Users in Oracle Load Testing. The Shared Data can
also be used to pass data between functional testing scripts running from the
command line. Commands that are specific to the Shared Data Module are part of the
"sharedData" class. The Shared Data service must be enabled separately for use with
other types of scripts. You can also leverage other commands from other enabled
classes (services) or general Java commands in your scripts.

Some examples of the Shared Data Module API include:

■ clearMap

■ clearQueue

■ createMap

■ createQueue

■ destroyMap

■ destroyQueue

■ getFromMap

■ getKeysOfMap

■ getLengthOfQueue

■ offerFirst

■ offerLast

Using The Shared Data API

Using the Shared Data Module 17-9

■ peekFirst

■ peekLast

■ pollFirst

■ pollLast

■ putToMap

■ removeFromMap

■ setConnectionParameters

■ waitFor

The setConnectionParameters API method can be added using the script Tree View.
Additional methods can be added using the Java Code view.

Using The Shared Data API

17-10 Oracle Functional Testing OpenScript User's Guide

A

Command Line Reference A-1

A Command Line Reference

This appendix lists the parameters for running OpenScript scripts from the command
line. All OpenScript scripts may be run from the command line assuming that:

■ All resources that the script depends on, including databank files, object library
files, and other scripts it runs, must be accessible from the machine where the
script is run.

■ The installed version of OpenScript or agent is newer or the same as the version
used to create the script.

To run a script from the command line, type:

[OpenScript Install Dir]/runScript.bat Path/ScriptName.jwg
[options]

If OpenScript is not installed, but the OATS agent is installed, type:

[OATS Install Dir]/agent/runScript.bat Path/ScriptName.jwg
[options]

Path is the full drive and directory path of the file location. When specifying file
paths, use forward-slash (/) instead of back-slash (\) to ensure the back-slash notation
is not misinterpreted in Java. If you must use back-slash notation, use double
back-slashes (\\) in the file paths. For example, [OATS Install
Dir]\\agent\\runScript.bat.

[options] may consist of any number of agent command line settings.

A.1 Specifying Command Line Settings
This section describes how to use the command line settings.

■ Zero or more agent command line settings may be specified using the following
format:

-settingId settingValue

Example:

runScript
"C:/OracleATS/OpenScript/DefaultRepository/Default!/script1/script1.jwg"
-iterations 5 -iterationDelay 5

■ If a settingValue contains spaces, the value may be enclosed inside
double-quotation marks.

■ If a setting specifies a boolean true/false value, and no settingValue is
specified, then a true value is assumed.

Supported Agent Command Line Settings

A-2 Oracle Functional Testing OpenScript User's Guide

■ Except where specifically noted, all settingId values are NOT case-sensitive.
For example, -iterations 10 means the same thing as -ITERATIONS 10.

■ It is possible to view all settings passed to a script by typing the following code
inside an OpenScript script:

info(getSettings().toString());

■ Custom settings may be used in a script and specified on the command line. For
example, consider a script with a setting "todaysURLToTest":

public void run() throws Exception {
info("Today we will test the URL " + getSettings().get("todaysURLToTest"));

}

The setting may be specified on the command line using:

-todaysURLToTest "http://www.oracle.com/"

The following are reserved keywords that cannot be used as custom setting names:

-noUpdate
-boot
-classloaderProperties
-plugins
-firstUse
-newUpdates
-update
-password
-keyring

■ The runScript program can only accept 9 command line arguments. Use the
-propertiesPath setting to specify a file containing a larger number of
properties. Select Export Playback Settings from the Tools menu to generate a
.properties file for the script. See the -propertiesPath setting in the General
Settings on page A-8 for additional information.

A.2 Supported Agent Command Line Settings
Certain settings only apply to scripts that have a particular module applied. For
example, HTTP load test script settings do not apply to Web functional test scripts.

A.2.1 General Settings
The following table lists the General command line settings.

Setting Description

-ENCRYPTION_PROPERTIES_FILE
path\encryption.properties

Specify the full path and file name to use for
encrypted password authentication. The file name is
C:\Documents and
Settings\username\osworkspace\.metadata\.plugins
\oracle.oats.scripting.utilities\encryption.properties.

Supported Agent Command Line Settings

Command Line Reference A-3

-databank_preparation_timeout
timeout

Specifies how much time to spend preparing a
databank for use before timing out. The value is in
seconds. If this option is not specified, the default
value of 30 seconds will be used. This setting
includes the total time to do all of the following
activities:

If using a Database-backed databank:

■ Connect to the database

■ Query

■ Read records, write into the file

■ Create the index simultaneously

■ Disconnect

If using a CSV-backed databank:

■ Time required to parse the CSV file and create
the index

If using Random Unique:

■ Time to shuffle the index

Example usage:

-databank_preparation_timeout 60

Setting Description

Supported Agent Command Line Settings

A-4 Oracle Functional Testing OpenScript User's Guide

-dbopts "dboption, dboption,
..."

Specify which databank records to use when playing
back the script, where dboption exists for each
databank being configured. One or more dboption
may be specified. Each dboption has the form:

"settingName=settingValue:settingName=s
ettingValue:..."

At least one setting name=value pair must be
specified. Only the alias setting is required. All
other settings are optional. The following setting
names are valid for a dboption:

alias=alias - (Required) Specify the alias of the
databank being configured.

startIndex=startIndex - Specify the starting
databank record to use. First record is 1. Default
value is 1.

rangeMin=rangeMin - Specify the starting
databank record range (inclusive). First record is 1.
Default value is 1.

rangeMax=rangeMax - Specify the ending databank
record range (inclusive). First record is 1. Specify -1 to
indicate that the range max is equal to the number of
databank records. Default is -1.

advance=advance_mode - Specify the Advance to
Next Record setting. advance_mode value may be
one of the following:

■ advance=WHEN_SCRIPT_REQUESTS -
Corresponds to the option, "Advance to Next
Record: When Script Requests a Record". This is
the default value if no setting specified.

■ advance=EACH_OCCURRENCE - Corresponds to
the option, "Advance to Next Record: Each
Occurrence". Optionally use advance-column
to specify a column name. If no column is
specified, then any column will trigger record
advancement.

■ advance=EACH_ITERATION - Corresponds to
the option, "Advance to Next Record: Each
Iteration".

■ advance=KEEP_FIRST_RECORD - Corresponds
to the option, "Advance to Next Record: Keep
the First Record Assigned".

Example inputs:

■ advance=WHEN_SCRIPT_REQUESTS

■ advance=EACH_OCCURRENCE

■ advance=EACH_
OCCURRENCE:advance-column=firstName

■ advance=EACH_ITERATION

■ advance=KEEP_FIRST_RECORD

advance-column=columnName - Specify the name
of a databank column. If no column is specified, then
any column will trigger record advancement.

Setting Description

Supported Agent Command Line Settings

Command Line Reference A-5

-dbopts (cont’d) select=select_mode - Specify the Select Next
Record setting. select_mode value may be one of
the following:

■ select=SEQUENTIAL - Corresponds to the
option, "Select Next Record: Sequentially". This
is the default selection mode if no setting
specified.

■ select=RANDOM - Corresponds to the option,
"Select Next Record: Randomly".

■ select=SHUFFLE - Corresponds to the option,
"Select Next Record: By Shuffling".

select-seed=seed_number - Specify a seed to use
when choosing a random record. This setting is
optional, and is only used when select=RANDOM or
when select=SHUFFLE. select_mode value is
any non-negative long value. Specify 0 to let
OpenScript generate a seed using the current system
time. Default value is 0.

Example inputs:

■ select=RANDOM:select-seed=437292634

■ select=SHUFFLE:select-seed=372389237

■ select=RANDOM:select-seed=0

■ select=SHUFFLE:select-seed=0

whenOut=whenOut_mode - Specify the When Out
of Records setting. whenOut_mode value may be
one of the following:

■ whenOut=LOOP_FOREVER - Corresponds to the
option, "When Out of Records: Loop Over
Range". Default value if none specified.

■ whenOut=STOP_USER - Corresponds to the
option, "When Out of Records: Stop the User".

■ whenOut=KEEP_SAME - Corresponds to the
option, "When Out of Records: Keep the First
Record Assigned".

Example inputs:

■ whenOut=LOOP_FOREVER

■ whenOut=STOP_USER

■ whenOut=KEEP_SAME

independentCursors=true|false - Specify the
Let Each User Iterate Over Records Independently
setting. This setting is not recommended for
command-line playback, because it is only useful for
scenarios with more than one virtual user. Value may
be one of the following:

■ independentCursors=FALSE - Default if not
specified.

■ independentCursors=TRUE

Example usage of -dbopts:

-dbopts alias=fmstocks_
data:startIndex=2:rangeMin=2:rangeMax=5
:whenOut=STOP_USER

-dbopts alias=fmstocks_
data:select=SHUFFLE:iterations=10

Setting Description

Supported Agent Command Line Settings

A-6 Oracle Functional Testing OpenScript User's Guide

-dbopts (cont’d) -dbopts alias=fmstocks_
data:select=RANDOM:select-seed=4728292:
iterations=10:advance=EACH_ITERATION

-dbopts
alias=products:select=SEQUENTIAL:advanc
e=EACH_
ITERATION:iterations=100,alias=prices:s
elect=SEQUENTIAL:advance=EACH_
OCCURRENCE:advance-column=price

Notes and Limitations

Certain setting combinations are not allowed, or may
cause exceptions when the script is run. The
following are situations to be aware of when using
-dbopts.

1. The whenOut and independentCursors
options are not available when
select=RANDOM. When random is selected, an
infinite supply of random records exists, and it
requires that independentCursors=FALSE.

2. Virtual users may still request an individual
record using getRecord(n) after all records are
used up, and whenOut=KEEP_SAME.

3. The getRecord(n), getFirstRecord(), and
getLastRecord() Java code methods do not
advance the record cursor used by
getNextDatabankRecord(). Therefore:

getNextDatabankRecord();// returns 1
getRecord(7);// returns 7
getNextDatabankRecord();//returns 2, not 7

4. The getRecord(n), getFirstRecord(), and
getLastRecord() Java code methods throw
an exception when they are invoked if
select=SHUFFLE or select=RANDOM.

5. The getRecord(n), getFirstRecord(), and
getLastRecord() Java code methods throw
an exception if they are invoked and the
databank is not indexed.

6. select-seed is only available when
select=RANDOM or select=SHUFFLE.

7. When individualCursors=true and
select=SHUFFLE, all virtual users will get the
same set of random records in the same order.

8. A specific databank range and starting index
may not be set if the databank cannot be
indexed.

9. select=RANDOM or select=SHUFFLE is only
allowed when the databank can be indexed.

10. select=SHUFFLE is only allowed when the
databank can be indexed and when there are
fewer than 200,000 records.

11. individualCursors=true is only allowed
when a databank can be indexed.

Setting Description

Supported Agent Command Line Settings

Command Line Reference A-7

-dboptions
alias:index:mode:range,alias:
index:mode:range,...

(Deprecated - used for version 9.10) Specify which
databank records to use when playing back the
script. Use

-dboptions
alias:index:mode:range,alias:index:mode
:range,... where alias is a databank alias,
index is the first databank record to retrieve (first
record is 1), and mode is one of the following strings:

■ FIRST_RECORD_ONLY - The Virtual User will
only use the first record assigned to it.

■ USE_ALL_RECORDS - Stop after all records are
used.

■ STOP_AFTER_LAST_RECORD - Stop after the
last record in the databank file is used.

■ LOOP_FOREVER - Loop over all records for as
many iterations are specified in -iterations.
This is the default mode if no mode is specified.

range (optional) specifies which range of records to
retrieve, in the format: rangeMin:rangeMax. For
example, 5:10 means the range of records starting at
record 5 and ending at record 10. If not specified,
assumes all records in the databank.

Regardless of the databank setting, the VU will never
run for more iterations than specified in the
-iterations setting.

Example 1: To loop over records starting at the 5th
row in the databank with alias "fmstocks_data", use:

-dboptions fmstocks_data:5:LOOP_FOREVER

Example 2: A databank with alias "fmstocks_data"
contains 15 records. To iterate over records 5 through
10, starting at record 7 (i.e. 7,8,9,10,5,6,7,8,9,10,5,6...),
for at most 100 iterations, use:

-iterations 100 -dboptions fmstocks_
data:7:LOOP_FOREVER:5:10

Setting Description

Supported Agent Command Line Settings

A-8 Oracle Functional Testing OpenScript User's Guide

-delayPercentage mode Specify how long to delay between steps in a script.
Depending on the mode, this setting may be used in
conjunction with other settings. mode should be one
of the following numbers:

-2 No Delay.

1 Use Recorded Delay. Optionally specify a
minimum and maximum amount of delay using
-delayMin n and -delayMax m, where n and m
are given in seconds. If unspecified, the default
minimum and maximum amount of delay to use are
0 and 5 seconds, respectively.

-1 Delay for a random number of seconds.
Optionally specify a minimum and maximum
amount of delay using -delayMin n and
-delayMax m, where n and m are given in seconds.
If unspecified, the default minimum and maximum
amount of delay to use are 0 and 5 seconds,
respectively.

0 Delay for a random number of seconds using a
percentage threshold range around the recorded
delay. Optionally specify a lower and upper
percentage delay range using -delayLower p and
-delayUpper q, where p and q are a decimal value
between 0 and 1. If unspecified, 0 will be used for the
percentage threshold, resulting in the actual recorded
delay being used.

-iterationDelay n Pause for n seconds between iterations.

-iterations n Run n iterations of the script.

-loglocalvudisplay true|false Create VUDisplay.txt and VUDisplay.csv result
output files in the folder from which the agent was
launched. The Virtual User Display output is not
supported by functional test modules. The
loglocalvudisplay setting is case-sensitive and
must be exactly loglocalvudisplay.

-noReport true|false Set to true to disable generation of the results report.
The default is false.

-preserveVariables true|false Set to true to preserve variables between iterations,
false to clear variables between iterations. Variables
refer to variables set using the Variables service, i.e.
getVariables().set(), not local Java code
variables.

-propertiesPath path Specify the full path of a Java .properties file
containing additional command line setting
name=value pairs to add.

Example usage:

-propertiesPath
"C:/additionalSettings.properties"

Setting Description

Supported Agent Command Line Settings

Command Line Reference A-9

-replaceURLs originalURL1=
replacementURL1,originalURL2=
replacementURL2,[...]

Specifies the URL replacement string. During
playback, anytime the agent makes a request to a
URL starting with a segment, originalURL, the
agent replaces the original URL segment with
replacementURL. This feature is only supported for
Load Test scripts.

■ originalURL - Specify the starting segment of
the URL:port that appears in the script that
should be replaced. This value is case-sensitive.

■ replacementURL - Specify the new starting
segment URL:port that the agent requests
instead of originalURL.

For both parameters, if the protocol is omitted, HTTP
protocol is assumed. If no port is specified after the
host, port 80 is assumed for HTTP protocol, and port
443 is assumed for HTTPS protocol. URLs are
replaced after all correlations are applied. One or
more URL replacement pairs may be specified,
separating each replacement pair with a comma. The
following examples show the format of strings:

-replaceURLs "test_server:7789=production_
server:7789"

-replaceURLs "test_server:7789=production_
server:7789,https://staging.oracle.com/main=ht
tps://production.oracle.com/welcome"

-reportName name Override the file name used when generating the
result report HTML file. Specify the name of the
report including an extension, but excluding any
path information. For example:

-reportName results.html

If not specified, OpenScript will determine a
meaningful name for the result report HTML file
based on the type of script being run. For example,
an HTTP load test script calls its report
httpReport.htm. A functional test script such as a
Web functional test script calls its report
FTReport.htm.

Setting Description

Supported Agent Command Line Settings

A-10 Oracle Functional Testing OpenScript User's Guide

A.2.2 Browser Settings
The following table lists the Browser command line settings.

-repository repositoryString Specify the physical locations of one or more named
repositories. repositoryString takes the form
repositoryName=fullPathToRepository,rep
ositoryName2=fullPathToRepository2,...
This setting is required.

When you run Version 9.0 OpenScript scripts from
the Version 9.10 Command Line Interface, you must
use the -repository command line argument to
pass to the Oracle Load Testing Virtual User Agent
all repositories used by the script. This includes all
repositories used for all Databanks, Object Libraries,
and Child Scripts X levels deep.

In Version 9.0, The Oracle Load Testing Virtual User
Agent would use the default repository
(C:/<installdir>/OFT) if the repository
command line argument was not specified. In
Version 9.10, the multi-user environment default
repository changed to <yourmachinename>.<your
username>.Default in the <user.home> location.
This change requires that the repositoryName=
repositoryPath string be specified as a command
line argument for all repositories including the
default repository.

Always specify the repositoryString inside
double-quotes.

Example usage:

-repository
"JohnComputer.johndoe.Default=D:/OracleATS/OFT
,SharedRepository=\\testserver/OurScripts"

-resultReportFolder path Specify the output folder for all result report files.

If it is not specified, the default output folder will be:
[script folder]/SessionId

Example usage:

-resultReportFolder "C:/result"

The output folder would be:
C:/result/SessionId

-stopVUserOnFailure
true|false

Specify whether or not the virtual user will continue
running more iterations after a fatal error. Use the
Error Recovery settings to control which errors
should be fatal.

Setting Description

-browser.type type Specify the browser type to use for script playback
where type is one of the following (use exact case
and no spaces):

■ InternetExplorer

■ Firefox

The default is InternetExplorer.

Setting Description

Supported Agent Command Line Settings

Command Line Reference A-11

A.2.3 HTTP Settings
The following tables list the HTTP command line settings.

A.2.3.1 Proxy
The following table lists the proxy command line settings.

-browser.startupTimeout n Specify n seconds to wait for the browser to start
before timing out. The default is 15 seconds.

-browser.overridePath path OpenScript automatically detects where Internet
Explorer and Firefox browser processes physically
exist in the file system. In case the path to one of
these browsers is incorrect, specify an alternative
path to use when launching the specified browser
type. This setting is not intended to be used to
specify the path to an unsupported browser.

Example usage:

-browser.pathOverride
"D:/Programs/Firefox/firefox.exe"

-browser.extraArgs args Specify any additional startup arguments that
OpenSript should use when launching the browser
process on playback. The default is no additional
arguments other than what OpenScript may require
internally.

-browser.hide true|false For Internet Explorer browser only, specify true to
hide the browser during playback. This setting has
no effect on Firefox. If certain actions in the script
require the browser to be visible, such as key presses
and physical mouse clicks, the script will not
playback correctly. The default is false; browser is
visible.

Setting Description

-http.proxyHost host Set the proxy host to the specified host. If no proxy
host is specified, then no proxy is used.

Example usage:

-http.proxyHost "proxyserver.mycompany.com"

-http.proxyPort port_number Set the proxy port to the specified port_number.

Example usage:

-http.proxyPort 1234

-http.proxyUsername username If the proxy host requires authentication, provide the
username. Ignored if http.proxyHost and
http.proxyPort are not set.

-http.proxyPassword password If the proxy host requires authentication, provide the
password. Ignored if http.proxyHost and
http.proxyPort are not set. The password is not
encrypted when provided on the command line.

Setting Description

Supported Agent Command Line Settings

A-12 Oracle Functional Testing OpenScript User's Guide

A.2.3.2 Compression
The following table lists the compression command line settings.

A.2.3.3 Headers
The following table lists the header command line settings.

-http.nonProxyHosts hostsList Specify a list of host names that the agent should not
forward through the specified proxy defined by
http.proxyHost and http.proxyPort. Separate
multiple host names by a | delimeter. The host name
must match the host being requested, as seen in the
Host HTTP request header.

Setting Description

-http.useGzip true|false Enable GZIP compression. The client will add gzip
to every Accept-Encoding HTTP request header. If
the server responds with GZIP-compressed data,
OpenScript will decompress it. The default value is
true.

-http.useDeflate true|false Enable Deflate compression. The client will add
deflate to every Accept-Encoding HTTP request
header. If the server responds with
Deflate-compressed data, OpenScript will
decompress it. The default value is false.

Setting Description

-http.userAgentHeader Browser Emulation. Specify the User-Agent header
string to use when making requests. It is not required
and harmless to include the User-Agent: prefix in
the value itself. Most OpenScript scripts override this
setting with the User-Agent header value found
during recording.

Example usage:

-http.userAgentHeader "Mozilla/4.0
(compatible; MSIE 6.0; Windows NT 5.0)"

-http.globalHeaders
headersList

Specify any custom "Global Headers: string to use in
the Request header for script playback. The format is
in the form: name1:value1;name2:value2;name3:value3.
For example: x-oracle-slm-message-id: bcn=<beacon_
name>; svc=<service_name>;test=<test_
name>;step={{@getTopLevelStepName())}}.

-http.language language Set the value of the Accept-Language HTTP
header. If no value specified, the agent tries to
determine the language header by looking at the
system language.

-http.version version Specify the HTTP version string to append to each
request, i.e. HTTP/1.1 or HTTP/1.0. If no value
specified, agent will use HTTP/1.1

-http.accept acceptString Specify the HTTP Accept header to send by default
for all requests.

Setting Description

Supported Agent Command Line Settings

Command Line Reference A-13

A.2.3.4 Connections
The following table lists the connection command line settings.

A.2.3.5 Other
The following table lists other HTTP command line settings.

-http.requestInOne true|false Specify if the HTTP request is sent as one TCP
package or two TCP packages. An HTTP request may
contain two parts: headers and postdata. If the
setting is set to true, the headers together with the
postdata is sent in one TCP package. If false, the
headers and post data are sent in order in two TCP
packages. The default is false.

Example usage:

getSettings().set("http.requestInOne", true);
http.post(...);
getSettings().set("http.requestInOne", false);

Setting Description

-http.useKeepAlive true|false Specify whether or not to keep HTTP connections
alive after using them. Default is true to enable
keep-alive connections.

-http.maxKeepAliveRequests n Specify an integer n number of requests to make
before closing a keep-alive connection. Must be used
together with http.useKeepAlive.

-http.maxConnections n Specify an integer n maximum number of
connections a single virtual user may have open
concurrently before blocking (waiting) for a new
connection to become available. This setting only
applies in OpenScript when concurrent sections are
used in the script. The default value if not set is 2
connections per virtual user.

-http.connectionSpeed n Specify the number of bytes/sec n to limit the
download speed. For example, to download at
56KBps, specify 56000. If no value specified, or an
empty string is specified, this method assumes true
line speed should be used.

Setting Description

-http.ignoredUrls list_of_
urls

Specify a comma-separated list of case-insensitive
URLs not to request during playback. The URLs only
need to be the ENDS of URLs, not the entire URLs.

Example usage:

-http.ignoredUrls ".jpg,.gif,.css."

Setting Description

Supported Agent Command Line Settings

A-14 Oracle Functional Testing OpenScript User's Guide

-http.cacheEmulation mode Specify if/how the browser should cache
downloaded contents. Each virtual user maintains its
own cache. The mode value is one of the following
values:

■ 1 - Repeat User; use a cache and do not clear the
cache after each iteration.

■ 2 - First Time User; use a cache and clear the
cache after each iteration.

■ 3 - Disable "Cache download pages" (do not
cache).

■ 4 - Enable "Cache download pages" and
"Automatically".

■ 5 - Enable "Cache download pages" and "Every
Visit to the page".

The default value is 3, do not cache.

-http.clearCacheAfterIteratio
n true|false

Specify whether or not the browser's cache should be
cleared after the script completes each iteration of its
run() section. This setting only applies when the
cache is enabled using http.cacheEmulation. The
default value is true, clear cache.

-http.maxCacheSize size Specify the maximum amount of in-memory storage
to allocate for cached document contents. This setting
applies to all virtual users in the process, even
though each virtual user keeps its own cached
documents. After the in-memory cache is exhausted,
document contents will be cached to a temporary
folder on disk in <installDir>\agent\cache. There is
no upper bound on how much disk storage may be
used to store cached documents. The disk cache is
cleared every time the agent process starts. The
default value for OpenScript is 16MB. The default
value for Oracle Load Testing is 128MB.

-http.useCookies true|false Specify whether or not to allow the browser to
remember and use session or persistent cookies
during playback. The default value is true, use
cookies.

-http.downloadLocalFiles
true|false

Specify whether or not the agent should download
files that exist in the local file system. When local files
are not downloaded, the contents are not displayed
in the Oracle Load Testing Virtual User Display, and
it is not possible to solve variables against the
contents, for example. The default value is false, do
not download local files.

-http.preserveCookies
true|false

Set to true if cookies should be preserved between
iterations. Set to false if cookies will be cleared
between iterations. The default value is false, do
not preserve cookies between iterations.

-http.preserveConnections
true|false

Set to true if the browser should attempt to reuse
any open browser connections if possible between
iterations. Each virtual user maintains its own set of
connections that it never shares with other virtual
users. The default value is true, preserve
connections between iterations.

Setting Description

Supported Agent Command Line Settings

Command Line Reference A-15

A.2.3.6 Download Manager
The following table lists the Download Manager command line settings.

A.2.4 Functional Test Settings
The following table lists the functional test command line settings.

-http.maxContentSize n Specify the maximum number of kilobytes (KB) to
download from a server for a given request. Set to -1
to mean unlimited download size. The default value
is -1, unlimited.

-http.socketTimeout n Specify the socket timeout in n seconds. The default
value is 120 seconds.

Setting Description

-http.useDownloadManager
true|false

Specify if the Download manager is enabled during
playback. The default is false.

-http.downloadManager.css
true|false

Specify if css resources in <Link> tags are
downloaded during playback. The default is false.

-http.downloadManager.Image
true|false

Specify if image resources in tags, in the
"background" attribute of a tag, or in <style> tags
with "background:url" patterns are downloaded
during playback. The default is false.

-http.downloadManager.embeded
object true|false

Specify if object resources in <Embed> tags or in
<Object> tags are downloaded during playback. The
default is false.

-http.downloadManager.script
true|false

Specify if script resources in <Script> tags are
downloaded during playback. The default is false.

-http.downloadManager.applet
true|false

Specify if applet resources in <Applet> tags are
downloaded during playback. The default is false.

-http.ignoredUrlRegexps
string

Specify the Regular Expression(s) string to use to
ignore specific resources. For example, the expression
Login_Banner(.+?) would not download
resources such as Login_Banner1.gif and Login_
Banner2.gif. Multiple Regular Expressions can be
separated using a comma (,).

Setting Description

Supported Agent Command Line Settings

A-16 Oracle Functional Testing OpenScript User's Guide

A.2.5 Oracle EBS/Forms Functional Test Settings
The following table lists the Oracle EBS/Forms functional test command line settings.

A.2.6 Oracle EBS/Forms Load Test Settings
The following table lists the Oracle EBS/Forms load test command line settings.

Setting Description

-ft.smartMatch format Specifies which format to use to match attributes in
an object path. The match format can be a
wildcard-formatted or a
regular-expression-formatted expression. format is
one of the following settings:

wildcard - (default) Attributes in the given path
may contain wildcards for unknown characters. For
example, title="Welcome, user *". An asterisk "*"
matches any number of characters. A question mark
"?" matches any single character.

wildcardThenRegex - Attributes in the given path
may contain a wildcard-formatted expression, or a
regular-expression-formatted expression. During
playback, an attempt is first made to find the object
assuming a wildcard format, then an attempt is made
to find the object assuming a regular-expression
format.

regex - Attributes in the given path may contain a
regular expression.

-ft.smartMatch true|false When true, the OpenScript Smart Match object
identification ranking feature is enabled. The default
value is true, enabled.

Setting Description

-formsft.startup_timeout n Specify n seconds to wait for the Forms applet to
start up before failing the script due to a timeout. The
default value is 30 seconds.

-formsft.action_timeout n Specify n seconds to wait when trying to play an
action before timing out because the object required
could not be found. The default value is 30 seconds.

-formsft.capture_screenshot
true|false

Set to true to capture screenshots of the Forms
applet during playback. The default value is true.

-formsft.SUPPRESS_JPSECURITY_
DIALOG true|false

Set to true to supress "Java Security Windows" and
"Warning - Security" pop up windows during either
script recording or play back when the client machine
has Java Runtime Environement (JRE) that is 1.6.0_24
or newer. If the client machine has JRE that is 1.6.0_23
or older, no matter if this setting is enabled or
disabled, "Java Security Windows" and "Warning -
Security" pop up windows will not show during
either script recording or play back. The default
value is true.

Supported Agent Command Line Settings

Command Line Reference A-17

A.2.7 Shared Data Settings
The following table lists the shared data command line settings.

Setting Description

-formslt.disconnect_forms_
auto true|false

Set to true to automatically disconnect the Forms
connection. When true, the script finish event of
each script is monitored to disconnect forms
automatically if the Forms connection is not closed
after all steps are executed to avoid invalid server
forms sessions.

Set to false if you have any chained Forms Load
Test scripts and you do not want the Forms
connection closed automatically in the child scripts.

-formslt.capture_message_
details true|false

Set to true to capture message details during
playback. When true, OpenScript captures and stores
Forms message requests, responses, and information
about all loaded Forms components during playback.
This information is useful to have when debugging
the script.

OpenScript displays captured details in the
"Messages" and "Object Details" tabs of the Details
view. Oracle Load Testing displays this information
in the Virtual User Display based on the "Virtual User
Display" settings.

Capturing message details is a memory-intensive
operation. During heavy load testing, it is
recommended to clear this setting to reduce the
amount of heap space required by the agent.

Setting Description

-sharedData.actionTimeout
timeout

Specify the maximum time in seconds to wait for the
requested data to return.

-sharedData.Address address Specify the address of the Oracle Load Testing for
Web Application server to use for the shared data
service. For example: t3//:localhost:8088 or
t3://machinename.us.oracle.com:8088.

-sharedData.Password password Specify the password to use for authentication. Note
that this is a clear text password that is not secure.

Supported Agent Command Line Settings

A-18 Oracle Functional Testing OpenScript User's Guide

A.2.8 Web Functional Test Settings
The following table lists the Web functional test command line settings.

-sharedData.encryptedPassword
encryptedPassword

Specify the encrypted password to use for
authentication. To generate an
encryptedPassword value for use in this
command:

1. In OpenScript, set the password encryption to
Encrypt script data in the General Encryption
Preferences.

2. Select Add from the Script menu, expand the
Shared Data folder and select Set Connection
Parameters.

3. Specify the connection parameters then copy the
encrypted password from the Java Code view to
your command line settings. For example, an
encrypted password may look similar to the
following example:

gLM7NB+n7Yba0FlspMDX8A

This setting must also be used in conjunction with
the -ENCRYPTION_PROPERTIES_FILE
command-line setting.

Example usage:

--sharedData.encryptedPassword
gLM7NB+n7Yba0FlspMDX8A -ENCRYPTION_PROPERTIES_
FILE C:/Documents and
Settings/username/osworkspace/.metadata/.plugi
ns/oracle.oats.scripting.utilities/encryption.
properties

-sharedData.obfuscatedPasswor
d obfuscatedPassword

Specify the obfuscated password to use for
authentication. To generate an
obfuscatedPassword value for use in this
command:

1. In OpenScript, set the password encryption to
Obfuscate script data in the General Encryption
Preferences.

2. Select Add from the Script menu, expand the
Shared Data folder and select Set Connection
Parameters.

3. Specify the connection parameters then copy the
obfuscated password from the Java Code view to
your command line. For example, an obfuscated
password may look similar to the following
example:

RG5CE6b1u8cG9VzbbnW6cQ==

Example usage:

-sharedData.obfuscatedPassword
RG5CE6b1u8cG9VzbbnW6cQ==

-sharedData.UserName name Specify the user name to use for authentication. The
default name is oats unless changed in the Oracle
Application Testing Suite configuration.

Setting Description

Supported Agent Command Line Settings

Command Line Reference A-19

A.2.9 Error Recovery Settings
All Error Recovery settings are specified using the form:

-errorRecoverySettingId action

action is one of the following constants (case-sensitive):

■ Ignore - proceed with the script as if the error did not occur. The error will still be
logged to the console/log file.

■ Warn - report the error, but continue running the script.

■ Fail - report the error and fail the current iteration of the script.

■ ReportErrorAndContinue- Report the error to the results log and continue
script execution.

■ Pause - Pause playback and wait for user's decision to continue or abort script
execution.

Setting Description

-web.event_time_out n Specify the Object Timeout n in seconds. If an object
cannot be found in n seconds, the action will fail. The
default value is 60.

-web.capture_html true|false Specify whether or not to capture the browser HTML
during playback. The default value is true.

-web.capture_screenshot
true|false

Specify whether or not to capture screenshots during
playback. The default value is true.

-web.capture_screenshot_
interval n

Specify the number of milliseconds to wait after a
new page is detected and the screenshot is captured.
The default value is 500.

-web.clear_persistent_cookies
true|false

Specify whether or not to clear browser persistent
cookies between iterations. The default value is
false.

-web.clear_persistent_
cookies_before true|false

Specify whether or not to clear browser persistent
cookies before starting playback. The default value is
false.

-web.clear_persistent_
cookies_before true|false

Specify whether or not to clear browser persistent
cookies before starting playback. The default value is
false.

-web.clear_session_cookies
true|false

Specify whether or not to clear browser session
cookies between iterations. The default value is
false.

-web.clear_session_cookies_
before true|false

Specify whether or not to clear browser session
cookies before starting playback. The default value is
false.

-web.clear_cache true|false Specify whether or not to clear the browser cache
between iterations. The default value is false.

-web.date_format date_format_
string

Specify a date format string to override the default
date format string used when performing date
validation tests.

-web.webdom_proxy_port n Specify the port used for communication between the
web browser and the agent. The default value is
7666.

Supported Agent Command Line Settings

A-20 Oracle Functional Testing OpenScript User's Guide

A.2.9.1 General
The following table lists the general error recovery settings.

A.2.9.2 Flex Load Testing (AMF)
The following table lists the Flex load testing (AMF) error recovery settings.

A.2.9.3 Functional Testing
The following table lists the functional testing error recovery settings.

A.2.9.4 HTTP
The following table lists the HTTP error recovery settings.

Setting Description

err.basic.BINARY_DECODING_EXCEPTION Binary Decode Failed

err.basic.CHILD_SCRIPT_EXCEPTION Child Script Failed

err.basic.CREATE_VARIABLE_ERROR Create Variable Failed

err.basic.ENCRYPTION_SERVICE_NOT_
INITIALIZED

Encryption Service Not Initialized

err.basic.FILE_NOT_FOUND File Not Found

err.basic.FUNCTION_EXCEPTION Function Failed

err.basic.GENERAL_SCRIPT_EXCEPTION Unexpected Script Error

err.basic.SEGMENT_PARSER_ERROR Segment Parser Failed

err.basic.VARIABLE_NOT_FOUND Variable Not Found.

err.basic.ENCRYPTION_SERVICE_NOT_
INITIALIZED

Encryption Service Not Initialized

Setting Description

err.amfLT.OPERATION_INVOCATION_ERROR An operation on an object failed

err.amfLT.PLAYBACK_ERROR Playback failed

Setting Description

err.functionalTest.FT_MATCH_ERROR Text Matching Test failed

err.functionalTest.OBJECT_TEST_ERROR Object Test failed

err.functionalTest.TABLE_TEST_ERROR Table Test failed

Setting Description

err.http.HTML_PARSING_ERROR HTML Parsing error

err.http.INTERNET_INVALID_URL Invalid URL

err.http.INVALID_HTTP_RESPONSE_CODE Invalid HTTP Response Code

err.http.KEYSTORE_LOAD_ERROR Client Certificate Keystore error

err.http.MATCH_ERROR Text Matching Test failed

err.http.NODE_NOT_FOUND_EXCEPTION Element node not found with xpath
exception

Supported Agent Command Line Settings

Command Line Reference A-21

A.2.9.5 Oracle EBS/Forms Functional Testing
The following table lists the Oracle EBS/Forms Functional Testing error recovery
settings.

A.2.9.6 Oracle EBS/Forms Load Testing
The following table lists the Oracle EBS/Forms Load Testing error recovery settings.

A.2.9.7 Web Functional Testing
The following table lists the Web Functional Testing error recovery settings.

A.2.9.8 Utilities
The following table lists the Utilities error recovery settings.

err.http.RESPONSE_TIME_ERROR Response Time error

err.http.SOLVE_ERROR Solve Variable failed

err.http.ZERO_LENGTH_DOWNLOAD Zero Length Downloads

Setting Description

err.formsFT.FORMS_FT_ERROR Oracle Forms Error

err.formsFT.STATUSBAR_TEST_ERROR Status Bar Test Error

Setting Description

err.formsLT.CONNECT_ERROR Forms Connect Error

err.formsLT.IO_ERROR Forms Input/Output Communication
Error

err.formsLT.MATCH_ERROR Forms Content Match Failed

err.formsLT.PLAYBACK_ERROR Forms Playback Error

err.formsLT.COMPONENT_NOT_FOUND Forms Component Not Found

Setting Description

err.webdom.FAIL_TO_PLAYBACK Playback Failed

err.webdom.HTML_TEST_ERROR HTML Test Failed

err.webdom.OBJECT_NOT_FOUND_ERROR Object Not Found

err.webdom.RESPONSE_TIME_ERROR Response Time Error

err.webdom.TITLE_TEST_ERROR Title Test Failed

err.webdom.WAIT_FOR_PAGE_TIMEOUT_ERROR Wait for Page Timeout

err.webdom.WEBDOM_SOLVE_ERROR Solve Variable Failed

Setting Description

err.utilities.SQL_ERROR SQL Execute Error

err.utilities.XML_PARSING_ERROR XML Parsing Error

Setting Description

Supported Agent Command Line Settings

A-22 Oracle Functional Testing OpenScript User's Guide

err.utilities.VALIDATION_ROWCOUNT_ERROR SQL Validation Row Count Error

err.utilities.CSV_LOADING_ERROR CSV Loading Error

Setting Description

B

Error Message Reference B-1

B Error Message Reference

This appendix lists the error messages for the OpenScript Workbench Platform and
HTTP and Siebel Modules.

B.1 Basic Module Error Messages
This section list the Error messages for the OpenScript Workbench Basic Module.

B.1.1 General Script Exceptions

B.1.2 Binary Decoding Exceptions

Error Message Description

File not found: {0} The file was not found.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: ERR_FILE_NOT_FOUND

Failed to create variable {0}, path={1} Failed to create the specified variable.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: ERR_CREATE_VARIABLE_
ERRORCODE

An unexpected exception occurred in
the script. Script section: {0}.

Represents an unexpected exception in the user's
script code.

Error Component ID:
oracle.oats.scripting.modulesbasic.api

Error Code ID: ERR_GENERIC_ERROR_CODE

Error Message Description

Failed to decode character at offset {1}
in string "{0}"

This exception may be thrown while converting a
string into binary using the {@link
oracle.oats.scripting.modules.basic.api.utilities.Binary
Util#hexString2Binary(String)} method.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: ERR_BINARY_DECODE

Basic Module Error Messages

B-2 Oracle Functional Testing OpenScript User's Guide

B.1.3 Script Creation Exceptions

Error Message Description

Could not find script "{0}" in
workspace "{1}" in repository "{2}"

Indicates that the specified script could not be found in
the indicated workspace and repository.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: SCRIPT_NOT_FOUND

Script not found: {0} Indicates that the specified script could not be found in
the path.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: SCRIPT_PATH_NOT_FOUND

Exception occurred while reading
script {0}.

An exception occurred while reading the specified
script.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: EXCEPTION_READING_SCRIPT

Failed to load script class {0}. Class
not found.

Indicates that a script class failed to load.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: FAILED_TO_LOAD_SCRIPT_CLASS_
NOT_FOUND

Failed to load virtual user class {0}. Indicates that a virtual user class failed to load.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: FAILED_TO_LOAD_VUSER_CLASS

Failed to create instance of virtual
user class {0}.

Indicates that an instance of a virtual user class failed
to be created.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: FAILED_TO_CREATE_VUSER_
INSTANCE

Failed to load script class {0}. {1} Indicates that a script class failed to load.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: FAILED_TO_LOAD_SCRIPT_CLASS

Failed to create instance of script "{0}". Indicates that an instance of script class failed to be
created.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: FAILED_TO_CREATE_SCRIPT_
INSTANCE

Basic Module Error Messages

Error Message Reference B-3

B.1.4 Segment Parser Exceptions

Error Message Description

Parameter missing: {0} Indicates that a parameter was not found when
parsing {{ }} syntax calling
Transforms.transform(String, Variables)

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: PARAMETER_NOT_FOUND

Unknown segment type: {0} Indicates that a parameter was not recognized when
parsing {{ }} syntax calling
Transforms.transform(String, Variables)

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: UNKNOWN_SEGMENT_TYPE

Unexpected end of string found while
parsing string "{0}"

Indicates that an end of string was not recognized
when parsing {{ }} syntax calling
Transforms.transform(String, Variables)

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: UNEXPECTED_END_OF_STRING

Unexpected parent segment type {0}
found while parsing string "{1}"

Indicates that a parent type was not recognized when
parsing {{ }} syntax calling
Transforms.transform(String, Variables)

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: UNEXPECTED_PARENT_SEGMENT

Unexpected end of function found near
character offset {0} while parsing string
"{1}"

Indicates that a function was not recognized when
parsing {{ }} syntax calling
Transforms.transform(String, Variables)

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: UNEXPECTED_END_OF_
FUNCTION

Function name not registered: {0}. Indicates that a function was not registered. Use
SegmentParser.addCustomTransformFunction(oracle
.oats.scripting.main.CustomFunction functionName)
to register custom transform functions.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: UNREGISTERED_FUNCTION

The following characters cannot be
escaped: {0}

Indicates that a invalid characters were found when
parsing {{ }} syntax.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: INVALID_CHARACTERS_IN_
SEGMENT

Platform Error Messages

B-4 Oracle Functional Testing OpenScript User's Guide

B.1.5 Script Service Exceptions

B.1.6 URL Encoding Exceptions

B.1.7 Variable Exceptions

B.2 Platform Error Messages
This section lists the error messages for the OpenScript Workbench platform.

Error Message Description

Failed to create script service {0} Indicates that the specified script service failed.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: FAILED_TO_CREATE_SCRIPT_
SERVICE

Error Message Description

Failed to URL-encode string "{0}" Indicates that the specified URL encoding failed.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: URL_ENCODING_EXCEPTION

Error Message Description

Variable not found: {0} Indicates that a variable could not be found when
evaluating a string containing curly brace {{ }}
formatted data. This exceptions is typically thrown
when {@link
oracle.oats.scripting.modules.basic.api.Transforms#tra
nsform(String,
oracle.oats.scripting.modules.basic.api.Variables)} is
invoked using a string that references a non-existent
variable.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: ERR_VARIABLE_NOT_FOUND

Variable "{0}" not found for string: {1} Indicates that a variable could not be found when
evaluating a string containing curly brace {{ }}
formatted data. This exceptions is typically thrown
when {@link
oracle.oats.scripting.modules.basic.api.Transforms#tra
nsform(String,
oracle.oats.scripting.modules.basic.api.Variables)} is
invoked using a string that references a non-existent
variable.

Error Component ID:
oracle.oats.scripting.modules.basic.api

Error Code ID: VARIABLE_NOT_FOUND_FOR_
STRING

Platform Error Messages

Error Message Reference B-5

B.2.1 Browser Exceptions

B.2.2 SSL Exceptions

B.2.3 TCP Exceptions

Error Message Description

Exception parsing NTLM response: {0} Indicates an error parsing the NTLM response
authentication protocol.

Error Component ID: oracle.oats.lbrowser

Error Code ID: BROWSER_NTLM_EXCEPTION

Cache look-up error. Could not find document with host {0}, file {1} in the
local browser cache. Indicates an error looking for a
document in the browser cache.

Error Component ID: oracle.oats.lbrowser

Error Code ID: BROWSER_CACHE_LOOKUP_
ERROR

Too many redirects. Browser will not redirect more than {0} times.
Comparable WinInet error code: Error 12156:
Redirect Failed. The redirection failed because either
the scheme changed (for example HTTP to FTP) or
all attempts to redirect failed (default is five
attempts).

Error Component ID: oracle.oats.lbrowser

Error Code ID: BROWSER_TOO_MANY_
REDIRECTS

Error Message Description

Error creating new SSL session. Indicates an error creating a Secure Socket Layer
session.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_CREATING_SSL_SESSION

Failed to prepare SSL socket factory. Indicates an error preparing a Secure Socket Layer
socket factory.

Error Component ID: oracle.oats.lbrowser

Error Code ID: FAILED_TO_PREPARE_SOCKET_
FACTORY

Error Message Description

The server name {0} could not be
resolved.

Comparable WinInet error code: Error 12007: Name
Not resolved. The server name could not be
resolved. This happens when Java throws an
UnknownHostException.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_NAME_NOT_
RESOLVED

Platform Error Messages

B-6 Oracle Functional Testing OpenScript User's Guide

The attempt to connect to the server {0}
on port {1} failed.

Comparable WinInet error code: Error 12029: Cannot
Connect. The attempt to connect to the server failed.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_CANNOT_
CONNECT

The request to the proxy was invalid. Comparable to WinInet error code: Error 12033:
Invalid Proxy Request. The request to the proxy was
invalid.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_INVALID_
PROXY_REQUEST

Invalid response received from proxy
server: {0}.

Comparable to WinInet error code: Error 12033:
Invalid Proxy Request. The request to the proxy was
invalid.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_INVALID_
PROXY_RESPONSE

The connection with the server has been
terminated.

Comparable to WinInet error code: Error 12030:
Connection aborted. The connection with the server
has been terminated.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_
CONNECTION_ABORTED

Timeout occurred while sending request
to server.

Comparable to WinInet error code: Error 12002:
Timeout. The request has timed out.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_REQUEST_
TIMEOUT

Timeout occurred while waiting for
server response.

Comparable to WinInet error code: Error 12002:
Timeout. The request has timed out.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_RESPONSE_
TIMEOUT

SSL exception occurred while
connecting to {0} on port {1}. {2}

Indicates a Secure Socket Layer exception while
connecting to the indicated server and port.

Error Component ID: oracle.oats.lbrowser

Error Code ID: SSL_CONNECT_EXCEPTION

Failed to bind socket to local port {0} Indicates a failure to bind to the socket on the
indicated local port.

Error Component ID: oracle.oats.lbrowser

Error Code ID: FAILED_TO_BIND

Error Message Description

HTTP Error Messages

Error Message Reference B-7

B.2.4 HTTP Exceptions

B.3 HTTP Error Messages
This section lists the error messages for the HTTP Module.

B.3.1 HTTP Service Exceptions

Error Message Description

The URL is invalid. Comparable to WinInet error code: Error 12005:
Invalid URL. The Uniform Resource Locator (URL) is
invalid.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_INTERNET_INVALID_URL

Failed to write HTTP request header:
{0}.

Comparable to WinInet error code: Error 12030:
Connection Aborted. The connection with the server
has been terminated.

Error Component ID: oracle.oats.lbrowser

Error Code ID: WRITE_REQUEST_EXCEPTION_
HEADER

Failed to write request HTTP postdata:
{1}.

Comparable to WinInet error code: Error 12030:
Connection Aborted. The connection with the server
has been terminated.

Error Component ID: oracle.oats.lbrowser

Error Code ID: WRITE_REQUEST_EXCEPTION_
POSTDATA

Failed to read HTTP response header
from server.

Comparable to WinInet error code: Error 12152:
Invalid Server Response. The server response could
not be parsed.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_READING_HTTP_
RESPONSE_HEADER

Failed to read HTTP response contents
from server.

Comparable to WinInet error code: Error 12152:
Invalid Server Response. The server response could
not be parsed.

Error Component ID: oracle.oats.lbrowser

Error Code ID: ERROR_READING_HTTP_
RESPONSE_CONTENTS

Error Message Description

Comparable to WinInet error code: Error
12005: Invalid URL. The Uniform
Resource Locator (URL) is invalid.

Indicates a failure when attempting to validate the
contents of a Siebel page.

Error Component ID:
oracle.oats.scripting.modules.http.api

Error Code ID: ERROR_INTERNET_INVALID_
URL

Oracle EBS/Forms Functional Test Error Messages

B-8 Oracle Functional Testing OpenScript User's Guide

B.4 Oracle EBS/Forms Functional Test Error Messages
This section lists the error messages for the Oracle EBS/Forms Functional Test Module.

B.4.1 Oracle EBS/Forms Functional Test

Invalid HTTP response code: {0} The HTTP Service browser returns this error if an
HTTP response is received from a web server
containing a response code greater than or equal to
400.

Error Component ID:
oracle.oats.scripting.modules.http.api

Error Code ID: ERROR_INVALID_HTTP_
RESPONSE_CODE

Error parsing HTML. {0} Indicates an unexpected parsing failure in the
HTTP service while parsing HTML.

Error Component ID:
oracle.oats.scripting.modules.http.api

Error Code ID: HTML_PARSING_ERROR

Failed to solve variable {0} Indicates a failure during a match() operation. See
oracle.oats.scripting.modules.http.api.ThinIteratin
gVUserScript#match(String, String, String,
oracle.oats.scripting.modules.http.api.ThinIteratin
gVUserScript.Source, boolean, boolean). The actual
error message is defined by the script. The error
message shown is an example default error
message.

Error Component ID:
oracle.oats.scripting.modules.http.api

Error Code ID: MATCH_ERROR

Error Message Description

Install Forms FT Helper Failure:

Cause: {0}

Indicates a failure when attempting to install the
Oracle EBS/Forms browser helper object.

Error Component ID:
oracle.oats.scripting.modules.formsFT.api

Error Code ID: ERROR_COMMON_INSTALL_
HELPER_FAILURE

Send Playback Command Timeout!
command:{0}, timeout: {1}

Indicates a playback command cannot complete
within the default timeout setting. Adjust the
Forms timeout preferences based upon which
command timed out and the timeout value.

Error Component ID:
oracle.oats.scripting.modules.formsFT.api

Error Code ID: ERROR_PLAYBACK_TIMEOUT_
NO_RESPONSE

Error Message Description

Oracle EBS/Forms Functional Test Error Messages

Error Message Reference B-9

Failed to connect to the Oracle Forms
applet after {0} seconds. Verify that the
applet launching page opens, and that the
Forms Startup Timeout setting is high
enough for this site.

Indicates a connection to the Forms server did not
complete within the default timeout setting. Adjust
the Forms startup timeout preferences to increase
the timeout value.

Error Component ID:
oracle.oats.scripting.modules.formsFT.api

Error Code ID: ERROR_PLAYBACK_TIMEOUT_
STARTUP

Forms Object Not Found! XPath: {0},
Type: {1}, Cause: {2}

Indicates the Forms object was not found showing
the XPath, object type, and cause.

Error Component ID:
oracle.oats.scripting.modules.formsFT.api

Error Code ID: ERROR_PLAYBACK_OBJECT_
NOT_FOUND

Forms Object Not Found! XPath: {0},
Type: {1}, Cause: No Matches

Indicates the Forms object was not found showing
the XPath and object type. The cause is there was
no match.

Error Component ID:
oracle.oats.scripting.modules.formsFT.api

Error Code ID: ERROR_PLAYBACK_OBJECT_
NOT_FOUND_NO_MATCHES

Forms Object Not Found! XPath: {0},
Type: {1}, Cause: Illegal Access

Indicates the Forms object was not found showing
the XPath and object type. The cause is an illegal
access.

Error Component ID:
oracle.oats.scripting.modules.formsFT.api

Error Code ID: ERROR_PLAYBACK_OBJECT_
ILLEGAL_ACCESS

Replay Action: {0} failed. Cause: {1} Indicates a failure of a playback action.

Error Component ID:
oracle.oats.scripting.modules.formsFT.api

Error Code: ERROR_PLAYBACK_ACTION_
PLAYBACK_FAILURE

VU is NULL Indicates the Virtual User is a null value.

Error Component ID:
oracle.oats.scripting.modules.formsFT.api

Error Code: ERROR_PLAYBACK_VU_IS_NULL

Unknown FormsFT Error: {0} Indicates an unknown error occurred.

Error Component ID:
oracle.oats.scripting.modules.formsFT.api

Error Code: ERROR_UNKNOWN

Status Bar Test failed. Indicates a Status Bar test failure.

Error Component ID:
oracle.oats.scripting.modules.formsFT.api

Error Code: STATUSBAR_TEST_FAILED

Error Message Description

Oracle Forms Load Test Error Messages

B-10 Oracle Functional Testing OpenScript User's Guide

B.5 Oracle Forms Load Test Error Messages
This section lists the error messages for the Oracle Forms Load Test Module.

B.5.1 Connect Errors

Status Bar Test {0} failed: actual text ''{1}''
failed to match the expected one ''{2}''

Indicates a Status Bar test failure showing the
actual text and the expected text.

Error Component ID:
oracle.oats.scripting.modules.formsFT.api

Error Code: STATUSBAR_TEST_FAILED_WITH_
DETAIL_INFO

Error Message Description

Connection Error (Generic): "{0}" Indicates a failure when attempting connect to the
Oracle Forms server.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_GENERIC

Connection Error: Failed to connect to
forms server at URL "{0}

Indicates a failure when attempting connect to the
Oracle Forms server at the specified URL.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_HTTP_
CONNECT_EXCEPTION

Connection Error: Failed to connect to
forms server over socket at "{0}:{1}".

Indicates a failure when attempting connect to the
Oracle Forms server over the specified socket.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_SOCKET_
CONNECT_EXCEPTION

Connection Error: No servlet session id
found.

Indicates the session ID for a servlet was not
found.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_
NOSERVLETSESSIONID

Connection Error: Invalid Session Cookie
found.

Indicates the session cookie was invalid.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_NEED_COOKIE

Connection Error: Unable to initialize
runtime process.

Indicates the runtime process for the forms server
could not be initialized.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Message Description

Oracle Forms Load Test Error Messages

Error Message Reference B-11

Error Code ID: CONN_ERROR_FAILED_TO_
INITIALIZE_PROCESS

Connection Error: Runtime process has
unexpectedly terminated.

Indicates an unexpected runtime process
termination.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_PROCESS_
STARTUP_TERMINATED

Connection Error: Session migration in
progress.

Indicates the JSessionID you are using to post
forms navigations to the server is incorrect.

EBS/Forms module plays back a script which is a
combination of HTTP/Forms navigations. After
playing the HTTP navigations successfully a
JSessionID captured from the navigation right
before the Forms Connect statement is used as the
URL to send Forms navigations to the server. If this
URL is not correlated correctly you will see the
error string.

The most common way to fix this issue is to revert
script to recorded and re-correlate it. This should
automatically correlate the Connect statement.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_SESSION_
MIGRATION_IN_PROGRESS

Connection Error: Cannot connect to OID
server.

Indicates a failure connecting to the Oracle Internet
Directory server.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_OID_
CONNECTION_ERROR

Connection Error: The user does not have
proper credentials for OID.

Indicates the user does not have proper
authentication credentials to connect to the Oracle
Internet Directory server.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_OID_
AUTHENTICATION_ERROR

Connection Error: SSO user information is
invalid.

Indicates the user Single Sign On authentication
credentials are not valid.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_INVALID_SSO

Connection Error: Multiple Sessions are
disallowed in this transaction.

Indicates that multiple session are not allows for
the transaction attempted.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_MULTIPLE_
SESSIONS

Error Message Description

Oracle Forms Load Test Error Messages

B-12 Oracle Functional Testing OpenScript User's Guide

B.5.2 I/O Errors

Connection Error: Could not create the
runtime process.

Indicates a failure to create a runtime process on
the Forms server.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONN_ERROR_RUNTIME_
PROCESS_CREATION_ERROR

Error Message Description

Unexpected exception occurred while
serializing a Forms Message.

Indicates an error occurred while transferring an
Oracle Forms message between the client and the
server.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR_MESSAGE_
SERIALIZATION_EXCEPTION

Failed to read more than 10 server
messages.

Indicates failed to read server message after ten
tries.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR_FAILED_TO_READ_
TEN_DATA_STREAMS

Forms input/output exception occurred. Indicates an unexpected input/output exception
occurred.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR

Forms encryption exception occurred. Indicates an encryption exception occurred.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR_ENCRYPTION_
EXCEPTION

Communication with server is broken.
Check nohup logs for detailed error.

Indicates a communication problem with the server.
Run the nohup (no hang up) command an view thee
error log.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR_COMM_BROKEN

Throttling requested with a non-integer
value "{0}".

Indicates Bandwidth throttling (limiting quantity of
data) was requested using and non-integer value.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR_THROTTLING_
NUMBER_FORMAT_EXCEPTION

Failed to read message from server. Indicates an exception occurred when trying to read
an Oracle Forms message from the server.

Error Message Description

Oracle Forms Load Test Error Messages

Error Message Reference B-13

B.5.3 Match Errors

B.5.4 Component Not Found Errors

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR_MESSAGE_READ_
EXCEPTION

Failed to read terminal message from
server.

Indicates an exception occurred when trying to read
an Oracle Forms terminal message from the server.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: IO_ERROR_TERMINAL_
MESSAGE_READ_EXCEPTION

Error Message Description

Text Matching Test "{0}" failed. Failed to
match "{1}".

Indicates a Text Matching Test failure and shows the
test name and the text to match.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: MATCH_ERROR_TEXT_FAILED_
TO_MATCH

StatusBar Text Matching Test "{0}" failed.
Failed to match "{1}".

Indicates a Status bar Text Matching Test failure and
shows the test name and the text to match.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: MATCH_ERROR_STATUSBAR_
FAILED_TO_MATCH

Error Message Description

Component "{0}" does not exist. Indicates an Oracle Forms component does not exist.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: COMPONENT_DOES_NOT_EXIST

Component with handler ID "{0}" does
not exist.

Indicates an Oracle Forms component with the
specified handler ID does not exist.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Code ID: MATCH_ERROR_STATUSBAR_
FAILED_TO_MATCH

Component with handler ID "{0}" does
not exist. Last seen alert message: "{1}".

Indicates an Oracle Forms component with the
specified handler ID does not exist and shows the
last alert message.

Error Component ID:
oracle.oats.scripting.modules.formsLT.api

Error Message Description

Shared Data Error Messages

B-14 Oracle Functional Testing OpenScript User's Guide

B.5.5 Playback Errors

B.6 Shared Data Error Messages
This section lists the error messages for the Shared Data Module.

Error Code ID: COMPONENT_ID_DOES_NOT_
EXIST_WITH_STATUS

Error Message Description

Control "{0}" not initialized. Indicates that control between client and server
could not be initialized.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: CONTROL_INITIALIZE_ERROR

Cannot send forms messages. Not
connected to forms server.

Indicates no connection to the Oracle Forms server.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: NOT_CONNECTED_ERROR

Invalid state exception. Indicates an invalid state.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: INVALID_STATE_EXCEPTION

Invalid state exception. Server sent the
client a CREATE message for a
component that was already created.
Component handler ID is "{0}".

Indicates an invalid state because the server sent the
client a CREATE message for a component that was
already created and shows the handler ID.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: INVALID_STATE_EXCEPTION_
COMPONENT_ALREADY_EXISTS

Malformed Forms message exception.
Forms could not parse the message,
"{0}".

Indicates an incorrectly formed Oracle Forms
message stream and could not parse the message,
"<Message... />" XML.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: MALFORMED_MESSAGE_
EXCEPTION

Unexpected error occurred. {0}. Indicates any other exception error.

Error Component
ID:oracle.oats.scripting.modules.formsLT.api

Error Code ID: UNEXPECTED_ERROR

Error Message Description

Shared Data Error Messages

Error Message Reference B-15

B.6.1 Shared Data Exceptions

Error Message Description

CreateDataException Indicates a failure when attempting to create a new
queue.

Error Component ID:
oracle.oats.scripting.modules.sharedData.api

Error Code ID: CREATE_QUEUE_EXCEPTION

CreateDataException Indicates a failure when attempting to create a new
hash map.

Error Component ID:
oracle.oats.scripting.modules.sharedData.api

Error Code ID: CREATE_MAP_EXCEPTION

OATSCredentialException Indicates a failure when the OATS credential is
incorrect or not provided.

Error Component ID:
oracle.oats.scripting.modules.sharedData.api

Error Code ID: OATS_CREDENTIAL_EXCEPTION

PutDataException Indicates a failure when adding items to a queue.

Error Component ID:
oracle.oats.scripting.modules.sharedData.api

Error Code ID: PUT_TO_QUEUE_EXCEPTION

PutDataException Indicates a failure when adding items to a hash
map.

Error Component ID:
oracle.oats.scripting.modules.sharedData.api

Error Code ID: PUT_TO_MAP_EXCEPTION

SharedDataServiceInitException Indicates a failure when initializing the service.

Error Component ID:
oracle.oats.scripting.modules.sharedData.api

Error Code ID: SHARED_DATA_INITIALIZE_
EXCEPTION

RequestDataException Indicates a failure when retrieving data/info from
a queue.

Error Component ID:
oracle.oats.scripting.modules.sharedData.api

Error Code ID: REQUEST_DATA_FROM_QUEUE_
EXCEPTION

RequestDataException Indicates a failure when retrieving data/info from
a hash map.

Error Component ID:
oracle.oats.scripting.modules.sharedData.api

Error Code ID: REQUEST_DATA_FROM_MAP_
EXCEPTION

Siebel Error Messages

B-16 Oracle Functional Testing OpenScript User's Guide

B.7 Siebel Error Messages
This section lists the error messages for the Siebel Module.

B.7.1 Siebel Exceptions

B.8 Web Error Messages
This section lists the error messages for the Web Functional Test Module.

B.8.1 Web Service Exceptions

Error Message Description

Siebel content failure. {0} Indicates a failure when attempting to validate the
contents of a Siebel page.

Error Component ID:
oracle.oats.scripting.modules.siebel.api

Error Code ID: SIEBEL_CONTENT_FAILURE

Error Message Description

Invalid object path: {0}. Indicates the object identification path is invalid,
where {0} is the full path to the object.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: ERR_INVALID_PATH

Object not found: {0}. Indicates the object identified by {0} was not found.

1. Select OpenScript Preferences from the View
menu.

2. Expand OpenScript and the Playback section.

3. Select Web Functional and increase the Object
Timeout value.

-or-

Verify that object path is correct.

Some window.close() actions may be triggered
by a previous action and playback of a previous
action may close the window automatically. You
may need to remove the window.close()
manually from the Java Code.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: ERR_OBJECT_NOT_FOUND

Web Error Messages

Error Message Reference B-17

Timeout occurred waiting for page to
load.

Indicates a timeout occurred waiting for any page
or specific page.

1. Select OpenScript Preferences from the View
menu.

2. Expand OpenScript and the Playback section.

3. Select Web Functional and increase the Object
Timeout value.

-or-

Change
web.browser("<path>").waitForPage(nul
l) to a specific duration. For example,
web.browser("<path>").waitForPage(120
) means wait for 120 seconds. Modify the <path>
to a specific path or set it to use wait for any page.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: ERR_TIMEOUT_WAITING_FOR_
PAGE

Cannot playback the {0} action on this
element.

Indicates the action is not supported by the
element identified by {0}.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: INVALID_ACTION_ON_
ELEMENT

Failed to playback: {0}. Indicates a failure to execute an action on the object
identified by {0}.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: FAIL_TO_PLAYBACK

Failed to get a response after sending the
message: {0}.

Indicates a failure to get a playback result from the
browser after sending the request identified by {0}.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: FAIL_TO_GET_RESULT

Launch browser timeout after {0} seconds. Indicates a failure to find a browser within the
duration of 'Startup Timeout' setting ({0} seconds)
in the browser preferences.

1. Select OpenScript Preferences from the View
menu.

2. Expand OpenScript and the General section.

3. Select Browsers and increase the Startup
Timeout value.

-or-

Check if the "Oracle Application Testing Suite
Helper Service" is running, or restart it.

-or-

Close all browsers (IE, FF), run
<installdir>\OpenScript\UninstallBrowserHelpers.
bat and InstallBrowserHelpers.bat.

Error Message Description

Web Error Messages

B-18 Oracle Functional Testing OpenScript User's Guide

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: FAIL_TO_GET_RESULT

Fail to build message: {0}. Indicates a failure to build a message specified by
{0}. The attributes or Identification of a custom
DOM element is not correct.

Error Component ID:
oracle.oats.scripting.modules.webdom.api

Error Code ID: ERR_BUILD_MESSAGE

Error Message Description

C

Troubleshooting C-1

C Troubleshooting

This chapter provides information and possible solutions to known issues in
OpenScript.

C.1 Installation
In some instances, the OpenScript Internet Explorer and/or Firefox browser plug-ins
fail to install properly. You can manually install and uninstall Internet Explorer and/or
Firefox browser plug-ins using batch files provided with OpenScript to resolve the
issue.

The following batch files are located in <installdir>\OpenScript

■ InstallBrowserHelpers.bat

■ UninstallBrowserHelpers.bat

Usage: file.bat installation path [install|uninstall] [IE|FF|both]

The following example shows the usage and default values:

InstallBrowserHelpers.bat C:\OracleATS\OpenScript\ install both

See the remarks in the batch files for additional information.

C.2 OpenScript Script Execution in Oracle Test Manager
The following additional steps are required in order to run the following types of
OpenScript scripts from Oracle Test Manager:

■ Siebel Functional

■ Oracle Forms Functional

■ Web Functional scripts that rely on system input events, such as key press or
mouse click

Note: On Windows 2000 systems, the InstallBrowserHelpers.bat
installation does not detect that the .NET Framework 2.0 is installed
and will attempt to reinstall it, which may cause an installation failure
for the .NET Framework 2.0. However, the .NET Framework 2.0 is
installed during the initial OpenScript installation and should be
present on the system. Check Add/Remove Programs in the Control
Panel to verify the .NET Framework 2.0 installation.

Manual Installation of Firefox Extension

C-2 Oracle Functional Testing OpenScript User's Guide

It is necessary to run these scripts using an interactive desktop of a named Windows
user account that is always logged in.

1. For Siebel and Oracle Forms, the named user's account must have visited the
Siebel or Oracle Forms site at least once to ensure that all necessary ActiveX
controls and plug-ins are installed in the named user's browser.

2. On the Oracle Test Manager agent machine that will run the scripts, stop the
"Oracle Agent Starter Service" and configure it to start manually.

3. On the Oracle Test Manager agent machine, login as the named Windows user
account that will run the scripts. From a command prompt, run:

C:\OracleATS\agentmanager\bin\AgentManagerService.exe -c
C:\OracleATS\agentmanager\bin\AgentManagerService.conf

where C:\OracleATS is the OATS installed folder.

4. The named user account must remain logged into the system at all times that
scripts will be run.

C.3 Manual Installation of Firefox Extension
If Firefox is upgraded or newly installed after installing OpenScript, it may be
necessary to install the OpenScript Firefox extension into it in order to record from it.
To install the OpenScript Firefox extension, run the OpenScript Diagnosis Tool, which
will automatically detect the missing Firefox extension and install it. To run the
OpenScript Diagnosis Tool, select OpenScript Diagnosis Tool from the Help menu.

C.4 Installation of Security Certificate in Internet Explorer
The Internet Explorer browser reports There is a problem with this website’s security
certificate when recording load test scripts for HTTPS sites. This occurs because the
OpenScript proxy is between the browser and the Web Server so the browser does not
get the SSL certificate directly from the website. The browser gets the OpenScript
proxy’s SSL certificate instead.

This issue affects all scripts that record with the Proxy, which are:

■ HTTP Load

■ Siebel Load

■ Oracle EBS/Forms Load

■ Oracle Fusion/ADF Load

■ Flex Load

■ Web/HTTP Load

■ Web Services

The Internet Explorer browser will display the warning every time you record unless
you explicitly tell the browser to trust the OpenScript certificate.

To install the OpenScript certificate:

Caution: Following these steps may have security implications. The
machines where the OpenScript product is installed should be strictly
used for testing.

Installation of Security Certificate in Internet Explorer

Troubleshooting C-3

1. Create a load test script project and start recording the website. The Certificate
Error: Navigation Blocked screen appears with the message There is a problem
with this website’s security certificate.

2. Click the Continue to this website (not recommended) link. This will navigate to
the website with a “Certificate Error” indicated in the a browser address bar.

3. Click the "Certificate Error" indicator box on the right-side of the Internet Explorer
address bar.

4. Click "View Certificates" in the Certificate Invalid dialog box.

5. Click "Install Certificate" in the Certificate Information dialog box to open the
wizard to install the OpenScript certificate to the Internet Explorer browser.

6. Click Next twice at the wizard prompts and then click Finish.

7. Click Yes in the Security Warning dialog box to install the OpenScript certificate.

8. Click OK to close the installation successful message.

9. Select Internet Options from the Internet Explorer Tools menu.

10. Click the Advanced tab and clear the Warn about certificate address mismatch*
option.

11. Click OK to close the Internet Options.

The next time you record scripts, the security certificate warning should no longer
appear with the OpenScript certificate accepted in Internet Explorer browser.

Installation of Security Certificate in Internet Explorer

C-4 Oracle Functional Testing OpenScript User's Guide

D

Third-Party Licenses D-1

DThird-Party Licenses

This appendix contains licensing information about certain third-party products
included with Oracle Application Testing Suite 9.30. Unless otherwise specifically
noted, all licenses herein are provided for notice purposes only.

The sections in this appendix describe the following third-party licenses:

■ ANTLR 3.2

■ Apache 2.0 (Apache BCEL, Apache Jakarta, Apache WSS4J XML, Tomcat, TrueZip,
Xalan, XMLBeans)

■ Apache POI 3.7

■ Cryptix

■ dom4j 1.6.1

■ Doug Lea License

■ GubuSoft Treeview Icons

■ Apache 1.1 (IBM XML Parser)

■ Intel Utilities

■ JaWin

■ JDOM

■ John McTainsh Utility

■ "Generic MIT" (MIT HTML Parser)

■ OpenSSH [IGNORE PARTS WHERE CODE ISN'T USED]

■ Pradeep Sahu Job Scheduler

■ Tanuki Java Service Wrapper

■ The Legion Of The Bouncy Castle

■ TidyCom

■ Tim Taylor Utility

■ Vincent Rijmen's AES Encryption

■ Xstream

■ Zlib

ANTLR 3.2
Copyright (c) 2003-2007, Terence Parr

D-2 Oracle Functional Testing OpenScript User's Guide

All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met:
-Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. -Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the
distribution. -Neither the name of the author nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Apache 2.0 (Apache BCEL, Apache Jakarta, Apache WSS4J XML, Tomcat, TrueZip,
Xalan, XMLBeans)
Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution
as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including but
not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

Third-Party Licenses D-3

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions, annotations,
elaborations, or other modifications represent, as a whole, an original work of
authorship. For the purposes of this License, Derivative Works shall not include works
that remain separable from, or merely link (or bind by name) to the interfaces of, the
Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of
the Work and any modifications or additions to that Work or Derivative Works thereof,
that is intentionally submitted to Licensor for inclusion in the Work by the copyright
owner or by an individual or Legal Entity authorized to submit on behalf of the
copyright owner. For the purposes of this definition, "submitted" means any form of
electronic, verbal, or written communication sent to the Licensor or its representatives,
including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but excluding
communication that is conspicuously marked or otherwise designated in writing by
the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently incorporated
within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where such
license applies only to those patent claims licensable by such Contributor that are
necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a cross-claim or counterclaim in
a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate as of the date such
litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or Object
form, provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this
License; and

(b) You must cause any modified files to carry prominent notices stating that You
changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the
Work, excluding those notices that do not pertain to any part of the Derivative Works;
and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the attribution
notices contained within such NOTICE file, excluding those notices that do not pertain

D-4 Oracle Functional Testing OpenScript User's Guide

to any part of the Derivative Works, in at least one of the following places: within a
NOTICE text file distributed as part of the Derivative Works; within the Source form
or documentation, if provided along with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only and do
not modify the License. You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the Licensor
shall be under the terms and conditions of this License, without any additional terms
or conditions. Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed with Licensor
regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law (such
as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor
be liable to You for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this License or out of the
use or inability to use the Work (including but not limited to damages for loss of
goodwill, work stoppage, computer failure or malfunction, or any and all other
commercial damages or losses), even if such Contributor has been advised of the
possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of
support, warranty, indemnity, or other liability obligations and/or rights consistent
with this License. However, in accepting such obligations, You may act only on Your
own behalf and on Your sole responsibility, not on behalf of any other Contributor, and
only if You agree to indemnify, defend, and hold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

Third-Party Licenses D-5

To apply the Apache License to your work, attach the following boilerplate notice,
with the fields enclosed by brackets "[]" replaced with your own identifying
information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class
name and description of purpose be included on the same "printed page" as the
copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

Apache POI 3.7
Copyright 2009 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

This product contains the DOM4J library (http://www.dom4j.org).

Copyright 2001-2005 (C) MetaStuff, Ltd. All Rights Reserved.

This product contains parts that were originally based on software from BEA.

Copyright (c) 2000-2003, BEA Systems, <http://www.bea.com/>.

This product contains W3C XML Schema documents. Copyright 2001-2003 (c) World
Wide Web Consortium (Massachusetts Institute of Technology, European Research
Consortium for Informatics and Mathematics, Keio University)

This product contains the Piccolo XML Parser for Java

(http://piccolo.sourceforge.net/). Copyright 2002 Yuval Oren.

This product contains the chunks_parse_cmds.tbl file from the vsdump program.

Copyright (C) 2006-2007 Valek Filippov (frob@df.ru)

All recipients must receive a copy of the Apache 2.0 license (see the Appendix below
for attachment of the license http://www.apache.org/licenses/LICENSE-2.0.html);

All distributed source code, documentation, and configuration files must retain all
copyright, patent, trademark and attribution notices contained in the Apache
materials;

If the Apache code retains a "NOTICE" text file, then Oracle must include in
distributions of such Apache code the "NOTICE" text file in at least one of the
following locations: (i) within a"NOTICE" text file, (ii) within the source code or
documentation if distributed with the Apache code, (iii) within a display generated by
the distributed code in recognizable third party notice locations; and

Cryptix
"Copyright (c) 1995-2005 The Cryptix Foundation Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: 1. Redistributions of source
code must retain the copyright notice, this list of conditions and the following

D-6 Oracle Functional Testing OpenScript User's Guide

disclaimer. 2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. THIS SOFTWARE IS
PROVIDED BY THE CRYPTIX FOUNDATION LIMITED AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE CRYPTIX FOUNDATION LIMITED OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE."

dom4j 1.6.1
"Copyright 2001-2005 (C) MetaStuff, Ltd. All Rights Reserved.

Redistribution and use of this software and associated documentation ("Software"),
with or without modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain copyright statements and notices.
Redistributions must also contain a copy of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The name "DOM4J" must not be used to endorse or promote products derived from
this Software without prior written permission of MetaStuff, Ltd. For written
permission, please contact dom4j-info@metastuff.com.

4. Products derived from this Software may not be called "DOM4J" nor may "DOM4J"
appear in their names without prior written permission of MetaStuff, Ltd. DOM4J is a
registered trademark of MetaStuff, Ltd.

5. Due credit should be given to the DOM4J Project -http://www.dom4j.org

THIS SOFTWARE IS PROVIDED BY METASTUFF, LTD. AND CONTRIBUTORS "AS
IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL METASTUFF, LTD. OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

Doug Lea License
"The Java Software technologies are Copyright © 1994-2000 Sun Microsystems, Inc.
All rights reserved. This software is provided"AS IS", without a warranty of any kind.
ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,

Third-Party Licenses D-7

FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
EXCLUDED. SUN MICROSYSTEMS, INC. AND ITS LICENSORS SHALL NOT BE
LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO
EVENT WILL SUN MICROSYSTEMS, INC. OR ITS LICENSORS BE LIABLE FOR
ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
CONSEQUENTIAL, INCIDENTIAL OR PUNITIVE DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF SUN MICROSYSTEMS,
INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. You
acknowledge that Software is not designed, licensed or intended for use in the design,
construction, operation or maintenance of any nuclear facility."

GubuSoft Treeview Icons
"Copyright (C) 2006 Conor O'Mahony (gubusoft@gubusoft.com). All rights reserved.
This application includes the TreeView script. You are not authorized to download
and/or use the TreeView source code from this application for your own purposes. For
your own FREE copy of the TreeView script, please visit the http://www.treeview.net
Web site. THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE."

Apache 1.1 (IBM XML Parser)
"This product includes software developed by the Apache Software Foundation
(http://www.apache.org/). Copyright © 2000-2003 The Apache Software Foundation.
All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the notice"Copyright © 2000-2003 The
Apache Software Foundation. All rights reserved.", this list of conditions and the
disclaimer below. 2. Redistributions in binary form must reproduce the
notice"Copyright © 2000-2003 The Apache Software Foundation. All rights reserved.",
this list of conditions and the disclaimer below in the documentation and/or other
materials provided with the distribution. 3. The end-user documentation included
with the redistribution, if any, must include the following acknowledgment:"This
product includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4.
Neither the component name nor Apache Software Foundation may be used to
endorse or promote products derived from the software without specific prior written
permission. 5. Products derived from the software may not be called"Apache", nor
may"Apache" appear in their name, without prior written permission. THIS
SOFTWARE IS PROVIDED"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
ERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE."

D-8 Oracle Functional Testing OpenScript User's Guide

Intel Utilities
"Copyright © 1996 Intel Corporation. All Rights Reserved. Permission is granted to
use, copy and distribute this software and its documentation for any purpose and
without fee, provided, that the above copyright notice and this statement appear in all
copies. Intel makes no representations about the suitability of this software for any
purpose. This software is provided "AS IS." Intel specifically disclaims all warranties,
express or implied, and all liability, including consequential and other indirect
damages, for the use of this software, including liability for infringement of any
proprietary rights, and including the warranties of merchantability and fitness for a
particular purpose. Intel does not assume any responsibility for any errors which may
appear in this software nor any responsibility to update it., this list of conditions and
the disclaimer below in the documentation and/or other materials provided with the
distribution."

JaWin
"This product includes software developed by the DevelopMentor OpenSource Project
(http://www.develop.com/OpenSource). Copyright (c) 2001 DevelopMentor. All
rights reserved. Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the
distribution. 3. The end-user documentation included with the redistribution, if any,
must include the following acknowlegement: "This product includes software
developed by the DevelopMentor OpenSource Project
(http://www.develop.com/OpenSource)." Alternately, this acknowlegement may
appear in the software itself if and wherever such third-party acknowlegements
normally appear. 4. The name "DevelopMentor" may not be used to name, endorse, or
promote products derived from this software without prior written permission. For
written permission, please contact opensource@develop.com. THIS SOFTWARE IS
PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL DEVELOPMENTOR OPENSOURCE OR ITS
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

JDOM
"This product includes software developed by the JDOM Project
(http://www.jdom.org/). Copyright (C) 2000-2004 Jason Hunter & Brett McLaughlin.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: 1. Redistributions of source
code must retain the above copyright notice, this list of conditions, and the following
disclaimer. 2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the disclaimer that follows these conditions in the
documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software

Third-Party Licenses D-9

without prior written permission. For written permission, please contact <request_
AT_jdom_DOT_org>. 4. Products derived from this software may not be called
"JDOM", nor may "JDOM" appear in their name, without prior written permission
from the JDOM Project Management <request_AT_jdom_DOT_org>. In addition, we
request (but do not require) that you include in the end-user documentation provided
with the redistribution and/or in the software itself an acknowledgement equivalent
to the following: "This product includes software developed by the JDOM Project
(http://www.jdom.org/)." Alternatively, the acknowledgment may be graphical using
the logos available at http://www.jdom.org/images/logos. THIS SOFTWARE IS
PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE."

John McTainsh Utility
"Copyright 1999 © John McTainsh."

"Generic MIT" (MIT HTML Parser)
"Copyright © <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions: The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS
IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."

OpenSSH [IGNORE PARTS WHERE CODE ISN'T USED]
Part 1: Tatu Ylonen

"Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland. All rights reserved/"

Part 2: CORE SDI

"Cryptographic attack detector for ssh - source code. Copyright (c) 1998 CORE SDI
S.A., Buenos Aires, Argentina. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that this
copyright notice is retained. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES ARE DISCLAIMED. IN NO EVENT SHALL
CORE SDI S.A. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR

D-10 Oracle Functional Testing OpenScript User's Guide

MISUSE OF THIS SOFTWARE. Ariel Futoransky <futo@core-sdi.com>
http://www.core-sdi.com"

Part 3: David Mazieres

"Copyright 1995, 1996 by David Mazieres <dm@lcs.mit.edu>. Modification and
redistribution in source and binary forms is permitted provided that due credit is
given to the author and the OpenBSD project by leaving this copyright notice intact."

Part 4: Vincent Rijmen (see separate summary below)

Part 5: UC Berkeley (BSD)

"Copyright (c) 1983, 1990, 1992, 1993, 1995 The Regents of the University of California.
All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the
distribution. 3. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission. THE SOFTWARE IS PROVIDED BY THE REGENTS
AND CONTRIBUTORS "AS-IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDINGBUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS AND SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, ARISING IN ANY WAY OUT OF THE USE OF THE
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

Part 6: BSD-Type License

NOTE: Remaining components of the software are provided under a standard 2-term
BSD license with the following names as copyright holders:

■ Markus Friedl

■ Theo de Raadt

■ Niels Provos

■ Dug Song

■ Aaron Campbell

■ Damien Miller

■ Kevin Steves

■ Daniel Kouril

■ Wesley Griffin

■ Per Allansson

■ Nils Nordman

■ Simon Wilkinson

"Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met: 1. Redistributions of source

Third-Party Licenses D-11

code must retain the above copyright notice, this list of conditions and the following
disclaimer. 2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. THIS SOFTWARE IS
PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

Pradeep Sahu Job Scheduler
Redistributions of source code or binary form must retain the notice"You are free to
use the code, and modify. Provided you don't remove this comments. It will be great
if you can provide your feedback."

Tanuki Java Service Wrapper
"Copyright © 1999, 2006 Tanuki Software, Inc. Permission is hereby granted, free of
charge, to any person obtaining a copy of the Java Service Wrapper and associated
documentation files (the"Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above
copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software. THE SOFTWARE IS PROVIDED"AS IS",
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright © 2001 Silver Egg Technology. Permission is hereby granted, free of charge,
to any person obtaining a copy of this software and associated documentation files
(the"Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions: The above copyright notice and
this permission notice shall be included in all copies or substantial portions of the
Software. THE SOFTWARE IS PROVIDED"AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE."

NOTE

D-12 Oracle Functional Testing OpenScript User's Guide

Applications which are distributed with the Wrapper must include the license in a file
called license-wrapper.txt. The file should be located in a location that is obvious to the
user. Furthermore, the Wrapper may not be modified in a way which suppresses the
copyright banner displayed on startup.

"Copyright © 1999, 2006 Tanuki Software, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the Java
Service Wrapper and associated documentation files (the"Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED"AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE."

Portions of the Software have been derived from source code developed by Silver Egg
Technology under the following license:

BEGIN Silver Egg Technology License --

Copyright © 2001 Silver Egg Technology

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the"Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED"AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE."

The Legion Of The Bouncy Castle
Copyright (c) 2000 - 2009 The Legion Of The Bouncy Castle
(http://www.bouncycastle.org)

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit

Third-Party Licenses D-13

persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

TidyCom
"Copyright © 1998-2000 World Wide Web Consortium."

Tim Taylor Utility
"Copyright © 2005 Tim Taylor Consulting <http://tool-man.org/> Permission is
hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the"Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions: The
above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software. THE SOFTWARE IS PROVIDED"AS IS",
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."

Vincent Rijmen's AES Encryption
"rijndael-alg-fst.c. @version 3.0 (December 2000). Optimised ANSI C code for the
Rijndael cipher (now AES). @author Vincent Rijmen
vincent.rijmen@esat.kuleuven.ac.be @author Antoon Bosselaers
antoon.bosselaers@esat.kuleaven.ac.be @author Paulo Barreto
paulo.barreto@terra.com.br This code is hereby places in the public domain. THE
SOFTWARE IS PROVIDED BY THE AUTHORS"AS IS", AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMTED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE."

Xstream
"Copyright (c) 2003-2006, Joe Walnes. Copyright (c) 2006-2007, XStream Committers.
All rights reserved. Redistribution and use in source and binary forms, with or

D-14 Oracle Functional Testing OpenScript User's Guide

without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the
distribution. Neither the name of XStream nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE."

Zlib
"Copyright (c) 1995-2005 Jean-loup Gailly and Mark Adler. This software is provided
'as-is', without any express or implied warranty. In no event will the authors be held
liable for any damages arising from the use of this software. Permission is granted to
anyone to use this software for any purpose, including commercial applications, and
to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of
this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the
product documentation would be appreciated but is not required. 2. Altered source
versions must be plainly marked as such, and must not be misrepresented as being the
original software. 3. This notice may not be removed or altered from any source
distribution. Jean-loup Gailly jloup@gzip.org. Mark Adler
madler@alumni.caltech.edu"

Index-1

Index

A
abort script programmatically, 3-32
Action Message Format, 12-1
Activate the debug view when a breakpoint is hit

setting, 2-7
Activate the workbench when a breakpoint is hit

setting, 2-7
Additional Arguments setting, 2-6
ADF

creating new project, 3-4, 3-5
ADF Functional Test module

configuring the server, 9-2
key features, 9-2
setting record preferences, 2-23
using, 9-1
verifying compression settings, 9-3

ADF Functional Test scripts
application programming interface, 9-8
playing back scripts, 9-6
playing back scripts with iterations, 9-6
recording scripts, 9-3, 9-5

ADF Load Test scripts
playing back scripts, 10-3

Adobe Flex (AMF)
creating new project, 3-5

Adobe Flex (AMF) Load Test module
Correlation Library, 12-5
key features, 12-1
setting Correlation preferences, 12-5
using, 12-1

Adobe Flex (AMF) Load Test scripts
adding Adobe Flex (AMF) actions, 12-4
modifying, 12-4
playing back scripts, 12-3
playing back scripts with iterations, 12-3
recording scripts, 12-2
using Adobe Flex (AMF) Load Test API, 12-5

Adobe Flex Functional Test module
key features, 11-1
prerequisites, 11-2
using, 11-1

Adobe Flex Functional Test scripts
action dialog box, 11-7
adding Flex actions, 11-6
modifying, 11-6

object identification, 11-4
playing back scripts, 11-4, 11-5
playing back scripts with iterations, 11-5
recording scripts, 11-3
using Flex Functional Test API, 11-10

Advance to Next Record setting, 4-10
alias, 4-4, 4-5
All Records setting, 4-11
AllowAnonUsers setting, 14-3
Apache AXIS parsers, 2-28
assets

adding to scripts, 3-19
Attachments

adding to Web Services, 13-6
authentication, 6-20
Automatically (when page is out of date)

setting, 2-15

B
binary coding exceptions, B-1
Binary Decode Failed setting, 2-8
binary file data

posting, 6-15
boundary, 6-29
Breakpoint View, 1-5, 1-20
breakpoints

adding, 3-34
browser exceptions, B-5
Browsers preferences, 2-4
By Shuffling setting, 4-10

C
Cache download pages setting, 2-15
callFunction statement

adding to script, 3-16
certificates

installing on Internet Explorer browser, C-2
chaining scripts, 3-30
Charset setting, 4-3
Check for newer versions of cached pages

setting, 2-15
Child Script Failed setting, 2-8
Clear cache each iteration setting, 2-15
clearing cache, 5-10

Index-2

clearing cookies, 5-10
clearing Shared Data hash maps, 17-8
clearing Shared Data queues, 17-6
Client Certificate Keystore Error setting, 2-9
Close browser after playback setting, 2-12
command line settings, A-1

agent settings, A-2
browser, A-10
compression, A-12
connections, A-13
Download Manager, A-15
error recovery, A-19
functional test, A-15
general, A-2
headers, A-12
HTTP, A-11
Oracle EBS/Forms functional test, A-16
other, A-13
proxy, A-11
reserved keywords, A-2
Shared Data Service, A-17
specifying, A-1
Web functional test, A-18

comments
adding to script results, 3-26

Component Not Found Errors, B-13
Connect errors, B-10
Console View, 1-4, 1-5, 1-16
cookies

adding to script, 6-24
removing from script, 6-24

correlation, 6-25
Create Variable Failed setting, 2-8
creating Shared Data hash maps, 17-6
creating Shared Data queues, 17-4
CSV Loading Error setting, 2-10

D
Data Driven Testing

See also parameterization, 4-1
data input parameterization, 4-2
data input sources, 4-2
data parameterization

definition, 1-2
data parameterization GUI view, 4-2
Data Table View, 1-4, 1-5, 1-17
Data tables

adding rows and columns, 4-16
adding worksheets, 4-17
changing data during playback, 4-14
deleting rows and columns, 4-16
deleting worksheets, 4-17
enabling, 4-12
entering data manually, 4-13
exporting spreadsheet files, 4-14, 4-18, 4-19
exporting worksheets, 4-19
getting cell values, 4-15
getting row and column counts, 4-17
getting worksheet counts, 4-17

importing spreadsheet files, 4-14, 4-18
importing worksheets, 4-19
setting next and previous rows, 4-18
using, 4-12
using edit menu, 4-13
using worksheet menu, 4-13

databank variables
substituting, 6-22

databanks
advance records settings, 4-10
configuring, 4-3
creating and editing, 4-6
getting records, 4-7, 4-9
maximum iterations settings, 4-11
next record settings, 4-10
out of records settings, 4-11
range settings, 4-11
settings, 4-10
using, 4-2, 4-9

Database Capture files
importing, 3-10

Database Name or Database SID setting, 4-4
debug

setting preferences, 2-7
debug logging

enabling, 3-38
Debug logging setting, 2-7
Debug View, 1-20
debugging scripts, 3-33

adding breakpoints, 3-34
adding Java exception breakpoint, 3-36
adding views, 3-34
inspecting variables, 3-37
pausing and resuming scripts, 3-36

Declaration View, 1-5, 1-20
delay

adding to script, 3-15
destroying Shared Data hash maps, 17-8
destroying Shared Data queues, 17-6
Details View, 1-4, 1-5, 1-15
Developer Perspective, 1-4

available options, 1-6
Breakpoint View, 1-5, 1-20
Console View, 1-5, 1-16
Data Table View, 1-5
Debug View, 1-5, 1-20
Declaration View, 1-5, 1-20
Details View, 1-5, 1-15
Error Log View, 1-5
Navigator View, 1-5, 1-19
Object Details View, 1-5
Package Explorer View, 1-5, 1-19
Problems View, 1-5, 1-16
Properties View, 1-5, 1-16
Results View, 1-5, 1-16
Script Variables View, 1-5
Script View, 1-5, 1-14
Treeview Breakpoint View, 1-5
Variables View, 1-5, 1-20

DIME, 13-7

Index-3

Direct Internet Message Encapsulation, 13-7

E
Each Iteration of Script setting, 4-10
Each Occurance setting, 4-10
EBS/Forms Functional Test module

setting playback preferences, 2-16, 2-17
setting record preferences, 2-23

EBS/Forms Load Test module
setting record preferences, 2-24

Element node not found with xpath setting, 2-9
EnableAutomation setting, 14-3
enabling Shared Data service, 17-2
encode strings, 6-29, 6-30
encoding

resetting, 6-14
encryption preferences, 2-4
Encryption Service Not Initialized setting, 2-8
End-User Monitoring (EUM), 8-2
Error Log View, 1-4, 1-5
error recovery

adding to script, 3-26
Flex load testing (AMF), A-20
functional testing, A-20
general, A-20
HTTP, A-20
Oracle EBS/Forms functional testing, A-21
Oracle EBS/Forms load testing, A-21
setting preferences, 2-8
utilities, A-21
Web functional testing, A-21

Every visit to the page setting, 2-15
exceptions, 2-8

adding breakpoints, 3-36
execute code, 3-38
export

playback settings, 3-13

F
Failure to create DOM object setting, 2-9
File Not Found setting, 2-8
Finish section

definition, 1-2
Flex (AMF) Load Test, 12-1
Flex (AMF) Load Test module

Correlation Library, 12-5
key features, 12-1
setting Correlation preferences, 12-5
using, 12-1

Flex (AMF) Load Test scripts
adding Adobe Flex (AMF) actions, 12-4
modifying, 12-4
playing back scripts, 12-3
recording scripts, 12-2
using Adobe Flex (AMF) Load Test API, 12-5

folders
managing, 3-3

for statement

adding to script, 3-15
Form Server Connect Failed setting, 2-10
Forms Component Not Found setting, 2-10
Forms Contents Match Failed setting, 2-10
Forms End-User Performance Monitoring, 8-2
Forms Input/Output Communication Error

setting, 2-10
Forms Playback Error setting, 2-10
Function Failed setting, 2-9
function statement

adding to script, 3-16
Functional Test module

setting playback preferences, 2-10

G
General preferences, 2-2

H
Has Error control statement

adding to script, 3-29
Hide browser during playback setting, 2-12
High-Interactivity components, 14-2
Host setting, 4-4
HTML Parsing Error setting, 2-9
HTML Test Failed setting, 2-10
HTML tests, 5-18
HTTP error messages, B-7
HTTP exceptions, B-7
HTTP Get Navigation, 6-28
HTTP module

about, 6-1
key features, 6-1
setting playback preferences, 2-12, 6-12
setting record preferences, 2-19, 6-11
using, 6-1

HTTP scripts
adding a DOM variable, 6-19
adding authentication, 6-20
adding cookies, 6-24
adding Get Navigation, 6-28
adding Multipart Post Navigation, 6-29
adding Post Navigation, 6-28
adding server response tests, 6-22
adding text matching tests, 6-21
adding user agent, 6-25
adding variables, 6-19
adding XML Post Navigation, 6-30
deleting cookie, 6-24
deleting variables from, 6-20
finding variable in, 6-20
modifying, 6-16
playing back, 6-12, 6-13
recording, 6-11, 6-12
using HTTP API, 6-31
viewing playback results, 6-13

HTTP service exceptions, B-7, B-8

Index-4

I
import

Database Capture file, 3-10
RUEI User Session log, 3-13

Initialize section
definition, 1-2

inspect variable, 3-37
installation, 1-3

troubleshooting, C-1
Invalid HTTP Response Code setting, 2-9
Invalid URL setting, 2-9
I/O Errors, B-12
iterating scripts, 4-9, 6-13
iterations, 4-9, 6-13
iterations setting, 4-11

J
Java Code Editor, 1-7, 1-15

finish(), 1-15
initialize(), 1-15
run(), 1-15

Java Code Script
creating new project, 3-4

Java Exception Breakpoint, 3-36
JRE Plug-in Security Dialogs

suppressing on play back, 2-24
JVM Arguments setting, 2-7

K
Keep the Same Record setting, 4-11

L
log message

adding to script, 3-15
Loop Over Range setting, 4-11

M
Match Errors, B-13
Maximum In-Memory Cache Size setting, 2-15
Maximum Iterations setting, 4-11
Maximum JVM Heap Size setting, 2-7
Menu options

Edit, 1-6
File, 1-5
Help, 1-11
Navigate, 1-11
Project, 1-12
Run, 1-10
Script, 1-7
Search, 1-7
Tools, 1-10
View, 1-9
Window, 1-12

module error messages, B-1
modules, 12-1

Adobe Flex (AMF) Load Test, 12-1

Adobe Flex Functional Test, 11-1
HTTP, 6-1
Oracle EBS/Forms Functional Test, 7-1
Oracle EBS/Forms Load Test, 8-1
Oracle Fusion/ADF Functional Test, 9-1
Oracle Fusion/ADF Load Test, 10-1
Shared Data, 17-1
Siebel Functional Test, 14-1
Siebel Load Test, 15-1
Utilities, 16-1
Web Functional Test, 5-1

MTOM, 13-7
Multipart Post Navigation, 6-29

N
navigation

adding, 5-9, 6-25
adding browser navigation, 5-9
adding HTTP Get, 6-28
adding HTTP Post, 6-28
adding multipart Post, 6-29
adding XML Post, 6-30

Navigator View, 1-5, 1-19
nodes

moving in a script, 3-31
Nonce, 13-6

O
Object Details View, 1-4, 1-5, 1-18

adding a table test, 5-24
adding object tests, 5-24
saving a path to a lilbrary, 5-24
using, 5-22
viewing the object path, 5-24

Object Enumeration
setting preferences, 2-11

object identification
editing libraries, 5-26
setting preferences, 2-22, 2-23, 2-24, 2-27
x,y offset, 5-22
x,y position, 5-22

object identifiers
adding/editing, 5-3

Object Not Found setting, 2-10
Object Test Failed setting, 2-9
ODBC Driver, 4-5
Offset (x,y), 5-22
OpenScript

Breakpoint View, 1-20
Console View, 1-16
Correlation interface, 1-2
Data Table View, 1-17
Databanking, 1-2
Debug View, 1-20
Declaration View, 1-20
definition, 1-1
Details View, 1-15
Developer Perspective, 1-4

Index-5

installing, 1-3
Java Code View, 1-2
menu options, 1-5
Navigator and Package Explorer Views, 1-19
Object Details View, 1-18
preferences, 1-3
Problems View, 1-16
Properties View, 1-2, 1-16
Results View, 1-16
Script Variables View, 1-19
starting, 1-3
tool bar, 1-13
tree view, 1-2
Treeview Breakpoint View, 1-19
Variables View, 1-20

OpenScript Workbench, 1-4
Operation Invocation Error setting, 2-9
options

Configure Databank, 4-3
Substitute Variable, 4-3

Oracle ADF Functional Test module
adding Oracle Forms object identifiers, 9-4
editing Oracle Forms object identifiers, 9-4
setting record preferences, 2-23, 9-4

Oracle EBS/Forms
creating new project, 3-3, 3-5

Oracle EBS/Forms Functional Test Error
Messages, B-8

Oracle EBS/Forms Functional Test module
about, 7-1, 11-1
adding Oracle Forms object identifiers, 7-3
editing Oracle Forms object identifiers, 7-3
key features, 7-1
prerequisites, 7-2
setting playback preferences, 2-16, 2-17, 7-5
setting record preferences, 2-23, 7-3
using, 7-1

Oracle EBS/Forms Functional Test scripts
adding EBS/Forms actions, 7-6
modifying, 7-6
playing back scripts, 7-5, 7-6
playing back scripts with iterations, 7-6
recording scripts, 7-2, 7-4
using Forms Functional Test API, 7-7

Oracle EBS/Forms Load Test error messages, B-10
Oracle EBS/Forms Load Test module

Correlation Library, 8-8
key features, 8-1
prerequisites, 8-2
setting Correlation preferences, 8-8
setting playback preferences, 8-4
setting record preferences, 2-24, 8-3
using, 8-1

Oracle EBS/Forms Load Test scripts
adding Forms actions, 8-5
analyzing Message Logs, 8-12
converting Forms actions to XML, 8-6
debugging using the Message Log, 8-11
modifying, 8-5
playing back scripts, 8-4, 8-5

playing back scripts with iterations, 8-5
recording scripts, 8-3
troubleshooting, 8-11
troubleshooting ifError messages, 8-13
using Forms Load Test API, 8-7

Oracle Forms Error setting, 2-9
Oracle Fusion/ ADF Load Test module

key features, 10-1
Oracle Fusion/ADF Functional Test scripts

adding Fusion/ADF actions, 9-7
modifying, 9-7

Oracle Fusion/ADF Load Test module
Correlation Library, 10-4
setting Correlation preferences, 10-4
using, 10-1

Oracle Fusion/ADF Load Test scripts
application programming interface, 10-5
playing back scripts, 10-3
playing back scripts with iterations, 10-3
recording scripts, 10-2

Oracle Load Testing
playing back HTTP scripts, 6-14

Oracle Thin JDBC Driver, 4-4

P
Package Explorer View, 1-5, 1-19
page title tests, 5-17
parameterization, 4-1, 6-25
Parameterize URLs menu option, 3-25
password digest, 13-6
Password setting, 4-5
password text, 13-6
Pause on exceptions setting, 2-7
platform error messages, B-4
Playback Error setting, 2-9
Playback Errors, B-14
Playback Failed setting, 2-10
playback HTTP scripts

using iterations, 4-9, 6-13
using Oracle Load Testing, 6-14

Playback preferences, 2-5
Action Settings, 2-17
Capture Screenshot Interval, 2-18
Compression, 2-12
Connections, 2-13
Download Manager, 2-14
Error Handling, 2-7
Event Timeout, 2-16
General, 2-5
Headers, 2-13
Miscellaneous, 2-15, 2-18
Object Enumeration, 2-11
Object Timeout, 2-18
setting, 6-12
SSL, 2-14
System, 2-7, 2-12

playback results
comparing, 6-14

playback settings

Index-6

exporting, 3-13
Port setting, 4-4
Position (x,y), 5-22
post data variables, 6-23
Post Navigation, 6-28
preferences, 2-1

ADF functional test, 2-23
Browsers, 2-4
EBS/Forms functional test, 2-16, 2-17, 2-23
EBS/Forms load test, 2-24
encryption, 2-4
error recovery, 2-8
functional test, 2-10
general, 2-5
General category, 2-2
HTTP, 2-12, 2-19
playback, 6-12
Playback category, 2-5
Record category, 2-19
repository settings, 2-5
setting, 2-1
setting project, 2-35
setting Siebel Correlation, 15-14
Siebel functional test, 2-25
Step Group category, 2-29
Web functional test, 2-18, 2-26
Web Services, 2-28

Problems View, 1-4, 1-5, 1-16
project preferences, 2-35
properties

assets, 3-10
correlation, 3-9
modules, 3-10
setting for scripts, 3-9
step groups, 3-10

Properties View, 1-4, 1-5, 1-16

R
Randomly setting, 4-10
Range settings, 4-11
record ADF Functional Test, 9-3
record Adobe Flex (AMF) Load Test, 12-2
record Adobe Flex Functional Test, 11-3
record HTTP script, 6-12
record Oracle EBS/Forms Load Test, 8-3
record Oracle Forms Functional Test, 7-2
record Oracle Fusion/ADF Load Test, 10-2
Record preferences, 2-19

Certificates, 2-22
EBS/Forms load test, 2-24
General, 2-19, 2-24, 2-26, 2-28
Object Identification, 2-22, 2-23, 2-24, 2-27
Parser Tools, 2-28
Proxy Configuration, 2-28
Proxy Settings, 2-21
URL Filters, 2-21

record Web Functional Test, 5-2
recorded results

comparing, 6-14

Remove Unchanging Variables menu option, 3-24
Replace URLs setting, 2-6
repository

creating, 3-1, 3-2
definition, 3-1
managing, 3-2
setting preferences, 2-5

Response Time Error setting, 2-9, 2-10
Result Object

adding to script, 3-29
Results View, 1-4, 1-5, 1-16

toolbar buttons, 1-17
resume script programmatically, 3-32
RUEI User Session logs

importing, 3-13
Run section

definition, 1-2
runScript statement

adding to script, 3-20

S
script

commands, 1-2
steps, 1-2

script creation exceptions, B-2
script databanks

using, 4-2
script exceptions, B-1
script project

creating, 3-3
script service exceptions, B-4
Script Variable View, 1-4, 1-5
script variables

using, 6-17
Script Variables View, 1-19
Script View, 1-5, 6-16

Java Code, 1-15
Tree View, 1-15

Scripting Workbench, 1-1
scripts

aborting and resuming, 3-32
adding assets, 3-19
adding function libraries, 3-21
creating, 3-1
creating from templates, 3-9
debugging, 3-33
managing, 3-3
migrating, 3-8
modifying, 3-1, 3-14
opening existing, 3-6
pausing and resuming, 3-36
saving as templates, 3-8
setting properties, 3-9
storing, 3-1

security certificate, C-2
Security Extensions

adding to Web Services, 13-5
Security SOAP Messages with Attachments, 13-7
segment parser exceptions, B-3

Index-7

Segment Parser Failed setting, 2-8
Select Next Record setting, 4-10
Sequentially setting, 4-10
server response tests, 5-11, 6-22
set variable

adding to script, 3-23
setting Shared Data connection parameters, 17-3
setting Shared Data password, 17-3
settings

exporting, 3-13
Shared Data error messages, B-14
Shared Data module

about, 17-1
basic scenarios, 17-2
clearing hash maps, 17-8
clearing queues, 17-6
creating hash maps, 17-6
creating queues, 17-4
destroying hash maps, 17-8
destroying queues, 17-6
enabling, 17-2
getting data from hash maps, 17-7
getting data from queues, 17-5
inserting data into hash maps, 17-6
inserting data into queues, 17-4
key features, 17-1
setting connection parameters, 17-3
setting password encryption, 17-3
using the Shared Data API, 17-8

Siebel
creating new project, 3-4, 3-5

Siebel Correlation Library, 15-15
Siebel error messages, B-16
Siebel exceptions, B-15, B-16
Siebel Functional Test module

enabling Siebel test automation, 14-3
High-Interactivity components, 14-2
key features, 14-1
setting browser options, 14-4
setting up Siebel environment, 14-2
Standard-Interactivity applications, 14-2
testing Siebel applications, 14-2
using, 14-1

Siebel Functional Test scripts
adding Siebel actions, 14-7
creating Siebel scripts, 14-3
determining a Siebel component type, 14-5
handling non-standard dialog boxes, 14-8
modifying scripts, 14-7
recording Siebel functional test scripts, 14-5
setting record preferences, 14-6
starting the Siebel application, 14-4
using Siebel Functional Test API, 14-10

Siebel Load Test module
about, 15-1
key features, 15-1

SOAP Message Transmission Optimization
Mechanism, 13-7

Socket Timeout setting, 2-16
Solve Variable Failed setting, 2-9, 2-10

Specific Records setting, 4-11
SQL Execute Error setting, 2-10
SQL Validation Row Count Error setting, 2-10
SSL certificate, C-2
SSL exceptions, B-5
Standard-Interactivity applications, 14-2
Starting Record setting, 4-11
Status Bar Test Error setting, 2-10
Step Group preferences, 2-29

ADF load test, 2-29
basic module, 2-29
Flex (AMF) load test, 2-30
Forms functional test, 2-31
Forms load test, 2-32
HTTP, 2-31
Siebel functional test, 2-33, 2-34
Siebel load test, 2-34

step groups
adding to script, 3-14
definition, 3-14

Stop the User setting, 4-11
Suspend action in child script by Pause setting, 2-7
SWA, 13-7
SWECmd=AutoOn, 14-4
synchronization points

adding to scripts, 3-22

T
Table Test Failed setting, 2-9
TCP exceptions, B-5
test cases

adding HTML test, 5-18
adding object tests, 5-13
adding page title test, 5-17
adding server response test, 5-11, 6-22
adding table tests, 5-15
adding text matching, 5-12, 6-21
adding XML test, 5-19

Test Modules, 1-1
Tester Perspective, 1-4

adding views, 3-34
Console View, 1-4, 1-16
Data Table View, 1-4
Details View, 1-4, 1-15
Error Log View, 1-4
Object Details View, 1-4
Problems View, 1-4, 1-16
Properties View, 1-4, 1-16
Results View, 1-4, 1-16
Script Variables View, 1-4
Script View, 1-4, 1-14
Treeview Breakpoint View, 1-4

text file encoding
changing, 3-33

Text Matching Failed setting, 2-9
text matching tests

adding, 5-12, 6-21
Title Test Failed setting, 2-10
Tree View, 6-16

Index-8

Finish section, 1-15
Initialize section, 1-15
Run section, 1-15

Treeview Breakpoint View, 1-4, 1-5, 1-19
troubleshooting, C-1

U
Unexpected Script Error setting, 2-8
URL

encoding exceptions, B-4
parameterizing, 3-25
setting filter preferences, 2-21

Use XPath setting, 2-11
Use XPath with Smart Match setting, 2-11
user agent

adding to script, 6-25
Username setting, 4-5
Utilities module

getting database values, 16-3
key features, 16-1
using, 16-1
using XPath generator, 16-5
working with CSV files, 16-2
working with text files, 16-1
working with XML files, 16-3

V
variable

deleting from script, 6-20
finding in script, 6-20
inspecting, 3-37
removing unchanged, 3-24

variable exceptions, B-4
Variable Not Found setting, 2-8
variable scope, 3-23
Variables View, 1-5, 1-20
verifying actions, 3-28
views

adding, 3-34

W
Wait for Page Timeout setting, 2-10
watch variable, 3-38
Web

creating new project, 3-4
Web error messages, B-16
Web Functional Test module

about, 5-1
adding Web object identifiers, 5-3
editing Web object identifiers, 5-3
key features, 5-2
setting playback preferences, 2-18, 5-7
setting record preferences, 2-26, 5-2
using, 5-1

Web Functional Test scripts
adding browser navigation, 5-9
adding HTML tests, 5-18
adding image object tests, 5-16

adding object libraries to scripts, 5-10
adding object tests, 5-13
adding page title tests, 5-17
adding server response tests, 5-11
adding table tests, 5-15
adding text matching tests, 5-12
adding wait for page, 5-21
adding web actions, 5-9
adding XML tests, 5-19
editing object libraries, 5-26
inspecting object paths, 5-22
modifying, 5-8
playing back scripts, 5-7
playing back scripts with iterations, 5-7
recording scripts, 5-2, 5-6
setting properties, 5-25
substituting databank variables, 5-25
using Web Functional Test API, 5-25

Web Service exceptions, B-16
Web Services module

adding WSDL files, 13-2
key features, 13-1
setting record preferences, 2-28, 13-8, 13-9
using, 13-1

Web Services scripts
adding attachments, 13-6
adding methods to scripts, 13-2
adding post navigation, 13-4
adding security extensions, 13-5
adding Text Matching tests, 13-4
creating new project, 3-4
creating scripts using WSDL Manager, 13-2
editing method parameters, 13-3
modifying scripts, 13-3
recording scripts, 13-8

Web/HTTP
creating new project, 3-5

When Out of Records setting, 4-11
When Script Requests a Record setting, 4-10
Workbench

Developer Perspective, 1-4
overview, 1-4
Tester Perspective, 1-4

workspaces
creating, 3-1
definition, 3-1

WSDL Manager
adding WSDL files, 13-2

X
XML file data

posting, 6-15
reading files, 16-3

XML Parsing Error setting, 2-10
XML Post Navigation, 6-30
XML Test Failed setting, 2-9
XML tests, 5-19
XPath Generator, 16-5

Index-9

Z
Zero Length Downloads setting, 2-9

Index-10

	Contents
	1 Getting Started With OpenScript
	2 Setting Preferences
	3 Creating and Modifying Scripts
	4 Using Data Parameterization
	5 Using the Web Functional Test Module
	6 Using the HTTP Module
	7 Using the Oracle EBS/Forms Functional Test Module
	8 Using the Oracle EBS/Forms Load Test Module
	9 Using the Oracle Fusion/ADF Functional Test Module
	10 Using the Oracle Fusion/ADF Load Test Module
	11 Using the Adobe Flex Functional Test Module
	12 Using the Adobe Flex (AMF) Load Test Module
	13 Using the Web Services Module
	14 Using the Siebel Functional Test Module
	15 Using the Siebel Load Test Module
	16 Using the Utilities Module
	17 Using the Shared Data Module
	A Command Line Reference
	B Error Message Reference
	C Troubleshooting
	D Third-Party Licenses
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Getting Started With OpenScript
	1.1 OpenScript Features
	1.2 Installing OpenScript
	1.3 Starting the OpenScript Workbench
	1.4 Overview of the OpenScript Main Window (Workbench)
	1.4.1 Tester Perspective
	1.4.2 Developer Perspective
	1.4.3 OpenScript Menu Options
	1.4.3.1 File
	1.4.3.2 Edit
	1.4.3.3 Search
	1.4.3.4 Script
	1.4.3.5 View
	1.4.3.6 Run
	1.4.3.7 Tools
	1.4.3.8 Help
	1.4.3.9 Navigate
	1.4.3.10 Project
	1.4.3.11 Window

	1.4.4 OpenScript Tool Bar
	1.4.5 Script View
	1.4.5.1 Tree View
	1.4.5.2 Java Code

	1.4.6 Details View
	1.4.7 Problems View
	1.4.8 Properties View
	1.4.9 Console View
	1.4.10 Results View
	1.4.11 Error Log View
	1.4.12 Data Table View
	1.4.13 Object Details View
	1.4.14 Script Variables View
	1.4.15 Treeview Breakpoint View
	1.4.16 Navigator and Package Explorer Views
	1.4.17 Debug View
	1.4.18 Declaration View
	1.4.19 Variables and Breakpoints Views

	1.5 About Multi-User Execution
	1.6 About Script Assets

	2 Setting Preferences
	2.1 Setting OpenScript Preferences
	2.2 Correlation and Validation Category
	2.2.1 Module Correlation Preferences
	2.2.2 Add Library
	2.2.3 Add/Edit Rule

	2.3 General Category
	2.3.1 General Preferences
	2.3.2 Browser Preferences
	2.3.3 Encryption Preferences
	2.3.4 Repository Preferences

	2.4 Playback Category
	2.4.1 General Playback Preferences
	2.4.1.1 General
	2.4.1.2 Error Handling
	2.4.1.3 System

	2.4.2 Debug Preferences
	2.4.3 Error Recovery Preferences
	2.4.3.1 General
	2.4.3.2 Flex Load Test (AMF)
	2.4.3.3 Functional Test
	2.4.3.4 HTTP
	2.4.3.5 Oracle Forms Functional Test
	2.4.3.6 Oracle Forms Load Test
	2.4.3.7 Utilities
	2.4.3.8 Web Functional Test

	2.4.4 Functional Test Preferences
	2.4.4.1 Object Enumeration
	2.4.4.2 Browser

	2.4.5 HTTP Preferences
	2.4.5.1 Proxy
	2.4.5.2 Compression
	2.4.5.3 Headers
	2.4.5.4 Connections
	2.4.5.5 SSL
	2.4.5.6 Download Manager
	2.4.5.7 Caching
	2.4.5.8 Miscellaneous

	2.4.6 Oracle EBS/Forms Functional Test Preferences
	2.4.6.1 Event Timeout
	2.4.6.2 Miscellaneous

	2.4.7 Oracle EBS/Forms Load Test Preferences
	2.4.7.1 Connection
	2.4.7.2 Miscellaneous

	2.4.8 Shared Data Service Preferences
	2.4.9 Web Functional Test Preferences
	2.4.9.1 Object Timeout
	2.4.9.2 Capture Screenshot Interval
	2.4.9.3 Miscellaneous

	2.5 Record Category
	2.5.1 General Preferences
	2.5.2 HTTP Preferences
	2.5.2.1 General
	2.5.2.2 Proxy Settings
	2.5.2.3 URL Filters
	2.5.2.4 Certificates
	2.5.2.5 Object Identification

	2.5.3 Oracle ADF Functional Test Preferences
	2.5.3.1 Object Identification

	2.5.4 Oracle EBS/Forms Functional Test Preferences
	2.5.4.1 General
	2.5.4.2 Object Identification

	2.5.5 Oracle EBS/Forms Load Test Preferences
	2.5.6 Siebel Functional Test Preferences
	2.5.6.1 General

	2.5.7 Web Functional Test Preferences
	2.5.7.1 General
	2.5.7.2 Object Identification

	2.5.8 Web Services Preferences
	2.5.8.1 General
	2.5.8.2 Parser Tools
	2.5.8.3 Proxy Configuration

	2.6 Step Group Category
	2.6.1 ADF Load Test Preferences
	2.6.2 Basic Module Preferences
	2.6.3 Flex (AMF) Load Test Preferences
	2.6.4 HTTP Preferences
	2.6.5 Oracle EBS/Forms Functional Test Preferences
	2.6.6 Oracle EBS/Forms Load Test Preferences
	2.6.7 Siebel Functional Test Preferences
	2.6.8 Siebel Load Test Preferences
	2.6.9 Web Functional Test Preferences

	2.7 Setting Project Preferences

	3 Creating and Modifying Scripts
	3.1 Creating Repositories and Workspaces
	3.1.1 Creating a Repository
	3.1.2 Managing Repositories
	3.1.3 Managing Folders (Workspaces)
	3.1.4 Managing Scripts

	3.2 Creating a Script Project
	3.2.1 Opening Existing Scripts
	3.2.1.1 Opening Older Scripts in OpenScript
	3.2.1.2 Migrating Older Scripts in OpenScript
	3.2.1.3 Running Mixed Versions of Scripts
	3.2.1.4 Multiple Users Opening Scripts

	3.2.2 Migrating Scripts
	3.2.3 Saving Scripts as Templates
	3.2.4 Creating New Scripts from Templates
	3.2.5 Setting Script Properties
	3.2.5.1 Correlation and Validation
	3.2.5.2 Modules
	3.2.5.3 Script Assets
	3.2.5.4 Step Groups

	3.2.6 Importing Database Capture Files
	3.2.7 Importing Oracle Real User Experience Insight (RUEI) Session Logs
	3.2.8 Exporting Script Playback Settings

	3.3 Modifying Scripts
	3.3.1 Adding Step Groups to a Script
	3.3.2 Adding a Delay to a Script
	3.3.3 Adding a Log Message to a Script
	3.3.4 Adding a For Statement to a Script
	3.3.5 Adding a Function to a Script
	3.3.6 Adding Script Assets
	3.3.7 Adding a Script to Run from a Script
	3.3.8 Adding a Function Library
	3.3.9 Adding a Synchronization Point to a Script
	3.3.10 Adding a Set Variable to a Script
	3.3.10.1 Variables with Scope

	3.3.11 Removing Unchanging Variables
	3.3.12 Parameterizing URLs
	3.3.13 Adding Comments to Script Results
	3.3.14 Adding Error Recovery to a Script
	3.3.14.1 Script Types
	3.3.14.2 Constants
	3.3.14.3 Actions

	3.3.15 Verifying Script Actions
	3.3.15.1 Adding an Error Recovery Action
	3.3.15.2 Adding a Has Error Control Statement
	3.3.15.3 Adding a Result Object Message
	3.3.15.4 Actions That Can Be Verified

	3.3.16 Chaining Multiple Scripts
	3.3.16.1 Setting the Browser Preferences
	3.3.16.2 Recording Scripts
	3.3.16.3 Creating a Shell Script

	3.3.17 Moving Nodes in a Script
	3.3.18 Aborting and Resuming a Script Programmatically

	3.4 Changing Text File Encoding
	3.5 Debugging Scripts
	3.5.1 Adding Views to the Tester Perspective
	3.5.2 Adding Breakpoints to a Script
	3.5.3 Adding a Java Exception Breakpoint
	3.5.4 Pausing and Resuming Script Playback in Debug Mode
	3.5.5 Inspecting and Changing Script Variable Values

	3.6 Enabling Debug Logging

	4 Using Data Parameterization
	4.1 Understanding Data Driven Testing (Parameterization)
	4.2 Using Script Databanks
	4.2.1 Configuring Databanks
	4.2.2 Creating or Editing Databank Files
	4.2.3 Getting Databank Records
	4.2.3.1 Getting Databank Records Using the API
	4.2.3.1.1 Databank API Usage Notes
	4.2.3.1.2 Getting a Record Count
	4.2.3.1.3 Getting a Specific Record
	4.2.3.1.4 Getting the First Record
	4.2.3.1.5 Getting the Last Record

	4.2.4 Playing Back Scripts With Iterations
	4.2.4.1 Notes and Limitations

	4.3 Using Data Tables
	4.3.1 Enabling the Data Table Service
	4.3.2 Entering Data Manually
	4.3.3 Importing Data from a Spreadsheet File
	4.3.4 Exporting Data to a Spreadsheet File
	4.3.5 Changing Data During Script Playback
	4.3.5.1 Getting and Setting Cell Values
	4.3.5.1.1 Getting Data by Row and Column Value
	4.3.5.1.2 Getting Data by Sheet, Row, and Column Value
	4.3.5.1.3 Setting Data by Row and Column Value
	4.3.5.1.4 Setting Data by Sheet, Row, and Column Value

	4.3.5.2 Adding and Deleting Rows and Columns
	4.3.5.2.1 Adding Columns
	4.3.5.2.2 Deleting Columns
	4.3.5.2.3 Adding Rows
	4.3.5.2.4 Deleting Rows

	4.3.5.3 Adding and Deleting Worksheets
	4.3.5.3.1 Adding Worksheets
	4.3.5.3.2 Deleting Worksheets

	4.3.5.4 Getting Worksheet, Row, and Column Counts
	4.3.5.4.1 Getting Worksheet Counts
	4.3.5.4.2 Getting Row Counts
	4.3.5.4.3 Getting Column Counts

	4.3.5.5 Getting the Current Sheet and Row
	4.3.5.5.1 Getting the Current Sheet
	4.3.5.5.2 Getting the Current Row

	4.3.5.6 Setting Next and Previous Rows
	4.3.5.6.1 Getting the Next Row
	4.3.5.6.2 Setting the Previous Row

	4.3.5.7 Importing and Exporting Documents and Sheets
	4.3.5.7.1 Importing an Excel Spreadsheet Document
	4.3.5.7.2 Importing Worksheets
	4.3.5.7.3 Exporting an Excel Spreadsheet Document
	4.3.5.7.4 Exporting Worksheets

	5 Using the Web Functional Test Module
	5.1 About the Web Functional Test Module
	5.1.1 Key Features of the Web Functional Test Module

	5.2 Recording Web Functional Tests
	5.2.1 Setting Web Functional Test Record Preferences
	5.2.2 Adding/Editing Object Identifiers
	5.2.2.1 Available Attributes for Web DOM Elements

	5.2.3 Recording Web Functional Test Scripts

	5.3 Playing Back Scripts
	5.3.1 Setting Web Functional Test Playback Preferences
	5.3.2 Playing Back Web Functional Scripts
	5.3.3 Playing Back Web Functional Scripts with Iterations

	5.4 Modifying Scripts
	5.4.1 Path Editor Toolbar
	5.4.2 Adding Browser Navigation to a Script
	5.4.3 Adding Web Actions on Browser Objects
	5.4.4 Adding Object Libraries to a Script
	5.4.5 Adding a Server Response Test
	5.4.6 Adding Text Matching Tests to a Script
	5.4.7 Adding Object Tests
	5.4.8 Adding Table Tests
	5.4.8.1 Testing Images in Tables

	5.4.9 Adding a Page Title Test
	5.4.10 Adding an HTML Test
	5.4.11 Adding an XML Test
	5.4.12 Adding a Wait for Page
	5.4.13 Inspecting Object Paths
	5.4.14 Using the Object Details View
	5.4.14.1 Viewing the Object Path
	5.4.14.2 Adding an Object Test
	5.4.14.3 Adding a Table Test
	5.4.14.4 Saving an Object Path to an Object Library

	5.4.15 Setting Script Properties
	5.4.16 Substituting Databank Variables
	5.4.17 Using the Web Functional Test Module API

	5.5 Editing Object Libraries

	6 Using the HTTP Module
	6.1 About the HTTP Module
	6.1.1 Key Features of the HTTP Module

	6.2 Navigation Editing (Correlation)
	6.2.1 Setting Correlation Preferences
	6.2.2 Adding Correlation Libraries
	6.2.3 Adding and Editing Correlation Rules
	6.2.3.1 Client Set Cookie
	6.2.3.2 Correlate Cookie Header
	6.2.3.3 Correlate Header
	6.2.3.4 Correlate Referer Header
	6.2.3.5 DOM Correlation Rules
	6.2.3.6 Function/Text Substitution Rules
	6.2.3.7 Java Session id
	6.2.3.8 Substitute Recorded Date
	6.2.3.9 Title Verification
	6.2.3.10 Variable Substitution Rules

	6.3 Recording Scripts
	6.3.1 Setting HTTP Record Preferences
	6.3.2 Recording a New HTTP Script

	6.4 Playing Back Scripts
	6.4.1 Setting HTTP Playback Preferences
	6.4.2 Playing Back HTTP Scripts
	6.4.3 Playing Back HTTP Scripts With Iterations
	6.4.4 Viewing Script Playback Results
	6.4.5 Resetting Encoding
	6.4.6 Comparing Recorded/Playback Results
	6.4.7 Playing Back HTTP Scripts In Oracle Load Testing
	6.4.8 Posting Binary or XML File Data

	6.5 Modifying Scripts
	6.5.1 Understanding the HTTP Module Script View
	6.5.2 Using Script Variables
	6.5.3 Adding a Variable to a Script
	6.5.4 Adding a Solve XPath to a Script
	6.5.5 Finding a Variable in a Script
	6.5.6 Deleting Variables from a Script
	6.5.7 Adding Authentication to a Script
	6.5.8 Adding Text Matching Tests to a Script
	6.5.9 Adding Server Response Tests to a Script
	6.5.10 Substituting Databank Variables
	6.5.11 Substituting Post Data Variables
	6.5.12 Adding a Cookie to a Script
	6.5.13 Removing a Cookie From Script
	6.5.14 Adding a User Agent to a Script

	6.6 Adding Navigation
	6.6.1 Understanding Navigation Editing (Correlation)
	6.6.2 Adding HTTP Get Navigation
	6.6.3 Adding HTTP Post Navigation
	6.6.4 Adding an HTTP Multipart Post Navigation
	6.6.5 Adding an HTTP XML Post Navigation
	6.6.6 Using the HTTP Module API

	7 Using the Oracle EBS/Forms Functional Test Module
	7.1 About the Oracle EBS/Forms Functional Test Module
	7.1.1 Key Features of the Oracle EBS/Forms Functional Test Module
	7.1.2 Prerequisites

	7.2 Recording Oracle EBS/Forms Functional Tests
	7.2.1 Setting Oracle EBS/Forms Functional Test Record Preferences
	7.2.2 Adding/Editing Object Identifiers
	7.2.3 Recording Oracle EBS/Forms Functional Test Scripts

	7.3 Playing Back Scripts
	7.3.1 Setting Oracle EBS/Forms Functional Test Playback Preferences
	7.3.2 Playing Back Oracle EBS/Forms Functional Scripts
	7.3.3 Playing Back Oracle EBS/Forms Functional Scripts with Iterations

	7.4 Modifying Scripts
	7.4.1 Adding Forms Actions
	7.4.2 Using the Oracle EBS/Forms Functional Test Module API

	8 Using the Oracle EBS/Forms Load Test Module
	8.1 About the Oracle EBS/Forms Load Test Module
	8.1.1 Key Features of the Oracle EBS/Forms Load Test Module
	8.1.2 Prerequisites

	8.2 Recording Oracle EBS/Forms Load Tests
	8.2.1 Setting Oracle EBS/Forms Load Test Record Preferences
	8.2.2 Recording Oracle EBS/Forms Load Test Scripts

	8.3 Playing Back Scripts
	8.3.1 Setting Oracle EBS/Forms Load Test Playback Preferences
	8.3.2 Playing Back Oracle EBS/Forms Load Scripts
	8.3.3 Playing Back Oracle EBS/Forms Load Scripts with Iterations

	8.4 Modifying Scripts
	8.4.1 Adding Forms Actions
	8.4.2 Converting Forms Actions to XML Messages
	8.4.3 Using the Oracle EBS/Forms Load Test Module API

	8.5 Setting Oracle EBS/Forms Load Test Correlation Preferences
	8.6 Oracle EBS/Forms Load Test Correlation Library
	8.7 Troubleshooting Oracle EBS/Forms Load Test Scripts
	8.7.1 Debugging Using the Message Log
	8.7.1.1 During Recording
	8.7.1.2 Format of the Recorded Log
	8.7.1.3 During Playback
	8.7.1.4 After Playback

	8.7.2 Analyzing Message Logs
	8.7.3 Resolving "Component does not exist" Errors
	8.7.4 Troubleshooting Forms ifError Messages

	9 Using the Oracle Fusion/ADF Functional Test Module
	9.1 About the Oracle Fusion/ADF Functional Test Module
	9.1.1 Prerequisites
	9.1.2 Key Features of the Oracle Fusion/ADF Functional Test Module

	9.2 Configuring the ADF Server
	9.2.1 Configuring the WEB-INF/web.xml File
	9.2.2 Configuring the trinidad-config.xml File
	9.2.3 Verifying the Compression Settings

	9.3 Recording Oracle Fusion/ADF Functional Tests
	9.3.1 Setting Oracle ADF Functional Test Record Preferences
	9.3.2 Adding/Editing Object Identifiers
	9.3.3 Recording Oracle Fusion/ADF Functional Test Scripts

	9.4 Playing Back Scripts
	9.4.1 Playing Back Oracle Fusion/ADF Functional Scripts
	9.4.2 Playing Back Oracle Fusion/ADF Functional Scripts with Iterations

	9.5 Modifying Scripts
	9.5.1 Adding Fusion/ADF Actions
	9.5.2 Oracle Fusion/ADF Functional Test Module API

	10 Using the Oracle Fusion/ADF Load Test Module
	10.1 About the Oracle Fusion/ADF Load Test Module
	10.1.1 Key Features of the Oracle Fusion/ADF Load Test Module

	10.2 Recording Oracle Fusion/ADF Load Tests
	10.2.1 Recording Oracle Fusion/ADF Load Test Scripts

	10.3 Playing Back Scripts
	10.3.1 Playing Back Oracle Fusion/ADF Load Scripts
	10.3.2 Playing Back Oracle Fusion/ADF Load Scripts with Iterations

	10.4 Setting Oracle Fusion/ADF Load Test Correlation Preferences
	10.5 Oracle Fusion/ADF Load Test Correlation Library
	10.6 Oracle Fusion/ADF Load Test Module API

	11 Using the Adobe Flex Functional Test Module
	11.1 About the Adobe Flex Functional Test Module
	11.1.1 Key Features of the Adobe Flex Functional Test Module
	11.1.2 Prerequisites

	11.2 Recording Adobe Flex Functional Tests
	11.2.1 Recording Adobe Flex Functional Test Scripts

	11.3 Playing Back Scripts
	11.3.1 Adobe Flex Object Identification
	11.3.2 Playing Back Adobe Flex Functional Scripts
	11.3.3 Playing Back Adobe Flex Functional Scripts with Iterations

	11.4 Modifying Scripts
	11.4.1 Adding Flex Actions
	11.4.2 Adobe Flex Action Dialog Box
	11.4.3 Using the Adobe Flex Functional Test Module API

	12 Using the Adobe Flex (AMF) Load Test Module
	12.1 About the Adobe Flex (AMF) Load Test Module
	12.1.1 Key Features of the Adobe Flex (AMF) Load Test Module

	12.2 Recording Adobe Flex (AMF) Load Tests
	12.2.1 Recording Adobe Flex (AMF) Load Test Scripts

	12.3 Playing Back Scripts
	12.3.1 Playing Back Adobe Flex (AMF) Load Scripts
	12.3.2 Playing Back Adobe Flex (AMF) Load Scripts with Iterations

	12.4 Modifying Scripts
	12.4.1 Adding Adobe Flex (AMF) Load Actions
	12.4.2 Using the Adobe Flex (AMF) Load Test Module API

	12.5 Setting Adobe Flex (AMF) Load Test Correlation Preferences
	12.6 Adobe Flex (AMF) Load Test Correlation Library

	13 Using the Web Services Module
	13.1 About the Web Services Module
	13.1.1 Key Features of the Web Services Module

	13.2 Creating Web Services Scripts Using WSDL Manager
	13.2.1 Creating the Web Services Script Tree
	13.2.2 Adding WSDL Files to the WSDL Manager View
	13.2.3 Adding Methods to the Script Tree
	13.2.4 Editing Method Parameters in the Details View

	13.3 Modifying Scripts
	13.3.1 Adding a Web Services Post Navigation
	13.3.2 Adding a Text Matching Test
	13.3.3 Adding Security Extensions
	13.3.4 Adding Attachments
	13.3.5 Web Services Module API

	13.4 Recording Web Services Scripts
	13.4.1 Setting Web Services Record Preferences
	13.4.2 Recording Web Services Scripts

	14 Using the Siebel Functional Test Module
	14.1 About the Siebel Functional Test Module
	14.1.1 Key Features of the Siebel Functional Test Module

	14.2 Functional Testing Siebel Applications
	14.2.1 Prerequisites
	14.2.2 Setting up the Siebel Test Environment
	14.2.3 Enabling Siebel Test Automation
	14.2.3.1 Siebel 7.x
	14.2.3.2 Siebel 8.x

	14.2.4 Script Creation Techniques
	14.2.5 Setting Browser Options
	14.2.6 Starting the Siebel Application
	14.2.7 Determining a Siebel Component Type

	14.3 Recording Siebel Functional Test Scripts
	14.3.1 Setting Siebel Functional Test Record Preferences
	14.3.2 Adding/Editing SI Element and Site Map Link Paths
	14.3.3 Recording Siebel Functional Test Scripts

	14.4 Modifying Scripts
	14.4.1 Adding Siebel Actions
	14.4.2 Handling Non-Standard Siebel Dialog Boxes
	14.4.3 Siebel Functional Test Module API

	15 Using the Siebel Load Test Module
	15.1 About the Siebel Load Test Module
	15.1.1 Key Features of the Siebel Load Test Module
	15.1.2 Prerequisites

	15.2 Load Testing Siebel Applications
	15.2.1 Setting Up Siebel Load Test Environments
	15.2.1.1 Basic Configuration
	15.2.1.2 Floating Load Balancing Test Server
	15.2.1.3 Clustered Web Server Configuration
	15.2.1.4 Clustered Siebel Servers Configuration
	15.2.1.5 Clustered Database Server Configuration

	15.2.2 Siebel Correlation Library
	15.2.3 Script Creation Techniques
	15.2.4 Recording Scripts for Load Tests
	15.2.5 Starting the Siebel Application
	15.2.6 Playing Back Scripts
	15.2.7 Resolving Script Issues
	15.2.7.1 Siebel Entities to Parameterize

	15.2.8 Using Databanks with Siebel
	15.2.9 Preparing the Siebel Server Manager Commands
	15.2.9.1 Creating the Batch File
	15.2.9.2 Creating the Command Input File
	15.2.9.3 Siebel Statistics
	15.2.9.4 Batch File Location

	15.2.10 Defining ServerStats Metrics
	15.2.11 Defining a ServerStats Configuration
	15.2.12 Importing Pre-Configured Metrics and Profiles to Oracle Load Testing
	15.2.13 Running Load Tests in the Oracle Load Testing Console
	15.2.13.1 Viewing VU Grid
	15.2.13.2 Viewing ServerStats

	15.2.14 Generating Graphs and Reports Using Oracle Load Testing
	15.2.14.1 Creating Custom Runtime Graphs
	15.2.14.2 Creating Custom Reports

	15.3 Setting Siebel Correlation Preferences
	15.4 Siebel Correlation Library
	15.5 Siebel Script Functions

	16 Using the Utilities Module
	16.1 About the Utilities Module
	16.1.1 Key Features of the Utilities Module

	16.2 Using Text File Processing
	16.2.1 Working with Text Files
	16.2.2 Working with CSV Files
	16.2.3 Working with XML Files

	16.3 Getting Values from a Database
	16.4 Using the XPath Generator

	17 Using the Shared Data Module
	17.1 About the Shared Data Module
	17.1.1 Key Features of the Shared Data Module

	17.2 Setting Shared Data Preferences
	17.3 Using the Shared Data Service
	17.3.1 Basic Scenarios
	17.3.2 Enabling the Shared Data Service
	17.3.3 Setting the Password Encryption
	17.3.4 Setting the Connection Parameters
	17.3.5 Creating a Shared Data Queue
	17.3.6 Inserting Data into a Shared Data Queue
	17.3.7 Getting Data from a Shared Data Queue
	17.3.8 Clearing a Shared Data Queue
	17.3.9 Destroying a Shared Queue
	17.3.10 Creating a Shared Data Hash Map
	17.3.11 Inserting Data into a Shared Data Hash Map
	17.3.12 Getting Data from a Shared Data Hash Map
	17.3.13 Clearing a Shared Data Hash Map
	17.3.14 Destroying a Shared Data Hash Map

	17.4 Using The Shared Data API

	A Command Line Reference
	A.1 Specifying Command Line Settings
	A.2 Supported Agent Command Line Settings
	A.2.1 General Settings
	A.2.2 Browser Settings
	A.2.3 HTTP Settings
	A.2.3.1 Proxy
	A.2.3.2 Compression
	A.2.3.3 Headers
	A.2.3.4 Connections
	A.2.3.5 Other
	A.2.3.6 Download Manager

	A.2.4 Functional Test Settings
	A.2.5 Oracle EBS/Forms Functional Test Settings
	A.2.6 Oracle EBS/Forms Load Test Settings
	A.2.7 Shared Data Settings
	A.2.8 Web Functional Test Settings
	A.2.9 Error Recovery Settings
	A.2.9.1 General
	A.2.9.2 Flex Load Testing (AMF)
	A.2.9.3 Functional Testing
	A.2.9.4 HTTP
	A.2.9.5 Oracle EBS/Forms Functional Testing
	A.2.9.6 Oracle EBS/Forms Load Testing
	A.2.9.7 Web Functional Testing
	A.2.9.8 Utilities

	B Error Message Reference
	B.1 Basic Module Error Messages
	B.1.1 General Script Exceptions
	B.1.2 Binary Decoding Exceptions
	B.1.3 Script Creation Exceptions
	B.1.4 Segment Parser Exceptions
	B.1.5 Script Service Exceptions
	B.1.6 URL Encoding Exceptions
	B.1.7 Variable Exceptions

	B.2 Platform Error Messages
	B.2.1 Browser Exceptions
	B.2.2 SSL Exceptions
	B.2.3 TCP Exceptions
	B.2.4 HTTP Exceptions

	B.3 HTTP Error Messages
	B.3.1 HTTP Service Exceptions

	B.4 Oracle EBS/Forms Functional Test Error Messages
	B.4.1 Oracle EBS/Forms Functional Test

	B.5 Oracle Forms Load Test Error Messages
	B.5.1 Connect Errors
	B.5.2 I/O Errors
	B.5.3 Match Errors
	B.5.4 Component Not Found Errors
	B.5.5 Playback Errors

	B.6 Shared Data Error Messages
	B.6.1 Shared Data Exceptions

	B.7 Siebel Error Messages
	B.7.1 Siebel Exceptions

	B.8 Web Error Messages
	B.8.1 Web Service Exceptions

	C Troubleshooting
	C.1 Installation
	C.2 OpenScript Script Execution in Oracle Test Manager
	C.3 Manual Installation of Firefox Extension
	C.4 Installation of Security Certificate in Internet Explorer

	D Third-Party Licenses
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

