
Oracle AutoVue Web Services
Release 20.1.1

Developer’s Guide
September 2011

Copyright © 2008, 2011, Oracle and/or its affiliates. All rights reserved.
Portions of this software Copyright 1996-2007 Glyph & Cog, LLC.
Portions of this software Copyright Unisearch Ltd, Australia.
Portions of this software are owned by Siemens PLM © 1986-2008. All rights reserved.
This software uses ACIS® software by Spatial Technology Inc. ACIS® Copyright © 1994-1999 Spatial Technology Inc. All rights
reserved.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may
not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in
any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject
to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December
2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this
software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy and other
measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused
by use of this software in dangerous applications.
This software and documentation may provide access to or information on content, products and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third party
content, products and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred
due to your access to or use of third party content, products or services.
September 2011

AutoVue Web Services 3

Contents
PREFACE...4

Audience .. 4
Related Documents... 4
Conventions... 4

INTRODUCTION ...5
SYSTEM REQUIREMENTS ...7
ARCHITECTURE...7

How AutoVue Web Services Works ... 7
HOW TO USE AUTOVUE WEB SERVICES ...8

Java Client... 8
Generating Client Proxy Using WSimport... 8
Importing and Using Client Proxy.. 9

.NET Client ... 10
Generating Client Proxy using WSDL ... 10
Importing and Using Client Proxy in Microsoft Visual Studio 2005... 10
Importing and Using Client Proxy in Microsoft Visual Studio 2008... 13

HTTPS/SSL... 16
AUTOVUE WEB SERVICES AND DMS INTEGRATION...16

VueLink for Oracle UCM.. 17
VueLink for Documentum... 17
Third-Party Integration... 18

AutoVue ISDK Integration Example ... 18
ORACLE WEB SERVICES MANAGER...19
TESTING AUTOVUE WEB SERVICES ...20

AutoVue Web Services Methods... 22
AUTOVUE WEB SERVICE API ..26
APPENDIX A - SAMPLE CLIENT CODE IN JAVA...27

Web Services Sample Client Code for Printing... 28
Packet Printing.. 28

FEEDBACK ...30
General Inquiries.. 30
Sales Inquiries... 30
Customer Support .. 30

AutoVue Web Services 4

Preface
The AutoVue Web Services Developer’s Guide describes how to create a Web service client stub for the AutoVue Web
Services package, how to use the generated code inside your application, and how to call AutoVue Web Services
methods from inside your code.

For the most up-to-date version of this document, go to the AutoVue Documentation Web site on the Oracle
Technology Network (OTN) at http://www.oracle.com/technetwork/documentation/autovue-091442.html.

Audience
The AutoVue Web Services Developer’s Guide is intended for third-party developers (for example, integrators) who
want to implement SOAP-based integration with AutoVue.

Related Documents
For more information, refer to the following documents:

• Installation and Configuration Manual
• Deployment Guide
• Overview
• Release Notes

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an action, or
terms defined in the text.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you sup-
ply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in examples,
text that appears on the screen, or text that you enter.

AutoVue Web Services 5
Introduction
Note: It is recommended that you first review the Oracle AutoVue Web Services Overview and Oracle AutoVue Web
Services Installation and Configuration Manual. These manuals are located in the docs directory. Additionally, you
can access them from the readme file, readme.html, located in the root folder where you installed AutoVue Web
Services.

The AutoVue Web Services package provides a standard interface for developers to take advantage of AutoVue
functionalities in the environment and programming language of their choice, as long as Simple Object Access
Protocol (SOAP)1 is supported by their platform.

AutoVue Web Services represents many AutoVue functionalities such as print, convert, text extraction, and more in
the structure defined by SOAP. These functionalities are discussed in more detail later in the manual.

This document is intended for systems integrators or developers who want to implement SOAP-based integration
with AutoVue. This manual also serves as a good starting point for developers and professional services to become
more familiar with the technical details of this package; it shows you how to create a Web service client stub for the
AutoVue Web Services package, how to use the generated code inside your application, and how to call AutoVue
Web Services methods from inside your code.

The AutoVue Web Services package is designed to work seamlessly with Document Management Systems (DMS)2
through various DMS integrations. It can also work with local files and Uniform Resource Indentifiers (URIs) that
are accessible to the host machine.

Note: Not all of AutoVue’s functionalities are represented in the AutoVue Web Services package. This is because
many of the functionalities require user interaction (for example, online collaboration, digital mockup, and so on) and
are not suitable for application-to-application communication; which is the main objective of AutoVue Web Services

1. SOAP is a standard protocol that is governed by the World Wide Web Consortium
(http://www.w3.org/TR/soap).

2. In this document, a DMS/PLM/ERP/UCM system is referred to as DMS.

AutoVue Web Services 6
The following diagram displays the communication process for AutoVue Web Services:

AutoVue Web Services 7
System Requirements
AutoVue Web Services uses Java annotation and other features introduced in Java EE 5. As a result, it must be
deployed on a Java EE 5 certified application server.

For a complete list of system requirements specific to your platform, refer to the Oracle AutoVue Web Services
Installation and Configuration Manual.

Architecture
The AutoVue Web Services package acts as a layer around Oracle AutoVue. It exposes certain AutoVue
functionalities as Web methods, and translates AutoVue Web Services requests to and from AutoVue (for example,
AutoVue messages to AutoVue Web Services responses). Additionally, AutoVue Web Services enables AutoVue to
communicate with any third-party application that wants to invoke AutoVue in a Service Oriented Environment
(SOE).

How AutoVue Web Services Works
Once the AutoVue Web Services package is deployed, its Web Service Definition Language (WSDL) interface
(VueBeanWS?wsdl) provides the gateway to client applications. Client applications can detect available Web
methods and their input/output parameters through the WSDL, and generate a proper communication proxy. Since
most programming languages have tools to automatically generate Web service client stubs, it does not take much
effort to create one for AutoVue Web Services (all AutoVue Web Services methods are defined in a single WSDL).

Once the client stub is created in a specific programming language it can be reused by applications in that language
and a few lines of code are needed to call any AutoVue Web Services method through the client proxy.

Several AutoVue Web Services methods accept options (for example, print and convert) as an optional input
parameter. The structures of these options are defined in a XML Schema Definition (XSD) that is linked to the
WSDL and are generated in the client stub code automatically. The client application instantiates these options and
sets their variables to desired values and invoke the AutoVue Web Services method.

After a successful call to an AutoVue Web Services method, it either returns the desired output, or in the event there
is an issue with the input parameters, it returns an error message.

Note: The output types of AutoVue Web Services methods vary from one to another. Regardless, all custom output
structures are defined in the XSD and are generated automatically once the client stub is generated.

AutoVue Web Services 8
How to use AutoVue Web Services
The first step in using AutoVue Web Services is to create a client proxy in your desired language. Then, after
installation and deployment of AutoVue Web Services, look for the URL that points to the WSDL (for example, http:/
/host:port/AutoVueWS/VueBeanWS?wsdl). This URL is needed for any utility that you use to create your client stub.

Java Client
There are two steps in generating a Java client proxy:

1 Generating Client Proxy Using WSimport

2 Importing and Using Client Proxy

Generating Client Proxy Using WSimport
To generate the Java client proxy, you can simply call wsimport, which is bundled with Java Standard Edition 6,
from the command line with the -keep option and pass the WSDL's URL.

For example:

This will provide the following output:

After returning back to the command line, a new Java package is created in the current location.

The directory structure of the package should be com\oracle\autovue\services. All client proxy codes are generated
inside this directory.

For detailed information regarding available wsimport options refer to the following link:

http://java.sun.com/javase/6/docs/technotes/tools/share/wsimport.html

wsimport -keep http://host:port/AutVueWS/VueBeanWS?wsdl

parsing WSDL...

generating code...

compiling code...

AutoVue Web Services 9
Importing and Using Client Proxy
The next step is to import and instantiate the generated package inside your client code.The following code
demonstrates how to call an AutoVue Web Services method:

The first line, import com.oracle.autovue.services.*; imports the AutoVue client stub package generated
by the wsimport tool. To call a Web method, you need to first instantiate the VueBeanWS_Service object. From this
object, instantiate the VueBeanWS class which is the proxy for calling all AutoVue Web Services methods.

The simplest AutoVue Web Services method to run—which is also a good method for testing—is the ping method. It
verifies that AutoVue Web Services is running and responding correctly.

After running the above code, you should receive an output similar to the following:

Note: Optionally, you can pass a string value to this method.

For a detailed description on calling AutoVue Web Services methods, refer to Testing AutoVue Web Services.

import com.oracle.autovue.services.*;

public class AutoVueWSClient {

 public static void main(String[] args) throws Exception {

 //create service

 VueBeanWS_Service service = new VueBeanWS_Service();

 //create proxy

 VueBeanWS proxy = service.getVueBeanWSPort();

 //call autovue ping Web method

 System.out.print (proxy.ping("Hello from Java"));
 }
}

Server Date/Time: //some number showing current time at the server side
Pool, Size: //some number showing the size of the Web service pool
Max waiting time:// some number showing maximum timeout (in seconds) while waiting to
borrow VueBean from VueBean pool
Pool, # of active: //number of active objects in the pool
Pool, # of idle: //number of idle objects in the pool
initialJVueServer: //URL for VueServlet used to connect to JVue server
vuelink Protocol(s): //some vuelink protocols e.g. vuelink1;vuelink2;vuelink3
vuelink PropsDir: //some local path to vuelink properties file
destination DIR: //some local path to output generated files
log4j config file: //some local path to log4j properties file

AutoVue Web Services 10
.NET Client
Generating Client Proxy using WSDL
The .NET environment also provides a tool for creating an AutoVue Web Services client proxy, wsdl.exe.
To generate the AutoVue Web Services client proxy, from the command line, you can simply pass WSDL's URL to
wsdl.exe.

For example:

The tool generates a file, VueBeanWS.cs, in the same location as VueBeanWS?wsdl.

Note: If you want the information being sent between a client and AutoVue Web Services to be secure, you should
enter the HTTPS protocol in the URL instead of HTTP. For more information, refer to HTTPS/SSL.

Since Microsoft Visual Studio is the primary IDE for .NET development, you can also use it to create and use the
AutoVue Web Services client proxy. For more information on using Microsoft Visual Studio for generating a client
proxy, depending on your environment, refer to Importing and Using Client Proxy in Microsoft Visual Studio 2005
or Importing and Using Client Proxy in Microsoft Visual Studio 2008.

Importing and Using Client Proxy in Microsoft Visual Studio
2005
By using Microsoft Visual Studio 2005, you can generate the AutoVue Web Services client proxy without using the
command line.

Note: Make sure you install Microsoft Web Service Extension (WSE 3.0) before proceeding with the client proxy
generation.

wsdl.exe http://host:port/AutoVueWS/VueBeanWS?wsdl

AutoVue Web Services 11
1 After starting Visual Studio, create a new console application in a C# project (as shown in the following figure).

2 In the newly created project, from the Solutions Explorer tree, right-click References, and then select Add
References.
The Add Reference window appears.

3 Click the Browse tab and navigate to the WSE 3.0 installation directory. Select the Microsoft.Web.Services3.dll
file and then click OK.

4 From the Solutions Explorer tree, right-click References, and then select Add Web References.
The Add Web Reference window appears.

AutoVue Web Services 12
5 Enter the AutoVue WSDL’s URL in the URL field, and then click Go.
The VueBeanWS Web service, along with all of its Web methods, are displayed in the Add Web Reference
window.

6 Configure the project configuration file with the WSE 3.0 configuration tool:
a. From the Start menu, select Program Files, Microsoft WSE 3.0, and then select Configuration Tool.

The WSE 3.0 configuration tool starts.
b. From the File menu, select Open, and then select the project configuration file.
c. From the General tab, select the Enable this project for Web Services Enhancements check box.
d. From the Messaging tab, select On for the Client Mode option.

7 Optionally, provide a name for the Web Reference (for example, AutoVueWS), and then click Add Reference.
The proxy code is generated and added to your project.

At this point, you can import the proxy to your application (for example, Program.cs) and call the AutoVue Web
Services methods.

AutoVue Web Services 13
The following code demonstrates a sample C# code that calls the Ping Web method:

As with the ping Web method, you can call all other VueBeanWS Web methods by passing them input parameters.
For more information on input/output parameter, refer to the AutoVue Web Services methods descriptions in Testing
AutoVue Web Services.

Importing and Using Client Proxy in Microsoft Visual Studio
2008
As with Microsoft Visual Studio 2005, you can generate the AutoVue Web Services client proxy without using the
command line in Visual Studio 2008.

Note: There is no need for WSE as was required in VS 2005.

using System;
using AutoVueWSCSClient.AutoVueWS;

namespace AutoVueWSCSClient
{
 class Program
 {
 static void Main(string[] args) {

 try {
 VueBeanWSWse vuebean = new VueBeanWSWse();
 Console.Write(vuebean.ping("Hello from C#"));
 } catch (Exception e){
 Console.Write(e);
 }
 }
 }
}

AutoVue Web Services 14
1 After starting Visual Studio, create a new console application (optionally choose the name AutoVueWSClient).
As shown in the following figure, C# is the preferred coding language.

2 In the newly created project, from the Solutions Explorer window, right-click on References, and then select
Add Service References.
The Add Service Reference window appears.

3 Enter the AutoVue WSDL's URL in the URL field, then click Go.
The VueBeanWS Web service and its Web methods are displayed in the Add Service Reference window.

AutoVue Web Services 15
4 Optionally, provide a new Namespace (for example, AutoVueWS), and then click OK.
The proxy code is generated and added to your project.

5 On the Solution Explorer window double-click on the app.config file to be opened for editing.
6 Inside the file, locate messageEncoding="Text" which is part of the attributes for this binding: <binding

name="VueBeanWSPortBinding" under the <basicHttpBinding> .
7 Change the value of the attribute to Mtom. That is, messageEncoding="Mtom"
8 Optionally, increase the values of the maxBufferSize and the maxReceivedMessageSize. This is useful

when using the convert() method for converting large files, because the conversion result is returned in binary
format attached to the response.
At this point, you can import the proxy to your application (for example, Program.cs) and call the AutoVue Web
Services methods.
The following code demonstrates a sample C# code that calls the ping Web method:

As with the ping Web method, you can call all other VueBeanWS Web methods by passing them input parameters.

For more information on input/output parameter, refer to the AutoVue Web Services methods descriptions in Testing
AutoVue Web Services.

using System;

using AutoVueWSCSClient.AutoVueWS;

namespace AutoVueWSCSClient

{

 class Program

 {

 static void Main(string[] args)

 {

 try

 {

 VueBeanWSClient vuebean = new VueBeanWSClient();

 Console.Write(vuebean.ping("Hello from C#"));

 }

 catch (Exception e)

 {

 Console.Write(e);

 }

 }

 }

}

AutoVue Web Services 16
HTTPS/SSL
Security plays an important role in communication between applications. When it comes to Web services, this issue is
even more critical. As a result, it is highly recommend to only use HTTPS protocols to call AutoVue Web Services.

To run and use AutoVue Web Services over SSL, you must first deploy AutoVue Web Services on a secure server,
import the server certificate to your client environment, and then generate and use the client proxy in the same
manner as described in Importing and Using Client Proxy. Additionally, for SSL, you must use a secure connection
over HTTPS to generate and use the client code (for example, https://host:port/AutVueWS/VueBeanWS?wsdl).

If you are using Oracle Weblogic 11g Release 1 to deploy AutoVue Web Services, you can use the self-signed
certificate that comes with the application server out of the box:

1 Export the certificate from Oracle Weblogic 11g Release 1 into a file.
You can do so through a Web browser.

2 Import the certificate into your client machine.
3 Follow the instructions in Importing and Using Client Proxy to generate and use the client proxy.

Note: Make sure you provide the HTTPS address of the WSDL.

AutoVue Web Services and DMS Integra-
tion
In addition to standard protocols supported by AutoVue Server (such as http:// and ftp://), and some custom protocols
defined by AutoVue Server (for example, server://), AutoVue Web Services architecture allows flexible
communication with DMS integrations in the same way as passing a URI. As a result, the client can send information
about a document that is inside a DMS repository to AutoVue Web Services. Additionally, if an existing DMS
integration is already set up, AutoVue Web Services can communicate with the DMS integration and access the
document in order to process the client's request.

As with standard protocols such as http and ftp, the AutoVue Web Services administrator defines a custom protocol
for each DMS integration and assigns a properties file on the AutoVue Web Services server that contains connection
information for that specific DMS integration.

For example, if a DMS integration protocol is defined with the name DMS_Integration_1, then a
DMS_Integration_1.properties file contains the location information and any other static data that is needed to
communicate with an existing DMS instance. Client code can easily call AutoVue Web Services and pass a valid
DMS document ID, as well as use the term DMS_Integration_1 as prefix (for example, DMS_Integration_1://
dID=12345). Once AutoVue Web Services finds a match between the DMS integration protocol name in the request
and a defined custom protocol (in this case, DMS_Integration_1), it treats the rest of the string as a document ID and
passes it to the DMS instance.

Note: The name of the DMS integration protocol is arbitrary and can be configured in AutoVue Web Services.
However, both associated properties files on the server and client code must use the same name.

One way for the client to find out whether any DMS integration protocols are defined on the server, is to call the ping
Web method. One of the outputs of the ping Web method is vuelinkProtocol, and its value is a semi-colon (;)
separated list of DMS integration protocols that are defined by the AutoVue Web Services administrator.

Refer to the Oracle AutoVue Web Services Installation and Configuration Manual for information on configuring
vuelinkProtocol.

Note: It is important for the administrator to use meaningful names for DMS Integration protocols to avoid any
confusion on the client side. For example, vuelinkUCM://, and so on. Additionally, if more than one instance of the
same DMS integration is setup with AutoVue Web Services, a numbering scheme is suggested. For example,
vuelinkUCM1://, vuelinkUCM2://, and so on.

AutoVue Web Services 17
Because each DMS integration and related DMS repository follow different standards of addressing documents, the
structure of the document ID varies from one DMS integration to another. It is important to follow the string
representation of document IDs that are defined in this section.

The following sections demonstrate string representations of the document ID for these supported DMS integrations
(assuming a custom DMS integration protocol is setup and registered with AutoVue Web Services by the server
administrator):

• VueLink for Oracle UCM
• VueLink for Documentum
• Third-Party Integration
• AutoVue ISDK Integration Example

VueLink for Oracle UCM
The string representation of a document ID in VueLink for Oracle UCM is as follows:

Where:

dID: The valid document ID of the desired document.

Markup_BasedID: The valid document ID of the base document (only meaningful and needed when the document
ID belongs to an AutoVue Markup).

Format: The format of the document according to what is defined inside the Oracle UCM (optional, but it is needed
when the document ID belongs to an XRef folio).

Extension: The filename extension of the document according to what is defined inside the Oracle UCM (optional,
but needed when the document ID belongs to an XRef folio and Format is not included).

The following are examples of URI values when invoking AutoVue Web Services for an Oracle UCM document
(assuming protocol name is vuelinkUCM):

VueLink for Documentum
The string representation of a document ID in VueLink for Documentum is as follows:

WebTopURL: The URL for webtop.

userName: A valid webtop UserName.

docbase: A valid docbase name.

sessionid: A valid webtop session ID.

objectid: A valid ID of an object in the above docbase.

dID=some_id_number[&Markup_BasedID=some_id_number][&Format=some_format]
[&Extension=some file ext]

vuelinkUCM://dID=227&Markup_BasedID=228
vuelinkUCM://dID=350Extension=slddrw
vuelinkUCM://dID=270&Format=Application/dwg&Extension=dwg
vuelinkUCM://dID=253&Extension=xcsr

WebTopURL?userName=some_name&docbase=some_docbase_name&sessionid=webtop_seession_id&
objectid=some_object_id&rendition=some_file_format

AutoVue Web Services 18
rendition: A valid Documentum format.

The following are examples of URI values when invoking AutoVue Web Services for a Documentum document
(assuming protocol name is vuelinkDocumentum):

Third-Party Integration
You must construct a document ID for a file stored inside Third_Party_Name DMS using the Third_Party_Name
protocol.

For example: Third_Party_Name://Third_Party_NameDocID=123&Format-dwg

Note:
• The prefix used in your document ID must match your properties filename (in this case, Third_Party_Name).
• To properly access files stored inside your Third_Party_Name DMS repository, the syntax of your document ID

should match one that is understood by your DMS integration servlet.
• Invoke AutoVue Web Services on the document ID.

For example: getXrefs()/getText()

AutoVue ISDK Integration Example
The string representation of document ID in AutoVue ISDK (filesys) is as follows:

RootURL: The value defined for parameter RootURL in web.xml of ISDK (filesys).

some_repository: A valid repository name which the file belongs to.

some_file_name: A valid file name that exists in the repository.

some_version: A valid version number for the file.

The following are examples of a URI value when invoking AutoVue Web Services for an ISDK document (assuming
that the protocol name is vuelinkISDK):

Note:
• It is important that the prefix used in your document ID matches your properties filename (in this case,

vuelinkISDK).
• No authentication is required in order to access files in AutoVue ISDK (filesys).
• Invoke AutoVue Web Services on the document ID.

For example: getXrefs()/getText()

vuelinkDocumentum://http://[host:name]/Webtop6?userName=Administra-
tor&docbase=demo&sessionid=s7&objectid=0901869f80002565&rendition=unknown

RootURL/some_repository/some_file_name/some_file_name(some_version)/ some_file_name

vuelinkISDK://http://localhost/filesysRepository/2D/AutoCAD.dwg/AutoCAD.dwg(1)/Auto-
CAD.dwg

vuelinkISDK://http://localhost/filesysRepository/3D/Hard Drive.CATProduct/Hard
Drive.CATProduct(1)/Hard Drive.CATProduct

AutoVue Web Services 19
Oracle Web Services Manager
Oracle Web Services Manager (OWSM) is a component of the Oracle SOA suite. It can be used as a proxy for your
AutoVue Web Services, and you can assign it different policies and rules to access AutoVue Web Services.
Additionally, you can monitor accesses to your AutoVue Web Services and review different statistics and logs that are
provided by OWSM.

OWSM can also be used to perform a simple test of AutoVue Web Services. It can generate an input form for any
AutoVue Web Services methods and invoke them through a Web browser. AutoVue Web Services can be easily tested
using the Oracle Web Service Manager Test tool.

For more information about Oracle Web Service Manager, refer to the following URL:

http://www.oracle.com/technology/products/webservices_manager/index.html

AutoVue Web Services 20
Testing AutoVue Web Services
For this manual, Oracle SOA Suite 10g is used to test AutoVue Web Services.

1 Start Oracle SOA Suite 10g.
2 As shown in the following screen shot, from the Web Service Manager Control page, click Tools, and then click

Test Page.

3 Enter the AutoVue Web Services WSDL’s URL in the Enter wsdl url text box. For example,
http://AVWSHost:7011/AutoVueWS/VueBeanWS?wsdl

4 Click Submit Query.

AutoVue Web Services 21
As shown below, the Test Web Service page reloads with an input form that is ready to invoke one of the
AutoVue Web Services methods.

5 From the Operations list, select a Web method.

For information on the available Web methods, refer to AutoVue Web Services Methods.

AutoVue Web Services 22
AutoVue Web Services Methods
The following table provides a summary of the available AutoVue Web Services methods. After selecting the method
and entering the required information, click Invoke to send the request to the Web Services provider.

Note: If the method calls a file from inside the DMS repository that requires authentication, you must provide the
required credentials.

Web Method Description

getPartTree This part tree extraction Web method returns a list of parts contained in a given file.

From the Operation list, select getPartTree and wait for the page to refresh.
1 To invoke this service, enter a valid URI in the URI text box.
2 If the URI is a VueLink DocID, or an address that needs authentication, you should also enter the

username/password and/or cookie depending on what is required.
3 In the pageNumber field, enter a value less or equal to the number returned by getProperties.
Note: The dmsArguments section is optional and is only needed if required by a VueLink. To add more
DMS arguments, click .

print This printing Web method sends a given file to a printer for printing.

From the Operation list, select print and wait for the page to refresh.
The print options for the print Web method are divided into three groups:

WSPrintOptions
This option provides the following options:
• Specify page range.
• Choose whether Java Printing is needed.
• Choose whether Send Page as Image is needed. Note that it is recommended to use Java Printing

when you set Send Page as Image as TRUE for 3D format files.
• Choose one of the available paper sizes on the target printer. These values can be retrieved by call-

ing getPaperList and passing the printer name.
• Select printOrientation {ORIENTATION_LANDSCAPE, ORIENTATION_AUTO}
• Select printPageType {PAGES_ALL, PAGES_CURRENT, PAGES_RANGE}
• Specify printer name. The available values can be retrieved by calling getPrinterNameList.
• Flag indicating whether the blank pages should be skipped.
• Flag indicating whether force all colors to black.

WSPrintHeader
This option allows you to specify the text to be added to the header and footer of the printed page (left,
right, and/or center).

WSPrintWaterMark
This option provides the following options:
• Specify the text to be added as watermark to the printed page.
• Select the orientation of the watermark {DIAGONAL, HORIZONTAL, VERTICAL}

AutoVue Web Services 23
packetPrint Prints a group of documents (known as packets) one at a time, along with the auto-generated cover page
and summary page.

From the Operation list, select packetPrint and wait for the page to refresh.
The following is the list of packetPrint input parameters:

URIs
A list of URIs that belong to same packet.(mandatory)

PacketID
A string representing the ID of the packet. (mandatory)

PacketIDLocation
One of the six possible locations for packetID to appear on every page. From the printoutLocation
enum, it is a combination of (top/bottom) + (left/center/right).
It is an optional input. The PacketID is printed on the cover page and summary page regardless.

FileIDLocation
One of the six possible locations for File ID (file number in the packet) to appear on every page. From
the printoutLocation enum, it is a combination of (top/bottom) + (left/center/right). It is an optional
input.

WSPacketPrintOptions
This option applies to all documents in the packet. It is an optional parameter and provides the follow-
ing:
• Choose whether Java Printing is needed. If this option is not specified, then it is set to TRUE.
• Choose whether Send Page as Image is needed. When selected, and printing a 3D file or office
• document (Word, Excel, or PDF), an image is requested from the server and then sent to the printer

on the client. Note that it is recommended to use Java Printing when you set Send Page as Image as
TRUE for 3D format files.If this option is not specified, then it is set to FALSE.

• Choose one of the available paper sizes on the target printer. These values can be retrieved by call-
ing getPaperList and passing the printer name.

• Select printOrientation {ORIENTATION_LANDSCAPE, ORIENTATION_AUTO}
• Specify printer name. The available values can be retrieved by calling getPrinterNameList. If this

option is not specified, then the default printer is used.
• Flag indicating whether force all colors to black (grayscaled).

WSPrintHeader
This option allows you to specify the text to be added to the header and footer of the printed page (left,
right, and/or center).

WSPrintWaterMark
This option provides the following options:
• Specify the text to be added as watermark to the printed page.
• Select the orientation of the watermark {DIAGONAL, HORIZONTAL, VERTICAL}

openAllMarkups
A boolean flag that indicates if the markups of the document must be printed with the document.

getXrefs This External References (XRefs) Web method returns a list of XRefs associated to a given file.

From the Operation list, select getXrefs and wait for the page to refresh.
This method only requires a valid URI. Authorization is needed only if the URI cannot be accessed
without it.

Web Method Description

AutoVue Web Services 24
getPartProperties This part level metadata extraction Web method returns metadata for a given part in a given file.

For example, in the case of a 3D assembly, this Web method returns properties of a particular part refer-
enced by the 3D assembly.
1 From the Operation list, select getPartProperties and wait for the page to refresh.
2 This method needs a valid URI and a valid entityID. The valid entityIDs are retrieved by calling the

getPartTree method and passing the same URI. Authorization is needed only if the URI cannot be
accessed without it.

3 In the pageNumber field, enter a value less or equal to the number returned by getProperties.

getText This text extraction Web method returns text contained in a given file.

From the Operation list, select getText and wait for the page to refresh.
This method only needs a valid URI. Authorization is needed only if the URI cannot be accessed with-
out it.

getPaperList This utility Web method returns the paper sizes for a given printer that are available to AutoVue.

From the Operation list, select getPaperList and wait for the page to refresh.
This method only needs a valid printer name. Valid printer names can be retrieved by calling getPrinter-
NameList.

getPrinterNameList This utility Web method returns a list of available printers.

From the Operation list, select getPrinterNameList and wait for the page to refresh.
This method does not need an input parameter.

convert This conversion Web method converts a given file into another format such as JPEG, PNG, PDF, or
TIFF. It only supports one page at a time.

From the Operation list, select convert and wait for the page to refresh.
This method can be called without including the option section. In this case, the default options use the
bitmap version of the document in its original size.

If you set openAllMarkups to TRUE, AutoVue Web Services retrieves and includes all existing markups
into the convert output.

If you include convertOption, you can:
• Specify the color depth value.
• Select the output format {BMP, TIF, PDF, JPG, PNG}
• Specify the page (only one page at a time is supported). Note that with PDF format, regardless of

the page setting, all pages are converted together.
• Select the convert scale {TYPE_SIZE, TYPE_SCALE}
• Specify the height and width in pixels (if TYPE_SIZE Scale is selected).
• Specify the scaleFactor and stepsPerInch (if TYPE_SCALE is selected).
• Specify if it is a rendition to be saved back to the repository. If set to TRUE, then no convert data is

returned to the caller and it is sent to the repository.
• Select the cameraView {NONE, ISOMETRIC, TOP, BOTTOM, FRONT, BACK, LEFT, RIGHT}.

A few notes to consider when using any cameraView other than NONE:
• It only applies to 3D documents.
• An illegal argument is thrown if:
 - An output format other than PNG is selected.
 - openAllMarkups is set to TRUE.
 - TYPE_SCALE is selected.

Web Method Description

AutoVue Web Services 25
getProperties This file level metadata extraction Web method returns metadata and properties for a given file.

From the Operation list, select getProperties and wait for the page to refresh.
This method only needs a valid URI. Authorization is needed only if the URI cannot be accessed with-
out it.

Web Method Description

AutoVue Web Services 26
AutoVue Web Service API
The JavaDoc index provides a complete reference to all classes and APIs inside the AutoVue Web Service package.
The com.oracle.autovue.services package contains all classes and sub-packages of AutoVue Web Services. All the
AutoVue Web methods are defined inside the VueBeanWS class of this package.

The sub-package com.oracle.autovue.services.options includes all classes that represent custom input options for
different AutoVue Web methods such as convert and print.

The sub-package com.oracle.autovue.services.types includes all classes that represent custom outputs for different
AutoVue Web methods such as getText, getXrefs, and so on.

The sub-package com.oracle.autovue.services.pool includes pooling mechanisms used inside the AutoVue Web
Services package.

AutoVue Web Services 27
Appendix A - Sample Client Code in Java
The following sample client code in Java calls all of the AutoVue Web methods with a predefined URL.

import java.io.FileOutputStream;
import java.util.List;
import com.oracle.autovue.services.*;

public class AutoVueWSClient
{
public static void main(String[] args) throws Exception{
 //Create Service
 VueBeanWS_Service service = new VueBeanWS_Service();

 //Create proxy
 VueBeanWS proxy = service.getVueBeanWSPort();

 //Call AutoVue ping Web method.
 System.out.print (proxy.ping("hello"));

 String URI = "http://www.oracle.com/applications/autovue/autovue-electro-
 mechanical-professional-data-sheet.pdf";

 //Call the convert Web method.
 byte[] file = proxy.convert(URI,null, null,false);
 FileOutputStream fos = new FileOutputStream("c:/tmp/output1.bmp");
 fos.write(file);
 fos.close();

 //Call the getPrinterNameList Web method.
 List<String> printers = proxy.getPrinterNameList();
 for (String printer : printers) {
 System.out.println("Printer Name: "+printer);
 System.out.println("Available Papers on this Printer");
 //Call the getPaperList Web method
 List<String> papers = proxy.getPaperList(printer);
 for (String paper : papers) {
 System.out.println("Paper Name: "+paper);
 }
//Call the getProperties Web method.
 List<MetaProperty> properties = proxy.getProperties(URI, null);
 for (MetaProperty prop : properties) {
 System.out.println(prop.getName() + "=" +prop.getValue());

 //Call the getText Web method.
 List<SearchText> texts = proxy.getText(URI, null);
 for (SearchText text : texts) {
 System.out.println("\nPage Number:"+ text.getPageNumber());
 List<String> txts = text.getTexts();
 for (String txt : txts) {
 System.out.print(txt);
 }
 }

AutoVue Web Services 28
Web Services Sample Client Code for Printing
AutoVue Web Services provides a sample Web Services client code, SampleClient.java, which demonstrates how to
call Web Services’ print() method. It is located under the <AutoVue Web Services Installation
Directory>\autovue_webservices directory. You can make the following modification according to your needs:

• Specify the username and password if the file has restricted access. For example, this is needed when storing a
file in DMS.

• Specify more print options, watermark options, and header/footer options.
• If an error message containing the string ERROR_00 appears when the client calls the Web Services print()

method, then the Web Services cannot process the request due to following reasons:
• Server is too busy. No VueBean is available to process the request.
• Not enough memory is available for a VueBean to open a file.

To resolve this issue, the client must call the print() method later. In the SampleClient.java file, the client
waits for one minute (60000 milliseconds) to call again.

Packet Printing
AutoVue Web Services provides a sample Web Services client code, SamplePacketPrintClient.java, which
demonstrates how to call Web Services' packetPrint() method. The sample client code is located under
<AutoVue Web Services Installation Directory>\autovue_webservices directory.

Note: In the packetPrint() method only the list of the documents and the packet ID are mandatory. Other
parameters are optional. If you want the packetID to be printed on every page of all documents, then you must specify
a print out location. Same is true for file counter (the file ID of each document in the packet is printed if a location is
specified).

If no packet print option is defined or if no printer is set in that object, then the default printer on the AutoVue Web
Services machine is used automatically.

 //Call the getXrefs Web method
 List<XrefsInfo> xrefs = proxy.getXrefs(URI, null);
 for (XrefsInfo xref : xrefs) {
 System.out.println("Name:"+xref.getDocName() + " " + "docID:" + xref.ge
 DocID());
 }

 //Assuming URI is a 3D document. Call the getPartTree Web method.
 int pageNum = 4;
 PartTreeResult parts = proxy.getPartTree(URI,pageNum,null);

 //Call getParts Web method.
 List<PartInfo> info = parts.getParts();
 for (PartInfo part : info) {
 System.out.println("Part Name :"+part.getName() + " - Part ID:" +
 part.getID()+" - Part Type:" + part.getType());

 List<PartMetaProperty> metaProps = proxy.getPartProperties(URI, pageNum,
 part.getID(), null);
 for (PartMetaProperty meta : metaProps) {
 System.out.println(meta.getName() + "=" meta.getValue());
 }
 }
}

AutoVue Web Services 29
The output of the packetPrint() method includes an auto-generated cover page at the beginning of the packet
print out and a summary page at the end.The summary page includes the success/fail status of each document in the
packet. For this reason, the packetPrint() method does not return until the last document in the packet is
processed.

AutoVue Web Services 30

Feedback
Oracle products are designed according to your needs. We would appreciate your feedback, comments or suggestions.
If at any time you have questions or concerns regarding AutoVue Web Services, call or email us. Your input is an
important part of the information used for revision.

General Inquiries

Sales Inquiries

Customer Support

Telephone: +1.514.905.8400 or +1.800.363.5805

E-mail: autovuesales_ww@oracle.com

Web Site: http://www.oracle.com/us/products/applications/autovue/index.html

Telephone: +1.514.905.8400 or +1.800.363.5805

E-mail: autovuesales_ww@oracle.com

Web Site: http://www.oracle.com/support/index.html

mailto:autovuesales_ww@oracle.com
mailto:autovuesales_ww@oracle.com
http://www.oracle.com/support/index.html

	Oracle AutoVue Web Services
	Release 20.1.1
	Developer’s Guide

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	Introduction
	System Requirements
	Architecture
	How AutoVue Web Services Works

	How to use AutoVue Web Services
	Java Client
	1 Generating Client Proxy Using WSimport
	2 Importing and Using Client Proxy
	Generating Client Proxy Using WSimport
	Importing and Using Client Proxy

	.NET Client
	Generating Client Proxy using WSDL
	Importing and Using Client Proxy in Microsoft Visual Studio 2005
	1 After starting Visual Studio, create a new console application in a C# project (as shown in the following figure).
	2 In the newly created project, from the Solutions Explorer tree, right-click References, and then select Add References. The Add Reference window appears.
	3 Click the Browse tab and navigate to the WSE 3.0 installation directory. Select the Microsoft.Web.Services3.dll file and then click OK.
	4 From the Solutions Explorer tree, right-click References, and then select Add Web References. The Add Web Reference window appears.
	5 Enter the AutoVue WSDL’s URL in the URL field, and then click Go. The VueBeanWS Web service, along with all of its Web methods, are displayed in the Add Web Reference window.
	6 Configure the project configuration file with the WSE 3.0 configuration tool:
	a. From the Start menu, select Program Files, Microsoft WSE 3.0, and then select Configuration Tool. The WSE 3.0 configuration tool starts.
	b. From the File menu, select Open, and then select the project configuration file.
	c. From the General tab, select the Enable this project for Web Services Enhancements check box.
	d. From the Messaging tab, select On for the Client Mode option.

	7 Optionally, provide a name for the Web Reference (for example, AutoVueWS), and then click Add Reference. The proxy code is generated and added to your project.

	Importing and Using Client Proxy in Microsoft Visual Studio 2008
	1 After starting Visual Studio, create a new console application (optionally choose the name AutoVueWSClient). As shown in the following figure, C# is the preferred coding language.
	2 In the newly created project, from the Solutions Explorer window, right-click on References, and then select Add Service References. The Add Service Reference window appears.
	3 Enter the AutoVue WSDL's URL in the URL field, then click Go. The VueBeanWS Web service and its Web methods are displayed in the Add Service Reference window.
	4 Optionally, provide a new Namespace (for example, AutoVueWS), and then click OK. The proxy code is generated and added to your project.
	5 On the Solution Explorer window double-click on the app.config file to be opened for editing.
	6 Inside the file, locate messageEncoding="Text" which is part of the attributes for this binding: <binding name="VueBeanWSPortBinding" under the <basicHttpBinding> .
	7 Change the value of the attribute to Mtom. That is, messageEncoding="Mtom"
	8 Optionally, increase the values of the maxBufferSize and the maxReceivedMessageSize. This is useful when using the convert() method for converting large files, because the conversion result is returned in binary format attached to the response. At ...

	HTTPS/SSL
	1 Export the certificate from Oracle Weblogic 11g Release 1 into a file. You can do so through a Web browser.
	2 Import the certificate into your client machine.
	3 Follow the instructions in Importing and Using Client Proxy to generate and use the client proxy.

	AutoVue Web Services and DMS Integration
	VueLink for Oracle UCM
	VueLink for Documentum
	Third-Party Integration
	AutoVue ISDK Integration Example

	Oracle Web Services Manager
	Testing AutoVue Web Services
	1 Start Oracle SOA Suite 10g.
	2 As shown in the following screen shot, from the Web Service Manager Control page, click Tools, and then click Test Page.
	3 Enter the AutoVue Web Services WSDL’s URL in the Enter wsdl url text box. For example, http://AVWSHost:7011/AutoVueWS/VueBeanWS?wsdl
	4 Click Submit Query.
	5 From the Operations list, select a Web method.
	AutoVue Web Services Methods
	1 To invoke this service, enter a valid URI in the URI text box.
	2 If the URI is a VueLink DocID, or an address that needs authentication, you should also enter the username/password and/or cookie depending on what is required.
	3 In the pageNumber field, enter a value less or equal to the number returned by getProperties.
	1 From the Operation list, select getPartProperties and wait for the page to refresh.
	2 This method needs a valid URI and a valid entityID. The valid entityIDs are retrieved by calling the getPartTree method and passing the same URI. Authorization is needed only if the URI cannot be accessed without it.
	3 In the pageNumber field, enter a value less or equal to the number returned by getProperties.

	AutoVue Web Service API
	Appendix A - Sample Client Code in Java
	Web Services Sample Client Code for Printing
	Packet Printing

	Feedback
	General Inquiries
	Sales Inquiries
	Customer Support

