

Oracle® Fusion Middleware
User's Guide for Oracle JDeveloper

11g Release 2 (11.1.2.2.0)

E17455-03

April 2012

Documentation for Oracle JDeveloper users that describes
how to use the JDeveloper IDE and provides detailed
information on the functionality available within it.

Oracle Fusion Middleware User's Guide for Oracle JDeveloper 11g Release 2 (11.1.2.2.0)

E17455-03

Copyright © 2011, 2012 Oracle and/or its affiliates. All rights reserved.

Primary Author: Catherine Pickersgill, David Mathews, Deepanjan Dey, Penny Anderson, Scott Fisher,
Elizabeth Lynch, Ben Gelernter, Robin Merrin

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. xli

Audience.. xli
Documentation Accessibility .. xli
Related Documents .. xli
Conventions ... xlii

What's New in This Guide in Release 11.1.2.2.0 ... xliii

Part I Getting Started with Oracle JDeveloper

1 Introduction to Oracle JDeveloper

1.1 About Oracle JDeveloper... 1-1
1.2 Oracle JDeveloper Information Resources .. 1-2
1.3 Migrating to Oracle JDeveloper 11g ... 1-2

2 Oracle JDeveloper Accessibility Information

2.1 About Oracle JDeveloper Accessibility.. 2-1
2.2 Using a Screen Reader and Java Access Bridge with Oracle JDeveloper 2-1
2.3 Oracle JDeveloper Features That Support Accessibility ... 2-1
2.3.1 Keyboard Access.. 2-1
2.3.2 Screen Reader Readability.. 2-3
2.3.3 Flexibility in Font and Color Choices ... 2-3
2.3.4 No Audio-only Feedback ... 2-3
2.3.5 No Dependency on Blinking Cursor and Animation... 2-3
2.3.6 Screen Magnifier Usability ... 2-3
2.3.7 How to Change the Editor or Tabbed View of a File ... 2-4
2.3.8 How to Read Text in a Multi-line Edit Field.. 2-4
2.3.9 How to Read the Line Number in the Source Editor ... 2-4
2.3.10 How to Access Exception Stack HTML Links and Generated Javadoc Links in the Log

Window 2-4
2.4 Recommendations for Customizing Oracle JDeveloper ... 2-4
2.4.1 How to Customize the Accelerators Keys.. 2-4
2.4.2 How to Pass a Conflicting Accelerator Key to Oracle JDeveloper 2-4
2.4.3 How to Change the Look and Feel of the IDE... 2-5
2.4.4 How to Customize the Fonts in Editors ... 2-5

iv

2.4.5 How to Customize Syntax Highlighting.. 2-5
2.4.6 How to Display Line Numbers in Editors ... 2-5
2.4.7 How to Change the Timing for Code Insight .. 2-5
2.4.8 How to Specify the Columns in the Debugger.. 2-5
2.5 Highly Visual Features of Oracle JDeveloper... 2-5

3 Working with Oracle JDeveloper

3.1 About Working with Oracle JDeveloper ... 3-1
3.2 Working with JDeveloper Roles ... 3-1
3.2.1 How to Change the JDeveloper Role .. 3-2
3.3 How to Manage JDeveloper Features .. 3-2
3.4 Working With Windows In the IDE... 3-3
3.4.1 How to Maximize Windows .. 3-3
3.4.2 How to Minimize and Restore Dockable Windows in the IDE 3-3
3.4.3 How to Dock Windows in the IDE.. 3-3
3.4.4 About Dockable Windows in the IDE .. 3-4
3.4.5 How to Close and Reopen Dockable Windows in the IDE ... 3-4
3.4.6 How to Restore Window Layout to Factory Settings... 3-4
3.5 Navigating The IDE.. 3-5
3.5.1 How to Work With Shortcut Keys In The IDE .. 3-5
3.5.2 Keyboard Navigation In JDeveloper .. 3-6
3.5.2.1 Common Navigation Keys.. 3-6
3.5.2.2 Navigation In Standard Components.. 3-7
3.5.2.3 Navigating Complex Controls... 3-12
3.5.2.4 Navigation in Specific Components ... 3-17
3.6 Customizing the IDE ... 3-21
3.6.1 How to Change the Look and Feel of the IDE.. 3-21
3.6.2 How to Customize the General Environment for the IDE ... 3-22
3.6.3 How to Customize Dockable Windows in the IDE ... 3-22
3.6.4 How to Customize the Compare Window in the IDE... 3-23
3.6.5 How to Customize the Component Palette .. 3-23
3.6.5.1 How to Add a Page to the Palette ... 3-23
3.6.5.2 How to Add a JavaBeans Component to the Palette.. 3-23
3.6.5.3 How to Remove a Page from the Palette ... 3-24
3.6.5.4 How to Remove a Component from the Palette ... 3-25
3.6.6 How to Change Roles in JDeveloper ... 3-25
3.6.7 How to Associate File Types with JDeveloper ... 3-25
3.7 Working with the Resource Palette ... 3-26
3.7.1 How to Open the Resource Palette .. 3-26
3.7.2 How to Work With IDE Connections .. 3-27
3.7.2.1 Resource Palette Connection Descriptor Properties Location 3-27
3.7.2.2 Defining the Scope of a Connection.. 3-27
3.7.2.2.1 Application Resource Connections.. 3-27
3.7.2.2.2 IDE Connections... 3-27
3.7.2.3 How to Create IDE Connections ... 3-27
3.7.2.4 How to Edit IDE Connections ... 3-28
3.7.2.5 How to Add IDE Connections to Applications... 3-28

v

3.7.3 How to Search the Resource Palette... 3-28
3.7.3.1 Performing a simple search.. 3-28
3.7.3.2 Performing an advanced search .. 3-29
3.7.4 How to Reuse Resource Palette Searches.. 3-29
3.7.5 How to Filter Resource Palette Contents... 3-30
3.7.6 How to Import and Export Catalogs and Connections... 3-30
3.7.7 How to Refresh the Resource Palette... 3-30
3.7.8 How to Work With Resource Palette Catalogs... 3-30
3.7.8.1 How to Create Catalogs.. 3-31
3.7.8.2 How to Rename Catalogs ... 3-31
3.7.9 How to Work with Catalog Folders... 3-31
3.7.9.1 How to Create Folders .. 3-31
3.7.9.2 How to Create Dynamic Folders... 3-31
3.7.9.3 How to Add Resources to a Catalog... 3-32
3.8 Working with Source Files ... 3-32
3.8.1 Using the Source Editor ... 3-32
3.8.1.1 Features Available From the Context Menu.. 3-34
3.8.2 How to Set Preferences for the Source Editor... 3-36
3.8.3 How to Customize Code Templates for the Source Editor .. 3-38
3.8.4 How to Manage Source Files in the Editor Window... 3-39
3.8.4.1 Maximizing the View of a File... 3-39
3.8.4.2 Navigating Between Open Files in the Editor Window 3-40
3.8.4.3 How to Display the List of All Currently Open Files... 3-40
3.8.4.4 How to Access a Recently Opened File.. 3-40
3.8.4.5 How to Open Multiple Editors for a File ... 3-41
3.8.4.6 Viewing More Than One File at a Time ... 3-41
3.8.4.7 How to Quickly Close Files in the Editor Window .. 3-42
3.8.5 Working with Mouseover Popups ... 3-43
3.8.6 How to Locate a Source Node in the Navigator .. 3-44
3.8.7 How to Set Bookmarks in Source Files .. 3-44
3.8.8 How to Edit Source Files ... 3-44
3.8.8.1 How to Open Source Files in the Source Editor.. 3-44
3.8.8.2 How to Edit Source Code with an External Editor... 3-44
3.8.8.3 How to Insert a Code Snippet from the Component Palette into Source Files 3-45
3.8.8.4 How to Record and Play Back Macros in Source Files .. 3-45
3.8.8.5 How to Create Tasks ... 3-46
3.8.9 How to Compare Source Files .. 3-47
3.8.10 How to Revert to the Last Saved Version of a File .. 3-47
3.8.11 How to Search Source Files ... 3-47
3.8.12 How to Print Source Files .. 3-48
3.8.13 Reference: Regular Search Expressions ... 3-48
3.9 Working with Extensions.. 3-49
3.9.1 How to Install Extensions with Check for Updates... 3-49
3.9.2 How to Install Extensions from the Provider's Web Site .. 3-49
3.9.3 How to Install Extensions Directly from OTN ... 3-49
3.9.4 How to Install Extensions Using the JDeveloper dropins Directory 3-50
3.10 Using the Online Help... 3-50

vi

3.10.1 Using the Help Center.. 3-51
3.10.2 How to Open the Online Help.. 3-51
3.10.3 How to Search the Documentation .. 3-52
3.10.4 How to Add Bookmarks to the Favorites Page.. 3-53
3.10.5 How to Customize the Online Help Display.. 3-54
3.10.6 How to Open and Close Multiple Help Topics.. 3-54
3.10.7 How to Print Help Topics.. 3-55
3.11 Common Development Tools .. 3-55
3.11.1 Application Overview.. 3-55
3.11.1.1 Checklist.. 3-55
3.11.1.2 File Summary Pages ... 3-56
3.11.2 File List ... 3-57
3.11.2.1 File List Tab Header .. 3-57
3.11.2.2 Search Criteria Area .. 3-58
3.11.2.3 Search Results Table.. 3-58
3.11.3 Compare Window .. 3-59
3.11.3.1 Toolbar .. 3-59
3.11.3.2 Source and Target Areas .. 3-59
3.11.4 Application Navigator ... 3-59
3.11.4.1 Application Navigator Toolbar ... 3-59
3.11.4.2 Application Operations .. 3-60
3.11.4.3 Projects Panel Operations... 3-61
3.11.4.4 Application Resources Panel Operations... 3-61
3.11.4.5 Data Controls Panel Operations.. 3-61
3.11.4.6 Recently Opened Files Panel Operations... 3-62
3.11.5 Application Server Navigator... 3-62
3.11.6 Structure Window ... 3-63
3.11.6.1 Structure Window Toolbar .. 3-64
3.11.6.2 Structure Window Views ... 3-64
3.11.7 Application Navigator - Data Controls Panel .. 3-64
3.11.8 Log Window.. 3-65
3.11.9 Status Window.. 3-66
3.11.10 Tasks Window... 3-67
3.12 Adding External Tools to JDeveloper ... 3-67

Part II Developing Applications with Oracle JDeveloper

4 Getting Started with Developing Applications with Oracle JDeveloper

4.1 About Developing Applications with Oracle JDeveloper .. 4-1

5 Working with Applications and Projects

5.1 About Working with Applications and Projects .. 5-1
5.2 Creating Applications and Projects.. 5-2
5.2.1 How to Create an Application ... 5-2
5.2.2 How to Create a Custom Application .. 5-2
5.2.3 How to Create a New Project... 5-2

vii

5.2.3.1 How to Create a New Project ... 5-3
5.2.3.2 How to Create a New Custom Project... 5-3
5.3 Managing Applications and Projects ... 5-3
5.3.1 How to Open an Existing Application or Project.. 5-3
5.3.2 How to Import Existing Source Files into JDeveloper ... 5-4
5.3.2.1 Importing Existing Files into a New JDeveloper Project .. 5-4
5.3.2.2 How to Import a WAR File into a New JDeveloper Project................................... 5-5
5.3.2.3 Importing an EAR File into a New JDeveloper Application.................................. 5-5
5.3.3 How to Import Files into a Project .. 5-6
5.3.3.1 How to Import Files into a Project ... 5-6
5.3.4 How to Manage Folders and Java Packages in a Project ... 5-7
5.3.5 How to Manage Working Sets ... 5-7
5.3.6 How to Browse Files in JDeveloper Without Adding Them to a Project 5-9
5.3.7 How to View an Archive .. 5-9
5.3.8 How to View an Image File in JDeveloper... 5-9
5.3.9 How to Set Default Project Properties ... 5-10
5.3.10 How to Set Properties for Individual Projects.. 5-10
5.3.10.1 How to Include Libraries in a Project ... 5-10
5.3.10.2 How to Remove Libraries from a Project... 5-12
5.3.10.3 How to Set the Target Java SE for a Project ... 5-12
5.3.10.4 How to Manage Project Dependencies .. 5-12
5.3.10.5 How to Associate Features with a Project.. 5-13
5.3.10.6 How to Set Javadoc Properties for a Project .. 5-13
5.3.11 How to Manage Application and Project Templates .. 5-13
5.3.11.1 How to Define a New Application Template.. 5-14
5.3.11.2 How to Define a New Project Template... 5-14
5.3.11.3 How to Share Application and Project Templates.. 5-14
5.3.11.4 How to Edit an Existing Application or Project Template 5-15
5.3.11.5 How to Delete an Existing Application or Project Template 5-15
5.4 Managing Application, Project, or Individual Files.. 5-15
5.4.1 How to Save an Application or Project ... 5-15
5.4.2 How to Save an Individual Component or File ... 5-16
5.4.3 How to Rename an Application, Project, or Individual Component........................ 5-16
5.4.4 How to Relocate an Application, Project, or Project Contents................................... 5-17
5.4.5 How to Close an Application, Project, or Other File ... 5-18
5.4.6 How to Remove a File from a Project .. 5-18
5.4.7 How to Remove a Project from an Application ... 5-18
5.4.8 How to Remove an Application ... 5-19
5.5 Managing Libraries and Java SEs Outside the Project Scope.. 5-19
5.5.1 How to Import Libraries or Java SEs Outside the Project Scope 5-19
5.5.2 How to Create Libraries or Java SEs Outside the Project Scope................................ 5-19
5.5.3 How to Edit Libraries or Java SEs Outside the Project Scope 5-20
5.5.4 How to Delete Libraries or Java SEs Outside the Project Scope 5-20

6 Versioning Applications with Source Control

6.1 About Versioning Applications with Source Control ... 6-1
6.2 Downloading Source Control Extensions in Oracle JDeveloper.. 6-2

viii

6.3 Using Subversion with Oracle JDeveloper.. 6-2
6.3.1 How To Set Up Subversion and JDeveloper.. 6-3
6.3.1.1 How to Connect to a Subversion Repository Through a Proxy Server 6-3
6.3.1.2 How to Check the Installation .. 6-4
6.3.1.3 How to Create a Subversion Repository ... 6-4
6.3.1.4 How to Create or Edit a Subversion Connection... 6-5
6.3.1.5 How to View Subversion Repository Content ... 6-5
6.3.1.6 How to Check Out Files from the Subversion Repository 6-6
6.3.1.7 How to Update Files from the Subversion Repository ... 6-7
6.3.1.8 How to Import JDeveloper Files Into Subversion ... 6-7
6.3.1.8.1 How to Import an Application to Subversion... 6-8
6.3.2 How to Work with Files in Subversion .. 6-8
6.3.2.1 How to Add a File to Subversion Control .. 6-8
6.3.2.2 How to Use Change Sets ... 6-9
6.3.2.2.1 Editing Change Sets ... 6-10
6.3.2.3 How to View the History of a File .. 6-10
6.3.2.4 How to Commit Files to the Subversion Repository.. 6-10
6.3.2.4.1 Saving Work Item ID with the Oracle Team Productivity Center Extension.......

6-11
6.3.2.5 How to Use Templates in Subversion .. 6-11
6.3.2.6 How to Revert Files to their Previous State... 6-12
6.3.2.7 How to Replace a File with the Subversion Base Revision 6-12
6.3.2.8 How to Compare Files in Subversion... 6-12
6.3.2.9 How to Resolve Conflicts in File Versions... 6-13
6.3.2.10 How to Resolve Conflicts in Subversion.. 6-13
6.3.2.11 How to Resolve Property Conflicts in Subversion ... 6-14
6.3.2.12 How to Use the Merge Wizard.. 6-14
6.3.2.13 How to Work with Branches and Tags .. 6-15
6.3.2.14 How to Add and View Subversion Properties.. 6-16
6.3.2.14.1 Example of Subversion Properties... 6-16
6.3.2.14.2 Specifying a Revision Number with a Subversion External Property 6-17
6.3.2.15 How to View the Status of a Subversion File .. 6-17
6.3.2.16 How to Refresh the Status of Files Under Subversion Control 6-18
6.3.2.17 How to Remove Files from Subversion Control ... 6-18
6.3.3 How to Use Export Features .. 6-18
6.3.3.1 How to Create and Apply Patches.. 6-18
6.3.3.2 How to Export Subversion Controlled Files from JDeveloper 6-19
6.3.3.3 How to Export and Import Subversion Repository Connection Details........... 6-20
6.4 Using Concurrent Version System (CVS) with Oracle JDeveloper 6-20
6.4.1 How to Set Up CVS with Oracle JDeveloper.. 6-21
6.4.1.1 How to Configure JDeveloper for Use with CVS ... 6-21
6.4.1.2 How to Create a CVS Connection ... 6-22
6.4.1.3 How To Import JDeveloper Project Files Into CVS .. 6-22
6.4.1.4 How to Check Out CVS Modules ... 6-22
6.4.2 How to Configure CVS For Use with JDeveloper.. 6-23
6.4.2.1 How to Create a Local CVS Repository ... 6-23
6.4.2.2 How to Configure SSH (Secure Shell), CVS and JDeveloper.............................. 6-23
6.4.2.2.1 Configuring for SSH Level 1 (SSH).. 6-23

ix

6.4.2.2.2 Configuring for SSH Level 2 (SSH2).. 6-24
6.4.2.3 How to Choose a Character Set (Local Client Only) .. 6-24
6.4.2.4 How to Log In to CVS... 6-25
6.4.2.5 How to Access Local Files with CVS .. 6-25
6.4.2.5.1 Handling CVS File Types.. 6-26
6.4.3 How to Use CVS After Configuration ... 6-26
6.4.3.1 How to Update a Project, Folder, or File in CVS .. 6-26
6.4.3.2 How to Edit and Watch Files in CVS.. 6-27
6.4.3.3 How to Commit Changes to CVS.. 6-28
6.4.3.4 How to Merge Files in CVS.. 6-29
6.4.4 How to Work with Branches in CVS ... 6-30
6.4.4.1 How to Create a New Branch .. 6-30
6.4.4.2 How to Use Branches in CVS... 6-30
6.4.4.2.1 How to Switch the Branch or Version ... 6-30
6.4.4.2.2 How to Choose a Branch while Updating .. 6-31
6.4.4.2.3 How to Choose a Branch While Checking Out.. 6-31
6.4.4.3 How to use Tags in CVS ... 6-31
6.4.4.3.1 How to Add a Tag to a Project ... 6-32
6.4.4.3.2 How to Apply Tags While Updating a Project or File 6-32
6.4.4.3.3 How to Delete a Tag... 6-32
6.4.5 How to Work with Files in CVS ... 6-32
6.4.5.1 How to Refresh the Display of CVS Objects.. 6-33
6.4.5.2 How to Add and Remove Files ... 6-33
6.4.5.3 How to Use CVS Templates... 6-34
6.4.5.4 How to Compare Files in CVS... 6-35
6.4.5.5 How to Replace a File with a CVS Revision .. 6-35
6.4.5.6 How to View the History and Status of a File... 6-36
6.4.5.7 How to Lock and Unlock Files .. 6-36
6.4.5.8 How to Work with Revisions and Tags ... 6-37
6.4.6 How to Use External Tools and Export Features ... 6-38
6.4.6.1 How to Use an External Diff Tool with CVS ... 6-38
6.4.6.2 How to Export a CVS Module ... 6-40
6.4.6.3 How to Copy the CVSROOT Path to the Clipboard .. 6-40
6.4.7 How to Create and Apply Patches... 6-40
6.5 Using Perforce with Oracle JDeveloper.. 6-41
6.5.1 How to Set Up Perforce with JDeveloper .. 6-41
6.5.1.1 How to Install Perforce Components for Use with JDeveloper.......................... 6-41
6.5.1.2 How to Configure JDeveloper for Use with Perforce .. 6-42
6.5.1.3 How to Connect to Perforce... 6-43
6.5.1.4 How to Make Multiple Connections to Perforce .. 6-43
6.5.1.5 How to Bring Files Under Perforce Control .. 6-44
6.5.1.6 How to Import JDeveloper Files Into Perforce.. 6-45
6.5.2 How to Work with Files in Perforce ... 6-45
6.5.2.1 How to Synchronize Local Files With the Controlled Versions 6-45
6.5.2.2 How to Synchronize Files With the Perforce Navigator...................................... 6-46
6.5.2.3 How to Filter Files By Perforce Workspace ... 6-47
6.5.2.4 How to Edit Files ... 6-47

x

6.5.2.5 How to Submit Changed Files to the Perforce Depot .. 6-48
6.5.2.6 How to Resolve Conflicts in File Versions... 6-48
6.5.2.7 How to Resolve Conflicts in File Versions... 6-49
6.5.2.8 How to Refresh the Status of Files under Perforce Control 6-49
6.5.2.9 How to Delete Files ... 6-50
6.5.3 How to Work with Changelists ... 6-50
6.5.3.1 How to Create a Perforce Changelist.. 6-51
6.5.3.2 How to Annotate a Perforce Revision or Changelist ... 6-51
6.5.3.3 How to Add Files to a Perforce Changelist ... 6-51
6.5.3.4 How to Submit a Perforce Changelist .. 6-51
6.5.3.5 How to Use the Changelist Browser... 6-52
6.5.4 How to Create and Apply Patches... 6-52
6.6 Using Serena Dimensions with Oracle JDeveloper... 6-53
6.6.1 How to Set Up Dimensions and JDeveloper ... 6-54
6.6.1.1 How to Connect to a Dimensions Repository ... 6-54
6.6.1.2 How to Disconnect from a Dimensions Repository ... 6-54
6.6.1.3 How to Add Files to Dimensions Control ... 6-55
6.6.1.4 How to Remove Files from Dimensions Control.. 6-55
6.6.1.5 How to Set the Current Project.. 6-55
6.6.2 How to Work with Files in Dimensions ... 6-55
6.6.2.1 How to Import Files to Dimensions.. 6-56
6.6.2.2 Using Navigator Icon Overlays... 6-56
6.6.2.3 How to Download a Dimensions Project... 6-56
6.6.2.4 How to Check Out Files.. 6-57
6.6.2.5 How to Undo a File Checkout ... 6-58
6.6.2.6 How to Check In Files... 6-59
6.6.2.7 About the Pending Changes List... 6-60
6.7 Using Rational ClearCase with Oracle JDeveloper... 6-60
6.7.1 How to Configure JDeveloper to Use Rational ClearCase .. 6-60
6.7.2 How to Add a File to ClearCase .. 6-61
6.7.3 How to Refresh the Status of Objects under ClearCase Control 6-61
6.7.4 How to Remove a File From ClearCase .. 6-62
6.7.5 How to Check In a File to ClearCase .. 6-62
6.7.6 How to Check Out a File From ClearCase ... 6-62
6.7.7 How to Undo a ClearCase Checkout .. 6-63
6.7.8 How to List ClearCase Checkouts ... 6-63
6.7.9 How to Compare Files Checked In to ClearCase .. 6-63
6.7.10 How to Display the History of a ClearCase File ... 6-64
6.7.11 How to Display the Description of a ClearCase File .. 6-64
6.8 Using Team System with Oracle JDeveloper... 6-64
6.8.1 How to Set Up Team System and JDeveloper.. 6-65
6.8.1.1 How to Set Up Team System for Use with JDeveloper.. 6-65
6.8.1.2 How to Configure JDeveloper for Use with Team System 6-65
6.8.2 How to Work with Files in Team System .. 6-66
6.8.2.1 How to Get Versions of Files from the Team System Server 6-67
6.8.2.2 How to Add FIles to Team System Control... 6-67
6.8.2.3 How to Check Out Files.. 6-67

xi

6.8.2.4 How to View the Status of a File ... 6-68
6.8.2.5 How to Refresh the Status of Files .. 6-68
6.8.2.6 How to Check In Files... 6-68
6.8.2.7 How to Resolve Conflicts in File Versions... 6-69
6.8.2.8 How to Undo Changes to Files.. 6-69
6.8.2.9 How to Replace a File with the Team System Base Version 6-69
6.8.2.10 How to View the History of a File .. 6-69
6.8.2.11 How to Compare Files In Team System... 6-69
6.8.2.12 How to Shelve and Unshelve Files ... 6-70
6.8.2.13 How to Delete Files ... 6-71
6.8.3 How to Use Import and Export Features .. 6-71
6.8.3.1 How to Create Patches.. 6-71
6.8.3.2 How to Apply Patches .. 6-72
6.9 Using WebDAV with JDeveloper.. 6-72
6.9.1 WebDAV Server Requirements .. 6-72
6.9.2 How to Create a WebDAV Connection... 6-73
6.9.3 How to Access a WebDAV-Enabled Server Via a Proxy Server................................ 6-73
6.9.4 How to Modify a WebDAV Connection ... 6-74
6.9.5 How to Refresh a WebDAV Connection... 6-74
6.9.6 How to Delete a WebDAV Connection ... 6-74

7 Building, Running and Debugging Applications

7.1 About Building, Running and Debugging Applications .. 7-1
7.2 Building Applications .. 7-1
7.2.1 Make and Rebuild.. 7-2
7.2.2 Apache Ant ... 7-2
7.2.3 Apache Maven ... 7-2
7.3 Running Applications .. 7-2
7.3.1 Run Manager .. 7-2
7.4 Debugging Applications .. 7-2
7.4.1 How to Use the Debugger .. 7-3
7.4.2 Technologies that Use Debugging .. 7-3

8 Auditing and Profiling Applications

8.1 About Auditing and Profiling Applications ... 8-1
8.2 Auditing Applications.. 8-1
8.3 Monitoring HTTP Using the HTTP Analyzer... 8-1
8.3.1 How to Use the Log Window .. 8-2
8.3.2 How to Use the Test Window.. 8-3
8.3.3 How to Use the Instances Window... 8-5
8.3.4 What Happens When You Run the HTTP Analyzer.. 8-6
8.3.5 How to Specify HTTP Analyzer Settings ... 8-6
8.3.6 How to Use Multiple Instances ... 8-6
8.3.7 How to Configure External Web Browsers.. 8-6
8.3.8 Using SSL .. 8-7
8.3.8.1 HTTPS Keystore.. 8-7

xii

8.3.8.2 Username Token... 8-8
8.3.8.3 X509 Certificates ... 8-8
8.3.8.4 STS Configuration .. 8-8
8.3.8.5 How to Use HTTPS .. 8-8
8.3.8.6 How to Configure Credentials for Testing Web Service Policies.......................... 8-8
8.3.9 How to Run the HTTP Analyzer .. 8-9
8.3.10 How to Debug Web Pages Using the HTTP Analyzer... 8-9
8.3.11 How to Edit and Resend HTTP Requests .. 8-10
8.3.12 How to Use Rules to Determine Behavior .. 8-10
8.3.12.1 Using the Pass Through Rule... 8-10
8.3.12.2 Using the Forward Rule ... 8-10
8.3.12.3 Using the URL Substitution Rule .. 8-11
8.3.12.4 Using the Tape Rule .. 8-11
8.3.13 How to Set Rules... 8-11
8.3.14 Using the HTTP Analyzer with Web Services.. 8-12
8.3.14.1 Testing Web Services with the HTTP Analyzer.. 8-12
8.3.14.2 Using the HTTP Analyzer with RESTful Web Services....................................... 8-13
8.3.15 Using the HTTP Analyzer with WebSockets.. 8-15
8.3.16 Reference: Troubleshooting the HTTP Analyzer ... 8-15
8.3.16.1 Running the HTTP Analyzer While Another Application is Running 8-15
8.3.16.2 Changing Proxy Settings .. 8-15
8.4 Profiling Applications ... 8-16

9 Deploying Applications

9.1 About Deploying Applications... 9-1
9.1.1 Developing Applications with the Integrated Application Server............................... 9-4
9.1.2 Developing Applications to Deploy to Standalone Application Servers 9-4
9.1.3 Understanding the Archive Formats .. 9-5
9.1.4 Understanding Deployment Profiles.. 9-5
9.1.5 Understanding Deployment Descriptors ... 9-5
9.1.6 Configuring Deployment Using Deployment Plans .. 9-6
9.1.7 Deploying from the Java Edition... 9-6
9.2 Running Java EE Applications in the Integrated Application Server 9-6
9.2.1 Understanding the Integrated Application Server Log Window................................. 9-7
9.2.2 Rules Governing Deployment to the Integrated Application Server........................... 9-8
9.2.3 Working with Integrated Application Servers .. 9-8
9.2.3.1 How to Create a New Integrated Application Server Connection........................ 9-9
9.2.3.2 How to Run and Debug with an Integrated Application Server........................... 9-9
9.2.3.3 Working with the Default Domain ... 9-10
9.2.3.4 One-Click Running of Applications in the Integrated Application Server....... 9-11
9.2.3.5 How to Start the Integrated Application Server ... 9-12
9.2.3.6 How to Cancel a Running Deployment ... 9-12
9.2.3.7 How to Terminate an Integrated Application Server .. 9-12
9.2.3.8 How to Configure Startup and Shutdown Behavior for Integrated Application

Servers 9-13
9.2.3.9 How to Log In to the Integrated WebLogic Server Administration Console ... 9-13
9.3 Connecting and Deploying Java EE Applications to Application Servers...................... 9-14

xiii

9.3.1 How to Create a Connection to the Target Application Server 9-15
9.3.2 How to Create and Edit Deployment Profiles.. 9-18
9.3.2.1 About Deployment Profiles ... 9-18
9.3.2.2 Creating Deployment Profiles ... 9-19
9.3.2.3 Viewing and Changing Deployment Profile Properties...................................... 9-21
9.3.2.4 Configuring Deployment Profiles... 9-21
9.3.3 How to Create and Edit Deployment Descriptors... 9-22
9.3.3.1 About Deployment Descriptors .. 9-23
9.3.3.2 About Library Dependencies... 9-25
9.3.3.2.1 Resolved and Unresolved Libraries .. 9-26
9.3.3.2.2 Manifest Entries for Libraries ... 9-27
9.3.3.3 Creating Deployment Descriptors .. 9-27
9.3.3.4 Viewing or Modifying Deployment Descriptor Properties 9-28
9.3.4 How to Configure Global Deployment Preferences.. 9-28
9.3.5 How to Pass Options to Target Connections When Deploying................................. 9-28
9.3.6 How to Configure Applications for Deployment .. 9-29
9.3.6.1 How to Configure an Application for Deployment to Oracle WebLogic Server

9-29
9.3.6.2 How to Configure a Client Application for Deployment.................................... 9-29
9.3.6.3 How to Configure an Applet for Deployment .. 9-30
9.3.6.4 Setting Up JDBC Data Sources on Oracle WebLogic Server 9-30
9.3.6.5 Preparing an Application for Deployment to a Third Party Server................... 9-32
9.3.7 How to Use Deployment Plans... 9-33
9.3.7.1 How to Create and Use Deployment Plans ... 9-34
9.3.7.2 How to Generate Deployment Plans .. 9-34
9.4 Deploying Java Applications ... 9-35
9.4.1 Deploying to a Java JAR .. 9-35
9.4.2 Deploying to an OSGi Bundle... 9-36
9.5 Deploying Java EE Applications.. 9-37
9.5.1 How to Deploy to the Application Server from JDeveloper 9-37
9.5.2 How to Deploy a RAR File .. 9-38
9.5.3 How to Add a Resource Adapter Archive (RAR) to the EAR 9-38
9.5.4 How to Deploy a Metadata Archive (MAR) File ... 9-39
9.5.5 How to Deploy an Applet as a WAR File ... 9-40
9.5.6 How to Deploy a Shared Library Archive .. 9-40
9.5.7 How to Deploy to a Managed Server That Is Down ... 9-41
9.6 Post-Deployment Configuration ... 9-41
9.7 Testing the Application and Verifying Deployment .. 9-42
9.8 Deploying from the Command Line... 9-42
9.8.1 How to Deploy from the Command Line ... 9-42
9.8.1.1 Command Usage ... 9-42
9.8.1.2 How to Override Without Editing a Build Script ... 9-45
9.8.2 How to Deploy Multiple Profiles from the Command Line 9-45
9.8.2.1 How to Use Wildcard Samples ... 9-47
9.8.2.2 How to Use Built-in Macros... 9-47
9.8.2.3 How to Create a Log File for Batch Deployment.. 9-48
9.8.3 How to Deploy from the Command Line Using Ant ... 9-49

xiv

9.8.3.1 How to Generate an Ant Build Script... 9-50
9.8.3.2 About The build.xml File ... 9-51
9.8.3.3 About The build.properties File .. 9-51
9.9 Deploying Using Java Web Start ... 9-52
9.9.1 Purpose of the Java Web Start Technology... 9-53
9.9.1.1 Files Generated by the Create Java Web Start-Enabled Wizard......................... 9-53
9.9.1.2 Role of the Web Server in JDeveloper ... 9-53
9.9.2 How to Create a Java Web Start File .. 9-54
9.9.3 How to Create an ADF Swing Web Archive for Java Web Start 9-55
9.9.4 How to Create a Java Client Web Archive for Java Web Start................................... 9-56
9.9.5 How to Create a Java Web Start JNLP Definition for Java Clients 9-57
9.9.6 How to Deploy an ADF Swing Web Application Archive for Java Web Start........ 9-58
9.9.7 How to Deploy a Java Client Web Application Archive for Java Web Start 9-59
9.10 Deploying Using Weblogic SCA Spring... 9-59
9.10.1 About WebLogic SCA ... 9-60
9.10.2 About Spring .. 9-60
9.10.3 Installing the Weblogic SCA Spring Extension .. 9-60
9.10.4 Using Oracle WebLogic SCA ... 9-61
9.10.4.1 How to Create WebLogic SCA Projects ... 9-61
9.10.4.2 How to Edit Oracle WebLogic SCA Definition Files.. 9-61
9.10.4.3 How to Deploy WebLogic SCA Applications to Integrated WebLogic Server 9-63
9.10.4.4 How to Deploy WebLogic SCA Applications to Oracle WebLogic Server....... 9-63
9.10.5 Using Spring ... 9-64
9.10.5.1 How to Create Spring Bean Applications .. 9-64
9.10.5.2 What Happens When You Create a Spring Bean Configuration File 9-64
9.11 Troubleshooting Deployment .. 9-65
9.11.1 Common Deployment Issues.. 9-65
9.11.1.1 [Deployer: 149164] The domain edit lock is owned by another session in exclusive

mode - hence this deployment operation cannot proceed 9-65
9.11.2 How to Troubleshoot Deployment to Integrated Application Servers 9-65
9.11.2.1 Stopping Integrated Application Server .. 9-65
9.11.2.2 Running Out of Memory .. 9-66
9.11.2.3 Reinstalling JDeveloper in a Different Location ... 9-66
9.11.3 How to Troubleshoot Deployment to Oracle WebLogic Server 9-66
9.11.3.1 ORA-01005: null password given; logon denied .. 9-66
9.11.3.2 ORA-01017: invalid username/password; logon denied.................................... 9-66
9.11.3.3 [Oracle JDBC Driver] Kerberos Authentication was requested, but is not

supported by this Oracle Server 9-66
9.11.3.4 Application Does Not Work After Creating a Global Data Source from the Oracle

WebLogic Server Administration Console 9-66
9.11.3.5 Redeploying an Application to a Server that is Down... 9-67
9.11.3.6 Attempting to Deploy to a Server that No Longer Exists.................................... 9-67
9.11.3.7 Deploying to a remove server fails with HTTP Error Code 502 9-67
9.11.3.8 No Credential Mapper Entry Found .. 9-68
9.11.4 How to Troubleshoot Deployment to IBM WebSphere.. 9-68
9.11.4.1 Deployment Fails When EAR Contains Spaces .. 9-68
9.11.4.2 Application Displays Administrative Console User Name 9-68

xv

Part III Developing Java EE Applications

10 Getting Started with Developing Java EE Applications

10.1 About Developing Java EE Applications ... 10-1
10.1.1 Java EE and Oracle Application Developer Framework ... 10-1
10.2 About Web Page Tools.. 10-2
10.3 About Enterprise JavaBeans and Java Persistence Components 10-2
10.4 About Oracle TopLink .. 10-3
10.5 About Secure Applications... 10-3
10.6 About Applications That Use XML... 10-3
10.7 About Applications That Use Web Services .. 10-3

11 Developing Applications Using Web Page Tools

11.1 About Developing Applications Using Web Page Tools ... 11-1
11.1.1 Getting to Know the Source Editor Features ... 11-1
11.1.2 How to Work in the Visual Editing Environment ... 11-3
11.1.2.1 How to Expand and Collapse Container Elements ... 11-6
11.1.2.2 How to Customize the Visual Editor Environment ... 11-7
11.1.2.3 How to Display Invisible Elements ... 11-7
11.1.2.4 How to Execute JSP Tags in the JSP Visual Editor ... 11-8
11.1.2.5 How to Display JSP Tags by Name Only... 11-8
11.1.2.6 How to Change Keyboard Preferences .. 11-8
11.1.2.7 How to Select Web Page Elements.. 11-8
11.1.2.8 How to Select Insertion Points in the Design Tools ... 11-10
11.1.2.9 How to Insert Web Page Elements.. 11-11
11.1.2.10 How to Set and Modify Web Page Element Properties 11-11
11.1.2.11 How to Set a Data Source for a Property ... 11-12
11.1.2.12 How to Set Properties for Multiple Elements.. 11-12
11.1.2.13 How to Use Basic Commands to Manage Your Elements 11-13
11.1.2.14 How to Work with Data Tables... 11-14
11.1.2.15 How to Work with Panel Grids... 11-15
11.1.2.16 How to Paste Markup Code in JSP and HTML Pages 11-15
11.1.2.17 How to View and Edit Web Page Head Content.. 11-15
11.1.3 How to Use the Property Inspector.. 11-16
11.1.3.1 Editing Properties.. 11-17
11.1.3.2 Writing Custom Property Editors... 11-17
11.1.3.3 Additional Features for Customization Developers .. 11-17
11.1.4 How to Use the Component Palette... 11-18
11.1.4.1 Using the Component Palette Features ... 11-18
11.1.4.2 Overview of the Component Palette Features .. 11-18
11.1.5 How to Use the Overview Editor for JSF Configuration Files 11-19
11.1.6 How to Plan Your Page Flow With JSF Navigation Diagrams 11-21
11.1.6.1 How to Work with Navigation Diagrams .. 11-21
11.1.6.2 How to Plan Page and the Navigation Flows .. 11-21
11.1.6.3 How to Use the JSF Navigation Diagrammer to Manipulate JSF Pages 11-24
11.1.6.4 How to Use the JSF Navigation Diagrammer for JSF Navigation Case 11-25

xvi

11.1.6.5 How to Publish a Diagram as a Graphic ... 11-26
11.1.7 How to Use Code Insight For Faster Web Page Coding .. 11-26
11.2 Developing Applications with JavaServer Faces .. 11-27
11.2.1 How to Build Your JSF Application .. 11-27
11.2.1.1 How to Build Your Application Framework... 11-28
11.2.1.2 How to Create Your JSF Pages and Related Business Services 11-28
11.2.2 How to Build your JSF Business Component Framework 11-30
11.2.2.1 Support for Standard JSF Component Tag Attributes 11-36
11.2.2.2 How to Work with Managed Beans.. 11-37
11.2.2.3 How to Work with Automatic Component Binding.. 11-38
11.2.2.4 How to Bind Components to JSF Pages ... 11-39
11.2.2.5 How to Bind Components with EL Expressions .. 11-39
11.2.2.6 How to Use Automatic Component Binding for Components that Allow Method

Binding 11-41
11.2.2.7 How to Use Localized Resource Bundles in JSF ... 11-45
11.2.2.8 How to Work with Facets... 11-46
11.2.2.9 How to Build JSF Views with Facelets .. 11-47
11.2.2.10 How to Convert and Validate JSF Input Data .. 11-48
11.2.2.11 How to Display Error Messages ... 11-53
11.2.2.12 How to Configure JSF Applications ... 11-56
11.2.3 How to Run and Test JSF Applications ... 11-58
11.3 Developing Applications with HTML Pages... 11-58
11.3.1 How To Build Your HTML Pages .. 11-59
11.3.2 How to Work with Cascading Style Sheets .. 11-63
11.3.2.1 How to Select and Group CSS Elements.. 11-64
11.3.2.2 How to Use the CSS Basic Tools.. 11-66
11.3.3 How to Work with HTML Tables .. 11-67
11.3.3.1 How to Format Tables and Cells ... 11-68
11.3.4 How to Work with HTML Forms, Text, and Images .. 11-71
11.3.4.1 How to Work with HTML Forms ... 11-71
11.3.4.2 How to Work with HTML Text... 11-73
11.3.4.3 How to Work with HTML Images.. 11-74
11.4 Working with Java Server Pages .. 11-75
11.4.1 How to Build Your JSP Application... 11-76
11.4.1.1 JSP Core Components ... 11-76
11.4.1.2 How to Create JSP Pages .. 11-78
11.4.1.3 How to Register a Servlet Filter in a JSP Page... 11-79
11.4.1.4 Understanding Flow Control in JSP Pages .. 11-80
11.4.2 How to Debug and Deploy JSPs... 11-80
11.4.3 How to Run a JSP.. 11-82
11.4.4 Understanding JSP Segments.. 11-83
11.5 Developing Applications with Java Servlets ... 11-83
11.5.1 Understanding Servlet Support in JDeveloper... 11-83
11.5.1.1 What You May Need to Know About Servlet Filters... 11-84
11.5.1.2 What You May Need to Know About Servlet Listeners.................................... 11-84
11.5.1.3 How to Generate an HTTP Servlet.. 11-84
11.5.2 Implementing Basic Methods for an HTTP Servlet ... 11-85
11.5.2.1 How to Use the HTTPServletRequest Object .. 11-85

xvii

11.5.2.2 How to Use the HTTPServletResponse Object ... 11-86
11.5.3 How to Create a Servlet Filter... 11-86
11.5.4 How to Create a Servlet Listener.. 11-87
11.5.5 Registering a Servlet Filter in a JSP Page... 11-87
11.5.6 How to Run a Servlet ... 11-88
11.5.7 How to Debug a Servlet... 11-89
11.5.8 How to Deploy a Servlet.. 11-89
11.6 Developing Applications with Script Languages ... 11-89
11.6.1 Script Language Support in JDeveloper.. 11-90
11.6.1.1 How to Work with JavaScript Code Insight .. 11-90
11.6.1.2 How to Use Breadcrumb Support... 11-91
11.6.1.3 How to Use Structure Pane Support... 11-91
11.6.2 Working with Script Languages... 11-91
11.6.2.1 How to Create a Script.. 11-91
11.6.2.2 How to Add Script Language Elements to an HTML or JSP Page................... 11-92
11.6.2.3 How to Set Syntax Highlighting ... 11-93
11.6.2.4 How to Associate JavaScript File Extensions .. 11-93
11.6.2.5 How to Create a JSON File... 11-93
11.6.3 Refactoring JavaScript Code ... 11-94
11.6.3.1 Finding Usages of Code Elements .. 11-94
11.6.3.2 Renaming a JavaScript Code Element .. 11-95
11.6.3.3 Deleting a JavaScript Code Element ... 11-95
11.6.3.4 How to Preview a Refactoring Operation.. 11-96
11.6.3.5 How to Reformat JavaScript Code.. 11-96
11.6.3.6 How to Change Code Formatting Preferences ... 11-97
11.6.3.7 How to Use Code Folding.. 11-97
11.6.3.8 How to Refactor and Move a File.. 11-97
11.7 Working with JSP and Facelet Tag Libraries ... 11-98
11.7.1 How to Use Tag Libraries with Your Web Pages .. 11-98
11.7.2 How to Work with Custom Tag Libraries .. 11-99

12 Developing with EJB and JPA Components

12.1 About Developing with EJB and JPA Components.. 12-1
12.2 Support For EJB Versions and Features.. 12-1
12.3 Building EJB 3.0 Applications and Development Process ... 12-4
12.3.1 EJB 3.0 Application Development Process.. 12-4
12.3.1.1 Creating Entities ... 12-4
12.3.1.2 Creating Session Beans and Facades ... 12-4
12.3.1.3 Deploying EJBs .. 12-4
12.3.1.4 Testing EJBs Remotely .. 12-5
12.3.1.5 Registering Business Services with Oracle ADF Data Controls 12-5
12.4 How to Work with an EJB Business Services Layer ... 12-5
12.5 Using Java EE Design Patterns in Oracle JDeveloper... 12-6
12.6 Building a Persistence Tier .. 12-6
12.6.1 About JPA Entities and the Java Persistence API .. 12-6
12.6.1.1 JPA Entities are POJOs.. 12-7
12.6.1.2 Metadata Annotations for O-R Mapping .. 12-7

xviii

12.6.1.3 Inheritance and Polymorphism Support ... 12-8
12.6.1.4 Simplified EntityManager API for CRUD Operations .. 12-8
12.6.1.5 Query Enhancements ... 12-9
12.6.2 How to Create JPA Entities .. 12-9
12.6.3 About SDO For EJB/JPA ... 12-9
12.6.4 Using an EJB/POJO-based ADF-BC Service for Deployment to the SOA Platform

12-10
12.6.5 How to Create an SDO Service Interface for JPA Entities .. 12-10
12.6.5.1 How to Configure an EJB/POJO-based ADF-BC Service for Deployment to the

SOA Platform 12-11
12.6.5.2 File Types Created to Support Your SDO Architecture..................................... 12-11
12.6.6 How to Generate Database Tables from JPA Entities ... 12-11
12.6.7 JDK 5 Annotations for EJB/JPA ... 12-12
12.6.7.1 EJB 3.0.. 12-12
12.6.7.2 JPA 1.0 .. 12-13
12.6.8 How to Annotate Java Classes.. 12-13
12.6.9 Representing Relationships Between Entities .. 12-14
12.6.10 Java Persistence Query Language .. 12-14
12.6.11 JPA Object-Relational Mappings.. 12-14
12.6.12 How to Use Java Service Facades... 12-15
12.7 Implementing Business Processes in Session Beans ... 12-15
12.7.1 Using Session Facades ... 12-16
12.7.2 How to Create a Session Bean... 12-16
12.7.3 How to Create Session or Message-Driven Beans in Modules 12-17
12.7.4 How to Add, Delete, and Edit EJB Methods .. 12-18
12.7.5 How to Add a Field to an EJB ... 12-19
12.7.6 How to Remove a Field From an EJB .. 12-19
12.7.7 Customizing Business Logic with EJB Environment Entries 12-20
12.7.8 Exposing Data to Clients ... 12-20
12.7.9 How to Identify Resource References ... 12-20
12.7.10 How to Define a Primary Key for an Entity ... 12-21
12.7.11 How to Specify a Primary Key for ADF Binding... 12-22
12.7.12 How to Use ADF Data Controls for EJBs .. 12-22
12.8 Modeling EJB/JPA Components on a Diagram.. 12-22
12.9 Deploying EJB Modules and JPA Persistence Units .. 12-23
12.9.1 About EJB Modules ... 12-23
12.9.2 About JPA Persistence Units... 12-23
12.9.3 How to Create a JPA Persistence Unit .. 12-24
12.9.4 How to Remove EJBs in a Module ... 12-24
12.9.5 How to Import EJBs into JDeveloper .. 12-24
12.9.6 How to Modify EJB/ADF Applications to Deploy to Websphere Application Server

12-25
12.10 Running and Testing EJB/JPA Components ... 12-25
12.10.1 How to Test EJB/JPA Components Using the Integrated Server............................ 12-25
12.10.2 How to Test EJB/JPA Components Using a Remote Server 12-25
12.10.3 How to Test EJB Unit with JUnit .. 12-26

xix

13 Developing TopLink Mappings

13.1 About Developing TopLink Mappings .. 13-1
13.1.1 Considering the Impedance Mismatch.. 13-2
13.1.2 Designing TopLink Applications ... 13-2
13.1.3 Using TopLink in Application Design... 13-2
13.1.4 Creating TopLink Metadata .. 13-3
13.1.5 Creating Project Metadata ... 13-4
13.1.6 Creating Session Metadata .. 13-4
13.1.7 Using TopLink Descriptors .. 13-4
13.1.7.1 Relational Descriptors... 13-5
13.1.7.2 EIS Descriptors... 13-5
13.1.7.3 XML Descriptors.. 13-5
13.1.8 Using TopLink Mappings.. 13-5
13.1.8.1 Relational Mapping Types ... 13-5
13.1.8.2 EIS Mapping Types ... 13-6
13.1.8.3 XML Mapping Types .. 13-7
13.1.9 Understanding the TopLink Editor.. 13-7
13.1.9.1 Managing TopLink Maps... 13-7
13.1.9.2 Managing TopLink Sessions .. 13-8
13.1.9.3 Managing Persistence Configurations.. 13-8
13.1.9.4 The TopLink Structure View Toolbar... 13-8
13.1.9.5 TopLink Project Elements in the Application Navigator 13-9
13.1.9.6 TopLink Editor Tabs in the Editor Window.. 13-9
13.1.9.7 TopLink Project Elements in the Structure View.. 13-10
13.1.9.8 Using the TopLink Structure View Toolbar .. 13-10
13.1.9.9 TopLink Mapping Status Report in Message Log .. 13-10
13.1.9.10 Configuring TopLink Preferences... 13-10
13.1.9.11 How to Create a TopLink Mapping Project... 13-10
13.1.9.12 How to Use Converter Mappings ... 13-11
13.1.9.13 How to Automap TopLink Descriptors ... 13-12
13.1.9.14 Data Source Login Information ... 13-12
13.2 Developing TopLink JPA Projects ... 13-12
13.2.1 How to Create and Configure a JPA Persistence Descriptor (persistence.xml) 13-13
13.2.2 How to Create Persistence Units .. 13-14
13.2.3 How to Configure Persistence Units.. 13-15
13.2.4 How to Create JPA Descriptors .. 13-16
13.2.4.1 How to Configure Persistence Unit Defaults .. 13-17
13.2.4.2 How to Configure Generators ... 13-17
13.2.4.3 How to Configure Queries ... 13-17
13.2.5 Using JPA Mappings.. 13-17
13.2.6 Using TopLink Extensions .. 13-18
13.3 Developing TopLink Relational Projects .. 13-18
13.3.1 How to Create Relational Projects and Object Maps... 13-18
13.3.2 How to Create Relational Descriptors ... 13-19
13.3.3 How to Configure Relational Descriptors... 13-20
13.4 Developing TopLink XML Projects .. 13-20
13.4.1 How to Create XML Projects... 13-21

xx

13.4.2 How to Create XML Object Maps .. 13-21
13.4.3 How to Create XML Descriptors .. 13-21
13.4.4 How to Add XML Schemas... 13-22
13.5 Developing TopLink EIS Projects .. 13-22
13.5.1 How to Create EIS Projects.. 13-22
13.5.2 How to Create EIS Object Maps ... 13-23
13.5.3 How to Create EIS Descriptors ... 13-23
13.5.4 Using EIS Data Sources.. 13-23
13.6 Developing TopLink Sessions.. 13-24
13.6.1 How to Create a New Sessions Configuration File.. 13-24
13.6.2 How to Create Sessions.. 13-25
13.6.3 Acquiring Sessions at Runtime... 13-25
13.6.4 How to Create Session Brokers... 13-26
13.6.5 How to Create Data Source Logins .. 13-26
13.6.6 How to Create Connection Pools ... 13-26
13.7 Developing TopLink Applications.. 13-27
13.7.1 Using TopLink the Cache .. 13-27
13.7.1.1 Object Identity.. 13-27
13.7.1.2 Querying and the Cache... 13-28
13.7.1.3 Handling Stale Data .. 13-28
13.7.1.4 Explicit Query Refreshes .. 13-28
13.7.1.5 Cache Invalidation... 13-28
13.7.1.6 Cache Coordination... 13-28
13.7.1.7 Cache Isolation... 13-28
13.7.1.8 Cache Locking and Transaction Isolation.. 13-29
13.7.2 How to Configure the TopLink Cache .. 13-29
13.7.3 Using Queries .. 13-29
13.7.3.1 TopLink Query Languages .. 13-29
13.7.3.2 TopLink Query Types... 13-30
13.7.4 How to Create Queries... 13-30
13.7.5 Using Basic Query API... 13-30
13.7.6 Using Advanced Query API ... 13-31
13.7.6.1 Redirect Queries .. 13-31
13.7.6.2 Historical Queries.. 13-31
13.7.6.3 Fetch Groups .. 13-31
13.7.6.4 Read-Only Queries .. 13-31
13.7.6.5 Interfaces... 13-32
13.7.6.6 Inheritance Hierarchy ... 13-32
13.7.6.7 Additional Join Expressions... 13-32
13.7.6.8 EJB Finders ... 13-32
13.7.6.9 Cursor and Stream Query Results .. 13-32
13.7.7 How to Create TopLink Expressions ... 13-33
13.7.8 Understanding TopLink Transactions... 13-33
13.7.9 TopLink Transactions and the Unit of Work.. 13-34

14 Developing Secure Applications

14.1 About Developing Secure Applications ... 14-1

xxi

14.1.1 Understanding Java EE Applications and Oracle Platform Security Services for Java
(OPSS) 14-1

14.1.2 Understanding Fusion Web Applications and ADF Security 14-1
14.1.3 Understanding Container-managed Security... 14-2
14.1.4 Additional Functionality ... 14-2
14.2 Securing Applications in Phases.. 14-2
14.3 About Web Application Security and JDeveloper Support... 14-3
14.4 Handling User Authentication in Web Applications ... 14-4
14.4.1 About Authentication Type Choices.. 14-4
14.4.1.1 BASIC authentication.. 14-4
14.4.1.2 FORM authentication.. 14-4
14.4.1.3 CLIENT-CERT authentication ... 14-5
14.4.2 Encrypting Passwords for a Target Domain... 14-5
14.4.2.1 weblogic.security.Encrypt .. 14-5
14.4.3 How to Create an Identity Store .. 14-6
14.4.4 How to Add Test Users to the Identity Store ... 14-7
14.4.5 How to Add Enterprise Roles to the Identity Store... 14-8
14.4.6 How to Create a Credential Store... 14-8
14.4.7 How to Add a Login Module.. 14-9
14.4.8 How to Authenticate Through a Custom Login Module ... 14-10
14.4.9 How to Add a Key Store.. 14-11
14.4.10 How to Enable an Anonymous Provider .. 14-11
14.4.11 How to Add Credentials to Users in the Identity Store .. 14-11
14.4.12 How to Choose the Authentication Type for the Web Application........................ 14-12
14.5 Securing Application Resources in Web Applications... 14-12
14.5.1 How to Secure Application Resources Using the jazn-data.xml Overview Editor............

14-13
14.5.2 How to Secure ADF Resources Using ADF Security in Fusion Web Applications

14-13
14.6 Configuring an Application-Level Policy Store .. 14-14
14.6.1 About Policy Stores .. 14-14
14.6.2 About Principals, Permissions and Grants .. 14-15
14.6.3 How to Add Application Roles to an Application Policy Store 14-15
14.6.4 How to Add Member Users or Enterprise Roles to an Application Role............... 14-15
14.6.5 How to Create Custom Resource Types.. 14-16
14.6.6 How to Add Resource Grants to the Application Policy Store................................ 14-16
14.6.7 How to Add Entitlement Grants to the Application Policy Store 14-17
14.6.8 How to Create a Custom JAAS Permission Class.. 14-17
14.6.9 How to Add Grants to the System Policy Store ... 14-18
14.7 Migrating the Policy Stores .. 14-18
14.7.1 How to Migrate the Policy Stores... 14-18
14.7.2 Migrating Application Policies ... 14-19
14.7.3 Migrating Credentials .. 14-19
14.7.4 Migrating Users and Groups .. 14-20
14.8 Securing Development with JDBC .. 14-20

xxii

15 Developing Applications Using XML

15.1 About Developing Applications Using XML .. 15-1
15.2 Using the XML Editors.. 15-1
15.2.1 Understanding XML Editing Features .. 15-2
15.2.2 Understanding the XML Editor Toolbar ... 15-3
15.3 Creating XML Files in Oracle JDeveloper .. 15-3
15.3.1 Localizing with XML.. 15-4
15.3.1.1 How to Create a New XLIFF file ... 15-4
15.3.1.2 What You May Need to Know About XLIFF Files .. 15-4
15.3.2 How to Import and Register XML Schemas ... 15-4
15.3.3 How to Add an XML Element to the Palette .. 15-5
15.3.4 How to Generate Java Classes from XML Schemas with JAXB................................. 15-6
15.4 Editing XML Files in Oracle JDeveloper... 15-6
15.4.1 How to Set Editing Options for the XML Editor.. 15-7
15.4.2 Using XQuery with XML... 15-7
15.4.2.1 How to Create a New XQuery File ... 15-7
15.4.2.2 What You May Need to Know About XPath Expression Syntax 15-7
15.5 Working with XML Schemas ... 15-7
15.5.1 Working with Attributes in the XSD Visual Editor ... 15-7
15.5.2 What Happens When You Create an XML Schema in the XSD Visual Editor 15-8
15.5.3 Understanding the XSD Component Display in the XSD Visual Editor.................. 15-9
15.5.3.1 XSD Component Selection ... 15-9
15.5.3.2 XML Schema Component... 15-9
15.5.3.3 Choice Component ... 15-9
15.5.3.4 All Component... 15-9
15.5.3.5 Sequence Component ... 15-10
15.5.3.6 Cardinality and Ordinality... 15-10
15.5.3.7 ComplexType Component ... 15-10
15.5.3.8 Attribute Group Component ... 15-11
15.5.3.9 Union Component ... 15-11
15.5.3.10 List Component ... 15-11
15.5.4 How to Generate an XML Schema from XML Documents 15-12
15.5.5 How to Generate an XSD File from a DTD File.. 15-12
15.5.6 How to Display an XSD File for Editing ... 15-12
15.5.7 How to Create an Image of the XSD Visual Editor Design Tab............................... 15-12
15.5.8 How to Navigate with Grab Scroll in the XSD Visual Editor 15-13
15.5.9 How to Expand and Collapse the XSD Component Display................................... 15-13
15.5.10 How to Zoom In and Out in the XSD Visual Editor.. 15-14
15.5.11 How to Select XSD Components ... 15-14
15.5.11.1 What Happens When You Select a Component in the XSD Visual Editor 15-15
15.5.12 How to Select Target Positions for XSD Components .. 15-15
15.5.13 How to Insert XSD Components .. 15-16
15.5.14 How to Set and Modify XSD Component Properties.. 15-17
15.5.15 How to Set Properties for Multiple Components .. 15-18
15.5.16 How to Cut, Copy, and Paste XSD Components ... 15-18
15.5.16.1 Cutting Components... 15-18
15.5.16.2 Copying Components ... 15-19

xxiii

15.5.16.3 Pasting Elements.. 15-19
15.5.17 How to Move XSD Components ... 15-19
15.5.18 How to Delete XSD Components .. 15-20
15.6 Developing Databound XML Pages with XSQL Servlet .. 15-20
15.6.1 Supporting XSQL Servlet Clients ... 15-21
15.6.1.1 What is XSQL Servlet? .. 15-21
15.6.1.2 How Can You Use XSQL Servlet?... 15-21
15.6.2 How to Create an XSQL File ... 15-22
15.6.3 How to Edit XML Files with XSQL Tags... 15-22
15.6.4 How to Add XSQL Tags .. 15-23
15.6.5 How to Check the Syntax in XSQL Files ... 15-23
15.6.6 How to Create XSQL Servlet Clients that Access the Database............................... 15-24
15.6.7 Creating XSQL Servlet Clients for Business Components.. 15-25
15.6.7.1 What You May Need to Know About Business Components XSQL Action

Handlers 15-26
15.6.8 How to Creating a Custom Action Handler for XSQL.. 15-26
15.6.9 How to Run and Deploy XSQL Servlet Clients.. 15-27
15.6.10 How to View Output from Running XSQL Files as Raw XML Data 15-28
15.6.11 How to Format XML Data with a Style Sheet .. 15-28
15.6.12 How to Create an XSL Style Sheet for XSQL Files ... 15-29
15.6.13 How to Modify the XSQL Configuration File .. 15-30
15.6.14 Using XML Metadata Properties in XSQL Files ... 15-30
15.6.14.1 Using XML_ELEMENT .. 15-31
15.6.14.2 Using XML_ROW_ELEMENT .. 15-31
15.6.14.3 Using XML_CDATA ... 15-32
15.6.14.4 Using XML_EXPLICIT_NULL .. 15-32

16 Developing Applications Using Web Services

16.1 About Developing Applications using Web Services... 16-1
16.1.1 Discovering and Using Web Services .. 16-2
16.1.2 Developing and Deploying Web Services... 16-2
16.2 Using JDeveloper to Create and Use Web Services .. 16-2
16.2.1 How to Use Proxy Settings and JDeveloper .. 16-3
16.2.2 How to Set the Context Root for Web Services .. 16-3
16.2.3 How to Configure Connections to Use with Web Services .. 16-4
16.2.4 How to Work with Type Mappings... 16-4
16.2.5 How to Work with PL/SQL Web Services and Types.. 16-5
16.2.6 How to Choose Your Deployment Platform .. 16-7
16.2.7 How to Work with Web Services Code Insight ... 16-8
16.2.8 How to Migrate JAX-RPC 10.1.3 Web Services .. 16-9
16.3 Working with Web Services in a UDDI Registry .. 16-10
16.3.1 How to Define UDDI Registry Connections... 16-10
16.3.1.1 Creating UDDI Registry Connections .. 16-10
16.3.1.2 Editing the Name of UDDI Registry Connections ... 16-11
16.3.1.3 Changing the View of UDDI Registry Connections .. 16-11
16.3.1.4 Refreshing UDDI Registry Connections .. 16-11
16.3.1.5 Deleting UDDI Registry Connections .. 16-12

xxiv

16.3.2 How to Configure the View of UDDI Registry Connections 16-12
16.3.2.1 Choosing Business View ... 16-12
16.3.2.2 Choosing Category View.. 16-12
16.3.3 How to Search for Web Services in a UDDI Registry.. 16-13
16.3.4 How to Generate Proxies to Use Web Services Located in a UDDI Registry 16-13
16.3.5 How to Display Reports of Web Services Located in a UDDI Registry 16-13
16.3.6 How to Publish Web Services to a UDDI Registry .. 16-14
16.4 Creating Web Service Clients... 16-14
16.4.1 How to Create the Client and Proxy Classes.. 16-15
16.4.2 How to Use Web Service Client and Proxy Classes .. 16-16
16.4.2.1 How to Use a Stand-Alone Client Application ... 16-16
16.4.2.2 How to Use the Java Standard Edition (SE) Client Application 16-16
16.4.2.3 How to Use the Java EE Component Client Application Deployed to WebLogic

Server 16-17
16.4.3 How to View the WSDL Used to Create the Web Service Client 16-17
16.4.4 How to Update the Web Service WSDL at Run Time... 16-17
16.4.4.1 How to Use an XML Catalog File.. 16-18
16.4.4.2 How to Use Web Service Injection (@WebServiceRef) and a Deployment Plan.........

16-19
16.4.5 How to Regenerate Web Service Client and Proxy Classes 16-21
16.4.6 How to Manage the Web Service Clients.. 16-22
16.4.7 How to Reference Web Services Using the @WebServiceRef Annotation 16-22
16.5 Creating SOAP Web Services (Bottom-Up) ... 16-23
16.5.1 How to Create Java Web Services ... 16-23
16.5.2 How to Use JSR-181 Annotations... 16-24
16.5.3 How to Create PL/SQL Web Services... 16-25
16.5.4 How to Create TopLink Database Web Service Providers....................................... 16-26
16.5.5 How to Use Web Service Atomic Transactions.. 16-26
16.5.6 How to Regenerate Web Services from Source .. 16-29
16.5.7 How to Use Handlers... 16-29
16.5.8 How to Expose Superclass Methods for JAX-RPC .. 16-29
16.5.9 How to Handle Overloaded Methods ... 16-30
16.5.10 How to Set Mappings between Java Methods and WSDL Operations Using the

JAX-RPC Mapping File Editor 16-31
16.6 Creating SOAP Web Services from WSDL (Top Down).. 16-31
16.7 Creating RESTful Web Services ... 16-32
16.7.1 How to Add the Jersey JAX-RS Reference Implementation to Your Project 16-32
16.7.2 How to Create JAX-RS Web Services and Clients ... 16-33
16.8 Managing WSDLs .. 16-35
16.8.1 How to Create WSDL Documents ... 16-35
16.8.2 How to Add a WSDL to a Web Service Project.. 16-36
16.8.3 How to Display the WSDL for a Web Service .. 16-36
16.8.4 How to Save a WSDL to Your Local Directory .. 16-36
16.9 Using Policies with Web Services.. 16-37
16.9.1 What You May Need to Know About Oracle WSM Policies 16-38
16.9.2 What You May Need to Know About Oracle WebLogic Web Service Policies 16-38
16.9.3 How to Attach Policies to Web Services.. 16-39
16.9.4 How to Attach Oracle WSM Policies to Web Service Clients 16-40

xxv

16.9.5 How to Invoke Web Services Secured Using WebLogic Web Service Policies 16-41
16.9.6 How to Edit and Remove Policies from Web Services.. 16-42
16.9.7 How to Use Custom Web Service Policies .. 16-43
16.9.7.1 Using Custom Oracle WSM Policies... 16-43
16.9.7.2 Using Custom Oracle WebLogic Web Service Policies...................................... 16-44
16.9.8 How to Use a Different Oracle WSM Policy Store... 16-44
16.10 Editing and Deleting Web Services ... 16-45
16.11 Testing and Debugging Web Services .. 16-45
16.11.1 How to Test Web Services in a Browser ... 16-46
16.11.2 How to Debug Web Services... 16-47
16.12 Deploying Web Services ... 16-48
16.12.1 How to Deploy Web Services to Integrated WebLogic Server 16-49
16.12.2 How to Deploy Web Services to Oracle WebLogic Server 16-49
16.12.3 How to Undeploy Web Services... 16-50
16.13 Monitoring and Analyzing Web Services .. 16-50
16.13.1 How to Analyze Web Services in the Navigator.. 16-51
16.13.2 How to Create and Analyze Web Service Logs .. 16-51
16.13.2.1 What You May Need to Know About Performing an Analysis of a Web Service......

16-52
16.13.3 How to Analyze Web Services Running in the Integrated Server 16-53
16.13.3.1 Changing the Endpoint Address... 16-53
16.13.3.2 Changing the Endpoint Address Without Modifying the WSDL (JAX-WS Only).....

16-53
16.13.4 How to Examine Web Services using the HTTP Analyzer 16-54

Part IV Developing Java Applications

17 Getting Started with Developing Java Applications

17.1 About Developing Java Applications ... 17-1
17.2 About the Java Source Editor ... 17-2
17.3 Understanding Java Source Editor Features.. 17-2
17.3.1 Using Code Insight ... 17-2
17.3.1.1 Adding Annotations to Your Java Code .. 17-3
17.3.2 Using Code Peek... 17-3
17.3.3 Using Scroll Tips .. 17-3
17.3.4 Searching Incrementally .. 17-3
17.3.5 Using Shortcut Keys ... 17-4
17.3.6 Bookmarking .. 17-4
17.3.7 Browsing Java Source... 17-4
17.3.8 Using Code Templates .. 17-5
17.4 Setting Preferences for the Java Source Editor .. 17-5
17.4.1 How to Set Code Insight Options for the Java Source Editor 17-5
17.4.2 How to Set Comment and Brace-Matching Options for the Java Source Editor..... 17-5
17.4.3 How to Enable Automatic Import Assistance for the Java Source Editor................ 17-6
17.4.4 How to Set Import Statement Sorting Options for the Java Source Editor 17-6
17.5 Using Toolbar Options .. 17-6
17.6 Using the Quick Outline Window... 17-7

xxvi

17.7 About the Java UI Visual Editor .. 17-8
17.7.1 Java Swing and AWT Components .. 17-9

18 Programming in Java

18.1 About Programming in Java .. 18-1
18.2 Navigating in Java Code ... 18-2
18.2.1 How to Browse Classes or Interfaces... 18-2
18.2.2 How to Locate the Declaration of a Variable, Class, or Method................................ 18-2
18.2.3 How to Find the Usages of a Class or Interface ... 18-2
18.2.4 How to Find the Usages of a Method .. 18-3
18.2.5 How to Find the Usages of a Field ... 18-4
18.2.6 How to Find the Usages of a Local Variable or Parameter... 18-4
18.2.7 How to Find Overridden Method Definitions ... 18-4
18.2.8 How to Find Implemented Method Declarations.. 18-5
18.2.9 How to View the Hierarchy of a Class or Interface ... 18-5
18.2.10 Stepping Through the Members of a Class... 18-5
18.3 Editing Java Code .. 18-6
18.3.1 Editing Code with the Java Visual Editor .. 18-6
18.3.2 Opening the Java Visual Editor .. 18-7
18.3.3 Understanding Java Visual Editor Proxy Classes.. 18-7
18.3.4 Registering a Java Visual Editor Proxy for Custom Components............................. 18-7
18.3.5 How to Create a New Java Class.. 18-8
18.3.6 How to Create a New Java Interface ... 18-8
18.3.7 How to Implement a Java Interface ... 18-9
18.3.8 How to Override Methods .. 18-9
18.3.9 How to Use Code Templates .. 18-9
18.3.10 Using Predefined Code Templates... 18-10
18.3.11 How to Expand or Narrow Selected Text ... 18-15
18.3.12 How to Surround Code with Coding Constructs .. 18-16
18.3.13 Adding an Import Statement .. 18-16
18.3.14 How to Organize Import Statements... 18-16
18.4 Adding Documentation Comments.. 18-17
18.4.1 How to Add Documentation Comments .. 18-17
18.4.2 How to Edit Documentation Comments .. 18-17
18.4.3 How to Update Documentation Comments... 18-17
18.4.4 How to Audit Documentation Comments.. 18-18
18.5 How to Customize Javadoc Options for the Java Source Editor..................................... 18-18
18.5.1 How to Add Documentation Comments .. 18-18
18.5.2 How to Set Javadoc Properties for a Project ... 18-19
18.5.3 How to View Javadoc for a Code Element Using Quick Javadoc 18-19
18.5.4 How to Preview Documentation Comments ... 18-19
18.6 Building Java Projects.. 18-20
18.6.1 Building with Make and Rebuild Commands.. 18-20
18.6.1.1 Compiling with Make .. 18-20
18.6.1.2 Compiling with Rebuild ... 18-20
18.6.1.3 Understanding Dependency Checking .. 18-21
18.6.1.4 How to Configure Your Project for Compiling... 18-21

xxvii

18.6.1.5 How to Specify a Native Encoding for Compiling... 18-22
18.6.2 Compiling Applications and Projects .. 18-22
18.6.2.1 Compiling from the Command Line .. 18-28
18.6.3 Cleaning Applications and Projects ... 18-28
18.6.3.1 How to Run the Clean Command... 18-29
18.6.4 How to Run Javadoc... 18-29
18.6.5 Building with Apache Ant... 18-29
18.6.5.1 Running Ant on Project Buildfile Targets.. 18-30
18.6.5.2 Using the Ant Tool in the IDE ... 18-30
18.6.6 Building and Running with Apache Maven... 18-30
18.6.6.1 Understanding the Project Object Model... 18-30
18.6.6.2 How to Create a Project Object Model .. 18-31
18.6.6.3 How to Create a Maven POM for a Project ... 18-31
18.6.6.4 How to Generate a Project Object Model from an Application........................ 18-31
18.6.6.5 Creating a Maven Template... 18-31
18.6.6.6 How to Run a Maven Project ... 18-32
18.6.6.7 How to Change the Maven Version ... 18-32
18.6.6.8 How to Set Project Properties .. 18-32
18.6.6.9 How to Set Log Window Preferences... 18-33
18.6.7 Creating a Profile Manually .. 18-33
18.7 Working with JavaBeans... 18-35
18.7.1 Using JavaBeans in JDeveloper... 18-35
18.7.2 How to Create a JavaBean ... 18-36
18.7.3 How to Create a BeanInfo Class ... 18-37
18.7.4 How to Implement an Event-Handling Method.. 18-37
18.7.5 What Happens When You Create an Event-Handling Method 18-38
18.7.6 Understanding Anonymous Adapters .. 18-38
18.7.7 Understanding Standard Event Adapters .. 18-38
18.7.8 How to Make Standard Adapters the Default for Your Projects............................. 18-39
18.7.9 How to Select an Event-Handling Adapter .. 18-39
18.7.10 How to Create an Event Set .. 18-40
18.7.11 How to Create a Customizer... 18-40
18.7.12 How to Make a Component Capable of Firing Events .. 18-41
18.8 Refactoring Java Projects... 18-41
18.8.1 Refactoring on Java Class Diagrams .. 18-42
18.8.2 How to Invoke a Refactoring Operation ... 18-42
18.8.3 How to Rename a Code Element ... 18-43
18.8.4 How to Delete a Code Element .. 18-44
18.8.5 How to Preview a Refactoring Operation... 18-45
18.8.6 Refactoring Classes and Interfaces... 18-45
18.8.6.1 How to Move a Package, Class, or Interface ... 18-45
18.8.6.2 How to Duplicate a Class or Interface.. 18-46
18.8.6.3 How to Extract an Interface from a Class .. 18-47
18.8.6.4 How to Extract a Superclass... 18-47
18.8.6.5 How to Use Supertypes Where Possible.. 18-48
18.8.6.6 How to Convert an Anonymous Class to an Inner Class.................................. 18-48
18.8.6.7 How to Move an Inner Class ... 18-49

xxviii

18.8.7 Refactoring Members .. 18-49
18.8.7.1 How to Move a Class Member .. 18-49
18.8.7.2 How to Change the Signature of a Method ... 18-50
18.8.7.3 How to Change a Method to a Static Method ... 18-50
18.8.7.4 How to Pull Members Up into a Superclass.. 18-51
18.8.7.5 How to Push Members Down into Subclasses.. 18-51
18.8.8 Refactoring Expressions... 18-52
18.8.8.1 How to Inline a Method Call ... 18-52
18.8.8.2 How to Introduce a Field.. 18-53
18.8.8.3 How to Introduce a Variable.. 18-53
18.8.8.4 How to Introduce a Parameter .. 18-54
18.8.8.5 How to Introduce a Constant .. 18-54
18.8.8.6 How to Extract a Method ... 18-55
18.8.8.7 How to Replace a Constructor with a Factory Method 18-56
18.8.8.8 How to Encapsulate a Field ... 18-56
18.8.8.9 How to Invert a Boolean Expression .. 18-57
18.9 Optimizing Application Performance ... 18-57
18.9.1 Understanding Audit Rules .. 18-58
18.9.2 Understanding Audit Metrics... 18-59
18.9.3 Using the Auditing Tools .. 18-59
18.9.3.1 Using the Audit Window Report Panel ... 18-59
18.9.3.2 Using the Audit Window Toolbar .. 18-59
18.9.3.3 Using Filters ... 18-60
18.9.3.4 Using the Audit Window Context Menu... 18-61
18.9.4 How to Audit Java Code in JDeveloper .. 18-61
18.9.5 Auditing Java Code from the Command Line ... 18-62
18.9.6 How to Run Audit to Generate an Audit Report... 18-63
18.9.7 How to Audit Serializable Fields That Do Not Have The serialVersionUID 18-64
18.9.8 How to Audit Unserializable Fields .. 18-64
18.9.9 Viewing an Audit report.. 18-64
18.9.10 Refreshing an Audit Report .. 18-64
18.9.11 Organizing Audit Report Columns ... 18-64
18.9.12 How to Organize Audit Report Rows ... 18-65
18.9.13 How to Filter Audit Report Rows .. 18-65
18.9.14 How to Save an Audit Report... 18-66
18.9.15 How to Inspect an Audit Report Violation or Measurement................................... 18-66
18.9.16 How to Fix an Audit Rule Violation .. 18-66
18.9.17 How to Fix a Construct's Audit Rule Violations.. 18-66
18.9.18 How to Hide Audit Rule Violations .. 18-67
18.9.19 How to Hide Audit Report Measurements... 18-67
18.9.20 Managing Audit Profiles ... 18-67
18.9.21 How to Create an Audit Profile.. 18-68
18.9.22 How to Modify an Audit Profile .. 18-68
18.9.23 How to Delete an Audit Profile .. 18-69
18.9.24 How to Import or Export an Audit Profile ... 18-69
18.9.25 How to Browse Audit Rules, Code Assists, and Metrics.. 18-69
18.9.26 How to Activate and Deactivate Components of an Audit Profile......................... 18-69

xxix

18.9.27 How to Set Property Values for an Audit Test... 18-70
18.10 Profiling a Project... 18-70
18.10.1 Understanding Memory Profiler Views.. 18-71
18.10.2 Profiling an Application .. 18-71
18.10.3 Configuring Profilers ... 18-71
18.10.4 Understanding CPU Profiling .. 18-71
18.10.5 Understanding Memory Profiling.. 18-72
18.10.6 Understanding Profiler Performance .. 18-72
18.10.7 Understanding Profiler Use Cases ... 18-73
18.10.8 How to Profile a Project in JDeveloper.. 18-74
18.10.9 CPU Profiling .. 18-74
18.10.10 Understanding CPU Profiler Views... 18-74
18.10.11 Understanding CPU Time Sampling Results .. 18-75
18.10.12 Understanding Method Call Counts Results ... 18-76
18.10.13 How to Set Options for the CPU Profiler ... 18-76
18.10.14 How to Start the CPU Profiler .. 18-76
18.10.15 Memory Profiling ... 18-77
18.10.15.1 Understanding Memory Profiler Views... 18-78
18.10.15.2 Understanding Reference Snapshots.. 18-78
18.10.15.3 How to Set Options for the Memory Profiler ... 18-78
18.10.15.4 How to Start a Memory Profiling Session ... 18-79
18.10.16 Profiling Remotely.. 18-79
18.10.17 Understanding Profiler Agent Support for JVMs .. 18-80
18.10.18 How to Invoke the Profiler Agent.. 18-80
18.10.19 How to Connect the Profiler Remotely to a Java Program....................................... 18-83
18.10.20 How to Dynamically Attach and Detach the Profiler To a Running Process 18-84
18.10.21 How to Set Profile Points... 18-85
18.10.22 Saving and Opening Profiler Sessions... 18-85
18.10.23 How to Open HPROF Format Heap Dumps ... 18-86
18.11 Modeling Java Classes... 18-86
18.11.1 Modeling Dependencies .. 18-86
18.11.2 Creating Java Classes, Interfaces, and Enums.. 18-86
18.11.2.1 Modeling Java Interfaces .. 18-87
18.11.2.2 Modeling Inner Java Classes and Inner Java Interfaces..................................... 18-87
18.11.2.3 Modeling Enums ... 18-87
18.11.3 Modeling Composition on a Java Class Diagram .. 18-88
18.11.4 Modeling Inheritance on a Java Class Diagram.. 18-89
18.11.4.1 Extending Modeled Java Classes .. 18-89
18.11.4.2 Implementing Modeled Java Interfaces ... 18-89
18.11.5 Modeling Java Fields and Methods ... 18-89
18.11.6 Modeling Packages on a Java Class Diagram... 18-90
18.11.7 How to Display Related Classes on a Diagram.. 18-90
18.11.8 How to Hide References between Java Classes.. 18-90
18.11.9 What Happens When You Model a Java Class ... 18-91
18.11.10 How to Create a Diagram of Java Classes... 18-91
18.12 Unit Testing with JUnit .. 18-91
18.12.1 How to Install JUnit.. 18-92

xxx

18.12.2 Creating a JUnit Test for a Java Project.. 18-92
18.12.3 How to Create a JUnit Custom Test Fixture ... 18-92
18.12.4 How to Create a JUnit JDBC Test Fixture ... 18-93
18.12.5 Creating a JUnit Test Case... 18-93
18.12.6 Creating a JUnit Test Suite .. 18-94
18.12.7 How to Add a Test to a JUnit Test Case .. 18-95
18.12.8 How to Update a Test Suite with all Test Cases in the Project 18-95
18.12.9 How to Run JUnit Test Suites ... 18-96

19 Running and Debugging Java Programs

19.1 About Running and Debugging Java Programs ... 19-1
19.2 Understanding the Run Manager.. 19-1
19.3 How to Configure a Project for Running ... 19-2
19.4 Running an Applet .. 19-2
19.4.1 Using an HTML File to Store Arguments ... 19-3
19.5 How to Run a Project or File .. 19-3
19.5.1 How to Run a Project from the Command Line... 19-4
19.5.2 How to Change the Java Virtual Machine .. 19-4
19.5.3 Setting the Classpath for Programs.. 19-4
19.5.3.1 Setting the CLASSPATH Environment Variable (for java.exe) 19-5
19.5.3.2 Using the JDeveloper Library CLASSPATH ... 19-5
19.5.3.3 Setting the CLASSPATH to Include Your Projects... 19-5
19.5.3.4 Setting the CLASSPATH Parameter (for java.exe) ... 19-6
19.5.3.5 Embedding the CLASSPATH Parameters in the <APPLET> Tag 19-6
19.6 About the Debugger .. 19-6
19.6.1 Understanding the Debugger Icons ... 19-8
19.6.2 How to Debug a Project in JDeveloper.. 19-10
19.6.3 How to Debug ADF Components .. 19-10
19.6.4 How to Configure a Project for Debugging.. 19-12
19.6.5 How to Set the Debugger Start Options .. 19-12
19.6.6 How to Launch the Debugger... 19-12
19.6.7 How to Export Debug Information to a File... 19-13
19.6.8 Using the Source Editor When Debugging... 19-13
19.6.9 Using Java Expressions in the Debugger .. 19-14
19.6.10 Moving Through Code While Debugging .. 19-15
19.6.11 Stepping Into a Method ... 19-16
19.6.12 Stepping Over a Method.. 19-16
19.6.13 Controlling Which Classes Are Traced Into ... 19-17
19.6.14 How to Step Through Behavior as Guided by Tracing Lists 19-17
19.6.15 How to Locate the Execution Point for a Thread... 19-18
19.6.16 How to Run to the Cursor Location... 19-18
19.6.17 How to Pause and Resume the Debugger ... 19-18
19.6.18 How to Terminate a Debugging Session... 19-19
19.6.19 How to View the Debugger Log... 19-19
19.6.20 How to Debug an Applet .. 19-19
19.6.21 How to Debug a Javascript Program ... 19-20
19.7 Using the Debugger Windows... 19-21

xxxi

19.7.1 Using the Breakpoints Window ... 19-21
19.7.2 How to Use the Smart Data Window .. 19-21
19.7.3 How to Use the Data Window.. 19-22
19.7.4 How to Use the Watches Window ... 19-23
19.7.5 How to Use the Inspector Window.. 19-23
19.7.6 How to Use the Heap Window... 19-24
19.7.7 How to Use the Stack Window... 19-25
19.7.8 How to Use the Classes Window ... 19-25
19.7.9 How to Use the Monitors Window.. 19-26
19.7.10 How to Use the Threads Window ... 19-27
19.7.11 How to Set Preferences for the Debugger Windows... 19-27
19.8 Managing Breakpoints .. 19-28
19.8.1 About Verified and Unverified Breakpoints .. 19-29
19.8.2 Understanding Deadlocks... 19-29
19.8.3 Understanding the Deadlock Breakpoint .. 19-30
19.8.4 Understanding Grouped Breakpoints ... 19-30
19.8.5 How to Edit a Breakpoint .. 19-31
19.8.6 How to Set Source Breakpoints ... 19-32
19.8.7 How to Control Breakpoint Behavior .. 19-32
19.8.8 How Disable and Delete Breakpoints.. 19-33
19.8.9 How to Set Instance Breakpoints.. 19-34
19.8.10 How to Set Exception Breakpoints... 19-34
19.8.11 How to Make a Breakpoint Conditional ... 19-35
19.8.12 Using Pass Count Breakpoints.. 19-35
19.8.13 How to Examine Breakpoints with the Breakpoints Window................................. 19-36
19.8.14 How to Manage Breakpoint Groups.. 19-36
19.9 Examining Program State in Debugger Windows.. 19-37
19.9.1 How to Inspect and Modify Data Elements ... 19-37
19.9.2 How to Set Expression Watches .. 19-38
19.9.3 How to Modify Expressions in the Inspector Window... 19-39
19.9.4 How to Show and Hide Fields in the Filtered Classes List 19-39
19.10 Debugging Remote Java Programs ... 19-40
19.10.1 How to Start a Java Process in Debug Mode .. 19-41
19.10.2 How to Remote Debug Using the Javascript Debugger ... 19-41
19.10.3 How to Use a Project Configured for Remote Debugging 19-43
19.10.4 How to Configure JPDA Remote Debugging... 19-44

20 Implementing Java Swing User Interfaces

20.1 About Implementing Java Swing User Interfaces... 20-1
20.2 Understanding the JDeveloper User Interface Design Tools ... 20-1
20.3 Controlling the Look and Feel of a Swing Application.. 20-3
20.3.1 How to Change the Oracle Look and Feel .. 20-3
20.3.2 How to Change the Windows Look and Feel... 20-4
20.3.3 How to Change the Metal Look and Feel.. 20-4
20.4 Working with Java Swing and AWT Components .. 20-4
20.4.1 Using Swing JavaBeans Components .. 20-4
20.4.2 Using AWT JavaBeans ... 20-6

xxxii

20.5 Working with Layout Managers.. 20-8
20.5.1 Understanding Sizing Properties ... 20-9
20.5.2 Understanding Layouts Provided with JDeveloper.. 20-10
20.5.3 Using BorderLayout ... 20-10
20.5.4 Using BoxLayout2 .. 20-12
20.5.5 Using CardLayout .. 20-12
20.5.5.1 How to Create a CardLayout Container .. 20-13
20.5.5.2 How to Specify the Gap Surrounding a CardLayout Container 20-13
20.5.6 Using FlowLayout .. 20-14
20.5.7 Using FormLayout.. 20-15
20.5.8 Using GridLayout ... 20-16
20.5.9 Using GridBagLayout .. 20-16
20.5.9.1 Understanding GridBagLayout Constraints ... 20-17
20.5.9.2 Setting GridBagConstraints Manually in the Source Code 20-18
20.5.9.3 Modifying Existing GridBagLayout Code to Work in the Java Visual Editor

20-18
20.5.9.4 Designing GridBagLayout Visually in the Java Visual Editor 20-19
20.5.10 Converting to GridBagLayout ... 20-19
20.5.11 Adding Components to a GridBagLayout Container ... 20-20
20.5.12 How to Set GridBagConstraints in the Constraints Property Editor 20-20
20.5.13 Displaying the Grid ... 20-21
20.5.14 Using the Mouse to Change Constraints .. 20-21
20.5.15 Using the GridBagLayout Popup Menu .. 20-22
20.5.16 GridBagConstraints ... 20-22
20.5.17 Using OverlayLayout2... 20-31
20.5.18 Using PaneLayout... 20-31
20.5.19 How Components are Added to PaneLayout .. 20-32
20.5.20 How to Create a PaneLayout Container in the Java Visual Editor 20-32
20.5.21 Using VerticalFlowLayout .. 20-34
20.5.22 Using XYLayout.. 20-36
20.5.23 Understanding Layout Properties.. 20-38
20.5.24 Understanding Layout Constraints ... 20-38
20.5.25 Determining the Size and Location of Your UI Window at Runtime..................... 20-38
20.5.26 Sizing a Window Automatically with pack() ... 20-39
20.5.27 How the preferredSize is Calculated for a Container ... 20-39
20.5.28 Portable Layouts ... 20-39
20.5.29 Explicitly Setting the Size of a Window Using setSize() ... 20-39
20.5.30 Making the Size of your UI Portable to Various Platforms 20-40
20.5.31 Positioning a Window on the Screen ... 20-40
20.5.32 Placing the Sizing and Positioning Method Calls in your Code.............................. 20-40
20.5.33 Working with Nested Containers and Layouts ... 20-41
20.5.33.1 How to Create Nested Panels .. 20-41
20.5.34 Adding Custom Layout Managers .. 20-42
20.6 Prototyping Your UI with Layout Properties .. 20-43
20.6.1 Using null Layout for Prototyping .. 20-44
20.6.2 Designing the Big Regions First.. 20-44
20.6.3 Saving Before Experimenting .. 20-44
20.6.4 Selecting a Final Layout Manager .. 20-44

xxxiii

20.7 Working with Containers and Components.. 20-45
20.7.1 Using Windows... 20-45
20.7.2 Using Panels .. 20-45
20.7.3 Using Lightweight Swing Containers.. 20-45
20.7.4 Understanding Component Properties in the Property Inspector 20-47
20.7.5 Setting Property Values in the Property Inspector .. 20-47
20.7.6 Setting Shared Properties for Multiple Components .. 20-47
20.7.7 Laying Out Your User Interface ... 20-47
20.7.8 How to Create a Frame .. 20-48
20.7.9 How to Create a Panel.. 20-49
20.7.10 How to Create a Dialog Box.. 20-49
20.7.11 How to Use a Dialog Box That is Not a Bean ... 20-50
20.7.12 How to Create a Tabbed Pane .. 20-51
20.8 Working with Components in a Container.. 20-52
20.8.1 How to Add Components to Your User Interface ... 20-52
20.8.2 How to Set Component Properties at Design Time... 20-53
20.8.3 How to Change the Layout for a Container ... 20-54
20.8.4 How to Modify Component Layout Constraints... 20-54
20.8.5 How to Select Components in Your User Interface... 20-55
20.8.6 How to Size and Move Components ... 20-55
20.8.7 How to Group Components.. 20-56
20.8.8 How to Change Component Z-Order.. 20-57
20.8.9 How to Cut, Copy, Paste and Delete Components.. 20-57
20.8.10 How to Copy a Component .. 20-58
20.8.11 How to Cut a Component ... 20-58
20.8.12 How to Paste a Component... 20-59
20.8.13 How to Delete a Component from your UI .. 20-59
20.9 Working with Menus .. 20-59
20.9.1 Understanding Menu Components ... 20-60
20.9.2 Using the Menu Editor... 20-60
20.9.3 Interacting with the Code Editor and the Property Inspector 20-61
20.9.4 How to Add a Menu Component to a Frame... 20-61
20.9.5 How to Add a Popup Menu.. 20-62
20.9.6 How to Create a Submenu ... 20-62
20.9.7 Customizing Menus with the Menu Editor .. 20-63
20.9.8 How to Add a Menu Item ... 20-63
20.9.9 How to Disable a Menu Item .. 20-63
20.9.10 How to Specify Accelerators ... 20-64
20.9.11 How to Insert a Separator Bar... 20-64
20.9.12 How to Create Checkable Menu Items.. 20-64
20.9.13 How to Insert and Delete Menus and Menu Items.. 20-65
20.9.14 How to Move a Menu Item ... 20-65
20.10 Working with Event Handling .. 20-65
20.10.1 How to Attach Event Handling Code to Menu Events... 20-66
20.10.2 How to Attach Event-Handling Code to a Component Event 20-66
20.11 Working with Applets... 20-67
20.11.1 How to Create an Applet... 20-67

xxxiv

20.11.2 How to Create an Applet HTML File .. 20-68
20.11.3 How to Convert an HTML Page that Contains an Applet 20-68
20.11.4 Deploying Applets.. 20-68
20.11.4.1 How to Configure an Applet for Deployment .. 20-68
20.11.4.2 How to Deploy an Applet as a WAR File ... 20-69
20.12 Working with the UI Debugger ... 20-69
20.12.1 Working with UI Debugger Windows .. 20-70
20.12.2 How to Start the UI Debugger .. 20-70
20.12.3 Examining the Application Component Hierarchy... 20-71
20.12.4 How to Display Component Information in the Watches Window 20-71
20.12.5 How to Inspect a UI Component in an Inspector Window...................................... 20-72
20.12.6 How to Trace Events Generated by Components.. 20-72
20.12.7 How to Show Event Listeners... 20-72
20.12.8 How to Remote Debug GUI Applications .. 20-73
20.12.9 Automatic Discovery of Listeners .. 20-74

Part V Developing Applications Using Modeling

21 Getting Started With Application Modeling Using Diagrams

21.1 About Modeling with Diagrams.. 21-1
21.2 Diagram Types ... 21-1
21.2.1 UML Diagrams.. 21-2
21.2.2 Business Services Diagrams .. 21-3
21.3 How to Set Paths for a Modeling Project.. 21-3

22 Creating, Using and Managing Diagrams

22.1 About Creating, Using, and Managing Diagrams .. 22-1
22.2 How to Use the Basic Diagramming Commands ... 22-2
22.3 Working with Diagram Nodes and Elements ... 22-4
22.3.1 How to Work with Nodes ... 22-4
22.3.2 How to Work with Diagram Elements .. 22-5
22.3.2.1 How to Resize and Move Diagram Elements.. 22-9
22.3.2.2 How to Delete Diagram Elements... 22-9
22.3.2.3 How to Undo the Last Action on a Diagram... 22-10
22.3.2.4 How To Create UML Elements Independently of a Diagram 22-10
22.4 How to Work with Diagram Annotations ... 22-10
22.5 Changing the Way a Diagram is Viewed ... 22-11
22.5.1 How to Hide, Show, and Layout Connectors on Diagram....................................... 22-11
22.5.1.1 How to Show and Hide Page Breaks.. 22-12
22.5.1.2 How to Lay Out Connectors on a Diagram... 22-12
22.6 Laying out Diagrams... 22-13
22.6.1 How to Use Diagram Layout Styles.. 22-14
22.6.1.1 Hierarchical UML Diagram Layout.. 22-14
22.6.1.2 Symmetrical Diagram ... 22-14
22.6.1.3 Orthogonal UML Layout.. 22-14
22.6.1.4 Grid Diagram .. 22-15

xxxv

22.6.1.5 How to Use the Diagram Grid to Lay Out Diagrams .. 22-15
22.6.2 How to Align and Distribute Diagram Elements .. 22-15
22.6.3 How to Layout Diagram Elements .. 22-16
22.7 Transforming Java Classes and Interfaces ... 22-17
22.7.1 How to Transform UML and Offline Databases.. 22-18
22.7.2 Using DatabaseProfile.. 22-23
22.8 Importing and Exporting UML Using XMI ... 22-26
22.8.1 How to Import and Export UML Models Using XMI ... 22-26
22.8.2 Typical Error Messages When Importing .. 22-27
22.9 Using UML Profiles ... 22-29
22.10 Working with UML Class Diagrams... 22-30
22.10.1 How to Work with Class Diagrams ... 22-30
22.10.1.1 How to Read a Class Diagram... 22-32
22.10.1.2 How to Specify UML Operation Notation... 22-34
22.10.2 Refactoring Class Diagrams .. 22-34
22.10.2.1 How to Invoke a Refactoring Operation .. 22-35
22.11 Working with UML Activity Diagrams.. 22-35
22.11.1 How to Work with Activity Diagrams .. 22-36
22.11.1.1 Getting a Closer Look at the Activity Diagram Elements 22-37
22.12 Working with Sequence Diagrams.. 22-38
22.12.1 How to Work with Sequence Diagrams.. 22-38
22.12.1.1 Getting A Closer Look at the Sequence Diagram Elements.............................. 22-40
22.12.1.2 How to Work with Sequence Diagram Combined Fragment Locks 22-41
22.12.1.3 Using Combined Fragments .. 22-42
22.13 Working with Use Case Diagrams .. 22-43
22.13.1 How to Work with Use Case Diagrams .. 22-44
22.13.1.1 Getting A Closer Look at the Use Case Diagram Elements 22-45
22.13.1.2 How to Work with Use Case Templates .. 22-47
22.13.1.3 How to Work with Use Case Component Palette Templates 22-48
22.14 How Diagrams are Stored on Disk.. 22-48
22.15 How UML Elements are Stored on Disk .. 22-48

23 Developing Java EE and Java Applications Using Modeling

23.1 About Developing Java EE and Java Applications Using Modeling 23-1
23.2 Business Component Diagram... 23-1
23.3 Modeling EJB/JPA Components on a Diagram.. 23-1
23.3.1 Creating a Diagram of EJB/JPA Components.. 23-2
23.3.2 How to Read an EJB/JPA Components Diagram.. 23-3
23.3.3 How to Model a JPA Relationship ... 23-4
23.3.4 How to Model an EJB/JPA Component On a Diagram.. 23-5
23.3.5 Modeling Properties and Methods .. 23-5
23.3.5.1 Creating Properties on Modeled Beans.. 23-5
23.3.5.2 Creating Methods on Modeled Beans ... 23-6
23.3.6 How to Model Cross Component References .. 23-6
23.3.7 How to Display the Implementing Source Code for a Modeled Bean 23-7
23.3.8 How to Display the Source Code for a Modeled Bean.. 23-7
23.3.9 How to Change the Accessibility of a Property or Method.. 23-7

xxxvi

23.3.10 How to Reverse-Engineer a JPA Entity on a Diagram ... 23-7
23.4 Java Class Diagram.. 23-8
23.5 Database Diagram ... 23-8
23.5.1 How to Work with the Database Modeling Features.. 23-8
23.5.1.1 Benefits of Database Modeling .. 23-8
23.5.1.2 How to Get Started with Database Modeling ... 23-8
23.5.1.3 How to Change the Database or Schema... 23-11

Part VI Working with Databases

24 Getting Started with Working with Databases

24.1 About Working with Databases .. 24-1
24.1.1 Connecting to and Working with Databases.. 24-1
24.1.2 Designing Databases .. 24-2
24.2 Getting Started With Oracle Database 10g Express Edition .. 24-2
24.3 How to Manage Database Preferences and Properties .. 24-3

25 Using the Database Tools

25.1 Using the Database Navigator ... 25-1
25.2 Using the Structure Window.. 25-3
25.3 Using the Database Reports Navigator .. 25-3
25.4 Using the Find Database Object Window .. 25-4
25.5 Using the SQL Worksheet... 25-5
25.5.1 Using Execution Plan ... 25-7
25.5.2 How to Recall Statements from the SQL Worksheet History 25-8
25.6 Using the SQL History Window.. 25-9
25.7 Using the Snippets Window... 25-9
25.8 Using the Database Object Viewer .. 25-10
25.8.1 Database Object Viewer Tabs Toolbars ... 25-10
25.9 Using SQL*Plus .. 25-11
25.10 DBMS Output Window... 25-12
25.11 OWA Output Window.. 25-13

26 Connecting to and Working with Databases

26.1 About Connecting to and with Working with Databases.. 26-1
26.2 Configuring Database Connections .. 26-2
26.2.1 Connection Scope.. 26-2
26.2.2 What Happens When You Create a Database Connection .. 26-2
26.2.3 About Connection Properties Deployment .. 26-3
26.2.4 How to Create Database Connections ... 26-3
26.2.5 Connecting to Oracle Database Using OCI8... 26-4
26.2.6 How to Edit Database Connections ... 26-4
26.2.7 How to Export and import Database Connections.. 26-4
26.2.7.1 Exporting Database Connections .. 26-4
26.2.7.2 Importing Database Connections ... 26-4
26.2.8 How to Open and Close Database Connections .. 26-5

xxxvii

26.2.9 How to Delete Database Connections ... 26-5
26.2.10 How to Register a New Third-Party JDBC Driver... 26-6
26.2.11 How to Create User Libraries for Non-Oracle Databases .. 26-6
26.2.12 Reference: Connection Requirements for Oracle's Type 2 JDBC Drivers (OCI)...... 26-7
26.3 Browsing and Searching Databases .. 26-8
26.3.1 Browsing Databases ... 26-8
26.3.1.1 Browsing Online Databases ... 26-8
26.3.1.2 Browsing Offline Database Objects... 26-8
26.3.1.3 How to View Online and Offline Database Objects ... 26-8
26.3.2 How to Browse online Database Objects .. 26-8
26.3.3 How to Browse Offline Databases and Schemas ... 26-9
26.3.4 How to Use Database Filters ... 26-9
26.3.5 How to Enable and Disable Database Filters.. 26-10
26.3.6 How to Open a Database Table in the Database Object Viewer.............................. 26-10
26.3.7 How to Edit Table Data ... 26-11
26.3.8 How to Find Objects in the Database... 26-11
26.4 Connecting to Databases... 26-11
26.4.1 What Happens When You Create a Connection to a Database 26-12
26.4.2 How to Create Connections to Oracle Databases .. 26-12
26.4.2.1 How to Create a Connection to Oracle Database.. 26-12
26.4.2.2 How to Create a Connection to MySQL... 26-13
26.4.2.3 How to Create a Connection to Oracle TimesTen In-Memory Database........ 26-13
26.4.2.4 How to Create a Connection to Oracle Database Lite.. 26-14
26.4.3 How to Create Connections to Non-Oracle Databases ... 26-15
26.4.3.1 How to Create a Connection to Apache Derby... 26-16
26.4.3.2 How to Create a Connection to IBM DB2 Universal Database......................... 26-17
26.4.3.3 How to Create a Connection to IBM Informix Dynamic Server....................... 26-18
26.4.3.4 How to Create a Connection to Microsoft SQL Server 26-19
26.4.3.5 How to Create a Connection to SQLite .. 26-20
26.4.3.6 How to Create a Connection to Sybase ASE.. 26-21
26.5 Importing and Exporting Data... 26-22
26.5.1 Importing Data Using SQL*Loader ... 26-23
26.5.2 Importing Data Into an External Table.. 26-23
26.5.3 How to Import Data into Existing Tables ... 26-23
26.5.4 How to Import Data to New Tables... 26-23
26.5.5 How to Import Data Using SQL*Loader... 26-24
26.5.6 How to Import Data Using External Tables ... 26-24
26.5.7 Exporting Data from Databases.. 26-25
26.5.8 How to Export Data to Files .. 26-25
26.6 Copying, Comparing, and Exporting Databases .. 26-26
26.6.1 How to Copy Databases .. 26-26
26.6.2 How to Compare Database Schemas... 26-26
26.6.3 How to Export Databases .. 26-26
26.7 Working with Oracle and Non-Oracle Databases... 26-27
26.8 Working with Database Reports.. 26-27
26.8.1 Using Database Reports... 26-27
26.8.1.1 How to Run Database Reports .. 26-27

xxxviii

26.8.1.2 How to View the SQL for a Report ... 26-28
26.8.1.3 How to Create User-Defined Database Reports ... 26-28
26.8.1.4 How to Edit User-Defined Database Reports.. 26-28
26.8.1.5 How to Create Reports Folders ... 26-28
26.8.1.6 How to Export User-Defined Reports .. 26-28
26.8.1.7 How to Import User-Defined Reports.. 26-29
26.8.2 Reference: Pre-Defined Database Reports ... 26-29
26.9 Troubleshooting Database Connections... 26-34
26.9.1 Deploying to a Database that Uses an Incompatible JDK Version.......................... 26-34

27 Designing Databases Within Oracle JDeveloper

27.1 About Designing Databases Within Oracle JDeveloper... 27-1
27.2 Creating, Editing, and Dropping Database Objects.. 27-1
27.2.1 Working with Offline Database Definitions ... 27-1
27.2.1.1 Offline Databases... 27-3
27.2.1.2 Configuring Offline Database Emulation .. 27-4
27.2.1.3 How to Create Offline Databases.. 27-5
27.2.1.4 Offline Schemas ... 27-5
27.2.1.5 How to Create Offline Schemas .. 27-6
27.2.1.6 How to Create Offline Database Objects.. 27-6
27.2.1.7 How to Import Offline Database Definitions Based on Database Objects 27-11
27.2.1.8 Offline Tables and Foreign Keys ... 27-13
27.2.1.9 How to Refresh Offline Database Objects.. 27-13
27.2.1.10 How to Create Objects from Templates ... 27-14
27.2.1.11 Working with User Property Libraries... 27-15
27.2.1.11.1 How to Create and Edit User Property Libraries .. 27-16
27.2.1.11.2 How to Use User Property Libraries ... 27-16
27.2.1.12 How to Generate Offline Database Objects to the Database 27-16
27.2.1.12.1 Reconciliation issues .. 27-17
27.2.1.12.2 Cannot modify constraints.. 27-17
27.2.1.12.3 Cannot reconcile renamed tables ... 27-17
27.2.1.12.4 How to Generate Database Definitions to a File.. 27-17
27.2.1.13 Renaming Offline Database Objects ... 27-18
27.2.1.14 Using Offline Database Reports ... 27-19
27.2.1.14.1 Offline Database Reports... 27-19
27.2.1.14.2 How to Use Pre-built Reports... 27-19
27.2.1.14.3 How to Define Report Definitions ... 27-20
27.2.1.14.4 How to Use Boilerplate Text with HTML Reports 27-21
27.2.1.14.5 How to Edit User-Defined Reports.. 27-21
27.2.1.15 Transforming from a UML Model .. 27-21
27.2.1.16 Working with Offline Database Objects in Source Control Systems 27-22
27.2.2 Working with Database Objects ... 27-22
27.2.3 Using Database Reports... 27-23
27.3 Creating Scripts from Offline and Database Objects .. 27-23
27.3.1 How to Create SQL Scripts.. 27-23
27.3.2 How to Create OMB Scripts from Tables ... 27-24

xxxix

28 Using Java in the Database

28.1 About Using Java in the Database... 28-1
28.2 Choosing SQLJ or JDBC .. 28-1
28.2.1 Using SQLJ... 28-2
28.2.2 Using Oracle JDBC Drivers ... 28-2
28.2.3 SQLJ versus JDBC... 28-3
28.2.4 Embedding SQL in Java Programs with SQLJ ... 28-4
28.2.4.1 How to Create SQL Files .. 28-4
28.2.4.2 How to Create SQLJ Classes .. 28-4
28.2.4.3 How to Compile SQLJ Classes .. 28-5
28.2.4.4 How to Use Named SQLJ Connection Contexts... 28-5
28.2.4.5 How to Declare a SQLJ Connection Context Class... 28-5
28.2.4.6 How to Create a Connection Context Object... 28-5
28.2.4.7 How to Debug SQLJ Classes.. 28-6
28.2.4.8 How to Debug SQLJ Classes.. 28-6
28.2.4.9 How to Set SQLJ Translator Options.. 28-6
28.2.4.10 How to Use SQLJ Connection Options .. 28-6
28.2.5 Embedding SQL in Java Programs with JDBC... 28-7
28.2.5.1 How to Choose a JDBC Driver .. 28-7
28.2.5.2 How to Modify a Project to Use a Non-Default JDBC Driver............................. 28-8
28.2.5.3 How to Code a JDBC Connection ... 28-8
28.3 Accessing Oracle Objects and PL/SQL Packages using Java.. 28-9
28.3.1 How to Use JPublisher ... 28-10
28.3.2 JPublisher Output ... 28-14
28.3.3 Properties Files .. 28-15
28.3.4 How to Enhance JPublisher-Generated Classes... 28-15
28.3.5 How to Extend JPublisher-Generated Classes ... 28-15
28.3.6 JPublisher Options.. 28-16
28.4 Using Java Stored Procedures .. 28-18
28.4.1 How to Debug Java Stored Procedures ... 28-26
28.4.2 How to Remove Java Stored Procedures .. 28-26

29 Running and Debugging PL/SQL and Java Stored Procedures

29.1 About Running and Debugging PL/SQL and Java Stored Procedures 29-1
29.2 Running and Debugging Functions, Procedures, and Packages 29-1
29.3 Debugging PL/SQL Programs and Java Stored Procedures... 29-2
29.3.1 Debugging PL/SQL Objects.. 29-2
29.3.1.1 PL/SQL objects you can debug with JDeveloper ... 29-3
29.3.1.2 What You May Need to Know .. 29-3
29.3.1.3 Appearance of debug information in supported Oracle Database 29-4
29.3.2 How to Specify the Database Debugger Port ... 29-4
29.3.3 Debugging PL/SQL and Java Stored Procedures Prerequisites................................ 29-4
29.3.3.1 Prerequisites for Debugging PL/SQL and Java Stored Procedures 29-5
29.3.3.2 Prerequisites for Debugging Java Stored Procedures .. 29-5
29.3.4 How to Locally Debug PL/SQL Programs... 29-5
29.3.5 How to Remotely Debug PL/SQL Programs... 29-6

xl

29.3.6 Using Acceptable Legal PL/SQL Expressions in the Debugger................................ 29-8

xli

Preface

Welcome to the User's Guide for Oracle JDeveloper.

Audience
This document is intended for developers that use Oracle JDeveloper and provides
detailed information on the functionality available in IDE.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
■ Oracle Fusion Middleware Installation Guide for Oracle JDeveloper

■ Oracle Fusion Middleware Developer's Guide for Oracle JDeveloper Extensions

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

■ Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework

■ Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application
Development Framework

■ Oracle JDeveloper 11g Online Help

■ Oracle JDeveloper 11g Release Notes, link included with your Oracle JDeveloper 11g
installation, and on Oracle Technology Network

xlii

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xliii

What's New in This Guide in Release
11.1.2.2.0

For Release 11.1.2.2.0 the Oracle Fusion Middleware User Guide for Oracle JDeveloper
replaces the non-context sensitive online help that was available in previous releases of
Oracle JDeveloper.

While this guide is applicable to both the Studio and Java editions of Oracle
JDeveloper, the following chapters only apply to the Studio edition of JDeveloper:

■ Chapter 9, "Deploying Applications"

■ Chapter 11, "Developing Applications Using Web Page Tools"

■ Chapter 12, "Developing with EJB and JPA Components"

■ Chapter 13, "Developing TopLink Mappings"

■ Chapter 14, "Developing Secure Applications"

■ All chapters in Part V, "Developing Applications Using Modeling"

■ All chapters in Part VI, "Working with Databases"

For changes made to Oracle JDeveloper and Oracle Application Development
Framework (Oracle ADF) for this release, see the What’s New page on the Oracle
Technology Network at
http://www.oracle.com/technetwork/developer-tools/jdev/documenta
tion/index.html.

xliv

Part I
Part I Getting Started with Oracle JDeveloper

This part describes the general concepts of working with Oracle JDeveloper and
contains the following chapters:

■ Chapter 1, "Introduction to Oracle JDeveloper"

This chapter provides an introduction to JDeveloper, including resources available
for you to learn Oracle JDeveloper and understand its features.

■ Chapter 2, "Oracle JDeveloper Accessibility Information"

This chapter provides information on the accessibility features of JDeveloper.

■ Chapter 3, "Working with Oracle JDeveloper"

This chapter provides information on working in the JDeveloper IDE.

1

Introduction to Oracle JDeveloper 1-1

1Introduction to Oracle JDeveloper

This chapter provides an introduction to Oracle JDeveloper. It also contains
information about resources you can use to learn JDeveloper as well as migrating to
this release of the product.

This chapter contains the following sections:

■ Section 1.1, "About Oracle JDeveloper"

■ Section 1.2, "Oracle JDeveloper Information Resources"

■ Section 1.3, "Migrating to Oracle JDeveloper 11g"

1.1 About Oracle JDeveloper
JDeveloper is an integrated development environment (IDE) for building applications
using the latest standards for Java, XML, Web services, and SQL. It supports the
complete development lifecycle with integrated features for modeling, coding,
debugging, testing, profiling, tuning, and deploying applications. JDeveloper is the
main development platform for the Oracle Fusion Middleware suite of products. It is a
cross-platform IDE that runs on Windows, Linux, Mac OS X, and other UNIX-based
systems.

Oracle JDeveloper provides a visual and declarative development approach and works
together with the Oracle ADF to simplify development.

Key features of JDeveloper include:

■ A consistent development environment that can be used for various technology
stacks including Java, SOA, Oracle WebCenter Portal, SQL and PL/SQL, HTML,
and JavaScript.

■ XML-based application development.

■ A full development and modeling environment for building database objects and
stored procedures.

■ A wide range of application deployment options, including Integrated Oracle
WebLogic Server, an integrated run time service for running and testing
applications before deploying to a production environment.

■ Extension capabilities that enable customization of the IDE based on development
needs and add additional functionality.

JDeveloper is available in two editions: Oracle JDeveloper Studio and Oracle
JDeveloper Java. The Studio edition is the complete version of JDeveloper and
includes all features. The Java edition contains only the core Java and XML features,

Oracle JDeveloper Information Resources

1-2 User's Guide for Oracle JDeveloper

and offers shorter download times. This guide is applicable to both editions of
JDeveloper.

1.2 Oracle JDeveloper Information Resources
This section provides resources designed to get you up and running quickly on Oracle
JDeveloper. You can learn about Oracle JDeveloper using various methods in addition
to this guide, including online demonstrations, tutorials, and the Oracle Technology
Network (OTN) forum. For more information, see Table 1–1, " Supporting Oracle
JDeveloper Resources".

1.3 Migrating to Oracle JDeveloper 11g
For complete information on supported migration paths, on how to migrate
applications and projects or information about importing preferences and settings
from an earlier version of Oracle JDeveloper to Oracle JDeveloper 11g, see the Oracle
Fusion Middleware Installation Guide for Oracle JDeveloper.

Table 1–1 Supporting Oracle JDeveloper Resources

Resource Description

Online demonstrations Online demonstrations provide visual instructions for
completing common tasks. All you need to watch the demos is
your web browser with flash plug-in and a sound card. You can
use the playback bar at the bottom of each demo to control the
speed and flow of the demo.

The demos are located at:
http://www.oracle.com/technetwork/developer-too
ls/jdev/overview/index-100269.html

Oracle JDeveloper
Tutorials

The tutorials provide step-by-step instructions to accomplish
specific tasks in Oracle JDeveloper.

The tutorials are located at:
http://www.oracle.com/technetwork/developer-too
ls/jdev/overview/index-100269.html

Oracle Fusion Order Demo
Sample Application

The Fusion Order Demo (FOD) is an end-to-end application
sample application developed with the purpose of
demonstrating common use cases in Fusion Middleware
applications, including the integration between different
components of the Fusion technology stack, (ADF, BPEL, and
WebCenter Portal). The demo contains several applications that
make up various parts of functionality.

The FOD is located at:
http://www.oracle.com/technetwork/developer-too
ls/jdev/index-095536.html

OTN Oracle JDeveloper
Forum

You can use the Oracle JDeveloper page on the OTN forum to
ask a question, contribute to a discussion, or interact with other
users.

The Oracle JDeveloper page on the OTN forum is located at:
http://forums.oracle.com/forums/forum.jspa?foru
mID=83

2

Oracle JDeveloper Accessibility Information 2-1

2Oracle JDeveloper Accessibility Information

This chapter provides information on the accessibility features of Oracle JDeveloper

This chapter includes the following sections:

■ Section 2.1, "About Oracle JDeveloper Accessibility"

■ Section 2.2, "Using a Screen Reader and Java Access Bridge with Oracle
JDeveloper"

■ Section 2.3, "Oracle JDeveloper Features That Support Accessibility"

■ Section 2.4, "Recommendations for Customizing Oracle JDeveloper"

■ Section 2.5, "Highly Visual Features of Oracle JDeveloper"

2.1 About Oracle JDeveloper Accessibility
It is our goal to make Oracle Products, Services, and supporting documentation
accessible to the disabled community. Oracle JDeveloper supports accessibility
features.

For additional accessibility information for Oracle products, see the Oracle
Accessibility Program page at:

http://www.oracle.com/accessibility/

2.2 Using a Screen Reader and Java Access Bridge with Oracle
JDeveloper

In order for assistive technologies, like screen readers, to work with Java-based
applications and applets, the Windows-based computer must also have Sun's Java
Access Bridge installed. Please refer to the Oracle Fusion Middleware Installation Guide
for Oracle JDeveloper for the screen reader setup procedure, and for the recommended
minimum technology stack.

2.3 Oracle JDeveloper Features That Support Accessibility
Oracle JDeveloper provides features that are designed to support accessibility.

2.3.1 Keyboard Access
Oracle JDeveloper features support keyboard access to JDeveloper functionality; a
summary is provided below. The mnemonic keys used to open menus and choose
commands are included in all procedural topics. Please refer to the keyboard

Oracle JDeveloper Features That Support Accessibility

2-2 User's Guide for Oracle JDeveloper

navigation topics for a summary of how keys are assigned within JDeveloper and the
lists of accelerator keys provided for commands.

The following menu and toolbar functionality is provided through keyboard access:

■ Users can navigate to and invoke all menu items.

■ All toolbar functions are accessible through menu items.

■ All menus and menu items have unique and functioning mnemonic keys.

■ All context menus within the navigators and source editor can be invoked.

■ Frequently used menu items have unique accelerator keys.

The following functionality is available in JDeveloper IDE windows, which include the
Application Navigator, Structure window, source editor, Property Inspector,
Constraints, Profilers, Debugger windows, Help windows, Log windows and BC4J
Tester. Users can:

■ Navigate between all open windows, to all nodes within a window or pane, and
between tabs in a window.

■ Set focus in a window or pane.

■ Invoke all controls within a window or pane, and perform basic operations.

■ Navigate and update properties in the Property Inspector.

■ Use Code Insight and Code Templates in the source editor.

■ Invoke context sensitive help topics, navigate to and open all help topics, and
navigate between the navigation and viewer tabs.

■ Open, close, dock, undock, minimize, restore and maximize the applicable
JDeveloper window.

The following functionality is available in Oracle JDeveloper dialogs and wizards:

■ Users can navigate to and invoke all controls within all wizards and dialogs.

■ The order in which the Tab key causes focus to flow is consistent and logical.

■ Mnemonic keys are provided for controls where appropriate.

Navigation and controls are available with runtime applications, which include all
runnable files that are produced with Oracle JDeveloper, including Java applications,
HTML applications, applets, JSF (Faces) applications, JSPs, and Servlets. With runtime
applications, users can:

■ Navigate to all controls within all runtime applications.

■ Invoke all controls within all runtime applications.

Tips: ■You can press Escape to move the focus from the current
dockable window to the last active editor. Press Shift+Escape to
move the focus and also close the current window.

■ You can press Shift+F10 to open the context menu for any
window. Use the Down Arrow and Up arrow keys to select a
command and press Enter, or use the accelerators to invoke a
command on the context menu.

Oracle JDeveloper Features That Support Accessibility

Oracle JDeveloper Accessibility Information 2-3

2.3.2 Screen Reader Readability
Here is a summary of screen readability in JDeveloper, when it is used with a screen
reader.

When used with menus and toolbars:

■ All menus and menu items are read.

■ All toolbar items, including the Navigator toolbar items, are read.

■ The hint text on all toolbar items is read.

When used with JDeveloper IDE windows:

■ All open windows are read.

■ All components within each window, including tabs, are read.

■ Status text at the bottom of the IDE, and within the source editor, is read.

When used with dialogs and wizards:

■ All controls within all wizards and dialogs are read.

■ Hint text is read.

When used with runtime applications:

■ All controls within all runtime applications are read.

2.3.3 Flexibility in Font and Color Choices
The user interface in JDeveloper improves usability for people who are visually
impaired by offering flexibility in color and font choices. The following font and color
features are included:

■ Users can specify both the font and the size in which the font displays for editors.

■ All features of the product have black text on a white or gray background.

■ Colored text, underlining or images are never used as the only method of
conveying information.

2.3.4 No Audio-only Feedback
In JDeveloper, there is no situation in which the only feedback a user receives is
audible feedback. All audible feedback is accompanied by a visual indicator. For
example, a prompt accompanies the bell sound that occurs when an error or illegal
action has taken place.

2.3.5 No Dependency on Blinking Cursor and Animation
JDeveloper makes minimal use of a blinking cursor and animation:

■ No features in JDeveloper use blinking indicators, with the exception of the cursor
in the source editor.

■ No features rely on animated sequences.

2.3.6 Screen Magnifier Usability
The JDeveloper user interface works well with screen magnifiers. All features of the
product can be magnified by a screen magnifier.

Recommendations for Customizing Oracle JDeveloper

2-4 User's Guide for Oracle JDeveloper

2.3.7 How to Change the Editor or Tabbed View of a File
When you press Enter on a node in the Application Navigator, you open the default
editor for that file. To switch to the different editors and views available for a
document; for example, to display a JSP file in source view or history view instead of
design view, you can use the Alt+Page Up and Alt+Page Down accelerators to invoke
the Window > Go to > Right Editor and Window > Go to > Left Editor menu
commands, respectively.

2.3.8 How to Read Text in a Multi-line Edit Field
To have the text in a multi-line edit field read by a screen reader, you can select text by
holding down the Shift key while moving the cursor either up or down with the
Arrow keys, depending on the initial cursor position.

2.3.9 How to Read the Line Number in the Source Editor
To have the line number read by a screen reader while you are editing a file in the
source editor, you can press Ctrl+G.

2.3.10 How to Access Exception Stack HTML Links and Generated Javadoc Links in
the Log Window

After generating exception stack HTML links or Javadoc links in the Log window, they
will not be recognized as links, but read as plain text by a screen reader. To access the
links, set the cursor focus to the Log window. Right-click or press Shift+F1 and select
Save As from the context menu. Save the contents of the Log window as an HTML
file. Add the saved HTML file to a project or application workspace as a resource.
Open the file from the Application Navigator in order to invoke the Oracle JDeveloper
HTML/JSP visual editor, which will display the links correctly. Navigate the file and
access the links from the HTML/JSP visual editor.

2.4 Recommendations for Customizing Oracle JDeveloper
JDeveloper provides a number of customization features that enable users to specify
their requirements for keyboard usage, display attributes of the IDE, and timing where
appropriate. All customization features are organized within the Preferences dialog.
For maximum usability and to accommodate your needs, you should consider
changing any of the following from the defaults to a more usable customized setting.

2.4.1 How to Customize the Accelerators Keys
You can add and change the default accelerator keys for Oracle JDeveloper in the
Tools > Preferences > Shortcut Keys page. You can also load preset keymaps that you
are accustomed to using.

2.4.2 How to Pass a Conflicting Accelerator Key to Oracle JDeveloper
In addition to changing the mapped accelerator keys, you can pass a conflicting
accelerator key to JAWS by preceding the accelerator key combination with Insert+F3.

Highly Visual Features of Oracle JDeveloper

Oracle JDeveloper Accessibility Information 2-5

2.4.3 How to Change the Look and Feel of the IDE
You can change the default look and feel for Oracle JDeveloper in the Tools >
Preferences > Environment page. The look and feel determines the display colors and
shapes of objects like menus and buttons.

2.4.4 How to Customize the Fonts in Editors
You can change the font and font size that display in editors in the Tools > Preferences
> Code Editor > Fonts page.

2.4.5 How to Customize Syntax Highlighting
You can change the font style, as well as the foreground and background colors used
in syntax highlighting within the source editor in the Tools > Preferences > Code
Editor > Syntax Colors page.

2.4.6 How to Display Line Numbers in Editors
You can display or hide line numbers in the source editor in the Tools > Preferences >
Code Editor > Line Gutter page.

2.4.7 How to Change the Timing for Code Insight
You can specify the number of seconds that Code Insight is delayed, or disable Code
Insight in the Tools > Preferences > Code Editor > Code Insight page.

2.4.8 How to Specify the Columns in the Debugger
You can choose the columns and types of information that display in the Debugger in
the Tools > Preferences > Debugger pages.

2.5 Highly Visual Features of Oracle JDeveloper
Oracle JDeveloper includes features that are highly visual, and these features have
equivalent functionality that is available to people who are blind or visually impaired:

■ The UI and visual editors. The source editor provides equivalent functionality, as
pages and UI elements can be completely designed and coded in the source editor.

■ The Component Palette. The source editor provides equivalent functionality, as
elements and tags that can be selected from the Component Palette can also be
entered in the source editor.

You can add a component from the Component Palette to the UI or visual editor using
keystrokes.

Oracle JDeveloper also includes modeling features. It is possible to create, edit and
move elements on a diagram using only keystrokes.

Highly Visual Features of Oracle JDeveloper

2-6 User's Guide for Oracle JDeveloper

3

Working with Oracle JDeveloper 3-1

3Working with Oracle JDeveloper

This chapter is designed to get you up and running quickly on Oracle JDeveloper.
Find information about working with the general development environment, source
files, connections, using the online help, and common development tools.

This chapter includes the following sections:

■ Section 3.1, "About Working with Oracle JDeveloper"

■ Section 3.2, "Working with JDeveloper Roles"

■ Section 3.3, "How to Manage JDeveloper Features"

■ Section 3.4, "Working With Windows In the IDE"

■ Section 3.5, "Navigating The IDE"

■ Section 3.6, "Customizing the IDE"

■ Section 3.7, "Working with the Resource Palette"

■ Section 3.8, "Working with Source Files"

■ Section 3.9, "Working with Extensions"

■ Section 3.10, "Using the Online Help"

■ Section 3.11, "Common Development Tools"

■ Section 3.12, "Adding External Tools to JDeveloper"

3.1 About Working with Oracle JDeveloper
JDeveloper is the main development platform for the Oracle Fusion Middleware suite
of products. It is a cross-platform IDE that runs on Windows, Linux, Mac OS X, and
other UNIX-based systems.

3.2 Working with JDeveloper Roles
Roles enable you to tailor the JDeveloper environment. The modified environment
removes items that you do not need from JDeveloper, including menus, preferences,
New Gallery, and even individual fields on dialogs. The role you select determines
which features and options are available to you as you work in JDeveloper.

The roles available are:

■ Default Role. This role allows you to access all JDeveloper features. The other
roles provide subsets of these features.

How to Manage JDeveloper Features

3-2 User's Guide for Oracle JDeveloper

■ Customization JDeveloper. This role allows you to create customizable
applications, using the Oracle Metadata Services (MDS) framework.

■ Database Edition. This gives you access to just the core database development
tools.

■ Java EE Edition. This includes only features for core Java EE development.

■ Java Edition. This includes only features for core Java development.

3.2.1 How to Change the JDeveloper Role
JDeveloper prompts you to select a role the first time it is run. You can also change the
role while JDeveloper is running.

To change the JDeveloper role:
1. From the main menu, select Tools > Switch Roles.

2. The current role contains a bullet next to it. In the Switch Roles menu, select the
role you want to switch to.

3.3 How to Manage JDeveloper Features
To optimize performance and user experience, JDeveloper allows you to just load the
features you need for your project. Managing features enables you to see only those
components of the IDE that are most relevant to your work. Managing features has no
affect on the data in a project itself.

For example, assume two projects used to create two different views into an
application. The first project might have Java features loaded, which informs
JDeveloper that the IDE should reflect the Java technology stack. Such filtering
eliminates clutter from individual projects. The second project might have a features
loaded for Swing/AWT, informing JDeveloper to reflect IDE components required for
Swing/AWT development.

To add or remove features in JDeveloper:
1. From the main menu, select Tools > Features. The Manage Features for role dialog

opens. This dialog displays the features available in the current JDeveloper role.
These features are checked by default.

2. Search for the feature you want to add or remove by entering it in the Search field,
or scroll in the list of Available Features. Click a feature or feature category and
view its description on the right.

3. Check the features you want to add, and uncheck the features you want to
remove. Click the Check for Updates icon to open the Check For Updates wizard
which allows you to load features from an extension.

4. Optionally, to clear previously loaded features from the cache, click Clear Feature
Loading Cache.

5. Click OK when you are done.

Note: The full set of online help is always available regardless of the
role you have chosen for JDeveloper.

Working With Windows In the IDE

Working with Oracle JDeveloper 3-3

3.4 Working With Windows In the IDE
JDeveloper allows you to arrange the windows according to your convenience.
JDeveloper uses two kinds of windows in the IDE:

■ Dockable windows that can be placed anywhere in the IDE.

■ Tabbed editor windows that are fixed in the center of the IDE.

3.4.1 How to Maximize Windows
Double-click the title bar of any JDeveloper window to quickly maximize to full screen
view. Double-click the title bar again to return the window to its former position in the
IDE.

3.4.2 How to Minimize and Restore Dockable Windows in the IDE
You can minimize any dockable window in JDeveloper, or set it to remain open in
place. The default state is set to remain open.

When a window is set to stay open, its position is static. It remains always visible, in
whichever position you have docked it.

When a window is set to minimize, its behavior is more fluid. When you give it focus,
it opens fully in the general area (top, bottom, left, right) where you last left it docked.
When you move the focus elsewhere, the minimized window collapses into the
margin. Whether open or closed, any minimized window's status set to minimize is
identified by a named button in the margin.

To minimize any dockable window:
■ Click the Minimize icon in the far right-hand corner of the window set to be kept

open.

If the window currently has focus, it now expands to full height and remains in
place. If the window does not have focus, it collapses into the margin.

When you minimize a window, a button bearing that window's name appears in
the margin. You can toggle the minimized window open and closed with this
button.

3.4.3 How to Dock Windows in the IDE
All of the tools available under the View menu—the Application Navigator, Structure
window, Property Inspector, and so on—can be arranged however you like. You can
dock them singly or in groups. You can also tab windows together in one location,
either as docked or floating windows.

The following table provides information on how to move dockable windows.

Note: When you minimize a window that exists in a docking zone
that also contains other windows, all windows in the docking zone are
minimized.

 Requirement Action

Move a solitary docked window Grab its title bar and drag

Decouple a docked window from a
group

Grab its title bar and drag

Working With Windows In the IDE

3-4 User's Guide for Oracle JDeveloper

The following table provides information on ways to reposition dock windows:

3.4.4 About Dockable Windows in the IDE
You can float any window that's normally docked—the Application Navigator, any
custom navigator, the Log window, the Property Inspector, the Component Palette.
You can also resize and position it wherever you would like within JDeveloper.

Generally, floating windows are best suited for a large screen with enough room for
displaying both the information windows and your source code. If you are using
floating palettes on a smaller screen they can sometimes be hidden by other
information windows as you work.

3.4.5 How to Close and Reopen Dockable Windows in the IDE
You can easily open and close the main elements of the JDeveloper IDE, which include
the navigators, Structure window, Property Inspector, Component Palette, Resource
Palette and Log window.

To open a closed window:
■ In the View menu, choose the name of the window.

You can close an open window in one of these ways:
■ Click the Close icon which appears on the tab window's name.

■ With the focus in the window, press Shift+Escape or Ctrl+Click.

3.4.6 How to Restore Window Layout to Factory Settings
To restore the layout of dockable windows in JDeveloper, go to the Window menu and
select Reset Layout to Factory Settings.

Move a group of docked, tabbed, or
docked and tabbed windows

Grab the title bar for the group—the topmost horizontal
title bar, empty but for the close box—and drag.

To decouple one tabbed window from a
group

Grab the window's tab and drag.

Note: The title bars for docked windows sometimes appear
vertically, on the side of the window.

Requirement Action

Dock a window (or window group)
against another edge of the
development area

Drag the window (or window group) to the destination
edge

Dock a window (or window group)
alongside another window

Drag the window (or window group) to the top, bottom,
or side edge of the docked window

Tab one window with another Drag the window to be tabbed into the center of the
destination window (or window group) and release

 Requirement Action

Navigating The IDE

Working with Oracle JDeveloper 3-5

3.5 Navigating The IDE
You can accomplish any task in JDeveloper using the keyboard as you use the mouse.

3.5.1 How to Work With Shortcut Keys In The IDE
JDeveloper comes with several predefined keyboard schemes. You can choose to use
one of these, or customize an existing set to suit your own coding style by changing
which keyboard shortcuts map to which actions.

To load preset keyboard schemes:
1. From the main menu, choose Tools > Preferences.

2. In the preferences dialog, select the Shortcut Keys node. For more information at
any time, press F1 or click Help from within the Preferences dialog.

3. On the shortcut keys page, click More Actions and then select Load Keyboard
Scheme. The Load Keyboard Scheme dialog appears, with the currently loaded
keyboard scheme highlighted.

4. In the Load Keyboard Scheme dialog, select the scheme you wish to load and click
Ok.

5. On the Shortcut Keys page, if you have finished, click Ok.

To view JDeveloper commands and their associated keyboard shortcuts (if
assigned):
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Shortcut Keys node.

3. On the Shortcut Keys page, under Available Commands, you can view the
complete set of JDeveloper commands, and what keyboards shortcuts (if any) are
assigned to each. If you are looking for a particular command or shortcut, or want
to look at shortcuts for a particular category of commands only, enter a filtering
expression in the Search field.

4. You can also define new shortcuts, or change existing ones.

To define a new keyboard shortcut for a command within a given keyboard
scheme:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Shortcut Keys node. For more information at
any time, press F1 or click Help from within the preferences dialog.

3. On the Shortcut Keys page, under Available Commands, select the command that
you wish to define a new shortcut for.

4. To define a new shortcut for this action, place focus on the New Shortcut field,
and then press the key combination on the keyboard.

If this proposed shortcut already has a command associated with it, that command
will now appear in the Conflicts field. Any conflicting shortcuts are overwritten
when a new shortcut is assigned.

5. To assign this shortcut to the action selected, click Assign. If you want to delete an
already-assigned shortcut, click the Delete button in the toolbar.

Navigating The IDE

3-6 User's Guide for Oracle JDeveloper

If you want to assign more than one shortcut to a command, select the command
and click the Duplicate button. Then, type the shortcut key in the New Shortcut
field and click Assign.

6. When you are finished, click Ok.

To import or export keyboard schemes:
1. From the main menu, select Tools > Preferences to open the Preferences dialog.

2. Click More Actions > Export or Import. Keyboard schemes are stored as XML
files.

3.5.2 Keyboard Navigation In JDeveloper
For any action that can be accomplished with a mouse, including selection, there is a
way to accomplish the action solely from the keyboard. You can accomplish any task
in JDeveloper using the keyboard as you can using the mouse.

The shortcut keys defined in the Java Look and Feel guidelines provide the base set for
JDeveloper. The various predefined keyboard schemes available in JDeveloper are
then overlaid upon this base set. If the same shortcut key exists in both the look and
feel guidelines and the JDeveloper keyboard scheme, the JDeveloper scheme prevails.
If a shortcut key defined by the look and feel guidelines does not appear in a
JDeveloper scheme, then it is the original look and feel definition that remains in effect
when the scheme in question is enabled.

At any given time, then, the shortcut keys enabled in JDeveloper depend upon the
interaction of the currently enabled scheme with the Java look and feel guidelines.
When you first open JDeveloper, the default scheme is enabled. You can change this
scheme whenever you wish, and within each scheme, you can customize any of the
shortcut key assignments that you would like. Note that any customized shortcuts you
create in a scheme are not retained when another predefined keyboard scheme is
activated (or even if the same scheme is reloaded).

To load predefined keyboard schemes, view current shortcut assignments within a
scheme, and customize those assignments, you will need to open the preferences
dialog. To open the dialog, choose Tools > Preferences (or on the keyboard, press
Alt+T+P) from the main menu and then, using the arrow keys in the left-hand pane,
navigate to the Shortcut Keys node. For details on working with the dialog, with the
page displayed, click Help (or on the keyboard press H).

3.5.2.1 Common Navigation Keys
The following table describes the common methods of moving the cursor in
JDeveloper:

Table 3–1 Common Methods of Moving the Cursor

Key Cursor Movement Ctrl+cursor Movement

Left Arrow Left one unit (e.g., a single character) Left one proportionally larger unit
(e.g., a whole word)

Right Arrow Right one unit Right one proportionally larger
unit

Up Arrow Up one unit or line Up one proportionally larger unit

Down
Arrow

Down one unit or line Down one proportionally larger
unit

Navigating The IDE

Working with Oracle JDeveloper 3-7

3.5.2.2 Navigation In Standard Components
This section describes keyboard navigation in standard JDeveloper components.

Buttons
The following table describes the keyboard actions to perform navigation tasks
involving buttons.

Checkboxes
The following table describes the keyboard actions to perform navigation tasks
involving checkboxes.

Home Beginning of the line To the beginning of the data
(top-most position)

End End of the line To the end of the data
(bottom-most position)

Tab Next field or control, except when in a text area or
field. In this case, press Ctrl+Tab to navigate out of the
control.

Where there are fields and controls ordered
horizontally as well as vertically, pressing Tab moves
the cursor first horizontally to the right, then at the
end of the line, down to the left of the next line.

To the next pane which may be a
navigator, an editor, or a palette,
except when in a text area or field.
In this case, press Ctrl+Tab to
navigate out of the control

Shift+Tab Previous field To previous tab position. In
property sheets, this moves the
cursor to the next page

Enter Selects and highlights the default button, except when
in a combo box, shuttle button, or similar control.

Note: The default button changes as you navigate
through controls.

n/a

Table 3–2 Keyboard Navigation for Buttons

Navigation Keys

Navigate forward to or
from button

Tab

Navigate backward to or
from button

Shift+Tab

Activate the default button
(when the focus is not on a
button)

Enter

Activate any button while it
has focus

Enter, Spacebar, or keyboard shortcut (if one has been defined)

Activate Cancel or Close
buttons on a dialog

Esc

Table 3–3 Keyboard Navigation for Checkboxes

Navigation Keys

Navigate forward to or from
checkbox

Tab

Table 3–1 (Cont.) Common Methods of Moving the Cursor

Key Cursor Movement Ctrl+cursor Movement

Navigating The IDE

3-8 User's Guide for Oracle JDeveloper

Dropdown Lists And Combo Boxes
The following table describes the keyboard actions to perform navigation tasks
involving dropdown lists and combo boxes.

List Boxes
The following table describes the keyboard actions to perform navigation tasks
involving list boxes.

Navigate backward to or
from checkbox

Shift+Tab

Select or deselect (when the
focus is on the checkbox)

Spacebar or keyboard shortcut (if one has been defined)

Navigate to checkbox and
select or deselect (when the
focus is not on the
checkbox)

Keyboard shortcut (if one has been defined)

Table 3–4 Keyboard Navigation for Dropdown Lists and Combo Boxes

Navigation Keys

Navigate forward to or from
a combo box or dropdown
list

Tab or keyboard shortcut (if one has been defined)

Navigate backward to or
from a combo box or
dropdown list

Shift+Tab

Toggle list open and closed Spacebar (the current selection receives the focus)

Open a list Down Arrow to open (first item on list receives focus)

Move up or down within
list

Up and Down Arrow keys (highlighted value has focus)

Move right and left within
the initial entry on a combo
box

Right and Left Arrow keys

Select list item Enter

Note: The first time you press Enter, the item in the list is
selected. The second time you press Enter, the default button is
activated.

Close list (with the
highlighted value selected)

Esc

Table 3–5 Keyboard Navigation for List Boxes

Navigation Keys

Navigate forward into or
out of a list

Tab

Navigate backward into or
out of list

Shift+Tab

Table 3–3 (Cont.) Keyboard Navigation for Checkboxes

Navigation Keys

Navigating The IDE

Working with Oracle JDeveloper 3-9

Radio Buttons

Make a selection Up Arrow, Down Arrow, Spacebar, or Enter

Note: The first time you press Enter, the highlighted item in the
list is selected. The second time you press Enter, the default
button is activated.

Move within list Up Arrow or Down Arrow

Move to beginning of list Home or Ctrl+Home

Move to end of list End or Ctrl+End

Select all entries Ctrl+A

Toggle (select or deselect) an
item

Spacebar or Ctrl+Spacebar

Select next item up in list
without deselecting item
with current focus

Shift+Up Arrow Key

Select next item down in list
without deselecting item
with current focus

Shift+Down Arrow Key

Select current item and all
items up to the top of the
list

Shift+Home

Select current item and all
items up to the bottom of
the list

Shift+End

Select current item and all
items visible above that item

Shift+Page Up

Select current item and all
items visible below that
item

Shift+Page Down

Select item with current
focus without deselecting
other items (to select items
that are not adjacent)

Ctrl+Spacebar

Navigate through list
without deselecting item
with current focus.

Ctrl+Up Arrow or Ctrl+Down Arrow

Table 3–6 Keyboard Navigation for Radio Buttons

Navigation Keys

Navigate forward to or from
radio button

Tab

Navigate backward to or
from radio button

Shift+Tab

Navigate forward from
radio button

Arrow Keys

Navigate backward from
radio button

Shift+Arrow Keys

Table 3–5 (Cont.) Keyboard Navigation for List Boxes

Navigation Keys

Navigating The IDE

3-10 User's Guide for Oracle JDeveloper

Shuttles
The following table describes the keyboard actions to perform navigation tasks
involving shuttles.

Select radio button Arrow key (navigating to a radio button via arrows selects it) or
keyboard shortcut (if one has been defined)

Deselect radio button Select a different radio button in the group using one of the
commands above

Table 3–7 Keyboard Navigation for Shuttles

Navigation Keys

Navigate forward into or
out of a list

Tab

Navigate backward into or
out of list

Shift+Tab

Make a selection Up Arrow or Down Arrow

Move within list Up Arrow or Down Arrow

Move to beginning of list Home or Ctrl+Home

Move to end of list End or Ctrl+End

Select all entries Ctrl+A

Toggle (select or deselect) an
item

Spacebar or Ctrl+Spacebar

Select next item up in list
without deselecting item
with current focus

Select next item up in list without deselecting item with current
focus

Select next item down in list
without deselecting item
with focus

Shift+Down Arrow Key

Select current item and all
items up to the top of the
list

Shift+Home

Select current item and all
items up to the bottom of
the list

Shift+End

Select current item and all
items visible above that item

Shift+Page Up

Select current item and all
items visible below that
item

Shift+Page Down

Select item with current
focus without deselecting
other items (to select items
that are not adjacent)

Ctrl+Spacebar

Navigate through list
without deselecting item
with current focus.

Ctrl+Up Arrow or Ctrl+Down Arrow

Table 3–6 (Cont.) Keyboard Navigation for Radio Buttons

Navigation Keys

Navigating The IDE

Working with Oracle JDeveloper 3-11

Sliders
The following table describes the keyboard actions to perform navigation tasks
involving sliders.

Spin Controls
The following table describes the keyboard actions to perform navigation tasks
involving spin controls.

Text Fields
The following table describes the keyboard actions to perform navigation tasks
involving text fields.

Table 3–8 Keyboard Navigation for Sliders

Navigation Keys

Navigate forward to or from
slider

Tab

Navigate backward to or
from slider

Shift+Tab

Increase value Up Arrow or Right Arrow

Decrease value Left Arrow or Down Arrow

Minimum value Home

Maximum value End

Table 3–9 Keyboard Navigation for Spin Controls

Navigation Keys

Navigate forward to or from
spin control

Tab

Navigate backward to or
from spin control

Shift+Tab

Increase value Up Arrow or Right Arrow, or type the value you want

Decrease value Left Arrow or Down Arrow, or type the value you want

Minimum value Home

Maximum value End

Table 3–10 Keyboard Navigation for Text Fields

Navigation Keys

Navigate forward into or
out of text box

Tab or keyboard shortcut (if one has been defined)

Navigate backward into or
out of text box

Shift+Tab

Move to previous/next
character within text box

Left Arrow/Right Arrow

Move to start/end of box Home/End

Select all text Ctrl+A

Deselect all text Left Arrow or Right Arrow

Navigating The IDE

3-12 User's Guide for Oracle JDeveloper

3.5.2.3 Navigating Complex Controls
This section contains information about keyboard shortcuts for complex UI
components.

Dockable Windows
The following table describes the keyboard actions to perform navigation tasks
involving dockable windows.

Select current item and all
items up to the Left/Right

Shift+Left Arrow, Shift+Right Arrow

Select current item and all
items up to the Start/End

Shift+Home, Shift+End

Select current item and all
items up to the
previous/next word

Ctrl+Shift+Left Arrow, Ctrl+Shift+Right Arrow

Copy selection Ctrl+C

Cut selection Ctrl+X

Paste from clipboard Ctrl+V

Delete next character Delete

Delete previous character Backspace

Table 3–11 Keyboard Navigation for Dockable Windows

Navigation Keys

Navigate forward in or out
of dockable window

Ctrl+Tab

Navigate backward in or
out of dockable window

Ctrl+Shift+Tab

Display context menu Shift+F10

Navigate between tabs
within a dockable window

Alt+Page Down, Alt+Page Up

Move between elements
including dropdown lists,
search fields, panels, tree
structure (but not individual
elements in a tree),
individual component
buttons

Tab

Move up/down through
dockable window contents
(scrollbar)

Up Arrow, Down Arrow

This scrolls the window contents if the focus moves beyond
visible area of canvas.

Move left/right (scrollbar) Up Arrow, Down Arrow

This scrolls the pane contents if focus moves beyond visible area
of canvas.

Move to start/end of data
(component buttons)

Ctrl+Home, Ctrl+End

Select an element Enter or Spacebar

Table 3–10 (Cont.) Keyboard Navigation for Text Fields

Navigation Keys

Navigating The IDE

Working with Oracle JDeveloper 3-13

Menus
Context menus are accessed using Shift+F10. Menus from the main menu bar are
accessed using the keyboard shortcut for the menu.

The following table describes the keyboard actions to perform navigation tasks
involving the menu bar.

Panels
The following table describes the keyboard actions to perform navigation tasks
involving panels.

Scroll left/right within the
canvas area (without
moving through the
window contents)

Ctrl+Left/Ctrl+Right

Scroll Up/Down within the
canvas area (without
moving through the
window contents)

Ctrl+Up/Ctrl+Down

Table 3–12 Keyboard Navigation for Menus

Navigation Keys

Navigate to menu bar F10

Navigate out of menu bar Esc

Navigate between menus in
menu bar

Right Arrow, Left Arrow

Navigate to menu item Up Arrow, Down Arrow

Navigate from menu item Up Arrow, Down Arrow

Activate item Enter, Spacebar, or keyboard shortcut (if one has been defined)

Open submenu Right Arrow

Retract submenu Left Arrow or Esc

Table 3–13 Keyboard Navigation for Panels

Navigation Keys

Navigate in/out forward Tab

Navigate in/out backward Shift+Tab

Expand panel (when focus
on header)

Right Arrow

Collapse panel (when focus
on header)

Left Arrow

Navigate within panel Up Arrow, Down Arrow

Navigate to panel header
from contents (when focus
is on top item in list)

Up Arrow

Table 3–11 (Cont.) Keyboard Navigation for Dockable Windows

Navigation Keys

Navigating The IDE

3-14 User's Guide for Oracle JDeveloper

Tables
Arrow keys move focus in the direction of the arrow, except when a web widget has
focus; in that case, the down arrow or enter key initiates the widget control action,
such as opening a choice list. tab moves the focus right, shift+tab moves the focus left.

The following table describes the keyboard actions to perform navigation tasks
involving tables.

Navigate to panel contents
from header (when focus is
on header)

Down Arrow

Table 3–14 Keyboard Navigation for Tables

Navigation Keys

Navigate forward in or out
of table

Ctrl+Tab

Navigate backward in or
out of table

Shift+Ctrl+Tab

Move to next cell (wrap to
next row if in last cell)

Tab Arrow or Right Arrow

Move to previous cell (wrap
to previous row if in first
cell)

Shift+Tab or Left Arrow

Controls in cells open Down Arrow or Enter

Block move left Ctrl+Page Up

Block move right Ctrl+Page Down

Block move up Page Up

Block move down Page Down

Move to first cell in row Home

Move to last cell in row End

Move to first cell in table Ctrl+Home

Move to last cell in table Ctrl+End

Select all cells Ctrl+A

Deselect current selection
(and select alternative)

Any navigation key

Extend selection on row Shift+Up Arrow

Extend selection one
column

Shift+Down Arrow

Extend selection to
beginning of row

Shift+Home

Extend selection to end of
row

Shift+End

Extend selection to
beginning of column

Ctrl+Shift+Home

Table 3–13 (Cont.) Keyboard Navigation for Panels

Navigation Keys

Navigating The IDE

Working with Oracle JDeveloper 3-15

Tabs
This section refers to the tabs that appear within a dockable window, view or dialog.
The following table describes the keyboard actions to perform navigation tasks
involving tabs in dockable windows, views and dialogs.

Trees
The following table describes the keyboard actions to perform navigation tasks
involving trees.

Extend selection to end of
column

Ctrl+Shift+End

Edit cell without overriding
current contents, or show
dropdown list in combo box

F2

Reset cell content prior to
editing

Esc

Table 3–15 Keyboard Navigation for Tabs

Navigation Keys

Navigate forward into or
out of tab control

Tab

Navigate backward into or
out of tab control

Ctrl+Tab

Move to tab (within control)
left/right

Left Arrow/Right Arrow

Move to tab (within control)
above/below

Up Arrow/Down Arrow

Move from tab to page Ctrl+Down

Move from page to tab Ctrl+Up

Move from page to previous
page (while focus is within
page)

Ctrl+Page Up

Move from page to next
page (while focus is within
page)

Ctrl+Page Down

Table 3–16 Table Navigation for Trees

Navigation Keys

Navigate forward into or
out of tree control

Tab

Navigate backward into or
out of tree control

Shift+Tab

Expand (if item contains
children)

Right Arrow

Collapse (if item contains
children)

Left Arrow

Table 3–14 (Cont.) Keyboard Navigation for Tables

Navigation Keys

Navigating The IDE

3-16 User's Guide for Oracle JDeveloper

Wizards
The Following Table Describes The Keyboard Actions To Perform Navigation Tasks
Involving Wizards.

Move to parent from child
(if expanded)

Left Arrow

Move to child from parent
(if already expanded)

Right Arrow

Move up/down one item Up Arrow, Down Arrow

Move to first item Home

Move to last entry End

Select all children of
selected parent

Ctrl+A

Select next item down in list
without deselecting that
item that currently has focus

Shift+Down Arrow

Select next item up in list
without deselecting that
item that currently has focus

Shift+Up Arrow

Select current item and all
items up to the top of the
list

Shift+Home

Select current item and all
items up to the bottom of
the list

Shift+End

Select the item with current
focus without deselecting
other items (to select items
that are not adjacent)

Ctrl+Spacebar

Navigate through list
without deselecting item
with current focus

Ctrl+Up/Down Arrow

Table 3–17 Keyboard Navigation for Wizards

Navigation Keys

Navigate between stops on
the roadmap or between
pages

Up Arrow, Down Arrow (these do not wrap)

Navigate forward between
components on wizard
panel, wizard navigation
bar buttons, and navigation
panel

Tab

Navigate backward between
components on wizard
panel, wizard navigation
bar buttons, and navigation
panel

Shift+Tab

Table 3–16 (Cont.) Table Navigation for Trees

Navigation Keys

Navigating The IDE

Working with Oracle JDeveloper 3-17

3.5.2.4 Navigation in Specific Components
This section contains information about keyboard shortcuts for JDeveloper-specific UI
components.

Dialogs
The following table describes the keyboard actions to perform navigation tasks
involving dialogs.

Overview Editor (Form + Mapping)
The following table describes the keyboard actions to perform navigation tasks
involving overview editors.

Navigate between buttons
on Navigation Bar

Right and Left Arrow Key (does not wrap)

Navigate between stops on
Roadmap/between wizard
pages

Ctrl Page Up and Ctrl Page Down

Table 3–18 Keyboard Navigation for Dialogs

Navigation Keys

Close dialog without
making any selections or
changes

Esc

Activate the default button
(if one is defined)

Enter

Table 3–19 Keyboard Navigation for the Overview Editor

Navigation Keys

Navigate into or out of
overview editor from other
pages in editor (for example
Source or History)

Alt+Tab

Navigate from the tab group
to next control in editor)

Tab or Ctrl+Down Arrow

Navigate forward or
backwards between controls
on overview editor

Tab or Alt+Tab

Move between tabs in the
side tab control (when the
focus in the tab group)

Up Arrow, Down Arrow

Move between tabs in side
tab control (when focus on
Page)

Ctrl+Page Up/Ctrl+Page Down

Move from page to tab
group (from next control in
editor)

Ctrl+Tab

Move from page to tab
group (from any control in
editor)

Ctrl+Up Arrow

Table 3–17 (Cont.) Keyboard Navigation for Wizards

Navigation Keys

Navigating The IDE

3-18 User's Guide for Oracle JDeveloper

Component and Resource Palettes
The following table describes the keyboard actions to perform navigation tasks
involving palettes.

Navigators
The following table describes the keyboard actions to perform navigation tasks
involving navigators.

Open and close Sections
(when focus is on a section
header)

Enter, Spacebar, Right Arrow/Left Arrow

Table 3–20 Keyboard Navigation for Component and Resource Palettes

Navigation Keys

Navigate forward in or out
of palette

Ctrl+Tab

This moves you into first item within the pane.

Navigate backward in or
out of palette

Ctrl+Shift+Tab

Move between elements
including dropdown lists,
search fields, panels, tree
structure (but not individual
elements in a tree),
individual component
buttons

Tab, Shift+Tab

Move up/down elements in
a list or tree

Up Arrow/Down Arrow

Move left/right elements in
a list or tree

Left Arrow/Right Arrow

Move to start/end of data
(component buttons)

Ctrl+Home/Ctrl+End

Select a component button Enter

Table 3–21 Keyboard Navigation for Navigators

Navigation Keys

Navigate forward in or out
of navigator

Ctrl+Tab

This moves you into first item within the pane.

Navigate backward in or
out of navigator

Ctrl+Shift+Tab

Move between elements
including dropdown lists,
search fields, panels, tree
structure (but not individual
elements in a tree),
individual component
buttons

Tab

Move up/down elements in
a list or tree

Up Arrow/Down

Table 3–19 (Cont.) Keyboard Navigation for the Overview Editor

Navigation Keys

Navigating The IDE

Working with Oracle JDeveloper 3-19

Property Inspector
The following table describes the keyboard actions to perform navigation tasks
involving the Property Inspector.

Text Editors
The following table describes the keyboard actions to perform navigation tasks
involving the pane elements of text editors.

Move left/right elements in
a list or tree

Left Arrow/Right Arrow

Move to start/end of data
(component buttons)

Ctrl+Home/Ctrl+End

Select a component button Enter

Select an element Enter

Table 3–22 Keyboard Navigation for the Property Inspector

Navigation Keys

Navigate forward into or
out of Property Inspector

Ctrl+Tab

Navigate backward into or
out of Property Inspector

Ctrl+Shift+Tab

Navigate from side tab
group to page

Tab

Navigate backward and
forwards between elements
on page

Tab, Shift+Tab

Move to tab above/below
(when focus is on the side
tab)

Up Arrow, Down Arrow

Move to tab right or left,
above or below (when focus
is on the internal tab group)

Up Arrow, Down Arrow, Right Arrow, Left Arrow

Move from side tab group to
page

Ctrl+Down Arrow

Move from page to side tab
group

Ctrl+Up Arrow

Move to side tab above
(previous) when focus on
page

Ctrl+Page Up

Move to side tab below
(next) when focus on page

Move to side tab below (next) when focus on page

Open and Close sections
(when focus is on a section
header)

Enter

Table 3–21 (Cont.) Keyboard Navigation for Navigators

Navigation Keys

Navigating The IDE

3-20 User's Guide for Oracle JDeveloper

The following table describes the keyboard actions to perform navigation tasks
involving the text or canvas areas of text editors.

Table 3–23 Keyboard Navigation for Text Editors

Navigation Keys

Navigate forward in or out
of editor

Ctrl+Tab

Navigate backward in or
out of editor

Ctrl+Shift+Tab

Move from page to previous
page

Alt+Page Up

Move from page to next
page

Alt+Page Down

Table 3–24 Keyboard Navigation for Canvas Areas of Text Editors

Navigation Keys

Move up/down one line Up Arrow, Down Arrow

Move left/right one
character

Left Arrow, Right Arrow

Move to start/end of line Home, End

Move to previous/next
word

Ctrl+Left Arrow, Ctrl+Right Arrow

Move to start/end of text
area

Ctrl+Home/Ctrl+End

Move to beginning/end of
data

Ctrl+Home/Ctrl+End

Move up/down one vertical
block

Page Up/Page Down

Block move left Ctrl+Page Up

Block move right Ctrl+Page Down

Block extend up Shift+Page Up

Block extend down Shift+Page Down

Block extend left Ctrl+Shift+Page Up

Block extend right Ctrl+Shift+Page Down

Select all Ctrl+A

Deselect all Up Arrow, Down Arrow, Left Arrow, Right Arrow

Extend selection up/down
one line

Shift+Up Arrow/Shift+Down Arrow

Extend selection left/right
one component or char

Shift+Left Arrow/Shift+Right Arrow

Extend selection to
start/end of line

Shift+Home/Shift+End

Extend selection to
start/end of data

Ctrl+Shift+Home/Ctrl+Shift+End

Extend selection up/down
one vertical block

Shift+Page Up/Shift+Page Down

Customizing the IDE

Working with Oracle JDeveloper 3-21

Graphical Editors
The following table describes the keyboard actions to perform navigation tasks
involving graphical editors.

The following table describes the keyboard actions to perform navigation tasks
involving the canvas areas of graphical editors.

3.6 Customizing the IDE
You can alter the appearance and functionality of a wide variety of JDeveloper
features.

3.6.1 How to Change the Look and Feel of the IDE
You can alter the appearance of JDeveloper using pre-defined settings.

To change the look and feel of the IDE:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, select the Environment node if it is not already selected.

Extend selection to
previous/next word

Ctrl+Shift+Left Arrow /Ctrl+Shift+Right Arrow

Extend selection left/right
one block

Ctrl+Shift+Page Up/Ctrl+Shift+Page Down

Copy selection Ctrl-C

Cut selection Ctrl-X

Paste selected text Ctrl-V

Table 3–25 Keyboard Navigation for Graphical Editors

Navigation Keys

Navigate forward in or out
of editor

Ctrl-Tab

Navigate backward in or
out of editor

Ctrl+Shift+Tab

Move from page to previous
page

Alt+Page Up

Move from page to next
page

Alt+Page Down

Table 3–26 Keyboard Navigation for Canvas Areas of Graphical Editors

Navigation Keys

Move to the next focusable
element within editor area

Up Arrow, Down Arrow, Left Arrow, Right Arrow

Select element Spacebar

Activate context menu Shift+F10

Table 3–24 (Cont.) Keyboard Navigation for Canvas Areas of Text Editors

Navigation Keys

Customizing the IDE

3-22 User's Guide for Oracle JDeveloper

3. On the Environment page, select a different look and feel from the Look and Feel
dropdown list.

4. Click OK.

5. Restart JDeveloper.

3.6.2 How to Customize the General Environment for the IDE
You can customize the default display options (such as whether or not the splash
screen is displayed at start up, or whether dockable windows are always on top), as
well as other general behavior, such as whether JDeveloper will automatically reload
externally modified files and whether output to the Log window is automatically
saved to a file.

To change the general environment settings for the IDE:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, select the Environment node if it is not already selected.

3. On the Environment page, select the options and set the fields as appropriate.

4. Click OK.

5. Restart JDeveloper.

3.6.3 How to Customize Dockable Windows in the IDE
You can customize the layout for dockable windows in their docked position. You can
also set dockable windows to remain on top of other GUI elements, or not, when those
windows are moved.

To change the shape of one or more of the four docking areas:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, select the Environment node select Dockable Windows.

3. On the Dockable Windows page, click the corner arrows to lengthen or shorten
each docking area's shape.

4. Click OK.

To change whether dockable windows remain on top or not when moved:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, select the Environment node select Dockable Windows.

3. On the Dockable Windows page, select or deselect Dockable Windows Always on
Top as appropriate.

4. Click OK.

Note: The key bindings in Motif are different from key bindings in
Windows. Under Motif, the arrow keys do not change the selection.
Instead they change the lead focus cell. You must press Ctrl + Space to
select an item. This is expected behavior.

Customizing the IDE

Working with Oracle JDeveloper 3-23

3.6.4 How to Customize the Compare Window in the IDE
You can customize the display of the Compare window.

To customize the options for comparing files:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, select Compare and Merge.

3. On the Compare page, set the options available for the display of two files being
compared.

4. Click OK.

3.6.5 How to Customize the Component Palette
The Component Palette offers you a quick method for inserting components into files
open in the editor.

3.6.5.1 How to Add a Page to the Palette
You can add pages to the Component Palette, within which to group additional
components, or you can add components to existing pages.

To add a page to the Palette:
1. From the main menu, choose Tools > Configure Palette to open the Configure

Component Palette dialog. For more information at any time, press F1 or click
Help from within the Configure Component Palette dialog.

2. Optionally, in the Configure Component Palette dialog, for Page Type select the
appropriate type to limit the display in the Pages list.

3. In the Configure Component Palette dialog, underneath the Pages list box, click
Add.

4. In the Create Palette Page dialog, enter the name of the new page and select a type
from the dropdown list. If you selected a page type in Step 2, that type is reflected
now in this dialog.

5. Click OK to return to the Configure Component Palette dialog.

6. If finished, click OK. The new page is now added to the dropdown list in the
Component Palette. It also appears in the Pages list of the Configure Component
Palette dialog.

Alternately, right-click in the Component Palette and choose Add Page.

3.6.5.2 How to Add a JavaBeans Component to the Palette
You can add pages to the Component Palette to group your JavaBeans components, or
you can add components to existing pages. Once you add JavaBeans to the Palette,
you can insert these beans into any file you have open in the Java Visual Editor by
selecting them from the Palette.

To add a JavaBeans component to the Palette:
1. If the bean is not already referenced by a library, create a user library (outside the

project) for the bean.

Customizing the IDE

3-24 User's Guide for Oracle JDeveloper

In the Class Path field, set the location of the bean class. If the bean is in an
archive, use the archive. If the bean is contained in a project, use the output
directory of that project.

Note that when you are creating your own JavaBeans for later deployment, it can
be useful to defer putting them into an archive until you have finished
development.

2. From the main menu, choose Tools > Configure Palette to open the Configure
Component Palette dialog. For more information at any time, press F1 or click
Help from within the Configure Component Palette dialog.

3. Optionally, in the Configure Component Palette dialog, for Page Type select Java
to view only those pages containing JavaBeans.

Skip to Step 6 if you do not want to add a new page.

4. Underneath the Pages list box, click Add.

5. In the Create Palette Page dialog, enter the name of the new page, ensure that Java
is selected from the dropdown list, and click OK.

Your new page name is added to the bottom of the Pages list in the Configure
Component Palette dialog.

6. In the Pages list, select the page to which you wish to add the JavaBeans
component.

7. Underneath the Components list box, click Add.

8. In the Add JavaBeans dialog, fill in the appropriate details for the new component.

9. Click OK to return to the Configure Component Palette dialog.

10. If finished, click OK.

The new beans component now appears in the Component Palette when the
appropriate page is selected. It also appears in the Components list of the Configure
Component Palette dialog when the page it is associated with is selected in the Pages
list.

3.6.5.3 How to Remove a Page from the Palette
Note that if you remove a page supplied by JDeveloper, the only way to recover it
again is to restore the default setting for the Component Palette by moving the
palette.xml file from jdev_install/system to jdev_
install/system/release_and_build_number, where jdev_install is the
root directory in which JDeveloper is installed.

To remove a page from the Palette:
1. From the main menu, choose Tools > Configure Palette to open the Configure

Component Palette dialog. For more information at any time, press F1 or click
Help from within the Configure Component Palette dialog.

2. Optionally, in the Configure Component Palette dialog, for Page Type select the
appropriate type to limit the display in the Pages list.

3. In the Pages list, select the page to be removed.

4. Underneath the Pages list box, click Remove.

If the page cannot be removed, the Illegal Request dialog appears.

5. To confirm removal, in the Confirm Remove Page dialog, click Yes.

Customizing the IDE

Working with Oracle JDeveloper 3-25

6. In the Configure Component Palette dialog, click OK.

The page no longer appears in the Component Palette dropdown list. It has also
been removed from the Pages list of the Configure Component Palette dialog.

Alternately, with the page selected in the Component Palette, right-click in the Palette
and choose Remove Page.

3.6.5.4 How to Remove a Component from the Palette
Note that if you remove a component supplied by JDeveloper, the only way to recover
it again is to restore the default setting for the Component Palette by moving the
palette.xml file from jdev_install/system to jdev_
install/system/release_and_build_number, where jdev_install is the
root directory in which JDeveloper is installed.

To remove a component from the Palette:
1. From the main menu, choose Tools > Configure Palette to open the Configure

Component Palette dialog. For more information at any time, press F1 or click
Help from within the Configure Component Palette dialog.

2. Optionally, in the Configure Component Palette dialog, for Page Type select the
appropriate type to limit the display in the Pages list.

3. In the Pages list, select the page you want to remove the component from.

4. In the Components list box, click Remove.

If the component cannot be removed, the Illegal Request dialog appears.

5. To confirm removal, in the confirmation dialog, click Yes.

6. In the Configure Component Palette dialog, click OK.

The component no longer appears in the Component Palette dropdown list. It has
also been removed from the Components list of the Configure Component Palette
dialog.

You cannot remove a component using the Component Palette context menu. You
must work through the Configure Component Palette dialog.

3.6.6 How to Change Roles in JDeveloper
You can change the roles that are used to shape JDeveloper. Shaping tailors the
JDeveloper environment based on the role of the user.

When you change to a new role, it is only available after you restart JDeveloper.

To change the role for JDeveloper:
■ From the main menu, choose Tools > Switch Roles and select the role of your

choice.

3.6.7 How to Associate File Types with JDeveloper
You can associate commonly used file types with JDeveloper. Once a file type has been
associated with JDeveloper, opening a file of that type automatically launches
JDeveloper. (This feature is supported only in Windows systems.)

Working with the Resource Palette

3-26 User's Guide for Oracle JDeveloper

To associate a file type with JDeveloper:
1. From the main menu, choose Tools > Preferences and open the File Types pane.

For more information at any time, press F1 or click Help from within the
Preferences dialog.

2. In the list of file types, select a file type to be associated with JDeveloper.

3. In the Details for area, check Open with JDeveloper.

3.7 Working with the Resource Palette
When designing and building applications, you may need to find and use many
software assets. You may know what you want to find, but you may not certain where
to find it or even what the artifact of interest is called. Even if you think you know
where to find the artifact, and what it is called, you might not know how to establish a
connection to the source repository. Consider the following:

■ An application developer needs to find and incorporate shared model, view and
controller objects created by other members of her team, and by other product
teams.

■ A UI designer needs access to a corporate catalog of images, style sheets,
templates and sample designs to facilitate rapid creation of standards-compliant
pages.

■ An application integrator needs easy access to a variety of web services of interest
to a particular domain.

■ An end user needs to find relevant content (for example, portlets and UI
components) for use while personalizing a page.

■ In each of these cases, the user has a simple goal: find the resource(s) needed for
the task at hand. The process of discovering and accessing the assets should be as
effortless as possible.

The Resource Palette in JDeveloper addresses this. It lets you:

■ Locate resources stored in a wide variety of underlying repositories through IDE
connections

■ Locate resources by browsing a hierarchical structure in catalogs

■ Search for resources and save searches

■ Filter resources to reduce the visible set when browsing

■ Use a resource you have found in an application you are building

■ Facilitate resource discovery and reuse by sharing catalog definitions

3.7.1 How to Open the Resource Palette
The resource palette allows you to create connections to a number of different
resources, such as application servers, databases, WebDAV servers, from where you
can use them in different applications and share them with other users.

To open the Resource Palette:
In the main menu, choose View > Resource Palette.

By default, the Resource Palette is displayed to the right of the JDeveloper window.

Working with the Resource Palette

Working with Oracle JDeveloper 3-27

3.7.2 How to Work With IDE Connections
The connections defined in the Resource Palette are listed in the IDE Connections
panel of the Resource Palette.

When you create a connection in JDeveloper, you can create it in the context of the
Resource Palette as an IDE connection that can be reused in different applications, or
shared between users, or as application connections.

Some types of connections may appear in special connection-type navigators. For
example, database connections display in the Database Navigator under the IDE
Connection node (for IDE connections), or the application-name node (for application
resource connections). The Database Navigator is where you edit objects through the
database connection.

The different types of connection that can be made depends on the technologies and
extensions available to you. To see what you can create a connection to, choose New
Connection from the New button in the Resource Palette.

3.7.2.1 Resource Palette Connection Descriptor Properties Location
The file system location for the Resource Palette connection descriptor definition
information is

system-dir/jdeveloper/system11.1.2.n.nn.nn.nn/o.jdeveloper.rescat2.model/connectio
ns/connections.xml

3.7.2.2 Defining the Scope of a Connection
In JDeveloper 11g you have two ways of creating and managing connections. You can
define a connection to be used in the context of an application (called an Application
Resource connection), or for the IDE as a whole (called an IDE connection). You use
the same dialog to define both of these, but their scope within JDeveloper is different.

When you first create a connection you choose the connection scope. You cannot
subsequently change the connection scope.

3.7.2.2.1 Application Resource Connections These connections are locally scoped and just
available within the application. Connections in application resources are artifacts of
the application and are deployed within the application. These types of connection are
listed in the Application Resources panel of the Application Navigator, under the
Connections node.

The file system location for the connection descriptor definition information is
application-folder/.adf/META-INF/connections.xml, where
application-folder is the path for the selected application.

3.7.2.2.2 IDE Connections These are globally defined connections available for reuse,
and they are listed in the IDE Connections panel of the Resource Palette. You can copy
IDE connections to the application navigator to use them within an application.

3.7.2.3 How to Create IDE Connections
You can create connections in the Resource Palette to resources available to
JDeveloper.

The specific types of connections you can make depend on the technologies and
extensions available to you.

Working with the Resource Palette

3-28 User's Guide for Oracle JDeveloper

To create an IDE connection:
1. In the Resource Palette IDE Connections panel, choose New Connection from the

New button.

2. Choose the type of connection you want to create, and enter the appropriate
information in the Create Connection dialog. For more information at any time,
press F1 or click Help from within the dialog.

3.7.2.4 How to Edit IDE Connections
Once you have created a connection in the Resource Palette, you can edit details of the
connection, but you cannot change the connection name.

To edit an IDE connection:
1. In the Resource Palette IDE Connections panel, choose Properties from the context

menu of a connection.

2. The Edit connection dialog opens where you can change the connection details.
For more information at any time, press F1 or click Help from within the Edit
connection dialog.

3.7.2.5 How to Add IDE Connections to Applications
You can use connections in the Resource Palette in an application.

The connection can be added to the application currently open in JDeveloper, and it is
listed in the Application Resources panel of the Application Navigator, under the
Connections node.

To add a connection to an application:
In the Resource Palette IDE Connections panel, choose Add to Application from the
context menu of a connection.

Alternatively, drag the resource from the Resource Palette and drop it onto an
application page.

Alternatively, drag the connection from IDE Connections in the Resource Palette and
drop it onto the Application Resources pane in the Application Navigator.

3.7.3 How to Search the Resource Palette
There are two ways of searching in the Resource Palette:

■ Performing a simple search

■ Performing an advanced search, where you enter parameters in a dialog

In addition, you can define a dynamic folder in a catalog where the content of the
folder is defined by a query expression that is executed when the folder is opened.

The time the search takes depends on how many resources there are in the Resource
Palette, and how long it takes to connect to them, and the results are displayed in the
Search Results panel.

You can stop a search before it has completed by clicking the Stop Search button.

3.7.3.1 Performing a simple search
In this case, the search is performed across all the contents of the Resource Palette, and
it may take some time because JDeveloper connects to remote resources during the
search.

Working with the Resource Palette

Working with Oracle JDeveloper 3-29

To perform a simple search:
1. In the Resource Palette, click the Search Options button to choose whether the

search is performed against the Name, Type or Description of the resource. For
more information at any time, press F1 or click Help from within the Resource
Palette.

2. Enter a search string in the field. For example, if you want to find every resource
that contains dep in the name, choose Name in step 1, and enter dep. Every
resource that contains the string dep will be listed in the search results.

3. Click the Start Search button to start the search.

3.7.3.2 Performing an advanced search
You can specify a series of search criteria, and you can choose where to start the search
from.

To perform an advanced search:
1. In the Resource Palette, choose Advanced Search from the context menu of an

object in the My Catalogs panel or the IDE Connections panel. For more
information at any time, press F1 or click Help from within the Advanced Search
dialog.

2. Define where the search starts. Either select from Search in, or click Show
Hierarchy which allows you choose within a hierarchical list of the Resource
Palette contents.

3. Enter search criteria to return the resources you want, and click Search.

3.7.4 How to Reuse Resource Palette Searches
You can save a search and reuse it. There are two ways of saving a search in order to
reuse it:

■ As a dynamic folder, where the contents of the folder are created dynamically
based on the search criteria when the folder is opened.

■ As a static folder containing the results of the search.

Dynamic folders can also be created directly in a catalog.

To save a search:
1. In the Resource Palette Search Results panel, choose Save Search from the context

menu.

2. In the Save Search dialog, choose:

■ Save Search Criteria, to create a dynamic folder.

■ Save Search Results, to create a static folder of results.

For more information at any time, press F1 or click Help from within the Resource
Palette.

3. Enter a name for the folder.

4. Choose the catalog to contain the folder, either from the dropdown list, or from the
hierarchical list displayed when you click Show Hierarchy.

Working with the Resource Palette

3-30 User's Guide for Oracle JDeveloper

3.7.5 How to Filter Resource Palette Contents
Filters allow you fine-tune the contents of catalog folders.

To filter the contents of My Catalogs:
1. In the Resource Palette, choose Filter from the context menu of an object in the My

Catalogs panel or the IDE Connections panel. For more information at any time,
press F1 or click Help from within the Filter dialog.

2. Enter a string to define the filtering. Only entries in the folder that contain the
string will be shown.

3.7.6 How to Import and Export Catalogs and Connections
Catalogs and connections are shared by importing Resource Catalog archive (.rcx) files
that have been exported by another user.

To export a catalog:

1. In the Resource Palette, choose Export from the context menu of an object in the
My Catalogs panel or the IDE Connections panel.

2. In the Export Catalog and Connections dialog, select the catalogs and connections
to be exported, and decide how errors will be handled. For more information at
any time, press F1 or click Help from within the Export Catalog and Connections
dialog.

To import a catalog:
1. In the Resource Palette, choose Import from (New).

2. In the Import Catalog and Connections dialog, specify or browse to the path and
name of the Resource Catalog archive file (.rcx). For more information at any time,
press F1 or click Help from within the Import Catalog and Connections dialog.

3. Choose the catalogs and connections you want to import, and determine how to
handle errors.

3.7.7 How to Refresh the Resource Palette
You can refresh the contents of the Resource Palette.

To refresh the Resource Palette:
1. In the Resource Palette, choose Refresh from the context menu of an object in the

My Catalogs panel or the IDE Connections panel.

3.7.8 How to Work With Resource Palette Catalogs
A catalog is a user-defined construct for organizing resources from multiple
underlying repositories. The contents of a catalog and its associated folder structure

Note: When you select a catalog to export, any connections in the
catalog are also selected. If you deselect the catalog before exporting,
you must be sure to also deselect the connections that are not wanted
in the archive file.

Working with the Resource Palette

Working with Oracle JDeveloper 3-31

can be designed to be used by an individual developer, or they can be targeted
towards specific groups of users such as the UI designers for a development project.

Catalog folders organize resources in a catalog. You use catalog folders in the same
way you would to organize files in a file system or bookmarks in a Web browser. Each
catalog folder can contain any combination of:

■ Folders.

■ Dynamic folders, which are populated using a query.

■ Filters, which are used to fine-tune the content of a folder or subtree.

3.7.8.1 How to Create Catalogs
You can organize the information in the resource palette in catalogs.

To create a catalog:
1. In the Resource Palette, choose New Catalog from the New button.

2. In the Create Catalog dialog, specify a name for the catalog. For more information
at any time, press F1 or click Help from within the Create Catalog dialog.

3. (Optional) Provide a description for the catalog, and the email of the catalog
administrator.

3.7.8.2 How to Rename Catalogs
You can rename catalogs.

To rename a catalog:
1. In the Resource Palette, right-click the catalog, and choose Rename from the

context menu.

2. In the Rename dialog, specify a new name for the catalog. For more information at
any time, press F1 or click Help from within the Rename dialog.

3.7.9 How to Work with Catalog Folders
You can create folders to organize the contents of catalogs.

3.7.9.1 How to Create Folders
You can organize the information within catalogs in folders.

To create a catalog folder:
1. In the Resource Palette, choose New Folder from the context menu of a catalog in

the My Catalogs panel or the IDE Connections panel. For more information at any
time, press F1 or click Help from within the Create Folder dialog.

2. Enter a name for the folder.

3.7.9.2 How to Create Dynamic Folders
Dynamic Folders provide a powerful way to dynamically populate a catalog folder
with resources. The content of the folder is defined by a query expression that is
executed when the folder is opened. The results of the query appear as the contents of
the folder.

Working with Source Files

3-32 User's Guide for Oracle JDeveloper

To create a dynamic folder:
1. In the Resource Palette, choose New Dynamic Folder from the context menu of a

catalog in the My Catalogs panel or the IDE Connections panel. For more
information at any time, press F1 or click Help from within the Create Dynamic
Folder dialog.

2. Define the search criteria that will be used to populate this folder when it is
opened.

3.7.9.3 How to Add Resources to a Catalog
You can add a connection from the IDE Connections panel or a resource from the
Search panel in the Resource Palette to a catalog in My Catalogs.

To add a resource to a catalog:
1. In the Resource Palette, right click a connection in the IDE Connections panel, or

the result of a search in the Search panel and choose Add to Catalog from the
context menu.

2. The Add to Catalog dialog opens for you to specify the name for the resource in
the catalog, and the catalog to add it to. For more information at any time, press F1
or click Help from within the Create Connection dialog.

Alternatively, you can drag an item from under IDE Connections and drop it on a
catalog or catalog folder.

You can reorganize a catalog by selecting an item or folder in the catalog and dragging
it to another folder in the same catalog, or to another catalog.

3.8 Working with Source Files
JDeveloper includes an editor for editing source files across several technologies,
including Java and XML, among others.

3.8.1 Using the Source Editor
JDeveloper includes an editor for editing source files across several technologies,
including Java and XML, among others.

Depending on the type of source file you are editing, the source editor will be available
in one of the following forms:

■ Java Source Editor

■ XML Editor

■ HTML/JSP Source Editor

■ JavaScript Editor

In addition to technology-specific features, the source editor also has a set of common
features across all technologies that enhance the coding experience. These features
include bookmarking, code insight, code templates, and several other features that
enable you to code faster and better.

Use the Code Editor page in the Preferences dialog to customize the source editor to
suit your coding style.

The source editor offers a set of common features across all technologies that provide
intuitive support for a variety of coding tasks. Available across all forms of the editor,

Working with Source Files

Working with Oracle JDeveloper 3-33

these features enhance your coding experience through quicker execution of coding
tasks and better navigation through code.

Breadcrumb Navigation
The breadcrumb bar, located at the bottom of the editor window, shows the hierarchy
of code entities from the current caret position up to the top of the file. Hovering the
mouse cursor over a node pops up some information about the node, and clicking on
the node navigates the caret to the node location.

A breadcrumb can be clicked to display a popup list of child breadcrumbs can be
displayed (where appropriate). For example, for a Java class, you can click the
breadcrumb to display the class' methods and inner classes in a list. Choosing an item
on this list will navigate the editor to its location.

If block coloring has been activated and colors have been assigned, breadcrumbs are
highlighted in the same color as their corresponding code blocks.

Overview Popup
The right margin of the editor provides colored overview marks that are indicators for
a location in the source file. Hovering the mouse over an overview mark makes a
popup appear which displays information about the item in that location of the source
file, and a snippet of the relevant code.

The following overview indicators are provided:

■ A square mark at the top right corner of the editor window indicates the overall
health of your source file, as per its color. White indicated that the health is
currently being calculated. Green indicates that there are no errors or warnings in
the file. Red indicates errors, and yellow indicates warnings

■ Rectangles, depending on their color, signify the occurrence of the following
source editing artifacts:

– Red: Java code error

– Pale blue: bookmark

– Medium blue: current execution breakpoint

– Yellow: occurrence of searched text

– Pale orange: Java warning

– Bright orange: Profile Point

You can also press Ctrl anywhere in the right margin to view a popup window that
displays a portion of the source code that is not currently in view. By adjusting the
position of the mouse while pressing Ctrl, you can view the entire code without
scrolling in the editor itself

Hovers
Hovers enable you to position the mouse cursor over certain areas of the IDE and get
some information on them in a popup window that appears floating in front.

Whitespace Display
Tools menu > Preferences > Code Editor > Display > Show Whitespace Characters

This feature optionally renders spaces, new lines, carriage returns, non-breaking
spaces, and tab characters as visible characters in the editor. Turned off by default, this
can be enabled and disabled using the Preferences Dialog.

Working with Source Files

3-34 User's Guide for Oracle JDeveloper

Duplicate Selection
Edit menu > Duplicate Selection

Duplicates the currently selected block of code, and places the copied code beside the
original code. After duplication, the newly inserted code is selected. The clipboard is
not affected by this operation.

Vertical Selection
Edit menu > Block Selection

This feature enables you to select code vertically. when you do not want to select text
that wraps around the end of lines. This is useful for selecting tabular data, or
vertically aligned code blocks.

Join Lines
Join the current line to the next, or join all lines in a selection. Any comment delimiters
or extra whitespace are intelligently removed to join the lines.

Default keyboard shortcut: Ctrl+J

Cursor Position
When the source editor is in use, the status bar at the bottom displays the line and
column coordinates of the current position of the cursor.

Mouse Wheel Zoom
Hold down the Ctrl key and use the mouse scroller to zoom in to or zoom out of the
code editor.

3.8.1.1 Features Available From the Context Menu
The generic source editor also provides a set of features through the context menu. To
use these features, in the context menu, select Source. Depending on the type of source
file in use, items other than the ones mentioned below may be present in the context
menu. For example, the Java Source Editor contributes Java-specific options to the
source editor context menu.

Completion Insight
Completion insight provides you with a list of possible completions, such as method
names, and parameter types if they are applicable, at the insertion point, which you
may use to auto-complete Java code you are editing. This list is generated based on the
code context found at the insertion point. The contexts supported by completion
insight are:

■ Within package and import statements

■ Within extends, implements, and throws clauses

■ Within continue and break statements

■ Within general code expressions

Default keyboard shortcut: Ctrl+Space

Note: These features are also available through the Source menu.

Working with Source Files

Working with Oracle JDeveloper 3-35

Parameter Insight
Parameter insight provides you with the types and names of the parameters of the
method call you are typing. If the method is overloaded, multiple sets of parameter
types and names are listed.

Default keyboard shortcut: Ctrl+Shift+Space

Complete Statement
Use to auto-complete code statements where such a completion is obvious to
JDeveloper; for example, semi-colon insertions at the end of a statement.

Default keyboard shortcut: Ctrl+Shift+Enter

Expand Template
Insert a code template from a list of JDeveloper's predefined code templates. The code
templates offered are context sensitive. For example, templates to declare class
variables are only offered when the cursor is in the appropriate place in the class file.

Default keyboard shortcut: Ctrl+Enter

Code Assist
Code Assist examines your code in the editor and provides assistance to fix common
problems. A Code Assist icon appears in the editor margin when JDeveloper has a
suggestion for a code change. To invoke Code Assist manually, press Ctrl+Alt+Enter.
To select an action listed in Code Assist, press Alt+ the underlined key.

Default keyboard shortcut: Ctrl+Alt+Enter

QuickDoc
Select to view the Javadoc or Jsdoc (depending on whether you are using the Java or
JavaScript editor) for the element in focus.

Default Keyboard Shortcut: Ctrl+D

Toggle Line Comments
Comments out the line currently in focus in the source editor. Running this command
on a commented line uncomments the line.

Default Keyboard Shortcut: Ctrl+Slash

Indent Block
Indents the line of code currently in focus. If a block of code is selected, the entire
block is indented.

Unindent Block
Unindents a line or block of code, based on code has focus in the editor.

Note: If errors for the file appear in the Structure window, Code
(Completion or Parameter) Insight may not work. If the class(es) you
are using are not in your project (that is, not on your classpath), Code
Insight will not appear. Please note that you may need to compile
your src files in order for Code Insight to have access to them.

Working with Source Files

3-36 User's Guide for Oracle JDeveloper

3.8.2 How to Set Preferences for the Source Editor
You can change the default settings of many of the features of the source editor by
changing the preferences.

You can also view or change shortcut keys for the source editor, by modifying the
predefined keyboard schemes.

To set indentation size for the source editor:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, select the Code Editor node, then the Code Style page.

3. On the Code Style page, select the Edit button.

4. On the Format tab, open the Indentation node and select Indentation Size.

5. Change the indentation value as required.

6. Click OK to close the dialogs.

To set fonts for the Source Editor
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, select the Code Editor node, then the Fonts node.

3. On the Fonts page, select a font type and size. Alter the sample text, if you wish.
The sample text display reflects your font changes.

By default, all your system fonts are loaded. To limit the fonts available on this
page to fixed-width fonts, select Display Only Fixed-Width Fonts.

4. Click OK.

To set caret behavior for the source editor:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within Preferences dialog.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Caret Behavior node.

4. On the Caret Behavior page, set the different attributes that determine how the
caret will look and behave.

For more information, press F1 or click Help from within the dialog page.

5. Click OK.

Note: While editing code, if you press the Tab key when the Use Tab
Character option is unchecked, JDeveloper indents by the indentation
size you specify (4 by default). If you select Use Tab Character,
JDeveloper will use tab characters for indenting, based on values
specified in both the Indentation Size and Tab Size fields. For
example, if you use an indent size of 4, and a tab size of 8, then it takes
two indent levels (4 spaces each) to reach the tab size (8). So if you
press Tab twice to indent twice, JDeveloper will insert a tab character
in the source file. That tab character will expand to 8 spaces.

Working with Source Files

Working with Oracle JDeveloper 3-37

To set the options for width and the right margin in the source editor:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Display node.

4. On the Display page, enter the settings you wish for the right margin.

5. Enter a width for the source editor, expressed in numbers of columns.

6. Click OK.

To set line gutter behavior for the source editor:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Line Gutter node.

4. On the Line Gutter page, decide whether or not line numbers will appear.

5. Set the other attributes to create the line gutter behavior that you want.

6. Click OK.

To set the options for syntax highlighting in the source editor:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within the Preferences dialog

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Syntax Colors node.

4. On the Syntax Colors page, begin by selecting the appropriate category for the
syntax you wish to work with.

The display on the page changes to reflect the current settings for the first style
listed in this category, which is highlighted.

5. With the category displayed above, select any individual style in the Available
Styles list to view its current settings.

6. Select a font style and set the background and foreground color as desired. The
sample text changes accordingly.

7. Click OK.

To set bookmark options for the source editor:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within Preferences dialog.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Bookmarks node.

4. On the Bookmarks page, decide how you wish to handle bookmarks once you've
exited the editor or Oracle JDeveloper, how you wish to traverse bookmarks, and
how you wish to handle bookmarks at the end of files for lines that may no longer
exist.

5. Click OK.

Working with Source Files

3-38 User's Guide for Oracle JDeveloper

To set the options for Code Insight in the source editor:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within Preferences dialog.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Code Insight node.

4. On the Code Insight page, select the appropriate checkboxes to enable completion
insight or parameter insight and use the sliding bar to set the delay time before the
popup window appears.

5. Click OK.

3.8.3 How to Customize Code Templates for the Source Editor
Code templates assist you in writing code more quickly and efficiently while you are
in the source editor. You can edit the existing templates or create your own.

To view existing code templates:
1. From the main menu, choose Tools > Preferences, expand the Code Editor node,

and select Code Templates. For more information at any time, press F1 or click
Help from within Preferences dialog.

2. On the Code Templates page, scroll through the shortcuts, which represent the
letters you must type to evoke each template.

3. Click on any shortcut to view the associated template code on the Code tab. If
there are any imports associated with this template, they will be shown on the
Imports tab.

To edit an existing code template:
1. From the main menu, choose Tools > Preferences, expand the Code Editor node,

and select Code Templates.

2. On the Code Templates page, make changes to the shortcut, the description, the
code (including the variables used in it), and the imports, as required.

3. When you are finished, click OK.

To define a new code template:
1. From the main menu, choose Tools > Preferences, expand the Code Editor node,

and select Code Templates.

2. On the Code Templates page, click Add. The cursor jumps to the bottom of the
Shortcut list and a new row is added.

3. Type in the name for the new shortcut and add a description in the list next to it.

4. Select the Code tab and enter the code for this template. Note that cursor position
is a part of the template, representing the logical insertion point for new code to be
entered when the template is used. Select the Imports tab and enter any imports
associated with this template.

5. Click OK.

To customize the HTML and JSP options for the source editor:
1. Choose Tools > Preferences. For more information at any time, press F1 or click

Help from within Preferences dialog.

Working with Source Files

Working with Oracle JDeveloper 3-39

2. Expand the Code Editor node.

3. Select the XML and JSP/HTML node.

4. On the XML and JSP/HTML page, select End Tag Completion to enable that
option.

5. Click OK.

To set undo behavior for the source editor:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Undo Behavior node.

4. On the Undo Behavior page, use the slider bar to set the number of actions of the
same type to be combined into one undo.

5. Select or deselect the options for combining insert-mode and overwrite-mode edits
and for combining the deletion of next and previous characters.

6. If you wish to be able to undo navigation-only changes, select the appropriate
checkbox. If you enable this setting, use the slide bar to set the number of
navigation changes to be combined into one undo.

7. Click OK.

To set printing options for the source editor:
1. From the main menu, choose Tools > Preferences. For more information at any

time, press F1 or click Help from within the Preferences dialog.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Printing node.

4. On the Printing page, set the various print options.

5. Click OK.

3.8.4 How to Manage Source Files in the Editor Window
Oracle JDeveloper possesses several capabilities for easier handling of files in the
editor window.

3.8.4.1 Maximizing the View of a File
You can open a file to fill the maximum view available in JDeveloper. This is done by
maximizing the source editor to fill JDeveloper

The same technique of double-clicking a tab can be used for any of the other windows
in JDeveloper, for example, the Help Center, or the Application Navigator.

To maximize the view of a file:
■ In the source editor, double-click the tab of the file. The source editor becomes the

only window visible in JDeveloper, with the file you have chosen currently
displayed in it.

Working with Source Files

3-40 User's Guide for Oracle JDeveloper

To reduce the view of a file to its former size
■ Double-click the tab of the file again. The windows within Oracle JDeveloper

return to their former layout.

3.8.4.2 Navigating Between Open Files in the Editor Window
You can navigate through files visually (cycling through by tab), historically (cycling
through by order of access), or numerically (cycling through based on file shortcut key
assignment).

To navigate through open files by tab:
■ Press Alt+Left Arrow or Alt+Right Arrow. Use Alt+Left Arrow to navigate to the

left, and Alt+Right Arrow to navigate to the right.

To navigate through open files based on history:
■ Press Ctrl+Tab or Ctrl+Shift+Tab

Use Ctrl+Tab to open the last active file. Note that opening a file renders it the
currently active file, such that the previously active file now becomes the last file
to have been active.

For example, given files A, B, and C (opened in the order C, B, A), where file A
currently has focus, pressing Ctrl+Tab brings B to the foreground. Now B is the file
with focus and A is the last active file. Pressing Ctrl+Tab again thus brings A back
to the foreground.

■ Press Ctrl+Tab+Tab+Tab to cycle through files by order of access without stopping.
Only when you stop on a file is that file given focus. Stopping on a file is
equivalent to using Ctrl+Tab on that file.

3.8.4.3 How to Display the List of All Currently Open Files
You can display all the files currently open in the editor window, or all the files
currently open in a particular tab group.

To display the alphabetical list of all the files currently open in a given tab group:
Click the File List button in the upper right-hand corner of the editor window.
Alternately, with the focus in the editor window, press (in the default keyboard
scheme) Alt+0.

If the editor window is not subdivided, the list will contain all open files. If the editor
window is subdivided, the list will contain all the open files in that tab group.

To display the alphabetical list of all the files currently open in the editor
window, regardless of split or detached files:
■ From the main menu, choose Window > Windows.

3.8.4.4 How to Access a Recently Opened File
Oracle JDeveloper remembers the last files you have edited.

To access a recently-edited file, irrespective of whether it is currently open or
not:
1. From the main menu, choose Navigate > Go to Recent Files or (in the default

keyboard scheme) press Ctrl+ =.

Working with Source Files

Working with Oracle JDeveloper 3-41

2. In the Recent Files dialog, select the file from the list or begin typing the first
letters of the filename.

3. Click OK.

By default, only those files opened directly (through the navigator, for instance)
appear in the list. Those opened indirectly (for example, as you debug code) do not
automatically appear. To view files opened both directly and indirectly, select Show
All.

3.8.4.5 How to Open Multiple Editors for a File
You can split the editor window horizontally or vertically, opening a single file in
multiple views. In each view, you've the choice of changing which editor the file is
opened in.

You can split a file into as many views as you like. The split views are automatically
synchronized with each other.

To open a single file in multiple views:
1. From the main menu, choose Window > Split Document.

The editor window is now split in two, with two identical and independent
windows opened on the same file. Each window has its own set of editor tabs at
the bottom.

2. In each window, select the editor tab to view the file in that editor.

Note that some editors (such as the Java Visual Editor) permit only one view at a
time on a file.

Alternately, you can split the file using the mouse, either horizontally or vertically.

To split the file horizontally, grab the splitter just above the vertical scroll bar (on the
upper right-hand side of the window) and drag it downward.

To split the file vertically, grab the splitter just to the right of the horizontal scroll bar
(on the lower right-hand side of the window) and drag it left.

To navigate quickly between split views:
■ Press F6 to cycle forward.

■ Press Shift+F6 to cycle backward.

To collapse those multiple views back into one:
■ From the main menu, choose Window > Unsplit Document.

Alternately, you can drag the splitter past the end of the editor window.

3.8.4.6 Viewing More Than One File at a Time
You can split the editor window horizontally or vertically, opening views on more
than one file at a time. Each view is independent of the others

You can split the editor window into as many different independent views as you
would like.

To view more than one file at a time, in independent windows:
■ From the main menu, choose Window > New Tab Group.

Working with Source Files

3-42 User's Guide for Oracle JDeveloper

The editor window is now split in two, with different files in each window. Each
window has a set of document tabs at the top and a set of editor tabs at the
bottom. Each window is known as a tab group.

You can create as many tab groups as you like.

Alternately, you can detach a file using the mouse, by grabbing the document tab for
the file and dragging it towards the area of the window where you want the file
displayed.

As you drag the tab, the icon that follows the cursor changes. A split window with an
arrow to the left, right, top, or bottom indicates that if you release the mouse now, the
new window will be placed in that relationship to the current window.

To move a file to a different tab group:
1. Drag the document tab for the file to the center of the area occupied by the tab

group you wish to attach it to.

2. When the icon that follows the cursor changes to show a miniature window with
tabs, release the mouse.

To collapse those multiple views back into one:
■ From the dropdown menu, choose Window > Collapse Tab Groups.

Alternately, you can simply grab the document tab for a detached file and drop it onto
an existing tab or tab group. When the icon changes to show a miniature window with
tabs, release the mouse.

3.8.4.7 How to Quickly Close Files in the Editor Window
You can close any file open in the editor window with a single click.

To close the current file, choose one of the following ways:
■ From the main menu, choose File > Close.

■ Press Ctrl+F4.

■ In the editor, right-click the tab for the current file and choose Close.

■ Hover the mouse over the tab for the current file and click the Close button.

To close all files, choose one of the following ways:
■ From the main menu, choose File > Close All.

■ Press Ctrl+Shift+F4.

■ In the editor, right-click the tab for any file and choose Close All.

To close all files except one:
■ In the editor, right-click the tab for the file you want to stay open and choose Close

Others.

To close multiple files at once:
1. From the main menu, choose Window > Windows.

2. In the Windows dialog, select the files to be closed and click OK.

To selectively close files:
1. In the editor, select the corresponding tab for the file to be closed.

Working with Source Files

Working with Oracle JDeveloper 3-43

2. Ctrl+click the tab, or hover the mouse over the tab and click the Close button.

3.8.5 Working with Mouseover Popups
Mouseover Popups enable you to position the mouse cursor over certain areas of the
IDE and get some information on them in a popup window that appears floating in
front. Information is available on the following:

■ Javadoc

■ Source code

■ Data values while debugging

■ Breakpoints

The popup window appears when you move the mouse over and optionally press the
key that you assign for the feature. The following are some of the areas of the IDE that
mouseover popups are available for:

■ Structure window

■ Text in an editor

Smart-Popup
The Smart-Popup feature shows the most appropriate popup for a given situation,
depending on the order of popups specified in the Mouseover Popups page of the
Preferences dialog. Smart-Popup is activated by a keystroke which you can specify on
the Mouseover Popups page of the Preferences Dialog.

For example, you may have the following popup configuration (set using the
Mouseover Popups page of the Preferences dialog)

■ Smart-Popup is enabled and configured on the Control key.

■ The Data Values, Documentation, and Source popups all have Smart-Popup
enabled and are ordered in the following way: Data Values, Documentation,
Source Code in the Mouseover Popups table.

With this configuration, if you hover the mouse over a variable in the source editor
and press Control, then:

■ The Data Values popup is considered first. If you are debugging and the mouse
hovers over a variable with a value, the Data Value popup is displayed.

■ If no popup is displayed for the previous step, then the Documentation popup is
considered next. If the variable has any documentation, it is displayed in a popup
window.

■ If no popup is displayed for the previous step, then the Source popup is
considered next, and the source code for the variable (if available) is displayed in a
popup window.

With Smart-Popup, you only need to use the Smart-Popup activation keystroke for the
IDE to display the most appropriate popup

Note: Even with Smart-Popup enabled, the individual popups for
Data Values, Documentation, and Source Code can still be activated
by their respective activation keys.

Working with Source Files

3-44 User's Guide for Oracle JDeveloper

3.8.6 How to Locate a Source Node in the Navigator
You can quickly locate the source node in the Application Navigator for any file
opened for editing, whether or not that node is in the current project.

To locate the node for any file opened in the editor:
1. Make sure that the focus in the editor is on the file you wish to locate.

2. From the context menu, choose Select in Navigator.

3.8.7 How to Set Bookmarks in Source Files
You can use bookmarks in your source files to help you quickly locate relevant code.
You can use the Bookmarks Window to navigate to bookmarked material.

To set or remove a bookmark in a source file:
1. Within the file, place the cursor in the gutter of the line you would like

bookmarked.

2. Right-click and choose Toggle Bookmark.

3.8.8 How to Edit Source Files
Oracle JDeveloper provides several features for editing source files.

3.8.8.1 How to Open Source Files in the Source Editor
JDeveloper provides a powerful source editor that will help you write different kinds
of code quickly and efficiently.

You can set preferences for the specific editor for each file type.

To open your source code in its default editor:
■ In the Application Navigator, double-click the file or right-click and choose Open.

The default editor associated with that file type appears in the content area. If the
editor is already open on that file, the editor comes to the foreground.

To open your source code in a specific editor or viewer:
1. In the Application Navigator, double-click the file or right-click and choose Open.

2. In the editor window, select the appropriate editor tab.

Changes made in the source will be immediately reflected in other views of that file.

You can also generate Java source code from modeled Java classes.

3.8.8.2 How to Edit Source Code with an External Editor
It is possible to edit source code that you have opened in JDeveloper with an outside
editor, should you wish to do so. When you return to the JDeveloper IDE, it will detect
the changes you have made.

Before you edit a file externally, you should first save any changes made in
JDeveloper. If you do not, when you return to JDeveloper, you will be asked whether
to reload those files or not. If you reload the externally modified files, you will lose the
unsaved changes made in JDeveloper. If you do not reload them, you will lose the
changes made outside JDeveloper once you save the file in JDeveloper.

Working with Source Files

Working with Oracle JDeveloper 3-45

To edit source code with an external editor, with the file open in JDeveloper:
1. Save any changes made to the file open in JDeveloper.

2. Edit your file externally and save your changes to the disk.

3. Return to JDeveloper and to the file open in the source editor.

By default, the file is reloaded in JDeveloper without a confirmation beforehand.
To receive a confirmation dialog, deselect the Silently Reload When Buffer Is
Unmodified option on the Environment page of the Preferences dialog.

3.8.8.3 How to Insert a Code Snippet from the Component Palette into Source Files
Once you have added code snippets to the Component Palette, you can add them to
files open in the editor.

Alternatively, you can use code templates to assist you in writing code more quickly
and efficiently while you are in the source editor.

To insert a code snippet from the Palette into a source file:
1. Open the file in the source editor.

2. If the Component Palette is not visible, open it by choosing View > Component
Palette.

3. In the Palette dropdown list, select Code Snippets or the snippets page you have
defined.

The snippets defined for that page appear listed to the right. Toggle between list
and icon views by right-clicking and choosing the view you want from the context
menu.

4. Position your cursor in the file at the point where the snippet is to be inserted.

5. In the Palette, click the snippet name or icon.

The code snippet appears in the file.

3.8.8.4 How to Record and Play Back Macros in Source Files
You can record, and play back, keystroke sequences in files open in the source editor.

To define shortcut keys for recording and playing back:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Shortcut Keys node.

3. On the Shortcut Keys page, in the Search field, enter Macro Toggle
Recording.

4. You will see the Macro Toggle Recording action selected under Available
Commands.

5. To assign a shortcut, place focus in the New Shortcut field, and enter a shortcut by
pressing the key combination on the keyboard.

If this proposed shortcut already has an command associated with it, that
command will appear in the Conflicts field.

6. To assign the shortcut you have specified, click Assign.

7. Now, in the Search field, enter Macro Playback.

8. Repeat steps 5 and 6 to assign a shortcut for playing back the macro.

Working with Source Files

3-46 User's Guide for Oracle JDeveloper

9. Click OK.

To record a macro:
1. Open the source file in an editor.

2. To begin recording, press the key combination you have defined for recording
macros.

3. Now enter the keystroke sequence you wish to record.

4. To end recording, again press the key combination you have defined for recording
macros.

To play back a macro:
1. Open the source file in an editor.

2. Position your cursor in the open file.

3. Press the key combination you have defined for playing back macros.

3.8.8.5 How to Create Tasks
You can create tasks that are directly related to lines in files of source code, or tasks
that are associated with applications, projects or general files. Oracle JDeveloper comes
with the tags TODO, TASK, and FIXME and the priorities HIGH, MEDIUM, LOW and NONE
preconfigured, and you can add your own task tags and priorities in the Tasks page of
the Preferences dialog.

To add your own task priorities and task tags:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Tasks node.

3. On the Tasks page, alter the priorities and source tags to suit your requirements.

For more information, press F1 or click Help from within the dialog page.

4. Click OK.

To create a task associated with a comment line in source code:
1. Open the tasks window by choosing View > Tasks Window.

2. Within the source code file, create a comment line starting with // and one of the
task tags, for example //TODO.

3. Continue to type the comment, which will at the same time appear as the
description of the task in the tasks window.

4. Set the other options in the task window as required. For help while using the
tasks window, press F1.

To create a task associated with an application, project or file:
1. In the navigator, select the object for which you wish to create a task.

2. Open the tasks window by choosing View > Tasks Window.

3. Select the Add Tasks button, which will open the Add Task dialog.

4. Complete the dialog for the task that you want to create. For help while using the
Add Task dialog, press F1.

Working with Source Files

Working with Oracle JDeveloper 3-47

3.8.9 How to Compare Source Files
You can compare source files either belonging to the same project, or outside.

To compare a file currently being edited with its saved version:
1. Place the focus on the current version open in the editor.

2. Select the History tab in the editor window.

The saved file opens side by side with the file in the editor buffer.

To compare one file with another file outside the project:
1. Place the focus on the file in the editor to be compared.

2. From the main menu, choose File > Compare With Other File.

3. In the Select File to Compare With dialog, navigate to the file and click Open.

The two files open side by side, under a tab labeled Compare.

To compare any two files within the same project:
1. In the navigator, select the two files to be compared.

2. From the main menu, choose File > Compare With > Each Other.

The two files open side by side, under a tab labeled Compare.

3.8.10 How to Revert to the Last Saved Version of a File
While you are in the process of making changes to a file, at any time you can revert to
the last saved version of the file.

To revert to the last saved version of a file:
1. While the changed file has focus in the editor, from the main menu choose File >

Replace With > File On Disk.

2. In the Confirm Replace dialog, click Yes.

Any changes you have made since the last save are now undone.

3.8.11 How to Search Source Files
Oracle JDeveloper provides a powerful source editor that will help you write different
kinds of code quickly and efficiently.

To search a source file currently open in the source editor, with the option to
replace text:
1. With the file open in the editor, ensure that the editor has focus.

2. Optionally, if an instance of the text you want to search for is easily found, you can
highlight it now.

3. From the main menu, choose Search > Find. Alternatively, press Ctrl+F.

4. In the Find Text Dialog, enter or select the text to locate.

Text previously searched for in this session of JDeveloper appears in the Text to
Search For dropdown list.

5. Select other search parameters accordingly.

For more information, press F1 or click Help from within the dialog.

Working with Source Files

3-48 User's Guide for Oracle JDeveloper

6. Click OK.

To do a simple search in the open source file for a single text string:
1. With the file open in the editor, ensure that the editor has focus.

2. Place the cursor in the file at the point you wish to search from.

3. From the main menu, choose Search > Incremental Find Forward or Search >
Incremental Find Backwards.

4. In the dialog, enter the search text.

As you type, the cursor jumps to the next instance of the group of letters
displayed.

Alternatively, enter the text string in the search box. As you type, the cursor jumps to
the next instance of the group of letters displayed. Use the Previous or Next buttons to
search up and down the file. Click in the search box to set Match Case, Whole Word,
or Highlight Occurrences.

To search all files in a project or an application:
1. From the main menu, choose Search > Find in Files.

2. In the Find in Files dialog, enter or select the text to locate.

Text previously searched for in this session of Oracle JDeveloper appears in the
Search Text dropdown list. By default, if you opened this dialog with text selected
in the source editor, that text appears as the first entry.

3. If you want to choose the file types that are included in the search, click the File
Types button to open the File Types To Include dialog. By default, all file types
will be searched.

4. Select other search parameters as required.

For more information, press F1 or click Help from within the dialog.

5. Click OK.

3.8.12 How to Print Source Files
Oracle JDeveloper enables you to print source files.

To print a source file:
1. Display the file to be printed in an editor, or select its filename in the navigator.

2. From the main menu, choose File > Print.

3. In the Print dialog, select your print options.

4. Click OK.

3.8.13 Reference: Regular Search Expressions
Regular expressions are characters that customize a search string through pattern
matching. You can match a string against a pattern or extract parts of the match.

JDeveloper uses the standard Sun regular expressions package, java.util.regex. For
more information, see "Regular Expressions and the Java Programming Language" at
http://docs.oracle.com/javase/tutorial/essential/regex/.

Working with Extensions

Working with Oracle JDeveloper 3-49

3.9 Working with Extensions
Extensions are components that are loaded and integrated with JDeveloper after it is
started. Extensions can access the IDE and perform many useful tasks. In fact, much of
JDeveloper itself is composed of extensions. Most of the basic functionality in
JDeveloper is implemented as extensions—software packages which add features and
capabilities to the basic JDeveloper IDE. You can add existing extensions into
JDeveloper, or create your own.

This section contains information on finding, installing, and enabling or disabling
JDeveloper extensions. The simplest way to find and download JDeveloper extensions
is through the Check for Updates wizard.

If you need additional capabilities from the IDE (such as integration with a version
control system or a special editor or debugger), you can add external tools to
JDeveloper. See Section 3.12, "Adding External Tools to JDeveloper" for more
information. In addition, you can obtain additional extension development tools and
functionality in the Extension Software Development Kit (SDK). You can download the
Extension SDK via the Check for Updates wizard.

You can also download the Extension SDK from the Oracle Technology Network Web
page.

3.9.1 How to Install Extensions with Check for Updates
The easiest way to find and install extensions is to use the Check for Updates wizard.

To install extensions using the Check for Updates wizard:
1. From the Help menu, select Check for Updates.

2. Follow the steps in the wizard to browse, download, and install patches and
extensions.

You can also access the Check for Updates wizard from the Tools > Features page.

3.9.2 How to Install Extensions from the Provider's Web Site
Some extension providers prefer to have you install directly from their Web site, so
that among other things they can contact you when there are updates to the extension.
In this case, the Check for Updates wizard will inform you of the provider's
preference, and will then open your default Web browser so that you can conduct the
download and installation from the provider's Web site.

To download and install from the provider's Web site:
■ Follow the instructions on the provider's Web site for downloading and installing

the extension. Be sure to note any comments or instructions on registration,
configuration, or other setup requirements.

3.9.3 How to Install Extensions Directly from OTN
You can find and download extensions from the JDeveloper Extensions Exchange
website on OTN. The page is located here:

Note: Any time an extension is added or upgraded, the migration
dialog appears at startup in case you need to migrate any previous
settings related to that extension.

Using the Online Help

3-50 User's Guide for Oracle JDeveloper

http://www.oracle.com/technetwork/developer-tools/jdev/index-099
997.html

The available extensions include:

■ JUnit Extension, an extension you can use to create and run test cases, test suites,
and test fixtures, using JUnit.

■ iSQL*Plus Extension, an extension that enables you to load or execute SQL*Plus
scripts from within JDeveloper.

■ Oracle Business Intelligence Beans, a set of standards-based JavaBeans™ that
enables developers to build business intelligence applications.

■ Other extensions to JDeveloper contributed by the JDeveloper community.

To install extensions after you have downloaded them from OTN:
■ For extensions created for the current release, see the Oracle Fusion Middleware

Developer's Guide for Oracle JDeveloper Extensions.

■ For extensions created for earlier releases, see: "Extension Packaging and
Deployment For Previous Versions of JDeveloper" in the Extension SDK.
Extensions were packaged differently and placed in a different location in earlier
releases.

3.9.4 How to Install Extensions Using the JDeveloper dropins Directory
JDeveloper supports the concept of a "watched directory". A watched directory is a
location where a user or script can drop files and have them discovered by JDeveloper
automatically the next time it starts.

To install an extension using the dropins directory:
■ Drop your extension jar in the JDeveloper dropins directory, which is located in

the jdeveloper/dropins folder.

■ Additional dropins directories can be specified via the
ide.bundle.search.path property, either at the command line or by
adding an entry in the jdev.conf file.

3.10 Using the Online Help
You can access the JDeveloper online help through the Help Center. This section
describes how you can effectively use the features of the Help Center.

The JDeveloper Help Center comprises two windows: the help navigator and the help
topic viewer.

The following types of content are available:

■ Conceptual and procedural information, which is available in this guide.

■ Context sensitive online help topics, which open when you press F1 or click Help
in a dialog or wizard, or click the help icon in a wizard.

■ Developer guides, which provide end-to-end information for developing
applications with specific technologies.

■ Tutorials, which provide introductions to many JDeveloper application scenarios.

From the Help Center, you can also access additional documentation on Oracle
Technology Network (OTN).

Using the Online Help

Working with Oracle JDeveloper 3-51

The Help Center search feature lets you search the installed documentation, the
documentation available from OTN, and the Fusion Middleware Documentation
Library.

You can also customize the way you view content.

3.10.1 Using the Help Center
The Help Center enables you to browse the table of contents, locate relevant topics in
the dynamic help links lists, and do a full text search of installed and online content. It
also provides a Favorites navigator for saving links to frequently referenced topics.
The Help Center comprises two windows: the help navigator and the help topic
viewer. You can customize some aspects of these windows.

The following table describes the features available in the Help Center toolbar.

The Help Center includes tabs for navigating content on the left:

■ Contents - Displays the table of contents for all installed content in the help
system, including traditional online help, tutorials, developer guides, and the user
guide.

■ Favorites - Displays folders of user defined help topics and external links you
have saved for quick retrieval.

The Help Center includes the following tabs for viewing content and search results on
the right:

■ Help content viewers - Display the selected online help and developer guide
contents. Multiple tabbed pages open for selected content.

■ Tutorial viewer - Displays a selected tutorial. Only one tutorial viewer opens.

■ Search results - Displays the results of the full text search.

3.10.2 How to Open the Online Help
The JDeveloper Help Center comprises two windows: the help navigator and the help
topic viewer.

To open the online help, use any of these methods:
■ Press F1, click Help, or click the Help icon at any time to display context-sensitive

help.

Table 3–27 Help Center Toolbar Icons

Icon Name Description

Keep Help Center
on Top (Alt+K)

Keeps the Help Center on top of all other
open windows.

Navigators Opens Help Center navigators you have
previously closed.

JDeveloper Forum Launches an external browser window and
visit the JDeveloper Forum on Oracle
Technology Network (OTN).

Search Searches all the documentation installed as
online help, Oracle Technology Network
(OTN) and the Fusion Middleware and
Database Libraries.

Using the Online Help

3-52 User's Guide for Oracle JDeveloper

■ From the main menu, choose Help > Search.

■ From the main menu, choose Help > Table of Contents.

■ From the main menu, choose Help > Help Favorites.

■ From the Start page, choose any link with a tutorial, book or help topic icon.

To see a help page that is already open:
■ Select a tab at the top of the help topic window.

■ Click the scroll buttons at the top of the help topic window to scroll through all
available tabs and select a tab.

■ Click the Tab List button at the top of the help topic window to display the list of
all available pages and select a page.

3.10.3 How to Search the Documentation
You can search all the documentation installed as online help by doing a full-text
search, and you can also search Oracle Technology Network (OTN) and the Fusion
Middleware and Database Online Documentation Libraries. You can search an
individual help topic that is open by using the Find icon in the topic viewer toolbar.

To do a full-text search from the Help Center:
1. If the Help Center is not open, from the main menu, choose Help > Search.

2. In the Search field, enter the word or phrase you are searching for.

3. Optionally, open the Search Options menu and select the locations you want to
search. By default, Local Documentation and the Fusion Middleware library are
selected.

4. Set the other search options as needed; these apply only to the online help search.

5. Click the Go icon or press Enter.

The Search Results page opens in the help viewer area, with the titles and sources
of each matching document, as well as the beginning text.

6. To select a topic, double-click its title.

Each help topic opens in a separate tabbed page. The Search Results page remains
available. Each OTN and Documentation Library page opens in your default
browser.

Using the Boolean Expressions option:
BooleanExpression is a recursive tree structure for expressing search criteria involving
boolean expressions. The BooleanExpression is based on the following grammar:

BooleanExpression ::
 BooleanExpression AND BooleanExpression
 BooleanExpression OR BooleanExpression
 BooleanExpression NOT BooleanExpression
 BooleanExpression + BooleanExpression
 BooleanExpression - BooleanExpression
 + BooleanExpression
 - BooleanExpression
 NOT BooleanExpression
 StringExpression (base case)

Using the Online Help

Working with Oracle JDeveloper 3-53

To begin a documentation search from the main toolbar Search field:
1. In the Search field, enter the word or phrase you are searching for.

2. Open the Search Options menu and select only the documentation: Help: Local,
Help: OTN, Help: iLibrary. Deselect other locations.

By default, all locations are selected.

3. Click the Go icon or press Enter.

The Help Center opens with the Search Results page on the right, showing the
titles and sources of each matching document, as well as the beginning text.

3.10.4 How to Add Bookmarks to the Favorites Page
You can save links to frequently referenced help topics, stored in folders you create
and name, on the Favorites page in the Help Center. The help topic must be open in
the help topic viewer, in order to bookmark it. You can also add links to external sites.

To add links to help topics to the Favorites page:
1. Click the Add to Favorites icon in the help topic viewer toolbar.

The Add to Favorites dialog is displayed.

2. Select the folder to which you want to add the link and click OK.

To add links to external sites to the Favorites page:
1. Click the Add External Favorites icon in the Favorites page toolbar, or right-click a

node on the Favorites page and choose Add External Favorites from the context
menu.

The Add External Favorites dialog is displayed.

2. Enter a title for the page or document in the Name field.

3. Enter the fully qualified path in the URL field.

4. Select the folder to which you want to add the link and click OK.

To create a new Favorites folder:
1. Click the New Folder icon in the Favorites page toolbar, or right-click a node on

the Favorites page and choose New Folder from the context menu.

2. Enter the new folder name and click OK.

You can also create a new folder when the Add to Favorites dialog is open, by clicking
New Folder.

To rename a Favorites folder:
1. Right-click a folder on the Favorites page and choose Rename from the context

menu.

2. Enter the new folder name and click OK.

You can also rename a folder when the Add to Favorites dialog is open, by clicking
Rename.

To delete a Favorites folder or link:
■ Click the Delete icon in the Favorites page toolbar, or right-click a node on the

Favorites page and choose Delete from the context menu.

Using the Online Help

3-54 User's Guide for Oracle JDeveloper

You can also delete a folder when the Add to Favorites dialog is open, by selecting the
node and clicking Delete.

3.10.5 How to Customize the Online Help Display
You can customize some features of the Help Center window, as well as the navigators
and topic viewers through the toolbars and context menu.

Use the Keep on Top icon to keep the Help Center in front of all open windows,
including JDeveloper.

You can select the following types of help that you want to display from the
Navigators drop down in the Help Center toolbar:

■ Contents - Displays the table of contents for all installed online help topics and
books.

■ Favorites - Displays folders of user defined links for quick access to installed and
external documentation.

Alternatively, you can right-click in the Help Center and choose a navigator from the
Configure Tabs option on the context menu, to open navigators you previously
closed.

You can also choose to view all help topics in the Contents navigator, or reduce what
is displayed by selecting a single content type from the Contents drop down, as shown
in the following figure.

Figure 3–1 Contents Dropdown List

Use the Change Font Size options in help topic viewer toolbar to increase or decrease
the font size incrementally.

3.10.6 How to Open and Close Multiple Help Topics
When you navigate through topics in the help system, the topics open in new tabbed
pages.

To see a help page that is already open, use one of the following ways:
■ Select a tab at the top of the help topic window.

■ Click the scroll buttons above the help topic viewer to scroll through all available
tabs and select a tab.

■ Click the Tab List button above the help topic viewer to display the list of all
available pages and select a page.

When you open topics by clicking links within topics, the topics open within the same
viewer. To cycle through those topics, click the Forward or Back icons in the help topic
viewer toolbar. Note that you cannot navigate forward or back between different types

Common Development Tools

Working with Oracle JDeveloper 3-55

of help viewer tabs; for example, the search results and help topic tabs. Use the scroll
buttons instead.

To close one or more pages open in the help topic viewer:
■ Right-click in the help topic viewer tab and choose from options on the context

menu.

You can close the page in front, all the pages, or all the pages except the page in
front.

3.10.7 How to Print Help Topics
You can print help topics individually or by section.

To print an individual help topic:
1. Open a help topic in the help topic viewer.

2. In the help topic viewer toolbar, click the Print icon.

To print a topic grouping:
1. Click the Contents tab in the Help Center.

2. In the table of contents tree, select a topic folder.

3. Right-click and choose Print Topic Subtree.

The container topic and its children are printed. Topics listed as links are not printed.

3.11 Common Development Tools
This section provides an introduction to fundamental JDeveloper IDE functionality
and concepts.

3.11.1 Application Overview
Use the Application Overview pages to guide you as you build a Fusion Web
application, and to create files and objects and view the status of them.

3.11.1.1 Checklist
The Application Overview Checklist steps you through the building of a Fusion Web
application, according to Oracle recommended best practices. The Checklist is
displayed by default when a Fusion Web application is created, as part of the
Application Overview pages.

The checklist optionally walks you through the entire process of configuring and
building your application, with links to specific dialogs and wizards. Each step is also
designed to teach you about the architecture, tools and resulting files using a
combination of links to step-by-step instructions, relevant sections of the Developer's
Guides, and descriptions of what happens in the IDE as a consequence of doing the
work in a step.

Unlike a wizard, the Checklist itself is intended to provide a linear, but ultimately
flexible and lightweight guide. You can follow the prescribed path in exact sequence,
or explore tasks in a different preferred order. When using the Checklist, it suggests a
best way to accomplish your goals, but you are not restricted by it. You can also close
the Application Overview and work directly in the IDE, or work in both the IDE and
Checklist interchangeably.

Common Development Tools

3-56 User's Guide for Oracle JDeveloper

To use the Checklist:
■ Expand a step and read the prerequisites and assumptions.

■ Optionally click any of the documentation links.

■ Click the button that takes you to the relevant area of the IDE.

■ Use the status indicator dropdown to change the status as you work through
tasks.

3.11.1.2 File Summary Pages
All files and artifacts that you create within JDeveloper appear in the Application
Overview file summary pages, organized by object type. You can create new files and
artifacts, and view them filtered by status and project. The following table describes
the types of file summary pages.

Table 3–28 File Summary Pages

Page Function

Status Displays information about the object types available,
using these status icons:

■ Error

■ Warning

■ Incomplete

■ Advisory

■ Ok

■ Unchecked

File Displays the names of the objects. You can sort the objects
in ascending or descending order by clicking the Sort icon
in any of the column headings.

Project Displays the project in which the file or object is located.

Common Development Tools

Working with Oracle JDeveloper 3-57

File Summary Pages Toolbar
The following table describes the icons in the File Summary Pages toolbar and their
functions.

3.11.2 File List
Use the File List to search for and work on objects that you have created within an
application. The rules, code assists, and metrics that are used to analyze Java code are
specified by the Code Assist profile.

3.11.2.1 File List Tab Header
The following table describes the options available in the file list tab header.

Table 3–29 Icons in the File Summary Pages Toolbar

Icon Name Function

New Creates new objects of the types listed, in the selected project. The
context menu lists the files and objects associated with the
technology that can be created in each project.

Edit Opens the selected file or object in its default edito.r

Delete Removes the selected file or object.

Filter Status
or Project

Displays the list of all files of a particular status by selecting the
status, as described above. By default, Show All is selected.

If there is more than one project within the current application,
use this list to select which project or projects you wish to be
included in the file summary pages. You can choose:

■ all projects

■ a specific project from those available in the application

Table 3–30 File List Tab Header Options

Option Function

Look in If you have more than one project within the current application, use this
list to select which project or projects will be searched for objects. The list
includes all projects in the current application, plus options to show all
projects and a selection of projects (multiple projects). You can choose:

■ a specific project from those available in the application

■ All Projects

■ Multiple Projects, which opens the Select Projects dialog where you
choose the projects from those available in the application.

Saved Searches Initially contains <New Search>. After you have saved at least one
search, also lists all saved searches. Selecting a saved search will display
the search criteria for that search. The search results will show the results
of the most recent search, even as you change between saved searches. To
obtain new search results, click the Search button. Saving a search is one
of the actions available from the More Actions button.

Show History Opens the Recent Searches dialog, through which you can return to a
recent search. The search criteria of the selected search is shown, while the
search results remain as they were for the most recent search. To obtain
new search results, click the Search button.

Common Development Tools

3-58 User's Guide for Oracle JDeveloper

3.11.2.2 Search Criteria Area
The following table describes the features available in the search criteria area.

3.11.2.3 Search Results Table
The following table describes the options available in the Search Results table.

Table 3–31 Features in the Search Criteria Area

Option Function

Search criteria
input line(s)

Initially contains a single input line for search criteria. You can add
further lines by clicking the Add icon at the end of the line. You can
remove lines by clicking the Delete icon at the end of the line that you
want to remove. By default, the first field in the line contains File Name:
you can change this to File Extension, Date Modified, Status, or
Category. The second field contains the options available for extending
the entry in the first field. The third field contains a list of all object types
that can be searched for.

Match options Choose between Match All and Match Any to determine the scope of the
search.

Search Click to begin a search based on the search criteria currently shown.

More Actions Click to reveal the following menu of options for use with named
searches:

■ Save - Saves the current search criteria with the name currently in
the Saved Searches box (even if the name is <New Search>).

■ Save As - Opens the Save As dialog, through which you can save
the current search criteria as a new named search.

■ Restore - Restores a deleted named search if used immediately after
the Clear option on this menu has been used.

■ Clear - Clears the search criteria for this named search. You can
restore the criteria to this named search by immediately selecting
the Restore option on this menu.

■ Delete - After confirmation, deletes the current named search.

Table 3–32 Options Available in the Search Results Table

Option Function

Results
summary

Shows the number of files that match the search criteria, and the date
and time that the search was completed.

Refresh Reruns the search with the current search criteria.

Customize table Opens a menu from which you can choose the columns that will be
displayed in the results table. Also contains a Select Columns option,
which opens the Customize Table dialog, through which you can choose
which columns to display and the order in which they are displayed in
the results table. The columns that are shown by default are Status, File,
Project, and Date Modified, in that order. Other columns that you can
choose to show are Application and Category.

Table headings You can change the order of the columns by grabbing a table heading
and moving it horizontally. You can change whether objects are shown
in ascending or descending order within the columns by clicking a
heading to give it focus, then clicking again to change the sort order. The
sort icon (or) in the table heading will change as appropriate.

Objects list Lists all the objects returned by the search. You can initiate actions for an
object by selecting the name, right-clicking, and selecting from the
context menu.

Common Development Tools

Working with Oracle JDeveloper 3-59

3.11.3 Compare Window
The Compare Window allows you to view the differences between two files or two
directories.

You might want to do this when deciding whether to check in a particular file to a
source control system, especially if doing so will overwrite a file whose contents you
are unfamiliar with. The Compare Window is integrated with the Application
Overview and the Application Navigator, and with the Subversion source control
system.

3.11.3.1 Toolbar
The following table describes the icons in the Compare Window toolbar and their
functions.

3.11.3.2 Source and Target Areas
The title bar of each area identifies the file that contains the differences. The versions
are aligned line by line. Lines with differences are highlighted using shaded boxes,
joined as appropriate.

3.11.4 Application Navigator
The Application Navigator allows you to manage the contents and associated
resources of an application.

3.11.4.1 Application Navigator Toolbar
This section describes the features available from the Application Navigator toolbar.

Main dropdown list
Use the main dropdown list, displayed in the figure below, to create a new application,
open an existing application, or choose from the list of open applications. Use the
context menu to choose from the list of application level actions available.

Application menu
Use the application menu, displayed in the figure below, to choose from a list of
actions available.

Table 3–33 Compare Window Toolbar Icons

Icon Name Function

Go to First
Difference

Click to move the cursor to the first difference.

Go to Previous
Difference

Click to move the cursor to the previous difference.

Go to Next
Difference

Click to move the cursor to the next difference.

Go to Last
Difference

Click to move the cursor to the last difference.

Generate Patch Click to open the Generate Patch dialog, where you can
generate a patch containing changes that have been made to
the files.

Common Development Tools

3-60 User's Guide for Oracle JDeveloper

The following table describes the options available from the Application Menu.

3.11.4.2 Application Operations
You can several application operations from the Application Navigator. These include:

■ In the initial view, before any application content is shown, select the New
Application link to create a new application or select the Open Application link to
open an existing application.

■ Open any currently closed navigator, or bring a currently open navigator to the
foreground, using View > navigator-name.

■ Move, size, float, minimize, maximize, restore or close the Application Navigator
using the context menu available by right-clicking its tab or by pressing
Alt+Minus.

■ Change the application shown in the navigator by choosing one from the main
dropdown list or, if the one you want is not shown, by choosing Open
Application.

■ Create a new application by choosing New Application from the dropdown list.

■ Open the context menu for the application by right-clicking the application, or by
clicking the Application Menu icon (to the right of the application name).

Table 3–34 Application Menu Options

Menu Option Function

New Project Opens the New Gallery ready for you to select the type of project to
create.

New (Ctrl+N) Opens the New Gallery. Only those items available to be created from
an application are available

Open Project Opens the Open Project dialog, where you navigate to a project that
you want to open in this application.

Close
Application

Closes the current application.

Delete
Application

Deletes the application control file (.jws) from disk.

Rename
Application

Opens the Rename dialog where you can change the name of the
current application.

Find Application
Files

Opens the File List, where you can search for specific files.

Show Overview Opens the Application Overview which is the home for all files you
can create in this application.

Filter
Application

Opens the Manage Working Sets dialog where you can specify the
files to include or exclude from being listed in the Application
Navigator.

Secure Secures your application resources.

Deploy Allows you to choose from the deployment profiles defined for the
application.

Application
Properties

Opens the Application Properties dialog where you can set various
properties for the application.

Common Development Tools

Working with Oracle JDeveloper 3-61

3.11.4.3 Projects Panel Operations
You can perform the following operations from the projects panel of the Application
Navigator:

■ View the project properties by clicking the Project Properties icon.

■ Refresh the project contents by clicking the Refresh icon.

■ Filter the project content that you work with by selecting options from the
Working Sets dropdown menu.

■ Change what is shown in the navigator by selecting options from the Navigator
Display Options dropdown menu.

■ Obtain a context-sensitive menu of commands for any node by right-clicking it.

■ Display the structure of an object in the Structure window by clicking the object's
name.

■ Open an object in its default editor, or bring the default editor into focus, by
double-clicking the object's name.

■ Rename a file using File > Rename.

■ Relocate a file using File > Save As.

■ Search for items visible in the panel by putting the focus anywhere inside it and
typing a search string for the object you are looking for. (Precede with an asterisk
to search for instances of names containing the search string.)

■ Close or open the panel by clicking its bar.

■ Remove the panel from view by opening its dropdown menu (panel bar, far right)
and choosing Minimize. Restore it by clicking the three dots at the very bottom of
the navigator and then clicking Projects.

3.11.4.4 Application Resources Panel Operations
You can perform the following operations in the Application Resources panel:

■ Close or open the panel by clicking its bar.

■ Change the area used by the panel by grabbing its bar and moving it up or down.

■ Remove the panel from view by opening its dropdown menu (panel bar, far right)
and choosing Minimize. Restore it by clicking the three dots at the very bottom of
the Application Navigator and then clicking Application Resources.

■ Obtain a context-sensitive menu of commands for any node by right-clicking it.

■ Display the structure of an object in the Structure window by clicking its name.

■ Open an object in its default editor, or bring the default editor into focus, by
double-clicking the object's name.

■ Search for items visible in the panel by putting the focus anywhere inside it and
typing a search string for the object you are looking for. (Precede with an asterisk
to search for instances of names containing the search string.)

3.11.4.5 Data Controls Panel Operations
You can perform the following operations in the Data Controls panel:

■ Close or open the panel by clicking its bar.

■ Change the area used by the panel by grabbing its bar and moving it up or down.

Common Development Tools

3-62 User's Guide for Oracle JDeveloper

■ Remove the panel from view by opening its dropdown menu (panel bar, far right)
and choosing Minimize. Restore it by clicking the three dots at the very bottom of
the Application Navigator and then clicking Data Controls.

■ Obtain a context-sensitive menu of commands for any node by right-clicking it.

■ Edit the definition of a data control by opening its context menu and choosing Edit
Definition.

■ Search for items visible in the panel by putting the focus anywhere inside it and
typing a search string for the object you are looking for. (Precede with an asterisk
to search for instances of names containing the search string.)

3.11.4.6 Recently Opened Files Panel Operations
You can perform the following operations in the Recently Opened Files panel:

■ Close or open the panel by clicking its bar.

■ Change the area used by the panel by grabbing its bar and moving it up or down.

■ Remove the panel from view by opening its dropdown menu (panel bar, far right)
and choosing Minimize. Restore it by clicking the three dots at the very bottom of
the Application Navigator and then clicking Recently Opened Files.

■ Open an object in its default editor, or bring the default editor into focus, by
double-clicking the object's name.

■ Search for items visible in the panel by putting the focus anywhere inside it and
typing a search string for the object you are looking for. (Precede with an asterisk
to search for instances of names containing the search string.)

3.11.5 Application Server Navigator
The Application Server Navigator allows you to manage connections to application
servers. It is integrated with the Resource Palette.

When you create an application server connection in the Application Server Navigator
it is available in the Resource Palette. Similarly, when you create an application server
connection in the Resource Palette, it is available in the Application Server Navigator.

From the context menu of the Application Server Navigator, you can:

■ Create a new connection to an application server by choosing New Application
Server from the context menu of the Application Servers node.

■ Import connections by clicking Import from the context menu of the Application
Servers node.

■ Export connections by clicking Export from the context menu of the Application
Servers node.

■ Edit the properties of an existing application server connection by choosing
Properties from the context menu of the connection.

From the context menu of IntegratedWebLogicServer, you can:

■ Start the Integrated WebLogic Server.

■ Start the Integrated WebLogic Server in debug mode.

■ Create the Default Domain. When you first start the Application Server Navigator,
the only node is IntegratedWebLogicServer (domain unconfigured). Before you
can work with Integrated WebLogic Server, you must create a default domain. If

Common Development Tools

Working with Oracle JDeveloper 3-63

you are creating the default domain for the first time, you must enter an
administrator password for the new domain.

■ Update the Default Domain.

■ Configure a log to help diagnose problems.

■ Launch the Admin Console for:

– Integrated WebLogic Server.

– Oracle WebLogic Server.

The following table describes the icons in the Application Server Navigator toolbar:

3.11.6 Structure Window
The Structure window offers a structural view of the data in the document currently
selected in the active window of those windows that participate in providing
structure: the diagrams, the navigators, the editors and viewers, and the Property
Inspector.

Depending on the document currently open, the Structure Window enables you to
view data in two modes:

■ Source - displays the code structure of the file currently open in the editor.
Applicable to technologies that allow code editing. For example, this tab will not
be available when a diagram is open for editing.

■ Design - displays the UI structure of the file currently open in the editor.

In the Structure window, you can view the document or diagram data in a variety of
ways. The structures available for display are based upon document or diagram type.
For a Java file, you can view code structure, UI structure, or UI model data. For an
XML file, you can view XML structure, design structure, or UI model data.

The Structure window is dynamic, tracking always the current selection of the active
window (unless you freeze the window's contents on a particular view), as is pertinent
to the currently active editor. When the current selection is a node in the navigator, the
default editor is assumed. To change the view on the structure for the current selection,
select a different structure tab.

The windows that participate in providing structure also follow selections made in the
Structure window. Double-clicking the node for a method in the Structure window, for
instance, makes the source editor the active view and takes you directly to the
definition for that method.

You can open multiple instances of the Structure window, freezing the contents of any
number of them, in order to compare the structures of different files. You can also
switch structure views without changing editors.

Diagram objects (such as UML elements) listed in the Structure window can be
dragged from the window and dropped directly onto diagrams.

Table 3–35 Application Server Navigator Toolbar Icons

Icon Name Function

Refresh Click to refresh the contents of the selected application
server connection.

Delete Click to delete the selected application server connection.

Common Development Tools

3-64 User's Guide for Oracle JDeveloper

3.11.6.1 Structure Window Toolbar
The following table describes the icons in the Structure Window toolbar and their
functions:

3.11.6.2 Structure Window Views
The Structure window view depends upon the document type of the current selection
in the active window. Each view offers different options for viewing and sorting the
structure of your files based on file type.

The following table describes the Structure Window views.

3.11.7 Application Navigator - Data Controls Panel
Use to view the data controls created to represent an application's business services
and to create databound UI components by dragging and dropping the control panel
objects onto an open web page or ADF Swing panel.

Table 3–36 Structure Window Toolbar Icons

Icon Name Function

Freeze Click to freeze the Structure window on the current view. A
window that has been frozen does not track the active
selection in the active window.

New View Click to open a new instance of the Structure window. The
new view appears as a tabbed page in the same window.

Table 3–37 Structure Window Views

View Description

ADF Business Components
View

When you select any ADF business component in one of the
navigators, the Structure window offers a structured view of
the component's files, attributes, and other properties.

Cascading Style Sheet View This view allows you to select and group CSS elements for
easy editing. When a CSS file is open for editing, CSS
selectors in the file are displayed in the Structure window as
one of three types: Element, Class, and ID.

Java View This view displays the code as well as design structure of
the Java file currently being edited. Additionally, you can
specify several display preferences to view structural data.

JSP/HTML View This view displays the code structure and UI bindings for
the JSP/HTML file that is currently selected.

Struts View The Struts view shows the hierarchy of elements and
attributes for the Struts configuration file currently selected
in the active navigator or editor.

TopLink View The TopLink view displays detailed information about the
TopLink element selected in Application Navigator or
TopLink editor, including descriptors, sessions, and
mappings.

UML View The UML view displays the behavior, interaction, and code
structure in UML-based diagrams such as Activity
Diagrams, Class Diagrams, and Use Case Diagrams.

Diagram View When a diagram is open for editing, the Diagram view
displays the components that have been added to the
diagram. You can select an element in the Structure
Window's diagram view and locate it in the diagram

Common Development Tools

Working with Oracle JDeveloper 3-65

The panel displays objects to which your UI components can be bound, including data
collections, attributes, and methods that the business services developer exposed
through the Oracle ADF data control, as well as specific, built-in operations that are
generic to all data collections.

When you drag an object from the Data Controls panel onto a page, the context menu
displays the UI components you can create for that specific object. Creating
components this way means that they will automatically be databound to the dropped
object.

After inserting a databound UI component into the displayed web page or Java panel,
you can view the Oracle ADF data binding:

■ In the code view of a web page, where data binding objects appear in expressions
that get evaluated at runtime using the expression language features of the JSTL
tag library.

■ In the code view of an ADF Swing panel or form, where the setModel() method
call on the UI component initializes the data binding object and accesses the
Oracle ADF binding context (specified by the setBindingContext() method
call on the panel).

■ In the associated page definition file. The page definition file defines the bindings
created for the page, panel, or form.

Data Controls panel toolbar
The following table describes the icons in the Data Controls panel toolbar and their
functions:

3.11.8 Log Window
The Log window displays tabbed windows for specific feedback from various
components of the IDE.

The Log window displays information on:

■ Compiler. The compiler reports error messages that you can double-click to
navigate directly to the correct line in the source file referenced.

■ Apache Ant. When you build your project using Apache Ant, the Log Window
displays relevant build information.

■ Debugger

■ Audit

■ Profiler

Note: The Data Controls panel may appear empty if no data controls
have been created for or imported into the application.

Table 3–38 Data Controls Panel Toolbar Icons

Icon Name Function

Refresh Panel Click to reload the panel if the underlying business
components have changed.

Filter Panel Click to enter search criteria to find a specific item in the
panel.

Common Development Tools

3-66 User's Guide for Oracle JDeveloper

To bring up the context menu for the contents of the Log window, right-click within
the window. To bring up the context menu for the Log window as window, right-click
on the tab.

From the context menu for the general Log window, you can:

■ Copy the contents of the window

■ Select all data within the window

■ Wrap the text in the window

■ Clear the contents of the window

■ Save the contents of the window to another format

■ Close the window

Other actions may be available within the tabbed sections generated by specific
processes.

From the context menu for the window itself, you can:

■ Close the window

■ Close all other tabs but for the currently selected tab

■ Close all tabs within the window

3.11.9 Status Window
The Status Window is one of the JDeveloper features that helps you to audit your
code. It displays audit violations in the document selected in the File List and provides
information to help you resolve the issues.

The Code Assist audit profile determines the audit violations that are reported.

Status Window Toolbar
You can choose the items you want to view using the icons in the Status window
toolbar.

The following table describes the icons in the toolbar and their functions:

Table 3–39 Status Window Toolbar Icons

Icon Name Function

Show Error Issues Toggle to show just the number of errors in the selected
file, or to list the errors in the file.

Show Warning
Issues

Toggle to show just the number of warnings in the
selected file, or to list the warnings in the file.

Show Incomplete
Issues

Toggle to show just the number of incomplete issues in
the selected file, or to list the incomplete issues in the
file.

Show Advisory
Issues

Toggle to show just the number of advisory issues in
the selected file, or to list the advisory issues in the file.

Fixes Select one of the issues in the list, and click Fixes. A
suggested fix is displayed, for example: Add missing
Javadoc tags.

Adding External Tools to JDeveloper

Working with Oracle JDeveloper 3-67

3.11.10 Tasks Window
Use this dockable window to record tasks associated with applications, projects and
files.

If you are working in a Java Class source file, a task will automatically be created
whenever you type // TODO (in other words, when you create a comment and use the
source tag recognized by JDeveloper).

While you are using the Tasks window, these features are available:

■ Sort the information by clicking the column headings.

■ Show or hide columns by opening the context menu for any heading and choosing
from the list. Alternatively, you can choose Show/Hide Columns from the
context menu of any task.

■ Add a task by choosing Add Task from the context menu of any task.

■ Edit an existing task by choosing Edit Task from the context menu of the task.

■ Delete a task by choosing Remove Task from the context menu of the task.

■ Delete completed tasks by choosing Remove Completed Tasks from the context
menu of any task.

■ Open the file that the task refers to by choosing Go to Source from the context
menu of the task.

Tasks Window Toolbar
The toolbar enables you to manage the tasks displayed in the Tasks window. The
following table describes the icons in the Tasks Window toolbar and their functions.

3.12 Adding External Tools to JDeveloper
External tools are custom JDeveloper menu items and toolbar buttons that launch
applications installed on your system, applications that are not packaged as part of
JDeveloper.

Table 3–40 Tasks Window Toolbar Icons

Icon Name Function

Current Application Choose to define the current application as the
scope of the tasks displayed.

Current Project Choose to define the current project as the scope of
the tasks displayed.

Current File Choose to define the current file as the scope of the
tasks displayed.

Add task Click to create a new task (independent of source
file comments).

Edit task Click to edit the highlighted task.

Delete task Click to remove highlighted task.

Filter Click to open the Filter Tasks dialog, where you can
set up filters to determine which tasks are and are
not shown.

Adding External Tools to JDeveloper

3-68 User's Guide for Oracle JDeveloper

To find all external programs that JDeveloper is preconfigured to support:
1. From the main menu, choose Tools > External Tools.

2. In the External Tools dialog, click Find Tools.

To add access to an external program from JDeveloper:
1. From the main menu, choose Tools > External Tools.

2. In the External Tools dialog, click New. Follow the instructions in the wizard.

To change how an external program appears, or remove access to an external
program from JDeveloper:
1. From the main menu, choose Tools > External Tools.

2. In the External Tools dialog, click Edit or Delete. If you are editing the options,
display, integration or availability of an external tool from JDeveloper, select the
corresponding tab and change the values. Click Help for help choosing valid
values.

3. Click OK. Your changes are reflected immediately.

Part II
Part II Developing Applications with Oracle

JDeveloper

This part describes how to develop applications with Oracle JDeveloper. You can find
information on how to effectively build, test, run, and deploy applications.

This part contains the following chapters:

■ Chapter 4, "Getting Started with Developing Applications with Oracle JDeveloper"

This chapter provides an overview of the features for developing applications
available in JDeveloper.

■ Chapter 5, "Working with Applications and Projects"

This chapter describes how you can effectively work with applications and
projects in the Oracle JDeveloper IDE.

■ Chapter 6, "Versioning Applications with Source Control"

This chapter describes the version control features available in JDeveloper.

■ Chapter 7, "Building, Running and Debugging Applications"

This chapter provides an overview of the building, running, and debugging
features in JDeveloper.

■ Chapter 8, "Auditing and Profiling Applications"

This chapter provides an overview of the auditing, profiling, and testing features
in JDeveloper.

■ Chapter 9, "Deploying Applications"

This chapter describes how to deploy applications in JDeveloper.

4

Getting Started with Developing Applications with Oracle JDeveloper 4-1

4Getting Started with Developing
Applications with Oracle JDeveloper

This chapter provides an overview of the features for developing applications
available in JDeveloper.

This chapter includes the following sections:

■ Section 4.1, "About Developing Applications with Oracle JDeveloper"

4.1 About Developing Applications with Oracle JDeveloper
JDeveloper provides several tools and features for developing applications. You can
use these features to effectively build, test, run, and deploy your application. These
features include:

■ Navigators, windows, and palettes for managing and working with different
object types and resources associated with applications, projects, and files.

■ Several visual and code editing tools to facilitate the task of creating different
types of source documents. The editors are integrated with other tools in the IDE
such as navigators and palettes, thus drag and drop operations and simultaneous,
automatic updates among the various integrated tools are supported.

■ Tools to simplify the task of testing and analyzing source code, processes, and
application modules or packages.

About Developing Applications with Oracle JDeveloper

4-2 User's Guide for Oracle JDeveloper

5

Working with Applications and Projects 5-1

5Working with Applications and Projects

This chapter describes how you can effectively work with applications and projects in
the Oracle JDeveloper IDE.

This chapter includes the following sections:

■ Section 5.1, "About Working with Applications and Projects"

■ Section 5.2, "Creating Applications and Projects"

■ Section 5.3, "Managing Applications and Projects"

■ Section 5.4, "Managing Application, Project, or Individual Files"

■ Section 5.5, "Managing Libraries and Java SEs Outside the Project Scope"

5.1 About Working with Applications and Projects
The application is the highest level in the control structure. It is a view of all the objects
you need while you are working. An application keeps track of all your projects while
you develop programs.

A project is a logical container for a set of files that define a JDeveloper program or
portion of a program. A project might contain files representing different tiers of a
multi-tier application, for instance, or different subsystems of a complex application.
These files can reside in any directory and still be contained within a single project.

You can remove application and project control files from the IDE without deleting
them from the disk. (This is not true for other types of file, which will be deleted from
the disk at the time that they are removed from the IDE.)

JDeveloper can recognize many different file types, displaying each in its appropriate
viewer or editor when you double-click the file.

When adding a project to an application, you can choose to:

■ Create a new project, with specific objects and attributes you define.

■ Create a new empty project, which inherits default project properties.

■ Open an existing set of files from outside JDeveloper into a new project.

As soon as you create a new project or open an existing one, it is added to the
application selected.

Projects control their files lists directly through the directory. Applications and
packages also define where and how the files within a project are stored.

Creating Applications and Projects

5-2 User's Guide for Oracle JDeveloper

5.2 Creating Applications and Projects
New applications and projects are managed from the Application Navigator.

5.2.1 How to Create an Application
This section describes how to create a custom JDeveloper application and a project
within it.

To create a new application:
1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, under General, select Applications.

3. In the Items list, double-click the application type you want to create.

4. In the Create Application dialog, enter application details like the name and
directory. For help with the wizard, press F1.

5. Click Next to open the Project Name page, where you can optionally provide
details for your project.

6. When you are done, click Finish.

5.2.2 How to Create a Custom Application
This section describes how to create a custom application that includes a single project
that can be customized to include any features.

To create a custom application:
1. Open the New Gallery by choosing File > New.

2. In the New Gallery, in the Categories tree, under General, select Applications.

3. In the Items list, double-click Custom Application. The Create Custom
Application wizard opens.

4. In the Create Custom Application dialog, enter application details like the name
and directory. For help with the wizard, press F1.

5. Click Next to open the Project Name page, where you can optionally provide
details for your project.

6. When you are done, click Finish.

5.2.3 How to Create a New Project
In JDeveloper, you use the Application Navigator to keep track of the projects
(collections of related files or components) you use while developing your application.
You can also create a new project based on existing source.

Note: The same object (physical file) can appear in more than one
project. This means that any actions carried out on the object in one
project will show up in the other project (although some effects will
become apparent only after the project is compiled). For packages, two
or more projects should not share a package unless, first, they also
share a source path used to generate the package and, secondly, the
package is already compiled and will never be changed.

Managing Applications and Projects

Working with Applications and Projects 5-3

5.2.3.1 How to Create a New Project
You can create a new project from existing source or populated with new objects, or
you can create a new empty project.

All projects inherit the settings specified in the Default Project Properties dialog. As
soon as you create the project, it is added to the active application.

To create a new project from existing source or with new objects:
1. In the Application Navigator, select the application within which the project will

appear.

2. Click the Application Menu icon, and select New Project to open the Projects
page of the New Gallery.

3. In the Items list, double-click the project type you want to create.

4. Complete the Create Project wizard, and click Finish. For help on the wizard,
press F1.

The new project appears in the navigator. It inherits whatever default properties
you've already set. To alter project properties for this project, either double-click the
filename or right-click and choose Project Properties.

5.2.3.2 How to Create a New Custom Project
A custom project can be customized to include any feature. All projects inherit the
settings specified in the Default Project Properties dialog. As soon as you create the
project, it is added to the active application.

To create a new custom project and add it to the active application:
1. In the Application Navigator, open the application that will contain the new

project.

2. Click the Application Menu icon, and select New Project to open the Projects
page of the New Gallery.

3. Under Items, select Custom Project.

4. Click OK.

5.3 Managing Applications and Projects
JDeveloper provides several features to effectively manage your applications and
projects.

5.3.1 How to Open an Existing Application or Project
You can create new applications and projects from scratch or open existing ones. As
soon as you create or import the application, it is added to the Applications node in
the Application Navigator. As soon as you create or import a project, it is added to the
selected application.

To open an existing application and add it to the Application Navigator:
1. In the Application Navigator, select Open Application from the dropdown list.

2. Navigate to the application file and select it.

Be sure that the file type field either specifies .jws files or allows all types to be
displayed.

Managing Applications and Projects

5-4 User's Guide for Oracle JDeveloper

3. Click Open.

The application is added to the list of applications in the navigator.

To open an existing project and add it to an application:
1. In the Application Navigator, select the application to which the project will be

added.

2. From the main menu, choose File > Open.

3. Navigate to the project file and select it.

Be sure that the file type field either specifies .jpr files or allows all types to be
displayed.

4. Click Open.

The project is added to the active application.

5.3.2 How to Import Existing Source Files into JDeveloper
You can create new files of various types from scratch or open existing ones. When
opening existing files, you can import them, along with their file structure, into an
existing project or build a completely new project around them.

Alternatively, you can add source files to projects you already have.

5.3.2.1 Importing Existing Files into a New JDeveloper Project
You can import existing files of any type into JDeveloper, creating a new project as you
do so.

To open existing files and import them into a new JDeveloper project:
1. In the Application Navigator, select or create the application to which the new

project will be added.

2. With the application selected choose File > New to open the New Gallery.

3. In the Categories tree, expand General and select Projects.

4. In the Items list, double-click Project from Existing Source.

5. On the Location page of the Project from Existing Source wizard, enter a name for
the new .jpr file or accept the default.

For more information on this or subsequent wizard pages, press F1 or click Help
from within the wizard.

Alternatively, you can select File > Import, and choose either Java Source or
Source into New Project.

6. Accept the default directory path, enter a new path, or click Browse to navigate to
one.

7. Click Next.

8. On the Specify Source page, in the Java Content area, click Add to open the
Choose Directory dialog.

9. In the dialog, navigate to the directory containing the files you wish to add. Click
Select to close the dialog and display the directory in the wizard.

10. When you have finished adding directories, you can apply file or directory filters.
To apply filters, click Add next to the Included tab.

Managing Applications and Projects

Working with Applications and Projects 5-5

11. When the import list is complete, optionally select Copy Files to Project directory
to clone the selected files in your project rather than simply pointing to the
original source.

12. Define a default output directory and default package.

13. Click Finish.

The new project appears under the selected application node, populated with the
imported files.

You can fine tune your project directories structure, for example to point to resource
directories, in the Project Properties dialog.

5.3.2.2 How to Import a WAR File into a New JDeveloper Project
You can import a WAR file into JDeveloper, creating at the same time a new project to
contain its extracted contents.

To open a WAR file and import it into a new JDeveloper project:
1. In the Application Navigator, select or create the application to which the new

project will be added.

2. With the application selected choose File > New to open the New Gallery.

3. In the Categories tree, expand General and select Projects.

4. In the Items list, double-click Project from WAR File.

5. Complete the Create Project from WAR File wizard.

For information when using this wizard, press F1.

The wizard analyzes the WAR file and extracts its contents.

The new project appears under the selected application node, populated with the
imported files.

5.3.2.3 Importing an EAR File into a New JDeveloper Application
When you import an EAR file, JDeveloper will always create a new application and
populate it with projects based on the EAR modules extracted. You cannot add the
contents of an EAR file to an existing application or project.

You should not use this procedure to import an EAR file that you simply wish to
deploy using JDeveloper. To do this, create a new application and project, then copy
your EAR file into the project directory (or add its location to the project's content).
The EAR file will then appear in the Application Navigator under the project's
Application Sources node. From here, you can deploy the file by right-clicking it and
choosing Deploy to.

To open an EAR file and import it into a new JDeveloper application:
1. From the main menu, choose File > Import and double-click EAR File.

The Import EAR File wizard is not sensitive to context, so you need not select
anything specific in the navigator first.

2. Complete the Import EAR File wizard.

On the Finish page, the contents of the final application are displayed.

3. Click Finish to accept the listing and create the application.

Managing Applications and Projects

5-6 User's Guide for Oracle JDeveloper

The new application appears in the navigator, populated with projects based on
the imported modules.

5.3.3 How to Import Files into a Project
You can create new files of various types from scratch or open existing ones. When
opening existing files, you can import them, along with their file structure, into an
existing project or build a completely new project around them.

You can also create new projects from existing source.

5.3.3.1 How to Import Files into a Project
You can import existing files of various types into a project you've already created,
while maintaining their original file structure.

To open an existing file and add it to a project using the Import Existing Sources
wizard:
1. In the Application Navigator, select the project to which the file will be added.

2. From the main menu, choose File > Import.

3. In the Import dialog, double-click Existing Sources.

4. On the Add Source Files and Directories page of the Import Existing Sources
wizard, click Add to open the Select Files or Directories dialog.

For more information on this or subsequent wizard pages, press F1 or click Help
from within the wizard.

5. In the dialog, navigate to the directory containing the files you wish to add, or to
the individual files themselves, and click Open to close the dialog and display the
files in the wizard.

You can return to this dialog as many times as you want, adding as many
individual files or directories as you would like, by clicking Add again once you
have returned to the wizard.

6. When you have finished adding files or directories, and have returned to the
wizard, you can refine your list by selecting and deselecting individual files or by
applying filters. To apply filters, click File Filter or Directory Filter.

7. When your import list is complete, optionally select Copy Files to Project
directory to clone the selected files in your project rather than simply pointing to
the original source. If you select this option, accept the default src directory, enter a
new directory, or click Browse to navigate to one.

8. Click Next.

9. On the Finish page, review the listing of new project files. To accept this list, click
Finish.

The files are now added to the selected project.

Note: You can use the Import Existing Sources wizard to add.zip
or.jar files to projects. You cannot use it to add.war or.ear files. A
.war file requires the Import WAR File wizard to property extract its
contents into the project. An EAR file requires the Import EAR File
wizard, which extracts its contents into a new application.

Managing Applications and Projects

Working with Applications and Projects 5-7

5.3.4 How to Manage Folders and Java Packages in a Project
JDeveloper enables you to create custom folders or Java packages within your project
to better organize your project files.

To create a folder or Java package:
1. In the Application Navigator, select the project or folder within which you want to

create the custom folder.

2. On the File menu, select New.

3. In the New Gallery, under Categories, select General.

4. Under Items, select Folder to create a new folder. To create a Java Package, under
Items, select Java Package.

5. In the Create Folder or Create Java Package dialog, specify the name of the folder
or Java package, and the directory you want to create it in.

To delete a folder or Java package:
1. Select the folder or Java package that you want to delete.

2. On the File menu, select Delete.

3. On the Confirm Delete Folder dialog, confirm the deletion of the folder or Java
package. Click Show Folder Files to see the files contained in the folder or Java
package.

5.3.5 How to Manage Working Sets
Working sets allow you to configure the navigator to show you a subset of files from
your project. This is particularly useful when working with large projects. Before you
define your own working sets the only one available is Default, and it is a working set
which includes all the files in the current application.

You can run and debug a working set in just the same way as you run and debug a
project. This allows you to work on just a subset of a large application, for example a
Java EE application, without affecting the entire application or incurring a
performance hit.

You can define a working set by selecting from files or containers in the Application
Navigator, or by providing include and exclude filter patterns through the Manage
Working Sets dialog.

To group objects in the Application Navigator into a working set:
1. In the Application Navigator, select the objects that you want to include in a new

working set.

2. In the Application Navigator, click the Working Sets icon and select New from
Selection.

This opens a Save As dialog. For more information at any time, press F1 or click
Help from within the Save As dialog.

3. Enter a name for the working set, then click OK.

To create a working set by defining file and directory filters:
1. In the Application Navigator, click the Working Sets icon and select Manage

Working Sets.

Managing Applications and Projects

5-8 User's Guide for Oracle JDeveloper

This opens the Working Sets dialog. Use the tree on the left to select the projects to
include. In the right panel, select which files in the current project to include. For
more information at any time, press F1 or click Help from within the Working Sets
dialog.

2. Click Save As to save the working set.

To create a working set from the results of a search in the Log window:
1. In the Log window, right-click and choose Save as Working Set from the context

menu.

2. In the Create Working Set dialog, enter a name for the working set.

To see which working set you are currently using:
■ In the Application Navigator, hover the mouse over the Working Sets icon. The

name of the current working set is displayed as a tooltip. Alternatively, click the
Working Sets icon to bring up a menu in which the active working set is checked.

To change the active working set:
■ In the Application Navigator, click the Working Sets icon and select the working

set you want to open.

Files not belonging to the working set are removed from view.

To edit files and projects in a working set:
1. In the Application Navigator, click the Working Sets icon and select Manage

Working Sets.

This opens the Working Sets dialog. For more information at any time, press F1 or
click Help from within the Working Sets dialog.

2. Select the working set that you want to change from the Working Set drop-down
list.

3. Make the changes as required.

To restore the view in the Application Navigator to show all files:
■ In the Application Navigator, click the Working Sets icon and select (All Files).

To run and debug a working set:
1. Ensure that you are using the working set you want to run or debug. This should

include the projects that represent the Java EE modules (Web applications, EJB
modules) that you are working on and any dependencies.

Be aware that any projects that are explicit dependencies (in the Dependencies
page of the Project Properties dialog) will be included even if they are excluded
from the working set.

2. Choose Run > Use Current Working Set (Java EE Only). Now, when you open the
context menu of the source editor or a file or project in the Application Navigator,
the run and debug options have "Working Set" as part of the name. For example,
Run (Working Set) or Debug (Working Set).

Managing Applications and Projects

Working with Applications and Projects 5-9

5.3.6 How to Browse Files in JDeveloper Without Adding Them to a Project
Sometimes, you may not want to add files directly to a project, but yet have them
handy for browsing. You can bring files into the JDeveloper IDE, without adding them
to a project.

To open files in JDeveloper without adding them to a project:
1. From the main menu, choose File > Open.

As you are only going to view the files, it doesn't matter which node in the
Application Navigator is currently selected.

2. Navigate to the file or files to be opened. Be sure that the file type field either
specifies the appropriate file type or allows all types to be displayed

3. Select the file or files. You can select as many files, or directories, from the list as
you would like.

Archive files appear twice: once as a virtual directory and then again as a file. If
you will be opening an archive file, select its appearance in the list as a directory.

4. With your selection made, click Open.

5.3.7 How to View an Archive
You can easily inspect the contents of any archive, after first opening the archived file
in JDeveloper. You can add the contents of an archive to an existing or new JDeveloper
project.

To open an archive in JDeveloper and view its contents:
1. From the main menu, choose File > Open.

As you are only going to view the contents of the archive, it doesn't matter which
node in the Application Navigator is currently selected.

2. Navigate to the directory containing the archive. Archive files appear twice: once
as a virtual directory and then again as a file.

If you do not see the archive files, double-check that all file types are being
displayed.

3. Select the second appearance of the archive, the archive as a file, and click Open.

5.3.8 How to View an Image File in JDeveloper
You can easily view any.gif, .jpg, .jpeg, or .png file from within JDeveloper.

To open and view an image in JDeveloper:
1. From the main menu, choose File > Open.

As you are only going to view the image, it doesn't matter which node in the
Application Navigator is currently selected.

2. Navigate to the image or images to be opened. Be sure that the file type field either
specifies all file types or the image types.

3. Select the image.

4. With your selection made, click Open.

The image is displayed in the main working area of JDeveloper.

Managing Applications and Projects

5-10 User's Guide for Oracle JDeveloper

To view an image already imported into JDeveloper:
1. In the Application Navigator, select the image file.

2. Double-click the file, or right-click and choose Open.

5.3.9 How to Set Default Project Properties
You can set the project properties for all subsequently created projects or fine-tune the
properties for any individual project.

When you set project properties for an individual project, you override the default
values for that project alone.

To view or change the default settings for a project:
1. From the main menu, choose Application > Default Project Properties.

2. In the Default Project Properties dialog, select the appropriate category.

3. View or set the various properties as desired.

4. When finished, click OK.

The procedures you follow for setting default project properties are identical to those
for setting properties for individual projects — with the exception that, as you are in
default properties, you do not need to first select an individual project. Note that some
project properties cannot be set from the Default Project Properties dialog.

5.3.10 How to Set Properties for Individual Projects
You can set the project properties for all subsequent projects, or fine-tune the
properties for any individual project. When you set project properties for an individual
project, you override the default values for that project alone.

Additional project properties are also available, based upon specific tasks such as
compiling, or debugging.

To view or change the current output path for an individual project:
1. In the Application Navigator, select the appropriate project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

The Project Properties dialog opens with the input paths displayed on the last
page that you viewed.

3. On the Project Source Paths page, change the output directory as desired by typing
in the new values or by clicking Browse.

4. When finished, click OK.

5.3.10.1 How to Include Libraries in a Project
When you include libraries in a project, the source paths defined for those libraries
automatically become part of the project's classpath.

To view the current libraries for an individual project:
1. In the Application Navigator, select the appropriate project.

2. From the context menu, choose Project Properties.

Managing Applications and Projects

Working with Applications and Projects 5-11

3. Select the Libraries and Classpath node. The libraries currently included in the
project are shown in the Classpath Entries list

To add an existing library to a project:
1. With the project selected in the Application Navigator, open the Project Properties

dialog.

2. Select the Libraries and Classpath node

3. On the Libraries and Classpath page, click Add Library.

4. Locate the required library in the selection tree and click OK.

To create a new library and add it to a project:
1. With the project selected in the Application Navigator, open the Project Properties

dialog.

2. Select the Libraries and Classpath node.

3. On the Libraries and Classpath page, click Add Library.

4. On the Add Library dialog, click New.

5. In the Create Library dialog, enter a name for the new library and select its
location.

6. For each path type, click Add Entry or Add URL as appropriate. To remove a path,
or correct an addition, click Remove. To rearrange the order of entries, use the
reordering buttons to the right of the display area.

7. Once you have clicked either Add Entry or Add URL, in the resulting selection
dialog enter the filename or browse through the list to select one. When your entry
is complete, click Select.

8. In the Create Library dialog, click OK.

9. On the Libraries and Classpath page, if finished click OK.

To edit an existing library in a project:
1. With the project selected in the Application Navigator, open the Project Properties

dialog.

2. Select the Libraries and Classpath node.

3. On the Libraries and Classpath page, select the library to be altered from the
Classpath Entries list.

4. Click Edit. (This button remains the View button if the library is not editable.)

5. In the Edit Library Definition dialog, the appropriate library's name should appear
in the first field. Make any desired changes to the library name by typing directly
into the field.

6. For each Edit Path dialog, click Add Entry or Add URL as appropriate. To remove
a path, or correct an addition, click Remove. To rearrange the order of entries, use
the reordering buttons to the right of the display area.

7. Once you have clicked either Add Entry or Add URL, in the resulting selection
dialog enter the directory name or browse through the list to select one. When
your entry is complete, click Select.

8. In the Edit Library dialog, click OK.

9. On the Libraries and Classpath page, if finished click OK.

Managing Applications and Projects

5-12 User's Guide for Oracle JDeveloper

5.3.10.2 How to Remove Libraries from a Project
When you remove libraries from a project, the source paths defined for those libraries
no longer form part of the project's classpath.

To remove a library from a project:
1. In the Application Navigator, select the appropriate project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

3. Select the Libraries and Classpath node.

4. On the Libraries page, select the desired library or libraries from the Libraries list
and click Remove.

5. If finished, click OK.

5.3.10.3 How to Set the Target Java SE for a Project
Setting the target Java SE specifies which Java SE JDeveloper will use when compiling
and running your project.

To view or change the current Java SE for an individual project:
1. In the Application Navigator, select the appropriate project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

The Project Properties dialog opens with the common input paths displayed or on
the last page that you viewed.

3. On the Libraries and Classpath page the Java SE Version used for the project is
displayed. Click Change to define a new Java SE.

4. When finished, click OK.

5.3.10.4 How to Manage Project Dependencies
Complex applications generally comprise multiple projects, which may be related
though dependencies. That is, project A must depend on project B when project A uses
classes or resources from project B. When this dependency is set, compiling project A
will automatically compile project B.

Deployment profile dependencies are created and edited in the Project Properties
dialog available from the Tools menu.

To manage the project dependencies for an individual project:
1. In the Application Navigator, select the appropriate project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

3. Select the Dependencies node.

4. On the Dependencies page, view the current dependency hierarchy for the project.

5. Select or deselect projects as desired.

6. To change the current dependency ordering, click Ordering.

7. When finished, click OK.

Managing Applications and Projects

Working with Applications and Projects 5-13

5.3.10.5 How to Associate Features with a Project
When features are associated with a project, JDeveloper's design time filters the
choices you see based upon what you are most likely to need for a project of this type.

To associate features with a project via its project template:
1. From the main menu, choose Application > Manage Templates.

2. In the Manage Application Templates dialog, click the project template for which
the features are to be associated.

Application templates are listed as first-level nodes under Application Templates.
Project templates appear below their application template.

3. In the panel to the right, select the appropriate features from the Available Project
Templates list and use the shuttle buttons to transfer them to the Selected Project
Templates list.

4. When finished, click OK.

To associate features with an individual project:
1. In the Application Navigator, select the appropriate project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

3. Select the Features node.

4. On the Features page, click the Add Features button.

5. In the Add Features dialog, select the features to be associated with the project in
the Project Features list.

6. Click the shuttle button to transfer your selection to the Selected list.

7. Click OK.

5.3.10.6 How to Set Javadoc Properties for a Project
Every project you create carries the JDeveloper project defaults or those you have
supplied yourself for all projects. You can also replace these defaults on a
project-by-project basis. Setting these properties is the same in either case: only the
location, and application, of the information differs.

To set Javadoc properties for an individual project:
1. In the Application Navigator, select the project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

3. Under Profiles, select the active profile node.

4. Under the active profile node, select the Javadoc node.

5. When finished, click OK to close the Project Properties dialog.

5.3.11 How to Manage Application and Project Templates
Application and Project templates can assist you in organizing your projects and
standardizing on that organization. When you combine templates with features, you
can streamline the way you design and produce applications.

Managing Applications and Projects

5-14 User's Guide for Oracle JDeveloper

5.3.11.1 How to Define a New Application Template
An application template organizes one or more project templates which specify the
project types expected in the application. Using such templates enables you to
standardize the way you develop an application.

To define a new application template:
1. Begin the process of creating a new application.

2. In the Create Application dialog, click Manage Templates. Alternately, if you are
not in this dialog, choose Application > Manage Templates.

For more information at any time, press F1 or click Help from within the
appropriate dialog.

3. In the Manage Templates dialog, select the Application Templates node and click
to open the Create Application Template dialog

4. Enter a name for the new template and click OK.

The new template appears in the template list of the Manage Templates dialog. All
application templates are listed as first-level nodes under Application Templates.

5. Complete defining the Application Template. For more information at any time,
press F1 or click Help from within the Manage Templates dialog.

The application template appears in the New Gallery in the Applications category of
the Business Tier.

5.3.11.2 How to Define a New Project Template
Project templates specify the various types of projects expected in a given application.
Project templates are contained within application templates.

To define a new project template:
1. Define a new application template.

Alternately, if the template has already been defined, choose Application >
Manage Templates.

2. In the Manage Templates dialog, select the Project Templates node and click the
Add icon to open the Create Project Template dialog.

3. Enter a name for the new template and click OK.

The new template appears in the template list of the Manage Templates dialog. All
project templates are listed as first-level nodes under Project Templates.

4. Complete defining the Project Template. For more information at any time, press
F1 or click Help from within the Manage Templates dialog.

The project template appears in the New Gallery in the Projects category.

5.3.11.3 How to Share Application and Project Templates
You can create an application or project template in a shared location. Other users can
read templates from the shared location and use the same templates for their
application and projects.

To create a shared template:
1. Choose Application > Manage Templates.

Managing Application, Project, or Individual Files

Working with Applications and Projects 5-15

2. In the Manage Templates dialog, select either the Application Templates or
Project Templates node and click the Add a shared location icon.

3. In the Add Templates Directory dialog, enter or browse to the location where you
want the shared template to be stored.

The shared templates folder is listed under both the Application Templates and Project
Templates node.

5.3.11.4 How to Edit an Existing Application or Project Template
You can editing existing user-defined application or project templates.

To edit an existing application or project template:
1. From the main menu, choose Application > Manage Templates.

2. In the Manage Templates dialog, select the template you want to edit.

For more information at any time, press F1 or click Help from within the Manage
Templates dialog.

3. In the panel to the right, edit the attributes of the templates as desired.

4. When finished, click OK.

5.3.11.5 How to Delete an Existing Application or Project Template
You can delete existing user-defined application or project templates.

To delete an existing application or project template:
1. From the main menu, choose Application > Manage Templates.

2. In the Manage Templates dialog, select the name of the template to be deleted.

Application templates are listed as first-level nodes under Application Templates.
Project templates are listed as first-level nodes under Project Templates.

For more information at any time, press F1 or click Help from within the Manage
Templates dialog.

3. Click Delete.

4. Click OK.

5.4 Managing Application, Project, or Individual Files
This section describes how to save, rename, or close an application, project, or
individual component.

5.4.1 How to Save an Application or Project
You can save an application or project in several ways.

To save all the components across applications, including all projects:
■ From the main menu, choose File > Save All or click the Save All icon.

Alternately, you can save components individually by using File > Save.

It is important to note that saving the application or project container (.jws, .jpr)
file alone does not save the individual files governed by that application or project.
Nor does saving individual contained files save the container node.

Managing Application, Project, or Individual Files

5-16 User's Guide for Oracle JDeveloper

Each node is an independent entity and must be saved as such. Using Save All takes
care of changes to these container files, as well as all content files.

Using Save or Save As on a selected application or project node saves or duplicates
the .jws or .jpr file only: it does not save or duplicate the files contained within the
node.

Note too that if you do a Save As on a application or a project container file, that
container is replaced, but the files contained are not altered. If you do a Save As on an
individual file, that file is duplicated. However, if you want to rename a file, you
should use File > Rename.

5.4.2 How to Save an Individual Component or File
You can save an individual component in several ways.

To save an individual component or file:
1. In the Application Navigator, select the component or file to be saved.

2. From the main menu, choose File > Save or click the Save icon in the toolbar.

The file is immediately saved, its italicized name changing to Roman font.

It is important to note that saving the application or project container (.jws, .jpr) file
alone does not save the individual files governed by that application or project. Nor
does saving individual contained files save the container node.

Each node is an independent entity and must be saved as such. Using Save All takes
care of changes to these container files, as well as all content files.

Using Save or Save As on a selected application or project node saves or duplicates
the .jws or .jpr file only: it does not save or duplicate the files contained within the
node.

You can rename an individual file or component using File > Rename.

Note that if you do a Save As on a application or a project container file, that container
is replaced, but the files contained are not altered. If you do a Save As on an
individual file, that file is duplicated.

5.4.3 How to Rename an Application, Project, or Individual Component
You can rename application control files, project control files, and individual files. The
correct way of renaming Java classes is to use refactoring.

To rename an application or project container, or an individual source file:
1. In the Application Navigator, select the node to be saved.

2. From the main menu, choose File > Rename.

For simple files, the Rename dialog opens. For Java files, the Rename File dialog
opens.

3. If the Rename File dialog has opened, choose between renaming only the selected
file, or renaming the file, the class defined by it, and all references to the class

If you choose to rename the class and update references, the Rename Object_Name
dialog opens.

4. If the Rename Object_Name dialog opens, change the name and choose options as
required, then click OK.

Managing Application, Project, or Individual Files

Working with Applications and Projects 5-17

5. If the Rename dialog opens, change the name as required and click Save.

The node now appears in the navigator with the new name.

Alternately, you can use File > Save As. Note that Rename always replaces the target
file. Save As replaces application or project container (.jws, .jpr) files, but
duplicates source files.

When you are saving files, remember that saving a container file alone does not save
the contents of the entire application or project. For that, you need to use Save All.

5.4.4 How to Relocate an Application, Project, or Project Contents
The Application Navigator presents a visual representation of the logical structure of
applications and projects. It is not a file directory. It does not necessarily represent the
physical location of those files.

To change the physical location of individual files, you can work in JDeveloper. To
change the physical location of a group of files, it is easier to work through your
operating system's file manager.

To change the association of files with projects or projects with applications, you
would work in the Application Navigator, adding or removing as appropriate.

To change the physical location of an individual file, whether within the project
or a container (.jws or .jpr) file:
1. In the Application Navigator, select the file to be moved.

2. From the main menu, choose File > Rename. If you have chosen a Java file, the
Rename File dialog will open. You will be able to relocate the file only if you
choose the option Rename the file only, do not update references in this dialog.

3. In the Rename dialog, navigate to the new location for the file and change the file's
name if you wish.

4. Click Save.

The file is now physically stored in the new directory. Its logical representation
does not change in the navigator unless you explicitly alter it.

To change the physical location of an entire application or directory:
1. In your operating system's file manager, navigate to the directory in which the

files currently reside. Files stored in the JDeveloper default directory reside in the
mywork folder.

2. Select the entire directory (application, project, or files within a project) to be
moved and move it to the new location.

The files have now been moved, but JDeveloper no longer knows where they are.

3. When you return to JDeveloper, in the Application Navigator, and choose Open
Application from the drop-down list.

4. Navigate to the new physical location of the application or project and click Open.

Note: The best practice for relocating Java classes is to use the
options available on the Refactor menu.

Managing Application, Project, or Individual Files

5-18 User's Guide for Oracle JDeveloper

To change the physical location of a group of files from one project to another:
1. In your operating system's file manager, navigate to the directory in which the

files currently reside.

2. Select the files to be moved and move them to the new location.

3. When you return to JDeveloper, select the project in the Application Navigator,
and choose Project Properties from the context menu.

4. In the Project Source Paths page of the Project Properties dialog, use the Add
button and navigate to the location of the files you want to add.

The files are now physically located where you placed them in step 2, and logically
associated in the navigator wherever you targeted them in step 4.

5.4.5 How to Close an Application, Project, or Other File
When you close an application, project, or file in the Application Navigator, that
application or project is unloaded from memory. When an application or project is
closed, it appears in its unexpanded form in the navigator.

In addition, you can remove applications, projects, or files from the navigator, which
removes them only from the list, or you can delete them permanently, wherever they
reside, from within JDeveloper.

To close an application or project:
1. In the Application Navigator, select the application or project to be closed.

2. From the main menu, choose File > Close.

If any files within that application or project were changed and not saved, you are
prompted to save them.

The application or project now collapses and appears in the navigator with the
plus sign indicating that is ready for expansion.

You can close a file opened in a viewer or an editor by clicking on the close box of the
corresponding document tab above the editor window.

5.4.6 How to Remove a File from a Project
You can remove files from a project, which removes them only from the navigator list,
or you can delete them permanently, wherever they reside, from within JDeveloper.

To remove a file from a project:
1. In the Application Navigator, select the file or files you wish removed.

2. Select File > Delete.

3. The Confirm Delete Dialog is displayed. If you are certain that you want to delete
the file, click Yes.

5.4.7 How to Remove a Project from an Application
You can remove projects from the application by deleting the project control file (.jpr)
from within JDeveloper.

To remove a project from an application:
1. In the Application Navigator, select the project you wish to remove.

Managing Libraries and Java SEs Outside the Project Scope

Working with Applications and Projects 5-19

2. Select File > Delete Project.

3. The Confirm Delete Project Dialog is displayed. To confirm the deletion, click Yes.

5.4.8 How to Remove an Application
You can remove an application from within JDeveloper:

To remove an application from the IDE:
1. In the Application Navigator, click the Application Menu.

2. Select Close Application.

3. The Confirm Close Application Dialog is displayed. Select an option based on
your preference.

5.5 Managing Libraries and Java SEs Outside the Project Scope
JDeveloper enables you to manage libraries and Java SEs outside the project scope.

5.5.1 How to Import Libraries or Java SEs Outside the Project Scope
You can work with libraries completely outside the JDeveloper project scope, setting
them up to be either available to you for use in any of your projects or available to a
group of users across an installation.

To work with libraries or Java SEs outside of the scope of a project:
1. From the main menu, choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, select either the Libraries or the Java SE
Definitions tab.

3. Select the User node to import libraries for your own use. Select the Extension
node to import libraries for use across a group.

4. Click Load Dir.

5. In the Load Directories dialog, navigate to the library that you wish to import and
click Select.

6. When finished, click OK.

5.5.2 How to Create Libraries or Java SEs Outside the Project Scope
You can work with libraries completely outside the JDeveloper project scope, setting
them up to be either available to you for use in any of your projects or available to a
group of users across an installation.

To create libraries or Java SEs outside the scope of a project:
1. From the main menu, choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, select either the Libraries or the Java SE
Definitions tab.

3. Select the User node to create libraries for your own use. Select the Extension node
to create libraries for use across a group.

4. Click New.

Managing Libraries and Java SEs Outside the Project Scope

5-20 User's Guide for Oracle JDeveloper

5. In the Create Library dialog or the Create Java SE dialog, complete the details for
the new library or Java SE.

6. When finished, click OK.

5.5.3 How to Edit Libraries or Java SEs Outside the Project Scope
You can work with libraries completely outside the JDeveloper project structure,
setting them up to be either available to you for use in any of your projects or available
to a group of users across an installation.

To edit libraries or Java SEs outside the scope of a project:
1. From the main menu, choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, select either the Libraries or the Java SE
Definitions tab.

3. In the tab list, select the library to be edited. Its attributes are displayed in the
fields to the right.

4. To change the Java SE executable, click Browse.

5. To change the class, source, or doc paths, select the path that you want to change
then click one of the buttons beneath the paths panel: Add Entry, Add URL, or
Remove.

You can also reorder the entries, by clicking the up and down buttons in the right
margin.

6. When finished, click OK.

5.5.4 How to Delete Libraries or Java SEs Outside the Project Scope
You can work with libraries completely outside the JDeveloper project scope, setting
them up to be either available to you for use in any of your projects or available to a
group of users across an installation.

To delete libraries or Java SEs outside the scope of a project:
1. From the main menu, choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, select either the Libraries or the Java SE
Definitions tab.

3. In the tab list, select the library to be deleted. You can delete only those libraries
you have created.

4. Click Remove and respond to the confirmation dialog.

The library is deleted immediately.

5. To close the Manage Libraries dialog, click OK.

6

Versioning Applications with Source Control 6-1

6Versioning Applications with Source Control

This chapter describes how to use source control systems to manage the versions of
applications developed in a team environment. It discusses the available version
control systems, how to download the various version-control extensions available to
Oracle JDeveloper, and then includes instructions for each of the source control
systems that can be used with JDeveloper.

This chapter includes the following sections:

■ Section 6.1, "About Versioning Applications with Source Control"

■ Section 6.2, "Downloading Source Control Extensions in Oracle JDeveloper"

■ Section 6.3, "Using Subversion with Oracle JDeveloper"

■ Section 6.4, "Using Concurrent Version System (CVS) with Oracle JDeveloper"

■ Section 6.5, "Using Perforce with Oracle JDeveloper"

■ Section 6.6, "Using Serena Dimensions with Oracle JDeveloper"

■ Section 6.7, "Using Rational ClearCase with Oracle JDeveloper"

■ Section 6.8, "Using Team System with Oracle JDeveloper"

■ Section 6.9, "Using WebDAV with JDeveloper"

6.1 About Versioning Applications with Source Control
Developing in teams often requires coordination among multiple developers who may
be called upon to make changes to the same files, to track these changes against project
management or bug reporting systems, and eventually to check in or commit their
edited files to a commonly used repository of content that will be built into a
functioning product.

To assist in team development of software products, JDeveloper integrates the popular
version control system, Subversion, into its available feature set. You can access a
number of commands for Subversion directly from the JDeveloper interface, through
the Version menu or through the Versioning Navigator.

For users familiar with other versioning systems, JDeveloper offers support for CVS,
Perforce and Serena Dimensions as downloadable extensions. You can choose from
these and other extensions by selecting Help > Check for Updates.

Finally, this section includes a compilation of several best-practices recommendations
on writing XML in a way that makes version control much more effective and useful
for this important data type.

Downloading Source Control Extensions in Oracle JDeveloper

6-2 User's Guide for Oracle JDeveloper

6.2 Downloading Source Control Extensions in Oracle JDeveloper
JDeveloper offers a number of tools for developing in teams. These include an
integrated solution, Subversion, as well as a selection of extensions that interface
JDeveloper with popular version control systems. In addition, an application lifecycle
management system, Oracle Team Productivity Center, is also available as a
downloadable extension.

While most members of a team will interact with their selected versioning system by
checking files in and out and managing their changes to the project they are working
on, at least one team member is typically required to administer and maintain the
versioning system as it relates to JDeveloper. If you are the administrator for your
versioning system, you will most likely have additional tasks beyond checking files in
and out.

If your team uses one of the versioning systems that require you to download a
JDeveloper Extension to integrate your versioning system with JDeveloper, you can
browse for the versioning system from the Update Center by selecting Help > Check
for Updates. Be sure to select all update centers when you search for your versioning
system.

6.3 Using Subversion with Oracle JDeveloper
JDeveloper is integrated with the popular team development solution Subversion
(SVN). If you are part of a team that uses Subversion, JDeveloper's Versioning menu
contains commands for using Subversion to manage the content you are working on
while maintaining a connection to your team's repository and tracking changes,
merges, and more. Setting up Subversion involves creating a repository for your
source-controlled files, making sure that JDeveloper can connect to that repository,
importing files to the repository, and more.

In general, you begin by importing your working files into the Subversion repository
to bring them under version control.

Once in the repository, your files are then available to be checked out from the
Subversion repository to a local folder known as the "Subversion working copy". The
working copy is typically in your local file system for ease and speed of access, but it
can also be in a network location if you prefer.

When you create a new file in JDeveloper (or move it into JDeveloper), you store it in
the Subversion working copy. When you are ready to make your work available to the
team, you add these new files to Subversion control.

When it comes time to make your changed and new files available to other users, you
can do so by committing them to the Subversion repository.

To take advantage of the work others on your team have done, you can copy changed
files from the Subversion repository to your working copy by updating your files.

After completing setup, your work with Subversion will revolve around checking files
out, editing them in JDeveloper, and checking them in with your changes. You may
also need to resolve conflicts between changes you made and those made by others in
your team. Files may also be moved in and out of Subversion control, and finally, you
might use special properties of the files associated with specific versions for tracking
bugs, customer requests, and other characteristics.

Using Subversion with Oracle JDeveloper

Versioning Applications with Source Control 6-3

6.3.1 How To Set Up Subversion and JDeveloper
Setting up Subversion involves creating a repository for your source-controlled files,
making sure that JDeveloper can connect to that repository, importing files to the
repository, and more.

You do not have to install any Subversion software in addition to the JDeveloper
Subversion extension, except in the following circumstances:

■ You wish to create a local Subversion repository using the JDeveloper Subversion
VCS extension.

■ You wish to use a Java binding (helper library) other than SVNKit, which is the
one supplied with the extension.

■ You wish to connect to a Subversion repository through a proxy server

In all of the above cases, you will need to install separate Subversion client software. If
you wish to use an alternate Java binding, you will additionally have to install the
binding software.

An alternate Java binding that you could use is JavaHL. This has the advantage of
being developed and maintained by the makers of Subversion and thus allows
repository access via a wide range of protocols (http, https, file, svn, svn+ssh).
To use the JavaHL binding, you must install Subversion client software independently
of JDeveloper. Once installed, JDeveloper will allow you to choose between JavaHL
and SVNKit client options.

To Install Subversion Client Software:
1. Download the Subversion installer (svn-1.3.2-setup.exe) from

http://subversion.apache.org/ (to, for example, c:\downloads).

2. Run the installer and place the Subversion client in a convenient location, for
example c:\subversion. Reboot your computer.

This procedure assumes that the operating system is Windows. For non-Windows
environments, consult the documentation for the operating system package
management system to ensure the vendor-supplied Subversion client contains JavaHL.

To check the installation so far, open a command prompt and type svn help. You
should see a list of subcommands. If not, check that the system path contains the bin
directory of the location where the client software was installed (in this example,
c:\subversion\bin).

To Install JavaHL Binding Software:
1. Download the JavaHL binary installer (svn-win32-1.3.2_javahl.zip) from

http://subversion.apache.org/ (to, for example, c:\downloads).

2. Using WinZip or a similar tool, extract the file libsvnjavahl-1.dll from
svn-win32-1.3.2_javahl.zip into the bin directory of your Subversion
client installation (in this example, c:\subversion\bin).

3. Run the installer and place the Subversion client in a convenient location, for
example c:\subversion. Reboot your computer.

4. Start or restart JDeveloper.

6.3.1.1 How to Connect to a Subversion Repository Through a Proxy Server
If you wish to connect to a Subversion repository through a proxy server, you must
first install separate Subversion client software.

Using Subversion with Oracle JDeveloper

6-4 User's Guide for Oracle JDeveloper

Once you have installed the Subversion client software, you will have a Subversion
subdirectory in your Windows Application Data directory. To find the Application
Data directory, at the c:/ prompt type cd %APPDATA%. Then open the Subversion
subdirectory. (On Linux the equivalent subdirectory will be in ~/.subversion,
where ~ is the home directory.)

In the Subversion subdirectory will be a file named servers. Open this file with a text
editor and find the [global] section. Remove the comment marker (#) from the line
http-proxy-host and overtype the placeholder proxy information with the details
of the proxy server that you use. Remove the comment marker (#) from the line
http-proxy-port and overtype the placeholder port information with the port
number for the proxy server. If you wish to exclude certain URLs from using the proxy
server, remove the comment marker (#) from the line http-proxy-exceptions and
overtype the placeholder URLs with URLs that you wish to exclude.

Add additional http-proxy-host and http-proxy-port lines with details of any
other proxy servers that you use.

It is important that the proxy server supports all the http methods used by
Subversion. Some proxy servers do not support the following methods by default:
PROPFIND, REPORT, MERGE, MKACTIVITY, CHECKOUT. If you experience
problems with using a proxy server to access a Subversion repository, ask the server's
system administrator to change the configuration to support these http methods.

6.3.1.2 How to Check the Installation
In JDeveloper, select Subversion as the versioning system (Versioning > Configure,
and then select Subversion).

Open the main Subversion preferences page (Tools > Preferences > Versioning), and
then check that the required client installation is available. If more than one is listed,
select the one that you wish to use.

Important: If you subsequently accept an update of the JDeveloper Subversion
extension from the Update Center (Official Oracle Extensions and Updates), the client
preference will be reset to SVNKit, even if you had previously chosen an alternate
client.

6.3.1.3 How to Create a Subversion Repository
In most cases, you will connect to your team's Subversion repository. As you develop
your projects and applications, you will check files out from the Subversion repository,
modify them, and check them back in. This is the typical, and recommended, practice
for using Subversion.

Depending on your installation, however, you may find it necessary to create a
Subversion repository on your local file system through JDeveloper. A connection to
the repository will be created at the same time.

JDeveloper will try to use the file:/// protocol to access the newly created
repository. SVNKit, the Subversion client installed with JDeveloper, supports the
file:/// protocol. If you are using a Subversion client that does not support the
file:/// protocol, you will need to use a different access method (http://,
https://, svn:// or svn+ssh://). Consult the Subversion documentation for how
to do this.

To Create a Subversion Repository:
1. Choose Versioning > Create Local Repository.

Using Subversion with Oracle JDeveloper

Versioning Applications with Source Control 6-5

If your installation does not support local repository creation, you will see an error
message. Otherwise, the Create Subversion Repository dialog will open.

2. Complete the Create Subversion Repository dialog.

To obtain help while using the dialog, press F1 or click Help.

To Browse a Subversion Repository:
1. Expand the connection to your Subversion repository in the Versioning Navigator.

2. Double-click on a folder to view its contents.

3. Right-click on an element to view available operations.

6.3.1.4 How to Create or Edit a Subversion Connection
Before you can work with a Subversion repository through JDeveloper, you must
create a connection to it. You can subsequently edit the connection details if they
change for any reason.

Typically, you will obtain the details of your Subversion connection (server name, user
ID, password, etc.) from your team or version control administrator. You will need to
know those details before you create a connection to your Subversion repository.

To Create a Subversion Connection:
1. In the Versioning Navigator (View > Team > Versioning Navigator), right-click

the Subversion node and choose New Repository Connection.

The Create Subversion Connection dialog is opened. For help when using this
dialog, press F1 or click Help.

2. Enter the URL of the location of the Subversion repository.

3. Optionally, enter a name for the connection.

4. If the Subversion repository has been set up with password protection, enter the
username and password.

5. If you want to test the connection to the Subversion repository, click the Test
Connection button. The results will be displayed in the Status area.

6. To complete the connection, click OK.

To Edit a Subversion Connection:
1. In the Subversion Navigator (View > Team > Versioning Navigator), right-click

the Subversion connection name and choose Properties.

The Edit Subversion Connection dialog is opened. For help when using this
dialog, press F1 or click Help.

2. Make changes as required and click OK.

6.3.1.5 How to View Subversion Repository Content
You can view the current content of the Subversion repository through the Versioning
Navigator. The nodes under your selected Subversion connection unfold to reveal the
structure and file content of the Subversion repository.

You can open a read-only version of a Subversion repository file by choosing Open
from its context menu. This will let you see what changes have been made to the files
in the Subversion repository since you checked out or updated your local versions.

Using Subversion with Oracle JDeveloper

6-6 User's Guide for Oracle JDeveloper

Folders in the Subversion repository, visible from the Versioning Navigator, offer the
following operations:

New
Opens the new gallery, from which you can create applications, connections, projects,
and other entities.

New Remote Directory
Opens the Create Directory dialog, which lets you create a new directory to associate
with the URL of the element on which you right-clicked.

Delete
Removes the selected element immediately from the JDeveloper view, without a
confirmation dialog. Use with caution.

Check Out
By default, opens the Check Out from Subversion dialog.

If you have configured JDeveloper for a different version control system, Check Out
will open the checkout dialog for your selected version control software.

6.3.1.6 How to Check Out Files from the Subversion Repository
When you begin working on a project in Subversion, you check out the files you will
be working with. It is recommended that you check out the entire application from the
Subversion repository, so that you will have access to all files in that application in
your local work area. Subversion uses the term modules to refer to the application it is
recommended you check out.

To incorporate into your local copies changes that other developers have committed to
the Subversion repository since you checked out your files, you update them.

When you check out Subversion files, they are copied from the Subversion repository
to a new location (specified by you) on your local machine. This location and the files
within it constitute the Subversion "working copy".

To check out modules from the Subversion repository:
1. In the Versioning Navigator, select the repository node or folder containing the

files that you want to check out.

2. Choose Versioning > Check Out.

If there is no current connection to a Subversion repository, the Create Subversion
Connection dialog is opened for you to create one.

The Check Out from Subversion dialog is displayed. To obtain more information
when working with the dialog, press F1 or click Help.

3. Make sure that the Subversion connection that the dialog displays is the correct
connection (if you have more than one Subversion connection or repository).

Note: With Subversion, there is no "check in" procedure, so you do
not check in files that you have updated and check them out again
when you next want to work on them. Instead, when you have
finished working on your local copies of files, you commit them to the
Subversion repository to bring the files held there up to date.

Using Subversion with Oracle JDeveloper

Versioning Applications with Source Control 6-7

4. Browse to the path in the Subversion connection containing the application files
you wish to check out.

5. Enter the destination in your work area to which you wish the checked-out files to
be copied, or click Browse to navigate to your local work area.

6. You have the option of checking specific tags, if your team uses them.

7. If you wish to check out files within folders contained by this Subversion module,
make sure to select Depth.

When you have made all your selections, click OK.

6.3.1.7 How to Update Files from the Subversion Repository
Use these procedures to bring the files you have been working on up-to-date with a
revision in the Subversion repository.

It is recommended that you perform the update operation on a working copy.

When you use Update Working Copy, all the files in your checked out working copy
will be updated, regardless of which node you have active in your application in the
JDeveloper Application Navigator. The alternative is to select Update. This will only
update the folder or file (and any child folders and files) that you have selected in the
Application Navigator.

To update a working copy (recommended):
1. In the Application Navigator, select a navigator node or file that is part of the

working copy.

2. Select Versioning > Update Working Copy.

The Update Working Copy dialog is displayed with the working copy folder
listed.

3. Ensure that the folder shown is the correct one for the working copy that you wish
to update. If it is not, cancel the dialog and begin again from step 1.

4. Set the options on the Update Working Copy dialog as required.

To obtain more information about the options, press F1 or click Help.

5. To update the working copy from the Subversion repository, click OK.

You can also update individual files. However, this runs the risk of not updating all
files that may have been modified by your team members since the last time you
checked them out.

To update individual files:
1. In the Application Navigator, select the file(s) that you wish to update and choose

Versioning > Update.

The Update Resources dialog is displayed with the file(s) listed.

2. Set the options on the Update Resources dialog as required.

To obtain more information about the options, press F1 or click Help.

3. To update the listed file(s) from the Subversion repository, click OK.

6.3.1.8 How to Import JDeveloper Files Into Subversion
Files that you created within (or brought into) JDeveloper before using Subversion
control must be imported into the Subversion repository, and then checked out from it.

Using Subversion with Oracle JDeveloper

6-8 User's Guide for Oracle JDeveloper

To import an existing JDeveloper project or application into Subversion:
1. In the Application Navigator, select the application or project that you want to

import into Subversion.

2. Select Versioning > Import Files.

The Import to Subversion wizard opens.

3. Complete the wizard. For help while using the wizard, press F1 or click Help.

If you allowed the wizard to check out the imported files, the files are shown in
the Application Navigator with a version number next to them. You may have to
refresh the view before the files are shown.

If you did not allow the wizard to check out the imported files, you must now
check them out before you can work on them.

6.3.1.8.1 How to Import an Application to Subversion You can also import an entire
application into Subversion using the JDeveloper Version Application feature.

To import files using Version Application:
1. Select the application you wish to add to version control.

2. Select Versioning > Version Application.

3. From the Version Application dialog, select the Subversion repository. This will
open the Import to Subversion wizard.

After you import files into Subversion using the Version Application feature, you will
notice that Subversion creates two directories, one as your work area and one as a
backup directory.

For example: after creating a new application called Catalog, select Versioning >
Version Application > Subversion. Be sure to select the Perform Checkout from the
Options page, then finish the wizard.

When the wizard completes, browse to the local directory that you have specified as
the Source Directory for this application in Subversion. You will see two directories
listed there: Catalog.svn-import-backup and
Catalog.svn-import-workarea.

JDeveloper (and Subversion) will use the Catalog.svn-import-workarea
directory for file access, checkout/checkin, and other activities. You should avoid
editing, moving, or manipulating files in those directories outside of JDeveloper and
Subversion.

6.3.2 How to Work with Files in Subversion
After completing setup, your work with Subversion will revolve around checking files
out, editing them in JDeveloper, and checking them in with your changes. You may
also need to resolve conflicts between changes you made and those made by others in
your team. Files may also be moved in and out of Subversion control, and finally, you
might use special properties of the files associated with specific versions for tracking
bugs, customer requests, and other characteristics.

6.3.2.1 How to Add a File to Subversion Control
When you create a new file in JDeveloper that is part of a local working copy (that is,
an application that has been versioned and checked out of your SVN repository), you
need to add and then commit the file to Subversion control before you can use the

Using Subversion with Oracle JDeveloper

Versioning Applications with Source Control 6-9

JDeveloper Subversion facilities with it. The preferred method is to set up JDeveloper
to do this automatically, through the Preferences menu.

To add new files on commit:
1. Select Tools > Preferences > Versioning > General.

2. Select Automatically Add New Files On Committing Working Copy.

3. Click OK.

You can also place individual files under Subversion control.

To put individual files under Subversion control:
1. Select the files in the Application Navigator and choose Versioning > Add.

The files can be your work files, or they can be the application and project files
used by JDeveloper.

The Add to Source Control dialog is displayed with the files listed.

2. To add the files to Subversion control, click OK.

The files are now shown in the Application Navigator with a black cross, meaning
that they are stored in your JDeveloper workarea but are not yet committed to the
Subversion repository. Files must be committed to the Subversion repository
before they can be versioned and accessed by other users.

3. To commit files to the Subversion repository, select the files in the Application
Navigator and choose Versioning > Commit.

The Commit Resources dialog is displayed with the files listed.

4. Add your versioning comments in the Comments box.

You will later be able to see these comments when viewing the list of versions of a
particular file.

5. To commit the files to the Subversion repository, click OK.

The files are now shown in the Application Navigator with an orange dot,
indicating that they are known to the Subversion repository and are up to date.

6.3.2.2 How to Use Change Sets
Change sets, or change lists, are essentially labels which can be applied to working
copy files to enable group operation on each change list. The idea behind adding files
to a change set is similar to sorting files into directories, but change lists can be created
dynamically and the labels applied to each file, regardless of their level in the file
system hierarchy. You can then address all the files in the change set as a single group.
For example, if you make a single bug fix that requires editing three different files, you
can add all three files to the change set and track them as a single logical unit in the
JDeveloper Pending Changes window.

Subversion lets you associate files with a named change set, either manually or
automatically. You make additions to the change set through the menu system;
automatic additions are also possible through default association, when JDeveloper
detects outgoing changes.

You can browse changes for a named change set in a view of the Pending Changes
window. From there, you can manipulate the change sets, and commit associated
changes to the repository.

Using Subversion with Oracle JDeveloper

6-10 User's Guide for Oracle JDeveloper

To add a selected file to a new change set:
■ Select a file from the Pending Changes window, then select Versioning > Add To >

New Change Set.

To add file to a change set:
1. In the Pending Changes window, select a file to add to an existing change set and

click the right mouse button.

2. Select Add To, then choose an existing change set.

3. Select one of the existing change sets displayed in the dialog, or select New
Change Set to create a new change set containing this file.

4. Click OK.

6.3.2.2.1 Editing Change Sets JDeveloper creates a default, unnamed change set for each
installed version control system, and uses this change set until you specify another
change set as the default. You can make changes to the content and the status of
individual change sets, including this default change set, by right-clicking any change
set and selecting from the following:

Edit
Change the content of the selected change set.

Remove
Deletes the selected change set from Pending Changes. Does not delete the files
associated with the change set.

Make Default
Makes the selected change set the default for future operations. All newly created and
edited files will be made part of this change set until you either change the default or
manually add the file to a different change set.

6.3.2.3 How to View the History of a File
Use this procedure to open the History Viewer and view the history of Subversion
files.

To view the history of a file:
■ With the file selected in the Application Navigator, choose Versioning > Version

History from the context menu.

For more information while using the History Viewer, press F1 or click Help.

6.3.2.4 How to Commit Files to the Subversion Repository
Use these procedures to bring the Subversion repository up to date with the latest
version of the files you have been working on, at the same time adding any new files
to or removing any unwanted files from the Subversion repository.

You can perform the commit operation on individual files, or in the context of a
working copy.

If an individual object that you want to commit has uncommitted parent objects, you
must first commit the parent objects. An alternative is to commit the working copy
that the objects are part of, in which case all the uncommitted objects will be
committed.

Using Subversion with Oracle JDeveloper

Versioning Applications with Source Control 6-11

You can also use change sets to manage groups of files, which can help ensure that you
commit all files pertaining to a particular sub-project or task within the overall
application.

To commit individual files shown in the Application Navigator or the Pending
Changes window:
■ Select the file(s) and choose Versioning > Commit.

The Commit Resources dialog is displayed with any files listed. Set the options on
the Commit Resources dialog as required.

To obtain more information about the options, press F1 or click Help. To commit
the listed file or files to the Subversion repository, click OK.

To commit a working copy from the Application Navigator:
1. Select a navigator node or file that is part of the working copy.

2. Select Versioning > Commit Working Copy.

To obtain more information about the options, press F1 or click Help. To update the
Subversion repository with the content of the working copy, click OK.

When you use Commit Working Copy, all the files in your checked out working copy
will be updated, regardless of which node you have active in your application in the
JDeveloper Application Navigator. The alternative is to select Commit. This will only
commit the folder or file (and any child folders and files) that you have selected in the
Application Navigator.

Additionally, you can commit a working copy from the Pending Changes window.

To commit a working copy from the Pending Changes window:
1. Put the Pending Changes window into Outgoing Changes mode.

To obtain more information about the Pending Changes window, press F1 or click
Help.

2. Select a file from the working copy that you wish to commit.

3. Select Versioning > Commit Working Copy.

6.3.2.4.1 Saving Work Item ID with the Oracle Team Productivity Center Extension If you are
using Oracle Team Productivity Center, the work item ID will automatically be saved
as a tag in the comment dialog when you commit.

6.3.2.5 How to Use Templates in Subversion
Many team environments require the developer to enter comments when a file is
checked in. These comments might include bug report numbers, dependencies on
other files, or some other explanatory information to be stored in connection with the
file being committed to the repository.

JDeveloper lets you create and select templates for use with such comments. The
templates are available from the Commit menu.

To create a new template:
1. Select Tools > Preferences > Versioning > Subversion > Comment Templates.

2. Click Add.

Using Subversion with Oracle JDeveloper

6-12 User's Guide for Oracle JDeveloper

To select a template:
1. Click Choose a template or previous comment.

2. Select the template from the list.

3. Click OK.

To make a comment to a file being committed:
1. Click in the Comments box to select it.

2. Type the comment you wish to make with the file being committed.

3. Click OK.

6.3.2.6 How to Revert Files to their Previous State
Use the Revert command to:

■ Undo changes that you have made locally to the contents of a file.

■ Change the status of a file that has been added, but not yet committed, back to
unadded.

■ Stop a file that is scheduled for removal (in the Pending Changes window) from
being removed from the Subversion repository.

To revert a file:
1. Select the file in the Application Navigator or Pending Changes window and

choose Versioning > Revert.

The Revert Local Changes dialog is displayed with the file or files listed.

For help while using the dialog, press F1 or click Help.

2. To revert the listed file or files, click OK.

6.3.2.7 How to Replace a File with the Subversion Base Revision
Use this procedure to replace a file with the base revision. The base revision is the
revision from which the one you are currently working on originated.

To replace a file with the Subversion base revision:
1. In the Application Navigator, select the file to be replaced.

2. Choose File > Replace With Base Revision. The Replace With Base Revision
dialog opens. Check that the file that you want to replace is shown in the dialog.

3. To replace the file, click OK.

6.3.2.8 How to Compare Files in Subversion
Use these procedures to compare files that are under Subversion control with other
revisions of the same files, or with other files.

To compare revisions of a file:
1. From the context menu for the file, choose Compare With.

2. Select either Previous Revision, Latest Revision, or Other Revision.

If there are no differences, a message is displayed. Otherwise the revision or
revisions are shown in the Compare panel of the History tool.

Using Subversion with Oracle JDeveloper

Versioning Applications with Source Control 6-13

To compare a file with another file:
1. From the context menu for the file, choose Compare With > Other File.

The Select File to Compare With dialog is opened.

2. Select the file to be compared.

The files are shown in the Compare panel of the History tool.

To compare two files:
1. Select the two files in the Application Navigator.

2. From the context menu for one of the files, choose Compare With > Each Other.

The files are shown in the Compare panel of the History tool.

You can hide (and later expose) the Compare panel of the History tool to view other
panels in JDeveloper.

6.3.2.9 How to Resolve Conflicts in File Versions
If there is a conflict between your copy of the file and the one in the Subversion
repository, the icon next to the affected file will include an exclamation point. You will
not be able to submit such a file to the Subversion repository. To overcome this
problem, you should do one of the following:

■ Revert to a non-conflicting version of the file.

■ Resolve the conflict using the JDeveloper merge tool.

■ Indicate to the Subversion control system that the conflict has been resolved
(Versioning > Mark Resolved), even if no changes have been made (usually
necessary only for binary files).

Another reason you might need to do this is if you have resolved the conflict yourself
in the file, rather than using the merge tool. This might be the case if you have chosen
to merge files at the server rather than the more usual solution of merging files locally.

To revert to a non-conflicting file version:
■ Select the file in the Application Navigator and choose Versioning > Revert.

To resolve the conflicts using the merge tool:
1. Select the file in the Application Navigator and choose Versioning > Resolve

Conflicts.

The file is opened with the Merge tab displayed, showing the merge tool.

2. Use the merge tool to resolve the conflicts.

For help while using the merge tool, press F1 or click Help.

To indicate that the conflict has been resolved, even if no changes have been
made:
■ Select the file (usually a file with binary content) in the Application Navigator and

choose Versioning > Mark Resolved.

6.3.2.10 How to Resolve Conflicts in Subversion
Use this procedure to merge two revisions of a file, where the revisions contain
conflicting content. Conflicts are notified in the Pending Changes window: the

Using Subversion with Oracle JDeveloper

6-14 User's Guide for Oracle JDeveloper

outgoing status is "conflicts" or "conflicts on merge", and the Resolve Conflicts button
is active.

To merge two revisions with conflicting content:
1. On the Outgoing tab of the Pending Changes window, select the revision that has

conflicts and click the Resolve Conflicts button. (You can also select the revision in
the Application Navigator.)

2. The merge tool is opened (as the Merge tab of the file editor).

For help while using the merge tool, press F1 or click Help.

The merge tool has three panels. The left panel contains the content of the version
in the repository. The right panel contains the content of the most recent local
version. The center panel contains the results of the merge. In the margins between
the panels are symbols representing suggested actions to resolve each conflict.

3. View the suggested actions for resolving the conflicts by reading the tooltip of the
margin symbols.

More suggested actions may be available from the context menus of the margin
symbols.

4. Resolve the conflicts by implementing a suggested action in each case.

Accepting an initial suggested action may cause the appearance of additional
suggested actions.

You can also make changes to the content of the center panel by typing into it.

5. To complete the merge, save the changes that have been made by clicking on the
Save Changes button on the merge tool (not the JDeveloper Save option).

6.3.2.11 How to Resolve Property Conflicts in Subversion
Subversion allows you to create and save properties associated with folders or files.
These properties have a name and a value string.

You can resolve any such conflicts using Subversion's Resolve Tree Conflicts feature.

To resolve Subversion property conflicts:
1. In the Application Navigator, select the element under Subversion control that has

a property conflict.

2. Click the right mouse button, and then select Versioning > Resolve Tree Conflict.

This displays the versions with the conflicting properties in two adjacent panes, as
with the Version Compare.

To resolve the conflict, you can make changes in the Subversion Properties window.

6.3.2.12 How to Use the Merge Wizard
The Merge Wizard is instrumental to the way that JDeveloper supports Subversion
merge tracking. Merge tracking in Subversion means in essence that Subversion
remembers your merges so you don't have to. The Merge Wizard provides you with an
easy way of selecting which components you wish to merge, such as specific revisions,
branches, or change sets.

The Merge Wizard gives you a number of options:

Using Subversion with Oracle JDeveloper

Versioning Applications with Source Control 6-15

Merge Selected Revision Range
Select this when merging a range of revisions to another branch, for example, when
you are back-porting a group of bug fixes to the release branch.

Reintegrate a branch
Normally used when merging the changes on a branch back to the trunk, for example,
if you completed the work on a feature branch and want to reintegrate the changes
back to trunk.

Merge two different trees
Select this to merge the differences between two branches into the working copy.

Block specific revisions from being merged
Select this if you know that specific revisions are not yet ready, or not appropriate, to
be merged into the trunk.

6.3.2.13 How to Work with Branches and Tags
When you wish to work on files independently of the main line of development (the
"trunk") you can create a branch. Using the same feature, you can also create a tag, a
collection of files that captures the state of development at a particular point.

When you wish to put the work you have being doing on a branch back into the main
line of development, you can start the process by using the merge revision facility. This
will compare the content of two revisions and apply the differences to the current
working copy. You can also use this facility whenever you wish to copy changes made
in one revision to another revision.

You may want to change your working copy so that it is based on a different branch.
You can do this using the switch feature, either as part of branch creation or
independently.

To create a branch or tag:
1. Ensure that you have committed your files to Subversion before continuing.

2. In the Application Navigator, select a project or file that is in the line of
development that you wish to branch or tag.

3. Select Versioning >Branch/Tag.

4. Complete the Branch/Tag dialog.

For help when completing the dialog, press F1 or click Help.

To use the merge facility (that is, to compare two revisions and apply the results
to the working copy):
1. In the Application Navigator, select a project or file that is in the start revision (that

is, the resource that is to be compared against).

2. Select Versioning > Merge.

3. Complete the Merge dialog.

For help when completing the dialog, press F1 or click Help.

To switch the working copy to be based on another location in the repository:
1. In the Application Navigator, select a project or file that is in the current working

copy.

2. Select Versioning > Switch.

Using Subversion with Oracle JDeveloper

6-16 User's Guide for Oracle JDeveloper

3. Complete the Switch dialog.

For help when completing the dialog, press F1 or click Help.

6.3.2.14 How to Add and View Subversion Properties
Subversion lets you define and add properties to various levels of the elements in the
Application Navigator: files, folders, and other resources. You can define these
properties and use them as a way of tracking files or folders that have something in
common. For example, you can associate a specific Subversion property with a newly
added feature. Viewing all files or folders with this Subversion property lets you see
all the files associated with this feature: an HTML file, a JavaScript file, a class
definition file, or any other elements that are involved in adding this new feature to
your application.

If your team has been using Subversion properties for some time, you can use the
View Subversion Properties menu to see a list of all elements that use a selected
Subversion property. You can also compare the Subversion properties between
different versions.

To view a list of Subversion properties:
1. Select an element under Subversion control from the Application Navigator.

2. Select Versioning > Subversion > View Subversion Properties.

If your project needs a new property for tracking and managing a particular aspect
(such as a new feature or a bug fix), you can also add new properties.

To add a new Subversion property:
1. Select an element under Subversion control from the Application Navigator.

2. Select Versioning > Subversion > Add Subversion Property.

3. Enter the values for the property, then click OK. Refer to the following section for
examples of Subversion properties and how to use them.

6.3.2.14.1 Example of Subversion Properties When you add or edit Subversion properties,
the dialog lets you select or specify the following elements:

Resource file
The file (or folder or other resource) to which this property is to be applied. To change
this value, select a different file or resource. Note that if you wish to add this property
at the application or project folder level, edit the resource file entry so that it refers to
the folder, not the file.

Property name
Select a property name from the available list, or enter a new name to create a new
Subversion property. Preface the new property name with svn: to be tracked as a
Subversion property.

Value string
Enter the string to be displayed with this Subversion property when you view
properties. For example, you can associate a specific Subversion property with a
particular bug identification number or a specific upcoming release.

Note that the Value String might differ depending on the property. For instance,
consider a property named svn:externals meant to record the connection between
a local file and its external URL in the SVN repository. This property's value string

Using Subversion with Oracle JDeveloper

Versioning Applications with Source Control 6-17

would be a pair of text strings, respectively showing the local directory where the
external file is to be checked out and the URL to the external file in the SVN repository

Assume for this example that the resource file is D:\temp and the property name is
svn:externals. The value string (a value pair) might be:

external_libs
https://ukp16449.uk.oracle.com/repos/trunk/FOD/StoreFront.jar

This indicates that the file StoreFront.jar held in the Subversion repository at that
URL is to be checked out to D:\temp\external_libs. If the Value String entries
were held in a specific file pointed to from this property, use the Value File entry.

Value file
If you know you will be adding the same Subversion property to a number of
resources in your application, you can save the value string in a text file. Click Browse
to select the text file that contains the value string you wish to use.

Set property recursively
Select this if you wish Subversion to apply this property to all files and elements below
the current level in the application or project hierarchy.

6.3.2.14.2 Specifying a Revision Number with a Subversion External Property When you set
an external property with a revision number, make sure you follow the correct format
for the value string. You can use either of the following as the value string for a
property of type svn:external to set the ExternalWebINF revision to 16, using the
JDeveloper integrated Subversion:

ExternalWebINF -r 16
https://myserver.myteam.com/svn/repos/public-html/WEB-INF

https://myserver.myteam.com/svn/repos/public-html/WEB-INF@16
ExternalWebInf

However, note that with Subversion 1.4 clients, only the first format is accepted.

6.3.2.15 How to View the Status of a Subversion File
Use this procedure to check the content status and any associated property status of a
file that is under Subversion source control. You can also refresh the status of a file.

To view the status of a file:
1. With the file selected in the Application Navigator, open the context menu and

select Versioning > Properties.

2. Select the Versioning tab.

The status labels shown are those used by Subversion to describe the source control
status of content and any associated property.

The main statuses for content are:

■ added - The content has been added to source control but has not yet been
committed to the Subversion repository.

■ modified - The property has been locally modified since it was copied from the
repository.

■ unmodified (normal) - The property is unmodified since it was last updated from
the Subversion repository.

Using Subversion with Oracle JDeveloper

6-18 User's Guide for Oracle JDeveloper

■ conflicted - There were conflicts when the property was updated from the
Subversion repository.

■ deleted - The file (content and any associated property) will be removed from the
Subversion repository with the next commit action.

The main statuses for associated properties are:

■ modified - The property has been locally modified since it was copied from the
repository.

■ unmodified (normal) - The property is unmodified since it was last updated from
the Subversion repository.

■ conflicted - There were conflicts when the property was updated from the
Subversion repository.

6.3.2.16 How to Refresh the Status of Files Under Subversion Control
The source control status of a file is indicated in the JDeveloper navigators
(Application Navigator and Team Navigator) by icon overlays, as below.

If the status of a file is changed outside JDeveloper, for example by using a Subversion
client application, the new status might not immediately be shown in JDeveloper. To
ensure that the status indicated in the navigator matches the true status of the file in
the source control system, you can perform a manual refresh.

To refresh the status of files in JDeveloper:
■ Select View > Refresh.

6.3.2.17 How to Remove Files from Subversion Control
If you wish to remove a file from Subversion control, use the JDeveloper Delete
feature. This performs a "safe delete," which searches for usages of the file you are
deleting and provides you with a dialog with options for proceeding.

To remove a file from Subversion control:
1. In the Application Navigator, select the file to be removed from Subversion.

2. Select Edit > Delete (or right-click the file and select Delete).

3. Make sure that Delete Safely is selected.

4. Click OK.

If JDeveloper finds usages of the file you are deleting, a dialog will offer you
options for proceeding. Choose the appropriate option, then click OK.

6.3.3 How to Use Export Features
Subversion provides features for creating and applying patches—methods for
determining changes between two revisions of a file, and then applying those changes
to a third file. In addition, Subversion contains features for exporting the details about
repository connections, as well as files in the repository.

6.3.3.1 How to Create and Apply Patches
You may wish to record the changes between two revisions of a file, then apply those
changes to a third file. You do this by creating a patch and then applying it.

Using Subversion with Oracle JDeveloper

Versioning Applications with Source Control 6-19

To create a patch:
This generates a patch comprising the differences between a controlled revision of a
file and a revision of the file held locally.

1. In JDeveloper, open the file for which you want to create a patch.

2. Click the History tab.

The History view lists all the revisions of the file. In the lower portion of the
History view, the left pane shows the contents of a local revision, and the right
pane shows the contents of the controlled revision.

3. Select the revision combination for which you want to create a patch.

4. From the context menu, choose Generate Patch.

The Select Patch Context dialog may open. For help while using this dialog, press
F1 or click Help.

The Generate Patch dialog opens. Complete the dialog as required. For help while
using the dialog, press F1 or click Help.

To apply a patch:
1. In the navigator, select the resource to which you want to apply a patch.

The resource can be an application, a project, or a source file.

2. Select Versioning > Apply Patch.

If you chose to apply a patch to a project, the Select Patch Context dialog opens,
through which you should specify whether you are applying a project file (.jpr)
patch, or whether you are updating the contents of a project.

The Apply Patch dialog is opened.

3. In the grid at the top of the Apply Patch dialog, check that the target resources are
correctly identified.

4. Choose the source of the patch. For more information about this and the other
options on the dialog, press F1 or click Help.

5. Click Preview. This opens the Apply Patch Preview window, in which you can
accept or reject particular changes. For more information about the options in the
Apply Patch Preview window, press F1 or click Help.

6. To apply the patch, click OK.

6.3.3.2 How to Export Subversion Controlled Files from JDeveloper
You can export copies of JDeveloper files that are under Subversion control. You can
do this from the Application Navigator, in which case the files will be exported from
the Subversion "working copy", or from the Subversion Navigator, in which case the
files will be exported from the Subversion repository. If you export using the
Subversion Navigator, you can specify which revision of the files to export. Exporting
the files means copying them to a local file system directory that you specify.

To export files from the Subversion "working copy":
1. In the Application Navigator, select the project containing the files that you wish

to export.

2. Select Versioning > Export Files.

An Export Files dialog opens.

Using Concurrent Version System (CVS) with Oracle JDeveloper

6-20 User's Guide for Oracle JDeveloper

3. In the Destination Path box, enter or browse to the location where you want the
files to be copied to.

4. To export the files, click OK.

To export files from the Subversion repository:
1. In the Subversion Navigator, select the repository node or directory containing the

files that you wish to export.

2. Select Versioning > Export Files.

An Export Files dialog opens.

3. In the Destination Path box, enter or browse to the location where you want the
files to be copied to.

4. If you want to export a particular revision of the files, select Use Revision and
enter the revision number in the adjacent text box.

5. To export the files, click OK.

6.3.3.3 How to Export and Import Subversion Repository Connection Details
You can export the details of your Subversion repository connections to a file. You can
subsequently import the connection details from the file to recreate the Subversion
repository connections.

To export Subversion connection details to a file:
1. In the Subversion Navigator, select the Subversion node and, from the context

menu, choose Export Connections.

The Export Subversion Connections dialog opens.

2. Enter a location and name for the file that will contain the connection details, then
click OK.

To import Subversion connection details from a file:
1. In the Subversion Navigator, select the Subversion node and, from the context

menu, choose Import Connections.

The Import Subversion Connections dialog opens.

2. Browse to the file that contains the connection details that you wish to import,
then click OK.

6.4 Using Concurrent Version System (CVS) with Oracle JDeveloper
JDeveloper allows you to use the source control features of Concurrent Versions
Support (CVS). Once you have installed the CVS extension, JDeveloper works in a
seamless manner with CVS so that you can connect to the CVS repository, check out
files, work on them and commit changes, all from within the JDeveloper navigators
and menus.

Note: For extensive information about how to use and administer
CVS, see the CVS online manual at http://www.cvshome.org.

Using Concurrent Version System (CVS) with Oracle JDeveloper

Versioning Applications with Source Control 6-21

6.4.1 How to Set Up CVS with Oracle JDeveloper
In general, CVS uses a common repository of files, accessible to JDeveloper, that you
and your team share while developing a software project. To modify files in that
repository, you first check them out so that CVS tracks the who, when, and what of file
access. In the event that two team members edit the same file at the same time, CVS
contains tools that help you determine whether those changes conflict, and to resolve
problems that may arise and merge these simultaneous changes into a single,
comprehensive file. Finally, CVS lets you check these changed files back into the
repository so that your build tools will have access to the latest files, with new and/or
merged content.

Before you can use CVS to manage your shared content, you need to connect
JDeveloper to CVS. This means configuring JDeveloper, making a connection to your
team's CVS repository, creating a local repository, and more. The topics in this section
cover all the steps you'll need to make sure CVS is available from JDeveloper after
downloading the CVS extension from Check For Updates. If your team is already
using CVS, you should check with them for specifics on how CVS is implemented in
your organization.

The process of setting up CVS with JDeveloper involves configuring JDeveloper,
creating a CVS connection, importing files for the project into your CVS repository,
and then checking out the CVS modules to be edited.

6.4.1.1 How to Configure JDeveloper for Use with CVS
Before you can use CVS, you need to configure JDeveloper by setting preferences.

To configure JDeveloper for use with CVS:
1. Choose Tools > Preferences, then select Extensions from the left panel of the

Preferences dialog.

2. In the right panel, ensure that Versioning Support n.n is checked.

3. In the left panel of the Preferences dialog, open the Versioning node and then the
CVS node. The main CVS preferences panel is shown. Other CVS preferences
panels are shown when you click on the items beneath the CVS node.

4. Make changes to the preferences as required. For more information about the
specific preferences, press F1 or click Help.

5. If you wish to use binary file types with CVS, select the File Types node in the
right panel, and use the File Types page to create the binary file types that you
want to use with CVS.

For help while using this page, press F1 or click Help.

6. Click OK to close the Preferences dialog.

To select CVS as the versioning system:
■ Choose Versioning > Version System: [...] > CVS.

After you have configured JDeveloper and selected CVS as the versioning system of
course, you are ready to make the connection to CVS so that you can view and access
files in the CVS repository

Using Concurrent Version System (CVS) with Oracle JDeveloper

6-22 User's Guide for Oracle JDeveloper

6.4.1.2 How to Create a CVS Connection
Before you can work with a CVS repository through JDeveloper, you must create a
connection to it. When you create a local CVS repository, you can choose to create a
connection to the repository automatically

CVS connections are shown in the CVS Navigator. You can subsequently edit the
connection details.

To create a CVS connection:
1. In the CVS Navigator (View > CVS Navigator) right-click the CVS node and

choose New CVS Connection.

The Create CVS Connection wizard is opened.

2. Complete the Create CVS Connection wizard.

For help when using the wizard, press F1 or click Help.

To edit a CVS connection:
1. In the CVS Navigator (View > CVS Navigator) right-click the connection name

and choose Properties.

The Edit CVS Connection wizard is opened.

2. Use the wizard to make changes as required.

For help when using this wizard, press F1 or click Help.

6.4.1.3 How To Import JDeveloper Project Files Into CVS
Before you can start using your JDeveloper project with CVS, you have to import the
project files into the CVS repository. This copies all your folders and files to the CVS
repository and places them under source control.

You import your project files into the CVS repository using the Import to CVS wizard.

To use the Import to CVS wizard:
1. Choose Versioning > Import Module. The Import to CVS wizard is displayed.

2. Complete the import as prompted by the wizard. For help when using this wizard,
press F1 or click Help.

Before you can change any files, you have to copy them back to your machine, where
you can work on them locally.

6.4.1.4 How to Check Out CVS Modules
This is a configuration task you perform when you first start to use JDeveloper with
files and folders that are under CVS source control. You perform this task once, after (if
necessary) importing your JDeveloper project into the CVS repository.

To check out modules from the CVS repository:
1. In the CVS Navigator, select the CVS module that you want to check out.

Either:

Choose Versioning > CVS > Check Out Module.

or:

from the context menu, select Check Out Module.

Using Concurrent Version System (CVS) with Oracle JDeveloper

Versioning Applications with Source Control 6-23

The Check Out from CVS dialog is displayed.

2. Complete the dialog. For help when using this dialog, press F1 or click Help.

6.4.2 How to Configure CVS For Use with JDeveloper
In addition to setting up JDeveloper to be able to use CVS, there are certain tasks you
need to perform to make CVS usable with JDeveloper. Some of these tasks may be
performed by your administrator. You should always check to make sure which of
these tasks have been performed in your installation.

In general, you need a local CVS repository for storing files as you are working on
them. You may also need to configure a secure shell (SSH) for communicating with
CVS, and you may need to choose a character set. Finally, you will need to log in to
CVS.

6.4.2.1 How to Create a Local CVS Repository
From within JDeveloper, you can create a new CVS repository on your local file
system. This feature is available only if you are using external CVS client software,
rather than the internal CVS client installed as part of the CVS extension to JDeveloper.

To create a local CVS repository:
1. Select Versioning > Create Local Repository.

2. In the Repository Folder box, enter the path of a directory where you want the
new local repository to be created.

You can specify or select an existing directory if it is empty, or you can specify a
new directory. If the directory you have specified exists and is not empty, you will
see a warning dialog telling you to specify an empty or new directory for the
repository.

3. If you want to create a connection to the local repository that you are creating,
make sure that the Create Repository Connection box is checked.

The connection will be given a name in the form :local:{path}. If you later want to
change this name, you can do so through the CVS Navigator: from the context
menu of the connection name, open the properties dialog and, on the Name tab,
overtype the existing name with a new one.

4. Click OK. You will see a confirmation dialog when the new local repository has
been created.

6.4.2.2 How to Configure SSH (Secure Shell), CVS and JDeveloper
JDeveloper supports SSH Levels 1 and 2 as access methods for CVS repositories.

6.4.2.2.1 Configuring for SSH Level 1 (SSH) JDeveloper does not provide a direct way of
using SSH Level 1 as an access method for the CVS repository. It is however possible
to configure SSH Level 1 so that it can be used for remote shell access.

To configure SSH Level 1 to enable remote shell access:
1. Generate public and private keys using the command: ssh-keygen

2. Concatenate the ~/.ssh/identity.pub public key file with
~/.ssh/authorized_keys on the machine with the CVS repository.

Using Concurrent Version System (CVS) with Oracle JDeveloper

6-24 User's Guide for Oracle JDeveloper

Before running JDeveloper and attempting to use CVS with SSH Level 1, users should
be explicitly authorized and the environment correctly configured. Follow the steps
below to configure the environment correctly.

To configure the environment for SSH Level 1:
1. Set the CVS_RSH environment variable to the location of the SSH client.

2. At the UNIX command line, enter ssh-agent {shell}, and then press Enter.

3. At the UNIX command line, enter ssh-add, and then press Enter.

4. Start JDeveloper.

5. Select External as the CVS access method when using the CVS Connection Wizard.

6.4.2.2.2 Configuring for SSH Level 2 (SSH2) JDeveloper provides a direct way of using
SSH2 as an access method for the CVS repository.

To use SSH2 for remote shell access:
1. On the JDeveloper CVS preferences page, set the CVS Client preference to Internal

to JDeveloper [...].

2. Start the CVS Connection Wizard.

3. While using the CVS Connection Wizard, on the Connection page, choose Secure
Shell via SSH2 as the Access Method. For more help at this stage, press F1 or click
Help.

4. On the Connection page, click Generate SSH2 Key Pair. This opens the Generate
SSH2 Key Pair dialog. For help using this dialog, press F1 or click Help.

5. After generating the SSH2 key files, an information dialog will appear that
explains where to install the files.

6. Install the SSH2 key files as instructed in the dialog.

7. Complete the CVS Connection Wizard to create the CVS connection.

If you are using an internal CVS client, you can generate SSH2 key files at any time by
choosing Versioning > Administration > Generate SSH2 Key Pair. If you are using an
external CVS client, this menu option is unavailable.

6.4.2.3 How to Choose a Character Set (Local Client Only)
If your installation uses a local CVS client, you need to choose a character set.

For each CVS repository connection, you can choose the character set to be used for
the encoding of files. The default is to use the character set specified by the
platform/operating system.

You can change to the IDE default or to a specific character set through the Set
Encoding dialog.

To choose a character set:
1. Select a connection in the CVS Navigator.

2. Clicking the right mouse button and choose Set Encoding.

3. Select the desired character set.

Using Concurrent Version System (CVS) with Oracle JDeveloper

Versioning Applications with Source Control 6-25

6.4.2.4 How to Log In to CVS
Some types of connection to a CVS repository require you to log in independently of
making the connection. If you cannot access any CVS features even though a CVS
connection exists, you need to log in.

To log in to a CVS repository:
1. In the CVS Navigator, select Versioning > Log In.

If the Log In menu option is unavailable but the Log Out option is available, you
are already logged in.

2. In the Log In To CVS dialog, enter your password. If you want your password to
be remembered and supplied automatically when you connect to the CVS
repository in future, check the Connect Automatically on Startup box.

3. Complete login by clicking OK.

6.4.2.5 How to Access Local Files with CVS
If JDeveloper finds a path to a CVS client on your machine, the JDeveloper CVS
preferences will by default be set to use that CVS client (rather than the internal CVS
client installed with JDeveloper). If no path to a CVS client is found, the preferences
will be set to use the internal CVS client.

The internal CVS client cannot be used to access a local CVS repository (that is, one on
your own machine). If you wish to access a local CVS repository, you must install a full
client/server version of CVS onto your machine and set the JDeveloper CVS
preferences accordingly.

If you wish to use an external CVS client, we recommend the following:

■ CVSNT 2.0.58a for Windows platforms

■ cvshome's CVS 1.11.9 for other platforms

To access CVS through a firewall:
If you are accessing a CVS server through a firewall, you can connect to it if:

■ the firewall allows TCP/IP communication on the CVS port, or

■ you use a CVS client that supports HTTP Tunneling (for example, CVSNT).

If there is an authentication failure when you log in, try using the CVS command line
to connect. If this fails, the connection may be being blocked by the firewall, and you
should contact your network administrator.

If necessary, you can alter the value of the CVS root variable to support connection
through a firewall.

Note: You may already have a CVS installation that is client-only.
This will not be able to access a local CVS repository, and you should
install a full client/server version instead. If you are unable to expand
the connections node in the CVS Navigator or open the list of modules
from the Get Module List button in the CVS wizards, you probably
have client-only CVS software that is attempting to access a local CVS
repository. You can check which type of CVS installation you have by
typing cvs -v at the CVS command prompt. A client-only
installation will display (client) at the end of the version information
line, whereas a client/server installation will display (client/server).

Using Concurrent Version System (CVS) with Oracle JDeveloper

6-26 User's Guide for Oracle JDeveloper

6.4.2.5.1 Handling CVS File Types The CVS administrator has to configure the CVS
repository for the automatic handling of binary files produced by JDeveloper, such as
image file formats.

Where other file types are updated, CVS attempts to merge them. If you do not want is
to occur, you must change the configuration of the CVS repository.

For more information about CVS, refer to the CVS documentation, or see the CVS
website, http://www.cvshome.org. This is also where you can download CVS
software.

6.4.3 How to Use CVS After Configuration
Once JDeveloper is configured and your project files are available in the CVS
repository, you will most likely use a workflow that follows the basic sequence of
update, checkout, modify, and commit. In addition, you may occasionally need to
resolve edit conflicts, and merge the resulting file(s) into the repository.

6.4.3.1 How to Update a Project, Folder, or File in CVS
The CVS update operation updates your local files with data in the CVS repository.
Alternately, you can choose to completely replace your local files with those held in
the CVS repository.

You can update individual files (including project files), or you can update the entire
contents of a project folder.

You can view the contents of the CVS repository through the CVS Navigator. The
nodes under CVS Server unfold to reveal the structure and file content of the CVS
repository. You can open a read-only version of a CVS repository file by choosing
Open from its context menu. This will let you see what changes have been made to the
files in the CVS repository since you checked out or last committed your local
versions.

To update an individual file (including a project file):
1. Select the file(s) in the Application Navigator, and then choose Versioning >

Update.

2. Set the options as required. For information about these options, press F1 or click
Help.

3. To update all the files listed, click OK.

To update the contents of a project folder:
1. Select the project folder(s) in the Application Navigator and then, from the context

menu, choose Update Project Folders.

2. Set the options as required. For information about these options, press F1 or click
Help.

3. To update all the files listed, click OK.

To update files shown in the Pending Changes window:
1. With the Pending Changes window in Incoming Changes mode, select the files

that you want to update.

To obtain more information about the Pending Changes window, press F1 or click
Help.

2. Click the Update button.

Using Concurrent Version System (CVS) with Oracle JDeveloper

Versioning Applications with Source Control 6-27

6.4.3.2 How to Edit and Watch Files in CVS
Editing and watching are available only when an external CVS client executable is
used.

These procedures allow you to obtain and release an editor on a file, to know who else
in your team is editing files, and to know who is watching for files to be edited. Two or
more developers retain the ability to edit the same file at the same time.

To set up JDeveloper to use editing and watching:
1. Open the preferences page obtainable from Tools > Preferences | Versioning |

CVS.

2. Ensure that External Executable is selected and that valid details are entered.

3. Select Run CVS in Edit/Watch Mode.

4. Open the preferences page obtainable from Tools > Preferences | Versioning |
CVS | General.

5. Deselect Automatically Make Files Editable.

To obtain an editor on a file:
1. With the file selected in the Application Navigator, select Versioning > Edit.

2. Check that you want the operation to apply to all of the files highlighted in the file
selection box.

3. To set up a watch for this file, select the Set Watch Actions checkbox and select a
watch action from the drop-down list.

4. Click OK.

To release an editor on a file (to unedit a file):
This action reverses changes made in the current edit. Any local file modifications will
be lost when the editor is released.

1. With the file selected in the Application Navigator, select Versioning > Unedit.

2. Check that you want the operation to apply to all of the files highlighted in the file
selection box.

3. Click OK.

To turn on or turn off the file watching facility:
1. In the Application Navigator, select a project containing files about which you

want to be notified.

2. Select Versioning > Watch.

3. In the Watch CVS Files dialog, choose Turn On Watching or Turn Off Watching
from the Command Type drop-down list.

4. Click OK.

To add yourself to the list of people who receive notification of work done on
files:
1. In the Application Navigator, select the project containing the files about which

you want to be notified.

2. Select Versioning > Watch.

Using Concurrent Version System (CVS) with Oracle JDeveloper

6-28 User's Guide for Oracle JDeveloper

3. Check that you want the operation to apply to all of the files in the file selection
box.

4. On the Watch Settings tab, choose Add File Watch as the Command Type from the
drop-down list.

5. Optionally, check the Set Watch Actions checkbox and choose the particular
actions that you want to be notified about.

6. Click OK.

To remove yourself from the list of people that receive notification of work done
on files:
■ Follow the procedure for adding yourself to the list (above), but choose Remove

File Watch from the Command Type dropdown list.

To see who is watching for changes being made to files:
■ Select Versioning > Edit Notifications.

The Edit Notifications window is opened. The Watchers tab shows the files that are
being watched and the user(s) who are currently watching for changes.

To see who is currently editing files:
■ Select Versioning > Edit Notifications.

The Edit Notifications window is opened. The Editors tab shows the files that
currently have editors on them and the user(s) who have obtained those editors.

6.4.3.3 How to Commit Changes to CVS
Use these procedures to update the CVS repository with the latest version of the files
you have been working on, and to add any new files to or remove any unwanted files
from the CVS repository.

You can perform this on a single file, or in the context of a project. When in the context
of a project, JDeveloper determines which files have changed since they were last
committed and displays them as a list.

If you select a project to be committed that includes files that are not yet part of CVS
version control, the Add Files to CVS message dialog will open. To obtain information
about using this dialog, press F1.

You can view the current contents of the CVS repository through the CVS Navigator.
The nodes under CVS unfold to reveal the structure and file content of the CVS
repository. You can open a read-only version of a CVS repository file by choosing
Open from its context menu. This will let you see what changes have been made to the
files in the CVS repository since you checked out or updated your local versions.

To commit individual files shown in the Application Navigator:
1. Select the file(s) in the Application Navigator, and then choose Versioning >

Commit.

The Commit to CVS dialog is displayed with the file(s) listed.

2. Set the options on the Commit to CVS dialog as required.

To obtain more information about the options, press F1 or click Help.

3. To update the listed file(s) in the CVS repository, click OK.

Using Concurrent Version System (CVS) with Oracle JDeveloper

Versioning Applications with Source Control 6-29

To commit the contents of project folders shown in the Application Navigator:
1. Select the project folder(s) in the Application Navigator and, from the context

menu, choose Versioning > Commit Project Folders.

If there are files in the project that are not under CVS control, you will be asked
whether you want to add them.

The Commit to CVS dialog is displayed with the folder(s) listed.

2. Set the options on the Commit to CVS dialog as required.

To obtain more information about the options, press F1 or click Help.

3. To update the listed file(s) in the CVS repository, click OK.

To commit files shown in the Pending Changes window:
1. With the Pending Changes window in Outgoing Changes mode, select the files

that you want to commit.

To obtain more information about the Pending Changes window, press F1 or click
Help.

2. Click the Commit button.

6.4.3.4 How to Merge Files in CVS
Use this procedure to merge two revisions of a file, where the revisions contain
conflicting content. Conflicts are notified in the Pending Changes window: the
outgoing status is "conflicts" or "conflicts on merge", and the Resolve Conflicts button
is active.

To merge two revisions with conflicting content:
1. On the Outgoing tab of the Pending Changes window, select the revision that has

conflicts and click the Resolve Conflicts button.

2. The merge tool is opened (as the Merge tab of the file editor).

For help while using the merge tool, press F1.

The merge tool has three panels. The left panel contains the content of the version
in the repository. The right panel contains the content of the most recent local
version. The center panel contains the results of the merge. In the margins between
the panels are symbols representing suggested actions to resolve each conflict.

3. View the suggested actions for resolving the conflicts by reading the tooltip of the
margin symbols.

More suggested actions may be available from the context menus of the margin
symbols.

4. Resolve the conflicts by implementing a suggested action in each case.

Accepting an initial suggested action may cause the appearance of additional
suggested actions.

You can also make changes to the content of the center panel by typing into it.

5. To complete the merge, save the changes that have been made, using the Save
button.

Using Concurrent Version System (CVS) with Oracle JDeveloper

6-30 User's Guide for Oracle JDeveloper

6.4.4 How to Work with Branches in CVS
CVS lets you define branches, used when development needs to be carried out
separately from the main (or trunk) branch of a project. JDeveloper gives you access to
CVS branches in your repository through the Tag, Branch and Merge menu.

In CVS, you can create a separate branch when you want to carry out specific work
(such as bug fixes or specialized feature development) without any impact to the main
set of files, also called the trunk.

Once you have created a branch, you interact with it as normally with CVS -- check
out files, commit changes, etc. You can switch back and forth between branches, and
you can merge the changes you have made to your branch back into the trunk.

CVS also lets you apply tags to specific branches, or to specific files in a branch (as
well as generating a new tag for the branch you create, when you create it).

6.4.4.1 How to Create a New Branch
You create a new branch when you are beginning a project based on an earlier version
of your code repository, such as for fixing bugs after a major release, or working on
specific features for a subset of your customers.

To create a new branch:
1. In the CVS repository, select the file or folder on which you wish to base your new

branch, then click the right mouse button.

2. Choose Branch > Branch in CVS.

3. Type in the branch name. JDeveloper converts the branch name to the default tag
for the branch, by appending _BASE to the branch name as you type it.

4. Choose whether the branch source is the trunk or the working copy. If you select
the trunk, the HEAD revision of every file is branched.

5. Click Save.

The base tag is applied before the branch is created, allowing you to specify these
versions as a merge point in future.

You can also specify that you wish to create your new branch from an existing branch,
by choosing the branch to use as the base.

To create a new branch from an existing branch:
1. Click Details.

2. Select the desired branch from the list of existing branches.

6.4.4.2 How to Use Branches in CVS
Branch selection is integrated into a number of CVS functions. You can switch
branches or versions for files you are editing or have checked out; you can choose tags,
branches, or version dates while updating the contents of your work area, as well as
while you are checking out a CVS module.

6.4.4.2.1 How to Switch the Branch or Version You can switch the branch or version of a
file you are editing, either from the JDeveloper Versioning menu or from the file or
project's context menu.

Using Concurrent Version System (CVS) with Oracle JDeveloper

Versioning Applications with Source Control 6-31

To select a branch, version or date from the Versioning menu:
1. From the Versioning menu, choose Tag, Branch or Merge > Switch Branch or

Version.

2. Click the chooser to display a list of branches or versions.

3. Select the branch or version you wish to use.

4. Optionally, click Add Date to specify a date to use.

5. Click OK.

To select a branch, version or date from the project's context menu:
1. Choose Versioning > Switch Branch or Version.

2. Click the chooser to display a list of branches or versions.

3. Select the branch or version you wish to use.

4. Optionally, click Add Date to specify a date to use.

5. Click OK.

6.4.4.2.2 How to Choose a Branch while Updating When you are updating your content to
capture the latest revisions to the repository, you have the option of branch (via its
associated tag) at the same time.

To select a tag and branch while updating:
1. From the project's context menu, choose Update Project Folders.

2. In the Update from CVS dialog, check the box marked Use Revision, Tag or Date,
then click the chooser icon.

3. Select a tag to use.

4. Optionally, click Add Date to specify a date to use.

5. Check any other boxes (Overwrite Local Changes, Prune Empty Folders, etc.) that
you wish to apply to the current update, then click OK.

6.4.4.2.3 How to Choose a Branch While Checking Out As with other CVS operations, tags
and branches are integrated into the process of checking out a CVS module.

To choose a branch while checking out:
1. Click the right mouse button on the content in the Versioning Navigator to bring

up the context menu, then choose Check Out Module.

2. Check the box labeled Use Revision, Tag or Date, then click the chooser to select a
tag.

3. Select a tag. Optionally, you can click the Add Date button to specify a date. When
you have made your selection, click OK to close the Tags dialog.

4. Choose any other options (Force Match, Ignore Child Folders, etc.), then click OK
to close the Check Out from CVS dialog.

6.4.4.3 How to use Tags in CVS
Tags are a way of identifying branches, branch-specific content, or other content that
you wish to identify and manipulate as a single logical group. You can tag files,
folders, or projects. You can then later use these tags to identify branches, update files
from a branch with a specific tag, and other operations.

Using Concurrent Version System (CVS) with Oracle JDeveloper

6-32 User's Guide for Oracle JDeveloper

You can select and browse tags from context menus as well as the Versioning > CVS >
Tags menu. The availability of tags differs depending on the context of the operations
you are performing on your content.

6.4.4.3.1 How to Add a Tag to a Project You can identify a project by adding a tag to it.
You can then operate on this project by selecting the tag from any of the CVS menus
that contain the tag chooser.

To add a tag to a project:
1. Select the project you want to tag.

2. Choose Versioning > CVS > Tag, Branch and Merge > Tag.

3. Type the tag you want to use, or click the chooser icon to browse the existing tags.

4. Optional: Choose Use Revision, Tag or Date, then type the tag or click the icon to
browse the list.

6.4.4.3.2 How to Apply Tags While Updating a Project or File You can choose and apply a tag
while using the Update from CVS dialog.

To select an existing branch, version or date from the Projects view:
1. From the project's context menu, select Versioning > Tag.

2. Choose Use Revision, Tag or Date.

3. Click the tag chooser icon.

4. Choose a tag from the list that appears.

6.4.4.3.3 How to Delete a Tag You can also delete a tag. Deleting a tag removes it from
any resources to which you have applied it. Deleting the tag does not delete the
content to which the tag was applied; it merely removes it from the list of available
tags.

To delete a tag:
1. Select Versioning > Tag, Branch and Merge > Delete Tag.

2. Click the chooser icon. Choose the tag you wish to delete, then click OK.

In this context, only existing tag versions (regular non-branch tags) can be selected.

6.4.5 How to Work with Files in CVS
As a very general rule, working with files in CVS means checking out the latest
version of a file, making your edits, and checking the file in with your changes.
Occasionally, if you and a colleague have made edits to the same file, you may need to
merge your changes to make sure your work is not lost. Other functions of CVS are
also available, such as adding a new file or removing unused/obsolete files from the
repository, but your general workflow will follow the checkout-edit-checkin pattern.

The file operations in CVS include refreshing the display of CS objects, adding and
removing files, using templates, comparing files, replacing a file in CVS, viewing the
history and status of a file, locking and unlocking files, and working with revisions
and tags.

Using Concurrent Version System (CVS) with Oracle JDeveloper

Versioning Applications with Source Control 6-33

6.4.5.1 How to Refresh the Display of CVS Objects
The source control status of an object is indicated in the Application Navigator by an
icon overlay, as listed in Table 6–1.

If the status of an object is changed outside JDeveloper, for example by checking in an
object using external source control software, the new status might not immediately be
shown in JDeveloper. To ensure that the status indicated in the Application Navigator
matches the true status of the object in the source control system, you can perform a
manual refresh.

To refresh the status of objects in JDeveloper:
■ In the Application Navigator or CVS Navigator, click the refresh button.

6.4.5.2 How to Add and Remove Files
You can add a file to CVS only if it is part of a project that is already under CVS
version control.

When you create a new file, for example a new class, it has to be added to source
control before you can use the other CVS operations on it. The file is added to source
control locally, and the CVS repository is not updated. The file is identified in the
Application Navigator by the icon +.

Table 6–1 CVS Object Status

Icon Description

The object has been copied from the CVS repository and added
to your working files directory.

The object is not under CVS source control, but may be added to
the CVS repository.

There were conflicts when the object (a file) was updated from
the CVS repository. In this case, you have to manually edit the
file to resolve all the points of conflict.

The object has been scheduled for removal from the CVS
repository with the next commit action.

The object is out of synch with the CVS repository due to local or
remote changes.

The object is unmodified since it was last copied from the CVS
repository.

The object is unmodified since it was last copied from the CVS
repository but is read-only.

The package or node is a CVS sandbox folder.

The apparent object may comprise several underlying objects,
the statuses of which may not all be identical.

Using Concurrent Version System (CVS) with Oracle JDeveloper

6-34 User's Guide for Oracle JDeveloper

To add a file to CVS through the Application Navigator:
1. Select the file in the Application Navigator and choose Versioning > Add (or, if

the file is binary, Versioning > Add as Binary). JDeveloper usually recognizes
binary files and adds (Binary) after the file name in the navigator. The Add to CVS
dialog (or Add to CVS as Binary dialog) is displayed, with the file listed.

2. Click OK.

The file will be added to the CVS repository when the next commit is performed.

To add files shown in the Pending Changes window:
1. With the Pending Changes window in Candidate Files mode, select the files that

you want to add to source control.

To obtain more information about the Pending Changes window, press F1 or click
Help.

2. Click the Add button.

To remove a file from CVS:
When you remove a file from CVS it is removed from your local disk.

1. In the Application Navigator, select one or more files to be removed, then choose
Versioning > Remove.

2. The Remove from CVS dialog is displayed with the files listed.

3. Click OK.

The file or files will be removed from the CVS repository when the next commit is
performed.

6.4.5.3 How to Use CVS Templates
Many team environments require the developer to enter comments when a file is
checked in. These comments might include bug report numbers, dependencies on
other files, or some other explanatory information to be stored in connection with the
file being committed to the repository.

JDeveloper lets you create and select templates for use with such comments. The
templates are available from the Commit menu.

To create a new template:
1. Select Tools > Preferences > Versioning > CVS > Comment Templates.

2. Click Add.

To select a template:
1. Click on Choose a template or previous comment.

2. Select the template from the list.

3. Click OK.

To make a comment to a file being committed:
1. Click in the Comments box to select it.

2. Type the comment you wish to make with the file being committed.

3. Click OK.

Using Concurrent Version System (CVS) with Oracle JDeveloper

Versioning Applications with Source Control 6-35

6.4.5.4 How to Compare Files in CVS
Use these procedures to compare revisions of files that are under CVS source control.
You can compare a file with its immediate predecessor, or you can compare with any
of the file's previous revisions.

To compare a file shown in the Application Navigator:
1. From the context menu for the file, choose Compare With.

2. Select either Previous Revision, Head Revision or Other Revision.

3. If you are comparing with previous revisions, these are listed in the Compare CVS
File dialog: Select the file that you want to compare with.

If there are no differences, a message is displayed. Otherwise the Compare tool is
displayed.

To compare a file shown in the Pending Changes window:
You can compare a file in the Pending Changes window either with a previous
revision or with the HEAD revision, depending on which mode the window is in. To
obtain more information when using the Pending Changes window, press F1.

■ With the window in Outgoing Changes mode, select the file to be compared, then
select the Compare with Previous Revision button.

■ With the window in Incoming Changes mode, select the file to be compared, then
select the Compare with Head Revision button.

If there are no differences, a message is displayed. Otherwise the Compare tool is
displayed.

6.4.5.5 How to Replace a File with a CVS Revision
Use this procedure to replace a file with the base or head revision, or with a file with a
specific revision number or tag. The head revision is the latest one. The base revision is
the revision from which the one you are currently working on originated.

To replace a file with a CVS revision:
1. In the navigator, select the file to be replaced.

2. Do one of the following:

■ To replace with the base revision, choose File > Replace With > Base
Revision. The Replace With Base Revision dialog opens.

■ To replace with a specific revision number or tag, choose File > Replace With
> Tagged Revision. The Replace With Tagged Revision dialog opens.

■ To replace with the head revision, choose File > Replace With > Head
Revision. The Replace With Head Revision dialog opens.

3. Check that the file that you want to replace is shown in the dialog.

4. When replacing with a specific revision number or tag, enter the revision number
or tag into the text box on the dialog.

5. To replace the file, click OK.

Using Concurrent Version System (CVS) with Oracle JDeveloper

6-36 User's Guide for Oracle JDeveloper

6.4.5.6 How to View the History and Status of a File
The history and status of a file will tell you what has been done to it, and what has
been done to it last. This can help you make the determination of what you need to do
to bring the file up to date, or to begin making your own modifications.

Use this procedure to open the History Viewer and view the history of CVS files.

To view the history of a project or file:
■ With the project or file selected in the Application Navigator, choose Versioning >

Version History from the context menu.

For more information while using the History Viewer, press F1.

Use this procedure to check the status of a file that is under CVS source control. You
can also refresh the status of files under CVS control.

To view the status of a file:
1. With the file selected in the Application Navigator, open the context menu and

select Versioning > Properties.

2. Select the Versioning tab. The status of the file is the first item on the tab.

Possible statuses are:

■ Changed locally - the file has been locally modified since it was copied from the
repository.

■ Changed in repository - the file has been modified by another user since it was
copied from the repository.

■ Locally removed - the file will be removed during the next commit.

■ Locally added - the file will be added during the next commit.

■ Up-to-date - the file is up-to-date with the latest CVS repository revision.

■ File has conflicts - these may have resulted from a file update or commit action. If
necessary, consult your CVS administrator for assistance.

■ Needs merge or needs patch - the file has been updated externally, for example, by
another user.

■ Modified - the file previously had merge conflicts, but the timestamp has changed
since.

6.4.5.7 How to Lock and Unlock Files

You can choose to prevent other users working on a file while you are working on it
yourself. This is not normally considered necessary, because CVS can usually reconcile
differing versions of files as they are being committed to the CVS repository. The
JDeveloper compare and merge facilities will reconcile differing versions of files
automatically, or present you with a tool for doing so manually if there are serious
conflicts.

You may want to ensure that a file is worked on only by you, until you have finished
working on it. This might be because a file is in binary format and therefore inherently

Note: The locking of files is not supported in newer releases of CVS
client software and this facility may be removed in future releases of
JDeveloper.

Using Concurrent Version System (CVS) with Oracle JDeveloper

Versioning Applications with Source Control 6-37

difficult to merge. In this case, you can lock the file that you want to work on. The file
is locked in the CVS repository, and other users are prevented from accessing it. When
you want to let others work on the file, you unlock it.

To lock files in CVS:
1. With the file or files that you want to lock selected in the Application Navigator,

choose Versioning > CVS> Administration > Lock.

2. Check that you want the operation to apply to all of the files highlighted in the file
selection box.

3. Click OK.

To unlock files in CVS:
1. With the file or files that you want to lock selected in the Application Navigator,

choose Versioning > CVS> Administration > Unlock.

2. Check that you want the operation to apply to all of the files highlighted in the file
selection box.

3. Click OK.

6.4.5.8 How to Work with Revisions and Tags
These procedures allow you to work with revisions and tags.

To open a CVS file revision:
This procedure will obtain a revision of a file from the CVS repository so that you can
view it or save it locally.

1. With the file selected in the Application Navigator, choose Versioning > Open
Revision.

2. Set the options on the dialog as required. To obtain descriptions of the options,
press F1 or click Help.

3. Click OK.

To assign CVS tags:
This procedure will assign symbolic tags to the local CVS revisions of selected files.

1. In the Application Navigator, select a single file, a project or a workspace. If you
select a project or a workspace, all the files within the project or workspace will be
selected for tagging.

2. Choose Versioning > Tag > Tag.

3. Check that you want the operation to apply to all of the files highlighted in the file
selection box.

4. Enter a name for the tag in the Tag Name box.

5. Set the other options as required. To obtain descriptions of the options, press F1.

6. Click OK.

To delete CVS tags:
This procedure will delete symbolic tags from the local CVS revisions of selected files.

Using Concurrent Version System (CVS) with Oracle JDeveloper

6-38 User's Guide for Oracle JDeveloper

1. In the Application Navigator, select a single file, a project or a workspace. If you
select a project or a workspace, the tag will be deleted from all the files within the
project or workspace.

2. Choose Versioning > Tag > Delete Tag.

3. Check that you want the operation to apply to all of the files highlighted in the file
selection box.

4. Enter the name of the tag in the Tag Name box.

5. Click OK.

To view CVS tags:
This procedure will display a dialog containing information about any existing tags
that have been applied to the file revision.

1. From the context menu of the file, choose Versioning > Properties.

2. Select the Versioning tab. The sticky tag, date and options (if any) are shown, as is
a list of existing tags for the file revision.

To reset CVS tags:
This procedure will remove any sticky tags or dates that have been applied to the
selected files and reset them to the HEAD revision.

1. In the Application Navigator, select the file or files whose tags you wish to reset.

2. Choose Versioning > Tag > Reset Tags.

6.4.6 How to Use External Tools and Export Features
At times, you may wish to use CVS with external tools (for comparing versions of files
to be merged, for example) or to create and apply patches for projects you are
developing with files under CVS control. Additionally, you may find it necessary to
export a CVS module, or to copy the CVSROOT value to the clipboard. These
procedures explain how.

6.4.6.1 How to Use an External Diff Tool with CVS
JDeveloper has an integrated compare viewer that works well for most circumstances.
However, you may prefer to use another compare tool or the simple output from CVS
DIFF. JDeveloper lets you integrate third party tools and applications. This procedure
describes how to use the External Tools support in JDeveloper to integrate external
compare viewers.

To integrate CVS DIFF:
1. In JDeveloper, select Tools > External Tools.

2. Click Add. This opens the Create External Tool wizard.

3. On the External Program Options page, enter the following information:

Program Executable
The location of your CVS installation (for example c:\cvsnt\cvs.exe) or just cvs

Arguments
-d ${cvs.root} diff ${file.name}

Alternate arguments

Using Concurrent Version System (CVS) with Oracle JDeveloper

Versioning Applications with Source Control 6-39

-d ${cvs.root} diff -r ${cvs.revision} -r ${cvs.second.revision}
${file.name}

Run Directory
${file.dir}

Enter the alternate arguments if you want to integrate a tool that compares two
specific CVS revisions when the history tool is visible.

4. On the Display page, enter a caption for the diff tool (for example CVS Diff with
Repository) in the Caption for Menu Items box.

5. On the Integration page, choose how you want the diff tool to be integrated into
JDeveloper. For example, select the Tools Menu, Navigator Context Menu, and
Code Editor Context Menu items.

6. On the Availability page, select When a File is Selected or Open in the Editor.

7. Click Finish.

To integrate a third party diff utility:
You can use external tools macros to view differences between two revisions in the
history tool using a third party utility such as Araxis Merge. The following steps will
install a menu item to invoke Araxis Merge. For other utilities, consult the
documentation of the utility to determine which command line arguments need to be
passed in.

1. In JDeveloper, select Tools > External Tools.

2. Click Add. This opens the Create External Tool wizard.

3. On the External Program Options page, enter the following information:

Program Executable The path to the third party tool (for example
c:\araxismerge\compare.exe)

Arguments
/wait /title1:"${file.name} revision ${cvs.revision}"
/title2:"${file.name} revision ${cvs.second.revision}" /2
${cvs.revision.file} ${cvs.second.revision.file}

4. On the Display page, enter a caption for the third party tool (for example Araxis
Diff) in the Caption for Menu Items box.

5. Complete the remainder of the wizard as required. For help when using the
wizard, press F1 or click Help.

6. Click Finish.

To integrate other CVS commands:
You can take advantage of the supplied external tool macros to easily integrate other
CVS commands into JDeveloper. An example is the CVS annotate command
(sometimes referred to as "blame"), which shows a summary of who changed each line
of code and when the change was made. To integrate a tool for CVS annotate, set the
following options in a new tool:

1. In JDeveloper, select Tools > External Tools.

2. Click Add. This opens the Create External Tool wizard.

3. On the External Program Options page, enter the following information:

Using Concurrent Version System (CVS) with Oracle JDeveloper

6-40 User's Guide for Oracle JDeveloper

Program Executable
The path to the CVS executable (for example, C:\cvs\cvs.exe)

Arguments
-d ${cvs.root} annotate ${file.name}

Run Directory
${file.dir}

4. Complete the remainder of the wizard as required. For help when using the
wizard, press F1 or click Help.

5. Click Finish.

6.4.6.2 How to Export a CVS Module
You use the CVS Export wizard to export the revisions of files for a module, creating a
deployment-ready file structure.

To use the CVS Export wizard:
1. Choose Versioning > Export Module. The CVS Export wizard is displayed.

2. Complete the export as prompted by the wizard. To obtain more information
when working with the wizard, F1 or click Help.

The files are exported to the location you have specified.

6.4.6.3 How to Copy the CVSROOT Path to the Clipboard
You can copy the path of the CVSROOT from a node in the CVS Navigator to the
Clipboard, for use in other applications.

To copy the CVSROOT path to the Clipboard:
1. In the Connection Navigator, right click the connection name.

2. From the context menu, choose Copy CVSROOT.

The full path of the CVSROOT is copied to the Clipboard, from where you can paste it
into another application.

6.4.7 How to Create and Apply Patches
You may wish to record the changes between two revisions of a file, then apply those
changes to a third file. You do this by creating a patch and then applying it.

To create a patch:
This generates a patch comprising the differences between a controlled revision of a
file and a revision of the file held locally.

1. In JDeveloper, open the file for which you want to create a patch.

2. Click the History tab.

The History view lists all the revisions of the file. In the lower portion of the
History view, the left pane shows the contents of a local revision, and the right
pane shows the contents of the controlled revision.

3. Select the revision combination for which you want to create a patch.

4. From the context menu, choose Generate Patch.

Using Perforce with Oracle JDeveloper

Versioning Applications with Source Control 6-41

The Select Patch Context dialog may open. For help while using this dialog, press
F1.

The Generate Patch dialog opens. Complete the dialog as required. For help while
using the dialog, press F1.

To apply a patch:
1. In the navigator, select the resource to which you want to apply a patch.

The resource can be an application, a project, or a source file.

2. Select Versioning > Apply Patch.

If you chose to apply a patch to a project, the Select Patch Context dialog opens,
through which you should specify whether you are applying a project file (.jpr)
patch, or whether you are updating the contents of a project.

The Apply Patch dialog is opened.

3. In the grid at the top of the Apply Patch dialog, check that the target resources are
correctly identified.

4. Choose the source of the patch. For more information about this and the other
options on the dialog, press F1 or click Help.

5. Click Preview. This opens the Apply Patch Preview window, in which you can
accept or reject particular changes. For more information about the options in the
Apply Patch Preview window, press F1.

6. To apply the patch, click OK.

6.5 Using Perforce with Oracle JDeveloper
Perforce uses a local directory structure to receive files that are going to be placed
under formal source control. This location is called the "Perforce client workspace".
Files created in (or moved into) JDeveloper must be stored in this location. Once files
are in your Perforce client workspace, you bring them fully under source control by
submitting them to a central location called the "Perforce depot". Files must be
submitted to the Perforce depot before they can be versioned and accessed by other
users.

6.5.1 How to Set Up Perforce with JDeveloper
Before using Perforce with JDeveloper, in addition to downloading the Perforce
extension, you need to install a number of Perforce features so that they are available
to JDeveloper. Once installed, you configure JDeveloper and connect to the Perforce
client workspace. Finally, you need to bring your working files under Perforce control
so that they are available from within JDeveloper while using Perforce.

6.5.1.1 How to Install Perforce Components for Use with JDeveloper
There must be at least one Perforce server installed, on a machine that is accessible to
the intended JDeveloper users. If a Perforce server installation does not already exist,
obtain the necessary software (for example, from www.perforce.com) and install it in
accordance with Perforce's instructions. Record the identity of the machine on which
the Perforce server software has been installed: you will need this when you connect to
it through JDeveloper.

Using Perforce with Oracle JDeveloper

6-42 User's Guide for Oracle JDeveloper

Perforce Client Installation
You must install the Perforce client application on the machines that contain (or that
will contain) JDeveloper. The Perforce client application can be installed from the same
software as the server software, obtainable from www.perforce.com. The installation
must include the "Command Line Client (P4)" and, for Windows installations, "Visual
Merge for Windows (P4WinMrg)".

When you first run the Perforce client application, you will be required to create a
Perforce client workspace. The Perforce client workspace is where the working copies
of files under Perforce control will be stored. You can use the JDeveloper default
directory as the Perforce client workspace, whether or not it already contains
JDeveloper files. The JDeveloper default directory is <installation_
directory>\jdev\mywork. Alternatively, you can accept the default Perforce client
workspace, or specify one of your own. In these cases, you should note the location
you have used, because you will need to specify it when creating applications and
projects in JDeveloper.

f you set up passwords in the Perforce client application, you will also need to use
them when connecting to Perforce through JDeveloper.

JDeveloper Installation
JDeveloper must be installed in the normal way. Each installation of JDeveloper can
act as a client application for Perforce. You can install JDeveloper on every machine
that you wish to be a Perforce client, or you can use a mixture of JDeveloper
installations and Perforce's own client applications. The JDeveloper and Perforce client
applications will work together in a seamless manner. In addition to the JDeveloper
embedded support for Perforce, you will also be able to access a Perforce client
application through the JDeveloper interface.

6.5.1.2 How to Configure JDeveloper for Use with Perforce
Before you can configure JDeveloper to use Perforce, you must have installed the
Perforce server and client software.

To configure JDeveloper for use with Perforce:
1. Choose Tools > Preferences, then select Extensions in the left pane of the

Preferences dialog.

2. In the right pane, make sure that Versioning Support n is checked, then click
Configure.

3. Ensure that Versioning Support for Perforce n is checked.

4. In the left pane of the Preferences dialog, open the Versioning node and then the
Perforce node. The main Perforce preferences panel is shown. Other Perforce
preferences panels are shown when you click on the items beneath the Perforce
node.

5. Make changes to the preferences as required. For more information about the
specific preferences, press F1.

6. Click OK to close the Preferences dialog.

To select Perforce as the version system:
■ Choose Versioning > Version System: [...] > Perforce.

Using Perforce with Oracle JDeveloper

Versioning Applications with Source Control 6-43

6.5.1.3 How to Connect to Perforce
Before Perforce operations become available within JDeveloper, you must connect to
Perforce.

To connect to Perforce manually:
1. Choose Versioning > Connect to Perforce.

The Connection dialog is opened. The username, port and client information
should have been derived automatically and should now appear in the
Connection dialog.

2. If not already present, enter the correct username, port and client information.

3. If the Perforce server has been set up with password protection, enter the
password. (If you want the password to be remembered for the next time you
make a connection, check the Remember Password box.)

4. If you want to test the connection to the Perforce server, click the Test Connection
button. The results will be displayed in the rectangular text area.

5. To complete the connection, click OK.

To connect to Perforce automatically when you start JDeveloper:
1. Choose Tools > Preferences, then select the Versioning node and then the Perforce

node.

2. Check the Connect Automatically on Startup box.

3. To close the Preferences dialog, click OK.

6.5.1.4 How to Make Multiple Connections to Perforce
In some development environments, you may need to make more than one connection
to Perforce. For example:

■ Your organization uses one Perforce server for development and another Perforce
server for test.

■ You wish to connect using two different Perforce clients.

■ You wish to use different Perforce user IDs.

The Perforce extension to JDeveloper permits all these operations. You begin by giving
each Perforce connection a name as you create it.

To create a named Perforce connection:
1. Choose Versioning > Connect to Perforce.

The Connection dialog is opened. The username, port and client information
should have been derived automatically and should now appear in the
Connection dialog.

2. If not already present, enter the correct username, port and client information.

3. Enter a name to use for this Perforce connection. Make sure it is different from any
other Perforce connection that you currently have open.

4. If the Perforce server has been set up with password protection, enter the
password. (If you want the password to be remembered for the next time you
make a connection, check the Remember Password box.)

Using Perforce with Oracle JDeveloper

6-44 User's Guide for Oracle JDeveloper

5. If you want to test the connection to the Perforce server, click the Test Connection
button. The results will be displayed in the rectangular text area.

6. To complete the connection, click OK.

Note that your Perforce changelist will display the connection that applies to each file
in the changelist.

6.5.1.5 How to Bring Files Under Perforce Control
Files that you create within JDeveloper, or files that you bring into JDeveloper from
outside, must be brought under Perforce control before you can use the JDeveloper
Perforce versioning facilities with them.

If you have an existing JDeveloper project that you wish to bring under Perforce
control, use the Import to Perforce wizard.

To put individual JDeveloper files under Perforce control:
1. Select the files in the navigator and choose Versioning > Open for Add.

The files can be your work files, or they can be the application and project files
used by JDeveloper.

The Add Files to Perforce dialog is displayed with the files listed.

2. If you wish to lock the files, making them unavailable to others for editing, check
the Lock Files box.

3. To add the files to Perforce control, click OK.

The files are now shown in the navigator with a red cross, meaning that they are
stored in your Perforce client workspace but not yet in the Perforce depot. Files
must be added to the Perforce depot before they can be versioned and accessed by
other users.

4. To add files to the Perforce depot, select the files in the navigator and choose
Versioning > Submit.

The Submit Files dialog is displayed with the files listed.

5. Add your versioning comments in the Comments box.

You will later be able to see these comments when viewing the list of versions of a
particular file.

6. To submit the files to the Perforce depot, click OK.

The files are now shown in the navigator with a green dot, indicating that they are
known to the Perforce depot and are up to date.

To bring files created outside JDeveloper under Perforce control:
1. Copy or move the files into an existing \src directory under the JDeveloper file

storage directory (which should be the same as the Perforce client workspace).

2. Close and reopen JDeveloper.

The files should now appear in the navigator, within the project whose \src
directory you used. The files are marked with a white-on-blue diagonal cross,
showing that they are known to JDeveloper but not under source control.

3. Bring the files under Perforce control as described in the previous procedure.

Using Perforce with Oracle JDeveloper

Versioning Applications with Source Control 6-45

6.5.1.6 How to Import JDeveloper Files Into Perforce
 Before you can start using existing JDeveloper project and source files with Perforce,
you have to import them into your Perforce client workspace. Once they are in your
Perforce client workspace, you bring them fully under source control by submitting
them to the Perforce depot.

You import JDeveloper project and source files into your Perforce client workspace
using the Import to Perforce wizard.

To use the Import to Perforce wizard:
1. If you have not already done so, connect to Perforce by choosing Versioning >

Connect to Perforce.

2. In the Application Navigator, select the JDeveloper project that you want to bring
under Perforce control.

3. Choose Versioning > Import Project. The Import to Perforce wizard is displayed.

4. Complete the import as prompted by the wizard. To obtain more information
when working with the wizard, press F1.

The project and files will be shown in the navigator. If you have chosen to display
overlay icons, these will indicate the current source control status of the files.

5. To bring the files fully under Perforce source control, submit them to the Perforce
depot.

6.5.2 How to Work with Files in Perforce
Perforce provides features for creating and applying patches—methods for
determining changes between two revisions of a file, and then applying those changes
to a third file. In addition, Perforce contains features for exporting the details about
repository connections, as well as files in the repository.

6.5.2.1 How to Synchronize Local Files With the Controlled Versions
Another person may edit a file through their Perforce client and submit their changes
to the Perforce depot. This will cause your copy of the file to become out of date
compared with the controlled version.

To test that your view is showing the latest file statuses:
■ Choose View > Refresh.

A file that is out of date with the controlled version is shown with an exclamation
point icon.

To bring your files up to date compared with the controlled version:
1. From the Connection drop-down list, select the preferred Perforce connection (if

you have more than one) for this changelist.

2. Select the files in the navigator and choose Versioning > Sync.

The Sync Files dialog is displayed with the files listed.

3. Complete the dialog.

For more information about the dialog options, press F1.

4. To synchronize the files, click OK.

Using Perforce with Oracle JDeveloper

6-46 User's Guide for Oracle JDeveloper

Your local files are replaced with copies of the controlled versions. The icon shown
next to the files changes to a green dot.

6.5.2.2 How to Synchronize Files With the Perforce Navigator
The Perforce Navigator lets you browse the Perforce depot and update your working
directory from content at the depot. Using the navigator, you can select folders or files
to sync to your client workspace, downloading content from the Perforce Server to
your computer. If new files are detected in the depot, you have several options for
handling them.

If you opens a connection node and no connection has been made, Perforce displays
the connection dialog.

To synchronize your files using the Perforce Navigator:
1. Expand the content under Perforce in the Versioning Navigator, selecting the

folders and/or files you wish to synchronize. When you expand to the level of the
project you're working on, right-click the file or folder, and then select Sync From
Depot. This displays the Sync From Depot dialog.

2. The project you selected displays in the Name pane of the Sync From Depot
dialog. Below that are fields you can select or specify:

Head Revision

Synchronize to the Head revision of your project. If you select this, the Sync From
Depot dialog displays the Force sync checkbox. Select Force Sync if you wish to
download the depot content to your working directory regardless of the contents
of each (for example, if you know you want to start with a clean download of the
depot's contents).

Revision Number

Select this to synchronize to a specific revision number. The Sync From Depot
opens the Target field; use the Target field to type the revision number to which
you wish to synchronize your local working copy.

Changelist

Select this to synchronize to a specific changelist. The Sync From Depot opens the
Target field; use the Target field to type the name of the change list from which
you wish to synchronize your local working copy.

Label Name

Select this to open files with a specific label (typically, used to identify a specific
branch). The Sync From Depot opens the Target field; use the Target field to type
the name of the label from which you wish to synchronize your local working
copy.

Date

Select this to specify a date (and, optionally, time) from which you wish to
synchronize your local files. The Sync From Depot opens the Target field; use the
Target field to type the date (in either yyyy/mm/dd or yyyy/mm/dd:hh:mm:ss
format) of the files from which you wish to synchronize your local working copy.

Choose the field that applies to your current project, then click OK.

3. If the depot contains files that do not exist in your source, Perforce tells you that
new files were detected, and lists the following options:

Open files in active project

Using Perforce with Oracle JDeveloper

Versioning Applications with Source Control 6-47

Copy the files, and open them in the project you have selected.

Create new project from files

Creates a new project, using the files Perforce has detected.

Open editors onto files

Open the files in editor windows, so that you can review them and determine the
best resolution (keep, rename, discard, or modify).

Do not open files

Leaves the files unopened, without copying them from the depot to your working
directory.

6.5.2.3 How to Filter Files By Perforce Workspace
If you have a very large number of files in your Perforce depot, it can be much easier
to navigate to the files you're working on by filtering files in the Perforce workspace.
You can do this by setting things up in the Perforce client, and then displaying the
filtered view in JDeveloper.

Filtering files in Perforce (specifically, p4v) requires making sure that you are viewing
the Depot Tree, then select the Filter icon > Tree Restricted to Workspace View.

To filter files in JDeveloper:
■ Version Navigator > Perforce > Connection name > Context menu - Filter by

Client Workspace.

You will only see a difference in the JDeveloper Version Navigator if the Perforce client
has a rule that restricts the Perforce workspace. (In p4v, the rules are shown and set in
the View field of the Workspace dialog for the selected workspace.) You could restrict
the workspace view in your p4v client with a rule like the following:

//depot/JDeveloper_1013/... //<client name>//JDeveloper_1013

In JDeveloper, if you select Filter by Client Workspace, the navigator would be
filtered so only //depot/JDeveloper is shown.

6.5.2.4 How to Edit Files
By default, you can start editing a file under Perforce control just by opening it from
the navigator. While the Perforce server is being contacted, you may experience a
delay before you can type into the opened file. If you would prefer files to remain
closed until you manually open them for editing, set the Automatically Open Files for
Edit preference to off. The following procedure works whichever way the preference is
set.

To edit a file under Perforce control:
1. Select the file in the navigator and choose Versioning > Open for Edit.

The Open Files for Edit dialog is displayed with the file listed.

2. If the file is out of date with the controlled version and you wish to edit the
controlled version, check the Sync files to box.

If you do not obtain the controlled version before editing the file, you may create a
conflict between your file and the version in the Perforce depot. You will then have
to resolve the conflict before your changes can be accepted into the controlled
version.

Using Perforce with Oracle JDeveloper

6-48 User's Guide for Oracle JDeveloper

3. If you wish to lock the file, check the Lock Files box.

Locking a file means that others can edit the file but cannot submit the file until
the person who applied the lock has released it.

4. To make the file editable under Perforce control, click OK.

The file will be indicated to Perforce as editable. A red check mark is added to the
file's icon in the navigator.

5. To edit the file, choose Open from the file's context menu.

6. Make your changes and save the file.

You can also close the file if you wish.

The changes that you made to the file are now saved in your Perforce client
workspace. To add your changes to the controlled version of the file and make them
available to other users, you must now submit them.

6.5.2.5 How to Submit Changed Files to the Perforce Depot
Any changes that you make to a file are initially saved in your Perforce client
workspace. To add these changes to the controlled version of the file and make them
available to other users, you must submit them. In the following procedure, if the
Submit menu option is unavailable, it is because there are unresolved conflicts
between your copy of the file and the one in the Perforce depot. Before proceeding,
you will have to resolve the conflicts or revert the file to a non-conflicting version.

To submit changes to the Perforce depot:
1. With the file selected in the navigator, choose Versioning > Submit.

The Submit Files dialog is displayed with the file listed.

2. Add your versioning comments in the Comments box.

3. To submit the files to the Perforce depot, click OK.

The file is now shown in the navigator with a green dot, indicating that it is up to
date compared with the version in the Perforce depot.

6.5.2.6 How to Resolve Conflicts in File Versions
If there is a conflict between your copy of the file and the one in the Perforce depot, the
icon next to the affected file will include an exclamation point. You will not be able to
submit such a file to the Perforce depot. To overcome this problem, you should either
revert to a non-conflicting version of the file, or resolve the conflict. You can resolve
the conflict using the locally installed Perforce client application, or another merge tool
of your choice, as specified on the Preferences page (Tools > Preferences > Versioning
> Perforce > Version Tools).

To revert to a non-conflicting file version:
■ Select the file in the navigator and choose Versioning > Revert.

To resolve conflicting file versions (assumes use of Perforce merge tool):
1. Open the Perforce client by choosing Versioning > Resolve.

2. In the pending changelists for the client, identify the change.

3. Resolve the conflict using the Perforce tools.

Using Perforce with Oracle JDeveloper

Versioning Applications with Source Control 6-49

If you cannot automerge the conflicts, run the merge tool and use its facilities to
create a definitive version from the conflicting data.

4. Accept the merge.

5. Submit the merge.

6. In JDeveloper, use View > Refresh to obtain the green dot on the file.

The file will still be marked as open for edit.

7. Submit the file.

6.5.2.7 How to Resolve Conflicts in File Versions
If there is a conflict between your copy of the file and the one in the Perforce depot, the
icon next to the affected file will include an exclamation point. You will not be able to
submit such a file to the Perforce depot. To overcome this problem, you should either
revert to a non-conflicting version of the file, or resolve the conflict. You can resolve
the conflict using the locally installed Perforce client application, or another merge tool
of your choice, as specified on the Preferences page (Tools > Preferences > Versioning
> Perforce > Version Tools).

To revert to a non-conflicting file version:
■ Select the file in the navigator and choose Versioning > Revert.

To resolve conflicting file versions (assumes use of Perforce merge tool):
1. Open the Perforce client by choosing Versioning > Resolve.

2. In the pending changelists for the client, identify the change.

3. Resolve the conflict using the Perforce tools.

If you cannot automerge the conflicts, run the merge tool and use its facilities to
create a definitive version from the conflicting data.

4. Accept the merge.

5. Submit the merge.

6. In JDeveloper, use View > Refresh to obtain the green dot on the file.

The file will still be marked as open for edit.

7. Submit the file.

6.5.2.8 How to Refresh the Status of Files under Perforce Control
The source control status of a file is indicated in the JDeveloper navigators by icon
overlays, as listed in.

Table 6–2 Perforce Status Icons

Icon Meaning

The file is in the Perforce client workspace but is not yet
submitted to the Perforce depot.

The file will be deleted when next submitted to the Perforce
depot.

The file is out of date compared with the Perforce depot.

Using Perforce with Oracle JDeveloper

6-50 User's Guide for Oracle JDeveloper

If the status of a file is changed outside JDeveloper, for example by using a Perforce
client application, the new status might not immediately be shown in JDeveloper. To
ensure that the status indicated in the Application Navigator matches the true status of
the file in the source control system, you can perform a manual refresh.

To refresh the status of files in JDeveloper:
■ Select View > Refresh.

6.5.2.9 How to Delete Files
If you wish to delete a file that it is under Perforce control, you should do so using the
Perforce facilities within JDeveloper or the Perforce client application. You should not
use the Erase From Disk or Delete commands to delete a file that is under Perforce
control, as this may cause versioning problems.

To delete a file under Perforce control:
1. Select the file in the navigator and choose Versioning > Open for Delete.

The Delete Files dialog is displayed with the file listed.

2. Click OK.

The file is deleted from the local file system. A black diagonal cross is added to the
file's icon in the navigator.

If you need to retrieve a file that has been deleted, you will need to use the Perforce
client. To do this, select Versioning > Perforce > Launch Perforce Client.

6.5.3 How to Work with Changelists
In Perforce, changelists let you group files together to simplify operations. Once files
are grouped in a changelist, you can check them out and submit them all in a single
operation.

In Perforce, changes are submitted to a Perforce repository using a changelist. This lets
you group changes to several files into a logical unit, and then submit this unit to the
Perforce repository in one operation.

You can have more than one changelist. You may find it useful to create changelists for
specific projects, for related groups of files, or for any other grouping of files that you
find create a logical unit, based on the way you and your team work. You can also
move files from one changelist to another.

In general, you use changelists by following this workflow: create a changelist, add
files to your changelist, edit your files and submit your changelist with the edited files.

The file is up to date compared with the Perforce depot.

The file is open for edit.

The file is locked.

Table 6–2 (Cont.) Perforce Status Icons

Icon Meaning

Using Perforce with Oracle JDeveloper

Versioning Applications with Source Control 6-51

You can also browse existing changelists through the Changelist Browser. The
Changelist Browser also lets you create, submit, and move files between changelists. If
the submit operation fails on any file in the changelist, then the whole changelist fails.
This means the Perforce repository is left in a consistent state.

6.5.3.1 How to Create a Perforce Changelist
A Perforce changelist lets you manipulate a number of changed files and folders in a
single operation, simplifying the process when you have several files that you have
been working on.

To create a Perforce changelist:
1. From the Versioning menu, select Perforce > Create Changelist.

2. From the Connection drop-down list, select the preferred Perforce connection (if
you have more than one) for this changelist.

3. Select the files to be added to the changelist, or click Select All to add all
displayed files to this changelist.

4. Add comments to this changelist, if desired. You can choose a previous comment
(with the option of editing it if necessary), or you can select your comment
template.

5. When you have set up the changelist as desired, click OK.

6.5.3.2 How to Annotate a Perforce Revision or Changelist
Annotating a Perforce revision or changelist lets you store the Perforce revision or
changelist as a comment linked to every file in the revision. When you modify these
files later in Perforce, you can view the sequence of revisions or changelists to these
files, as annotations to the files.

To add annotations to a changelist:
1. From the Versioning menu, select Versioning > Perforce > Perforce Pending

Changelists.

2. Select the changelist to view by clicking the Use Changelist selector.

Any previous annotations will be visible in the Comments field of the changelist.

6.5.3.3 How to Add Files to a Perforce Changelist
A Perforce changelist lets you manipulate a number of changed files and folders in a
single operation, simplifying the process when you have several files that you have
been working on. When you add files to Perforce, you can select the changelist to
which these files will be added at the same time, through the Open for Add menu.

To add files to a changelist:
1. From the Versioning menu, select Perforce > Open for Add.

2. Select the changelist to use by clicking the Use Changelist selector.

6.5.3.4 How to Submit a Perforce Changelist
Once you have made a series of edits to your files, you are ready to submit them in
Perforce. If you have created a changelist, you can submit all the files on that
changelist in a single operation, or select just the ones you have edited and submit
them.

Using Perforce with Oracle JDeveloper

6-52 User's Guide for Oracle JDeveloper

To select and submit the files in a changelist:
1. From the Versioning menu, select Perforce > Submit Changelist.

2. Enter a description of the changes you have made in the Description field.

3. Check the files you wish to submit. Use the Select All and Deselect All buttons if
required.

6.5.3.5 How to Use the Changelist Browser
The Changelist Browser lets you see, at a glance, the state of all the pending
changelists in your Perforce repository. Each pending changelist is shown with its
name, description, and contents. The default changelist is always shown at the top of
the browser. Under each changelist, you can browse the files that are associated with
that changelist. Additionally, the Perforce connection and client are displayed at the
top of the browser.

From the Pending Changelist browser, you can create and submit changelists, move
files between changelists, and refresh the browser.

To create a changelist with the Changelist Browser:
1. From the Versioning menu, select Perforce > Create Changelist.

2. From the Connection drop-down list, select the preferred Perforce connection (if
you have more than one) for this changelist.

3. Select the files to be added to the changelist, or click Select All to add all
displayed files to this changelist.

4. Add comments to this changelist, if desired. You can choose a previous comment
(with the option of editing it if necessary), or you can select your comment
template.

5. When you have set up the changelist as desired, click OK.

To submit a changelist:
1. From the Versioning menu, select Perforce > Submit Changelist.

2. Enter a description of the changes you have made in the Description field.

3. Check the files you wish to submit. Use the Select All and Deselect All buttons if
required.

To move files between changelists:
1. Click the right mouse button the file in the Changelist Browser and select Move

File to Changelist.

2. Select the changelist to which you wish to move this file, then click OK.

You can also refresh the changelist browser by pressing F1.

6.5.4 How to Create and Apply Patches
You may wish to record the changes between two revisions of a file, then apply those
changes to a third file. You do this by creating a patch and then applying it.

To create a patch:
This generates a patch comprising the differences between a controlled revision of a
file and a revision of the file held locally.

Using Serena Dimensions with Oracle JDeveloper

Versioning Applications with Source Control 6-53

1. In JDeveloper, open the file for which you want to create a patch.

2. Click the History tab.

The History view lists all the revisions of the file. In the lower portion of the
History view, the left pane shows the contents of a local revision, and the right
pane shows the contents of the controlled revision.

3. Select the revision combination for which you want to create a patch.

4. From the context menu, choose Generate Patch.

The Select Patch Context dialog may open. For help while using this dialog, press
F1.

The Generate Patch dialog opens. Complete the dialog as required. For help while
using the dialog, press F1.

To apply a patch:
1. In the navigator, select the resource to which you want to apply a patch.

The resource can be an application, a project, or a source file.

2. Select Versioning > Apply Patch.

If you chose to apply a patch to a project, the Select Patch Context dialog opens,
through which you should specify whether you are applying a project file (.jpr)
patch, or whether you are updating the contents of a project.

The Apply Patch dialog is opened.

3. In the grid at the top of the Apply Patch dialog, check that the target resources are
correctly identified.

4. Choose the source of the patch. For more information about this and the other
options on the dialog, press F1.

5. Click Preview. This opens the Apply Patch Preview window, in which you can
accept or reject particular changes. For more information about the options in the
Apply Patch Preview window, press F1.

6. To apply the patch, click OK.

6.6 Using Serena Dimensions with Oracle JDeveloper
JDeveloper allows you to use the source control features of Dimensions. JDeveloper
integrates the repository management and file access features of Dimensions so that
you can access your repository, check files in and out, and view the checked-in
versions of files under Dimensions control.

Dimensions is a popular version-control system that is part of a larger
content-management and workflow control package. JDeveloper includes an extension
which allows you to access the version-control features of Dimensions from within the
JDeveloper IDE.

To use Dimensions from within JDeveloper, you need to complete several simple setup
operations, to ensure that your Dimensions repository is available and your working
files are under Dimensions control.

You can then set the current project for JDeveloper, under the control of Dimensions.

After setting up Dimensions and JDeveloper, your typical workflow will probably
follow this basic sequence:

Using Serena Dimensions with Oracle JDeveloper

6-54 User's Guide for Oracle JDeveloper

■ Check out files to be edited

■ Make edits and do other content development

■ Check files in to the repository

In addition to the general workflow outlined here, you may also find it useful to undo
a file checkout.

6.6.1 How to Set Up Dimensions and JDeveloper
Before you can use Dimensions as your version control system with JDeveloper, you
need to perform some initial setup operations. This setup involves connecting to a
Dimensions repository, learning how to disconnect if required, and choosing the initial
project in JDeveloper.

6.6.1.1 How to Connect to a Dimensions Repository
You connect to a Dimensions repository when you want check out files, synchronize
your working copies with the common repository, or check files in before a build.
Once you are connected, most file operations in Dimensions are available from the
context menu for a file, folder or project.

To create a Dimensions profile:
1. Select Versioning > Dimensions > Connect to Dimensions.

2. In the Profile field, type a name for the profile you plan to create. Use a name
which will be easy to identify when you are choosing between multiple profiles
later

3. Enter the username and password you use to log in to the Dimensions server for
the project for which you are creating this profile.

4. Enter the server's URL (for example, myserver.mycompany.com), the database
name and the database connection. You should be able to obtain this information
from your Dimensions administrator.

5. Click OK.

To connect to a Dimensions repository with an existing profile:
1. Select Versioning > Dimensions > Connect to Dimensions.

2. Enter the username and password you use to log in to the Dimensions server.

If you are connecting to Dimensions for the first time, you will need to create a profile
for this connection. You can have multiple profiles for connecting to different servers
and databases, if you use Dimensions for multiple projects.

6.6.1.2 How to Disconnect from a Dimensions Repository
Disconnecting from a Dimensions repository lets you connect to another repository, if
your organization uses more than one repository or more than one version control
system. You also need to disconnect from Dimensions if you plan to connect with a
different profile.

To disconnect from a Dimensions repository:
1. Select Versioning > Dimensions > Disconnect from Dimensions.

2. Click OK.

Using Serena Dimensions with Oracle JDeveloper

Versioning Applications with Source Control 6-55

6.6.1.3 How to Add Files to Dimensions Control
As you create new files for your projects and applications, you need to add them to
Dimensions control so that they are available to your other team members and to the
build system.

To add files to Dimensions control:
1. Select the file, then click the right mouse button and select Versioning >

Dimensions > Add.

2. When JDeveloper displays the Add Items dialog, select the item you wish to add,
type a comment (optional), and then click OK.

6.6.1.4 How to Remove Files from Dimensions Control
If a file no longer applies to the project you are working on, you can remove it from
Dimensions control.

To remove a file from Dimensions control:
1. Click the file in the Application Navigator to select it.

2. Select Versioning > Dimensions > Remove.

3. Click OK.

6.6.1.5 How to Set the Current Project
Setting the current project lets Dimensions know which of your local directories to
monitor for changes versus the Dimensions repository. Once you have set the current
project, Dimensions will display files with unsaved changes in the Pending Changes
list, as well as making the files in that project available in the Application Resources
navigator and more.

Before you can set a project, you must be connected to Dimensions.

To set the current project:
1. Select Versioning > Set Current Project.

2. To select a project from your local workspace (such as the default directory,
JDeveloper/mywork), select Use Global Project. If you are working in the
default project defined by your Dimensions administrator, select Use Default
Project.

3. Select the product and project from the drop-down selection boxes.

4. Enter the root directory for this project's files in your local file system, or click
Browse to choose from a list.

5. Click OK.

6.6.2 How to Work with Files in Dimensions
After initial setup, most of your work in Dimensions will involve files. You will need
to add files to (and, occasionally remove files from) the Dimensions repository. You
can browse files from the Versioning Navigator, where you can check them out, check
them in, and otherwise manipulate them. Additionally, Dimensions lets you view a
copy of a file in the repository so you can search for changes from a version of the
same file that you are working on.

Using Serena Dimensions with Oracle JDeveloper

6-56 User's Guide for Oracle JDeveloper

6.6.2.1 How to Import Files to Dimensions
If you have created a new JDeveloper application, you can add all that application's
files to Dimensions in a single operation by using the Import Wizard.

To import files to Dimensions:
1. Create an application (File > New > Applications > select application type).

2. Version the application (right-click selected project > Version Project >
Dimensions).

3. Create a connection to source control (right-click selected version control system
in Versioning Navigator > New Dimensions Connection > enter Dimensions
connection data). This opens the Import to Dimensions wizard, displaying the
Welcome screen.

4. From the Welcome screen, click Next to continue, or select Skip this page next
time to proceed to the Destination page the next time you use the Import to
Dimensions Wizard.

6.6.2.2 Using Navigator Icon Overlays
JDeveloper uses several overlays on the file navigator icons to represent the state of
the associated file in Dimensions, as listed in Table 6–3.

6.6.2.3 How to Download a Dimensions Project
Downloading files from the Dimensions repository to your local working directory is
the key to working in Dimensions. You can do this after you have connected to
Dimensions.

Once you have signed in to the Dimensions server, use the Versioning Navigator to
navigate to the content you wish to work with. After you select a folder, Dimensions

Table 6–3 Dimensions Status Icons

Icons Description

File not under Dimensions control:

The file is not under Dimensions control

File extracted by multiple users

The file has been extracted by others, but is available for
checkout

File extracted by others

The file has been extracted by others and is not available for
checkout

File extracted by single user

The file has been extracted by a single user, but is available for
checkout

File not extracted

The file has not been extracted

File not authenticated

The user has not logged into the Dimensions server

File removed from server

The local file has been removed from the Dimensions server

Using Serena Dimensions with Oracle JDeveloper

Versioning Applications with Source Control 6-57

lets you download the contents of the folder (giving you the option of expanding
subfolders) to your local working directory.

Now that you have copied the content from the Dimensions repository to your
working directory, you need to set this content as the current project in Dimensions.

To download from the Dimensions repository:
1. Click the + next to the Dimensions entry in the Versioning Navigator. This

displays the profile with which you connected to the Dimensions server.

2. Click the + next to your profile name. This expands the list of projects on the
Dimensions server that are available to your profile. Depending on the number of
projects and the connection speed, this may take a few minutes.

3. Browse the available projects, clicking the + to expand project categories and
folders. When you have identified the content you wish to work with, select the
folder, click the right mouse button and select Download.

4. Specify the download location and settings as follows:

■ Destination

Enter the location of your local work area. Use the Browse button to select
from a directory browser.

■ Expand Substitution Variables

Select if your project uses substitution variables that you wish to expand when
downloading to your work area.

■ Use database timestamps

Select if you wish the local file copies to be created with the same timestamps
they have in your Dimensions repository. If you leave this unselected, files will
be created with timestamps reflecting the date and time you downloaded
them.

■ Recurse

Select if you wish Dimensions to expand (recurse) directories, checking out all
files in all directories of the project.

■ Overwrite local files

Select to overwrite any local files in your work area with content from the
repository. Any changes you have made to the local files and have not yet
checked in will be lost.

5. Click OK.

6.6.2.4 How to Check Out Files
Checking out files from the Dimensions repository to your local working directory lets
you make changes which will be tracked against the changes of others on your team.
To do this, use the Dimensions Web client; your Dimensions administrator will have
the URL and any login information you need to access the Dimensions Web client.

Once you have signed in to the Dimensions Web client, use the left-hand pane to
navigate to the content you wish to work with. The Web client displays this content in
the right-hand viewing pane. If you select a folder, Dimensions will check out the
contents of the folder (giving you the option of expanding subfolders) to your local
working directory.

Using Serena Dimensions with Oracle JDeveloper

6-58 User's Guide for Oracle JDeveloper

You can control whether Dimensions automatically checks out files when you open a
Dimensions-controlled file in JDeveloper. Select the Tools > Preferences > Versioning
> Dimensions > General page. The option Automatically Check Out Files lets you
specify whether Dimensions is to check out a file from the repository when you edit
your local working copy.

To check out content from the Dimensions repository:
1. Select Versioning > Dimensions > Check Out. This displays the Check Out

dialog.

2. In the field titled Check out contents of project folder to, enter or browse to the
path to which you wish to check out the files (by default, this is
JDeveloper/mywork).

3. The Dimensions Web client presents the following options; select the ones you
require for the project you are working on:

■ If writable workfile exists:

Select Overwrite to force Dimensions to overwrite any writable file with the
same name in your working directory. Otherwise, select Don't overwrite.

■ Relate to Requests

You can associate this checkout (and any changes you make as part of this
checkout) to a request (a means of tracking build changes, bug fixes, and
more) that is maintained by Dimensions. The Dimensions version control
system is part of a much larger project-management system with integrated
workflow, bug tracking, and more. For details, refer to the on-line help for the
Dimensions Web client.

■ Include subdirectories

Select this if you wish to check out not only the content you have selected, but
also the content of subdirectories inside the selected folder. If you perform
local builds for testing and verification, and therefore need access to all the
files in the project, you should select this.

4. Click OK.

Now that you have checked out the content from the Dimensions repository to your
working directory, you need to set this content as the current project in Dimensions.

When you have made the required changes and verified them locally, you can check in
your changed files.

6.6.2.5 How to Undo a File Checkout
Undoing a file check out essentially leaves the file in the repository untouched, while
removing any record from the repository's database that pertains to who checked out
the file and when it was checked out. This not only leaves the file unchanged since the
last checkin, it also leaves the file available to be checked out by other team members.

Note that undoing a check out will essentially discard any work you've done since
checking out the files. Use your judgment as to whether undoing a file checkout is the
most effective solution to the situation you find yourself in, and consider whether
saving a local copy (outside your local Dimensions directory) will be worthwhile.

To undo a file checkout:
1. Click the right mouse button on the file in the Pending Changelist, then select

Undo Check Out. This opens the Undo Check Out dialog.

Using Serena Dimensions with Oracle JDeveloper

Versioning Applications with Source Control 6-59

2. In the After Undo Check Out field, select how you want Dimensions to leave your
local copies:

Leave workfile as read only
Select this to leave all copies in your local directory unchanged and in read-only mode.
This is safest if you have made many changes that you wish to retain for future use.

Replace workfile with latest copy
Select this to have Dimensions update your local directory to the latest versions of all
files, from the Dimensions repository. This ensures that you will have the up-to-date
versions to work from, but it will overwrite any changes you have made.

Delete workfile
Select this to have Dimensions delete all checked-out files from your local directory.
This is the surest way to start with a "clean sheet," by checking out all files in the
project again.

3. In the Include subdirectories field, select whether you want Dimensions to apply
the previous choice (leave workfile as read only, replace workfile with latest copy,
or delete workfile) to all subdirectories under the one you have selected.
Depending on how your subdirectories are structured, you can use this to control
the granularity of which files and what content you choose to undo.

4. Click OK.

After undoing a check out, you will need to check out the latest content before you can
work in Dimensions again.

You may also wish to get a copy of the Dimensions-controlled content on your local
working directory.

6.6.2.6 How to Check In Files
After making and verifying your changes to the content for which you are responsible,
you make your work available to the rest of the team by checking it in to Dimensions.
This uploads your work to the Dimensions repository, where it will be available to
other team members and to your organization's build process.

To check in files to Dimensions:
1. Click the right mouse button on the file in the Pending Changelist, then select

Check In. This opens the Check In dialog.

2. In the Check In dialog, make the appropriate selections for the work you are
checking in:

Check In from directory:
Enter the directory in your local file system from which you are checking in new work,
or click the button next to the field to open a file system browser.

Include subdirectories
Check this if the work you are checking in includes files in subdirectories under that
which you have selected.

If workfile is unchanged:
Check this to determine how Dimensions is to handle unchanged content in your
working directory. You can choose to Check in your unchanged files, which will
update the time stamp in the Dimensions repository, or Undo checkout, which

Using Rational ClearCase with Oracle JDeveloper

6-60 User's Guide for Oracle JDeveloper

removes any record, from the Dimensions database, of your having checked out the
unchanged files.

After Check In:
This tells Dimensions how to leave the content in your local working directory. You
can select Leave workfile as read-only, in which case Dimensions will leave the file as
you left it but mark it read-only to prevent making unrecorded changes to the file
while not under Dimensions control. Alternatively, you can select Delete workfile,
which removes the local copy of your file (and all other files you are checking in).
Whichever you select, you will need to check out the files from Dimensions again
before resuming work.

Description
Enter a description of the changes you are making. You can include bug-tracking
numbers or other information to help identify and track the specific checkin you are
making at this time; however, tracking the files against the Dimensions request system
is a more effective way of keeping tabs on changes.

3. Click OK.

6.6.2.7 About the Pending Changes List
The Pending Changes list displays files, folders and other elements that have been
created or modified and not yet added to Dimensions. This includes:

■ files which you have edited in JDeveloper

■ all files in a new project that you have created in JDeveloper and not yet placed
under Dimensions control

■ any file for which some Dimensions-related activity needs to be performed.

Files are added to the Pending Change list when you save a copy locally.

6.7 Using Rational ClearCase with Oracle JDeveloper
JDeveloper allows you to use the source control features of Rational ClearCase release
4.0 onwards (including ClearCase 2002). JDeveloper works in a seamless manner with
ClearCase so that once you have it configured you can add files to source control, and
check them in and out from the navigators

The JDeveloper Rational ClearCase extension allows you to use the source control
features of Rational ClearCase inside JDeveloper. Once you have JDeveloper
configured to work with your ClearCase installation, you can add files to source
control, and check them in and out from the navigators.

To work in ClearCase, you have to store your workspaces, projects and files on your
ClearCase view; before new projects and files are under ClearCase source control, you
have to explicitly add them to ClearCase. Once your files are added to your ClearCase
view, you can check them in and out, compare versions, review file histories, and (if
necessary) remove files from ClearCase

6.7.1 How to Configure JDeveloper to Use Rational ClearCase
To use ClearCase with JDeveloper, you must have ClearCase 4.0 or greater client
installed on the same machine as JDeveloper.

Using Rational ClearCase with Oracle JDeveloper

Versioning Applications with Source Control 6-61

To configure JDeveloper to use ClearCase:
1. Select Tools > Preferences, then unfold the Versioning and ClearCase nodes.

2. Set the preferences as required. Note that there are several pages of preferences for
ClearCase. For information about the specific preferences, press F1.

3. Close the Preferences dialog by clicking OK.

If you have not chosen (in the preferences) to have connections made automatically,
make sure that you have a connection to the ClearCase server, then select Versioning >
Connect to ClearCase.

Now that you have configured JDeveloper to work with ClearCase, you can access
files and folders that already exist in a mounted ClearCase view. New files and folders
must be created in or copied to your ClearCase view.

To add new files to ClearCase, see Section 6.7.2, "How to Add a File to ClearCase".

6.7.2 How to Add a File to ClearCase
To work in ClearCase, you have to store your workspaces, projects and files on your
ClearCase view, and before new projects and files are under ClearCase source control,
you have to explicitly add them to ClearCase.

The comment pane in the Add to ClearCase dialog allows you to build up comments
for different groups of files. The comments you type apply to the files you have
selected. For example, you can select all the files and type a global comment. Next,
select a smaller number of files. The first comment is displayed and you can add to it.
Then you can select just a single file in this group and add another comment specific to
that file.

To add one or more files to ClearCase:
1. Select the files in the navigator, and choose Versioning > Add. The Add to

ClearCase dialog is displayed, listing the items you have selected.

If you want to continue working on the files, leave the Check In box clear. If you
check the box, the files will be checked in and you must check them out when you
want to work on them.

2. To add the files in the list to ClearCase source control, click OK. You may see one
or more messages asking whether you should add folders to ClearCase. Click Yes.

6.7.3 How to Refresh the Status of Objects under ClearCase Control
The source control status of an object is indicated in the Application Navigator by an
icon overlay, as below.

If the status of an object is changed outside JDeveloper, for example by checking in an
object using external source control software, the new status might not immediately be

Table 6–4 Status icons for ClearCase

Icon Description

The object is checked out and can be modified.

The object is checked in and must be checked out before it can be
modified.

Using Rational ClearCase with Oracle JDeveloper

6-62 User's Guide for Oracle JDeveloper

shown in JDeveloper. To ensure that the status indicated in the Application Navigator
matches the true status of the object in the source control system, you can perform a
manual refresh.

To refresh the status of objects in JDeveloper, select Versioning > Refresh States.

6.7.4 How to Remove a File From ClearCase
You can remove a file from ClearCase if you no longer need it. The files are removed
from the current version of the directory which contains them.

To remove a file from ClearCase:
1. With the file or files selected in the navigator, choose Versioning > Remove. The

Remove from ClearCase dialog is displayed with the files listed.

2. To remove all the listed files from ClearCase, click OK.

The files are removed from the current version of the directory, and you will no longer
be able to work with them.

6.7.5 How to Check In a File to ClearCase
When you have finished working on a file, you should check it into ClearCase.

To check in files shown in the Application Navigator:
■ Select the files in the Application Navigator, and choose Versioning > Check In.

The Check In to ClearCase dialog is displayed listing the files that you selected.

If you want to check in the files even though they are identical to the previous versions
in ClearCase, check the Force Check In Where Files Are Identical box. If you do not
check this box, the file may remain checked out, depending on how ClearCase handles
files of that type. If the file remains checked out, you can use the Undo Checkout
command to return the file to its previous checked in state.

Type comments for this checkin into the Comments box or, to use the same comments
for the check in that were used for the checkout, check the Use Checkout Comments
box.

To check in the listed files, click OK. The files in the list are checked in to ClearCase
source control.

To check in files shown in the Checked Out Files window:
1. Select the files in the Checked Out Files window that you want to check in. To

obtain more information about the Checked Out Files window, press F1.

2. In the button bar of the viewer, click the Check In button.

6.7.6 How to Check Out a File From ClearCase
To work on a file, it must be checked out from ClearCase.

Files will be checked out automatically when you start to change them, if the
Automatically Check Out Files preference is set on the ClearCase preferences page
(available by choosing Tools > Preferences and selecting ClearCase). This preference
applies to data files, workspace files and project files. For data files, the file is checked
out when you begin to edit in the source view. If you check out a file unintentionally,
immediately use Versioning > Undo Checkout to revert.

Using Rational ClearCase with Oracle JDeveloper

Versioning Applications with Source Control 6-63

To check out one or more files manually:
1. Select the files in the Application Navigator, and choose Versioning > Check Out.

The Check Out From ClearCase dialog is displayed listing the items you have
selected.

If you want to prevent another user from checking out the same files and then
checking them in before you do, check the Check Out Reserved To User box.

2. Type comments about this checkout into the Comments box.

3. To check out the listed files, click OK.

The files in the list are checked out from ClearCase source control and you can work
on them.

Checked out files are shown in the Checked Out Files window. This window opens
when files are first checked out. You can open it at other times by selecting Versioning
> View Checked Out Files.

6.7.7 How to Undo a ClearCase Checkout
If you have checked out a file but not made any changes to it, or if you want to discard
the changes you have made, you can undo the last check out of that file.

To undo checkout for one or more files:
1. Select the files in the navigator, and choose Versioning > Undo Checkout. The

Undo Clearcase Checkout dialog is displayed listing the items you have selected.

2. To undo the checkout for all the listed file, and lose any changes that you have
made to those files, click OK.

6.7.8 How to List ClearCase Checkouts
You may want to see all the files that you have checked out from ClearCase, for
example to see which files need to be checked in before performing another action.

To list ClearCase checkouts:
■ Choose Versioning > View Checked Out Files. The Checked Out Files viewer is

displayed.

6.7.9 How to Compare Files Checked In to ClearCase
Use these procedures to compare versions of files that are under ClearCase source
control. You can compare a file with: its immediate predecessor any of the file's
previous revisions any other file on your file system.

You can choose which Compare Viewer to use (JDeveloper or ClearCase), by setting an
option on the ClearCase Version Tools preference page under Tools > Preferences.

To compare a file with its immediate predecessor:
■ With the file selected in the Application Navigator, choose Versioning > Compare

with Previous Version.

Caution: You may lose you work if you use this on a file that you
have changed since it was checked out.

Using Team System with Oracle JDeveloper

6-64 User's Guide for Oracle JDeveloper

If there are no differences, a message is displayed. Otherwise, a Compare Viewer is
displayed through which you can find and reconcile the differences.

To compare a file with another revision:
■ With the file selected in the Application Navigator, choose Versioning > Compare.

Ensure that the Predecessor File Revision option is chosen.

Previous versions of the file are listed in the Compare ClearCase File dialog. Select the
version you want to compare the current file with and click OK.

If there are no differences, a message is displayed. Otherwise, a Compare Viewer is
displayed through which you can find and reconcile the differences.

To compare a file with a file outside ClearCase source control:
■ With the file selected in the Application Navigator, choose File > Compare With >

Other File.

The Select File to Compare With dialog is opened.

Browse to and select the file you want to compare the current file with, and then click
Open.

6.7.10 How to Display the History of a ClearCase File
Use this procedure to display the history of a file that is under ClearCase source
control.

To display the history:
■ With the file selected in the navigator, choose Versioning > View History.

6.7.11 How to Display the Description of a ClearCase File
Use this procedure to display the description of a project or a file that is under
ClearCase source control.

To display the description:
■ With the file selected in the navigator, choose Versioning > View Description.

The description appears in the Messages Log window.

6.8 Using Team System with Oracle JDeveloper
Oracle JDeveloper’s Team System extension allows you to use the source control
features of Microsoft Visual Team System inside JDeveloper. Once you have
JDeveloper configured to work with Team System, you can add files to source control,
and check them in and out from the navigators.

To begin using Team System with JDeveloper, you must first create a workspace using
Team System software, and then populate this workspace with content from the Team
System server. Files are checked out to the workspace, where they can be worked on.
Files newly created within JDeveloper must be added to version control. Changed and
new files are made available to other users by checking them in to the Team System
server.

Using Team System with Oracle JDeveloper

Versioning Applications with Source Control 6-65

6.8.1 How to Set Up Team System and JDeveloper
Before beginning to use Team System with JDeveloper, there are some initial steps you
need to follow:

1. Set up the Team System client software. See Section 6.8.1.1, "How to Set Up Team
System for Use with JDeveloper."

2. Configure JDeveloper for use with Team System, including the preferences and
other settings for making Team System the source control system recognized by
JDeveloper. See Section 6.8.1.2, "How to Configure JDeveloper for Use with Team
System."

In practice, Team System (like any version control system) consists of operations that
you use at varying times depending on the place in the product lifecycle. For example,
if you create a new file, you'll need to add it to Team System control.

Other operations you may perform, depending on the stage of development, include:

■ Checking out files from the server so that you can work on them. See
Section 6.8.2.3, "How to Check Out Files."

■ Making changes to a file saved in your Team System workspace, and make them
available to other users. See Section 6.8.2.6, "How to Check In Files."

■ Using Team System's Shelving feature to save file changes in the Team System
server without having to check the files in. See Section 6.8.2.12, "How to Shelve
and Unshelve Files."

■ Resolving conflicts between your changes and changes made by your team mates
to your Team System files

■ Checking in files to your Team System server.

6.8.1.1 How to Set Up Team System for Use with JDeveloper
To set up Team System for use with JDeveloper, follow these steps:

1. Install the Team System server.

2. Install the Team System client software.

3. Connect the Team System client software to the Team System server.

4. Use the Team System client software to create one or more workspaces.

5. Use the Team System client software to populate the workspace(s) with content
from the Team System server.

 Instructions for doing the above are given in the Team System online help.

6.8.1.2 How to Configure JDeveloper for Use with Team System
Once you have set up Team System for use with Oracle JDeveloper, you are ready to
configure JDeveloper to use Team System. In addition to the steps in Section 6.8.1.1,
"How to Set Up Team System for Use with JDeveloper," make sure you have already i *
Installed the JDeveloper Team System VCS extension (from the Official Oracle
Extensions and Updates center).

To configure JDeveloper for use with Team System, carry out the following activities in
JDeveloper:

■ Set preferences.

■ Select Team System as the JDeveloper versioning system.

Using Team System with Oracle JDeveloper

6-66 User's Guide for Oracle JDeveloper

■ Set the workspace to use with JDeveloper.

■ Create a JDeveloper project to hold the workspace files.

■ Refresh the workspace folders in JDeveloper.

To set JDeveloper preferences for use with Team System:
1. Choose Tools > Preferences, then select Extensions in the left pane of the

Preferences dialog.

2. In the right pane, make sure that Versioning Support n is checked, then click
Configure.

3. Ensure that Versioning Support for Team System n is checked

4. In the left pane of the Preferences dialog, open the Versioning node and then the
Team System node. The main Team System preferences panel is shown. Other
Team System preferences panels are shown when you click on the items beneath
the Team System node.

5. Make changes to the preferences as required.

For more information about the specific preferences, press F1.

6. Click OK to close the Preferences dialog.

To select Team System as the versioning system:
■ Choose Versioning > Version System [...] > Team System.

To set the workspace to use with JDeveloper:
1. Choose Versioning > Set Workspace.

2. Select the required workspace from the list.

To create a JDeveloper project to hold the workspace files:
1. Select File > New to open the New Gallery.

2. Use the New Gallery to create a new application and project.

3. In the Application Navigator, select the newly created project and click the Add to
Project Content button in the toolbar.

This opens the Project Content page of the Project Properties dialog.

4. Use the Add button in the Java Content area to add the location of the workspace.

If your workspace contained Java sources, a dialog is displayed through which
you should confirm that you want the sources added to the project content.

To avoid confusion, you may wish to remove non-workspace locations from the
Java Content list.

5. Click OK to close the Project Properties dialog.

To refresh the workspace folders in JDeveloper:
■ Choose Versioning > Refresh Workspace Folders.

6.8.2 How to Work with Files in Team System
In addition to the file system operations you are probably familiar with from most
version control systems (that is, checking files in and out, adding files to the repository,
etc.), Team System lets you specify individual file versions from the server.

Using Team System with Oracle JDeveloper

Versioning Applications with Source Control 6-67

6.8.2.1 How to Get Versions of Files from the Team System Server
JDeveloper lets you get (from the Team System server) a version of a file that is in the
Application Navigator. You must previously have used the get command in the Team
System client software to populate your workspace with source files.

You can use this procedure to obtain the following versions of files: the latest version;
files from a previously saved named changelist; files with a particular date stamp; files
from a previously created named label; files from a particular workspace version.

The version obtained from the Team System server will replace the version currently in
the Application Navigator.

To get versions of files from the Team System server:
1. In the Application Navigator, select the application, project or files to set the scope

of the Get operation.

2. Select Versioning > Get.

The Get dialog is opened.

3. Complete the dialog.

For information while using the dialog, press F1.

6.8.2.2 How to Add FIles to Team System Control
Use to bring files under Team System source control. The files will be added to the
Team System server and made available to other users when you next check in the file.

To add files to Team System Control
1. In the Application Navigator, select the file that you want to add to Team System

control.

2. Select Versioning > Add.

The Add dialog is opened.

3. Complete the dialog.

For information while using the dialog, press F1.

4. To add the file to the server and make it available to other users, check in the file.

6.8.2.3 How to Check Out Files
Use to check out files so that you can work on them. The files must already by under
Team System source control.

To check out files:
1. In the Applications Navigator, select the application, project or file that you want

to check out.

2. Select Versioning > Check Out.

The Check Out dialog is opened.

3. Complete the dialog.

For information while using the dialog, press F1.

Using Team System with Oracle JDeveloper

6-68 User's Guide for Oracle JDeveloper

6.8.2.4 How to View the Status of a File
Use this procedure to check the status of a file that is under Team System source
control. See also Section 6.8.2.5, "How to Refresh the Status of Files."

To view the status of a file:
1. With the file selected in the Application Navigator, open the context menu and

select Versioning > Properties.

2. Select the Versioning tab.

The status labels shown are those used by Team System to describe the source control
status of the file.

The main statuses are:

■ Edited - In JDeveloper, the file is checked out and may have been modified.

■ Unchanged - In JDeveloper, the file is currently checked in.

■ Scheduled for addition - In JDeveloper, the file has been added (that is, brought
under source control) but not yet checked in.

6.8.2.5 How to Refresh the Status of Files
The source control status of a file is indicated in the JDeveloper navigators by icon
overlays, as below.

To refresh the status of files in JDeveloper:
■ Select View > Refresh.

6.8.2.6 How to Check In Files
Use to check in a file to the Team System server. A checked in version of a file can be
seen and worked on by other users.

To check in files:
1. In the Application Navigator, select the file that you want to check in.

2. Select Versioning > Check In.

The Check In dialog is opened.

Table 6–5 File status icons in Team System

Icon Description

The object is checked in and must be checked out before it can be
modified.

The object is checked out and can be modified.

The object is not under source control.

The file has been brought under source control but has not yet
been checked in to the Team System server.

The object has been scheduled for removal from the Team
System server the next time it is checked in.

Using Team System with Oracle JDeveloper

Versioning Applications with Source Control 6-69

3. Complete the dialog.

For information while using the dialog, press F1.

6.8.2.7 How to Resolve Conflicts in File Versions
If there is a conflict between your copy of the file and the one in the Team System
server when you attempt to check it in, you will see a message box saying that the
operation cannot be completed. To overcome this problem, you must first cancel the
check-in operation, then do one of the following:

■ Revert to a non-conflicting version of the file.

■ Resolve the conflict using the merge tool in the Team System client software.

To revert to a non-conflicting file version:
■ Select the file in the Application Navigator and choose Versioning > Undo.

6.8.2.8 How to Undo Changes to Files
Use to undo the most recent change to a file.

To undo changes:
1. In the Application Navigator, select the file whose last change you want to undo.

2. Select Versioning > Undo.

The Undo dialog is opened.

The change will be undone when you click OK.

6.8.2.9 How to Replace a File with the Team System Base Version
Use this procedure to replace a file with the base version. The base version is the
version from which the one you are currently working on originated.

To replace a file with the Team System base revision:
1. In the Application Navigator, select the file to be replaced.

2. Choose File > Replace With > Base Version.

The Replace With Base Version dialog opens.

3. Check that the file that you want to replace is shown in the dialog.

4. To replace the file, click OK.

6.8.2.10 How to View the History of a File
Use this procedure to open the History Viewer and view the history of files held under
Team System control.

To view the history of a file:
■ With the file selected in the Application Navigator, choose Versioning > Version

History from the context menu.

For more information while using the History Viewer, press F1.

6.8.2.11 How to Compare Files In Team System
Use these procedures to compare files that are under Team System control with other
versions of the same files, or with other files.

Using Team System with Oracle JDeveloper

6-70 User's Guide for Oracle JDeveloper

To compare versions of a file:
1. From the context menu for the file, choose Compare With.

2. Select either Previous Version, Latest Version or Other Version.

If there are no differences, a message is displayed. Otherwise the version or versions
are shown in the History tool.

To compare a file with another file:
1. From the context menu for the file, choose Compare With > Other File.

The Select File to Compare With dialog is opened.

2. Select the file to be compared.

The files are shown in the Compare tool.

To compare two files:
1. Select the two files in the navigator.

2. From the context menu for one of the files, choose Compare With > Each Other.

The files are shown in the Compare tool.

6.8.2.12 How to Shelve and Unshelve Files
Shelving lets you save file changes in the Team System server without having to check
the files in. As part of the shelving process, you can choose either to continue to work
on the changed files or to remove them from view and revert to unchanged versions.

When you later want to make use of the file changes that were shelved, you can
unshelve them.

If you decide you no longer want to keep changes that were shelved, you can delete
the shelveset that you put them in.

To shelve a set of file changes that have not been checked in:
To shelve a set of file changes that have not been checked in:

1. In the Application Navigator, select the versioned project containing the files.

2. Select Versioning > Shelve.

The Shelve dialog opens.

3. Complete the dialog.

For information while completing the dialog, click F1.

The file changes will be shelved when you click OK.

The file icons in the Application Navigator will change to reflect the new file statuses,
if any.

To unshelve a set of file changes:
1. In the Application Navigator, select the versioned project into which you want to

unshelve the file changes.

2. Select Versioning > Unshelve.

The Unshelve dialog opens.

3. Select the shelveset name for the shelveset containing the file changes.

Using Team System with Oracle JDeveloper

Versioning Applications with Source Control 6-71

The file changes will be unshelved when you click OK.

Files deleted since the shelveset was created will be reinstated and the file icons in the
Application Navigator will change to reflect the new file statuses.

To delete a shelveset:
1. Select Versioning > Delete Shelveset.

The Delete Shelveset dialog opens.

2. Select the name of the shelveset that you want to delete.

The shelveset will be deleted when you click OK.

6.8.2.13 How to Delete Files
Use to delete files from your workspace and from the Team System server.

To delete a file:
1. Select the file in the Application Navigator and choose Versioning > Delete.

The Delete dialog is displayed with the file listed.

2. Click OK.

On the Outgoing tab of the Pending Changes window (Versioning > Pending
Changes), the file will be indicated as ready for deletion: a black diagonal cross is
added to the file's icon.

3. To complete the deletion of the file, select it in the Pending Changes window and
choose Versioning > Check In.

The Check In dialog is opened.

4. Add your comments, if any, and click OK.

The file is deleted from your workspace and from the Team System server.

6.8.3 How to Use Import and Export Features
The JDeveloper import and export features allow you to create and apply patches from
just the changes or revisions between two versions of a file.

6.8.3.1 How to Create Patches
You may wish to record the changes between two revisions of a file, then apply those
changes to a third file. You do this by creating a patch and then applying it.

To create a patch:
This generates a patch comprising the differences between a controlled revision of a
file and a revision of the file held locally.

1. In JDeveloper, open the file for which you want to create a patch.

2. Click the History tab.

The History view lists all the revisions of the file. In the lower portion of the
History view, the left pane shows the contents of a local revision, and the right
pane shows the contents of the controlled revision.

3. Select the revision combination for which you want to create a patch.

4. From the context menu, choose Generate Patch.

Using WebDAV with JDeveloper

6-72 User's Guide for Oracle JDeveloper

The Select Patch Context dialog may open. For help while using this dialog, press F1.

The Generate Patch dialog opens. Complete the dialog as required. For help while
using the dialog, press F1.

6.8.3.2 How to Apply Patches
You may wish to record the changes between two revisions of a file, then apply those
changes to a third file. You do this by creating a patch and then applying it.

To apply a patch:
1. In the navigator, select the resource to which you want to apply a patch.

The resource can be an application, a project, or a source file.

2. Select Versioning > Apply Patch.

If you chose to apply a patch to a project, the Select Patch Context dialog opens,
through which you should specify whether you are applying a project file (.jpr)
patch, or whether you are updating the contents of a project.

The Apply Patch dialog is opened.

3. In the grid at the top of the Apply Patch dialog, check that the target resources are
correctly identified.

4. Choose the source of the patch. For more information about this and the other
options on the dialog, press F1.

5. Click Preview. This opens the Apply Patch Preview window, in which you can
accept or reject particular changes. For more information about the options in the
Apply Patch Preview window, press F1.

6. To apply the patch, click OK.

6.9 Using WebDAV with JDeveloper
Web-based Distributed Authoring and Versioning, or WebDAV, is an extension to
HTTP which allows users to edit and manage files on WebDAV-enabled servers in a
collaborative fashion. WebDAV connections in JDeveloper allow you to view files
hosted on WebDAV servers in the same way as you would files on the local file
system. Files located on WebDAV servers, accessed using WebDAV connections in
JDeveloper, can be viewed in the same way as files stored on the local file system or
LAN.

As WebDAV clients provide access using HTTP, files can be accessed through firewalls
(configured to support WebDAV extensions) that would otherwise prevent FTP file
transfer. The JDeveloper read-only implementation of WebDAV supports the current
WebDAV 1.0 standard, which does not support versioning. As a WebDAV client,
JDeveloper can connect directly to any Oracle Internet File System, allowing you to
view WebDAV files from the database.

6.9.1 WebDAV Server Requirements
You must run a WebDAV server to use JDeveloper as a WebDAV client. The WebDAV
server must be one of the following:

■ Oracle Internet File System 8.1.7 (or above)

■ Apache 1.3.19 (or above)

Using WebDAV with JDeveloper

Versioning Applications with Source Control 6-73

■ A server that conforms to the WebDAV 1.0 standard

If you'd like to find out more about WebDAV, see the following Web sites:

■ http://www.webdav.org

■ http://httpd.apache.org/docs-2.1/mod/mod_dav.html

6.9.2 How to Create a WebDAV Connection
WebDAV connections created in JDeveloper allow you to view files and folders as part
of a JDeveloper project.

To create a WebDAV connection in JDeveloper:
1. In the New Gallery, choose General > Connections > WebDAV Connection, then

click OK.

2. Use the WebDAV Connection dialog to create a connection.

For more information while using the dialog, press F1.

6.9.3 How to Access a WebDAV-Enabled Server Via a Proxy Server
If you access the internet via a proxy server you need to configure JDeveloper before
accessing WebDAV-enabled servers on the internet.

To access a WebDAV-enabled server via a proxy server:
1. Check with your network administrator to ensure that your proxy server is

WebDAV-enabled.

2. In JDeveloper choose Tools > Preferences, click Web Browser and Proxy in the left
pane of the Preferences dialog box, make sure that the Use HTTP Proxy Server
checkbox is checked, then enter the details for the proxy.

3. If the WebDAV-enabled server you want to access is inside your firewall and you
do not need to go through your proxy server to access it, add the name of the
WebDAV server to your default web browser's proxy exceptions list. This is

Note: If the Apache server is version 1.x, the mod_dav module must
also be installed.

Note: If you access the Internet through a firewall, it must be
configured to process the extended HTTP commands used by
WebDAV.

If your web server is configured to redirect URLs to a different server
(for example, if you are using JkMount in Apache to redirect requests
for certain file extensions to Tomcat), be aware that WebDAV will not
be available for those resources if the server you are redirecting to
does not support WebDAV in that context.

Note: The same URL cannot be used for more than one WebDAV
connection on the same JDeveloper client.

Using WebDAV with JDeveloper

6-74 User's Guide for Oracle JDeveloper

normally set on the browser's preferences/settings page with the other proxy
settings.

6.9.4 How to Modify a WebDAV Connection
WebDAV connections are shown in the Application Resources section of the
Application Navigator, listed under the Connections node.

Existing WebDAV connections can be modified.

To modify a WebDAV connection:
1. Right-click the WebDAV connection that you want to modify.

2. Choose Properties.

3. On the WebDAV Connection Properties dialog, change the details of the WebDAV
connection.

For help while using the dialog, press F1.

4. Click OK.

6.9.5 How to Refresh a WebDAV Connection
WebDAV connections are shown in the Application Resources section of the
Application Navigator, listed under the Connections node.

To ensure that the folders and files accurately reflect the current contents of the
WebDAV server, you can manually refresh the display of a WebDAV connection.

To refresh the entire contents of a WebDAV connection:
1. Right-click the WebDAV connection that you want to refresh.

2. Choose Refresh.

6.9.6 How to Delete a WebDAV Connection
WebDAV connections are shown in the Application Resources section of the
Application Navigator, listed under the Connections node.

Deleting a WebDAV connection from JDeveloper does not affect any of the files or
folders on the WebDAV server itself.

To delete a WebDAV connection:
1. Right-click the WebDAV connection you want to delete.

2. Choose Delete.

You can subsequently recreate the connection, in which case the files and folders that
were part of it will be shown beneath it again.

Note: All folders and files listed for the WebDAV connection are
refreshed. The properties of the folders and files, and their contents,
are refreshed.

7

Building, Running and Debugging Applications 7-1

7Building, Running and Debugging
Applications

This chapter provides an overview of the building, running, and debugging features in
JDeveloper. These features are explained in greater detail in the subsequent chapters
of this guide.

This chapter includes the following sections:

■ Section 7.1, "About Building, Running and Debugging Applications"

■ Section 7.2, "Building Applications"

■ Section 7.3, "Running Applications"

■ Section 7.4, "Debugging Applications"

7.1 About Building, Running and Debugging Applications
After you have completed the design time aspects of your application, you are ready
to build, run, and debug your project.

JDeveloper provides three ways to build projects: using the Make and Rebuild,
Apache Ant, or Maven.

When you run your project, the Run Manager manages the processes that are run,
debugged, or profiled. The Run Manager window is automatically displayed when
two or more such processes are active at the same time,. When a process has
completed, it is automatically removed from the Run Manager.

The debugger enables you to investigate your code, and identify and fix problem
areas. Two types of debugging are available: local and remote debugging.

7.2 Building Applications
You can build your application using one of these ways:

■ Make and Rebuild

■ Apache Ant

■ Apache Maven

Additionally, you can also clean your application and generate Javadoc for it.

Running Applications

7-2 User's Guide for Oracle JDeveloper

7.2.1 Make and Rebuild
The Make and Rebuild commands execute standard operations for compiling projects
in JDeveloper.

Make operations compile source files that have changed since they were last compiled,
or have dependencies that have changed. Rebuild operations, in contrast, compile
source files unconditionally. You can invoke make on individual source files, on
working sets, or on containers such as packages, projects, and workspaces.

7.2.2 Apache Ant
Apache Ant is a build tool similar in functionality to the Unix make utility. Ant uses
XML formatted buildfiles to both describe and control the process used to build an
application and its components. Ant supports cross-platform compilation and is easily
extensible. Apache Ant is a product of the Apache Software Foundation. For more
information, see the website http://ant.apache.org/index.html.

For more information about Apache Ant, see Section 18.6.5, "Building with Apache
Ant".

7.2.3 Apache Maven
Apache Maven is a software project management and comprehension tool. Maven can
manage a project's build, reporting and documentation from a central piece of
information, the project object model (POM). You can build the project using its POM
and a set of plugins that are shared by all projects using Maven, providing a uniform
build system.

Maven can be extended by plugins to use a number of other development tools for
reporting or the build process. For more information about Maven, see
http://maven.apache.org/index.html.

For more information about Apache Maven, see Section 18.6.6, "Building and Running
with Apache Maven".

7.3 Running Applications
JDeveloper offers several techniques to monitor and control the way applications are
run. The Run Manager enables you to manage all running processes.

7.3.1 Run Manager
The Run Manager keeps track of processes that are run, debugged, or profiled. When
two or more such processes are active at the same time, the Run Manager window is
automatically displayed. When a process has completed, it is automatically removed
from the Run Manager.

For more information about the Run Manager, see Section 19.2, "Understanding the
Run Manager".

7.4 Debugging Applications
JDeveloper provides you with a comprehensive debugger to assess and repair your
code. Debugging can be of two types -- local and remote.

A local debugging session is started by setting breakpoints in source files, and then
starting the debugger. When debugging an application such as a servlet in JDeveloper,

Debugging Applications

Building, Running and Debugging Applications 7-3

you have complete control over the execution flow and can view and modify values of
variables. You can also investigate application performance by monitoring class
instance counts and memory usage. JDeveloper will follow calls from your application
into other source files, or generate stub classes for source files that are not available

Remote debugging requires two JDeveloper processes: a debugger and a debuggee
which may reside on a different platform. Once the debuggee process is launched and
the debugger process is attached to it, remote debugging is similar to local debugging.

7.4.1 How to Use the Debugger
The Debugger provides a number of special-purpose debugging windows that enable
you to efficiently identify the problematic areas in your code.

You can control what type of information is displayed in each of the debugger
windows. To see what options are available in each window such as which columns to
display, right-click in a window and choose Preferences from the context menu. Or,
you can choose Tools > Preferences from the main menu and expand the Debugger
node to display a preferences page for each debugger window. You can also save the
debug information as text or HTML output file.

For more information on using the debugger, see Section 19.7, "Using the Debugger
Windows".

7.4.2 Technologies that Use Debugging
Several technologies use debugging facilities provided by JDeveloper. The following
table lists these technologies and the corresponding link to their debugging
documentation.

Table 7–1 Technologies that Use Debugging

Technology Documentation Link

ADF Components Section 19.6.3, "How to Debug ADF Components"

Java Servlet Section 11.5.7, "How to Debug a Servlet"

JSP Pages Section 11.4.2, "How to Debug and Deploy JSPs"

Java Programs Section 19.6, "About the Debugger"

JavaScript Section 19.6.21, "How to Debug a Javascript Program"

Web Services Section 16.11.2, "How to Debug Web Services"

Integrated WebLogic Server Section 9.2.3.2, "How to Run and Debug with an Integrated
Application Server"

PL/SQL Programs and Java
Stored Procedures

Section 29.3.3, "Debugging PL/SQL and Java Stored
Procedures Prerequisites"

Extensions Oracle Fusion Middleware Developer's Guide for Oracle
JDeveloper Extensions

Debugging Applications

7-4 User's Guide for Oracle JDeveloper

8

Auditing and Profiling Applications 8-1

8Auditing and Profiling Applications

This chapter describes the auditing and profiling capabilities of Oracle JDeveloper.

This chapter includes the following sections:

■ Section 8.1, "About Auditing and Profiling Applications"

■ Section 8.2, "Auditing Applications"

■ Section 8.3, "Monitoring HTTP Using the HTTP Analyzer"

■ Section 8.4, "Profiling Applications"

8.1 About Auditing and Profiling Applications
Use the auditing and profiling tools that JDeveloper provides to analyze the health
and performance of your applications. These tools help you improve the quality of
your code. You can use the JDeveloper auditing feature to analyze Java code for
conformance to programming standards.

Use the profiler to gather statistics on your program that enable you to more easily
diagnose performance issues, such as bottlenecks by identifying methods consuming
more time, which method is called the most, how memory is used, and what kind of
objects are being created.

8.2 Auditing Applications
Auditing is the static analysis of code for adherence to rules and metrics that define
programming standards. Auditing finds defects that make code difficult to improve
and maintain. The JDeveloper auditing tools help you find and fix such defects. Code
can be audited even when it is not compilable or executable.

You can create and customize profiles, choose the rules to be used, and set parameters
for individual rules. Browse the audit rules and metrics to learn more about them.

An audit report displays rule violations and measurements organized as a tree. A row
of the tree corresponds to either a construct or a violation, and includes any measured
values for the construct or theoretical violation. A construct is a method, class, file,
project, or workspace. For more information on auditing tools and steps to audit your
code, see Section 18.9, "Optimizing Application Performance".

8.3 Monitoring HTTP Using the HTTP Analyzer
The HTTP Analyzer allows you to monitor HTTP traffic, for example, to:

■ Monitor request/response traffic between a web service client and the service.

Monitoring HTTP Using the HTTP Analyzer

8-2 User's Guide for Oracle JDeveloper

■ Monitor HTTP requests between Java applications and web resources.

The HTTP Analyzer acts as a proxy between code in JDeveloper and the HTTP
resource that the code is communicating with, and helps you to debug your
application in terms of the HTTP traffic sent and received.

When you run the HTTP Analyzer, there are a number of windows that provide
information for you.

8.3.1 How to Use the Log Window
When you open the HTTP Analyzer from the Tools menu, the HTTP Analyzer log
window appears, illustrated in Figure 8–1. By default its position is at the bottom
center of JDeveloper, alongside the other log windows.

Figure 8–1 HTTP Analyzer Log Window

When HTTP Analyzer runs, it outputs request/response messages to the HTTP
Analyzer log window. You can group and reorder the messages:

■ To reorder the messages, select the Sequence tab, then sort using the column
headers (click on the header to sort, double-click to secondary sort).

■ To group messages, click the Correlation tab.

■ To change the order of columns, grab the column header and drag it to its new
position.

Table 8–1 HTTP Analyzer Log Window Toolbar Icons

Icon Name Function

Analyzer
Preferences

Click to open the HTTP Analyzer Preferences dialog where you
can specify a new listener port, or change the default proxy. An
alternative way to open this dialog is to choose Tools >
Preferences, and then navigate to the HTTP Analyzer page. For
more information, see

Create New
Request

Click to open the HTTP Analyzer Test window, where you enter
payload details, and edit and resend messages.

Start HTTP
Analyzer

Click to start the HTTP Analyzer running. The monitor runs in the
background, and only stops when you click Stop or exit
JDeveloper. If you have more than one listener defined clicking
this button starts them all. To start just one listener, click the down
arrow and select the listener to start.

Stop HTTP
Analyzer

Click to stop the HTTP Analyzer running. If you have more than
one listener running, clicking this button stops them all. To stop
just one listener click the down arrow and select the listener to
stop.

Monitoring HTTP Using the HTTP Analyzer

Auditing and Profiling Applications 8-3

8.3.2 How to Use the Test Window
An empty HTTP Analyzer test window appears when you click the Create New
Request button in the HTTP Analyzer Log window. A test window showing details of
the request/response opens when you choose Test Web Service from the context
menu of a web service container in the Application Navigator, or when you
double-click a line in the HTTP Analyzer Log Window, illustrated in Figure 8–2. By
default, its position is in the center of JDeveloper, in the same place that the source
editor appears.

Send
Request

Click to resend a request when you have changed the content of a
request. The changed request is sent and you can see any changes
in the response that is returned.

Open WS-I
log file

Click to open the Select WS-I Log File to Upload dialog, where
you can navigate to an existing WS-I log file. For more
information, see Section 16.13, "Monitoring and Analyzing Web
Services."

Save Packet
Data

Click to save the contents of the HTTP Analyzer Log Window to a
file.

WS-I
Analyze

Click to invoke the WS-I Analyze wizard which allows you to
examine a web service at packet level. For more information, see
Section 16.13, "Monitoring and Analyzing Web Services."

Select All Click to select all the entries in the HTTP Analyzer Log Window.

Deselect All Click to deselect all the entries in the HTTP Analyzer.

Clear
Selected
History
(Delete)

Click to clear the entries in the HTTP Analyzer.

Table 8–1 (Cont.) HTTP Analyzer Log Window Toolbar Icons

Icon Name Function

Monitoring HTTP Using the HTTP Analyzer

8-4 User's Guide for Oracle JDeveloper

Figure 8–2 HTTP Analyzer Test Window

The test window allows you examine the headers and parameters of a message. You
can test the service by entering a parameter that is appropriate and clicking Send
Request.

The tabs along the bottom of the test window allow you choose how you see the
content of the message. You can choose to see the message as:

■ The SOAP structure, illustrated in Figure 8–2.

■ The HTTP code, for example:

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="http://annotation/">
 <env:Header/>
 <env:Body>
 <ns1:getDeptInfo>
 <arg0/>
 </ns1:getDeptInfo>
 </env:Body>
</env:Envelope>

■ The hex content of the message, for example:

[000..015] 3C 3F 78 6D 6C 20 ... 3D 22 31 <?xml version="1
[016..031] 2E 30 22 20 65 6E ... 22 55 54 .0" encoding="UT
[032..047] 46 2D 38 22 3F 3E ... 6E 76 65 F-8"?> <env:Enve
[048..063] 6C 6F 70 65 20 78 ... 76 3D 22 lope xmlns:env="

■ The raw message, for example:

POST http://localhost:7101/WebService-Annotation-context-root/MyCompanyPort
HTTP/1.1
SOAPAction: ""
Content-Type: text/xml; charset=UTF-8
Host: localhost:7101

Monitoring HTTP Using the HTTP Analyzer

Auditing and Profiling Applications 8-5

Content-Length: 277

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="http://annotation/">
 <env:Header/>
 <env:Body>
 <ns1:getDeptInfo>
 <arg0/>
 </ns1:getDeptInfo>
 </env:Body>
</env:Envelope>

8.3.3 How to Use the Instances Window
When you open the HTTP Analyzer from the Tools menu, the HTTP Analyzer
Instances window appears. By default, its position is at the bottom center of
JDeveloper, as a tab alongside the HTTP Analyzer log window. This window provides
information about the instances of the HTTP Analyzer that are currently running, or
that were running and have been stopped. The instance is identified by the host and
port, and any rules are identified. You can start and stop the instance from this
window.

Figure 8–3 HTTP Analyzer Instances Window

You create a new instance in the HTTP Analyzer dialog, which opens when you click
the Create New Request button.

Table 8–2 HTTP Analyzer Instances Window Toolbar Icons

Icon Name Function

Analyzer
Preferences

Click to open the HTTP Analyzer dialog where you can specify a
new listener port, or change the default proxy.

Create New
Request

Click to open a new instance of the HTTP Analyzer Test window,
where you enter payload details, and edit and resend messages.

Start HTTP
Analyzer

Click to start the HTTP Analyzer running. The monitor runs in the
background, and only stops when you click Stop or exit
JDeveloper. If you have more than one listener defined clicking
this button starts them all. To start just one listener, click the down
arrow and select the listener to start.

Stop HTTP
Analyzer

Click to stop the HTTP Analyzer running. If you have more than
one listener running, clicking this button stops them all. To stop
just one listener click the down arrow and select the listener to
stop.

Monitoring HTTP Using the HTTP Analyzer

8-6 User's Guide for Oracle JDeveloper

8.3.4 What Happens When You Run the HTTP Analyzer
When you start the HTTP Analyzer, all Java processes and application server activity
with JDeveloper will send their traffic via the HTTP Analyzer, using the proxy settings
in the HTTP Analyzer dialog, which opens when you click the Start HTTP Analyzer
button in the Instance or Log window, or from the HTTP Analyzer page of the
Preferences dialog. By default, the HTTP Analyzer uses a single proxy on an analyzer
instance (the default is 8099), but you can add additional proxies of your own if you
need to.

Each analyzer instance can have a set of rules to determine behavior, for example, to
redirect requests to a different host/URL, or to emulate a web service.

8.3.5 How to Specify HTTP Analyzer Settings
By default, the HTTP Analyzer uses a single proxy on an analyzer instance (the default
is 8099), but you can add additional proxies of your own if you need to.

To set HTTP Analyzer preferences:
1. Open the HTTP Analyzer preferences dialog by doing one of the following:

■ Click the Start HTTP Analyzer button in the HTTP Analyzer Instances
window or Log window.

■ Choose Tools > Preferences to open the Preferences dialog, and navigating to
the HTTP Analyzer page.

For more information at any time, press F1 or click Help from the HTTP Analyzer
preferences dialog.

2. Make the changes you want to the HTTP Analyzer instance. For example, to use a
different host and port number, open the Proxy Settings dialog by clicking
Configure Proxy.

8.3.6 How to Use Multiple Instances
You can have more than one instance of HTTP Analyzer running. Each will use a
different host and port combination, and you can see a summary of them in the HTTP
Analyzer Instances window.

To add an additional HTTP Analyzer Instance:
1. Open the HTTP Analyzer preferences dialog by doing one of the following:

■ Click the Analyzer Preferences button in the HTTP Analyzer Instances
window or Log window.

■ Choose Tools > Preferences to open the Preferences dialog, and navigating to
the HTTP Analyzer page.

For more information at any time, press F1 or click Help from the HTTP Analyzer
preferences dialog.

2. To create a new HTTP Analyzer instance, that is a new listener, click Add. The new
listener is listed and selected by default for you to change any of the values.

8.3.7 How to Configure External Web Browsers
You can use external web browsers to route messages through the HTTP Analyzer so
that you can see the traffic between the web browser and client. This section describes
how you can use a profile in Firefox so that when you start the HTTP Analyzer and

Monitoring HTTP Using the HTTP Analyzer

Auditing and Profiling Applications 8-7

run an HTML or JSP or JSF page from within JDeveloper, a new instance of Firefox
using the Debugger profile is started.

To configure a Firefox profile for the HTTP Analyzer:
1. First you create a new Firefox profile. By default, starting Firefox from the

command line opens a window on your currently open instance of Firefox, so you
need to use -no-remote to create a separately configured instance Run the
following from the command line

firefox -no-remote -CreateProfile Debugging
2. Start Firefox using this profile

firefox -no-remote -P Debugging
3. Next you configure JDeveloper to start this version of Firefox. From the main

menu, choose Tools > Preferences.

4. In the Preferences dialog, select the Web Browser and Proxy node. For more
information, press F1 or click Help from within the dialog page.

5. In the Browser Command Line, enter or browse to the correct location, and enter
firefox -no-remote -P Debugging. JDeveloper underlines this in red, and
when you close the dialog you will see a Command Line Validation Error warning
which you can safely ignore.

6. Click OK. When you start the HTTP Analyzer and run an HTML or JSP or JSF
page from within JDeveloper, a new instance of Firefox using the Debugger profile
is started.

Click OK. When you start the HTTP Analyzer and run an HTML or JSP or JSF page
from within JDeveloper, a new instance of Firefox using the Debugger profile is
started.

8.3.8 Using SSL
You can use the HTTP Analyzer with secured services or applications, for example,
web services secured by policies. JDeveloper comes with a set of preconfigured
credentials, HTTPS Credential, which is always present. You cannot delete or edit
HTTPS Credential, but you can copy it to create a new credential of the same type.

Once you have configured the credentials, you can choose which to use in the HTTP
Analyzer Test window.

8.3.8.1 HTTPS Keystore
HTTPS encrypts an HTTP message prior to transmission and decrypts it upon arrival.
It uses a public key certificate signed by a trusted certificate authority. When the
integrated application server is first started, it generates a DemoIdentity that is
unique to your machine, and the key in it is used to set up the HTTPS channel.

The client keystore identity is used for configuring HTTPS. The server keystore
identity is used when the HTTP Analyzer is acting as a server; it is not used when
connecting to a remote server.

For more information about keystores and keystore providers, see Oracle Fusion
Middleware Understanding Security for Oracle WebLogic Server.

Note: The steps below use the command firefox, which is correct
for Linux. If you are using Windows, use firefox.exe.

Monitoring HTTP Using the HTTP Analyzer

8-8 User's Guide for Oracle JDeveloper

When the default credential HTTPS Credential is selected, you need to specify the
keystores that JDeveloper and the HTTP Analyzer should use when handling HTTPS
traffic. Two keystores are required to run the HTTP Analyzer:

■ The client keystore, containing the certificates of all the hosts to be trusted by
JDeveloper and the Analyzer (client trust) when it makes onward connections.

■ The server keystore, containing a key that the Analyzer can use to authenticate
itself to calling clients (server keystore).

The client keystore is only required when mutual authentication is required.

8.3.8.2 Username Token
Username token is a way of carrying basic authentication information. You supply a
username/password to provide authentication.

8.3.8.3 X509 Certificates
X509 is a PKI standard for single sign-on, where certificates are used to provide
identity, and to sign and encrypt messages. You enter details of an X509 certificate.
When you supply a valid keystore and the password for the keystore, the client key
aliases are populated.

If JDeveloper has any problems finding and opening the keystore, error messages will
be displayed.

8.3.8.4 STS Configuration
A Secure Token Service (STS) is a web service that issues and manages security tokens
over HTTPS. You enter the Security Token Server provider URL and optionally a
policy URL.

8.3.8.5 How to Use HTTPS

To configure the HTTP Analyzer to use different HTTPS values:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Credentials node. For more information, press
F1 or click Help from within the dialog page.

3. Enter the new keystore and certificate details you want to use.

8.3.8.6 How to Configure Credentials for Testing Web Service Policies
You can use the HTTP Analyzer to test web services that are secured using policies.

The HTTP Analyzer supports:

Note: The client truststore must contain the server public key,
otherwise when the HTTP Analyzer requests the SAML token it will
fail.

Note: You cannot use the HTTP Analyzer with JAX-RPC web
services that are secured with WebLogic 9.x policies. WebLogic 9.x
policies are deprecated for JAX-RPC.

Monitoring HTTP Using the HTTP Analyzer

Auditing and Profiling Applications 8-9

■ HTTPS. The message is encrypted prior to transmission using a public key
certificate that is signed by a trusted certificate authority. The message is
decrypted on arrival.

■ Username token. This is a way of carrying basic authentication information using
a token based on username/password.

■ X509. This is a PKI standard for single sign-on authentication, where certificates
are used to provide identity, and to sign and encrypt messages.

■ STS. Security Token Service (STS) is a web service which issues and manages
security tokens.

You choose the credentials to use in the HTTP Analyzer Test window.

To add authentication information to the HTTP Analyzer:
1. Choose Tools > Preferences to open the Preferences dialog, and navigate to the

Credentials page. For more information at any time, press F1 or click Help from
the Preferences dialog.

2. Enter the authentication information that is appropriate for the web service.

8.3.9 How to Run the HTTP Analyzer
The HTTP Analyzer allows you to view the content of request and response HTTP
messages.

To monitor HTTP packets:
1. Open the HTTP Analyzer by choosing Tools > HTTP Analyzer. The HTTP

Analyzer docked window opens.

2. Start the HTTP Analyzer by clicking the Start HTTP Analyzer button. By default,
this starts the listener on your localhost's hostname on port 8098. You can add new
listeners, and use different hosts and ports, configure HTTPS, or set up rules to
determine how the analyzer works.

3. Run the class, application, web service and so on that you want to analyze in the
usual way.

Each request and response packet is listed in the HTTP Analyzer Log window, and
detailed in the HTTP Analyzer Test Window.

If you are using the HTTP Analyzer to examine how a web service developed in
JDeveloper works, the HTTP Analyzer starts automatically when you choose Test Web
Service from the context menu of the web service in the Application Navigator.

8.3.10 How to Debug Web Pages Using the HTTP Analyzer
You can use the HTTP Analyzer when you are debugging Web pages, such as HTML,
JSP, or JSF pages. This allows you to directly examine the traffic that is sent back and
forth to the browse.

To debug Web pages using the HTTP Analyzer:
1. Configure a browser to route messages through the HTTP Analyzer so that you

can see the traffic between the web browser and client.

2. Start the HTTP Analyzer running.

3. Run the class, application, or Web page that you want to analyze in the usual way.

Monitoring HTTP Using the HTTP Analyzer

8-10 User's Guide for Oracle JDeveloper

Each request and response packet is listed in the HTTP Analyzer Log window, and
detailed in the HTTP Analyzer Test Window.

8.3.11 How to Edit and Resend HTTP Requests
You can edit the contents of a HTTP request and resend it. You can then examine the
response to see whether the changes you expect have occurred.

To send a request:
1. In the Request pane of the HTTP Analyzer Test window, enter parameter values.

2. Click the Send Request button.

3. The processed value is returned in the Response pane.

To edit and resend a request:
1. In the Request pane of the HTTP Analyzer Test window, click Copy Request. This

opens a new test window, where you can enter a new parameter to send.

Alternatively, you can open a new test window by double-clicking a line in the
HTTP Analyzer Log window.

8.3.12 How to Use Rules to Determine Behavior
You can set rules so that the HTTP Analyzer runs using behavior determined by those
rules. You can set more than one rule in an HTTP Analyzer instance. If a service's URL
matches a rule, the rule is applied. If not, the next rule in the list is checked. If the
service does not match any of the rules the client returns an error. For this reason, you
should always use a Pass Through rule with a blank filter (which just passes the
request through) as the last rule in a list to catch any messages not caught by the
preceding rules.

The types of rule available are:

■ Pass Through Rule

■ Forward Rule

■ URL Substitution Rule

■ Tape Rule

8.3.12.1 Using the Pass Through Rule
The Pass Through simply passes a request on to the service if the URL filter matches.
When you first open the Rule Settings dialog, two Pass Through Rules are defined:

■ The first has a URL filter of http://localhost:631 to ignore print service
requests.

■ The second has a blank URL filter, and it just which just passes the request to the
original service. This rule should normally be moved to end of the list if new rules
are added.

8.3.12.2 Using the Forward Rule
The Forward rule is used to intercept all URLs matched by the filter and it forwards
the request on to a single URL.

Monitoring HTTP Using the HTTP Analyzer

Auditing and Profiling Applications 8-11

8.3.12.3 Using the URL Substitution Rule
The URL Substitution rule allows you to re-host services by replacing parts of URL
ranges. For example, you can replace the machine name when moving between the
integrated application server and Oracle WebLogic Server.

8.3.12.4 Using the Tape Rule
The tape rule allows you to run the HTTP Analyzer in simulator mode, where a
standard WS-I log file is the input to the rule. When you set up a tape rule, there are
powerful options that you can use:

■ Loop Tape, which allows you to run the tape again and again.

■ Skip to matching URL and method, which only returns if it finds a matching URL
and HTTP request method. This means that you can have a WSDL and an
endpoint request in the same tape rule.

■ Correct header date and Correct Content Size, which allow you change the header
date and content size of the message to current values so that the request does not
fail.

An example of using a tape rule would be to test a web service client developed to run
against an external web service.

To test a web service client developed to run against an external web service:
1. Create the client to the external web service.

2. Run the client against the web service with the HTTP Analyzer running, and save
the results as a WS-I log file.

You can edit the WS-I file to change the values returned to the client.

3. In the HTTP Analyzer page of the Preferences dialog, create a tape rule.

Ensure that it is above the blank Pass Through rule in the list of rules.

4. In the Rule Settings dialog, use the path of the WS-I file as the Tape path in the
Rule Settings dialog.

When you rerun the client, it runs against the entries in the WS-I file instead of
against the external web service.

There are other options that allow you to:

■ Correct the time and size of the entries in the WS-I log file so the message
returned to the client is correct.

■ Loop the tape so that it runs more than once.

■ Skip to a matching URL and HTTP request method, so that you can have a
WSDL and an endpoint request in the same tape rule.

8.3.13 How to Set Rules
You can set rules so that the HTTP Analyzer runs using behavior determined by those
rules. Each analyzer instance can have a set of rules to determine behavior, for
example, to redirect requests to a different host/URL, or to emulate a web service.

Note: Tape Rules will not work with SOAP messages that use
credentials or headers with expiry dates in them.

Monitoring HTTP Using the HTTP Analyzer

8-12 User's Guide for Oracle JDeveloper

To set rules for an HTTP Analyzer instance:
1. Open the HTTP Analyzer by choosing Tools > HTTP Analyzer. The HTTP

Analyzer docked window opens.

Alternatively, the HTT Analyzer automatically opens when you choose Test Web
Service from the context menu of a web service container in the Application
Navigator.

2. Click the Analyzer Preferences button to open the HTTP Analyzer preferences
dialog, in which you can specify a new listener port, or change the default proxy.

Alternatively, choose Tools > Preferences, and then navigate to the HTTP
Analyzer page.

3. Click Configure Rules to open the Rule Settings dialog in which you define rules
to determine the actions the HTTP Analyzer should take. For more help at any
time, press F1 or click Help in the Rule Settings dialog.

4. In the Rule Settings dialog, enter the URL of the reference service you want to test
against as the Reference URL. This will help you when you start creating rules, as
you will be able to see if and how the rule will be applied.

5. Define one or more rules for the service to run the client against. To add a new
rule, click the down arrow next to Add, and choose the type of rule from the list.
The fields in the dialog depend on the type of rule that is currently selected.

6. The rules are applied in order from top to bottom. Reorder them using the up and
down reorder buttons. It is important that the last rule is a blank Pass Through
rule.

8.3.14 Using the HTTP Analyzer with Web Services
This section contains information about using the HTTP Analyzer with web services
developed in JDeveloper. In general, you can use HTTP Analyzer to examine the
content of web services in the same way as using it to examine any packets across
HTTP.

8.3.14.1 Testing Web Services with the HTTP Analyzer
JDeveloper allows you to test web services using the HTTP Analyzer to examine the
network traffic of a proxy connecting to a web service developed in JDeveloper.

To test a web service:
1. Run the web service on the integrated application server and open the HTTP

Analyzer by right-clicking the web service node in the Application Navigator, and
choosing Test Web Service. JDeveloper automatically:

■ Starts the integrated application server, if it is not already running.

■ Compiles and binds the web service application to the integrated application
server, which you can see in the Application Server Navigator.

■ Displays a Log window for the integrated application server (if there is not
one already open).

Note: You cannot use the HTTP Analyzer to test JAX-RPC web
services that have WebLogic Server 9.x policies attached. WebLogic 9.x
policies have been deprecated in JAX-RPC.

Monitoring HTTP Using the HTTP Analyzer

Auditing and Profiling Applications 8-13

2. Enter a parameter to test the service in the Request pane of the HTTP Analyzer
Test window and click Send Request.

The response from the deployed web service is displayed in the Response pane of
the HTTP Analyzer Test window.

You can examine the contents of the HTTP headers of the request and response
packets to see the SOAP structure, the HTTP content, the Hex content or the raw
message contents by choosing the appropriate tab at the bottom of the HTTP Analyzer
Test window.

8.3.14.2 Using the HTTP Analyzer with RESTful Web Services
You can use the HTTP Analyzer to interact with RESTful web services.
Representational State Transfer (REST) describes any simple interface that transmits
data over a standardized interface (such as HTTP) without an additional messaging
layer, such as SOAP. REST provides a set of design rules for creating stateless services
that are viewed as resources, or sources of specific information, and can be identified
by their unique URIs. A client accesses the resource using the URI, a standardized
fixed set of methods, and a representation of the resource is returned. The client is said
to transfer state with each new resource representation.

When using the HTTP protocol to access RESTful resources, the resource identifier is
the URL of the resource and the standard operation to be performed on that resource is
one of the HTTP methods: GET, PUT, DELETE, POST, or HEAD.

The HTTP Analyzer has support for Hypermedia as the Engine of Application State
(HATEOAS), and so you can examine and test RESTful web services using the HTTP
Analyzer.

Jersey and WADL
Before you can create RESTful web services in JDeveloper, you need to download and
add to your project the Jersey JAX-RS Reference Implementation (RI).

A Web Application Description Language (WADL) is an XML file created by Jersey
that provides a description of the resources in the servlet. For more information about
WADL, see https://wadl.dev.java.net/.

Testing a RESTful Service
An outline of testing a RESTful service using WADL is given here, with more detailed
steps in the procedure below. Not all RESTful services work this way. The HTTP
Analyzer reads a WADL created by Jersey for the RESTful web service, and you
examine the WADL in the HTTP Analyzer Test window. From the WADL, you can
open an instance of the HTTP Analyzer Test window directly from a method, and test
the method by entering a parameter and posting it to the service. The HTTP Analyzer
redirects the response to a new URL which it displays, and when you click on it
another instance of the HTTP Analyzer Test window opens with the response. Once
you have finished, you use the WADL to locate the new resource that the HTTP
Analyzer created to test the service and delete it.

Example 8–1 provides an example of a WADL document which uses POST, GET and
DELETE.

Example 8–1 Simple Example of WADL

 <?xml version = '1.0' encoding = 'UTF-8' standalone = 'yes'?>
 <application xmlns="http://research.sun.com/wadl/2006/10">
 <doc xmlns:jersey="http://jersey.dev.java.net/" jersey:generatedBy="Jersey: 1.1.0-ea
04/30/2009 04:46 PM"/>
 <resources base="http://localhost:7101/RESTDemo-ContainerProject-context-root/jersey/">

Monitoring HTTP Using the HTTP Analyzer

8-14 User's Guide for Oracle JDeveloper

 <resource path="buckets">
 <method name="POST" id="createNewBucket">
 <request>
 <representation mediaType="*/*"/>
 </request>
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 <method name="GET" id="getBuckets">
 <response>
 <representation mediaType="application/buckets+xml"/>
 </response>
 </method>
 <resource path="/{id}">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema" type="xs:int" style="template"
name="id"/>
 <method name="DELETE" id="delete">
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 <method name="GET" id="getBucket">
 <response>
 <representation mediaType="*/*"/>
 </response>
 </method>
 </resource>
 </resource>
 </resources>
 </application>

To test a REST web service
To test a REST web service requires that you:

■ examine the RESTful service

■ test the service

■ work with the resource

To examine the RESTful service:
1. Run the REST web service on the integrated application server.

2. Right-click the web service node in the Application Navigator, and choose Test
Web Service. JDeveloper automatically:

■ Starts the integrated application server, if it is not already running.

■ Compiles and binds the web service application to the integrated application
server instance, which is the IntegratedWebLogicServer node in the
Application Server Navigator.

■ Displays a Log window for the integrated application server (if there is not
one already open).

3. Click the HTTP Content tab in the HTTP Analyzer Test window. RESTful web
services do not use SOAP, so you will not use the SOAP Structure tab.

4. In the Log window for the integrated application server, click the link next to
Target Application WADL. A second instance of the test window opens. Notice
that the URL displays the WADL, and the Method is GET.

Monitoring HTTP Using the HTTP Analyzer

Auditing and Profiling Applications 8-15

5. Click Send Request. The GET method is used to return the content of the WADL
so that it is displayed in the Response pane.

If necessary, use the left arrow to maximize the width of the pane to see the code
more clearly.

To test the RESTful service:
1. In the WADL displayed in the Response pane, press Ctrl+mouse-click to use the

Go to declaration feature to reveal parts of the HTTP message that can be accessed.
Click on a POST method that is now revealed as a link. This opens a new instance
of the test window.

2. Enter a parameter in the Request pane, and click Send Request. The POST method
is used, and the Request pane displays a 201 Created HTTP status code along
with the location of the URL that contains the response.

3. Click on the URL in the Response pane. Another instance of the test window
opens. Notice that the URL displays the redirected URL, and the Method is GET.
Click Send Request, and the response to the parameter you entered is displayed
in the Request pane.

To work with the resource:
1. Select the test window instance for the WADL, and navigate to the GET method.

Press Ctrl+mouse-click to open a new instance of the test window. Notice that the
URL displays the redirected URL, and the Method is GET.

2. You can update the resource by choosing PUT from the Method list, and click
Send Request.

3. In order to delete this resource, choose DELETE from the Method list, and click
Send Request.

8.3.15 Using the HTTP Analyzer with WebSockets
The HTTP Analyzer will pass unsecured WebSockets requests via a proxy.

The content of the request response stream will be available in the HTTP Analyzer
after you close and reopen the message. The WebSockets messages are those with a
response code of 101.

8.3.16 Reference: Troubleshooting the HTTP Analyzer
This section contains information to help resolve problems that you may have when
running the HTTP Analyzer.

8.3.16.1 Running the HTTP Analyzer While Another Application is Running
If you have an application waiting for a response, do not start or stop the HTTP
Analyzer. Terminate the application before starting or stopping the HTTP Analyzer.

8.3.16.2 Changing Proxy Settings
When you use the HTTP Analyzer, you may need to change the proxy settings in
JDeveloper. For example:

Note: When you click on the WADL, the correct content-type and
accept headers will be generated.

Profiling Applications

8-16 User's Guide for Oracle JDeveloper

■ If you are testing an external service and your machine is behind a firewall, ensure
that the JDeveloper is using the HTTP proxy server.

■ If you are testing a service in the integrated application server, for example when
you choose Test Web Service from the context menu of a web service in the
Application Navigator, ensure that JDeveloper is not using the HTTP proxy server.

If you run the HTTP Analyzer, and see the message

500 Server Error
The following error occurred: [code=CANT_CONNECT_LOOPBACK] Cannot connect due to
potential loopback problems

you probably need to add localhost|127.0.0.1 to the proxy exclusion list.

To set the HTTP proxy server and edit the exception list:
1. Choose Tools > Preferences, and select Web Browser/Proxy.

2. Ensure that Use HTTP Proxy Server is selected or deselected as appropriate.

3. Add any appropriate values to the Exceptions list, using | as the separator.

In order for Java to use localhost as the proxy ~localhost must be in the
Exceptions list, even if it is the only entry.

8.4 Profiling Applications
The Profiler monitors and logs a running program's use of processor and memory
resources. It gathers statistics that enables you to more easily diagnose the
performance issues and correct the inefficiencies in your code.

JDeveloper offers two kinds of profilers: The CPU Profiler and the Memory Profiler,
for local as well as remote profiling.

■ The CPU Profiler is used to analyze your application's impact on the processor.
Use the CPU Profiler to test functions of your application, such as startup and
initialization, repainting, and compiling.

■ The Memory Profiler provides a visual and statistical analysis of how your
program utilizes memory in the Java heap. Use the Memory Profiler to track down
and isolate memory leaks in your program.

For more information on the profiler, including steps to profile your application and
project, see Section 18.10, "Profiling a Project".

9

Deploying Applications 9-1

9Deploying Applications

This chapter describes how to run and debug applications using the JDeveloper
integrated application server, and how to deploy applications to a target application
server, for example to Oracle WebLogic Server or to a third-party server.

This chapter includes the following sections:

■ Section 9.1, "About Deploying Applications"

■ Section 9.2, "Running Java EE Applications in the Integrated Application Server"

■ Section 9.3, "Connecting and Deploying Java EE Applications to Application
Servers"

■ Section 9.4, "Deploying Java Applications"

■ Section 9.5, "Deploying Java EE Applications"

■ Section 9.6, "Post-Deployment Configuration"

■ Section 9.7, "Testing the Application and Verifying Deployment"

■ Section 9.8, "Deploying from the Command Line"

■ Section 9.9, "Deploying Using Java Web Start"

■ Section 9.10, "Deploying Using Weblogic SCA Spring"

■ Section 9.11, "Troubleshooting Deployment"

9.1 About Deploying Applications
Deployment is the process of packaging application files as an archive file and
transferring it to a target application server. You can use JDeveloper to deploy Java or
Java EE applications directly to the application server (such as Oracle WebLogic Server
or IBM WebSphere), or indirectly to an archive file as the deployment target, and then
install this archive file to the target server. For application development, you can also
use JDeveloper to run an application in the integrated application server. JDeveloper
supports deploying to server clusters, but you cannot use JDeveloper to deploy to
individual Managed Servers that are members of a cluster.

If you are using Oracle® Fusion Middleware extensions, refer to the appropriate
developer’s guide for deployment information specific to the product. For example:

■ If you are deploying an ADF Fusion Web application, see the "Deploying Fusion
Web Applications" chapter in the Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework.

About Deploying Applications

9-2 User's Guide for Oracle JDeveloper

■ If you are deploying an ADF Java EE application, see the "Deploying an ADF Java
EE Application" chapter in the Oracle Fusion Middleware Java EE Developer's Guide
for Oracle Application Development Framework.

You can deploy applications in the following ways:

■ Directly to an application server through an application server connection.

■ To an archive file. You can deploy applications indirectly by choosing an archive
file as the deployment target. The archive file can subsequently be installed on the
target Java EE application server.

■ To a test environment using the JDeveloper integrated application server, a Java
EE runtime service used for running and testing JDeveloper applications and
projects as Java EE applications and modules within a Java EE container.

Figure 9–1 shows the flow diagram that describes the overall deployment process.
Note that preparing the target application server for deployment is outside the scope
of this guide; you should refer to the Oracle Fusion Middleware Java EE Developer's Guide
for Oracle Application Development Framework for deployment to Oracle WebLogic
Server, or to the appropriate documentation for a third-party application server.

Note: Normally, you use JDeveloper to deploy applications for
development and testing purposes. If you are deploying applications
for production purposes, you can use Enterprise Manager or scripts to
deploy to production-level application servers.

For more information about deployment to later-stage testing or
production environments, see the Oracle Fusion Middleware Java EE
Developer's Guide for Oracle Application Development Framework.

About Deploying Applications

Deploying Applications 9-3

Figure 9–1 Deployment Overview Flow Diagram

Java and Java EE applications are based on standardized, modular components and
can be deployed to the following application servers:

■ Oracle WebLogic Server

Oracle WebLogic Server provides a complete set of services for those modules and
handles many details of application behavior automatically, without requiring
programming.

■ A third-party application server, that is an application server provided by a
vendor other than Oracle:

– Apache Tomcat

– IBM WebSphere

– JBoss

For information about which versions of Oracle WebLogic Server, Tomcat,
WebSphere, or JBoss are compatible, see the JDeveloper Certification Information
at
http://www.oracle.com/technetwork/developer-tools/jdev/docume
ntation/index.html.

You can use JDeveloper to:

■ Run applications in the integrates application server

About Deploying Applications

9-4 User's Guide for Oracle JDeveloper

You can run and debug applications using Integrated WebLogic Server and then
deploy to a standalone WebLogic Server or to a third party server.

■ Deploy directly to the standalone application server

You can deploy applications directly to the standalone application server by
creating a connection to the server and choosing the name of that server as the
deployment target.

■ Deploy to an archive file

You can deploy applications indirectly by choosing an EAR file as the deployment
target. The archive file can subsequently be installed on a target application server.

Deployment can be an iterative process where refinements to the application, or
corrections to issues in the deployed application, require redeployment to either the
test deployment environment, archive file, or application server. The process of
deploying an application from JDeveloper can involve a number of processes.

9.1.1 Developing Applications with the Integrated Application Server
JDeveloper is bundled with an integrated application server called Integrated
WebLogic Server and a default connection called IntegratedWebLogicServer is
defined for it. The integrated application server is a Java EE runtime for services using
deployment optimized for the iterative code development cycle. You can use it for
running and testing JDeveloper applications and projects as Java EE applications and
modules within a Java EE container, as well as for post-run services such as launching
a browser or tester. JDeveloper has a default connection to the integrated application
server and does not require any deployment profiles or descriptors. In most cases,
deploying to the integrated application server is a one-click operation, for example,
running a web service by choosing Run from the right-mouse menu of the web service
in the Application Navigator, or running an application by choosing Run from the
JDeveloper main menu.

You debug the application using the features described in Chapter 7, "Building,
Running and Debugging Applications."

9.1.2 Developing Applications to Deploy to Standalone Application Servers
Typically, for deployment to standalone application servers, you test and develop your
application by running it in the integrated application server. You can then test the
application further to more closely simulate the production environment by deploying
it to standalone Oracle WebLogic Server in development mode or to a third-party
application server.

In general, you use JDeveloper to prepare the application or project for deployment
by:

■ Creating a connection to the target application server

■ Creating deployment profiles (if necessary)

■ Creating deployment descriptors (if necessary, and that are specific to the target
application server)

■ Updating application.xml and web.xml to be compatible with the application server
(if required)

■ Migrating application-level security policy data to a domain-level security policy
store

About Deploying Applications

Deploying Applications 9-5

You must already have an installed application server. For Oracle WebLogic Server,
you can use the Oracle 11g Installer or the Oracle Fusion Middleware 11g Application
Developer Installer to install one. For other applications servers, follow the
instructions in the applications server documentation to obtain and install the server.

If necessary, you must prepare the application server by creating a global JDBC data
source for applications that require a connection to a data source.

After the application and application server have been prepared, you can:

■ Use JDeveloper to:

– Directly deploy to the application server using the deployment profile and the
application server connection.

– Deploy to an EAR file using the deployment profile. WAR and MAR files can
be deployed only as part of an EAR file.

■ Use Enterprise Manager, scripts, or the application server's administration tools to
deploy the EAR file created in JDeveloper. For more information, see the Oracle
Fusion Middleware Administrator's Guide for Oracle Application Development
Framework.

9.1.3 Understanding the Archive Formats
A Java EE archive file contains a Java EE module or application. A module consists of
one or more JDeveloper projects of a common component type, which have been
configured for deployment. An application is comprised of one or more modules. An
archive also contains a deployment descriptor, which is an XML file that describes the
configuration of the module or application to the server, and is specific to the type of
server. A deployment descriptor can be server specific or generic for Java EE servers.

JAR, EJB JAR, and WAR files each contain a module consisting of one or more
components. An Enterprise Archive (EAR file) contains an application consisting of
one or more modules.

When you create a web (servlet, JSP, JSF, and ADF Faces) or EJB application and
deploy it via an application server connection, JDeveloper packages it as a WAR or EJB
JAR, which you can optionally wrap in an EAR file. If your application consists of
components of differing types, the components will be packaged into multiple
modules, which you can deploy independently or assembled as an EAR file.

9.1.4 Understanding Deployment Profiles
Deployment profiles are application or project properties that govern the deployment
of a project or application. A deployment profile names the source files, deployment
descriptors, and other auxiliary files that will be packaged, the type and name of the
archive file to be created, dependency information, platform-specific instructions, and
other information.

9.1.5 Understanding Deployment Descriptors
Deployment descriptors define the content and organization of the deployed
applications. Deployment descriptor files that are required by an application depend
on the technologies the application uses and on its target application server.

Running Java EE Applications in the Integrated Application Server

9-6 User's Guide for Oracle JDeveloper

9.1.6 Configuring Deployment Using Deployment Plans
You can control how an application is deployed using a deployment plan which allows
you to make configuration adjustments in the application deployment descriptors
web.xml, weblogic.xml, application.xml, and
weblogic-application.xml.

Deployment plans are controlled using a descriptor called plan.xml. Only Weblogic
deployment descriptor configuration can be customized using plan.xml. The
primary use case for deployment customization is to modify Weblogic specific
application configuration for different servers being deployed without requiring
modification of the base Weblogic descriptor. For more information, see the section on
Deployment Plans in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic
Server.

9.1.7 Deploying from the Java Edition
If you are using the Java edition of JDeveloper, which contains only the core Java and
XML features, the only deployment actions you can perform are:

■ Creating a simple JAR archive which you can then manually deploy to a server.

JDeveloper Java Edition provides the facility to package applications into a JAR
file. The deployment dialog in Java Edition allows for only limited configuration
of standard JAR options such as specifying JAR name, file groupings, or
dependencies on other deployment profiles. Any application that requires more
configuration than this must be deployed from the Studio edition of JDeveloper.

■ Creating deployment profiles as part of extension development. For more
information about creating extensions to JDeveloper, see Oracle Fusion Middleware
Developer's Guide for Oracle JDeveloper Extensions

9.2 Running Java EE Applications in the Integrated Application Server
JDeveloper is installed with Integrated WebLogic Server, an integrated application
server which you can use to test and develop your application. For most development
purposes, the integrated application server will suffice. When your application is
ready to be tested, you can select the run target and then choose the Run command
from the main menu.

When you run the application target, JDeveloper detects the type of Java EE module to
deploy based on artifacts in the projects and application workspace. JDeveloper then
creates an in-memory deployment profile for deploying the application to the
integrated application server. JDeveloper copies project and application workspace
files to an "exploded EAR" directory structure. This file structure closely resembles the
EAR file structure that you would have if you were to deploy the application to an
EAR file. JDeveloper then follows the standard deployment procedures to register and
deploy the "exploded EAR" files into the integrated application server. The "exploded
EAR" strategy reduces the performance overhead of packaging and unpackaging an
actual EAR file.

Note: The first time you start the integrated application server by
running or debugging a project, file, or web service, a dialog is
displayed where you enter a password for the administrator ID on the
default domain. When you click OK, the default domain is created.
You only need to do this once.

Running Java EE Applications in the Integrated Application Server

Deploying Applications 9-7

In summary, when you select the run target and run the application in the integrated
application server, JDeveloper:

■ Detects the type of Java EE module to deploy based on the artifacts in the project
and application

■ Creates a default deployment profile (that is, without customizations) in memory

■ Copies project and application files into a working directory with a file structure
that simulate the "exploded EAR" file of the application.

■ Performs the deployment tasks to register and deploy the simulated EAR into the
integrated application server

■ Automatically migrates identities, credentials, and policies. If you plan to deploy
the application to a standalone Oracle WebLogic Server instance, you will need to
migrate this security information.

The application will run in the base domain in the integrated application server. The
base domain has the same configuration as a base domain in a standalone Oracle
WebLogic Server instance. In other words, this base domain is the same as if you had
used the Oracle® Fusion Middleware Configuration Wizard to create a base domain
with the default options in a standalone Oracle WebLogic Server instance.

JDeveloper extends this base domain with the necessary domain extension templates,
based on the JDeveloper technology extensions. For example, if you have installed
JDeveloper Studio, JDeveloper will automatically configure the integrated application
server environment with the ADF runtime template (JRF Fusion Middleware runtime
domain extension template).

You can explicitly create additional default domains for the integrated application
server which you can use to run and test your applications in addition to using the
default domain. Open the Application Server Navigator, right-click
IntegratedWebLogicServer and choose Create Default Domain.

9.2.1 Understanding the Integrated Application Server Log Window
The output messages generated when running or debugging an application in the
integrated application server are displayed in a log window which has a title of either
Running: IntegratedWebLogicServer or Debugging: IntegratedWebLogicServer.

The content of the Integrated WebLogic Server Log Window includes:

■ Status log messages about the server and the applications running on the server

■ Output from the integrated application server instance’s console (in color)

■ Messages generated from deploying the application to the integrated application
server

■ Messages that log the Java EE archives (EAR, WAR, and EJB JAR) as they are
created. You can click on the links in the log window to browse the generated
archives.

The generated log files are located at
jdeveloper-user-home/DefaultDomain/server/DefaultServer/logs.

Note: When you run the application in the integrated application
server, JDeveloper ignores the deployment profiles that have been
created for the application.

Running Java EE Applications in the Integrated Application Server

9-8 User's Guide for Oracle JDeveloper

You can configure diagnostic logging parameters in the logging.xml file. Transient
loggers can only be added while the server is running in debug mode.

You can control the level of information sent to the log file using the -verbose
element in the jsp-descriptor and logging elements of weblogic.xml. For
more information, see the weblogic.xml descriptor elements information in Oracle
Fusion Middleware Developing Web Applications, Servlets, and JSPs for Oracle WebLogic
Server

9.2.2 Rules Governing Deployment to the Integrated Application Server
Deployment to the integrated application server uses default deployment profiles
which rely on project metadata for the default mappings. Default contributors to the
profiles are based on project dependencies, and the rules governing dependencies are:

1. If project A depends on the build output of project B, then the build output of
project B is merged into project A. If project A is a web application, this means the
build outputs of project A and project B are both copied into WEB-INF/classes
of the resulting WAR.

Merging implies that you can only have one copy of any particular URI, because it
can only exist once within WEB-INF/classes.

2. If project A depends on the deployment profile of project B, for example a JAR
profile, then the result of that deployment profile is included in the WEB-INF/lib
of the resulting WAR.

3. A project containing a WEB-INF/web.xml is recognized as a web project and a
default WAR profile is created for it.

4. A project that contains at least one session EJB bean is recognized as an EJB project
and a default EJB JAR profile is created for it.

5. All libraries marked Deploy by Default for a web project are deployed as a web
application library (in the WEB-INF/lib of the WAR).

6. All libraries marked Deploy by Default for an EJB project are deployed as an
application library (in the lib of the EAR).

7. If an EJB Project A depends on the build output of Project B, the build output (e.g.
classes directory) of Project B is merged with the build output of Project A and
deployed in the root directory of the EJB JAR.

9.2.3 Working with Integrated Application Servers
The definition of an integrated application server controls the interaction of the
instance with JDeveloper and your computer system.

JDeveloper is bundled with an integrated application server called Integrated
WebLogic Server, and a default instance called IntegratedWebLogicServer is
defined for it. All applications are bound by default to
IntegratedWebLogicServer.

You can modify the properties of the integrated application server that an application
is bound to.

Note: WebLogic Server domains used as integrated application
servers must be collocated on the same host as the JDeveloper process.

Running Java EE Applications in the Integrated Application Server

Deploying Applications 9-9

To modify the properties of the integrated application server that an application
is bound to:
1. In the Application Navigator, select a project.

2. Choose Application > Application Properties.

3. Select Run from the left panel.

4. Select an existing integrated application server in Bind Application to Server
Instance, or click Application Server Properties to open the Application Server
Properties dialog, where you can change some properties for the integrated
application server.

5. Define the other options for the integrated application server, including startup
and shutdown options. For more information, press F1 or click Help from within
the dialog.

You can create a new integrated application server instances.

9.2.3.1 How to Create a New Integrated Application Server Connection

To define an integrated server connection:
1. In the Application Server Navigator, right-click Application Servers and choose

New Application Server. The Create Application Server Connection wizard
opens. For more information at any time, press F1 or click Help from within the
wizard.

2. On the Usage page, select Integrated Server. If you want to manage the server
from within JDeveloper, select Let JDeveloper manage the lifecycle for this
Server Instance on the Name and Domain page, and provide the Domain and
Server Instance directories.

3. Complete the wizard.

9.2.3.2 How to Run and Debug with an Integrated Application Server
By default, the integrated application server is automatically started when you run or
debug an EJB, servlet, HTML, web service, or JSP project. Alternatively, you can start
the integrated application server by clicking Start Server Instance or Debug Server
Instance from the Run menu.

After it has been started, an integrated application server does not terminate
automatically when you terminate a running Java EE application. Therefore, you can
select an object, such as a JSP or a servlet in the Application Navigator, and choose an
option from the Run menu.

You can run or debug a working set, which is a group of files created by applying a
named filter to a project, by choosing the Use Current Working Set (Java JEE Only)
option from the Run menu.

Once this is enabled, when you select Run or Debug from the context menu of the
source editor or from a node in the Application Navigator, it is the current working set
that is run or debugged.

Only a single integrated application server can be run at any given time. Thus, if you
attempt to start another instance of the server, JDeveloper will shut down the previous
instance and restart the instance in order to perform the requested task on the selected
icon in the Navigator. After an integrated application server is started, multiple
applications can run on it independently of each other. If an application is running,
rerunning the application redeploys the up-to-date version of the application.

Running Java EE Applications in the Integrated Application Server

9-10 User's Guide for Oracle JDeveloper

To run in an integrated application server, an application must be bound to a server
instance. JDeveloper is supplied with a WebLogic Server domain, and a default server
instance named DefaultServer is defined for it. The unique integrated application
server connection defined for this integrated application server is called
IntegratedWebLogicServer, and has the Domain Home defined as the system
directory $SYSTEM_ROOT/DefaultDomain. All applications are bound by default to
IntegratedWebLogicServer.

9.2.3.3 Working with the Default Domain
If you have not explicitly created the integrated application server’s default domain, it
will automatically be created with default settings when you start the server by
running or debugging an application.

Alternatively, you can explicitly create the default domain from the Application Server
Navigator.

If necessary, you can delete the existing default domain so that you can create it again
to use new values.

To explicitly create the integrated application server’s default domain:
1. If necessary, open the Application Server Navigator by choosing View >

Application Server Navigator.

2. Right-click the integrated application server connection
IntegratedWebLogicServer and choose Create Default Domain. The
Configure Default Domain dialog opens, where you can accept the defaults, or
explicitly set other values, such as choosing a different listen address. For more
information at any time, click Help or press F1 from the Configure Default
Domain dialog.

When you install extensions to JDeveloper you may have to update the integrated
application server’s default domain.

To update the integrated application server’s default domain:
1. necessary, open the Application Server Navigator by choosing View >

Application Server Navigator.

2. Right-click the integrated application server connection
IntegratedWebLogicServer and choose Update Default Domain.

If you have already created the default domain, but you need to use specific settings
you can delete the existing default domain and create it again.

To delete the integrated application server’s default domain:
■ With JDeveloper closed, locate the system folder in the file system and delete it.

When you restart JDeveloper, you can create a new default domain for the
integrated application server.

After the server has started, click the Run Manager tab in the navigator, or select Run
Manager from the View menu, to display the integrated application server process.

Note: You can run more than one application simultaneously on a
server in run mode, however you can only debug one application at a
time in debug mode. To return JDeveloper back into non-debug
editing mode, the integrated application server must be shut down.

Running Java EE Applications in the Integrated Application Server

Deploying Applications 9-11

9.2.3.4 One-Click Running of Applications in the Integrated Application Server
You can test an application by running it in the integrated application server. You can
also set breakpoints and then run the application with the integrated application
server in debug mode. For more information about running and debugging, see
Chapter 7, "Building, Running and Debugging Applications."

To run an application in the integrated application server:
1. In the Application Navigator, select the run target, for example a project, web

service, unbounded task flow, or JSF page.

2. Right-click the run target and choose Run or Debug. Alternatively, choose Run or
Debug from the main menu.

The first time you start the integrated application server by running or debugging
an application, a dialog is displayed where you enter a password for the default
user weblogic on the default domain. When you click OK, the default domain is
created. You only need to do this once.

Application-level and Global Data Sources
If you are deploying to an integrated application server, you can use application level
data sources or global data sources.

For both one-click deployment to an integrated application, JDeveloper ensures that
your web application web.xml, or EJB application ejb-jar.xml, contains the
necessary <resource-ref> entry to identify an application resource name. The
name is jdbc/connection-nameDS, where connection-name is the name of the
application resources connection.

The application looks up this data source using the application-specific resource JNDI
namespace of java:comp/env/jdbc/connection-nameDS, and it finds this
resource because web.xml contains the <resource-ref> entry for
jdbc/connection-nameDS.

To use application level data sources in one-click deployment to Integrated WebLogic
Server, select Auto Generate JDBC Connections When Running Application in
JDeveloper on the WebLogic page of the Application Properties dialog (available from
the Application menu). This:

■ Generates a file called connection-name-jdbc.xml in the /META-INF
directory of the application's EAR file

■ Creates a corresponding <module> entry in the weblogic-application.xml
file in META-INF that references this JDBC module

If the application uses more than one application resources database connection, then a
connection-name-jdbc.xml file will be created for each, and there will be a
similar number of <module> entries in the weblogic-application.xml file.

To use global data sources in one-click deployment to Integrated WebLogic Server,
deselect Auto Generate JDBC Connections When Running Application in
JDeveloper on the WebLogic page of the Application Properties dialog (available from
the Application menu), and:

1. Connect to the Integrated WebLogic Server Administration Console, described in
Section 9.2.3.9, "How to Log In to the Integrated WebLogic Server Administration
Console"

2. Create the global data source in a similar manner to creating one on Oracle
WebLogic Server, see Section 9.3.6.4, "Setting Up JDBC Data Sources on Oracle
WebLogic Server"

Running Java EE Applications in the Integrated Application Server

9-12 User's Guide for Oracle JDeveloper

9.2.3.5 How to Start the Integrated Application Server
By default, the integrated application server is automatically started when you run or
debug an EJB, servlet, or JSP project. Therefore, you can select an object, such as a JSP
or a servlet in the Navigator, and choose an option from the Run menu.

Only a single integrated application server can be run at any given time. Thus, if you
attempt to start another instance of the server, JDeveloper will shut down the previous
instance and restart the instance in order to perform the requested task on the selected
icon in the Navigator.

After the server has started, click the Run Manager tab in the Navigator to display the
integrated application server process. You can open the Run Manager by choosing
View > Run Manager from the main menu.

To start an integrated application server:
1. If necessary, open the Application Server Navigator by choosing View >

Application Server Navigator.

2. Right-click the Integrated WebLogic Server connection and choose Start Server
Instance.

Alternatively, choose Run > Start Server Instance from the main menu.

To start an integrated application server in debug mode:
1. If necessary, open the Application Server Navigator by choosing View >

Application Server Navigator.

2. Right-click the Integrated WebLogic Server connection and choose Debug Server
Instance.

Alternatively, choose Run > Debug Server Instance from the main menu.

9.2.3.6 How to Cancel a Running Deployment
If you are running a large application on the integrated application server, you can
cancel it before it has finished deploying.

To cancel a running deployment:
■ n the Log Window, click the Terminate button and choose the profile or

application you wish to cancel.

9.2.3.7 How to Terminate an Integrated Application Server
After an integrated application server has started, the integrated application server
process appears in the Run Manager. For more information, see Section 19.2,
"Understanding the Run Manager."

You can open the Run Manager by choosing View > Run Manager from the main
menu.

Note: The first time you start the integrated application server by
running or debugging a project, file, or web service, a dialog is
displayed where you enter a password for the administrator ID on the
default domain. When you click OK, the default domain is created.
You only need to do this once.

Running Java EE Applications in the Integrated Application Server

Deploying Applications 9-13

The default behavior is to undeploy all the applications, but you can change the
behavior.

To shutdown the running integrated application server:
Do one of the following:

■ Choose Run > Terminate > IntegratedWebLogicServer (or the integrated
application server connection name) from the main menu.

■ Select the integrated application server name from the Terminate dropdown list in
the toolbar.

■ Choose View > Run Manager from the main menu. Right-click the integrated
application server name and choose Terminate.

■ Choose File > Exit to exit JDeveloper. Click Yes when prompted to terminate the
instance's process.

■ In the Application Server Navigator, right click on the integrated application
server connection and select Terminate Server Instance.

To force shutdown of Integrated WebLogic Server:
■ If you need to force shutdown of Integrated WebLogic Server, press the Terminate

button twice.

9.2.3.8 How to Configure Startup and Shutdown Behavior for Integrated
Application Servers
You can configure startup and shutdown behavior for integrated application server
connections.

To configure the startup and shutdown behavior for an integrated application
server:
1. If necessary, open the Application Server Navigator by choosing View >

Application Server Navigator.

2. Right-click the integrated application server connection and choose Properties to
open the Application Server Properties dialog. For more information at any time,
press F1 or click Help from within the dialog.

If you are viewing the properties of the default integrated application server, you
can only change settings on the Configuration, Shutdown and Launch Settings
tabs in the dialog. Otherwise you can edit everything except the connection name.

9.2.3.9 How to Log In to the Integrated WebLogic Server Administration Console
The integrated application server is an implementation of Oracle WebLogic Server and
as such you can connect to the server’s Administration Console.

Note: Applications deployed on an integrated application server are
automatically undeployed whenever the integrated application server
is terminated.

Connecting and Deploying Java EE Applications to Application Servers

9-14 User's Guide for Oracle JDeveloper

To launch and log in to the integrated application server Administration
Console:
1. If necessary, open the Application Server Navigator by choosing View >

Application Server Navigator.

2. Right-click IntegratedWebLogicServer and select Launch Administrative
Console. A browser instance opens at the login page, which is
http://host:port/console.

For example, if the default configuration is used, the browser uses
http://localhost:7001/console.

3. Log in using the username for the default domain and password you used when
the integrated application server was launched for the first time.

The integrated application server is an implementation of Oracle WebLogic Server, so
for more information about the integrated application server Administration Console
refer to the Administration Console Online Help, which is available from the
WebLogic Server online documentation in your JDeveloper installation, or from the
Administration Console.

9.3 Connecting and Deploying Java EE Applications to Application
Servers

Before you deploy an application to a standalone application server, you must perform
prerequisite tasks within JDeveloper to prepare the application for deployment.

Figure 9–2 show the process flow to prepare the application for deployment. After the
application has been prepared and the application server has been prepared, you can
proceed to deploy the application.

Note: To log in to the Administration Console, you must have the
integrated application server running from JDeveloper, for example:

■ By starting Integrated WebLogic Server from the Application
Server Navigator.

■ By running an application.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 9-15

Figure 9–2 Preparing the Application for Deployment Flow Diagram

9.3.1 How to Create a Connection to the Target Application Server
You can deploy applications to the application server via JDeveloper application
server connections.

Before you begin:
■ Ensure that the application server is installed and started.

■ If you are working behind a proxy server you need to configure JDeveloper to
recognize the proxy server:

1. Choose Tools > Preferences to open the Preferences dialog.

2. Select Use HTTP Proxy Server and enter the hostname and port for the proxy
server.

Exceptions is populated with values from your machine. If you are deploying
to a Oracle WebLogic Server configured to use SSL you should add
*.company_name.com to the exception list.

To create a connection to an application server:
1. Launch the Application Server Connection wizard.

You can:

■ In the Application Server Navigator, right-click Application Servers and
choose New Application Server Connection.

■ In the New Gallery, expand General, select Connections and then
Application Server Connection, and click OK.

On the Usage page of the wizard ensure that Standalone Server is selected,
and click Next.

■ In the Resource Palette, choose New > New Connections > Application
Server.

2. In the Create AppServer Connection dialog Usage page, select Standalone Server.

3. In the Name and Type page, enter a connection name.

4. In the Connection Type dropdown list, choose:

Connecting and Deploying Java EE Applications to Application Servers

9-16 User's Guide for Oracle JDeveloper

■ WebLogic 10.3 to create a connection to Oracle WebLogic Server

■ JBoss 5.x to create a connection to JBoss

■ Tomcat 6.x to create a connection to Tomcat

■ WebSphere Server 7.x to create a connection to IBM WebSphere Server

5. Click Next.

6. On the Authentication page, enter a user name and password for the
administrative user authorized to access the application server.

7. Click Next.

8. On the Configuration page, enter the information for your server:

For WebLogic:

■ The Oracle WebLogic host name is the name of the WebLogic Server instance
containing the TCP/IP DNS where your application (.jar,.war,.ear) will
be deployed.

■ In the Port field, enter a port number for the Oracle WebLogic Server instance
on which your application (.jar,.war,.ear) will be deployed.

If you don’t specify a port, the port number defaults to 7001.

■ In the SSL Port field, enter an SSL port number for the Oracle WebLogic
Server instance on which your application (.jar,.war,.ear) will be
deployed.

Specifying an SSL port is optional. It is required only if you want to ensure a
secure connection for deployment.

If you don’t specify an SSL port, the port number defaults to 7002.

■ Select Always Use SSL to connect to the Oracle WebLogic Server instance
using the SSL port.

■ Optionally enter a WebLogic Domain only if Oracle WebLogic Server is
configured to distinguish non administrative server nodes by name.

For JBoss:

■ Enter or browse to the location of the JBoss deploy directory, where your
application files (.jar,.war,.ear) are.

■ If you are using JMX, Select Enable JMX for this connection. (optional).

■ In the Host Name field, enter host name of the target server. The default is the
machine name.

■ In the RMI Port field, enter the port number of JBoss’s RMI connector port.
The default is 19000.

Note: JMX configuration is optional and is not required for
connecting to the JBoss Application Server. JMX is only needed for
deploying SOA applications.

You must use the Oracle JMX RMI connector
(oracle-jboss-remoting.sar) on the JBoss server; the standard
JBOSS JMX connector (jmx-remoting.sar) does not work with
JDeveloper.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 9-17

For Tomcat:

■ In the Webapps Directory field enter or browse to the location of the webapps
directory where you place the application .war files.

For WebSphere:

■ In the Host Name field, enter the name of the WebSphere server containing
the TCP/IP DNS where your Java EE applications (.jar, .war, .ear) are
deployed. If no name is entered, the name defaults to localhost

■ In the SOAP Connector Port field, enter the port number. The host name and
port are used to connect to the server for deployment. The default SOAP
connector port is 8879

■ In the Server Name field, enter the name assigned to the target application
server for this connection.

■ In the Target Node field, enter the name of the target node for this connection.
A node is a grouping of Managed Servers. The default is machineNode01,
where machine is the name of the machine the node resides on

■ In the Target Cell field, enter the name of the target cell for this connection. A
cell is a group of processes that host runtime components. The default is
machineNode01Cell, where machine is the name of the machine the node
resides on.

■ In the Wsadmin script location field, enter, or browse to, the location of the
wsadmin script file to be used to define the system login configuration for
your IBM WebSphere application server connection. Note that you should not
use the wsadmin files from the ORACLE_HOME/oracle_
common/common/bin directory, which are not the correct version. The
default location is websphere-home/bin/wsadmin.sh for Unix/Linux
and websphere-home/bin/wsadmin.bat for Windows.

9. Click Next.

10. If you have chosen WebSphere, the JMX page appears. On the JMX page, enter the
JMX information (optional):

■ Select Enable JMX for this connection to enable JMX.

■ In the RMI Port field, enter the port number of WebSphere's RMI connector
port. The default is 2809.

■ In the WebSphere Runtime Jars Location field, enter or browse to the location
of the WebSphere runtime JARs.

■ In the WebSphere Properties Location (for secure MBEAN access) field, enter
or browse to the location of the file that contains the properties for the security
configuration and the mbeans that are enabled. This field is optional.

11. Click Next.

12. On the Test page, click Test Connection to test the connection.

Note: JMX configuration is optional and is not required for
connecting to the WebSphere Application Server. JMX is only needed
for deploying SOA applications.

Connecting and Deploying Java EE Applications to Application Servers

9-18 User's Guide for Oracle JDeveloper

JDeveloper performs several types of connections tests. The JSR-88 test must pass
for the application to be deployable. If the test fails, return to the previous pages of
the wizard to fix the configuration.

13. Click Finish.

How to Launch Oracle WebLogic Server Administration Console
You can launch and connect to the Oracle WebLogic Server Administration Console
from the Application Server Navigator.

1. In the Application Server Navigator, right-click the name of the connection to the
Oracle WebLogic Server instance, and choose Launch Admin Console. A browser
instance opens at the login page, which is http://host:port/console.

For example, if the default configuration is used, the browser uses
http://localhost:7001/console.

2. Log in using the username and password you used when creating the connection
to the Oracle WebLogic Server instance. If you are launching the Administration
Console for Integrated WebLogic Server, the default user is weblogic and
password you entered when the default domain was created.

For more information about the WebLogic Server Administration Console, refer to the
Administration Console Online Help, which is available from the WebLogic Server
online documentation in your JDeveloper installation, or from the Administration
Console.

9.3.2 How to Create and Edit Deployment Profiles
A deployment profile defines the way the application is packaged into the archive that
will be deployed to the target environment. The deployment profile:

■ Specifies the format and contents of the archive file that will be created

■ Lists the source files, deployment descriptors, and other auxiliary files that will be
packaged

■ Describes the type and name of the archive file to be created

■ Highlights dependency information, platform-specific instructions, and other
information

9.3.2.1 About Deployment Profiles
Deployment to application servers uses deployment profiles which rely on project
metadata for the default mappings. Default contributors to the profiles are based on
project dependencies, although you can customize the deployment profiles to change
them.

The rules governing dependencies are:

1. If project A depends on the build output of project B, then the build output of
project B is merged into project A. If project A is a web application, this means the
build outputs of project A and project B are both copied into the WEB-INF/classes
of the resulting WAR.

Merging implies that you can only have one copy of any particular URI, because it
can only exist once within WEB-INF/classes.

Note: To log in to the console, the server must be started.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 9-19

2. If project A depends on the deployment profile of project B, for example a JAR
profile, then the result of that deployment profile is included in the WEB-INF/lib
of the resulting WAR.

3. All libraries marked Deploy by Default for a web project are deployed as a web
application library (in the WEB-INF/lib of the WAR).

4. All libraries marked Deploy by Default for an EJB project are deployed as an
application library (in the lib of the EAR).

5. If an EJB Project A depends on the build output of Project B, the build output (e.g.
classes directory) of Project B is merged with the build output of Project A and
deployed in the root directory of the EJB JAR.

Application level deployment profiles are:

■ EAR files: Used to deploy the Java EE enterprise archive (EAR) file. The EAR file
consists of the application’s assembled WAR, EJB JAR and client JAR files.

■ MAR files: Used for deploying metadata archive files for seeded customizations
or base metadata in an MDS repository in the application server. For more
information about MAR files, refer to the appropriate developer’s guide for the
Oracle® Fusion Middleware product you are using.

Project level Java EE deployment profiles are:

■ ADF Library JAR file: Used for deploying ADF components as an application JAR
file, which can be reused in ADF applications, or it can be used to build other ADF
libraries.

■ Business Components archive file: Creates a simple archive file for deploying
ADF Business Components.

■ Business Components EJB Session Bean: Creates a profile for deploying ADF
Business Components as an EJB session bean.

■ Business Components Service Interface: Creates a profile for deploying ADF
Business Components as a service interface.

■ Client JAR files: Used for deploying the standard Java EE client JAR file.

■ EJB JAR files: Used to deploy the Java EE EJB module (EJB JAR). The EJB JAR
contains the EJB components and the corresponding deployment descriptors.

■ Extension JAR file: Creates a profile for deploying an extension as a JAR file.

■ JAR file: Creates a simple JAR archive from a project.

■ OSGi bundle: Creates an OSGi bundle that can be deployed to an OSGi container.
You use this when you create extensions to JDeveloper.

■ RAR file: Creates a profile for deploying a Java EE connector RAR file.

■ Shared Library JAR file: Creates a profile for deploying a simple archive, which
can be a JAR of ZIP file, to the file system or as a shared library to a remote server.

■ Taglib JAR file: Creates a profile for deploying custom tag libraries to a JAR file.

■ WAR files: Used to deploy the JAVA EE web module (WAR). The WAR consists of
the web components (JSPs and servlets) and the corresponding deployment
descriptors.

9.3.2.2 Creating Deployment Profiles
Deployment profiles can be created in various ways:

Connecting and Deploying Java EE Applications to Application Servers

9-20 User's Guide for Oracle JDeveloper

■ Use the Deployment page of the Application Properties dialog, which can be
opened from:

– The Application menu on the JDeveloper toolbar.

– The context menu of an application.

– The dropdown list on the Application Navigator toolbar.

■ Use the Deployment page of the Project Properties dialog, which can be opened
from:

– Select the project in the Application Navigator, and choose Project Properties
from the Application menu on the JDeveloper toolbar.

– The context menu of a project in the Application Navigator.

■ Use one of the wizards from the General - Deployment Profiles category of the
New Gallery (choose New from the File menu to open the New Gallery). The new
deployment profile will be added to your project properties. To create application
level profiles, invoke the New Gallery at application level. To create project level
profiles, invoke the New Gallery at project level.

■ If your project has a web.xml file, you can right-click it and choose Create WAR
Deployment Profile.

■ If your project is EJB 3.0, you can right-click the bean class and choose Create EJB
JAR Deployment Profile.

■ If your project has an application.xml, you can right-click it and choose
Create EAR Deployment Profile.

To modify an existing deployment profile

■ right-click the project in the Application Navigator and choose Project Properties
then choose Deployment in the tree structure in the wizard, then select the
deployment profile and choose Edit.

■ right-click the application in the Application Navigator and choose Application
Properties then choose Deployment in the tree structure in the wizard, then select
the deployment profile and choose Edit.

To activate a deployment profile:

■ For a project level deployment profile, right-click the project in the Application
Navigator then choose Deploy > deployment profile.

■ For an application deployment profile, right-click the application in the
Application Navigator then choose Deploy > deployment profile. Alternatively,

– Right-click the application in the Application Navigator then choose Deploy >
deployment profile.

– Choose Deploy > deployment profile from the context menu of an
application.

– Choose Deploy > deployment profile from the dropdown list on the
Application Navigator toolbar.

The project and any projects on which it depends will be compiled and packaged.

You may find that the application you created already contains the deployment profile
you need, for example if you create a web-based project you should already have a
default WAR deployment profile which includes the dependent model projects it
requires.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 9-21

To create a deployment profile:
1. For an application level deployment profile, in the Application Navigator,

right-click the application and choose New.

For a project level deployment profile, in the Application Navigator, right-click the
project that you want to deploy and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then choose
the deployment profile type you want, and click OK.

If you don't see Deployment Profiles in the Categories tree, click the All Features
tab.

3. Choose the deployment profile type you want to create, and click OK. For
example, for an EAR deployment profile:

■ Select Application Assembly and then in the Java EE Modules list, select all
the project profiles that you want to include in the deployment, including any
WAR profiles.

■ Select Platform, select the application server you are deploying to, and then
select the target application connection from the Target Connection dropdown
list.

4. In the Edit Deployment Profile Properties dialog, configure the profile by setting
property values. For example, you may want to change the file groups that are
included in the profile. When you have finished, click OK.

Deployment profiles are available from the Application Properties dialog, for
application level deployment profiles, or from the Project Properties dialog, for project
level deployment profiles, and you can edit them or delete them.

9.3.2.3 Viewing and Changing Deployment Profile Properties
After you have created a deployment profile, you can view and change its properties.

To edit or delete a deployment profile:
1. For an application level deployment profile, choose Application > Application

Properties to open the Application Properties dialog.

For a project level deployment profile, choose Application > Project Properties to
open the Project Properties dialog.

2. Click Deployment in the left panel to open the Deployment page.

3. Choose the deployment profile you want to edit or delete, and click:

■ Edit to open the Edit Deployment Profile Properties dialog.

■ Delete to delete the deployment profile.

9.3.2.4 Configuring Deployment Profiles
Configuring is the process of assembling an archive file from its component files.
Configuring is specified in the File Groups branch of deployment profile properties
dialogs.

The File Groups branch consists of a list of file groups, each specifying some
components. The packaged archive will be the union of all the file groups. The order of
the file groups resolves name collisions: if two files have the same name, the one from
the file group higher in the list is included, and the one from the lower file group is
omitted.

Connecting and Deploying Java EE Applications to Application Servers

9-22 User's Guide for Oracle JDeveloper

A newly created deployment profile will include one or more predefined file groups.
You can add, delete, and edit file groups.

File groups are defined by a set of contributors pruned by a set of filters. Contributors
are source files, JAR files, and directories that are selected for inclusion. Filters are
rules that are applied to the contributors or contributor's component subdirectories
and files to identify the set and files that will be packaged. There are three kinds of file
groups:

■ The Packaging file group type allows you to select contributors, project directories
and other directories and JAR files, and filters. The file group mechanism is
flexible and transparent, and is appropriate for most projects.

■ The Dependency analysis file group type allows you to select contributors that are
project files and their dependencies. Profiles migrated from previous versions will
contain a Dependency Analysis file group.

■ The Libraries file group type allows you to select contributors that are project
libraries. A libraries file group is created for WAR deployment profiles. Libraries
files groups are useful in other projects that need to repackage existing JAR files.

9.3.3 How to Create and Edit Deployment Descriptors
Deployment dependencies between the components of an application are stated in
their project's deployment profiles. In a project's deployment profile, name the profiles
for the projects that are immediately upstream. When a deployment profile is activated
for deployment, its dependencies will first be deployed.

Set deployment profile dependencies on the deployment profile's Profile
Dependencies page. Only deployment profiles in the current workspace are listed and
available for selection. Click the Help button for more information. The various profile
dependencies you can select include:

■ Profile-to-profile dependency

■ Profile-to-JAR dependency

■ Profile-to-WAR dependency

■ Profile-to-RAR (Resource Archive) dependency

When deploying a profile contained in a project that has project-to-profile
dependencies on other profiles, at deploy-time the profile incorporates the
dependencies specified in the project. For example, if Project1.jpr contains
Servlet1.java and depends on ejb1.jar, and project2.jpr contains
MySessionEJB and ejb1.jar, then deploying the first project will result in an EAR
file containing both webapp1.war and ejb1.jar.

When creating profile dependencies between JAR, WAR, and EJB JAR modules that
share common JAR files, you can use the META-INF/MANIFEST.MF Class-Path
attribute to link JAR files together at deploy-time. From the deployment profile
properties JAR options page, select Include Manifest File
(META-INF/MANIFEST.MF). Doing so causes a single shared copy of any common
JARs to be included in the EAR file.

Dependency projects can have dependencies of their own, but cyclical dependencies
should be avoided. When JDeveloper encounters a circular dependency it will attempt
to deploy anyway, but a warning will be displayed in the log window.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 9-23

9.3.3.1 About Deployment Descriptors
Deployment descriptors are server configuration files that define the configuration of
an application for deployment and that are deployed with the Java EE application as
needed. The deployment descriptors that a project requires depend on the
technologies the project uses and on the type of the target application server.
Deployment descriptors are XML files that can be created and edited as source files,
but for most descriptor types, JDeveloper provides dialogs or an overview editor that
you can use to view and set properties. If you cannot edit these files declaratively,
JDeveloper opens the XML file in the source editor for you to edit its contents.

In addition to the standard Java EE deployment descriptors (for example,
application.xml and web.xml), you can also have deployment descriptors that
are specific to your target application server. For example, if you are deploying to
Oracle WebLogic Server, you can also have weblogic.xml,
weblogic-application.xml, and weblogic-ejb-jar.xml.

The essential descriptors are created by the wizards that create deployment profiles.
Add other descriptors only if you wish to override default behavior. In some cases
descriptors will be created and included in archive files as they are deployed.

Deployment descriptors can also be created from the New Gallery. Deployment
descriptors are placed in a META-INF subfolder of a project's Application Sources or
WEB-INF subfolder of a project's Web Contents folders.

Each Java EE standard deployment descriptor is extended by a corresponding Oracle
WebLogic Server-specific descriptor. Table 9–1 provides a description of these files and
illustrates how they relate to one another.

Table 9–1 Deployment Descriptors

Java EE Standard
Descriptors Oracle WebLogic Server Proprietary Descriptors

application-client.xm
l

Describes the EJB modules
and other resources used by
a Java EE application client
deployed as an archive.

weblogic-appclient.xml

The file format is defined in weblogic-appclient.xsd.

For more information, see the chapter about client application
deployment descriptor elements in Oracle Fusion Middleware
Programming Stand-alone Clients for Oracle WebLogic Server.

application.xml

Specifies the components of
a Java EE application, such
as EJB and web modules,
and can specify additional
configuration for the
application as well. This
descriptor must be included
in the /META-INF directory
of the application's EAR file.

weblogic-application.xml

The file format is defined in weblogic-application.xsd.

For more information, see Oracle Fusion Middleware Programming
XML for Oracle WebLogic Server.

Connecting and Deploying Java EE Applications to Application Servers

9-24 User's Guide for Oracle JDeveloper

ejb-jar.xml

Defines the specific
structural characteristics
and dependencies of the
Enterprise JavaBeans within
a JAR, and provides
instructions for the EJB
container about how the
beans expect to interact with
the container.

weblogic-ejb-jar.xml

The format of this file is defined in weblogic-ejb-jar.xsd.

For more information, see Oracle Fusion Middleware Programming
Enterprise JavaBeans for Oracle WebLogic Server.

persistence-configuration.xml

For EJB 3.0 modules. The format of this file is defined in
persistence-configuration.xsd.

For more information, see Oracle Fusion Middleware Programming
Enterprise JavaBeans, Version 3.0 for Oracle WebLogic Server.

weblogic-cmp-rdbms-jar.xml

For EJB 2.1 modules. The format of this file is defined in
weblogic-rdbms20-persistence.xsd.

ra.xml

Contains information on
implementation code,
configuration properties
and security settings for a
resource adapter packaged
within a RAR file.

weblogic-ra.xml

The format of this file is defined in weblogic-ra.xsd.

For more information, see tOracle Fusion Middleware Programming
Resource Adapters for Oracle WebLogic Server.

web.xml

Specifies and configures a
set of Java EE web
components, including
static pages, servlets, and
JSP pages. It also specifies
and configures other
components, such as EJBs,
that the web components
might call. The web
components might together
form an independent web
application and be deployed
in a standalone WAR file.

weblogic.xml

The format of this file is defined by weblogic-web-app.xsd.

For more information, see Oracle Fusion Middleware Programming
XML for Oracle WebLogic Server.

Table 9–1 (Cont.) Deployment Descriptors

Java EE Standard
Descriptors Oracle WebLogic Server Proprietary Descriptors

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 9-25

9.3.3.2 About Library Dependencies
Dependent libraries are any library needed for a module to compile and run. In the
Libraries and Classpath page of the Project Properties dialog for the project containing
the library, dependent libraries are shown as available for export.

In an application, dependent libraries can be in the following projects:

■ Projects of the current module's profile, that is the profile container.

■ Projects that the profile container depends on.

■ Projects associated with any profile dependency for this module's profile
(recursively to its profile and project dependencies).

The example below illustrates project dependencies (arrows on the left) and profile
dependencies (arrows on the right).

None. module-name-jdbc.xml

Defines data sources to be used in the deployed application.

The format of this file is defined by weblogic-jdbc.xsd.

For more information, see Oracle Fusion Middleware Configuring
and Managing JDBC for Oracle WebLogic Server.

plan.xml

The format of this file is defined by deployment-plan.xsd.

Contains a list of name/value pairs, and a description of the
various deployment descriptors in an application. It allows
administrators to override values in deployment descriptors.

For more information, see Oracle Fusion Middleware Deploying
Applications to Oracle WebLogic Server.

weblogic-diagnostics.xml

The format of this file is defined by
weblogic-diagnostics.xsd.

Used in the WebLogic Server Administration Console to create
or modify diagnostic monitors in the diagnostic application
module.

For more information, see Oracle Fusion Middleware Configuring
and Using the Diagnostics Framework for Oracle WebLogic Server.

weblogic-jms.xml

The format of this file is defined by weblogic-jms.xsd.

Used to configure JMS drivers in the Oracle WebLogic Server.

For more information, see Oracle Fusion Middleware Programming
JMS for Oracle WebLogic Server.

weblogic-webservices.xml

The format of this file is defined by
weblogic-webservices.xsd.

For more information, see Oracle Fusion Middleware WebLogic Web
Services Reference for Oracle WebLogic Server.

Table 9–1 (Cont.) Deployment Descriptors

Java EE Standard
Descriptors Oracle WebLogic Server Proprietary Descriptors

Connecting and Deploying Java EE Applications to Application Servers

9-26 User's Guide for Oracle JDeveloper

Figure 9–3 Dependencies Between Projects and Deployment Profiles

Project dependencies are recursive at deployment time, even though they are not at
compile time, which is why the libraries from JavaProject are considered
dependent libraries. WebProfile, which represents a web module, has the following
dependent libraries:

■ EjbDepLib (a library from a project dependency to WebProject)

■ EjbDep.jar (a library jar from a project dependency to WebProject)

■ JavaDepLib (a library from a recursive project dependency to JavaProject)

■ JavaDep.jar (a library jar from a recursive project dependency to
JavaProject)

■ SampleLib (a library from a profile dependency)

■ Sample.jar (a library jar from a profile dependency)

■ OtherLib (a library from a recursive profile dependency)

■ Other.jar (a library jar from a recursive profile dependency)

9.3.3.2.1 Resolved and Unresolved Libraries Dependent Libraries can either be resolved
or unresolved. Dependent libraries are considered unresolved until they are included
in an archive and placed on the classpath, thereby making the library content available
to classes that need to reference it.

For example, a WAR profile resolves libraries by selecting those libraries in a library
file group contributor where the target output directory is WEB-INF\lib. This ensures
that the WAR archive created will include those libraries in the archive’s
WEB-INF\lib directory and thereby including the library content on the WAR
archive’s classpath.

When a library is not resolved by a deployment profile, this profile will expose the
unresolved library in the application hierarchy so that it can be resolved at a higher
level. Consider the situation where libraries contained in an EJB project remain

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 9-27

unresolved from the EJB profile’s perspective. This information will be exposed so that
an EAR profile can ensure that those libraries are resolved at the EAR level (in the EAR
profile’s library file group).

In the illustration above, WebProject has a project dependency to JavaProject, and
JavaProject includes a library called JavaDepLib. You can define a web application
which creates a WAR deployment profile on WebProject. You can then resolve
JavaDepLib in the web module by ensuring that this library is selected in the
WEB-INF\lib library file group of the WAR deployment profile.

9.3.3.2.2 Manifest Entries for Libraries When libraries are included in an EAR archive in a
directory other than the standard \lib or APP-INF\lib, JDeveloper automatically
inserts the required manifest entries into the modules that refer to those libraries.

9.3.3.3 Creating Deployment Descriptors
JDeveloper automatically creates many of the required deployment descriptors for
you. If they are not present, or if you need to create additional descriptors, you can
explicitly create them.

Before you begin:
Check to see whether JDeveloper has already generated deployment descriptors.

To create a deployment descriptor:
1. In the Application Navigator, right-click the project for which you want to create a

descriptor and choose New.

2. In the New Gallery, expand General, select Deployment Descriptors and then a
descriptor type, and click OK.

If you can't find the item you want, make sure that you chose the correct project,
and then choose the All Features tab or use the Search field to find the descriptor.
If the item is not enabled, check to make sure that the project does not already
have a descriptor of that type. A project is allowed only one instance of a
descriptor.

JDeveloper starts the Create Deployment Descriptor wizard and then opens the
file in the overview or source editor, depending on the type of deployment
descriptor you choose.

To inspect or change deployment descriptor properties:
1. In the Application Navigator, select the deployment descriptor.

Note: For EAR files, do not create more than one of any type of
deployment descriptor per application or workspace. Only the
application resources descriptors or descriptors generated at the EAR
level will be used by the runtime. If multiple projects in an application
have the same deployment descriptor, the one belonging to the
launched project will supersede the others. This restriction applies to
application.xml, weblogic-jdbc.xml, jazn-data.xml, and
weblogic.xml.

The best place to create an application-level descriptor is in the
Descriptors node of the Application Resources panel in the
Application Navigator. This ensures that the application is created
with the correct descriptors.

Connecting and Deploying Java EE Applications to Application Servers

9-28 User's Guide for Oracle JDeveloper

2. Right-click and choose Open.

The file will open in an overview editor specific to that descriptor type, or in an
XML editor window.

9.3.3.4 Viewing or Modifying Deployment Descriptor Properties
After you have created a deployment descriptor, you can change its properties by
using JDeveloper dialogs or by editing the file in the source editor. The deployment
descriptor is an XML file (for example, application.xml) typically located under
the Application Sources node.

To view or change deployment descriptor properties:
1. In the Application Navigator or in the Application Resources panel, double-click

the deployment descriptor.

2. In the overview editor, select either the Overview tab or the Source tab, and
configure the descriptor by setting property values.

If the overview editor is not available, JDeveloper opens the file in the source
editor.

9.3.4 How to Configure Global Deployment Preferences
You can set global deployment options in the Deployment page of the Preferences
dialog.

To configure the deployment preferences:
1. Choose Tools > Preferences from the main menu.

2. Select the Deployment node. Configure the deployment options as required. For
more information, click Help.

3. Click OK.

9.3.5 How to Pass Options to Target Connections When Deploying
When deploying in JDeveloper, you can directly access the target application server
connection in order to pass command line options. For example, you can specify the
client JAR which contains the necessary stubs and skeletons on the client side to
support RMI-IIOP deployment. These options would overwrite or bypass the server's
default settings.

To pass options to target application server connections when deploying:
1. If not already done, create the appropriate deployment profile.

2. In the Application Navigator, right-click the project, then choose Properties.

3. Select Deployment in the panel on the left of the Project Properties dialog.

4. Select the deployment profile you want to edit, and click Edit.

Note: Set application-specific and project-specific deployment profile
options via the application properties or project properties. The
Application Properties and Project Properties dialogs are available
from the Application menu

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 9-29

5. Open the page which corresponds to the target connection type for which you
want to pass command options.

6. Edit the page, or click Restore Default to revert to the default settings for the
target server.

For instructions click Help.

7. Click OK when you are finished editing the deployment profile properties.

9.3.6 How to Configure Applications for Deployment
This section describes the tasks you may have to perform for the application to deploy
successfully to an application server.

9.3.6.1 How to Configure an Application for Deployment to Oracle WebLogic Server
When you create applications in JDeveloper You can deploy the packaged application
to Oracle WebLogic Server through an application server connection. A packaged
application will contain a deployment profile that names the files to be deployed,
describes their organization, and specifies the target server. The target Oracle
WebLogic Server instance must be installed locally or mapped to a network drive.

To configure an application for deployment to Oracle WebLogic Server:
1. Set up any JDBC data sources you need on the server. For more information, see

Section 9.3.6.4, "Setting Up JDBC Data Sources on Oracle WebLogic Server."

2. For clients that access EJBs on Oracle WebLogic Server, the following code is
required in the client.

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
env.put(Context.SECURITY_PRINCIPAL, "system");
env.put(Context.SECURITY_CREDENTIALS, "welcome1");
env.put(Context.PROVIDER_URL, "t3://localhost:7001");

3. When deploying to Oracle WebLogic Server, if you use the same EJB in two or
more different applications, the second deployment will usually cause a JNDI
name collision. Therefore, you must rename the JNDI name of the EJB for the
second and any subsequent deployments:

■ Right-click weblogic-ejb-jar.xml, and choose Open.

■ Under Enterprise Java Beans, select the relevant ModuleBM bean. The EJB tab
is displayed on the right.

■ In the EJB tab, change the JNDI Name so that it is different from any other
JNDI Name in weblogic-ejb-jar.xml and any other EJBs that are already
deployed to Oracle WebLogic Server.

■ Deploy the application accessing the EJB to Oracle WebLogic Server. During
deployment, the IDE automatically fills in weblogic.xml with appropriate
EJB references.

9.3.6.2 How to Configure a Client Application for Deployment
A Java EE Client module is packaged as a client JAR file which contains one or more
Java application components and a client deployment descriptor file named
application-client.xml. After you have created the deployment profile and the
deployment descriptor file, you can deploy the client JAR to the application server.

Connecting and Deploying Java EE Applications to Application Servers

9-30 User's Guide for Oracle JDeveloper

To package a client application for deployment:
1. Create a Client JAR File deployment profile for your project.

A profile may have already been created for your project. If you wish to deploy to
multiple targets, create a separate profile for each.

2. Create the application-client.xml deployment descriptor file, if not
already present in your project.

Normally, this file is created with the application client.

9.3.6.3 How to Configure an Applet for Deployment
A standalone applet is packaged as a web archive (WAR) file which contains the
applet, the Applet HTML file, as well as the standard Java EE web deployment
descriptor, web.xml and possibly target-specific deployment descriptors, as well. After
you have created the deployment profile and the appropriate deployment descriptor
files, you can deploy the application to an application server, or as an archive file.

To configure a web application for deployment:
1. Create a WAR file deployment profile for your project.

A profile may have already been created for your project. If you wish to deploy to
multiple targets, create a separate profile for each.

2. Add a web.xml deployment descriptor to your project, if it is not already
present.

Normally, this file is created with the WAR file deployment profile.

9.3.6.4 Setting Up JDBC Data Sources on Oracle WebLogic Server
To avoid passwords being present in plain text in deployed files, JDeveloper uses
password indirection, which means that passwords for the data sources must be set on
the server before the application will run correctly.

You do this using global data sources, which are set up in the Oracle WebLogic Server
Administration Console using the Data Sources link under JDBC.

JDeveloper ensures that your web application web.xml, or EJB application
ejb-jar.xml, contains the necessary <resource-ref> entry to identify an
application resource name. The name is jdbc/connection-nameDS, where
connection-name is the name of the application resources connection.

The application looks up this data source using the application-specific resource JNDI
namespace of java:comp/env/jdbc/connection-nameDS, and it finds this
resource because web.xml contains the <resource-ref> entry for
jdbc/connection-nameDS.

An important control for the files that are generated is the Auto Generate and
Synchronize weblogic-jdbc.xml Descriptors During Deployment field on the
WebLogic page of the Application Properties dialog.

Note: If you encounter problems when deploying a Swing applet
(JApplet), for example, the error Class not found is displayed, this
may indicate that JDeveloper cannot locate the Swing libraries. Your
clients may need to use Sun's Java SE browser plugin or bundle the
Swing libraries for JVMs version 1.1 with your applet. Deployed
applet files must reside in a separate location from any other web
application files you have deployed.

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 9-31

When the Auto Generate field is selected, JDeveloper does the following:

■ Generates an application-name-jdbc.xml file for each connection in the
application resources, and sets the indirect password attribute

<jdbc-driver-params>
<use-password-indirection>true</use-password-indirection>
</jdbc-driver-params>

Upon deployment, JDeveloper determines the JDBC connection password from
the username in application-name-jdbc.xml, and populates the JDBC
connection password using an Mbean.

■ weblogic-application.xml is updated to add each
application-name-jdbc.xml as a module.

■ web.xml (if it exists) has a resource reference to each JDBC JNDI name.

How to Create a Global Data Source on Oracle WebLogic Server
You create a global data source on Oracle WebLogic Server Administration Console.

To set up a global data source:
1. Login to the Oracle WebLogic Server Administration Console. For more

information, see Section 9.3.1, "How to Create a Connection to the Target
Application Server."

2. Click on the Data Sources link under JDBC.

3. On the Summary of JDBC Data Sources page, click New.

4. In the Create a New JDBC Data Source page, enter details of the data source.

The name can be anything.

The JNDI name must be of the form jdbc/connection-nameDS. For example, if
the application has a connection name connection1, the JNDI name is
jdbc/connection1DS.

5. Ensure that the database type is Oracle and that the driver is Oracle’s
Driver (Thin) for Service Connections;Version
9.0.1,9.2.0,10,11.

6. Click Next twice to navigate to the Create a New JDBC Data Source page, where
you enter the connection details.

The database name is the Oracle SID.

The host name is the name of the machine the database is on.

The default port is 1521.

7. Enter the user name and password, for example hr/hr.

8. Click Next and click Test Configuration.

9. Click Next to navigate to the Select Targets page, where you select a target for this
data source. If you fail to select a target, the data source is created but not
deployed.

10. Click Finish.

Deploying to an EAR File to Run on Oracle WebLogic Server
To deploy an application to an EAR file to run on Oracle WebLogic Server, you can:

Connecting and Deploying Java EE Applications to Application Servers

9-32 User's Guide for Oracle JDeveloper

■ Select the Auto Generate and Synchronize weblogic-jdbc.xml Descriptors
During Deployment field, and set up passwords using application level credential
mapping.

■ Alternatively, you can deselect the Auto Generate and Synchronize
weblogic-jdbc.xml Descriptors During Deployment field and set up passwords
by creating a global data source on Oracle WebLogic Server.

If you are deploying using ojdeploy:

■ You can use the -nodatasources switch, in which case you can set up
passwords on Oracle WebLogic Server by either:

– Creating a global data source.

– Manually creating application level data sources.

■ If you do not use the -nodatasources switch, you can only set up passwords
using application level credential mapping.

9.3.6.5 Preparing an Application for Deployment to a Third Party Server
There may be specific tasks that you have to perform so that your application will run
on a third party server.

Deploying to Tomcat:
■ Stop and restart the Tomcat server after deployment.

■ Make sure that you have the tools.jar library in the Tomcat classpath, located
in jdeveloper_install/jdk/lib. This file must be the same version of the
JDK being used to run Tomcat. Otherwise, you may encounter problems when
running applications in Tomcat.

■ The recommended deployment for web applications is tomcat_
install/webapps/subdirectory. Set this option in the General page of the WAR
File deployment profile.

■ The system administrator of the Tomcat application server must assign a context
path to your application in the conf/server.xml file:

<DefaultContext crossContext="true"/>
See Tomcat system administration documentation for more information.

■ You may get the following error message when running a JSP application
deployed to Tomcat:

Only one of the two parameters ... or ... should be defined.
Because Tomcat does not release tags after pooling, subsequent uses of the same
tag with incompatible attributes defined will cause this error.

To avoid the error, you must disable tag pooling in Tomcat:

1. Open the file tomcat_home/conf/web.xml in a text editor.

2. Find the following element:

<init-param>
 <param-name>enablePooling</param-name>
 <param-value>true</param-value>
</init-param>

Change the value of <param-value> to false

Connecting and Deploying Java EE Applications to Application Servers

Deploying Applications 9-33

Deploying to WebSphere
WebSphere deployment on Windows does not work when the directory containing the
JDeveloper generated EAR contains spaces.

9.3.7 How to Use Deployment Plans
You can use deployment plans to override deployment values. One reason you might
want to do this is to change settings so that an application that has finished testing can
be run in a production environment without having to change the deployment
profiles.

When an EAR, WAR, or EJB JAR archive configured to use a deployment plan is
deployed, both the archive and the deployment plan are sent to the application server.
You can use multiple deployment plans in an application.

For more information, see the section about deployment plans in the chapter about
configuring applications for production deployment in Oracle Fusion Middleware
Deploying Applications to Oracle WebLogic Server.

The following is an example of a deployment plan for an EAR called
application.ear. Note that the module-name element must contain the name of
the deployment profile that it is associated with.

Example 9–1 Example of a Deployment Plan

<deployment-plan xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.oracle.com/technology/weblogic/10.3/deployment-plan
http://www.oracle.com/technology/weblogic/10.3/deployment-plan/1.0/deployment-plan
.xsd"
xmlns="http://www.oracle.com/technology/weblogic/10.3/deployment-plan">
 <application-name>DeployPlan</application-name>
 <variable-definition>
 <variable>
 <name>SessionDescriptor_timeoutSecs</name>
 <value>888</value>
 </variable>
 <variable>
 <name>SessionDescriptor_invalidationIntervalSecs</name>
 <value>888</value>
 </variable>
 <variable>
 <name>SessionDescriptor_cookieMaxAgeSecs</name>
 <value>888</value>
 </variable>
 </variable-definition>
 <module-override>
 <module-name>application.ear</module-name>
 <module-type>ear</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-application</root-element>
 <uri>META-INF/weblogic-application.xml</uri>
 <variable-assignment>
 <name>SessionDescriptor_timeoutSecs</name>
 <xpath>/weblogic-application/session-descriptor/timeout-secs</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>SessionDescriptor_invalidationIntervalSecs</name>

<xpath>/weblogic-application/session-descriptor/invalidation-interval-secs</xpath>
 </variable-assignment>

Connecting and Deploying Java EE Applications to Application Servers

9-34 User's Guide for Oracle JDeveloper

 <variable-assignment>
 <name>SessionDescriptor_cookieMaxAgeSecs</name>

<xpath>/weblogic-application/session-descriptor/cookie-max-age-secs</xpath>
 </variable-assignment>
 </module-descriptor>
 </module-override>
</deployment-plan>

When an EAR, WAR, or EJB JAR archive configured to use a deployment plan is
deployed, both the archive and the deployment plan are sent to the application server.
You can use multiple deployment plans in an application.

9.3.7.1 How to Create and Use Deployment Plans
You can create a deployment plan from the New Gallery and edit it in the XML editor.

Once created, a deployment plan can be associated with an EAR, WAR, or EJB JAR
archive.

Alternatively, you can generate a deployment plan in Oracle WebLogic Server, then
use it in JDeveloper.

To create a deployment plan:
1. In the Application Navigator, select the project for which you want to create a

deployment plan.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand General and select Deployment Descriptors. In the
Items list, select WebLogic Deployment Descriptor and click OK.

4. In the Select Descriptor page of the Create WebLogic Deployment Descriptor
wizard, choose plan.xml.

If this is the first deployment descriptor you are creating in the application, you
can choose Finish to create a deployment plan with the default name of plan.xml.

If you already have a deployment plan called plan.xml in the application,
Navigate to the Select Name page and enter a new name for the deployment plan,
then click Finish. The deployment plan will be created and added to the project,
and it will be opened in an XML editor window.

5. Open the Deployment Profile Properties of the EAR, WAR or EJB JAR.

6. Enter the path to the deployment plan in the Deployment Plan field.

9.3.7.2 How to Generate Deployment Plans
Deployment plans enable you to export an application's configuration for deployment
to multiple WebLogic Server environments.

You can create a deployment plan from scratch in JDeveloper.

Alternatively, you can generate a deployment plan which you can then add to your
application in JDeveloper and edit it to suit your purposes, described in this topic.
There are two ways to do this:

■ Deploy the application to a Oracle WebLogic Server, make changes to the
application using the Administration Console, and save the resulting deployment
plan. You can then copy the deployment plan back into your source in JDeveloper,
and if necessary you can modify it. For more information, see the section about
deployment plans in the chapter about configuring applications for production

Deploying Java Applications

Deploying Applications 9-35

deployment in Oracle Fusion Middleware Deploying Applications to Oracle
WebLogic Server.

■ Use the weblogic.PlanGenerator command-line tool to generate a deployment
plan for an application that uses an EAR. For more information, see the reference
chapter about weblogic.PlanGenerator command line tool in Oracle Fusion
Middleware Deploying Applications to Oracle WebLogic Server.

To generate a deployment plan using WebLogic Server Administration Console:
1. Deploy the application to Oracle WebLogic Server.

2. Open the WebLogic Server Administration Console.

The WebLogic Server Administration Console automatically generates (or
updates) a valid deployment plan for an application when you interactively
change deployment properties for an application that you have installed to the
domain. You can use the generated deployment plan to configure the application
in subsequent deployments, or you can generate new versions of the deployment
plan by repeatedly editing and saving deployment properties.

To use the weblogic.PlanGenerator command-line tool to generate a deployment
plan:
1. From the command line, navigate to install/wlserver_10.3/server/bin/

and run either setWLSEnv.sh or setWLSEnv.cmd script, to add the WebLogic
Server classes to the CLASSPATH environment variable on your machine, and
ensure that the correct JDK binaries are available in your PATH.

2. From the command line, navigate to the location of the EAR file, and run java
weblogic.PlanGenerator -plan plan.xml application-name.ear
-all.

The switch -all specifies that the deployment plan is generated containing
elements for all possible attributes in your EAR file. If you remove this switch, the
generated deployment plan will only contain elements for the existing attributes in
your descriptor files.

9.4 Deploying Java Applications
JDeveloper supports deployment of applications containing a variety of technologies
to a variety of application servers. This section provides instructions for deploying an
application to an executable JAR file on your file system. If you wish to deploy an
application containing Java EE technologies, or you wish to deploy to the integrated
application server, Oracle WebLogic Server, or another supported application server,
be sure to verify that you have performed the necessary configuration and preparation
steps as outlined in Section 9.3, "Connecting and Deploying Java EE Applications to
Application Servers."

9.4.1 Deploying to a Java JAR
Applications can be deployed indirectly by choosing an archive file as the deployment
target. The archive file can subsequently be installed on a target Java EE application
server

JDeveloper has various deployment modes for different applications. However, you
may want to quickly and simply deploy your application as a JAR file to your file
system.

Deploying Java Applications

9-36 User's Guide for Oracle JDeveloper

To deploy a simple archive in JDeveloper:
1. Select and right-click the project in the Application Navigator.

2. Choose Deploy deployment profile, where deployment profile is the deployment
profile that you created earlier.

3. In the Deployment Action page of the Deploy dialog, choose Deploy to JAR file,
and finish the wizard.

You can make your simple archive or Java EE Client Module into an executable JAR
file that you can launch with the java command.

To deploy an executable JAR file:
1. Right-click the project in the Application Navigator and choose Project Properties.

2. Select the name of the profile in the Deployment section of the Project Properties
dialog and click Edit.

3. Click JAR Options in the tree.

4. Select Include Manifest File (META-INF/MANIFEST.MF).

5. In the Main Class field, enter the fully qualified name of the application class that
is to be invoked.

6. Click OK.

7. Launch the executable JAR file from the command line

java -jar myapp.jar
where myapp represents your JAR file name.

9.4.2 Deploying to an OSGi Bundle
Applications can be deployed as OSGi bundles which can then be deployed to an
OSGi container.

JDeveloper has various deployment modes for different applications. However, you
may want to quickly and simply deploy your application as a JAR file to your file
system.

To deploy an OSGi bundle in JDeveloper:
1. Select and right-click the project in the Application Navigator.

2. Choose Deploy > deployment profile, where deployment profile is the OSGi
bundle deployment profile that you created earlier.

Note: Before deploying an executable JAR file you must first create a
deployment profile.

Note: Before deploying an executable JAR file you must first create a
deployment profile.

Note: Before deploying an OSGi bundle you must first create a
deployment profile. For more information, see Section 9.3.2, "How to
Create and Edit Deployment Profiles."

Deploying Java EE Applications

Deploying Applications 9-37

3. In the Deployment Action page of the Deploy dialog, choose Deploy to OSGi
bundle, and finish the wizard.

9.5 Deploying Java EE Applications
You can use JDeveloper to deploy Java EE applications directly to the standalone
application server or create an archive file and use other tools to deploy to the
application server.

9.5.1 How to Deploy to the Application Server from JDeveloper
The Java EE Enterprise Archive (EAR) deployment profile provides you with
centralized control over the process of application assembly. This assembling task
involves selecting which already-configured Java EE deployment profiles to include
with the EAR file. You can mix and match any combination of configured WAR, EJB
JAR, and/or client JAR profiles in projects within the same workspace. When you
deploy an application to an application server connection, JDeveloper assembles a
minimal EAR file which includes the profile combinations and deploys it with the
EAR file to the target application server.

To deploy an application as a Java EE Enterprise Archive (EAR File):
1. Create an EAR File deployment profile.

2. Create a connection to the target application server.

3. Right-click the project in Application Navigator and choose Deploy > deployment
profile.

4. In the Deployment Action page of the Deploy dialog, choose one of the
deployment options:

■ Deploy to application server connection to package the web module as an
EAR file, and deploy it to the application server connection you select or
create on the Select Server page of the Deploy dialog.

■ Deploy to EAR file to package the web module as an EAR file and save to the
location specified in the EAR deployment profile.

To reopen the EAR deployment profile later to make changes, right-click the
application in the Application Navigator toolbar and choose Application Properties,
then select the name of the profile in the Deployment section of the Application
Properties dialog and click Edit.

■ If you have an existing EAR file, you can use the JDeveloper EAR import facility to
import the EAR into any project.

■ JAR and WAR files to be included in an EAR file must be created before the EAR
file is deployed. For the included application's deployment profiles, choose
Deploy to JAR file or Deploy to WAR file in the Deploy dialog to create these
subordinate archives.

■ The EAR file does not contain passwords so if, for example, you are creating an
EAR file to run on Oracle WebLogic Server, you must set up a data source on the
server.

Deploying Java EE Applications

9-38 User's Guide for Oracle JDeveloper

9.5.2 How to Deploy a RAR File
Stored in a Resource Adapter Archive (RAR) file, a resource adapter may be deployed
on any Java EE server, much like the EAR file of a Java EE application. A RAR file may
be contained in an EAR file or it may exist as a separate file

To deploy a resource adapter archive in JDeveloper:
1. Create a deployment profile.

2. Right-click the project in the Application Navigator, then choose Deploy >
deployment profile.

3. In the Deployment Action page of the Deploy dialog, choose Deploy to RAR file.

9.5.3 How to Add a Resource Adapter Archive (RAR) to the EAR
The EAR profile supports Resource Adapter Archive files (RAR or .rar) in a
JDeveloper project. A RAR file is typically provided by an Enterprise Intelligence
Server (EIS) vendor, similar to a JDBC driver. Java EE developers may need to package
a RAR file into their EAR file if their Java EE application makes use of the EIS services
supported by the RAR. JDeveloper does not directly support RAR file creation, but
RAR files can be assembled using the File Groups feature of a JAR file deployment
profile.

The ra.xml file is the deployment descriptor for the RAR file for the J2EE Connector
Architecture (JCA). For more information, see

http://www.oracle.com/technetwork/java/javaee/tech/entapps-138775.html

To add a RAR to an EAR deployment profile:
1. In JDeveloper, add an existing RAR file to a project.

2. Create an EAR deployment profile in the same project as the RAR file.

3. Right-click the project in the Application Navigator and choose Project Properties.

4. Select the name of the profile in the Deployment section of the Project Properties
dialog and click Edit.

5. Click the Application Assembly node to display all the Java EE modules (WAR
and EJB JAR) currently available and saved in your project.

6. Select the checkbox next to the RAR (.rar) file that you want to assemble and
package with the EAR file.

7. Click OK.

8. Deploy the Java EE EAR.

At deploy-time, the EAR file's application.xml contains a <connector> element which
is automatically added to the RAR file.

Note: To reopen a project deployment profile later to make changes,
right-click the project in the Application Navigator and choose Project
Properties, then select the name of the profile in the Deployment
section of the Project Properties dialog and click Edit.

Deploying Java EE Applications

Deploying Applications 9-39

9.5.4 How to Deploy a Metadata Archive (MAR) File
Metadata Archive (MAR) profiles are application level deployment profiles which are
used to package seeded customizations or place base metadata in the MDS repository.
In a MAR profile, selections can only be done at the package level, not at the file level.

There are two uses for a MAR profile

■ The first use is to create a MAR profile. Once you have created it you can include it
in an application's EAR for deployment.

■ The second use is to export MAR contents to MDS repository configured for a
deployed application in a remote server. This procedure is for applying ADF
Library customizations changes to an application that has already been deployed
to a remote application server. It is not for the initial packaging of customizations
into a MAR that will eventually be a part of an EAR.

To deploy a MAR profile in an EAR:
1. Create a MAR deployment profile.

2. Choose Application > Deploy > deployment-profile. In the Deploy profile dialog,
select Deploy to MAR. For more information at any time, press F1 or click Help
from within the Deploy profile dialog.

The Deploy to MAR option creates a metadata archive file, which is a convenient
option that can be used to verify the MAR contents. The created metadata file
should have the same MAR contents as the Export to Deployed Application
option.

3. To include a MAR profile in a new EAR, in the Application Properties dialog that
is displayed when you finish creating the MAR profile, click New to create an
application level EAR deployment profile.

Alternatively, to add the MAR profile to an existing EAR profile, open the EAR
profile.

4. In the Edit EAR Deployment Profile Properties dialog, go to the Application
Assembly page and ensure that the MAR profile is listed under Java EE Modules.

5. Click OK.

6. Deploy the Java EE EAR.

To export MAR contents to MDS repository and deploy it to a deployed
application in a remote server:
1. Create a MAR deployment profile.

2. Choose Application > Deploy > deployment-profile. In the Deploy profile dialog,
select Deploy to MAR. For more information at any time, press F1 or click Help
from within the Deploy profile dialog.

The Deploy to MAR option creates a metadata archive file, which is a convenient
option that can be used to verify the MAR contents. The created metadata file
should have the same MAR contents as the Export to Deployed Application
option.

3. To export the MAR contents to the MAR profile, choose Application > Deploy >
deployment-profile. In the Deploy profile dialog, choose Export to a Deployed
Application. For more information at any time, press F1 or click Help from within
the Deploy profile dialog.

Deploying Java EE Applications

9-40 User's Guide for Oracle JDeveloper

4. Continue through the Deploy profile dialog. You can choose the server to deploy
to, and then the deployed application in that server. You can also choose to use a
sandbox instance before committing the deployment.

9.5.5 How to Deploy an Applet as a WAR File
You can deploy web application components including applets as a WAR or EAR file
to the target application server.

To deploy an applet as a WAR file:
1. If not already done, configure the applet for deployment.

2. If not already done, create an application server connection.

3. In the Navigator, right-click the project and choose Deploy > deployment profile.

4. Deploy to application server connection to create the archive type specified in the
deployment profile, and deploy it to the application server connection you select
or create on the Select Server page of the Deploy dialog.

■ Deploy to application server connection to create the archive type specified
in the deployment profile, and deploy it to the application server connection
you select or create on the Select Server page of the Deploy dialog.

■ Deploy to EAR file to deploy the project and any of its dependencies
(specified in the deployment profile) to an EAR. JDeveloper puts the EAR file
in the default directory specified in the deployment profile.

■ Deploy to WAR file to deploy the project to a WAR. JDeveloper puts the WAR
file in the default directory specified in the deployment profile.

You can test the deployed web application by running it in a browser. For more
information, see Section 9.7, "Testing the Application and Verifying Deployment."

If you encounter problems when deploying a Swing applet (JApplet), for example, the
error "Class not found" is displayed, this may indicate that JDeveloper cannot locate
the Swing libraries. You may need to force your clients to use Sun's Java SE browser
plugin or bundle the Swing libraries for JVMs version 1.1 with your applet.

9.5.6 How to Deploy a Shared Library Archive
Shared Java EE libraries provides an easy way to share one or more different types of
Java EE modules among multiple Enterprise Applications. You can deploy shared
libraries as JAR files to the application server.

To deploy create and deploy a shared library archive:
1. Create a shared library deployment profile.

2. Add the libraries to the profile in the Edit JAR Deployment Profile Properties
dialog. Choose File Groups, and click New to open the Create File Group dialog,
where you define a new file group.

3. Create a connection to the target application server.

Note: The deployed applet files must reside in a separate location
from any other web application files you have deployed.

Post-Deployment Configuration

Deploying Applications 9-41

4. Right-click the project in Application Navigator and choose Deploy > shared
library deployment profile.

5. On the Deployment Action page of the Deploy shared library dialog, choose
Deploy to a Weblogic Application Server and click Next.

6. On the Select Server Page, choose the application server connection and select
Deploy as a shared Library. Click Finish.

9.5.7 How to Deploy to a Managed Server That Is Down
For successful deployment, the Administration Server for the WebLogic Server domain
has to be up as it is handling the deployment process. When you deploy to a server
that is down, the deployment log window messages indicate that the server is
currently down but the application will be installed when it is brought back up. The
log messages will be similar to:

[02:27:21 PM] ---- Deployment started. ----
 [02:27:21 PM] Target platform is (Weblogic 10.3).
 [02:27:23 PM] Retrieving existing application information
 [02:27:23 PM] Running dependency analysis...
 [02:27:23 PM] Building...
 [02:27:26 PM] Deploying 2 profiles...
 [02:27:26 PM] Wrote Web Application Module to
/scratch/.../jdev/mywork/Application1/Project1/deploy/webapp1.war
 [02:27:26 PM] Wrote Enterprise Application Module to
/scratch/.../jdev/mywork/Application1/application1.ear
 [02:27:26 PM] Deploying Application...
 [02:27:27 PM] [Deployer:149195]Operation 'deploy' on application 'application1'
has been deferred since 'Server-2' is unavailable
 [02:27:27 PM] [Deployer:149034]An exception occurred for task
[Deployer:149026]deploy application application1 on Server-2.: .
 [02:27:27 PM] Application Deployed Successfully.
 [02:27:27 PM] Elapsed time for deployment: 5 seconds
 [02:27:27 PM] ---- Deployment finished.

One situation that can occur is that deployment appears to succeed, but as the server is
brought back up the deployment cannot successfully terminate, for example, because
some validation that is part of the deployment process was not performed, or because
a library that needs to be present for deployment to be successful is missing. In these
cases, when the server is brought back up and deployment resumes, it fails.

You can only deploy an application once to a server that is down. If you attempt to
redeploy the same application to the same down server a second time, an error is
displayed.

9.6 Post-Deployment Configuration
After you have deployed your application to Oracle WebLogic Server, you can migrate
it from one Oracle WebLogic Server to another.

You may need to perform some of the same steps you did for a first time deployment.

In general, to migrate an application to another application server, you would:

■ Configure the target application server with the correct database or URL
connection information.

■ Migrate security information, for example JDBC data sources, from the source to
the target.

Testing the Application and Verifying Deployment

9-42 User's Guide for Oracle JDeveloper

■ Deploy the application to the new server.

9.7 Testing the Application and Verifying Deployment
After you deploy the application, you can test it from Oracle WebLogic Server.

The deployment log window displays the context root URLs for any Web applications
deployed. You can access a deployed web application by entering the application URL
in a browser. The URL of the deployed web application appears in the deployment log
window, for example:

[03:08:20 PM] The following URL context root(s) were defined and can be used as a
starting point to test your application:
[03:08:20 PM] http://12.345.678.912:7101/Project1
[03:08:21 PM] Elapsed time for deployment: 7 seconds
[03:08:21 PM] ---- Deployment finished. ----

You can copy the URL and paste it into a browser to test the deployed web application.

Depending on your browser proxy settings, you may need to specify the full domain
name of the host machine. If the servlet engine and the browser used to view a
deployed application are on the same machine, you may use localhost for the host
name.

9.8 Deploying from the Command Line
Applications or modules can be deployed from JDeveloper without starting the
JDeveloper IDE.

Before deploying from the command line, you need to run JDeveloper at least once to
create a deployment profile for either the application by choosing the Deployment
page of the Application Properties dialog or the Project Properties dialog, both of
which are available from the Application menu.

Deployment profiles are stored as part of either the application or project properties.

9.8.1 How to Deploy from the Command Line
Applications or modules can be deployed from JDeveloper without actually starting
the JDeveloper IDE itself. Deploying from the command line, using OJDeploy, is
especially useful where you need to deploy existing projects or applications using a
batch file or other script.

OJDeploy can run a deployment locally in-process, or submit to a background server,
OJServer, using the -ojserver option.

9.8.1.1 Command Usage

Example 9–2 Using ojdeploy to Deploy from the Command Line

ojdeploy -profile <name> -workspace <jws> [-project <name>] [<options>]
ojdeploy -buildfile <ojbuild.xml> [<options>]
ojdeploy -buildfileschema

Deploying from the Command Line

Deploying Applications 9-43

Table 9–2 Arguments That Can be Used With ojdeploy

Argument Description

profile Name of the profile to deploy.

workspace Full path to the JDeveloper application file (.jws)

project Name of the JDeveloper project within the .jws where the
deployment profile can be found. If omitted, the profile is
assumed to be in the application.

buildfile Full path to a build file for batch deploy.

buildfileschema Print XML Schema for the build file.

Note: Deployment profiles can be classified into two broad
categories, those that are defined at the application (workspace) level,
and those defined at the project level. To deploy an application profile,
OJDeploy takes the application location, and the name of the profile.
To deploy a project profile it takes an additional -project
argument.

Table 9–3 Options Available to Use with ojdeploy

Option Description

-address The listen address for OJServer. Defaults to localhost:2010.
The default parts of the address may be omitted, for example,
-address :2001 or -address fasup-pls01.

-basedir Interpret path for application relative to a base directory. The
built-in macro ${base.dir} captures the value of -basedir.

-clean Deletes all files from the project output directory before
compiling. Deployment will stop for that profile, if a file or
directory could not be deleted.

-define Allows for additional macros to be defined on the
command-line. This can also be done in an XML build file using
the <variable> element. Macros and options defined on the
command line supplement, or override, those found in the
<defaults> section of a build file if one is being used.

-failonwarning Stop deployment on warnings.

-forcerewrite Ensures output file is rewritten even if the contents have not
changed in this run of OJDeploy.

-nocompile Prevents the build system from being invoked. This is useful if
an application or project just needs to be packaged, and not
compiled at this time.

-nodatasources For Java EE applications, this prevents the
weblogic-jdbc.xml file from being updated with connection
information found in the JDeveloper IDE. This option is ignored
for non-Java EE applications.

-nodependents Dependent profiles are not deployed.

-ojserver Runs the deployment job on an OJServer. All paths referenced
by the other options should be accessible on the server.

Deploying from the Command Line

9-44 User's Guide for Oracle JDeveloper

Examples
Deploy a project-level profile:

■ ojdeploy -profile webapp1 -workspace
/usr/jdoe/Application1/Application1.jws -project Project1

■ ojdeploy -profile webapp1 -workspace
Application1/Application1.jws -basedir /usr/jdoe -project
Project1

Deploy an application-level profile:

■ ojdeploy -profile earprofile1 -workspace
/usr/jdoe/Application1/Application1.jws

Deploy all profiles from all projects of an application:

-outputfile Specifies an alternate location for any JAR files created from the
profile. The default is within a /deploy directory inside the
project or application. If this parameter does not specify a file
extension, the extension is determined from the original file
name in the deployment profile.

-statuslogfile Full path to an output file for status summary. No macros
allowed. The -statuslogfile option creates an XML file that
stores a list of all the profiles processed and the status of each. A
summary section at the end can be checked to quickly determine
the exit status for the entire script.

-stdout, -stderr Lets these streams be redirected to a file for each profile and
project. You can use macros in the name or path of the files.

-timeout Specify the number of seconds after which deployment of a
single profile should be aborted.

-updatewebxmlejbrefs Update EJB references in web.xml.

Table 9–4 Macros Available to Use with ojdeploy

Macro Description

workspace.name Name of the application (without the .jws extension).

workspace.dir Directory of the application .jws file.

project.name Name of the project (without the .jpr extension).

project.dir Directory of the project.jpr file.

profile.name Name of the profile being deployed.

deploy.dir Default deploy directory for the profile.

base.dir Override the current OJDeploy directory using this parameter.
You can also override the current OJDeploy directory using the
basedir attribute in the build script.

Note: The project.name and project.dir macros are only available
when a project-level profile is being deployed.

Table 9–3 (Cont.) Options Available to Use with ojdeploy

Option Description

Deploying from the Command Line

Deploying Applications 9-45

■ ojdeploy -workspace /usr/jdoe/Application1/Application1.jws
-project * -profile *

Build in batch mode from a ojbuild file:

■ ojdeploy -buildfile /usr/jdoe/ojbuild.xml

Build using ojbuild file, pass into, or override default variables in, the build file:

■ ojdeploy -buildfile /usr/jdoe/ojbuild.xml -define
myhome=/usr/jdoe,mytmp=/tmp

■ ojdeploy -buildfile /usr/jdoe/ojbuild.xml -basedir /usr/jdoe

Build using ojbuild file, set or override parameters in the default section:

■ ojdeploy -buildfile /usr/jdoe/ojbuild.xml -nocompile

■ ojdeploy -buildfile /usr/jdoe/ojbuild.xml -outputfile
'${workspace.dir}/${profile.name}.jar'

■ ojdeploy -buildfile /usr/jdoe/ojbuild.xml -define mydir=/tmp
-outputfile '${mydir}/${workspace.name}-${profile.name}'

More examples:

■ ojdeploy -workspace
Application1/Application1.jws,Application2/Application2.jws
-basedir /home/jdoe -profile app*

■ ojdeploy -buildfile /usr/jdoe/ojbuild.xml -define
outdir=/tmp,rel=11.1.1 -outputfile
'${outdir}/built/${workspace.name}/${rel}/${profile.name}.jar
’

■ ojdeploy -workspace Application1/Application1.jws -basedir
/home/jdoe -nocompile -outputfile
'${base.dir}/${workspace.name}-${profile.name}'

■ ojdeploy -workspace /usr/jdoe/Application1.jws -project *
-profile * -stdout /home/jdoe/stdout/${project.name}.log

■ ojdeploy -buildfile /usr/jdoe/ojbuild.xml -ojserver

9.8.1.2 How to Override Without Editing a Build Script
To pass in macro values or override the ones defined in a build script, use the
-define option to supply a new value:

ojdeploy -buildfile /home/jdoe/ojbuild.xml -define "mycustomdir=/tmp"
This will add the mycustomdir variable to the <defaults> section of the build script,
or replace it if it already is defined with the value '/tmp'.

To pass in parameter values or override the ones defined in a build script, use the
appropriate parameter option:

ojdeploy -buildfile /home/jdoe/ojbuild.xml -nocompile -nodatasources
This will add the -nocompile and -nodatasources parameters to the default
section of the build file.

9.8.2 How to Deploy Multiple Profiles from the Command Line
Command-line deployment supports deployment of multiple applications in a single
invocation. If more complex control is required, OJDeploy can take an XML build
script and process it, running all deploy tasks found in it. Macros and wild cards can

Deploying from the Command Line

9-46 User's Guide for Oracle JDeveloper

be used both in command-line and batch mode. Macros can be strung together or
nested.

Each profile to be deployed is qualified by an application and a project. In addition
each profile's output can be directed to a different output file/location. Further to this,
the calling script assumes no knowledge of the projects within a workspace, only
deploying all or a subset of them matching a criteria. The command-line syntax for
specifying such inputs and criteria can quickly become cumbersome and inflexible.

A build file can be passed to OJDeploy. The build file will contain multiple <deploy>
tasks, along with a shared <defaults> section which allows for setting up an
environment. Each deploy-task specifies the type of deployment (the set mentioned
before) and customizes any defaults as required. Each task also allows wild cards as
applicable within parameter arguments that apply to the scope of that task. A
pre-processor will parse the build file and pass it to OJDeploy, expanding wild cards
and substituting variables as necessary.

The build file approach has the following advantages over the command-line syntax:

■ It lets more parameters be added to OJDeploy without forcing the implementor for
that parameter to be aware of a batch-build concept.

■ It keeps the command-line syntax simple, for the degenerate case.

■ It allows parameters to be dynamically evaluated based on the current context,
and access to a predefined list of pre-processor macros. For example, OutputFile
location may be specified as c:\temp\${profile.name} where the macro
${profile.name} is added automatically.

A sample build file is shown below. To invoke all of these deploy actions, the
command-line would be ojdeploy ojdeploy-build.xml. The file is processed
from top to bottom.

<?xml version="1.0" encoding="US-ASCII" ?>
<ojdeploy-build basedir="/usr/jdoe/">
 <!-- Defines default parameters for all deploy tasks.
 Also defines some variables strictly for use within this file
 in macros
 -->
 <defaults>
 <parameter name="profile" value="*"/>
 <parameter name="nocompile" />
 <-- define a macro -->
 <variable name="customdir" value="/var/projects/fin/"/>
 </defaults>
 <!-- Select all .jws files in location ${customdir} called absoluteFile1.jws,
absoluteFile2.jws.
 Open all projects.
 Deploy profiles p1, p2, p3 in each project, in each workspace.
 -->
 <deploy>
 <parameter name="workspace"
value="${customdir}/absoluteFile1.jws,${customdir}/absoluteFile2.jws"/>
 <parameter name="project" value="*"/>
 <-- Override default profile parameter -->
 <parameter name="profile" value="p1,p2,p3"/>
 </deploy>
 <!--
 Open relativeFile1.jws in the base directory
 Open all projects.
 Deploy all profiles (default for "profile" parameter is "*")
 -->

Deploying from the Command Line

Deploying Applications 9-47

 <deploy>
 <parameter name="workspace" value="relativeFile1.jws"/>
 <parameter name="project" value="*"/>
 </deploy>
 <!--
 Open relativeFile2.jws in base directory.
 Open all Projects
 Deploy profiles matching the patter "web*"
 -->
 <deploy>
 <parameter name="workspace" value="relativeFile2.jws"/>
 <parameter name="project" value="*"/>
 <parameter name="profile" value="web*"/>
 </deploy>
</ojdeploy-build>

9.8.2.1 How to Use Wildcard Samples
Project and profile names can be specified as "*" or "name*" or
"name1,name2,name3,..." or any combination of these. Workspace names need to be
enumerated, so "*" is not allowed in workspace names, but workspace names can be
specified as "workspace1" or "workspace1,workspace2,workspace3".

For example:

■ adf* (Profile)

■ View* (Project)

■ *Controller (All Controller Projects)

An example of using wild cards with an application:

<ojdeploy-build basedir= "/home/jdoe" >
 <deploy>
 <parameter name= "workspace" value= "Application1.jws,Application2.jws" />
 <!-- above pattern gets /home/jdoe/Application1.jws and
/home/jdoe/Application2.jws -->
 . . .
 </deploy>
/ojdeploy-build>

9.8.2.2 How to Use Built-in Macros
The following built-in macros can be used in build files:

Table 9–5 Macros Available to Use With Build Files

Macro name Description

${workspace.name} Name of application, excluding the vT file extension.

${workspace.dir} Directory containing the application (.jws) file.

${project.name} Name of project, excluding the .jpr file extension.

${project.dir} Directory containing the project (.jpr) file.

${profile.name} Defined name of the profile.

${deploy.dir} Default deploy directory, usually ${project.dir}/deploy
for project-level profiles or ${workspace.dir}/deploy for
workspace-level profiles.

${base.dir} Value of the -basedir parameter, or the current directory.

Deploying from the Command Line

9-48 User's Guide for Oracle JDeveloper

9.8.2.3 How to Create a Log File for Batch Deployment
You can use the parameter -statuslogfile c to provide the absolute path to a log
file. The path should not contain macros.

The log file contains a list of the deployment tasks processed and the status from each
task in XML format. The status will be either SUCCESS or FAILED and includes an
exitcode attribute. Possible values for exitcode are:

■ 0 - Success

■ 1 - Fatal error (NPE, OutOfMemory, etc.)

■ 2 - JDeveloper configuration error (missing extensions, etc.)

■ 4 - Deployment Error (compilation, deployment exception, etc.) All exit codes are
bitwise OR-ed.

A combined status is available in a summary section at the end of each log.

Example 9–3 Example of Batch Deployment Log Output

<?xml version="1.0"?>
 <ojdeploy-log>
 <deploy-task>
 <target>
 <profile>webapp1</profile>
 <workspace>/scratch/jdoe/jdev/mywork/Application3/Application3.jws</workspace>
 <project>Project1.jpr</project>
 </target>
 <exception msg="**** One or more compilation errors prevented deployment from
continuing.">
 oracle.jdeveloper.deploy.DeployException: **** One or more compilation errors
prevented deployment from continuing.
 at
oracle.jdevimpl.deploy.common.ModulePackagerImpl.compileDependents(ModulePackagerI
mpl.java:143)
 at
oracle.jdeveloper.deploy.common.ModulePackager.compile(ModulePackager.java:65)
 at
oracle.jdeveloper.deploy.common.ModulePackager.prepareImpl(ModulePackager.java:52)
 at
oracle.jdeveloper.deploy.common.AbstractDeployer.prepare(AbstractDeployer.java:69)
 at
oracle.jdevimpl.deploy.fwk.WrappedDeployer.prepareImpl(WrappedDeployer.java:32)
 at
oracle.jdeveloper.deploy.common.AbstractDeployer.prepare(AbstractDeployer.java:69)
 at
oracle.jdevimpl.deploy.fwk.WrappedDeployer.prepareImpl(WrappedDeployer.java:32)
 at
oracle.jdeveloper.deploy.common.AbstractDeployer.prepare(AbstractDeployer.java:69)
 at
oracle.jdevimpl.deploy.fwk.DeploymentManagerImpl.deploy(DeploymentManagerImpl.java
:411)
 at
oracle.jdevimpl.deploy.fwk.DeploymentManagerImpl$1.run(DeploymentManagerImpl.java:
281)

 </exception>
 <status exitcode="4">FAILED</status>
 </deploy-task>
 <deploy-task>
 <target>

Deploying from the Command Line

Deploying Applications 9-49

 <profile>archive1</profile>
 <workspace>/scratch/jdoe/jdev/mywork/Application3/Application3.jws</workspace>
 <project>Project1.jpr</project>
 </target>
 <exception msg="**** One or more compilation errors prevented deployment from
continuing.">
 oracle.jdeveloper.deploy.DeployException: **** One or more compilation errors
prevented deployment from continuing.
 at
oracle.jdevimpl.deploy.common.ModulePackagerImpl.compileDependents(ModulePackagerI
mpl.java:143)
 at
oracle.jdeveloper.deploy.common.ModulePackager.compile(ModulePackager.java:65)
 at
oracle.jdeveloper.deploy.common.ModulePackager.prepareImpl(ModulePackager.java:52)
 at
oracle.jdeveloper.deploy.common.AbstractDeployer.prepare(AbstractDeployer.java:69)
 at
oracle.jdevimpl.deploy.fwk.WrappedDeployer.prepareImpl(WrappedDeployer.java:32)
 at
oracle.jdeveloper.deploy.common.AbstractDeployer.prepare(AbstractDeployer.java:69)
 at
oracle.jdevimpl.deploy.fwk.WrappedDeployer.prepareImpl(WrappedDeployer.java:32)
 at
oracle.jdeveloper.deploy.common.AbstractDeployer.prepare(AbstractDeployer.java:69)
 at
oracle.jdevimpl.deploy.fwk.DeploymentManagerImpl.deploy(DeploymentManagerImpl.java
:411)
 at
oracle.jdevimpl.deploy.fwk.DeploymentManagerImpl$1.run(DeploymentManagerImpl.java:
281)

 </exception>
 <status exitcode="4">FAILED</status>
 </deploy-task>
 <deploy-task>
 <target>
 <profile>ejb1</profile>
 <workspace>/scratch/jdoe/jdev/mywork/Application3/Application3.jws</workspace>
 <project>Project3.jpr</project>
 </target>
 <status exitcode="0">SUCCESS</status>
 </deploy-task>
 <summary>
 <start-time>2007-12-19 12:10:42 PST</start-time>
 <end-time>2007-12-19 12:10:45 PST</end-time>
 <total-tasks>3</total-tasks>
 <failures>2</failures>
 <status exitcode="4">FAILED</status>
 </summary>
 </ojdeploy-log>

9.8.3 How to Deploy from the Command Line Using Ant
JDeveloper deployment is built around deployment profiles. A common
implementation is an ArchiveProfile that describes the structure of a JAR archive.
Deployment profiles can be created as part of a project or workspace. A command-line
tool, OJDeploy, is available to allow deployment of ArchiveProfile(s) without invoking
the JDeveloper IDE.

Deploying from the Command Line

9-50 User's Guide for Oracle JDeveloper

Command line deployment requires a JDeveloper installation, but this installation is
invoked in 'headless mode', not displaying the JDeveloper IDE, loading all extensions
defined for headless mode. This form of deployment can read JDeveloper applications
and projects and their meta-data. Ant scripts to invoke command line deployment
need to be created manually. The resulting deployed archive depends on version of
JDeveloper used, and which extensions are enabled when command line deployment
is invoked

9.8.3.1 How to Generate an Ant Build Script
To make it easier to create an Ant build script for command line deployment, an Ant
script can be generated from JDeveloper.

Example 9–4 Structure of the Ant Build Script

<project name="Project1" default="all" basedir=".">
 <property file="build1.properties"/>
 <target name="init">
 <tstamp/>
 <mkdir dir="${output.dir}"/>
 </target>
 <target name="all" description="Build the project"
depends="compile,copy,deploy"/>
 <target name="clean" description="Clean the project">
 . . .
 </target> <target name="compile" description="Compile Java source files"
depends="init">
 . . .
 </target>
 <target name="copy" description="Copy files to output directory" depends="init">
 . . .
 </target>
 <!--- This is the additional part generated for deployment ---->

 <target name="deploy" description="Deploy JDeveloper profiles"
 depends="init,compile">
 <taskdef name="ojdeploy"
 classname="oracle.jdeveloper.deploy.ant.OJDeployAntTask"
 uri="oraclelib:OJDeployAntTask"
 classpath="${oracle.jdeveloper.ant.library}"/>
 <ora:ojdeploy xmlns:ora="oraclelib:OJDeployAntTask"
 executable="${oracle.jdeveloper.ojdeploy.path}"
 ora:buildscript="${oracle.jdeveloper.deploy.dir}ojdeploy-build.xml"
 ora:statuslog="${oracle.jdeveloper.deploy.dir}ojdeploy-statuslog.xml">
 <ora:deploy>
 <ora:parameter name="workspace"
 value="${oracle.jdeveloper.workspace.path}"/>
 <ora:parameter name="project"
 value="${oracle.jdeveloper.project.name}"/>
 <ora:parameter name="profile"
 value="${oracle.jdeveloper.deploy.profile.name}"/>
 <ora:parameter name="nocompile" value="true"/>
 <ora:parameter name="outputfile"
 value="${oracle.jdeveloper.deploy.outputfile}"/>
 </ora:deploy>
 </ora:ojdeploy>
 </target>
 <!-------------- end of deployment ---->
 </project>

Deploying from the Command Line

Deploying Applications 9-51

9.8.3.2 About The build.xml File
The build.properties file, which is generated along with build.xml, defines the
additional variables needed for command line deployment:.

Example 9–5 Example of the build.xml File

#Fri Feb 15 10:45:22 PST 2008
 #Sun Feb 24 18:47:36 PST 2008
 javac.nowarn=off
 javac.debug=on
 build.compiler=oracle.ojc.ant.taskdefs.OjcAdapter
 output.dir=classes
 oracle.home=../../oracle/
 javac.deprecation=off
 oracle.jdeveloper.ant.library=/scratch/jdoe/oracle/jdev//lib/ant-jdeveloper.jar
 oracle.jdeveloper.deploy.dir=/scratch/jdoe/Application7/Project1/deploy/
 oracle.jdeveloper.ojdeploy.path=/scratch/jdoe/oracle/jdev//bin/ojdeploy
 oracle.jdeveloper.workspace.path=/scratch/jdoe/Application7/Application7.jws
 oracle.jdeveloper.project.name=Project1
 oracle.jdeveloper.deploy.profile.name=*
 oracle.jdeveloper.deploy.outputfile=/scratch/jdoe/Application

9.8.3.3 About The build.properties File
The Ant build script can be run outside of JDeveloper by simply changing to the
directory containing build.xml and running Ant. It can also be run from within
JDeveloper, by right-clicking on the build.xml node in the Application Navigator
and selecting the "all" or the "deploy" targets.

Example 9–6 Example of the build;.properties File

Buildfile: /scratch/jdoe/Application7/Project1/build1.xml

init:

compile:
deploy:
 [ora:ojdeploy]
 [ora:ojdeploy] Oracle JDeveloper Deploy 11.1.1.0.0
 [ora:ojdeploy] Copyright (c) 2008, Oracle. All rights reserved.
 [ora:ojdeploy]
 [ora:ojdeploy] ----build file----
 [ora:ojdeploy] <?xml version = '1.0' standalone = 'yes'?>
 [ora:ojdeploy] <ojdeploy-build>
 [ora:ojdeploy] <deploy>
 [ora:ojdeploy] <parameter name="workspace"
value="/scratch/jdoe/Application7/Application7.jws"/>
 [ora:ojdeploy] <parameter name="project" value="Project1"/>
 [ora:ojdeploy] <parameter name="profile" value="*"/>
 [ora:ojdeploy] <parameter name="nocompile" value="true"/>
 [ora:ojdeploy] <parameter name="outputfile"
value="/scratch/jdoe/Application7/Project1/deploy/${profile.name}"/>
 [ora:ojdeploy] </deploy>
 [ora:ojdeploy] <defaults>
 [ora:ojdeploy] <parameter name="buildfile"
value="/scratch/jdoe/Application7/Project1/deploy/ojdeploy-build.xml"/>
 [ora:ojdeploy] <parameter name="statuslogfile"
value="/scratch/jdoe/Application7/Project1/deploy/ojdeploy-statuslog.xml"/>
 [ora:ojdeploy] </defaults>
 [ora:ojdeploy] </ojdeploy-build>

Deploying Using Java Web Start

9-52 User's Guide for Oracle JDeveloper

 [ora:ojdeploy] ------------------
 [ora:ojdeploy] ---- Deployment started. ---- Feb 24, 2008 6:49:51 PM
 [ora:ojdeploy] Target platform is (WebLogic 10.3).
 [ora:ojdeploy] Running dependency analysis...
 [ora:ojdeploy] Wrote JAR file to
/scratch/jdoe/Application7/Project1/deploy/archive1.jar
 [ora:ojdeploy] Elapsed time for deployment: less than one second
 [ora:ojdeploy] ---- Deployment finished. ---- Feb 24, 2008 6:49:51 PM
 [ora:ojdeploy] ---- Deployment started. ---- Feb 24, 2008 6:49:51 PM
 [ora:ojdeploy] Target platform is (Java Enterprise Edition 1.5).
 [ora:ojdeploy] Running dependency analysis...
 [ora:ojdeploy] Wrote WAR file to
/scratch/jdoe/Application7/Project1/deploy/WindowMobile.war
 [ora:ojdeploy] Elapsed time for deployment: less than one second
 [ora:ojdeploy] ---- Deployment finished. ---- Feb 24, 2008 6:49:52 PM
 [ora:ojdeploy] Status summary written to
/scratch/jdoe/Application7/Project1/deploy/ojdeploy-statuslog.xml

BUILD SUCCESSFUL
 Total time: 19 seconds

It is a best practice to generate an .ear file from JDeveloper for the application. The
.ear file will be generated with all the right class dependencies required to deploy it.
Deploying with Ant by referring to an application directly without generating an
.ear file may require that dependencies for the classes and jars files must be resolved
manually.

9.9 Deploying Using Java Web Start
JDeveloper supports the creation of the XML-based JNLP (Java Network Launching
Protocol) definition upon which the Java Web Start technology is based. Java Web Start
allows you to deploy Java applications so that they can be launched from an internet
browser. Java Web Start lets you maintain Java client applications and applets on the
web server, which users download and run on their client machines.With the Create
Java Web Start-Enabled wizard in JDeveloper, you can set up applications and applets
to be maintained on the web server, but downloaded and run on client machines.

The process of developing a Java Web Start application can be summarized as:

1. Develop the Java application.

2. Simulate the user’s experience of running the application with Java Web Start
within the JDeveloper IDE.

3. Use the JDeveloper Java EE Web deployment process to move the production
application to the web server.

Note: By default, the command line deployment task has the
nocompile option enabled as the task has dependency on the compile
task. If this dependency is removed then the nocompile option can be
removed.

Note: To launch applications and applets with Java Web Start in
JDeveloper, you must download and install the Java Web Start
software. Users of your application or applet will also be required to
install the software on their machines.

Deploying Using Java Web Start

Deploying Applications 9-53

For more information on Java Web Start and to download the Java Web Start software,
see
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136
112.html.

9.9.1 Purpose of the Java Web Start Technology
Although Java Web Start and applets may appear to be similar technologies, there are
several differences:

■ Unlike the applet approach to deploying web-centric Java applications, Java Web
Start does not rely on the web browser to perform the downloading of the
application JAR files. Instead, Java Web Start downloads the application resources
after the Java Web Start JNLP descriptor is downloaded through the web browser.
The JNLP descriptor causes Java Web Start to launch and perform the actual
downloading.

■ While users of the application may experience the applet identically in Java Web
Start, they are not tied to the web browser as they would be with applets. Once the
application is running, the web browser can be closed, and the application
continues to run in Java Web Start.

With the Java Web Start software installed once on the client machine, the application
user can run applications and applets simply by clicking on a web page link. If the
application is not present on their computer, Java Web Start automatically downloads
all necessary files from the web server where the application libraries reside. It then
caches the files on the client computer so the application is always ready to be
relaunched anytime either from an icon on your desktop or from the browser link. The
most current version of the application is always presented to the user since Java Web
Start performs updates as needed.

9.9.1.1 Files Generated by the Create Java Web Start-Enabled Wizard
Application users can use Java Web Start to run applications and applets on client
machines, while you maintain the application on the web server. To support Java Web
Start and web server downloading, the Create Java Web Start-Enabled wizard
generates these files:

■ The Java Network Launching Protocol (JNLP) definition required by Java Web
Start to download and launch the application. The .jnlp file describes the archive
files and whether this instance includes an applet or an application.

■ An HTML file that contains the URL to initiate the downloading from the web
server to the client. Although HMTL file creation is optional, it is highly
recommended unless you intend to create the file manually.

Users can use Java Web Start to run applications and applets on client machines, while
you maintain the application on the web server. To support Java Web Start and web
server downloading, the Create Java Web Start-Enabled wizard generates these files:

9.9.1.2 Role of the Web Server in JDeveloper
JDeveloper provides an Integrated WebLogic Server web server. You can use it to
simulate the process of deploying the Web Application Archive and downloading for
use with Java Web Start. JDeveloper follows the J2SE deployment profile conventions
for archiving components that run on the client machine (simple archive) and
components that are deployed to the web server (Web Application Archive).

Deploying Using Java Web Start

9-54 User's Guide for Oracle JDeveloper

How to complete the Java Web Start setup:
1. Create a simple Java Archive (.jar) file that contains the application source files to

be downloaded and run on the client machine.

2. Launch the Create Java Web Start-Enabled wizard in JDeveloper to create the
HTML and JNLP files that will enable the application or applet to be downloaded
and run on the client machine.

3. .Create a Web Application Archive (.war) file which you deploy to the web
server. It will contain the contents of the public_html directory in your
JDeveloper mywork folder, including the JAR, HTML and JNLP files.

Once you have set up the web server, you can launch the Java Web Start software in
JDeveloper using the generated .html file. Java Web Start relies on your web browser
to download the components identified by the .jnlp file. Another definition in the
.jnlp file determines whether it will run as an application or a secure applet. Once
you have launched Java Web Start and the downloading is complete, you can close
your web browser and continue to run the application or applet.

9.9.2 How to Create a Java Web Start File
A Java Network Launching Protocol definition file, application-name.jnlp, is
automatically created when you use the Create Java Web Start-Enabled wizard to
create Java clients to download and run Java applications and applets on client
machines. However, if you want to control the contents of the
application-name.jnlp, you can manually create your own file to use.

To manually create a Java Web Start (.jnlp) file:
1. In the Categories tree, expand General and select Deployment Descriptors. In the

Items list, double-click Java Web Start (JNLP) Files.

2. If the category or item is not found, make sure the correct project is selected, and
choose All Technologies in the Filter By dropdown list.

3. Click OK.

4. The newly created file opens in the Code Editor. Edit this file to add the
configuration settings as appropriate.

For more information on Java Web Start, see
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136
112.html.

Note: You will not be required to deploy the application to use the
JDeveloper-embedded web server. JDeveloper provides a default
web.xml definition to locate the contents of the public_html
directory in your JDeveloper mywork folder.

Note: If this item appears grayed out, this indicates that there is an
application-name.jnlp file already created in the project. You
can have only one of each deployment descriptor type per project.

Deploying Using Java Web Start

Deploying Applications 9-55

9.9.3 How to Create an ADF Swing Web Archive for Java Web Start
You can use the JDeveloper Java EE web deployment process to set up the web server
before downloading and running the application using Java Web Start.

Once the application resides on the web server, it becomes very easy to maintain. Java
Web Start takes care of identifying and downloading application updates each time the
user runs the application.

How to create the ADF Swing web application archive for Java Web Start:
1. Before creating your archive files to ensure that you archive the latest source files,

create both the following:

■ The Business Component project.

■ The ADF Swing project.

2. Run the ADF Swing Java Web Start dialog. In the Application Navigator, select the
application or project in which you are working.

Choose File > New to open the New Gallery.

In the Categories tree, expand Client Tier and select ADF Swing. In the Items list,
select Java Web Start (JNLP) Files for ADF Swing, and click OK.

The dialog generates JNLP files for use with Java Web Start, an ANT build file
ctbuild.xml, and a deployment profile in the project properties.

3. If for security reasons the password used for the Java keystore defined on the
machine differs from the password used to protect the key and sign the code, then
you must modify the ctbuild.xml ANT build file to reference the specified
password:

■ Open the ctbuild.xml file and add the property for the key password below
the other signing properties:

<!--properties related to signing-->
<property name="alias" value="ADFADF SwingTrust"/>
<property name="storepass" value="welcome"/>
<property name="keypass" value="myPassword"/>

■ Change the sign target from the following:

<target name="sign" depends="jar">
 <signjar jar="${mt.jar.name}" alias="${alias}"
storepass="${storepass}"/>
 <signjar jar="${ct.jar.name}" alias="${alias}"
storepass="${storepass}"/>
</target>
to:

<target name="sign" depends="jar">
 <signjar jar="${mt.jar.name}" alias="${alias}" keypass="${keypass}"
storepass="${storepass}"/>
 <signjar jar="${ct.jar.name}" alias="${alias}" keypass="${keypass}"
storepass="${storepass}"/>
</target>

4. To create the client side archive files, right-click ctbuild.xml in the ADF Swing
project and choose:

Build Target > sign to require authentication of the archive, this will sign the
contained JAR files and is a required step.

Deploying Using Java Web Start

9-56 User's Guide for Oracle JDeveloper

The build file should generate two signed archive files in your project's public_
html directory: client.jar and mymt.zip. These archives are referenced by
the generated deployment profile in the project's properties.

5. (Optional) If you want to edit the web.xml deployment descriptor, right-click the
web.xml file in the Application Navigator and choose Open.

6. (Optional) To reopen a project deployment profile later to make changes,
right-click the project in the Application Navigator and choose Project Properties,
then select the name of the profile in the Deployment section of the Project
Properties dialog and click Edit.

When you are ready to deploy the resulting WAR and EAR files to the target
application server, make sure to create an application server connection.

9.9.4 How to Create a Java Client Web Archive for Java Web Start
You can use the JDeveloper Java EE web deployment process to set up the server
before downloading and running the application using Java Web Start.

Once the application resides on the web server, it becomes very easy to maintain. Java
Web Start takes care of identifying and downloading application updates each time the
user runs the application.

To create Java client applications for deployment to the web server:
1. Create a simple JAR archive of your Java client application.

2. Create a Web Start JNLP Definition for Java Clients to generate the JNLP file and
HTML file for use with Java Web Start.

3. In the Application Navigator, select the project in which you want to create the
WAR deployment profile.

4. Choose File > New to open the New Gallery.

5. In the Categories tree, expand General and select Deployment Profiles. In the
Items list, double-click WAR File.

6. If the category or item is not found, make sure the correct project is selected, and
choose All Technologies in the Filter By dropdown list. Enter the name of the new
deployment profile then click OK.

7. The WAR Deployment Profile Properties panel displays. Configure the settings for
each page as appropriate. Click OK when you have finished defining the
properties.

The newly created web.xml deployment descriptor appear in the Application
Navigator below the specified project.

8. Deploy the Java Client Web Archive for Java Web Start.

9. (Optional) If you want to edit the web.xml deployment descriptor, right-click the
web.xml file in the Application Navigator and choose Open.

10. (Optional) To reopen a project deployment profile later to make changes,
right-click the project in the Application Navigator and choose Project Properties,
then select the name of the profile in the Deployment section of the Project
Properties dialog and click Edit.

When you are ready to deploy the resulting WAR or EAR to the target application
server, make sure to create an application server connection.

Deploying Using Java Web Start

Deploying Applications 9-57

9.9.5 How to Create a Java Web Start JNLP Definition for Java Clients
You use the Create Java Web Start-Enabled wizard to create the XML-based JNLP (Java
Network Launching Protocol) definition file that the Java Web Start software uses to
download and run Java applications and applets on client machines.

The application or applet must be delivered in a set of JAR files and all application
resources, such as images, configuration files and native libraries, must be included in
the JAR files. The resources must be looked up using the ClassLoader getResource
or another method. Java Web Start only transfers JAR files from the web server to the
client. for additional information, see
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136
112.html

The wizard adds a JNLP file and (optionally) an HTML file to your project. Java Web
Start will use these generated files to determine what application source to download
from the web server:

■ The Java Network Launching Protocol (JNLP) definition is required by Java Web
Start to download and launch the application. The .jnlp file describes the archive
files and whether this instance includes an applet or an application.

■ An HTML file. Although HMTL file creation is optional, it is highly recommended
unless you intend to create the file manually. The HTML file contains the URL to
initiate the downloading from the web server to the client.

Before you launch the Create Java Web Start-Enabled wizard to create the JNLP and
HTML files, you must create a simple archive (JAR) file for it. You must also know in
which class the main function can be found, as you will be asked to specify this.

To create the JNLP definition for your application or applet:
1. In the Navigator, select the project in which you want to generate a JNLP

definition. Choose File > New to open the New Gallery.

2. In the Categories tree, expand Client Tier and select Swing/AWT. In the Items
list, double-click Java Web Start (JNLP) Files to open the Create Java Web
Start-Enabled wizard.

Click Next in the Welcome page.

3. In the Application Information page, enter the file name, the name and location of
the JAR file that you created, and the class that you want to use to run your
application.

Note: The web module is deployed to the target deployment
directory.

Make sure that the web application deployment descriptor is located
inside the Web Application Archive (WAR) file WEB-INF/web.xml.

Note: You must download and install the Java Web Start software to
launch applications and applets with Java Web Start in JDeveloper.
Users of your application or applet will also be required to install the
software on their machines. See

http://www.oracle.com/technetwork/java/javase/tech/index-
jsp-136112.html

Deploying Using Java Web Start

9-58 User's Guide for Oracle JDeveloper

4. For detailed help in using the Create Java Web Start-Enabled wizard, press F1 or
click Help from within the wizard.

5. Check Create Homepage to create the optional HTML file. Click Next after
specifying the desired options.

6. In the Web Start page, specify information to document the JNLP file. Complete
the wizard and click Finish.

You can also use a JSP file or servlet with Java Web Start; however, you will have to
manually configure the file and change the content type. Here is an example JNLP
with contentType = application/x-java-jnlp-file, specified in the first
line:

Example 9–7 JNLP File

<%@ page contentType="application/x-java-jnlp-file" %>
<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0+" codebase="http://192.168.1.102:8888" href="jnlpfile.jnlp">
<information>
<title>Test</title>
<vendor>Oracle</vendor>
<homepage href="Test.html"/>
<description>Encryption Tool</description>
<icon href="images/frontpage.gif"/>
<offline-allowed/>
</information>
<security><all-permissions/></security>
<resources>
<j2se version="1.3"/>
<jar href="/apps/archive1.jar" main="true" download="eager" />
</resources>
<application-desc main-class="oracle.Ide">
</application-desc>
</jnlp>

9.9.6 How to Deploy an ADF Swing Web Application Archive for Java Web Start
You can deploy the ADF Swing Web Archive to a server. Install the Java Web Start
software on your machine. For more information on Java Web Start, see
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136
112.html.

To deploy the ADF Swing web application archive for Java Web Start:
1. If not already done, create a signed ADF Swing Web Archive for Java Web Start.

2. If not already done, create an application server connection to the target
application server.

3. Right-click the ADF Swing project and choose Deploy to automatically generate
the WAR file and deploy the application components. You must choose a
connection to the desired web server.

4. (Optional) If you want to edit the web.xml deployment descriptor, right-click the
web.xml file in the Application Navigator and choose Open.

5. (Optional) To reopen a project deployment profile later to make changes,
right-click the project in the Application Navigator and choose Project Properties,
then select the name of the profile in the Deployment section of the Project
Properties dialog and click Edit.

Deploying Using Weblogic SCA Spring

Deploying Applications 9-59

9.9.7 How to Deploy a Java Client Web Application Archive for Java Web Start
You can use the JDeveloper simple Java EE web deployment process to set up the web
server before downloading and running the application using Java Web Start.

Once the application resides on the web server, it becomes very easy to maintain. Java
Web Start takes care of identifying and downloading application updates each time the
user runs the application.

To deploy Java client applications to the web server:
1. If not already done, create a Java Client Web Archive for Java Web Start.

2. If not already done, create an application server connection.

3. Create a simple JAR archive of your Java client application.

4. Create a Web Start JNLP Definition for Java Clients to generate the JNLP file and
HTML file for use with Java Web Start.

5. Select and right-click project in the Application Navigator. The context menu
displays these deployment options:

■ Deploy > deployment profile > to most-recent to deploy the project to the
application server or archive file you previously chose.

■ Deploy > deployment profile > to application server connection creates the
archive type specified in the deployment profile, and deploys it to the selected
application server connection.

■ Deploy > deployment profile > to EAR file to deploy the project and any of
its dependencies (specified in the deployment profile) to an EAR. JDeveloper
puts the EAR file in the default directory specified in the deployment profile.

■ Deploy > deployment profile to > WAR file the web module is packaged as a
WAR file and saved to the local directory you specified earlier in the
deployment profile settings.

6. (Optional) If you want to edit the web.xml deployment descriptor, right-click the
web.xml file in the Application Navigator and choose Open.

7. (Optional) To reopen a project deployment profile later to make changes,
right-click the project in the Application Navigator and choose Project Properties,
then select the name of the profile in the Deployment section of the Project
Properties dialog and click Edit.

9.10 Deploying Using Weblogic SCA Spring
The Oracle JDeveloper Weblogic SCA Spring Extension provides integrated support
for WebLogic SCA and for the open-source Spring framework.

The extension allows you to create:

■ WebLogic SCA enabled projects that can be deployed as a JAR file which can then
be included in an EAR file for deployment, or as a WAR file.

■ Spring framework projects.

Note: Make sure that the web application deployment descriptor is
located inside the Web Application Archive (WAR) file
WEB-INF/web.xml.

Deploying Using Weblogic SCA Spring

9-60 User's Guide for Oracle JDeveloper

9.10.1 About WebLogic SCA
The extension provides support for creating WebLogic SCA applications in JDeveloper
and deploying them in Oracle WebLogic Server. WebLogic SCA is based on a subset of
the OASIS Service Component Architecture Spring Component Implementation
Specification. For more information, see http://www.oasis-open.org.

Service Component Architecture (SCA) provides a model for building enterprise
applications and systems as modular business services that can be integrated and
reused. WebLogic SCA provides support for developing and deploying SCA
applications using POJOs (Plain Old Java Objects). In SCA, the implementation of a
component and its communication are separate. In WebLogic SCA, you can write Java
applications using POJOs and, through the different protocols available, expose
components as SCA services and access them via references. You do this using SCA
semantics configured in a Spring application context. In SCA terms, a WebLogic
Spring SCA application is a collection of POJOs plus a Spring SCA context file that
declares SCA services and references with the appropriate bindings. WebLogic Spring
SCA applications can be used without modification as components in Oracle SOA
composites.

In WebLogic Server, WebLogic Spring SCA applications run in the WebLogic SCA
Runtime. The runtime must be deployed to WebLogic Server as a shared Web
application library before applications can be deployed to it. For more, see
Section 9.10.4.3, "How to Deploy WebLogic SCA Applications to Integrated WebLogic
Server."

For more information about Oracle WebLogic SCA, see Oracle Fusion Middleware
Developing WebLogic SCA Applications for Oracle WebLogic Server.

9.10.2 About Spring
Spring is an open-source framework that simplifies development of enterprise Java
applications. The Spring framework includes models for various layers and
functionality areas of Java applications. It focuses on using POJOs, leverages inversion
of control concepts and dependency injection, and implements aspect oriented
programming.

The Weblogic SCA Spring Extension provides integrated support for creating open
source Spring projects in JDeveloper that can be used in Java EE applications. It adds
the Spring JAR files as a library to JDeveloper, and it adds a wizard and editing
features for creating Spring Bean configuration files. The extension creates: Adds the
Spring JAR files as the Spring 2.5 library to JDeveloper. Adds a wizard for creating
Spring Bean configuration files Registers the relevant XSDs and DTDs with the IDE to
provide a productive editing experience for Spring definitions

For more information about Spring, see Oracle Fusion Middleware Spring Support in
Oracle WebLogic Server.

9.10.3 Installing the Weblogic SCA Spring Extension
In order to use the Oracle JDeveloper Weblogic SCA Spring Extension, you must
download it and install it...

The extension adds the following to JDeveloper:

■ The Spring category to the Business Tier in the New Gallery. The options for
creating the Spring Bean Configuration file and the WebLogic SCA Configurations
are available here.

Deploying Using Weblogic SCA Spring

Deploying Applications 9-61

■ The Spring 2.5 library is added to JDeveloper, along with the JAR files of the
Spring framework and support for WebLogic SCA.

9.10.4 Using Oracle WebLogic SCA
You can use the Weblogic SCA Spring Extension to create WebLogic SCA enabled
projects that can be deployed as a JAR file which can then be included in an EAR file
for deployment, or as a WAR file.

9.10.4.1 How to Create WebLogic SCA Projects
You begin developing a WebLogic SCA project by creating the WebLogic SCA
Configuration file which acts as the control file for the application. As part of this
process, JDeveloper configures either the JAR or WAR deployment descriptor for
WebLogic SCA so that the necessary libraries are deployed to the server.

To create a WebLogic SCA application:
1. Create a Java application and project.

2. Choose File > New > New Gallery > Business Tier > Spring.

3. Choose either:

■ WebLogic SCA Configuration for JAR deployment to create a project that
includes a JAR file that can be included in an EAR file for deployment.

■ WebLogic SCA Configuration for WAR deployment to create a project that
includes a WAR file.

What the WebLogic SCA Wizard Does
When you run the WebLogic SCA Configuration wizard, the following happens:

■ An SCA definition file called spring-context.xml is created in META-INF/jsca
and opened in the JDeveloper XML source editor. You can use the advanced XML
editing framework to assist you as you edit it.

■ If the project does not already contain a web.xml file one is created.

■ Depending on the option you choose in the New Gallery:

– A JAR deployment descriptor is added to the project, and a dependency on
the weblogic-sca shared library is added at application level.

– A WAR deployment descriptor is added to the project, and a dependency on
the weblogic-sca shared library is added at web application level.

Next Steps
Once you have created an SCA project, you can:

■ Deploy the application to Oracle WebLogic Server.

■ Test the application with the JDeveloper Integrated WebLogic Server.

9.10.4.2 How to Edit Oracle WebLogic SCA Definition Files
The SCA definition file created when you create a WebLogic SCA project is called
spring-context.xml, and it is created in META-INF/jsca and opened in the XML
source editor.

The outline spring-context.xml file is

Deploying Using Weblogic SCA Spring

9-62 User's Guide for Oracle JDeveloper

Example 9–8 Outline spring-context.xml File

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
http://www.springframework.org/schema/jee
http://www.springframework.org/schema/jee/spring-jee-2.5.xsd
http://www.springframework.org/schema/lang
http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
http://www.springframework.org/schema/tool
http://www.springframework.org/schema/tool/spring-tool-2.5.xsd
http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
 <!--Spring Bean definitions go here-->

</beans>

The comment shows where you enter the bean definitions.

Use the XML source editor features, Structure Window features, the Component
Palette, and the Property Inspector to navigate the hierarchy of the XML file and edit
it.

Source Editor Features
The source editor has a number of features which help you to edit an XML file.

■ XML Code Insight, the XML-specific implementation of completion insight. Type
< and wait for a second, and JDeveloper will pop-up the possible entries
appropriate for that location. If the tag you chose has mandatory attributes,
JDeveloper will automatically add them.

■ The XML source editor provides many features to help, for example, errors are
underlined with a curly red line.

■ You can choose options from the context menu such as Find Usages, which will
display all the usages of the element in the Usages log window. You can also use
Find Usages from the Structure Window.

Structure Window Features
The Structure Window allows you to quickly navigate the hierarchy of the XML file,
and it also offers editing features.

■ Right click on nodes in the Structure Window to add more components.

■ Error messages are displayed in the Structure Window.

Deploying Using Weblogic SCA Spring

Deploying Applications 9-63

Component Palette Features
You can select tags from the Component Palette and drag and drop them directly into
the source editor or the Structure Window to build spring-context.xml files.

By default, the Component Palette displays all the available tags. Click All Pages and
choose just the type of tags you want to reduce the number of tags displayed. For
example, to use WebLogic SCA Bindings, choose that option at the top of the
component palette and the components listed are EJB Binding and Webservice
Binding.

Property Inspector Features
The Property Inspector allows you to edit the properties of tags.

■ Changes in the property inspector are synchronized with the source editor view.

■ Lists of values are shown when they are relevant for a specific property.

9.10.4.3 How to Deploy WebLogic SCA Applications to Integrated WebLogic Server
Once you have created a WebLogic SCA project you can test the application by quickly
deploying it to the Integrated WebLogic Server.

To deploy to Integrated WebLogic Server:
■ In the Application Navigator right-click spring-context.xml under the project node

in the Application Navigator, and choose Run, or Debug, or one of the Profiler
options.

What Happens When You Run the Application in Integrated WebLogic Server
If Integrated WebLogic Server has not yet been started, the default domain is
automatically created with default settings and the server is started.

The application is deployed to Integrated WebLogic Server and the Log Window
displays messages that show the progress of the deployment.

In the Application Server Navigator, you can see the services deployed under the Web
Services and EJB nodes under IntegratedWebLogicServer.

9.10.4.4 How to Deploy WebLogic SCA Applications to Oracle WebLogic Server
Once you have created a WebLogic SCA project you can deploy it to Oracle WebLogic
Server.

The process is slightly different depending on whether you chose to create a JAR or a
WAR file.

Note: You can only drop tags in places that are correct in terms of
syntax.

Note: Before you deploy a WebLogic SCA application to Oracle
WebLogic Server, you must install WebLogic SCA on the server. For
more information, see the chapter about deploying WebLogic SCA
Runtime to WebLogic Server in the Oracle Fusion Middleware Spring
Support in Oracle WebLogic Server.

Deploying Using Weblogic SCA Spring

9-64 User's Guide for Oracle JDeveloper

To deploy an Application Containing a WebLogic SCA WAR File to WebLogic
Server:
■ Deploy the application as usual.

To deploy an Application Containing a WebLogic SCA JAR File to WebLogic
Server:
1. Set the location of the JAR file to be either lib or APP-INF/lib and deploy it into an

EAR file.

2. Deploy the application as usual.

What Happens When You Deploy the Application to WebLogic Server
If necessary, an EAR file is created.

The application is deployed to the WebLogic Server connection and the Log Window
displays messages that show the progress of the deployment.

In the Application Server Navigator, you can see the services deployed under the Web
Services and EJB nodes under the connection node for the application server.

9.10.5 Using Spring
The Weblogic SCA Spring Extension provides integrated support for the open-source
Spring framework. The extension adds a number of libraries to JDeveloper, and adds
support for creating Spring framework projects

9.10.5.1 How to Create Spring Bean Applications
The Weblogic SCA Spring Extension adds libraries to JDeveloper containing the JAR
files of the Spring framework. You begin developing a Spring framework application
by creating the Spring Bean Configuration file, which acts as the control file for the
application.

To create a Spring Bean Configuration file:
1. Create a Java application and project.

2. Choose File > New > New Gallery > Business Tier > Spring > Spring. Enter the
file name and directory for the Spring Bean definition file and click OK.

9.10.5.2 What Happens When You Create a Spring Bean Configuration File
When you create a Spring Bean Configuration from the Spring category in the
Business Tier of the New Gallery, the Spring 2.5 and Commons Logging 1.0.4 libraries
are automatically added to the project. You can access the library definitions by
choosing Project Properties from the context menu of the project in the Application
Navigator, and then choosing Libraries and Classpath.

The Spring Bean Configuration file, beans.xml, is created in META-INF/jsca and
opened in the XML source editor. You can use the advanced XML editing framework
to assist you as you edit it.

Note: The EAR file must contain at least one other Java EE artifact,
for example a WAR file or EJB-JAR or the deployment will fail.

Troubleshooting Deployment

Deploying Applications 9-65

9.11 Troubleshooting Deployment
There a number of common problems that you may come across when deploying
applications. This topic describes them and their solutions. It is divided into issues that
may arise when deploying to both Integrated WebLogic Server and Oracle WebLogic
Server, and issues that are specific to one or other type of deployment

9.11.1 Common Deployment Issues
This section contains information about issues that may arise when deploying to both
Integrated WebLogic Server and Oracle WebLogic Server.

9.11.1.1 [Deployer: 149164] The domain edit lock is owned by another session in
exclusive mode - hence this deployment operation cannot proceed
Oracle WebLogic Server instances use the domain edit lock to make sure that only one
user can deploy applications and change configurations at one time, and this message
is displayed when another deployment is going on at the same time (only one
deployment at a time is allowed), or some change has been made in the WebLogic
Server Administration Console that has not been activated. Rarely, this message may
also appear when you are running an application on Integrated WebLogic Server.

To activate a change in the WebLogic Server Administration Console:
1. Log in to the Administration Console.

2. In the Change Center, at the upper left of the console, click View changes and
restarts.

3. In the Changes and Restarts section, ensure that the Change List tab is selected,
and activate any pending changes.

4. Select the Restart Checklist tab, and select the server to restart, and click Start.

To enable or disable the domain configuration locking feature, see the section about
enabling and disabling the domain configuration lock in the Administration Console
Online Help, which is available from the WebLogic Server online documentation in
your JDeveloper installation, or from the Administration Console.

If the error has appeared when you are deploying to Integrated WebLogic Server, you
can check the Administration Console to determine what the problem is.

9.11.2 How to Troubleshoot Deployment to Integrated Application Servers
This section contains information about issues that are specific to running on
integrated application servers.

9.11.2.1 Stopping Integrated Application Server
If you need to stop integrated application server, for example, to clear out an orphaned
WebLogic Server instance that was created and left running from an earlier JDeveloper
session, and you are unable to do so from within JDeveloper, go to
jdeveloper-user-home/DefaultDomain/bin, and run stopWebLogic.cmd (on
Windows) or stopWebLogic.sh (on Linux). This gracefully shuts down the
integrated application server so that it will not conflict with subsequent attempts to
launch the integrated application server from JDeveloper.

You can force shutdown of an instance that is still actively under the JDeveloper
control (i.e., not orphaned) by pressing the Terminate button twice.

Troubleshooting Deployment

9-66 User's Guide for Oracle JDeveloper

9.11.2.2 Running Out of Memory
If you run multiple applications on Integrated WebLogic Server, you may run out of
memory and see the java.lang.OutOfMemoryError: PermGen space exception.
To avoid this, increase the MEM_MAX_PERM_SIZE from the default of 128m to 256m,
512m, or higher. This is set in setDomainEnv.cmd (Windows) or setDomainEnv.sh
(Linux), which is located at jdeveloper-user-home/DefaultDomain/bin.

You first need to stop Integrated WebLogic Server using one of the methods described
above.

9.11.2.3 Reinstalling JDeveloper in a Different Location
If you reinstall JDeveloper into a new location, you may find that you have problems
because the integrated application server uses some hard-coded references to
JDeveloper. You must do one of:

■ Set JDEV_USER_DIR to use a new system directory. This is described in "Setting
the User Home Directory" in the Oracle Fusion Middleware Installation Guide for
Oracle JDeveloper.

■ Delete the old system directory, so that JDeveloper regenerates a new system
directory.

■ In the Application Server Navigator, right-click on IntegratedWebLogicServer and
select Delete Default Domain.

9.11.3 How to Troubleshoot Deployment to Oracle WebLogic Server
This section contains information about issues that are specific to deploying to Oracle
WebLogic Server.

9.11.3.1 ORA-01005: null password given; logon denied
This is usually caused by a blank password in the <encrypted-password> entry of the
application-name-jdbc.xml file or no <encrypted-password> entry at all.

9.11.3.2 ORA-01017: invalid username/password; logon denied
This is usually caused by the wrong password in the <encrypted-password> entry of
the application-name-jdbc.xml file.

9.11.3.3 [Oracle JDBC Driver] Kerberos Authentication was requested, but is not
supported by this Oracle Server
This will cause logon to be denied, and it is due to using the Oracle WebLogic Server
database driver, weblogic.jdbcx.oracle.OracleDataSource. This driver is not certified by
Oracle and should not be used.

9.11.3.4 Application Does Not Work After Creating a Global Data Source from the
Oracle WebLogic Server Administration Console
Make sure there is a target domain selected for the data source. If you clicked Finish
before the last panel of the wizard, then this was not done.

Also, make sure that the Java naming lookup call is correct if you are using a lookup in
Java code. For example, if the connection name is connection1, the naming lookup
should be java:comp/env/jdbc/connection1DS.

Troubleshooting Deployment

Deploying Applications 9-67

9.11.3.5 Redeploying an Application to a Server that is Down
You can only deploy an application once to a server that is down.

If you attempt to redeploy the same application to the same down server a second
time, deployment fails with the following log message:

[03:29:47 PM] ---- Deployment started. ----
[03:29:47 PM] Target platform is (Weblogic 10.3).
[03:29:47 PM] Retrieving existing application information
[03:29:47 PM] Running dependency analysis...
[03:29:47 PM] Building...
[03:29:50 PM] Deploying 2 profiles...
[03:29:50 PM] Wrote Web Application Module to
/path/oracle/jdeveloper/jdev/mywork/Application1/Project1/deploy/webapp1.war
[03:29:50 PM] Wrote Enterprise Application Module to
/path/oracle/jdeveloper/jdev/mywork/Application1/application1.ear
[03:29:50 PM] Redeploying Application...
[03:29:50 PM] [Deployer:149034]An exception occurred for task
[Deployer:149026]deploy application application1 on Server-1.:
[DeploymentService:290049]Deploy failed for id '1,244,759,390,503' since no
targets are reachable..
[03:29:50 PM] Weblogic Server Exception: java.lang.Exception:
[DeploymentService:290049]Deploy failed for id '1,244,759,390,503' since no
targets are reachable.
[03:29:50 PM] See server logs or server console for more details.
[03:29:50 PM] java.lang.Exception: [DeploymentService:290049]Deploy failed for id
'1,244,759,390,503' since no targets are reachable.
[03:29:50 PM] #### Deployment incomplete. ####
[03:29:50 PM] Remote deployment failed

9.11.3.6 Attempting to Deploy to a Server that No Longer Exists
When you have successfully deployed an application to a Managed Server, the
deployment wizard saves this deployment action in its history so that you can perform
the same action later. However, if the Managed Server is removed from your Oracle
WebLogic Server domain and you subsequently deploy using the deployment history
action, deployment fails with the following log message:

[02:38:40 PM] ---- Deployment started. ----
[02:38:40 PM] Target platform is (Weblogic 10.3).
[02:38:40 PM] Retrieving existing application information
[02:38:40 PM] #### Deployment incomplete. ####
[02:38:40 PM] [J2EE Deployment SPI:260013]Target array passed to DeploymentManager
was null or empty.

9.11.3.7 Deploying to a remove server fails with HTTP Error Code 502
If you are deploying to a server running on a machine that is not known to the
network DNS server, and you have set a proxy for JDeveloper, deployment will fail
with a 502 HTTP error code. This is because the proxy does not know where to
forward the request. This will also happen if you are deploying to a server on the
localhost that is referred to by its machine name, which typically happens with SOA
development.

To avoid this happening either add the machine to the Exceptions list in the proxy
settings in the Web Browser and Proxy page of the Preferences dialog, or choose not to
use a HTTP Proxy Server for any connections.

Troubleshooting Deployment

9-68 User's Guide for Oracle JDeveloper

9.11.3.8 No Credential Mapper Entry Found
If you see the following message, it usually means that an EAR using password
indirection did not have the passwords injected via mbeans before deployment.

weblogic.common.ResourceException: No credential mapper entry found for password
indirection user=scott for data source Connection1
This usually happens when trying to deploy an EAR manually from the console or
from an ant script.

9.11.4 How to Troubleshoot Deployment to IBM WebSphere
This section contains information about issues that may arise when deploying to both
Integrated WebLogic Server and Oracle WebLogic Server.

9.11.4.1 Deployment Fails When EAR Contains Spaces
WebSphere deployment on Windows does not work when the directory containing the
EAR generated by JDeveloper contains spaces.

9.11.4.2 Application Displays Administrative Console User Name
When you deploy your application to IBM WebSphere application servers and use the
same machine to log into the WebSphere administrative console, your application may
display the name of the user logged into the administrative console, instead of the
name of the user who logs into the application.

Part III
Part III Developing Java EE Applications

This part describes how to develop Java EE applications with Oracle JDeveloper
including all of the frontend and business technologies you need to get your enterprise
application up and running start to finish. This part of the book contains the following
chapters:

■ Chapter 10, "Getting Started with Developing Java EE Applications"

This chapter introduces the technologies supported to build your Java EE
Application.

■ Chapter 11, "Developing Applications Using Web Page Tools"

This chapter introduces the features, and covers tasks related to building web
pages and related business components with HTML, JSF/facelets, JSP, servlets and
scripting. It also provides a detailed look at the related tools and technologies
available for web page development.

■ Chapter 12, "Developing with EJB and JPA Components"

This chapter introduces the features, and covers building your business
components with EJB and JPA, including session bean and persistence
technologies.

■ Chapter 13, "Developing TopLink Mappings"

This chapter covers TopLink technology and related steps for building persistence
functionality on object-oriented programs based on relational data structures.

■ Chapter 14, "Developing Secure Applications"

This chapter introduces the features, and covers the steps of developing,
deploying and administering secure applications.

■ Chapter 15, "Developing Applications Using XML"

This chapter introduces XML mappings and configuration files technologies, as
well as creating and exiting the XML files.

■ Chapter 16, "Developing Applications Using Web Services"

This chapter introduces the features, and covers the discovery and implementation
of existing system web services, and steps for deploying new web services.

10

Getting Started with Developing Java EE Applications 10-1

10Getting Started with Developing Java EE
Applications

This chapter overviews the Java EE features available for your application
development, and related components, tools and technologies provided in Oracle
JDeveloper.

This chapter includes the following sections:

■ Section 10.1, "About Developing Java EE Applications."

■ Section 10.2, "About Web Page Tools."

■ Section 10.3, "About Enterprise JavaBeans and Java Persistence Components."

■ Section 10.4, "About Oracle TopLink."

■ Section 10.5, "About Secure Applications."

■ Section 10.6, "About Applications That Use XML."

■ Section 10.7, "About Applications That Use Web Services."

10.1 About Developing Java EE Applications
JDeveloper comes with a complete package of tools and features to create and edit
your Java EE 6 application components. Use the wizards, built in source and visual
editors, Component Palette and property inspector, and other features to create,
assemble, and reuse your web tier and business components. You can build, test, and
deploy powerful interactive, multitiered applications that perform well on a variety of
different platforms, and are easy to maintain.

For more information on Java EE see the Oracle Technology Network (OTN) Java EE
documentation at:
http://www.oracle.com/technetwork/java/javaee/overview/
index.html

10.1.1 Java EE and Oracle Application Developer Framework
For the web-tier part of your Java EE application, take advantage of the ADF Faces
rich client framework (RCF), which offers a rich library of AJAX-enabled UI
components for web applications built with JavaServer Faces (JSF).

The ADF layer enables a unified approach to bind any user interface to any business
service, without need to write code. When you build a Java EE application, and/or an
EJB project, you can assign ADF data controls on your individual session beans. This
adds a data control file with the same name as the bean.

About Web Page Tools

10-2 User's Guide for Oracle JDeveloper

The data control contains all the functionality of the application module. You can then
use the representation of the data control displayed in JDeveloper Data Controls panel
to create UI components that are automatically bound to the application module.

Using the ADF data control business-tier layer to perform business service access for
your EJB projects ensures that the view and the business service stay in sync. For
example, you could bypass the model layer and call a method on an application
module by class casting the data control reference to the application module instance
and then calling the method directly, but this renders the business services unaware of
any changes.

For more information, see the Oracle Fusion Middleware Java EE Developer's Guide for
Oracle Application Development Framework.

10.2 About Web Page Tools
JDeveloper provides you with a wide range of tools to develop the web tier, or
frontend of your Java EE applications. You can use wizards to walk you through
creating all your HTML, JSP and JavaServer Faces (JSF) /Facelet pages and related
files.

In addition, JDeveloper provides web page tools and step-by-step instructions for
many of the tasks you will use to develop your application web pages. You can build
web-tier components using all of the supported Java EE web application technologies
such as JSF / Facelets, JavaServer Pages (JSP), Java Servlet, HyperText Markup
Language (HTML), and Cascading Style Sheets (CSS). Web components in a Java EE
application contain presentation logic and run on the integrated server.

For more information, see Chapter 11, "Developing Applications Using Web Page
Tools."

10.3 About Enterprise JavaBeans and Java Persistence Components
You can create EJB projects, entities, Java persistence units, session beans, and
message-driven beans using wizards in the New Gallery. You can build entities from
online or offline database table definitions and from application server data source
connections.

To quickly get started with your EJB application:
■ Start by using the wizard (File > New > General > Applications) to create the

framework for your Java EE application.

■ Use wizards to create entities that correspond to database tables (File > New
>Business Tier > EJB).

■ Use a wizard to create session beans and facades and to build a persistence unit.
(File > New > Business Tier > EJB). Oracle ADF provides components to enable
data controls (File > New > Business Tier > ADF Business Components).

■ Use the JDeveloper integrated server capabilities to test your application. For more
information on running and testing, see Chapter 7.3, "Running Applications."

For more information on EJBs, see Chapter 12, "Developing with EJB and JPA
Components."

About Applications That Use Web Services

Getting Started with Developing Java EE Applications 10-3

10.4 About Oracle TopLink
Oracle TopLink is an object-persistence and object-transformation framework that
provides development tools and run-time capabilities that reduce development and
maintenance efforts, and increase enterprise application functionality

Use TopLink to configure TopLink descriptors and map Java classes, EJBs, and JPA
entities to different data sources, including relational databases, enterprise information
systems (EIS), and XML schemas. With the TopLink Editor, you can create this
information without writing Java code. The TopLink Editor supports multiple
standards, including JPA, JAXB, and Java EE.

For more information, see Chapter 13, "Developing TopLink Mappings."

10.5 About Secure Applications
You can secure Java EE applications using only container-managed security or, for
Fusion web applications, Oracle ADF Security. Fusion web applications are Java EE
applications that you develop using the Oracle Application Development Framework
(Oracle ADF).

The Oracle ADF Security framework is the preferred technology to provide
authentication and authorization services to the Fusion web application. The Oracle
ADF Security is built on top of the Oracle Platform Security Services (OPSS)
architecture, which provides a critical security framework and is itself well-integrated
with Oracle WebLogic Server.

For more information, see Chapter 14, "Developing Secure Applications."

10.6 About Applications That Use XML
JDeveloper provides you with the tools you need to work with the XML files in your
application. There is an XML source editor, an XML validator, and tools for working
with XML schemas. You can also use JDeveloper to create and edit your XSQL files.

You can create your schema documents from scratch, generate schemas from XML
documents or vice-versa in JDeveloper. Once your schema is created, manage your
elements using the XSD Visual Editor and the Component Palette.

For more information, see Chapter 15, "Developing Applications Using XML."

10.7 About Applications That Use Web Services
Web services in JDeveloper provides a set of messaging protocols and programming
standards that expose business functions over the internet using open standards. A
web service is a discrete, reusable software component that is accessed
programmatically over the Internet to return a response. JDeveloper provides tools
that help you discover and use existing web services, and develop and deploy new
web services.

JDeveloper also supports a set of standard Java-to-XML type mappings. You can also
create custom serializers for types of objects that are not automatically supported. For
more information, see Section 16.2, "Using JDeveloper to Create and Use Web
Services."

You can create web services from Java classes, the remote interface of EJBs, and an
ADF Business Components service session bean wrapped as an EJB. The Web service
creation wizards create the deployment files for you, so once you have created your

About Applications That Use Web Services

10-4 User's Guide for Oracle JDeveloper

web service the final step is to deploy it to application servers. For more information,
see Section 16.5, "Creating SOAP Web Services (Bottom-Up)."

Alternatively, you can create a web service starting with a WSDL, as a top-down web
service. For more information, see Section 16.6, "Creating SOAP Web Services from
WSDL (Top Down)."

Finally, you can develop web services that are based on Representational State Transfer
(REST). A RESTful web service is a simple interface that transmits data over a
standardized interface (such as HTTP) without an additional messaging layer, such as
SOAP. Section 16.7, "Creating RESTful Web Services."

11

Developing Applications Using Web Page Tools 11-1

11Developing Applications Using Web Page
Tools

This chapter describes how to build Java EE applications user interfaces and business
services with HTML, JSP, and JSF/facelets using the latest tools and technologies
included in Oracle JDeveloper.

This chapter includes the following sections:

■ Section 11.1, "About Developing Applications Using Web Page Tools"

■ Section 11.2, "Developing Applications with JavaServer Faces"

■ Section 11.3, "Developing Applications with HTML Pages"

■ Section 11.4, "Working with Java Server Pages"

■ Section 11.5, "Developing Applications with Java Servlets"

■ Section 11.6, "Developing Applications with Script Languages"

■ Section 11.7, "Working with JSP and Facelet Tag Libraries"

11.1 About Developing Applications Using Web Page Tools
Oracle JDeveloper provides you with a wide range of tools to develop the frontend or
view layer of your Java EE applications. There are handy wizards to walk you through
creating all your HTML, JSP and JSF/facelet pages and related files. When you create
web pages using the wizards your configuration files, bean mappings, tag libraries,
and jar files are automatically set up and editable.

At the forefront of the web tools there are source editors, visual editors, and integrated
component and property tools to add and edit the pages, elements and related
properties in your pages, including your business service and localization
components. You will be able to create and modify your style sheets and tag libraries,
and use the Code Insight code and tag completion tools to efficiently code your
HTML, JSP and JSF/facelet or Java source files.

This chapter walks you through the web page tools and step-by-step instructions for
many of the tasks you will use to develop your application web pages.

11.1.1 Getting to Know the Source Editor Features
The source editor is your basic code editor for most of your web pages. You will use
the source editor to add non-visual components, and custom coding, in conjunction
with the visual editor which allows you to drop in components and visually modify

About Developing Applications Using Web Page Tools

11-2 User's Guide for Oracle JDeveloper

your pages. When you are using the source editor, there are many features to make
coding tasks faster and easier. Figure 11–3 displays a source editor for a JSF page.

Figure 11–1 Source Editor with Typical JSF Code

Table 11–1 lists the primary source editor features.

Table 11–1 Primary Source Editor Features

Features Description

Quick Doc for Tags View your tag definitions while you're coding. Put your curser
on the tag and press Ctrl + d. A small window appears at the top
of your editor with that tag definition detail. Click back in the
editor and the window closes. You can also right-click and
choose Quick TagDoc.

Code Templates Save time by inserting pre-written code into source files instead
of having to type it in manually. Templates can intelligently
modify the inserted code to suit surrounding code. Use shortcuts
to speed up the selection of the required template.

See Section 3.8.3, "How to Customize Code Templates for the
Source Editor" for more information on templates.

Code Insight View and filter element and parameter options, and get code
completion. The source editor provides Code Insight for tags,
attribute names & values, and embedded CSS & JavaScript code.

Jump to Managed Bean Quickly jump to your managed bean code from your web page
source. Right-click in the source editor or Structure window and
choose Go to, then select your choice from the list of all beans
referenced from that page.

Editor Splitting Toggle between code and visual views using the splitter. To split
the file horizontally, grab the splitter just above the vertical scroll
bar on the upper right-hand side of the window and drag it
downward. To split the file vertically, grab the splitter just to the
right of the horizontal scroll bar on the lower right-hand side of
the window and drag it left.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 11-3

11.1.2 How to Work in the Visual Editing Environment
The JSP/HTML Visual Editor can be used for WYSIWYG editing of all your web pages
including JSP, JSF, facelets, and HTML pages. The visual editor opens up with the
Component Palette available to drop and drag components to the page, as shown in
Figure 11–2.

Use the visual editor for the following tasks:

■ Insert visual and non-visual page elements.

■ Apply cascading style sheets and modify text style.

■ Move and resize page elements.

■ Design tables and forms.

■ Modify web page element attributes.

■ Select the reference device for mobile-enabled JSP documents.

Figure 11–2 Visual Editor Showing Typical JSF Page

With the exception of dynamic content such as JavaScript elements, all your web page
elements are visually displayed or structurally represented in the visual editor. JSP
tags including JSTL, and BC4J tags are visually displayed in the visual editor using
icon and tag names, while HTML template content is rendered based on the browser
look and feel. You can toggle back and forth or split the screen to see the source editor
during design-time.

The visual editor is integrated with the Java Source Editor, Structure window,
Component Palette, Property Inspector, and Data Binding Palette to support the
assembly of databound web pages using simple drag and drop operations. You can
move from one tool to another and see or edit your changes reflected across the board
immediately.

Key visual editor features include the following:

■ When you open a file in the visual editor, the page is rendered in HTML and
associated web formats, much like a web browser. You immediately see the results
of your edits.

■ View and select your nested components in chronological order using the
breadcrumb that appears at the bottom of the visual editor window. Selecting an

About Developing Applications Using Web Page Tools

11-4 User's Guide for Oracle JDeveloper

element on a page opens the element attributes for editing in the Property
Inspector.

■ View the structure of data in the Structure window. You can view the data in the
document currently selected in the active window of those windows that
participate in providing structure: the diagrams, the navigators, the editors and
viewers, and the Property Inspector. For more information, see Section 3.11.6,
"Structure Window."

■ Component Palette tag library pages are context-sensitive, displaying eligible
components for insertion into the page.

■ Right-click anywhere within the visual editor to bring up a context-sensitive menu
of commands.

The visual editor comes with a toolbar at the top of the window that includes the usual
toolbar icons to format font and paragraphs on your web pages. In addition you can
set the window of the visual editor to your preferred resolution using the Match
Current Monitor Resolution dropdown tool, as shown in Figure 11–3.

Figure 11–3 Match Current Monitor Resolution Tool

Use the Match Current Monitor Resolution drop-down list to choose a larger or
smaller page picture in your visual editor window. Changing the monitor resolution
does not impact the actual page or browser size, but only the way it is viewed in this
editing window. By default the visual editor window is set to preview in the same
resolution as the monitor you are using. You can also set it to fit the current size of the
visual editor.

There are also some additional editing tools and features, as detailed below in
Table 11–2.

Table 11–2 Toolbar Icon Features on the Visual Editor

Icon Name Description

Refresh There are two types of refresh for you to choose
from. Use the dropdown menu on the refresh
button.

Refresh Page rebuilds and re-renders the internal
data structures of a page. Use this tool if you have
an included page (like a page template) that has
been changed, and you want to see the affects in
the including page.

Full Refresh is used to first fully restart the internal
design time for a page project (which includes
rebuilding the servlet context from web.xml and
tag libraries, and (for Faces projects) the Faces
context from the faces-config.xml. With Full
Refresh the internal data structures of the active
page are rebuilt and it is re-rendered.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 11-5

Table 11–3 lists the features that are available with simple keystroke commands while
you are editing your web pages.

Show component status ■ Use the dropdown list to choose options for
component action and status.

■ Select the default Component Actions to
display an arrow for a component when it has
focus.

■ Click the arrow to display a list of possible
actions relevant for that component, such as
hide, rebound, or go to page definition.

■ Use to select if the component will be marked
for a Warning, Incomplete, or Error status. You
can also select to show your text resource and
expression builder values in various forms, or
not at all on your components.

■ For your EL Expression rendering choose
Show User-Friendly Values (Resolve Bindings)
to automatically resolve your expressions for
viewing. This is selected by default. Values
that are not resolved are rendered according to
your preference for Fallback Data Display
Style.

■ You can select to abbreviate your expressions,
show no expressions, or populate the page
with dummy data for display purposes only.
You can also choose to display the full
expression.

Preview in Browser Lets you see your how your web page will appear
in your default browser. Click the icon or
Shift+F10,V.

Table 11–3 Primary Visual Editor Command Features

Features Description

Toggle Line Comments Adds or removes comment markers from the beginning of each
line in a selected block. Select a single line to comment or
uncomment that line only.

Breadcrumbs View and select your nested components in chronological order
using the breadcrumb that appears at the bottom of the visual
editor window.

Component Selection Hovering your curser over a component on the page highlights
that component with an orange outline.

Editing Containers In the Structure window or visual editor window select a
container. Right-click that container and choose Design This
Container. That container is selected in the editing window. This
feature allows you to more easily view and edit the individual
components in that selected container.

Visual EL Expression View
Preferences

Select whether to resolve expressions for viewing, and how to
view those that are unresolved. Choose the Show toolbar feature
to select your preference for EL rendering, or you can also go to
Tools >Preferences > JSP and HTML Visual Editor.

Table 11–2 (Cont.) Toolbar Icon Features on the Visual Editor

Icon Name Description

About Developing Applications Using Web Page Tools

11-6 User's Guide for Oracle JDeveloper

11.1.2.1 How to Expand and Collapse Container Elements
Another feature that can be used while working in the visual editor or Structure
window is the ability to expand or collapse JSP and HTML page elements containing
or nesting other elements. To do this use the - (minus) and + (plus) sign to expand and
collapse the parent container element.

For example, in the visual editor, JSP container tags are displayed as nested rectangles.
An expanded JSP <c:choose> tag containing a <c:when> and <c:otherwise>
tag displays as shown in Figure 11–4.

In the Structure window, the example of a collapsed HTML table with multiple rows
displays as shown in Figure 11–5.

Expression Builder and
Text Popup

Select your component. Slow double-click or F1 to open a popup
window with a value field for editing your expressions or text.

Corresponding Element
Display

Page elements are displayed hierarchically in the Structure
window. Double-clicking a node in the Structure window shifts
the focus to the Property Inspector.

Visual and Code Editor
Splitting

Edit your file simultaneously with the visual and source editors
by opening the page in one of the editors and using the splitter
to open a second page view in the alternate editor.

To split the file horizontally, grab the splitter just above the
vertical scroll bar (on the upper right-hand side of the window)
and drag it downward.

To split the file vertically, grab the splitter just to the right of the
horizontal scroll bar (on the lower right-hand side of the
window) and drag it left.

Easy Edit Focus By default new JSP or HTML pages are opened with the visual
editor in focus. Double-clicking a node in the Application
Navigator opens or brings the default editor to the foreground.

To locate the node in the Application Navigator that corresponds
to the file you are currently working on, right-click and choose
Select in Navigator. Or use the keyboard shortcut (default
keymap, Alt+Home).

Tag Display The scope of tags with embedded body content is structurally
represented with the tag icon and name bounded by, or
contained within, a shaded rectangle. These tag containers are
nested or structurally displayed to represent, for example, an
iterated row in a table. Click the tag to select a cursor for
entering content in the tag container.

Extracting CSS code from
HTML/JSP to a CSS files

Extract a CSS block from a HTML/JSP file to a new CSS file and
all the references are updated automatically. This option is
available to use from the Code editor and the Structure window.

Style sheet Linking to
HTML files

Link a style sheet to your HTML files simply by dropping a
<style> or <link> tag from the Component Palette common
tab into your HTML page.

Mobile Device Display For mobile-enabled JSP documents, the design view emulates
the viewport of the selected device category. The device category
icon is displayed on the toolbar along with the reference device
dropdown list.

Table 11–3 (Cont.) Primary Visual Editor Command Features

Features Description

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 11-7

Figure 11–4 Container Tags in Nested Rectangles

Figure 11–5 Collapsed HTML Table

To collapse the container element:
Do one of the following:

■ Click the + (plus) sign of the container element.

■ Right-click the container element and choose Expand Tag from the context menu.

11.1.2.2 How to Customize the Visual Editor Environment
You can customize the following default visual editor environment settings such as:

■ Text foreground and background color, element and tag outline color, and caret
color.

■ Synchronization between the visual editor and the Structure Window or the source
editor.

■ Display of errors and warnings.

■ Display of tag names.

To change the general environment settings for the visual editor:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the JSP and HTML Visual Editor node.

3. Select the options and set the fields as appropriate.

4. Click OK.

11.1.2.3 How to Display Invisible Elements
You can customize the display of invisible elements such as:

■ HTML named anchors, script tags, and line breaks.

■ JSP tag library directives and bean tags.

To change the display of invisible elements in the visual editor:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the JSP and HTML Visual Editor node and
select the Invisible Elements page.

3. Select your options and click OK. After setting preferences you can toggle the
display of invisible elements on and off when you are working in the visual editor
by going to the main menu and choosing Design > Show and select Invisible
HTML Elements or Invisible JSP Elements.

About Developing Applications Using Web Page Tools

11-8 User's Guide for Oracle JDeveloper

11.1.2.4 How to Execute JSP Tags in the JSP Visual Editor
To get a close approximation of a runtime visualization, run the tag library in a
simulated JSP/Servlet container available in the design time page context.

To set a JSP Tag Library to execute at design time:
1. From the main menu, choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, select JSP Tag Libraries.

3. Choose a tag and select Execute Tags in JSP Visual Editor.

4. Click OK.

To set this option for a particular project:
1. In the Application Navigator, double-click the project.

2. Choose JSP Tag Libraries.

3. Select Execute Tags in JSP Visual Editor.

11.1.2.5 How to Display JSP Tags by Name Only
Display JSP tags by name only, by omitting embedded EL syntax. For example,
<c:out value="${Row.Deptno}"></c:out> would display simply as out vs.
${Row.Deptno} if this select this option.

To display JSP tags by name only:
1. From the main menu, choose Tools > Preferences.

2. Choose JSP and HTML Visual Editor.

3. Select the Show JSP Tag Name Only checkbox. This checkbox is deselected by
default.

11.1.2.6 How to Change Keyboard Preferences
Use the JDeveloper keyboard or mouse for navigating any of your development tasks.
You can also customize the default keymap, and within each keymap specify any of
the accelerator assignments.

To customize keymap accelerators:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select Accelerators.

3. Select a preset keymap, and make changes to the accelerator.

4. Click OK.

11.1.2.7 How to Select Web Page Elements
You can select a single element to manage, or select a container element along with
included elements such as a table, or multiple elements. A dotted line encloses the
selection. In the Structure window, a selected element is highlighted.

To select an element:
1. In the visual editor or Structure window, position your pointer cursor on the

element.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 11-9

2. Click the element. If the selected element contains included elements, selecting the
element also selects all its contained elements. If you copy, move, or delete the
container, all its contained elements are also copied, moved, or deleted.

OR

Right-click the element. When you select an element by right-clicking, a context
menu of options is displayed. For example, to highlight the element code in the
Source view of the page, right-click the element and select Go to Source.

To select text:
In the visual editor in an open web page, do one of the following:

■ Double-click a single word.

■ Triple-click a word within a text string you wish to select.

■ Select and drag your cursor across the text.

■ Click at the start of the selection, scroll to the end of the selection, then hold down
Shift and click.

To select multiple element:
1. In the visual editor or Structure window, position your pointer cursor on the

element in an open web page.

2. Click the first element.

3. Press and hold down the Ctrl key.

4. Click any additional element. If you want to deselect one without losing the other
selections, continue to hold down the Ctrl key and click the element again.
Selecting multiple, non-adjacent elements for any reason other than deleting them
might lead to unexpected results. For example, if the elements exist at different
levels in the web page hierarchy, they can lose their relative hierarchical positions
if you move or copy them to another position in the page.

To select a range of adjacent elements:
1. In the visual editor or Structure window, position your pointer cursor on the first

element.

2. Click the element.

3. Scroll to the end of the selection, then hold down Shift and click.

Note: Double-clicking an element brings up an editor dialog for the
tag.

About Developing Applications Using Web Page Tools

11-10 User's Guide for Oracle JDeveloper

11.1.2.8 How to Select Insertion Points in the Design Tools
While inserting, copying, or moving page elements, you select an insertion point on
the page in the visual editor or in the structure window in relation to a target page
element. JDeveloper provides visual cues to locate the insertion point before, after, or
contained inside a target element.

To select an insertion point in the visual editor:
■ When dragging a JSP or HTML page element to an insertion point, drag it until

you see a vertical line | in the desired location, then release the mouse button.

■ When selecting an insertion point by clicking, do one of the following:

– Select the desired location on the page, indicated by a blinking cursor.

– Select the element to contain the inserted element, indicated by a dotted line.

To select an insertion point in the Structure window:
When dragging a web page element to an insertion point, do one of the following:

■ To insert an element before a target element, drag it towards the top of the element
until you see a horizontal line with an embedded up arrow, then release the mouse
button.

■ To insert an element after a target element, drag it towards the bottom of the
element until you see a horizontal line with an embedded down arrow, then
release the mouse button.

■ To insert or contain an element inside a target element, drag it over the element
until it is surrounded by a box outline, then release the mouse button. If the
element is not available to contain the inserted element, the element will be
inserted after the target element.

When selecting a target position by clicking, highlight the target element.

Tip: For JSP tag libraries, when you pass the mouse pointer over an
element, a tooltip with the tag name is displayed, making it easier to
know where to click to select a element.

Press Ctr +Shift+Up to select the container element for an element
contained inside another element. Do the same to move through
nested containers until you reach your target. For example, select
when you add a link to text you will need to press Ctr +Shift+Up
twice to move to the link target.

When you select an element in the visual editor, it is also selected in
the Structure window, and vice-versa. You can look at the selection in
both tools to see what is selected and where the insertion point is.

Note: Copying an element from the clipboard into a selected element
will replace the selected element.

Note: A disallowed insertion point is indicated when the drag cursor
changes to a slashed circle.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 11-11

11.1.2.9 How to Insert Web Page Elements
Use the Component Palette to add UI and data elements to your web pages. You can
insert page elements in the visual editor or the Structure window. When you select an
insertion point, the selection is reflected in both, enabling you to verify the insertion
position visually as well as hierarchically.

For more information, see Section 11.1.4, "How to Use the Component Palette."

To insert a page element:
1. With a page open, select the Component Palette package, or page from the drop

down list. The Component Palette is context sensitive and displays only those
options that are relevant to the active file.

2. Do one of the following:

■ Select the insertion point where you want the element to appear on the page in
the visual editor or in the Structure window, then click the element in the
Palette.

■ Drag the element from the palette to the desired insertion point on the page.

3. Depending on the element, a corresponding insertion dialog appears, prompting
you to select or insert a file, or supply tag attributes.

When you insert a page element, JDeveloper generates the source code for the
element. When you delete an element, the associated lines from the code are also
deleted.

11.1.2.10 How to Set and Modify Web Page Element Properties
The Property Inspector displays the properties of web page elements selected in the
visual editor or the Structure window. Use the Property Inspector to set or modify the
property values for any element in your web pages. Set property values are marked
with a green square. To undo changes, from the main menu select Edit > Undo action.
Use the Set to Default button to reset a property with a default value to its original
value.

For more information, see Section 11.1.3, "How to Use the Property Inspector."

To set element properties:
1. With a web page open, select an element in the visual editor or the Structure

window. The Property Inspector displays the property values for the selected
element. If the Property Inspector is not in view choose View Property Inspector
or use the shortcut Ctrl+Shift+I.

2. Scroll until the property you want is visible, then select it with the mouse or the
arrow keys. A brief description of the property is displayed at the bottom of the
Property Inspector.

3. Enter the property value in the right column in one of the following ways:

■ In a text field, type the string value for that property, for example a text value
or a number value, then press Enter.

Note: You can also use the Find box at the top of Property Inspector
to search for the property.

About Developing Applications Using Web Page Tools

11-12 User's Guide for Oracle JDeveloper

■ In a value field with a down arrow, click the down arrow and choose a value
from the list, then press Enter.

■ In a value field with an ellipsis (...), click it to display an editor for that
property, for example, a color or font selector. Set the values in the property
editor, then press OK.

To display an editor to set or modify an element's properties:
■ Double-click the element.

11.1.2.11 How to Set a Data Source for a Property
As an alternative to working with the Data Control Palette to create databound UI
components, you can set ADF bindings for UI components that you display in the
visual editor.

Use the Property Inspector to set or remove a data source for an element property.
From a Value Binding dialog you can select available data sources defined by the
objects or the application ADF binding context that you specify for an EL expression.
Note that before you can specify an ADF binding as a data source you must first create
the binding.

To databind an element property:
1. With the JSP page open, select an element in the visual editor or Structure window.

2. Scroll until the property for which you wish to specify a data source is visible, then
select it with the mouse or the arrow keys.

3. Click the Bind to Data button. An EL expression is displayed in the property value
field and an ellipsis button becomes available.

4. Click the ellipsis (...) button to display a Value Binding dialog, and then select the
data source.

5. Click OK.

11.1.2.12 How to Set Properties for Multiple Elements
If you have multiple elements selected, by default the Property Inspector displays all
the properties of the selected elements. Click Union in the Property Inspector toolbar
to toggle between displaying all the properties of the selected elements (union) and
displaying only the properties that the selected elements have in common
(intersection). Values represented in italic font indicate common properties that have
differing value.

To set properties for multiple elements:
Do one of the following:

■ Hold down the Ctrl key and select each of the elements.

■ To change the list of properties displayed by the Property Inspector, click the
Union button in the Property Inspector toolbar:

■ S elect and edit the desired property in the Property Inspector. If the value is
shown in italic font, the selected elements have differing values. Editing the value
of a shared property will cause all selected elements to have the same value.

Tip: To remove a data source from a JSP element property, toggle the
Bind to Data button off.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 11-13

11.1.2.13 How to Use Basic Commands to Manage Your Elements
Cut, copy, and paste web page elements in the visual editor or Structure window. You
can perform these operations between files of the same project or different projects.

To cut one or more elements:
1. Select the page element you wish to cut in the visual editor or the Structure

window.

2. Press Ctrl + X. Right-click and select Cut. You can also choose Edit > Cut from the
main menu.

The element is removed from the editor and placed into a local clipboard only
accessible by JDeveloper not to the system clipboard. If you quit JDeveloper
without pasting the element, the cut version of the element will be lost.

The cut command is the first step in a cut and paste action. You can also delete an
element. Deleting an element removes it without changing the contents of your
clipboard.

To delete web page elements:
1. Select one or more page elements you wish to delete in the visual editor or the

Structure window.

2. Press Delete or Backspace. You can also right-click and select Delete, or choose
Edit > Delete from the main menu. If the element selected for deletion contains
included elements, deleting the element also deletes all its contained elements.

To copy one or more elements
1. Select the page element to copy in the visual editor or the Structure window.

2. Press Ctrl + C. You can also right click and select Copy, or choose Edit > Copy
from the main menu.

In the visual editor you can also:

■ Right-click drag an element to an insertion point, release the mouse, and then
choose Copy Here from the context menu.

■ Hold down Ctrl and drag a copy of the selected element to an insertion point
on the page.

To paste an element:
1. Open the file to paste an element in the visual editor or Structure window.

2. Select the insertion point where you want to paste the component.

3. Press Ctrl + V. You can also Right-click and select Paste or choose Edit > Paste.

To move web page elements:
1. Drag the element(s) from the original position to an insertion point in the Visual

Editor or Structure window.

2. Right-click drag the element(s) from the original position to an insertion point in
the visual editor or Structure window, and then choose Move Here from the
context menu.

About Developing Applications Using Web Page Tools

11-14 User's Guide for Oracle JDeveloper

To Resize HTML Page Elements
1. Go to the Property Inspector under Style Size and select your size preference or

return to default which is 100 percent width of the page.

2. Double-click the element, set size properties in the editor dialog, and then click
OK. You can also Right-click the element, choose Edit Tag, set size properties in
the editor dialog, and then click OK, or Select the element, and then set size
properties in the Property Inspector.

11.1.2.14 How to Work with Data Tables
JSF applications use the dataTable tag to display a data table. You use the Create Data
Table Wizard to insert that tag on a JSF page. This wizard also provides rudimentary
formatting. Once created, you can further edit the table by setting or changing
attribute values. You can also add or delete columns, and add components or objects to
columns.

To create and edit a data table:
1. Open a JSF page in the visual editor.

2. In the Component Palette, select JSF from the dropdown menu.

3. Double-click or drag Data Table from the palette. The Create Data Table Wizard
opens.

4. Follow the steps in the wizard.

5. To change or set values for attributes not accessed using the wizard:

■ Select the h:dataTable component in the Structure window.

■ In the Property Inspector, click in the field next to the attribute to set the value.
Use the right-click context sensitive Help for information about the different
attributes.

To work with columns in a data table:
■ To add a single column, right-click an existing column next to where you want to

add the new column, and select either Insert before h:column > Column or Insert
after h:column > Column. A column is added either before or after the selected
column. The new column is now selected.

■ To add multiple columns.

– Right-click an existing column next to which you want to add the new
columns, and select DataTable > Insert Columns.

– Complete the dialog.

■ To reorder the columns, drag and drop the columns in the Structure window or in
the visual editor.

■ To add a component or other object to a column (for example to display data),
right-click the column and select Insert Inside Column. Use the menus to select
components or other objects to place inside the column. You can then use the
Property Inspector to set attribute values for the added components.

Note: You can also select the data table in the visual editor or
structure window. In the visual editor dropdown menu, select Insert
inside Data Table > Column.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 11-15

■ To delete a column, right-click the column and select Delete.

11.1.2.15 How to Work with Panel Grids
JSF applications use the panelGrid tag to display an HTML table. You then place
other components inside the panel grid. JDeveloper provides the Create PanelGrid
Wizard to help you create the grid. Once created, you can further edit the grid by
adding, moving, and deleting components in the grid.

To create and edit a panel grid:
1. Open a JSF page in the visual editor.

2. In the Component Palette, select JSF from the drop-down menu.

3. Select Panel Grid. The Create PanelGrid Wizard opens.

4. Complete the wizard.

5. To change attribute values set in the wizard, double-click on the h:panelGrid
component in the Structure Pane. The properties editor opens. Change any values
as needed.

6. To insert a component into the grid, in the Structure Pane, right-click an existing
component and elect to place the component either before or after the existing
component. If you need to nest components in a cell, you must first place a
panelGroup tag in the cell. You can then elect to place other components inside
the panelGroup tag. Note that you cannot add rows to a panel grid. You can only
add columns using the Columns attribute. Components are then placed in
columns along a row in the order they appear in the Structure window.

7. To reorder the components, drag and drop the columns in the Structure window
or in the visual editor.

8. Add a header or footer to the grid.

9. To delete a grid or a component in a grid, right-click the component and select
Delete.

11.1.2.16 How to Paste Markup Code in JSP and HTML Pages
You can copy and paste source code between files in the same project or different
projects. Paste source code without interpretation, for example as sample code, by
selecting No in the Confirm Markup Insert dialog.

To paste markup code
1. Copy your source code on the local system clipboard.

2. Choose Edit > Paste Special.

11.1.2.17 How to View and Edit Web Page Head Content
HTML head content such as style definitions and the browser window title are
invisible elements on web pages. In the visual editor you can view and edit head
section elements.

Note: You can also select the column in the visual editor or structure
window. In the visual editor dropdown menu, select Insert inside
Column > Output Text.

About Developing Applications Using Web Page Tools

11-16 User's Guide for Oracle JDeveloper

To view elements in the head section of a page:
With a web page open in the visual editor choose Design > Show > Head Content.
For each element of the head section, an icon appears in a bar at the top of the page.

When you select an element in the head section bar, the source code for the element is
highlighted in the code editor.

To edit an element in the head section of a page:
1. In an open web page display the head section elements by choosing Design >

Show > Head Content.

2. In the visual editor do one of the following:

■ Click an element in the head section bar to select, and set or modify the
element properties in the Property Inspector.

■ Right-click the element and choose Edit Tag from the context menu to open an
editor dialog. To open a cascading style sheet for editing choose Open
css/filename.css from the context menu.

11.1.3 How to Use the Property Inspector
Use the Property Inspector to view and edit the properties of a selected component.

Figure 11–6 Property Inspector

As shown in Figure 11–6, the title bar of the Property Inspector displays the name of
the selected component, for example, form or body. The main area of the inspector
displays the component properties and their values. If you have selected more than
one component in the active tool, the word "Multiple" appears in the title bar, and only
the properties shared among the selected components display.

The main area of the Property Inspector displays groups of properties in named
sections that you can expand or collapse.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 11-17

The Property Inspector displays component properties as fields, dropdown lists, or
combo boxes. For boolean properties, a checkbox before the property name to
indicates its current value. boolean properties that accept EL expressions use either a
field or dropdown list, depending on whether the current value is an expression or an
explicit value of true or false.

In all properties, an asterisk (*) appears next to a property name indicating that a value
is required for that property. To see a description of a property, right-click a property
name, field, dropdown list, or combo box to display a popup window. A description of
the property appears in a scrollable box under Property Help at the bottom of the
popup window. Click + (plus) and - (minus) to toggle the help box display within the
popup window. Resize the popup window by dragging the bottom right corner of the
window. When you resize the popup window, the new size is used for all subsequent
property popup windows that you open until you change the size again.

11.1.3.1 Editing Properties
To edit a property value, enter a new value in a field or select a value from a fixed set
of values using a dropdown list. When you edit a property value, a green dot appears
next to the property name to indicate that it has been changed from its default setting.
Other ways to edit a property value include the following:

■ For some properties, click ... at the end of the field or box to use a property editor
or browser tool to select and enter a value for the property.

■ For some properties, click at the end of the field or box to display a popup
window and then choose a command, or choose a property editor or builder tool
to select and enter a value for the property.

■ For boolean properties with checkboxes, select or deselect the checkbox to change
the value.

■ For boolean properties that can accept EL expressions, enter an expression in the
field or click the down arrow at the end of the field to use a builder tool to enter a
value.

11.1.3.2 Writing Custom Property Editors
When you write your own property editors, you can control what the Property
Inspector displays. If your property editor supports tags, the Inspector displays those
tags in a dropdown list as the fixed set of values. If the property editor does not
support tags, the Inspector will query your editor to see whether it supports a custom
property editor. If neither are supported, a text area will be displayed for the user to
type directly into.

11.1.3.3 Additional Features for Customization Developers
The following additional features are available in Customization Developer role:

Table 11–4 Toolbar Icon Features on the Property Inspector

Icon Name Description

Enable/Disable
Auto-Extend

Use to toggle on and off the automatic expansion of
the Property Inspector to display the full contents
when the cursor is over the Inspector. When focus
moves to another part of the user interface, the
Inspector returns to the default position.

Bind to ADF Control When available, click to bind or rebind a property
to an ADF data control of your choice.

About Developing Applications Using Web Page Tools

11-18 User's Guide for Oracle JDeveloper

■ When you edit a property value, an orange dot appears next to the property name.
(Property values that were modified in Default role have green dots next to the
properties.)

■ From the property menu next to a text-only property, choose Remove
Customization to remove existing customization that was previously applied in
the same customization layer context.

11.1.4 How to Use the Component Palette
The Component Palette displays the elements of your component libraries, and lets
you assemble a user interface by using simple drag and drop operations. The
components available in the palette vary depending on the type of file in the active
editor window. For example, if you are editing an HTML file, the palette displays a list
of common components, as shown in Figure 11–7.

Figure 11–7 HTML Components in Component Palette

If you are editing a .java file, a completely different set of components display.

11.1.4.1 Using the Component Palette Features
Your file or page components are organized in pages in the Component Palette. Select
the palette page you want from the dropdown list at the top of the palette.

To insert a component into a file, open in the active editor, drag the component from
the palette to an insertion point in the editor. In some file types you click a component
in the palette and then click in the editor to insert the component.

11.1.4.2 Overview of the Component Palette Features
The Component Palette provides the following features:

■ To search for a component by name, enter the name or part of the name in the
binocular icon field and click the green go arrow. The components matching the

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 11-19

name or part of the name in the palette pages for the active editor will display in
the Search Results panel.

■ By default components are displayed in a list view (icon plus name). You can
change the display to an icon only view. To toggle between views, right-click a
component in the palette and choose Icon View or List View.

■ For component libraries with available component help, right-click a component
in the palette and choose Help.

■ To add frequently-used components to a palette page for easy access, right-click a
component in the palette and choose Add to Favorites. The selected component is
added to the Favorites panel of the My Components palette page, which you can
select from the palette dropdown list.

■ For projects with JSP tag libraries: To change the list of JSP tag libraries available
for selection in the palette dropdown list, right-click a component in the palette
and choose Edit Tag Libraries, then use the dialog to add or remove tag libraries
as needed.

11.1.5 How to Use the Overview Editor for JSF Configuration Files
Use the overview editor for JSF configuration files to visually design and edit your JSF
application configuration data stored in faces-config.xml. Figure 11–8 displays
the overview editor.

Figure 11–8 Overview Editor for JSF Configuration File

When you open faces-config.xml its contents are displayed in an editor group.
When you select the Overview tab at the bottom of this group, the overview editor
appears.

When the overview editor is open, the Property Inspector displays the metadata child
elements for the currently selected element. Use the Property Inspector to manage
these. For instance, you use the Property Inspector to set the <description> and
<display-name> child elements.

The overview editor has three sections:

■ The left-hand column displays the main JSF configuration elements.

■ The top area of the main panel shows child elements for the element selected in
the element list on the left.

About Developing Applications Using Web Page Tools

11-20 User's Guide for Oracle JDeveloper

■ The bottom area of the main panel shows child elements for the element selected
at the top area.

You can add, delete, or edit your JSF element and child elements using the Overview
Editor.

To work with a main JSF configuration element and its immediate child
elements:
1. In Application Navigator, open the workspace that contains your JSF application.

2. In the workspace, open the project that contains your JSF pages.

3. In the project, open the WEB-INF node.

4. Under the WEB-INF node, double-click the faces-config.xml file to open.

5. At the bottom of the editor, select the Overview tab.

6. Select an element from the element list on the left. The main panel displays
corresponding configurable child elements in a table at the top of the main panel.

To add, delete, or edit JSF configuration elements:
■ To add a new child element. Click New. A dialog box opens to create the element.

If no new button displays, the child element must be an existing class. You can
select the class by clicking Browse... . If no browse button appears, or if the entry is
not a class name, you can enter a value directly.

■ To delete an existing child element. Select the element from the table and click
Delete. The element is removed from the table. If no delete button displays, the
entry can be deleted manually.

■ To edit an existing child element. Select the element from the table and click Edit.
The Properties panel for the element opens to change the value.

To view, add, delete, or edit child configuration element child element:
■ To view child elements. Select an element from the element list on the left. The

main panel displays. Select an existing child element from a table at the top of the
main panel. Allowed child elements display in a table at the bottom of the main
panel. If a child element allows child elements, but no children are currently
defined, the list area for those children might be hidden. To display the list area
and add children, click the show arrow to the left of the area title. To hide the list
area, click the hide arrow.

■ To add a new child element. Click New. If no new button displays and the child
element must be an existing class, you can select the class by clicking Browse... to
open the Class Editor dialog box. If no browse button appears, or if the entry is
not a class name, you can enter a value directly.

■ To edit an existing child element. Select it from the table and click Edit. The
Properties panel for the element opens to change the value. If no edit button
displays, you can either select a new class (if applicable), or edit the entry To delete
an existing child element, select it from the table and click Delete.

■ To delete an existing child element. Select it from the table and click Delete. The
element is removed from the table. If no delete button displays, you can delete the
entry manually.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 11-21

11.1.6 How to Plan Your Page Flow With JSF Navigation Diagrams
The JSF Navigation Diagrammer has features to diagram the JSF pages, and the
navigation between the pages.

The pages are represented by icons, and the navigation between pages as lines. The
navigation is mirrored in navigation cases in the faces-config.xml file for the
application.

When a JSF navigation diagram is displayed, the Component Palette is also displayed.
The JSF Diagram Objects page of the Component Palette shows entries for the
elements that can be included on a JSF navigation diagram. To add JSF diagram
elements to a JSF navigation diagram, select them from the Component Palette.

11.1.6.1 How to Work with Navigation Diagrams
When you first view the navigation diagram, JDeveloper creates a diagram file to hold
diagram details and it maintains this diagram file, and the corresponding JSF
configuration file that holds all the settings needed by your application. If you are
using versioning or source control, the diagram file is included as well as the
configuration file it represents.

To view the navigation diagram for an JSF application:
1. In the Application Navigator, expand your JSF application.

2. Expand the project that contains your application. If you created the application
using a template that included JSF, the project name is ViewController.

3. In the project, expand the WEB-INF node and double-click to open the JSF
configuration file. The default configuration file name is faces-config.xml.

4. If the navigation diagram for the application is not displayed, select the Diagram
tab below the window.

When you view the Application Navigator using Group by Category (default), a single
entry for the JSF configuration file represents both the configuration file and the
associated diagram file. If you view all files using Group by Directory, you see
separate nodes for the two separate files: the configuration file using the full file name,
and the diagram file is shown as the name of the JSF configuration file with the .jsf_
diagram extension.

When you first open the JSF configuration file, the configuration file node displayed in
the Application Navigator indicates that there have been changes, even though no
changes have yet been made to the JSF configuration file. This is because the node
displayed in the Application Navigator represents both the JSF configuration file and
the navigation diagram file. So, although the JSF configuration file has not changed, a
navigation diagram file has been created. Similarly, if you make changes to a
navigation diagram that do not affect the JSF configuration file, such as changing the
layout, the node in the Application Navigator indicates that changes have been made.

If you have a large or complex application, the file can be large and loading can take a
long time. If you do not want JSF diagram files to be created for your JSF configuration
files, choose not to use the diagram as the default editor so that no diagram file will be
created unless you specifically request one.

11.1.6.2 How to Plan Page and the Navigation Flows
 Use the JSF navigation diagram and the Component Palette to create a diagram
representing the pages in your application and the navigation cases between them.

About Developing Applications Using Web Page Tools

11-22 User's Guide for Oracle JDeveloper

The navigation cases you add to the diagram are automatically added in the JSF
configuration file.

To add an element to a JSF Navigation Diagram
1. View the JSF navigation diagram for your project.

2. In the Component Palette, JSF Diagram Objects, Components page, select JSF
Page.

3. To add the page to the diagram, click on the diagram in the place where you want
the page to appear, or drag JSF Page onto the diagram surface. An icon for the
page is displayed on the diagram with a label for the page name. Initially, before
you have defined the new JSF page, the icon indicates that the physical page has
not been created, as show in Figure 11–9.

Figure 11–9 Icon Showing Page Not Created.

4. To specify the name of the page, click the icon label in the diagram and edit the
label. The name requires an initial slash, so that the page can be run. If you remove
the slash when you rename the page, it will be reinstated.

5. To define the new page, double-click the icon and use the Create JSF Page dialog.
For help using the dialog, click Help. When you have created the page, the icon on
the diagram changes to indicate that the physical page has been created as shown
in Figure 11–10.

6. Save your changes.

Figure 11–10 Icon Showing Page Has Been Created

To add a JSF navigation case to a JSF navigation diagram:
1. View the JSF navigation diagram for your project.

2. If they are not already defined, define the JSF pages that are to be the source
<from-view-id> and the destination <to-view-id> for the navigation case you
want to create.

3. In the Component Palette, JSF Diagram Objects, Components page, select JSF
Navigation Case.

4. On the diagram, click on the icon for the source JSF page, then click on the icon for
the destination JSF page to create one navigation case. To draw the navigation case
as a straight line between the source and destination pages, click the source page
then click the target page as shown in Figure 11–11.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 11-23

Figure 11–11 Navigation Case Straight Line

To draw the navigation case as a line with angles in it, select either Polyline or
Orthogonal in the editor toolbar as shown in Figure 11–12.

Figure 11–12 Navigation Case Angled Lines

5. The navigation case is shown as a solid line on the diagram, and a default
<from-outcome> value is shown as the label for the navigation case. To edit the
<from-outcome> value, click on the label and enter the new value.

6. A navigation rule is added to the JSF configuration file if there is not one already
for the source page, and a navigation case is added for the rule.

7. Save the changes to your JSF navigation diagram and save the changes to the JSF
configuration file.

To add a note to a JSF navigation diagram
1. View the JSF navigation diagram for your project.

2. In the Component Palette, JSF Diagram Objects, Diagram Annotations page, select
Note.

3. Click on the diagram surface in the place where you want to add the note. A note
is displayed on the diagram with the cursor in place ready for you to enter text.

4. Enter the text and then click outside the note.

5. To select text in the note for editing, click anywhere in the note. To select the note
itself, click on the upper right corner. To edit the text, click in the middle of the
note.

6. Save the changes to your JSF navigation diagram. Notes appear only on the JSF
navigation diagram, not in the JSF application configuration file

To attach a note to an element in a JSF navigation diagram:
1. View the JSF navigation diagram for your project.

2. If the note is not already on the diagram, add the note.

3. In the Component Palette, JSF Diagram Objects, Diagram Annotations page, select
Note Attachment.

About Developing Applications Using Web Page Tools

11-24 User's Guide for Oracle JDeveloper

4. Click on the note in the diagram, then click on the element to which you want to
attach the note. A dotted line appears, representing the note attachment for the
selected page as shown in Figure 11–13.

Figure 11–13 Note Attachment Diagram

5. Save the changes to your JSF navigation diagram. Note attachments appear only
on the JSF navigation diagram, not in the JSF configuration file.

To lay out the elements on a JSF navigation diagram automatically
1. Choose the layout style you want from the editor toolbar options. See Table 11–5

for the list of layout styles.

2. Save your changes.

To refresh the JSF navigation diagram to reflect changes to the JSF
configuration file:
1. Select Refresh Diagram. The refresh speed for a diagram scales with the number

of nodes in the diagram and the number of connections between the nodes.

2. Save your changes.

11.1.6.3 How to Use the JSF Navigation Diagrammer to Manipulate JSF Pages
You can use the navigation diagrammer to add, edit, rename, and delete JSF pages.

Effect of deleting
The associated web page is no longer visible in the JSF navigation diagram. If you
created the file, it is still available from the Web Content folder in the ViewController
project in the Application Navigator.

Table 11–5 Navigation Diagram Layout Styles

Icon Icon Description

Draws straight lines for navigation cases between page icons.

Draws lines with angles for navigation cases between page icons.

Draws lines with right angles for navigation cases between page
icons.

Arranges the icons in a horizontal layout.

Arranges the icons in a vertical layout. The elements on the
diagram are laid out according to the pattern you chose.

About Developing Applications Using Web Page Tools

Developing Applications Using Web Page Tools 11-25

Effect of editing
When you edit web pages manually, JDeveloper does not automatically update either
the JSF navigation diagram or the JSF configuration file.

Effect of renaming
If you rename a JSF page on a navigation diagram, this is like removing a page with
the original name from the diagram and adding a new one with the new name. If you
have created the underlying page, that page remains with its original name in the file
system; on the diagram, the page icon changes to the icon that indicates the page does
not yet exist.

If you have already created a JSF page and it is displayed on the diagram, if you
rename it in the navigator, this is equivalent to removing the original file and creating
a new file. The diagram retains the original name, and now displays the page icon that
indicates the page does not exist.

Renaming a page on a JSF navigation diagram affects the navigation rules and cases in
the JSF configuration file.

To view a web page from a JSF navigation diagram:
Double-click the icon for the web page you want to view. The page opens in the
appropriate editor.

11.1.6.4 How to Use the JSF Navigation Diagrammer for JSF Navigation Case
Use navigation diagrammer to delete navigation cases between the pages.

Effect of deleting
The associated <navigation-case> is removed from the JSF configuration file.

The associated web page is still visible in the diagram and, if it has been created, is still
available from the Web Content folder in the ViewController project in the Application
Navigation.

Effect of editing
When you edit the label for the navigation case on the diagram, the associated
<navigation-case> is updated in the JSF configuration file.

Once you have created a navigation case in the JSF navigation diagram, you cannot
change the destination of the navigation case in the diagram. To change the destination
for an existing navigation case in the diagram, delete the existing navigation case and
create a new one to the correct destination

If your JSF diagram file is large and would take a long time to open in the JSF
navigation diagrammer, you may be asked if you would like to open the JSF
configuration file in another editor instead.

To view properties of a navigation case on a JSF navigation diagram:
The navigation cases are displayed on the diagram as solid lines, with the
<from-outcome> element value displayed as the label.

1. If the Property Inspector is not displayed, open it from the View menu.

2. Select the navigation case with properties you want to view. The properties of the
navigation case are shown in the Property Inspector.

About Developing Applications Using Web Page Tools

11-26 User's Guide for Oracle JDeveloper

11.1.6.5 How to Publish a Diagram as a Graphic
Diagrams can be saved as .jpg, .png, .svg or .svgz files for use in documents, or on web
pages. Images saved in .jpg format will tend to create the largest files, followed by
.svg, .png and .svgz.

To publish a diagram as a graphic:
1. Right-click on the surface of the diagram that you want to publish as a graphic,

then choose Publish Diagram.

Or

Click on the surface of the diagram that you want to publish as a graphic, then
choose Diagram > Publish Diagram.

2. Using the Location drop-down list, select the destination folder for the graphic file.

3. For file name, enter a name for the graphic file, including the appropriate file
extension.

4. From the file type drop-down list, select the file type for the graphic file.

5. Click Save.

11.1.7 How to Use Code Insight For Faster Web Page Coding
Use Code Insight to speed up your coding tasks by providing available options for
you to select while coding to quickly complete or insert elements.

Code Insight provides completion insight and parameter insight. To invoke
completion insight, pause after typing the period separator or, in the default keymap,
press Ctrl+Space. To invoke parameter insight, pause after typing an opening (the left)
parenthesis or, in the default keymap, press Ctrl+Shift+Space. To exit either type of
insight at any time, press Esc.

To use Code Insight in a web page in the source editor:
1. Click the Source tab to open the file in the source editor, and place your cursor at

the location where you want to add a tag.

2. Enter the < (open angle bracket) and then either pause or press Ctrl + Space (using
the default keymapping) to invoke Code Insight. A list of valid elements based on
the file is displayed. Narrow the list by typing the first letter of the tag or enter a
tag library prefix followed by a colon (i.e., <jsp:).

3. From the list of valid tags, double-click the tag, or highlight the tag and press
Enter. JDeveloper inserts the selected tag in the file, e.g., <jsp:include. There
should be no space between the prefix and the tag name.

4. To add an attribute to the tag you inserted, enter a space after the tag name, then
either pause or press Ctrl+Space to open a list of valid attributes. Select the tag by
double-clicking or highlighting and pressing Enter. For example: <jsp:include
page.

5. Enter the attribute value. For example: <jsp:include page="filename.jsp".

6. Add other attribute and values as necessary. Use a space between an attribute
value and the next attribute. For example: <select size="4"
name="ListBox"></select>.

7. When finished adding attributes and values, enter the > (close angle bracket). The
correct end tag (e.g., </select>) is automatically inserted for you if the End Tag
Completion feature is enabled. Whether End Tag Completion is enabled or

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-27

disabled, the correct end tag is always automatically inserted for you when you
enter </ (open angle bracket and forward slash characters) to close the tag.

Right-click any tag name in the editor and choose Select in Structure to highlight
that tag in the Structure window. The Structure window also displays any syntax
errors found as you edit. You can double-click an error, element, or attribute to edit
it in the source editor.

To enable the End Tag Completion feature, choose Tools > Preferences > Code
Editor > JSP/XML/HTML to open the panel and select the option.

Code Insight is also available in JavaScript and CSS files.

To use Code Insight in a JavaScript file:
■ Place the cursor inside any <SCRIPT> tag, then type the open angle-bracket and

press Ctrl + Space.

JDeveloper will display a list of possible completions. You can filter the available
completions by typing the first character; for example, if you type the letter d,
JDeveloper will display completions beginning with D (Date, decodeURI, etc.)

Code Insight will also prompt for completion inside JavaScript-specific XML
attributes.

To use Code Insight in a CSS file:
■ Place the cursor inside any <STYLE> tag, then type the open angle-bracket and

press Ctrl + Space.

JDeveloper will display a list of possible completions at this point in the CSS file. You
can filter the available completions by typing the first character of the element for
which you are using Code Insight.

11.2 Developing Applications with JavaServer Faces
This section covers JDeveloper support and tools for your user interface development
using JavaServer Faces (JSF) technology within the Java EE platform.

JDeveloper provides full support for developing user interfaces with JSF and facelets
technology in accordance with the JSF 2.0 specification found at
http://jcp.org/aboutJava/communityprocess/final/jsr314/index.htm
l. The JSF content in this section assumes you are using facelets technology for your
JSF development.

11.2.1 How to Build Your JSF Application
You can build your application from the ground up using the features provided in
JDeveloper. The first thing to do is build a framework or application template for your
web pages. Get started quickly using the application templates. Choose from a
combination of technologies to include in your application as you build your
application with the New Gallery Wizard. The application you choose determines the
project folders created and the libraries added to the folders as shown in Table 11–6.

Developing Applications with JavaServer Faces

11-28 User's Guide for Oracle JDeveloper

11.2.1.1 How to Build Your Application Framework
Use the wizards to build a customized application framework.

To create a web application and project for a JSF application:
1. From the main menu select File > Menu > New > General > Applications.

2. Select an application to create.

3. Complete the steps. The project folders, Model and ViewController, are created
and listed in the Application Navigator under the new application node. If you
chose Generic Application, you only see a Project folder.

4. Double-click the ViewController project to open the Project Properties dialog, and
select Dependencies. Make sure the Model project is selected under Project
Dependencies.

11.2.1.2 How to Create Your JSF Pages and Related Business Services
Once you have created the framework of your application, get your pages up and
running fast with the page building, editing, and modeling tools.

To quickstart your JSF application end to end:
1. Build a web application with the easy wizards. See Section 11.2.1.1, "How to Build

Your Application Framework".

2. Create your JSF pages using the New Gallery JSF wizard. See "To create your JSF
pages:" on page 11-28.

3. Choose a Business Service. See "Choosing a Business Service" on page 11-29.

4. Create the backing beans for your business services. See Section 11.2.2.2, "How to
Work with Managed Beans".

5. Bind the interface components to data. See Section 11.2.2.4, "How to Bind
Components to JSF Pages".

6. Add application resources and managed beans to faces-config.xml. See
Section 11.2.2.12, "How to Configure JSF Applications".

7. Run your JSF pages. See Section 11.2.3, "How to Run and Test JSF Applications".

To create your JSF pages:
1. In the Application Navigator, select your project for the new JSF 2.0 page or

document. Note that you can also create you JSF pages from the Navigation
Modeler.

Table 11–6 Web Application Templates

Application Description

Fusion Web Application
(ADF)

Creates a databound ADF web application. This application
contains one project for the view and controller components
(ADF Faces and ADF Task Flows), and another project for the
data model (ADF Business Components).

Java EE Application Creates a databound web application. This application contains
one project for the view and controller components (JSF), and
another project for the data model (EJB and JPA entities)

Generic Application Creates an application with a single project. The project is not
preconfigured with JDeveloper technologies and can be
customized to include any technologies.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-29

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Web Tier and select JSF. From this wizard create a
JSF/facelet page or a JSP XML page. Choose ADF Faces page templates or quick
start layouts. ADF Faces page templates (.jsf file) define an entire page layout in a
page template definition file that allows for reuse and parametization. The quick
start layouts are a a pre-defined page layout that automatically inserts and
configures the ADF Faces components required to implement the layout look and
behavior.

Choosing a Business Service
With JDeveloper you can work with data sources based on Enterprise JavaBeans (EJB)
or JavaBeans. You can also use Oracle TopLink to map your Java classes and EJBs to
database tables. Web services is available if you don’t need to create the backend
business service and want to expose existing business services, including EJB
components, stored procedures in the database, or other services writing Java and
other languages.

None of the application model and backend classes should refer to JSF classes so that
the same classes can be used with any type of user interface.

When you want to work with a specific business service, you can open the New
Gallery and use the provided wizards and dialogs to create or, in the case of web
services, expose the entities in your Model project, as shown in Table 11–7.

To create a business service:
1. Create a web application and project. See web application options in Table 11–6.

2. In the Application Navigator, under your application node, select the Model
project and choose File > New to open the New Gallery.

3. In the Categories list, expand a node and you will see categories related to your
chosen technology scope. Under the Business Tier node, you will see business
service options such as ADF Business Components, EJB, Toplink, and Web
Services. Choose your business service.

Table 11–7 Business Service New Gallery Options

If you want to use... Then choose this New Gallery option...

Enterprise JavaBeans in the
Model project

EJB in the Business Tier category

Oracle TopLink in the
Model project

TopLink in the Business Tier category

JavaBeans in the Model
project

JavaBeans in the General category

Web services that were
created based on legacy
code, software components
(such as EJB components),
or even PL/SQL in the
database and make it
accessible through HTTP
quickly and easily.

Web Services in the Business Tier category

Developing Applications with JavaServer Faces

11-30 User's Guide for Oracle JDeveloper

11.2.2 How to Build your JSF Business Component Framework
JDeveloper comes with a Component Palette stocked with standard JSF components
that you can easily drag and drop onto your JSF pages. When you create a JSF page the
backing beans are created and automatically binded to all of the components you put
on the page and to corresponding properties. In addition, there is a Property Inspector
and Expression Language feature to assist you.

For localization, resource bundles are automatically added when you add content
components to your page. You can manage your resource bundles, or create new
resource bundles in the Project Properties feature of your application.

Among the many standard component options provided with JDeveloper, there are
validating and converting components that are configurable through the Property
Inspector, as well as a Message component to help you set up the error message output
for your JSF pages, as shown in Figure 11–14.

Figure 11–14 Core JSF Components Available in Component Palette

JSF Common Components
For complete information about JSF tag libraries, see the tag libraries documentation
at:
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142
185.html.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-31

Table 11–8 Standard JSF Core Tag Library Supported Elements

Component Tag Syntax Description

f:actionListener <f:actionListener

 [type]

[binding]

[for]

/>

Registers an action listener on
the UIComponent associated
with the closest parent
component.

f:ajax <f:ajax

[disabled]

[event]

[execute]

[immediate]

[listener]

[oneevent]

[oneerror]

[render]

/>

Registers an AjaxBehavior
instance on one or more
UIComponents implementing
the ClientBehaviorHolder
interface. This tag may be
nested within a single
component (enabling Ajax for a
single component), or it may be
"wrapped" around multiple
components (enabling Ajax for
many components).

f:attribute <f:attribute

 [name]

 [value]

/>

Adds an attribute to the
UIComponent associated with
the closest parent
UIComponent custom action.

f:convertDateTime <f:convertDateTime

[dateStyle]

[locale]

[pattern]

[timeStyle]

[timeZone]

[type]

[binding]

[for]

Registers a DateTimeConverter
instance on the UIComponent
associated with the closest
parent UIComponent custom
action.

f:converter <f:converter

 [converterID]

[binding]

[for]

/>

Registers a named Converter
instance on the UIComponent
associated with the closest
parent UIComponent custom
action.

Developing Applications with JavaServer Faces

11-32 User's Guide for Oracle JDeveloper

f:convertNumber <f:convertNumber

[currencyCode]

[currencySymbol]

[groupingUsed]

[integerOnly]

[locale]

[maxFractionDigits]

[minIntegerDigits]

[pattern]

[type]

[binding]

[for]

/>

Register a NumberConverter
instance on the UIComponent
associated with the closest
parent UIComponent custom
action.

f:event <f:event

[name]

[listener]

 />

Allows you to install
ComponentSystemEventListen
er instances on a component in
a page.

f:facet <f:facet/> Registers a named facet on the
UIComponent associated with
the closest parent
UIComponent custom action.

f:loadBundle <f:loadBundle

[basename]

[var]

 />

Loads a resource bundle
localized for the Locale of the
current view, and expose it as a
java.util.Map in the request
attributes of the current request
under the key specified by the
value of the “var” attribute of
this tag. The Map must behave
such that if a get() call is made
for a key that does not exist in
the Map, the literal string
“KEY” is returned from the
Map, where KEY is the key
being looked up in the Map,
instead of a Missing Resource
Exception being thrown. If the
Resource Bundle does not exist,
a JspException must be thrown.

Table 11–8 (Cont.) Standard JSF Core Tag Library Supported Elements

Component Tag Syntax Description

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-33

f:metadata <f:metadata/> Declares the metadata facet for
this view. This must be a child
of the <f:view>. This tag must
reside within the top level
XHTML file for the given
viewId, not in a template. The
implementation must insure
that the direct child of the facet
is a UIPanel, even if there is
only one child of the facet. The
implementation must set the id
of the UIPanel to be the value
of the
UIViewRoot.METADATA_
FACET_NAME symbolic
constant.

f:param <f:param

[binding]

[id]

[name]

[value]

[disable] />

Adds a child UIParameter
component to the
UIComponent associated with
the closest parent
UIComponent custom action.

f:phaseListener <f:phaseListener

[type]

[binding]

/>

Registers a PhaseListener
instance on the UIViewRoot in
which this tag is nested.

f:selectItem <f:selectItem

 [binding]

[id]

[itemDescription]

[itemDisabled]

[itemLabel]

[escape]

[itemValue]

[value]

[noSelectionOption]

/>

Add a child UISelectItem
component to the
UIComponent associated with
the closest parent
UIComponent custom action.

Table 11–8 (Cont.) Standard JSF Core Tag Library Supported Elements

Component Tag Syntax Description

Developing Applications with JavaServer Faces

11-34 User's Guide for Oracle JDeveloper

f:selectItems <f:selectItems

[binding]

[id]

[value]

[var]

[itemValue]

[itemLabel]

[itemDescription]

[itemDisabled]

[itemLabelEscaped]

/>

Adds a child UISelectItems
component to the
UIComponent associated with
the closed parent
UIComponent custom action.

When iterating over the select
items, toString() must be called
on the string rendered attribute
values.

Version 2 of the specification
introduces several new
attributes, described below.
These are: var, itemValue,
itemLabel, itemDescription,
itemDisabled, and
itemLabelEscaped.

f:setPropertyActionListener <f:setPropertyActionListener

[value]

[target]

[for]

/>

Registers an ActionListener
instance on the UIComponent
associated with the closest
parent UIComponent custom
action. This actionListener will
cause the value given by the
"value" attribute to be set into
the ValueExpression given by
the "target" attribute.

f:subview <f:subview

[binding]

[id]

[rendered]

This handles the Container
action for all JavaServer Faces
core and custom component
actions used on a nested page
via "jsp:include" or any custom
action that dynamically
includes another page from the
same web application, such as
JSTL's "c:import"

f:validateBean <f:validateBean

[validationGroups}

[disabled]

[binding]

[for]

This is a validator that
delegates the validation of the
local value to the Bean
Validation API. The
validationGroups attribute
serves as a filter that instructs
the Bean Validation API which
contraints to enforce. If there
are any constraint violations
reported by Bean Validation,
the value is considered invalid

f:validateDoubleRange <f:validateDoubleRange

[disabled]

[maximum]

[minimum]

[binding]

[for]

/>

Registers a
DoubleRangeValidator instance
on the UIComponent
associated with the closest
parent UIComponent custom
action.

Table 11–8 (Cont.) Standard JSF Core Tag Library Supported Elements

Component Tag Syntax Description

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-35

f:validateLength <f:validateLength

[disabled]

[maximum]

[minimum]

[binding]

[for]

/>

registers a LengthValidator
instance on the UIComponent
associated with the closest
parent UIComponent custom
action.

:validateRegex :<validateRegex

[disabled]

[pattern]

[binding]

[for]

/>

This is a validator that uses the
pattern attribute to validate the
wrapping component. The
entire pattern is matched
against the String value of the
component. If it matches, it's
valid.

f:validateRequired <f:validateRequired

[disabled]

[binding]

[for]

/>

This is a validator that enforces
the presence of a value. It has
the same affect as setting the
required attribute on a UIInput
to true.

f:validator <f:validator

[disabled]

[validatorId]

[binding]

[for]

/>

Registers a named Validator
instance on the UIComponent
associated with the closest
parent UIComponent custom
action.

:valueChangeListener <:valueChangeListener

 [type]

[binding]

/>

Registers an
ValueChangeListener instance
on the UIComponent
associated with the closest
parent UIComponent custom
action.

f:verbatim <f:verbatim

[escape]

[rendered]

/>

Creates and register a child
UIOutput component
associated with the closest
parent UIComponent custom
action, which renders nested
body content.

f:view <f:view

 [locale]

[renderKitId]

[beforePhase]

[afterPhase]

/>

Container for all JavaServer
Faces core and custom
component actions used on a
page.

Table 11–8 (Cont.) Standard JSF Core Tag Library Supported Elements

Component Tag Syntax Description

Developing Applications with JavaServer Faces

11-36 User's Guide for Oracle JDeveloper

11.2.2.1 Support for Standard JSF Component Tag Attributes
View and set your component tag attributes in the Property Inspector. When you select
an attribute, a brief description of the attribute appears in the text area below the
attribute list. Most of the standard JSF component tag attributes accept value binding
expressions, #{expression}.

When you add a component to the JSF page, the Property Inspector displays the
supported attributes for the component tag grouped in these categories:

■ Common. Used commonly, such as id and title. For localization there are
language translation attributes such as lang and dir.

■ Appearance. Defines how things appear on the page such as links and text.

■ Style. Used for HTML presentation attributes such as background and font.

■ JavaScript. Used for JavaScript attributes for associating client-side scripts with
events, such as onclick, onkeypress, and onmouseover.

General and Core Attributes
Most standard JSF component tags support the following general and core attributes:

■ binding. The JSF EL expression that binds a component instance to a property in a
bean.

■ id. The unique identifier of a component. This must be a valid XML name, that is,
you cannot use leading numeric values or spaces in the id name.

■ rendered. A Boolean value that specifies whether a component should be
rendered. Default is "true".

HTML Event and Style Attributes
The JSP actions in the tag library support most of the attributes that the HTML 4.01
specification declares for corresponding HTML elements. These attributes are optional
and can be set to static values or using any type of JSF EL expression.

Client-side JavaScript event handling attributes supported could include:

f:viewParam <f:viewParam

[converter]

[converterMessage]

[id]

[required]

[requiredMessage]

[validator]

[validatorMessage]

[value]

[valueChangeListener]

[maxLength]

[for]

/>

Used inside of the metada facet
of a view, this tag causes a
UIViewParameter to be
attached as metadata for the
current view. Because
UIViewParameter extends
UIInput all of the attributes
and nested child content for
any UIInput tags are valid on
this tag as well.

Table 11–8 (Cont.) Standard JSF Core Tag Library Supported Elements

Component Tag Syntax Description

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-37

onblur, onchange, onclick, ondblclick, onfocus, onkeydown,
onkeypress, onkeyup, onload, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup, onselect, onunload.

Style and presentation attributes supported could include background, border,
cellpadding, cellspacing, font, margin, style, outline.

JDeveloper supports the standard JSF tag library contains JSF component tags for all
UIComponent + HTML RenderKit Renderer combinations defined in the JavaServer
Faces Specification.

All supported attributes are shown in square brackets ([]). Default values are
provided, where applicable (e.g., [disabled="false"]). An asterisk (*) placed after an
attribute means a value is required. Where applicable, supported child and facet
components are also shown.

11.2.2.2 How to Work with Managed Beans
Backing beans are managed beans that contain logic and properties for UI components
on a JSF page. JDeveloper provides an option to automatically bind components on the
Managed Bean tab of the Create JSF page dialog. When this option is selected, a
default backing bean is created (or uses a managed bean of your choice) for the page
you are creating, and then automatically binds all components you place on the page
to a corresponding property in that bean. It also creates the associated accessor
methods.

Figure 11–15 Create JSF Dialog - Create Managed Bean Tab

When you create a JSF page using the Create JSF page dialog, you choose between two
options for automatic component binding: Automatically Expose UI Components in a
New Managed Bean Automatically, or Expose UI Components in an Existing Managed
Bean.

Developing Applications with JavaServer Faces

11-38 User's Guide for Oracle JDeveloper

When either option on, JDeveloper automatically uses a managed bean for the page
you are creating, and automatically binds any component that you drag and drop onto
the page to a corresponding property in the bean.

To create managed beans:
1. Create a JSF or JSPX page.

2. Select the Managed Bean tab.

3. Select Automatically Expose UI Components in a New Managed Bean.
JDeveloper creates a new backing managed bean named the same as the JSF page
and places it in the model.backing directory.

4. Add or delete component tags as needed to the JSF page. JDeveloper
automatically adds or deletes the properties and corresponding accessor methods
in the backing bean. For component tags with attributes that require method
binding, use the Property Inspector to enter method binding expressions and
select from existing methods in the page backing bean (see procedure below for
adding methods to backing beans). You can also enter new method names.
JDeveloper creates the new skeleton method in the page backing bean. Add the
logic to the method.

To add methods to a managed bean:
1. Open your backing bean in the source editor.

2. From the method binding toolbar on the top of the editor select a component from
the Components dropdown menu.

3. From the Events dropdown menu, select the type of method to create. A skeleton
method for the component is added.

4. Replace the // Add event code here... comment with appropriate business logic.

To create managed beans with the JSF configuration editor
1. In the Application Navigator, double-click on the faces-config.xml file. This

file is located in the Web Content/WEB_INF directory.

2. At the bottom of the window, select the Overview tab. The JSF Configuration
Editor window displays.

3. In the element list on the left, select Managed Beans.

4. Click New to open the Create Managed Bean dialog.

5. Enter the name and fully qualified class path for the bean.

6. Select a scope, check the Generate Java File check box, and click OK.

7. This creates a Java file for the managed bean that contains a public constructor
method. Manually add all properties and additional methods. The file is named
and placed using the fully qualified class name set as the value of "Class". The new
file appears within the project Application Sources node in the Application
Navigator and within the defined package in the System Navigator.

11.2.2.3 How to Work with Automatic Component Binding
If you create a page and elect to automatically bind components, JDeveloper does the
following automatically:

■ If you elect to create a backing bean, a JavaBean using the same name as the JSF or
JSPX is created, and placed in a the view.backing package. A managed bean entry

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-39

is also created in the faces-config.xml file for the backing bean. By default,
the managed bean name is backing_<page_name> and the bean uses the request
scope.

■ On the newly created or selected bean, a property and accessor method is added
for each component tag you place on the page.

■ The component tag is binded to the property using an EL expression as the value
for its binding attribute. Because JDeveloper automatically places a form
component on a JSF or JSPX page on creation, properties and accessor methods for
the form component are automatically created.

■ Properties and methods are deleted when you delete components from the page.

11.2.2.4 How to Bind Components to JSF Pages
You can choose to let JDeveloper create and configure a default backing bean or use an
existing managed bean for the page you are creating. When automatic component
binding is turned on, JDeveloper controls the binding attribute of components that you
drop onto the page. Choose from the component binding options when you are
creating your new page in the New Gallery as shown in Table 11–9.

11.2.2.5 How to Bind Components with EL Expressions
JavaServer Faces provides an expression language (JSF EL) that can be used in JSF
pages to access the JavaBeans components in your page bean and in other beans in
your web application, including the session and the application beans.

To bind any property of a component, add the component to a page and then select the
component and create the bindings from the Property Inspector.

You can use the Expression Builder dialog box to choose which JavaBeans property the
component property is to be bound to and write your EL Expressions using the tools,
as shown in Figure 11–16.

Table 11–9 Component Binding Options

If you want to... Then choose...

Use a default managed bean
for a JSF page

Automatically Expose UI
Components in a New
Managed Bean. Accept the
default names, or enter names
of your choice.

Use an existing managed
bean of your choice for a JSF
page

Automatically Expose UI
Components in an Existing
Managed Bean. Then select a
managed bean from the
dropdown list.

Developing Applications with JavaServer Faces

11-40 User's Guide for Oracle JDeveloper

Figure 11–16 Expression Builder Dialog

The JSF expression language syntax uses the delimiters #{}. An expression can be a
value-binding expression for binding UI components, or their values to external data
sources, or a method-binding expression for referencing backing bean methods.

The syntax supported for a JSF value binding expression is for the most part the same
as the syntax defined in the JavaServer Pages Specification (v 2.0), with the following
exceptions:

■ The expression delimiters for a value binding expression are #{ and } instead of
${and }.

■ Value binding expressions do not support JSP expression language functions.

Examples of valid value binding expressions include:

■ #{Page1.name}

■ #{Foo.bar}

■ #{Foo[bar]}

■ #{Foo[“bar”]}

■ #{Foo[3]}

■ #{Foo[3].bar}

■ #{Foo.bar[3]}

■ #{Customer.status == ‘VIP’}

■ #{(Page1.City.farenheitTemp - 32) * 5 / 9}

■ Reporting Period: #{Report.fromDate} to #{Report.toDate}

 Method binding expressions must use one of the following patterns:

■ #{expression.value}

■ #{expression[value]}

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-41

Expression language provides the following operators, in addition to the . and
[]operators:

■ Arithmetic: +, - (binary), *, / and div, % and mod, - (unary)

■ Logical: and, &&, or, ||, not, !

■ Relational: ==, eq, !=, ne, <, lt, >, gt, , ge, >=, le. Comparisons can be made against
other values, or against boolean, string, integer, or floating point literals.

Empty: The empty operator is a prefix operation that can be used to determine
whether a value is null or empty.

■ Conditional: A ? B : C. Evaluate B or C, depending on the result of the evaluation
of A.

To construct an EL expression that uses JSF technology:
1. Open a JSP page in the visual editor.

2. Select the component attribute to bind.

3. In the Property Inspector, select the attribute name.

4. In the attribute action dialog select Expression Builder.

5. Build your expressions and click OK. You can edit your EL expressions from that
component field in the Property Inspector. Click inside the field to see long
expressions. Click Ctrl+Space to invoke Code Insight from the Property Inspector
field. You can also add or edit EL expressions by slow-clicking the component and
clicking Expression Builder.

11.2.2.6 How to Use Automatic Component Binding for Components that Allow
Method Binding
Automatic component binding in a page affects how you enter method binding
expressions for the attributes of command and input components such as

■ action

■ actionListener

■ launchListener

■ returnListener

■ valueChangeListener

■ validator

Use the Expression Builder dialog box shown in Figure 11–16 to choose the component
property that will be bound.

When Automatic Component Binding is Off
When automatic component binding is turned off, you have to select an existing
managed bean or create a new backing bean as you enter method binding expressions
for component attributes. If you create a new backing bean, a managed bean is
configured in application faces-config.xml.

When Automatic Component Binding is On
When automatic component binding is turned on, you do not have to select a
managed bean. As you enter method binding expressions for component attributes,
you can select from existing methods in the bean, or if you enter new method names,

Developing Applications with JavaServer Faces

11-42 User's Guide for Oracle JDeveloper

JDeveloper automatically creates the new skeleton methods. You then add the logic to
the method.

In addition, when you edit a Java file that is a backing bean, a method binding toolbar
appears in the source editor for you to bind appropriate methods to selected
components in the page.

Suppose you created a JSF page with the file name myfile.jsp. If you let JDeveloper
automatically create a default managed bean, then JDeveloper creates the backing
bean as view.backing.Myfile.java, and places it in the \src directory of the
ViewController project. The backing bean is configured as a managed bean in the
application resources file (faces-config.xml), and the default managed bean
name is backing_myfile.

When automatic component binding is turned on, any component that you insert in
the page is automatically bound (via its binding attribute) to a property in the backing
bean, as shown in Example 11–1 and Example 11–2.

Example 11–1 JSF Page (myfile.jsf) Using Default Managed Bean

...
<h:form binding="#{backing_myfile.form1}">
 <h:inputText binding="#{backing_myfile.inputText1}"/>
 <h:commandButton value="button0"
 binding="#{backing_myfile.commandButton1}"
 action="#{backing_myfile.commandButton_action}"/>
...
</h:form>
...

Example 11–2 Default backing bean Java file: Myfile.java

package view.backing;
import javax.faces.component.html.HtmlForm
import javax.faces.component.html.HtmlCommandButton
import javax.faces.component.html.HtmlInputText;

public class Myfile
{
 private HtmlForm form1;
 public void setForm1(HtmlForm form1)
{
this.form1 = form1;
}
 public HtmlForm getForm1()
}
return form1;
}
private HtmlInputText inputText1;
public void setInputText1(HtmlInputText inputText1)
{
public HtmlInputText getInputText1()
{
return inputText1;
}
private HtmlCommandButton commandButton1;
public void setCommandButton1(HtmlCommandButton commandButton1)
{
this.commandButton1 = commandButton1;
}

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-43

return commandButton1;
}
public String commandButton_action()
{
// Add event code here...
return null;
}
}
Application resources file: faces-config.xml

...
<managed-bean>
 <managed-bean-name>backing_myfile</managed-bean-name>
<managed-bean-class>view.backing.Myfile</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>
...
When editing a JSF page in the visual editor, you can turn off or turn on the automatic
bind option or change the managed bean selection

■ If automatic bind is on and you change the managed bean selection, all existing
and new component bindings are switched to the new bean.

■ If you turn automatic bind off, nothing changes in the existing component
bindings in the page.

■ If you turn automatic bind on, all new and existing component bindings are
bound to the chosen managed bean.

To turn off or on automatic component binding
1. Open the JSF page in the visual editor.

2. Choose Design > Page Properties.

3. Click Component Binding.

4. Uncheck or check the Auto Bind option.

To select a managed bean for automatic component binding in a JSF page
1. Open the JSF page in the visual editor.

2. Choose Design > Page Properties.

3. Make sure the Auto Bind option is checked.

4. Click the drop-down arrow and select an existing managed bean, or click New... to
define a new managed bean. All existing bound components and any new
components that you insert are bound to the selected managed bean.

To value bind a component to a property:
1. In the visual editor, select the component.

2. In the Property Inspector, click the dropdown menu in an appropriate field. and
choose Expression Builder.

3. Enter an EL Expression that binds to a property on a bean or a value in a resource
bundle.

To manually bind component instances to properties
1. In the visual editor, select the component.

Developing Applications with JavaServer Faces

11-44 User's Guide for Oracle JDeveloper

2. In the Property Inspector, click the down arrow next to the Binding attribute. The
Binding dialog displays.

3. Select a managed bean or click New... to create a new one.

4. Select an existing property using the dropdown menu, or click New... next to
Property to add a new property name.

5. When you are finished click OK. If you created a new property, it is inserted as
accessor method code in the bean of your choice.

To bind to an existing method with auto component binding on:
1. In the visual editor, select the component.To bind to an existing method using auto

component binding, the method must already exist on the backing bean associated
with the JSF page.

2. In the Property Inspector, click the column next to the attribute that accepts
method binding.

3. Click the dropdown menu and select a method name. Only methods on the
backing bean with the proper signature are available for selection.

To bind to a new default method with auto component binding on:
1. Open the associated backing bean.

2. In the source editor, use the method binding toolbar to select the component from
the Component dropdown menu.

3. From the Events dropdown menu, select the appropriate attribute. A default
method at the bottom of the page is inserted. The cursor is placed at the new
method. The binding expression in the JSF page is also created.

4. In the source editor, enter the code for the method.

To bind to a new method with auto component binding on:
1. In the visual editor, select the component.

2. In the Property Inspector, click the column next to the attribute that accepts
method binding.

3. Enter the method name, for example: myMethod. Note that because the Action
attribute can take either a string or a method, you must include the brackets for an
action method, for example: myAction(). For other methods, the brackets
should be omitted. A skeleton method in the associated backing bean, and the
binding code in the JSF page is created.

4. In the source editor, enter the code for the method.

To bind to a method with auto component binding off:
1. In the visual editor, select the component. In the Property Inspector, click the

dropdown menu next to the attribute that accepts method binding.

2. Select a managed bean or click New... to create a new managed bean.

3. Select an existing method using the dropdown menu or click New... next to
Method to add a new method name.

4. Click OK. The binding code in the JSF page is created. If you created a new
method, a default method code is automatically inserted into your backing bean.

5. Open the bean in the source editor and enter the code for the method.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-45

11.2.2.7 How to Use Localized Resource Bundles in JSF
All of the content you build in your JSF application components is stored in resource
Bundles. You can add or remove resource bundles easily from your application in the
Default Project Properties dialog.

During development right-click your component to select text resources. The resource
bundles available for the project are displayed. Select the bundles to make available for
the project you are working on. New text is stored in the resource bundle you select.

You can also assign a key value string to uniquely identify the text object in the
resource bundle. By default the name, or a part of the name you enter for display value
is used. This value is used by translators to correlate your base content with its
localized partner. Existing content strings you have previously added to resource
bundles are available and displayed when you are adding new content. Reusing
existing content strings optimizes localization efforts, ensuring you don't add new
content strings with unique identifiers when a duplicate string with a different
identifier already exists. Recycling content strings across your project and application
using resource bundles reduces translation efforts and costs.

To add resource bundles in your JSF application:
Add a Resource bundle to your project by going to Application > Project Properties >
Resource Bundle > Bundle Search . Find your project resource bundle then click to
add it to your project.

In your JSF page, you can reference a resource bundle string from any component tag
attribute that accepts value binding expressions, e.g., #{bundle.key}.

To use localized resource bundles in JSF:
1. Create resource bundles containing the key-value pairs for your localized message

and data stings. Place the localized bundles in the application's classpath.

2. In the Application Navigator, double-click faces-config.xml to open it in the
JSF Configuration Editor. Switch to the Overview, if necessary.

3. Click Application, then click the forward arrow to expand Locale Config.

4. Under Locale Config, enter a value for Default Locale. In Supported Locale, click
New to add an ISO locale identifier for a supported locale. You can add more than
one supported locale.

5. Open your JSF page in the visual editor.

6. In the Component Palette, select JSF Core from the dropdown list, then drag and
drop LoadBundle to the page. A dialog appears for you to enter the base name of
the resource bundle, and any name for the map variable that will be used in
request scope.

Example 11–3 Resource Bundle Code Sample

In the faces-config.xml:

<faces-config>
 <application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en-us</supported-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
 </application>

Developing Applications with JavaServer Faces

11-46 User's Guide for Oracle JDeveloper

...
</faces-config>

In the JSF page:

...

<f:loadBundle basename="model.login.ApplicationMessages" var="loginBundle"/>
<f:view>
 <html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"/>
 <title>Sample Application</title>
 <link href="css/mycompany.css" rel="stylesheet" media="screen"/>
 </head>
 <body>
 <H2><h:outputText value="#{loginBundle.someHeadLabel}" /></H2>
 <h:form id="loginForm">
 <h:outputText value="#{loginBundle.useridLabel}" />
 <h:inputText id="userid" value="#{login.userid}"
 required="true" size="15">
 <f:validateLength minimum="4" maximum="7"/>
 </h:inputText>
 <h:commandButton value="#{loginBundle.loginLabel}
 action="someBean.someMethod"} />
...
 </h:form>
 </body>
 </html>
</f:view>

11.2.2.8 How to Work with Facets
Many components use facets, and when you use wizards to create complex
components (such as a table or panel), output tags are often automatically created and
inserted into the facets. You can manually edit these components or add other
components to facets. You can also add or delete facets using a context menu in the
Structure window.

To work with facets:
1. In the Structure window, expand the parent tag (such as h:dataTable) by clicking

the plus sign to the left of the tag. A facet folder displays at the bottom of the tree.

2. Expand the facet folder by clicking the + icon. All facet folders pertaining to that
parent display.

3. To edit a component within a facet folder:

■ Expand the folder and select the component.

■ Use the Property Inspector to edit attribute values.

4. To add a component to a facet:

■ Right-click the folder.

■ Select Insert inside <facet-name>.

■ Use the resulting menus to select the appropriate object.

■ Use the Property Inspector to set attribute values.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-47

11.2.2.9 How to Build JSF Views with Facelets
Facelets removes the need to write custom tags for JSF components because the
technology uses JSF custom components natively. You need very little special coding
to bridge JSF and facelets. You can use JSF components directly within the facelets
templating language. Facelets allows you to define component assemblies that can be
included directly into a page or can easily be added to a facelet tag library. Facelets
also allows you to define site templates (and smaller templates). You can also use
facelets inside of a custom JSF component because the facelets API provides an
interface that is easily integrated with.

Facelets technology offers the following features:

■ Reduces UI development and deployment time.

■ Faster compiliation time.

■ Compile time validation.

■ High performance rendering.

■ Functional extensibility of components and server-side technologies through
customization.

■ Support for code reuse through templating and composite components.

Facelets Tag Libraries
JSF uses various tags to express UI components in a web page. Facelets uses the XML
namespace declarations to support the JSF tag library mechanism. All of these libraries
are included in JDeveloper.

Facelets support EL (expression language) based on the unified EL syntax defined by
JSP 2.1. EL expressions are used to bind UI component objects or values or

Table 11–10 Facelets Tag Libraries Included with JDeveloper

Tag Library URI
pref
ix Example Contains

JSF UI Tag
Library

http://java.sun.com/ja
vaee/javaserverfaces/r
eference/api/

ui: ui:component

ui:insert

This tag Library is
used for
templating

JSF HTML Tag
Library

http://java.sun.com/ja
vaee/javaserverfaces/r
eference/api/

h: h.head

h.body

h.outputText

h.inputText

This tag library
contains
JavaServer Faces
component tags for
all UIComponent +
HTML RenderKit
Renderer
combinations
defined in the
JavaServer Faces
2.0 Specification.

JSF Core Tag
Library

http://java.sun.com/pr
oducts/jsp/jstl/refere
nce/docs/index.html

f: f:actionListener

f:attribute

This tag library
contains tags for
JavaServer Faces
custom actions that
are independent of
any particular
RenderKit.

JSTL Functions
Library

http://java.sun.com/
jsp/jstl/functions

fn: fn:toUpperCase

fn:toLowerCase

JSTL 1.1 Functions
Tag Library

Developing Applications with JavaServer Faces

11-48 User's Guide for Oracle JDeveloper

managed-bean methods or managed-bean properties. Note that for Unified EL in
Facelets there is no difference between ${} and #{}.

To create a facelet:
1. Choose File > New > New Gallery > Web Tier > JSF/Facelets > Page.

2. Enter the file name and path for your facelet and click OK.

What The Facelet Wizard Does
When you create a facelet the necessary classpath and deployment files are modified
to use facelet technology in the following ways:

Example 11–4 Facelet Code Added to Your faces-config.xml

<application>
<view-handler> .com.sun.Facelets.FaceletViewHandler</view-handler>
</application>

This is added to ensure you view your facelets correctly, and not with the default
mappings.

Example 11–5 Facelet Code Added to Your Web.xml

<context-param>
<param-name> Facelets.VIEW_MAPPINGS </param-name>
<param-value> *.xhtml</param-value>
</context-param>

Example 11–6 Facelet Code Added or ADF

<context-param>
<param-name&g;torg.apache.myfaces.trinidad.FACELETS_VIEW_MAPPINGS</param-name>
<param-value>*.xhtml</param-value>
 </context-param>

This is added to ensure you view your Facelets correctly, and not with the default JSP
mappings. The facelets JAR, jsf-Facelets.jar is added to your classpath via the
facelets runtime library.

11.2.2.10 How to Convert and Validate JSF Input Data
JDeveloper provides a variety of tools and components to make converting and
validating your JSF input data easier. There is a converter component to register a
named converter instance, a convert number, and convert date and time all at your
fingertips in the Component Palette.

You can configure your converter and validator properties in the Overview editor for
your faces-config.xml file.

To register a JSF standard converter on a component using a supplied tag:
1. In the visual editor, select the component to register a standard converter.

2. In the Component Palette, select JSF Core from the dropdown list, then click a
standard converter. (e.g., convertDateTime).

3. In the Property Inspector, set the attributes for the converter.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-49

Example 11–7 Registered Standard Converter Code Sample

<h:inputText id="hiredate" value="#{employee.hireDate}"
 <f:convertDateTime dateStyle="full"/>
 <f:convertDateTime dateStyle="full"/>
 </h:inputText>

To register a JSF standard converter that does not have its own tag:
1. In the visual editor, select the component on which you wish to register a standard

converter.

2. In the Component Palette, select JSF Core from the dropdown list, then click
Converter. A dialog appears for you to enter the converter registered ID.

3. Select a converter ID from the dropdown list (e.g., javax.faces.Integer). When
done, click OK. This inserts the f:converter tag in the page. Instead of using
the f:converter tag, you can use the Property Inspector to enter the converter
ID on the component's converter attribute.

Example 11–8 Registered Standard Converter Using a f:converter Tag within a
Component Code Sample

<h:inputText id="age" ...>
 <f:converter converterId="javax.faces.Integer" />
</h:inputText>

Example 11–9 Registered Standard Converter Using a f:converter Attribute within a
Component Code Sample

<h:inputText id="age" converter="javax.faces.Integer" />

To register a JSF standard validator on a component using a standard tag:
1. In the visual editor, select the input component to register a standard validator.

2. In the Component Palette, select JSF Core from the dropdown list, then click the
standard validator of your choice (e.g., ValidateLength).

3. In the Property Inspector, set the attributes for the validator. You can register more
than one validator on a component. JSF calls the validators in the order they are
added to a component.

Example 11–10 Registered Standard Validator Using a Supplied Tag Code Sample

<h:inputText id="zip" value="#{employee.zipCode}">
 <f:validateLength minimum="5" maximum="9"/>
</h:inputText>

<h:inputText id="bonus" value="#{employee.bonus}">
 <f:validateLongRange minimum="#{MyBean.miminum}"/>
</h:inputText>

To display a message next to the component that generated the conversion or
validation error:
1. Open your page in the visual editor.

2. Use the Property Inspector to assign a unique ID to the component to show a
message.

3. In the Component Palette, select JSF from the dropdown list, then drag and drop
Message to the page and position it next to the component to show the message. A
dialog appears to enter the unique ID.

Developing Applications with JavaServer Faces

11-50 User's Guide for Oracle JDeveloper

4. Enter the ID and click OK.

5. In the Property Inspector, set the attributes for the message tag.

Example 11–11 Message Display Next To Component that Generated Conversion or
Validation Error Code Sample

<h:form>
 <h:inputText id="zip" value="#{employee.zipCode}">
 <f:validateLength minimum="5" maximum="9"/>
 </h:inputText>
 <h:message for="zip"/>
 </h:panelGrid>
 <h:commandButton value="Submit" />
</h:form>

To register a custom converter or validator in the JSF application configuration
file:
1. In the Application Navigator, double-click the application's faces-config.xml

file to open it in the JSF Configuration Editor. In the editor, click the Overview tab.

2. In the Overview page of the configuration editor, click Converters or Validators,
then click New. The Create Converter or Create Validator dialog appears to enter
an identifier and a fully qualified class name. For a custom converter, you can
register it under an identifier or a fully qualified class name for a specific data
type.

3. Enter the required information. Click OK.

4. (Optional) To add attributes or properties, click New next to the Attributes or
Properties panel. If you don't see New, expand the panel by clicking the forward
arrow. The Create Attribute or Create Property dialog appears for you to specify
generic attributes or JavaBeans properties that may be configured on the custom
converter or validator.

To edit a custom converter or validator configuration in an application:
1. In the Application Navigator, double-click the application faces-config.xml

file to open it in the JSF Configuration Editor. In the editor, click the Overview tab.

2. In the Overview page of the configuration editor, click Converters or Validators.
Select a converter or validator from the displayed list, then click Edit. The
converter or validator properties dialog appears.

3. Enter the necessary changes.

To delete a custom converter or validator in the JSF application configuration
file:
1. In the Application Navigator, double-click the application faces-config.xml

file to open it in the JSF Configuration Editor. In the editor, click the Overview tab.

2. In the Overview page of the configuration editor, click Converters or Validators.
Select a converter or validator definition from the displayed list, then click Delete.
The converter or validator definition is removed.

To register a custom converter on a component using a converter identifier:
1. In the visual editor, select the component to register a custom converter.

2. In the Component Palette, select the JSF Core page, then click Converter. A dialog
appears to enter the custom converter ID as registered in the application.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-51

3. Select a registered converter identifier from the dropdown list. Only
implementations of the converter interface are available. Click OK. This inserts the
f:converter tag. You can use the Property Inspector to enter the registered
converter ID.

Example 11–12 Custom Converter with the f:converter tag, Code Sample

<h:inputText id="memberNumber" ... >
 <f:converter converterId="customConverter"/>
</h:inputText>

Example 11–13 Custom Converter using the Converter attribute, Code Sample

<h:inputText id="memberNumber" converter="customConverter"/>

To register a custom converter on a component using a value binding
expression:
1. In the visual editor, select the component to register.

2. In the Property Inspector, select the converter property, then click the dropdown
arrow and choose Expression Builder.

3. Use the Expression Builder to enter a EL expression. Instead of using the
converter property, you can add the f:converter tag to the component. Use the
Expression Builder to enter a value binding expression. The bean property must be
an object of a class that implements the converter interface.

Example 11–14 Custom Converter Instance Using a Value Binding Expression, Code
Sample.

<h:inputText id="age" converter="#{someBean.someProperty}" />

To register a custom validator instance on a component:
1. In the visual editor, select the input component to use.

2. In the Component Palette, select JSF Core or ADF Faces Core page from the
dropdown list, and then click the Validator component.

3. In the Property Inspector, select a registered validator identifier from the
dropdown list, or enter a binding expression. Click OK.

Example 11–15 Registered Custom Validator Instance, Code Sample

<h:inputText id="name"
 value="#{MyBean.name}"
 size="10" ... >
 <f:validator validatorId="customValidator" />
 <f:attribute name="someName" value="someValue" />
</h:inputText>

To bind a component to a new validator method:
1. In the visual editor, double-click the input component . The Bind Validator

Property dialog displays.

2. From the Managed Bean dropdown list, select a managed bean or click New... to
create a new one.

3. Enter a new method name in Method or accept the default name.

Developing Applications with JavaServer Faces

11-52 User's Guide for Oracle JDeveloper

4. Click OK. The default validator method code is inserted in the backing bean, and
the backing bean.java file opens in the source editor. The cursor is placed at the
new method.

5. In the source editor, enter the code for the validator method.

Example 11–16 Component Binded to a New Validator Method, Code Sample

JSF page with automatic component binding off:

<h:selectOneMenu validator="#{nonauto.validatename1}">
 <f:selectItems value=""/
</h:selectOneMenu>

Default validator method code:

...
public void validatename1(FacesContext facesContext, UIComponent uiComponent,
Object object)
{
// Add event code here...
}
...

JSF page with automatic component binding on:

<h:selectOneMenu binding="#{backing_auto.selectOneMenu1}"
 validator="#{backing_auto.selectOneMenu_validator}">
 <f:selectItems value="" binding="#{backing_auto.selectItems2}"/>
</h:selectOneMenu>

Default validator method code:

...
public void selectOneMenu_validator(FacesContext facesContext, UIComponent
uiComponent, Object object)
{
// Add event code here...
}
...

JSF Standard Converters and Validator Tags and Syntax
All of the attributes supported by JDeveloper are shown in Table 11–11 and
Table 11–12. Attributes in square brackets ([]) are not required. All accepted,
predefined attribute values are separated with vertical bars (|); the default value is in
boldface. For attributes that do not have a fixed set of accepted values, the values are
shown in italics.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-53

11.2.2.11 How to Display Error Messages
Create and define error messages using the Message component and the Property
Inspector to define the attributes.

Table 11–11 JSF Standard Converter Tags

Tag Syntax

f:convertDateTime <f:convertDateTime

[dateStyle="default|short|medium|long|full"]

[timeStyle="default|short|medium|long|full"]

 [pattern="pattern"]

 [type="time|date|both"]

 [locale="locale"]

 [timezone="timezone"]

/>

f:convertNumber <f:convertNumber

[pattern="pattern"]

[minIntegerDigits="min"]

[maxIntegerDigits="max"]

 [minFractionDigits="min"]

[maxFractionDigits="max"]

[groupingUsed="true|false"]

[integerOnly="true|false"]

[type="number|currency|percent"]

[currencyCode="currencyCode"]

[currencySymbol="currencySymbol"]

[locale="locale"]

Table 11–12 JSF Standard Validator Tags

Tag Syntax

f:validateDoubleRange <f:validateDoubleRange

[maximum="max]

[minimum="min"]

/>

f:validateLength <f:validateLength

[maximum="max"]

[minimum="min"]

/>

f:validateLongRange <f:validateLongRange

[maximum=’max"]

[minimum="min"]

/>

Developing Applications with JavaServer Faces

11-54 User's Guide for Oracle JDeveloper

To display one error message next to a component that generated an error:
1. Open your JSF page in the visual editor.

2. Assign a unique ID to the component to show a message. You can use the Property
Inspector to do this.

3. In the Component Palette, select JSF from the dropdown list, then drag and drop
Message to the page and position it next to the component for which the message
is to be shown. A dialog appears for you to enter the ID of the component for
which to display a message.

4. Click the column next to For* and type the component ID. Then click OK.

5. In the Property Inspector, set the attributes for the message tag.

Example 11–17 Error Message Next To A Component, Code Sample

<h:panelGrid columns="3>
 <h:outputLabel for="enum" value="Enter employee number: "/>
 <h:inputText id="enum" converter="javax.faces.Long" >
 <f:validateLength minimum="5" maximum="9"/>
 </h:inputText>
 <h:commandButton value="submit"/>
 <h:message for="enum"/>
</h:panelGrid>

To display all error messages generated in a page:
1. Open your JSF page in the visual editor.

2. In the Component Palette, select JSF from the dropdown list, then drag and drop
Messages to the page and position it at the top of the page.

3. In the Property Inspector, set the attributes for the Messages tag.

Example 11–18 Display All Error Message, Code Sample

<h:form>
 <h:messages globalOnly="true" layout="table"/>
 ...
</h:form>

To replace the standard message texts in JSF:
1. Create a property resource bundle containing the key-value pairs for the

replacement texts, and place this bundle in the application' classpath.

Tip: To enable a component detail message to appear as a tooltip
during runtime, set the message tag tooltip attribute to true. The tag
showSummary and showDetail attributes must also be set to true. If
you are using ADF data controls to create JSF forms and tables, the
h:messages tag is automatically added, which displays all error
messages by default. You don't have to add individual h:message tags
manually.

Tip: Set the globalOnly attribute to true if you want to display only
global messages which are not associated with components. If you're
using ADF data controls to create JSF forms and tables, JDeveloper
automatically adds the h:messages tag for you. You don't have to add
the tag manually.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-55

2. In the Application Navigator, double-click faces-config.xml to open it in the
JSF Configuration Editor. Go to the Overview mode.

3. Click Application.

4. In Message Bundle, add the fully qualified path to the message resource bundle,
e.g., model.login.Resources.

5. In your JSF page, use the h:message tag to display one error message, or
h:messages tag to display all error messages. JSF first looks for messages in any
registered resource bundle before looking into the JSF standard bundle. This lets
you can override any JSF standard message by using the appropriate key in your
resource bundle. For a list of messages see the JSF API
javax/faces/Messages.properties.

To add information about a form field to which a message refers:
1. Create a PhaseListener implementation that retrieves and adds a generic

attribute to a message.

2. In the Application Navigator, double-click faces-config.xml to open it in the
JSF Configuration Editor. Switch to the Overview mode, if necessary.

3. Click Life Cycle, then click New to add a custom phase listener.

4. In Create Phase Listener, enter the fully qualified path to the phase listener
implementation or click Browse... to select one.

5. Open your JSF page and locate the input component of your choice.

6. In the Component Palette, select JSF Core from the dropdown list, then drag and
drop Attribute to the input component. A dialog appears for you to enter the
required generic attribute information.

To change the appearance of error messages in a JSF page:
1. Open the JSF page of your choice in the visual editor.

2. Link a CSS stylesheet to your page.

3. Select the h:message or h:messages component.

4. In the Property Inspector, set the CSS class that you want to apply to a particular
type of message. For example, if you want messages with a severity level of
"ERROR" to use a particular stylesheet, set the ErrorClass attribute to the name
of a style class defined in your CSS file. To do this, in the Property Inspector click
the column next to ErrorClass, then select a style class.

Example 11–19 Changing The Appearance of Error Messages, Code Sample

In CSS file: mystyles.css:

.error {
 font-style: italic;
 color:red;
}

.prompt {

Note: To use one or more inline styles, expand ErrorStyle in the
Property Inspector; then enter or select a value next to the style you
want to specify, e.g., background-color.

Developing Applications with JavaServer Faces

11-56 User's Guide for Oracle JDeveloper

 color:blue;
}

In the JSF file:

...
<f:view>
 <html>
 <head>
 <link media="screen" rel="stylesheet" href="css/mystyles.css"/>
 </head>
<body>
 <form>
 <h:inputText id="someid" value="{somebean.someproperty}"/
 <h:message for="id" errorClass="error"/>
<h:outputText value="{}" styleClass="prompt"/>
 ...
 </form>
 </body>
 </html>
 </fview>
...

11.2.2.12 How to Configure JSF Applications
You register JSF application resources such as managed beans, custom validators and
converters, and define navigation rules in the application configuration file. Typically,
this JSF configuration file is named faces-config.xml.

 JSF allows more than one <application> element in a single faces-config.xml file. The
overview editor for JSF configuration files only allows you to edit the first instance in
the file. You'll need to edit the file directly using the XML source editor for any other
<application> element.

You configure referenced beans in the faces-config.xml file. By declaring the
bean in this file, design-time tools can understand beans that are not available at
design time (such as data access) but will be available at runtime.

JDeveloper automatically creates a WEB-INF/faces-config.xml file when you
create an application using one of the JSF web application templates. However, you
can have more than one JSF configuration file. You might choose to do this if you need
individual configuration files for separate areas of your application. Additionally, if
you choose to have packaged libraries containing custom components and/or
renderers, you need a separate faces-config.xml file for each library. For these,
the configuration file is stored in the META-INF directory (as opposed to the WEB-INF
directory).

To use the overview editor for configuration files to set the <application>
element:
1. Open the overview editor for JSF configuration files.

2. In the left-hand column, select Application. The main area of the editor displays
each of the child elements to configure. If you do not specify a value for an
element, the default JSF implementation class is used.

3. In the main area, populate the text fields with class names that correspond to the
child elements. For all elements that take a fully qualified class name as a value,
you can use the Browse... button to launch the Class Browser to find the class.
Once you exit a field, the value is populated to the XML file.

Developing Applications with JavaServer Faces

Developing Applications Using Web Page Tools 11-57

To add a bean to the configuration file using the JSF Configuration Editor:
1. In the Application Navigator, double-click on the faces-config.xml file.

This file is located in the Web Content/WEB_INF directory.

2. At the bottom of the window, select the Overview tab. The JSF Configuration
Editor window displays.

3. In the element list on the left, select Referenced Beans.

4. Use the New, Edit, and Delete buttons to configure the bean.

To manually add a bean to the configuration file:
1. In the Application Navigator, double-click on the faces-config.xml file. This

file is located in the Web Content/WEB_INF directory.

2. At the bottom of the window, select the Source tab. The file opens in the XML
Source editor.

3. Add the referenced bean element.

To create a new JSF configuration file:
1. In the Application Navigator, select the project to add your new configuration file.

The project contains a WEB-INF node, which in turn contains the file web.xml.

2. Right-click the project node and choose New from the context menu.

3. In the New Gallery, go to the Categories tree, expand the Web Tier node, then
select JSF/Facelet.

4. In the Items list, select JSF Page Flow & Configuration.

5. Click OK. The Create JSF Configuration File dialog appears.

6. Set the values according to the purpose of the configuration file. If you are adding
a configuration file for your application:

1. Enter a File Name for the new configuration file.

2. Verify or change the Directory.

3. Check the Add Reference to web.xml checkbox. When selected, JDeveloper
adds the new file name to web.xml, so that JSF reads it as part of your
application configuration.

4. Click OK. This creates a new configuration file using the entered name.

7. If you are creating a configuration file for custom components or other JSF classes
delivered in a library .jar:

1. Set the file name to faces-config.xml.

2. Change the Directory Name to META-INF.

3. Clear the Add Reference to web.xml checkbox.

4. Click OK. This creates a new configuration file using the entered name. You
can then include this configuration file in the .jar file that you use to
distribute your components or classes.

 Editing a JSF Configuration File:
1. In the Application Navigator, locate the configuration file to edit. By default, this is

the faces-config.xml file. It is located in the WEB-INF node of the JSF project.

2. Double-click the file to open it.

Developing Applications with HTML Pages

11-58 User's Guide for Oracle JDeveloper

3. The JSF navigation diagrammer appears by default. To select an editor, click one of
the tabs at the bottom of the editor window. To open:

■ JSF navigation diagrammer, click Diagram.

■ Overview editor for JSF configuration fules, click Overview.

■ XML source editor, click Source.

■ History tool, click History.

11.2.3 How to Run and Test JSF Applications
JDeveloper has an Integrated WebLogic Server that enables you to run and test web
applications from the IDE. No special connection setup is required. Run either the
entire application project or individual JSF pages.

To run and test individual pages:
1. In the navigator or the JSF navigation diagram (faces-config.xml), select the

JSF page to run.

2. Right-click the JSF page and choose Run from the context menu. The JSF page is
displayed in your default browser. If this is the first time you run or start your
domain, and the server has not yet been created, you will be prompted to provide
a new password in the Configure Default Domain dialog.

To run and test an entire project:
1. In the navigator, select the application project (for example, ViewController).

2. Right-click the project and choose Run from the context menu. The application is
launched in your default browser.

3. The Configure Default Domain dialog appears if this is the first time you run or
start the domain and the server has not yet been created. Enter your new
password.

To run a project, you must first specify a default run target. If you have not already
done so, JDeveloper prompts you to enter a default run target the first time you run a
project. You can also specify the default run target by editing the project properties.

When you run a JSF application from the IDE, JDeveloper automatically:

■ Compiles the application.

■ Starts the Integrated WebLogic Server processes and launches the application in
your default browser using the default address.

For example:

http://127.0.0.1:8988/myproject-ViewController-context-root/faces/home.jsp

Where 127.0.0.1 is your your_machine_IP_address and 8988 is your http_port.

Note that you can change the default application name and web context root in the
project properties.

11.3 Developing Applications with HTML Pages
JDeveloper provides full support for developing with HTML technology in accordance
with the HTML 4.01 W3C specification at http://www.w3.org/TR/html401/.

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 11-59

JDeveloper gives you a full set of integrated and synchronized design tools and
components for creating and editing HTML pages. For information on the HTML
Source Editor and Visual Editor see Section 11.1.1, "Getting to Know the Source Editor
Features", and Section 11.1.2, "How to Work in the Visual Editing Environment".

11.3.1 How To Build Your HTML Pages
To get started with you HTML web pages you first need to create a web application. To
see the available application types go to Table 11–6, " Web Application Templates".

Once you have created your web application framework, you re ready to start building
your HTML pages.

HTML Core Components
When you are building your HTML page use the Component Palette to click or drop
and drag most of the commonly used tags into your page. JDeveloper features a
commonly used set of HTML element tags as well as a set of form tags to add user
input attributes and behaviors.

Figure 11–17 HTML Common Component Palette

Table 11–13 HTML Common Components

Tag Name Description

Anchor Inserts a named anchor <A
name> invisible element.

Applet Embeds a Java applet in your
page.

Email Link Inserts an HTML <A> element
in your page with the email
address you provide.

Horizontal Rule Inserts HTML <hr> element in
your page at the current cursor
location to display a horizontal
line.

Hyper Link Inserts a link to a HTML
reference you define.

Developing Applications with HTML Pages

11-60 User's Guide for Oracle JDeveloper

Figure 11–18 HTML Forms Component Palette

Image Adds the HTML
element to insert an image into
your page.

Line Break Inserts a line break..

Link Inserts a link to an external
style sheet or any other
external document.

Noscript Provides alternate content
when a script is not executed
using an HTML <noscript>
element.

Script Embeds the <script> element
and custom code into the page.
Use code for any scripting
language including VBScript,
Tcl, and JavaScript.

Style Embeds an internal style sheet
in the document.

Table Inserts a skeleton HTML
<table> tag.

Table 11–14 HTML Forms Components

Tag Name Description

Button Inserts an HTML <button>
element with the type attribute
specified, to create a push
button.

Table 11–13 (Cont.) HTML Common Components

Tag Name Description

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 11-61

Checkbox Inserts the HTML <input>
element with the type attribute
specified, to create a checkbox
control in a form.

Combo Box Inserts a select element to
define a form control for the
selection of options.

Fieldset Inserts a fieldset element that
defines a form control group.
By grouping related form
controls, authors divide a form
into smaller, more manageable
parts, improving usability
issues when confronting users
with too many form controls.

File Field Inserts an HTML <input>
element with the type attribute
specified, to create a file select
control. The file select control
creates a Browse button and
field so a user can select files to
be submitted with a form

Form Inserts an HTML <form> tag to
insert form processing
information into your page.

Hidden Field Inserts an HTML <input>
element with the type attribute
specified, to create a hidden
control in a form.

Image Button Inserts an HTML <input>
element with the type attribute
specified, to create a graphical
submit button.

Input Button Inserts an HTML <input>
element with the type attribute
specified, to create a push
button. Push buttons have no
default behavior.

IsIndex Use to insert an HTML
<isindex> tag to create a
single-line text input control.
This element has been
deprecated. Authors should
use the <input> element.

ListBox Use the HTML <select>
element to create a menu of
choices represented by an
<option> element

Password Field Inserts an HTML <input>
element with the type attribute
specified, to create a password
field.

Table 11–14 (Cont.) HTML Forms Components

Tag Name Description

Developing Applications with HTML Pages

11-62 User's Guide for Oracle JDeveloper

To create an HTML page:
The New Gallery wizard walks you through all of the necessary steps to build the web
pages framework for your application.

1. In the Application Navigator, select the project in which you want to create the
HTML page.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Web Tier and select HTML, as shown in
Figure 11–19.

4. Leave the Directory field unchanged to save your work in the directory where the
system expects to find web application files, as shown in Figure 11–20. In the File
Name field, enter the name of the file you want to generate then click OK. A
simple HTML file is generated and appears in your active project. The deployment
descriptor file web.xml is also added to your project. The deployment descriptor
file is used by the Integrated WebLogic Server when you run the HTML.

Radio Button Inserts an HTML <input>
element with the type attribute
specified, to create a radio
button control in a form.

Reset Button Inserts an HTML <input>
element with the type attribute
specified, to create a reset
button; this resets all controls
to their initial values.

Spinner Inserts an HTML <select>
element to create a menu of
choices represented by an
<option> element. A <select>
element must contain at least
one <option> element.

Submit Inserts an HTML <input>
element with the type attribute
specified, to create a button
that submits a form.

Text Area Inserts an HTML <textarea>
element to create a multiline
text input field.

Text Field Inserts an HTML <input>
element with the type attribute
specified, to create a text field.

Table 11–14 (Cont.) HTML Forms Components

Tag Name Description

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 11-63

Figure 11–19 New Gallery Create HTML Page Option

Figure 11–20 Create HTML Dialog

To Save JSP Files as HTML:
You can save your JSP pages as HTML pages by opening your JSP file in the source
editor and choosing File > Save as HTML.

The Save as HTML option saves a copy of your file with the HTML extension leaving
the original file unchanged. The HTML file preserves text formatting so when it is
viewed in a browser or as a snippet of code on a blog it looks the same as when
viewed. The saved HTML file can be reopened and viewed as HTML, but it won't be
understood as code.

11.3.2 How to Work with Cascading Style Sheets
Use Cascading Style Sheets (CSS) to control the style and layout of multiple web
pages. CSS styles can define the formatting attributes for HTML tags, ranges of text
identified by a class attribute, or text that meets criteria conforming to the Cascading
Style Sheets (CSS2) specification. For more information on CSS, see the W3C web page
at http://www.w3.org/TR/1998/REC-CSS2/.

Developing Applications with HTML Pages

11-64 User's Guide for Oracle JDeveloper

For CSS Development, JDeveloper provides the following tools:

■ The Cascading Style Sheet Source Editor, which provides a full set of Java-aware
Code Insight editing features.

■ The ADF Skin Editor, which allows you to create and modify ADF skins. An ADF
skin is a type of CSS file that defines the look and feel of an ADF application.

■ Wizards to create new HTML pages.

■ Source and visual editors to edit HTML page.

■ Drag and drop linking a CSS file to an HTML or JSP page.

■ Property Inspector to set or modify CSS selector properties and values.

■ Code Insight to provide available options and complete code while editing.

■ Structure window to sort and view CSS elements by groupings.

Table 11–15 lists the Cascading Style Sheet Source Editor features:

11.3.2.1 How to Select and Group CSS Elements
When a CSS file is open for editing, CSS selectors in the file are displayed in the
Structure window in the following type icons:

Element

Table 11–15 CSS Source Editing Features

Feature Description

Code insight for CSS Displays a list of HTML selectors, properties, values,
pseudo-classes and pseudo-elements, for the CSS file under the
cursor, to select an appropriate completion. For example, if you
place the cursor just after the opening brace in a style rule, it
displays a list of all possible properties to enter at that point in
the file.

Reformat for CSS Correctly reformats your code on that CSS page. Right-click on
your file in the CSS editor or from the Application Navigator
and choose Reformat.

CSS Error handling Highlights invalid CSS properties, values, and missing
semicolon and braces.

Stylesheet linking to HTML
files

In the Component Palette, select the HTML palette, Common
page, and link a stylesheet to your HTML files simply by
dropping a Link element into your HTML page.

Another option is to choose CSS in the Component Palette. The
list of available CSS files displays in the Component Palette. You
can then drag and drop any CSS file from the Componenet
Palette to the page.

Style preview See what your styles look like while you're coding.

Code colors Easily spot properties, values, and keywords.

CSS Refactoring Refactors across the application when you rename CSS files,
class and ID attributes, or move, copy, and safe delete files.

Brace Matching for CSS
Code Editor

Highlights the matching braces, brackets, and parentheses in the
code editor based upon the cursor position.

Toggle Line Comments Adds or removes comment markers from the beginning of each
line in a selected block. Select a single line to comment or
uncomment that line only.

Quick docs Open the description from the W3C standard.

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 11-65

The HTML element or tag defined by the CSS selector. Property and value are
separated by a colon and surrounded by curly braces. For example: body
{color:black;.}

Class

Different styles defined for the same type of HTML element. For example p.right
{text-align:right;} to define right-aligned paragraph text, and p.left
{text-align:left;} to define left aligned paragraph text. You can also omit the
tag name in the selector to define a style that will be used by all HTML elements that
have a certain class. For example center {text-align:center;} defines all
HTML elements with class="center" to be center-align.

ID

Style unique to one HTML element. For example p#para1 {color:green;}
defines the p element that has the id value="para1" and *#ver905
{background-color:red;} defines the first HTML element with id
value="ver905".

Tools For Grouping Elements
You can use the Categories dropdown list in the Structure window toolbar to show
CSS selectors by categories.

No category
Displayed in order of appearance in the CSS file. Default setting.

Type Category
Arranged by CSS selector types: Element, Classes or ID.

Element category
Arranged by HTML element or tag.

Select a CSS selector in the Structure window to highlight the selector in the CSS file
and display associated properties and values in the Property Inspector for editing.

Select the Separate Grouped Selectors icon to separate or ungroup the selector
categories in the Structure window.

Developing Applications with HTML Pages

11-66 User's Guide for Oracle JDeveloper

Select an element group and right click and select Comment Out , to comment out the
selected element in your CSS file.

11.3.2.2 How to Use the CSS Basic Tools
You can create your CSS stylesheet with a New Gallery wizard. Once created, drag and
drop a stylesheet onto your web page to link the stylesheet. Use the soure editor with
Code Insight to make changes directly in the CSS code, and edit your selector
properties and values in the Property Inspector.

To create a simple Cascading Style Sheet:
1. In the Application Navigator, select the project in which you want to create the

new style sheet.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Web Tier and select HTML.

4. In the Items list, double-click CSS File to open the CSS File dialog.

5. Leave the Directory Name field unchanged to save your work in the directory
where JDeveloper expects to find web application files.

6. In the File Name field, enter the name of the file you want to generate then click
OK. A simple CSS file is generated and appears in your active project in the CSS
folder under Web Content.

To set or modify CSS selector properties and values:
1. In the Structure window of the CSS file, select the CSS selector element, class or id

in which you want to set a property.

2. In the Property Inspector, scroll until the property you want is visible. To quickly
locate a property in a long list, click the search button in the Property Inspector
toolbar. In the Find text field, type the name of the property, then press Enter.
Enter the property value in the right column in one of the following ways:

■ Type the string value for the property In a text field, then press Enter.

■ Click a button in a value field to choose a value from the displayed list.

■ Click in a value field to display the ellipsis button. Click the ellipsis to display
an editor for that property. Set the values in the property editor, then press
OK. The selector value is modified and pages linked to the CSS file reflect the
style changes.

■ Type the string value for the property In a text field, then press Enter.

Note: The Preview tab is located near the Source tab in the source
editor. You can use it to see what the CSS formatting you have entered
on the Source tab will look like.

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 11-67

To edit a CSS File in the Source editor:
1. In the Application Navigator, double-click the CSS file to open it in the default

Source editor window.

2. Enter the CSS selector (HTML element, class, or id) you wish to define.

3. Enter the { (open curly bracket)and press Ctrl+Space (using the default
keymapping) to invoke Code Insight.

4. Double-click a property name from the list of valid properties. The selected
property is inserted in the file, followed by a colon and a space. For
example:{background-color:

5. To enter a value for the property you have inserted press Ctrl+Space to open a list
of valid values and double-click a value to insert it. The selected value is inserted,
followed by a semicolon. For example: body {text: blue;

6. Add other properties and values as necessary. Be sure to use a semicolon between
a property value and the next property. For example: p {text-align:center;
color:red;

7. When you've finished adding properties and values, enter the } (close curly
bracket).

11.3.3 How to Work with HTML Tables
Using the visual editor, use tables to lay out data on your HTML pages. Once you
create a table you can easily modify both the appearance and the structure of the table.
You can edit tables to add text and images; add, delete, resize, reorder, split, and merge
rows and columns; modify table, row, or cell properties for color and alignment; copy
and paste cells, and nest tables in table cell.

To add text to a table cell:
1. Click in a cell to add text and when a blinking cursor appears, do one of the

following:

■ Type text into the table. Table cells automatically expand as you type.

■ Paste text copied from another page.

2. Press Tab to move to the next cell or press Shift+Tab to move to the previous cell.
Pressing Tab in the last cell of a table automatically adds another row to the table.

Using a table cell as the insertion point you can add and remove graphics or other UI
and data elements to tables.

To remove content from one or more cells select cells:
■ Click Delete or Backspace.

Or

■ From the main menu select Edit > Delete.

Note: The Structure window displays any CSS syntax errors found
as you edit.

Double-click an error or element in the Structure window to edit it in
the Source editor.

Developing Applications with HTML Pages

11-68 User's Guide for Oracle JDeveloper

Note that only the contents of the cell, not the cell, will be removed from the table. If
the entire row or column is selected, the table structure will be modified to remove the
row or column along with the contents of the cell.

11.3.3.1 How to Format Tables and Cells
Set the properties of HTML tables, rows, columns, and cells using the design tools. Use
the Property Inspector, the Edit Table dialog, or the visual editor toolbar to set table
element properties.

When formatting tables with the design tools, you can define properties that apply to
the entire table or to selected cells, rows, or columns in the table. When a property like
background color or alignment is set with a value for the whole table and a different
value for individual table cells, precedence in formatting is applied in the following
order:

1. table cell, <td> tag

2. table row, <tr> tag

3. table, <table> tag

If you specify a background color of green for a single cell and then set the background
color of the entire table to red, the green cell will not change to red, since the <td> tag
takes precedence over the <table> tag.

To set table and cell properties using the Property Inspector:
1. Select the table, row, or cell in the visual editor, or the corresponding <table>, <tr>,

<td> in the Structure window. The Property Inspector displays the property
values for the selected element. If the Property Inspector is not in view, choose
View > Property Inspector or use the shortcut Ctrl+Shift+I.

2. Enter the property value in the right column in one of the following ways:

■ Type the string value for the property in a text field, then press Enter.

■ Click In a value field to choose a value from the displayed list.

■ Click in a value field to display the ellipsis button. Click the ellipsis to display
an editor for that property. Set the values in the property editor, then press
OK.

To set table and cell properties using the visual editor Toolbar:
1. Select the table, row, or cell in the visual editor. You can also select the

corresponding <table>, <tr>, <td> in the Structure window.

2. Use the standard toolbar editing icons to set properties such as: align and
indent/outdent, and so forth.

To resize a table, do one of the following:
■ Select the table in the visual editor and use the resize handles to drag the table

height, width, or both to the desired size.

■ Select the table in the visual editor or the corresponding <table> element in the
Structure window, and then set the table width attribute in the Property Inspector.

Tip: To quickly locate a property in a long list, click the search
button in the Property Inspector toolbar. In the Find text field, type the
name of the property, then press Enter.

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 11-69

■ Double-click the table in the visual editor and in the Edit Table dialog reset the
table width in pixels or percentage of page width.

■ Right-click the table in the visual editor or the corresponding <table> element in
the Structure window, and then choose Edit Tag from the context menu to display
an Edit Table dialog.

To change the size of rows or columns:
1. In the visual editor, open the page with a table you want to resize the rows or

columns.

2. In the visual editor, open the page with a table you want to resize the rows or
columns. Place your cursor at the border of the row or column you wish to resize,
and click when the horizontal border handle or vertical border handle appears.

3. Drag the row or column border to the desired size, then release the mouse.

To add rows or columns to a table:
1. Select the table cell in the visual editor or the corresponding <td> element in the

Structure window.

2. Right-click the table cell or element and select Table in the context menu.

3. Choose one of the following:

■ Select Insert Row to add a row above the row where the table cell is selected.

■ Select Insert Column to add a column before the column where the table cell is
selected.

■ Select Insert Rows Or Columns... for an Insert Rows or Columns dialog to add
multiple rows or columns and to specify the location for adding the row(s) or
column(s). Then click OK.

To remove rows or columns in a table:
1. Select the table cell in the visual editor or the corresponding <td> element in the

Structure window.

2. Right-click the selected table cell or element and select Table in the context menu.

3. Choose one of the following:

■ Select Delete Row to remove the row where the table cell is selected.

■ Select Delete Column to remove the column where the table cell is selected.

You can also select one or more rows or columns in the visual editor or the
corresponding <tr> element in the Structure window and do one of the
following:

■ Click Delete or Backspace.

■ From the main menu select Edit > Delete. Note that If you are deleting the last
row in the table the entire table is removed.

To merge table cells:
1. Select the table cells in the visual editor, or the corresponding <td> elements in the

Structure window. The selected cells must be contiguous and form a rectangular
region.

2. Right-click the selected table cells or elements and select Table from the context
menu, then click Merge Cells.

Developing Applications with HTML Pages

11-70 User's Guide for Oracle JDeveloper

Or

From the main menu select Design and select Table, then click Merge Cells. The
contents of the individual cells are placed in the resulting merged cell.

To split a table cell:
1. Select the table cell in the visual editor or the corresponding <td> element in the

Structure window.

2. Right-click the selected table cell or element and select Table from the context
menu, then click Split Cells.

Or

From the main menu select Design and select Table, then click Split Cells.

3. In the Split Cells dialog, choose whether to split the cell into rows or columns, and
then enter the number of rows or columns.

4. Click OK.

To change the display order of rows, columns, or groups of table cells using the
visual editor:
1. Select the row, column, or group of table cells you want to change the order of in

the HTML table. The selected cells must be contiguous and form a rectangular
region.

2. Drag the row, column, or group of table cells to a new position in the table with
one of the following actions:

■ To insert a row or group of cells above a target row, drag it towards the top of
the row until you see a horizontal line with an embedded up arrow, then
release the mouse button.

■ To insert a row or group of cells below a target row, drag it towards the bottom
of the row until you see a horizontal line with an embedded down arrow, then
release the mouse button.

■ To insert a column or group of cells before a target column, or a column before
a target column, drag it towards the left of the row or column until you see a
vertical line with an embedded left arrow, then release the mouse button.

■ To insert a column or group of cells after a target column, drag it towards the
right of the node until you see a vertical line with an embedded right arrow,
then release the mouse button.

To change the display order of rows using the Structure window:
1. Select the <tr> element you wish to change the order of in the table. The selected

cells must be contiguous and form a rectangular region.

2. Drag the row, column, or group of table cells to a new position in the table with
one of the following actions:

■ To insert a row above a target row, drag it towards the top of the row until you
see a horizontal line with an embedded up arrow, then release the mouse
button.

■ To insert a row below a target row, drag it towards the bottom of the row until
you see a horizontal line with an embedded down arrow, then release the
mouse button.

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 11-71

To increase row or column span in a table:
1. Select the table cell in the visual editor or the corresponding <td> element in the

Structure window.

2. element in the Structure window. Right-click the table cell or element and select
Table in the context menu.

3. Choose one of the following:

■ Select Increase Row Span to expand the selected cell by one row.

■ Select Increase Column Span to expand the selected cell by one column.

To reduce row or column span in a table:
1. Select the table cell in the visual editor or the corresponding <td> element in the

Structure window.

2. Right-click the selected table cell or element and select Table in the context menu.

3. Choose one of the following:

■ Select Decrease Row Span to reduce the span of the selected cell by one row.

■ Select Decrease Column Span to reduce the span of the selected cell by one
column.

11.3.4 How to Work with HTML Forms, Text, and Images
Use the design tools to add and format text on JSP or HTML pages. Use the
Component Palette to add your HTML forms, and the Property Inspector and
Structure window to manage elements and the configure properties for your HTML
forms.

For your HTML graphics, use the Component Palette to easily add graphics to your
pages, or you can drag and drop them from your Windows Desktop or Explorer. You
can insert an image into a page, table, or form, or use an image as a background.
Modify images to set image size, add a border, and set alignment on a page or in a
table cell. Create interactive graphics, such as rollover images or navigation bars, by
adding a JavaScript event to your image.

11.3.4.1 How to Work with HTML Forms
Use HTML forms on your HTML pages to interact with or gather information from
users of your web pages. Forms are composed of:

■ Form tags, which include form processing information.

■ Form fields, which may include text fields, menus, checkboxes, or radio buttons.

■ Submit button, which sends the data to the form processing agent.

To create a new HTML form:
With a JSP or HTML file open, do one of the following:

■ Select the insertion point in the visual editor or the Structure window where you
want the form to appear, then click Form on the HTML page of the Component
Palette.

■ Drag the Form element from the HTML page of the Component Palette to the
desired insertion point on the page or in the Structure window. The HTML code to
create a skeleton form is inserted into your HTML or JSP file. Note that a form
appears as a dotted outline in the visual editor.

Developing Applications with HTML Pages

11-72 User's Guide for Oracle JDeveloper

After creating the skeleton form, add form fields and buttons and specify form
processing information. By default, forms are created with a Get form processing
attribute.

When form fields or buttons from the Component Palette are added to the HMTL or
JSP page, a <form> element is automatically inserted as a parent element.

To delete a form element:
Select the form in the visual editor or the corresponding <form> element in the
Structure window, and do one of the following:

■ Click delete or backspace.

■ From the main menu select Edit > Delete. The form, and any form fields and
buttons within the form are removed. To remove the form element without
deleting form fields or buttons, right-click the form and select Form > Remove
Form Tag.

To insert a form field or button:
1. With a JSP or HTML file containing a form element open in the visual editor, do

one of the following:

■ Select the insertion point in the visual editor or the Structure window where
you want the field or button to appear on the form, then click the desired
element on the HTML page of the Component Palette.

■ Drag the form field or button element from the HTML page of the Component
Palette to the desired insertion point on the form or in the Structure window.
Note that If you attempt to insert a form field or button without first creating
the form, you'll get a message “Do you want to add a form element for this
component?” Choose Yes to automatically create form tags for the field or
button. Checking Hide Add Form Element Confirmations in this dialog will
close the automatic display of the dialog. Reinstate the display by selecting
Tools > Preferences > JSP HTML visual editor from the main menu and
checking Prompt to Add Form Element.

2. For form fields or buttons with required attributes, set property values using the
displayed editor dialog.

To delete a form field or button, do one of the following:
■ Select the element and click Delete or Backspace.

■ Select the element and from the main menu choose Edit > Cut.

To edit form processing information using an Edit Form dialog:
1. Right-click the form in the visual editor or the corresponding <form> element in

the Structure window, and select Edit > Tag.

2. In the Edit Form dialog set the form processing attributes.

3. Click OK to add the form processing information to the form element. For
example: <form method="post"
action="http://www.oracle.com/orderEdit.html"
enctype="application/x-www-form-urlencoded"
name="form1"></form>.

Developing Applications with HTML Pages

Developing Applications Using Web Page Tools 11-73

To set form processing information using the Property Inspector:
1. Select the form in the visual editor, or the corresponding <form> element in the

Structure window. The Property Inspector displays the property values for the
selected element. If the Property Inspector is not in view choose View > Property
Inspector or use the shortcut Ctrl+Shift+I.

2. Scroll until the property you want is visible, then select it with the mouse or the
arrow keys. A brief description of the property is displayed at the bottom of the
Property Inspector.

3. Enter the property value in the right column in one of the following ways:

■ Type the string value for the property In a text field, then press Enter.

■ Click In a value field to choose a value from the displayed list.

■ Click in a value field to display the ellipsis button. Click the ellipsis to display
an editor for that property. Set the values in the property editor, then press
OK.

To change the form method from the context menu:
1. Right-click the form in the visual editor or the corresponding <form> element in

the Structure window, select Form, and then Method.

2. In the sub-menu select Post or Get to change the form method.

11.3.4.2 How to Work with HTML Text
Use the visual editor to add and format text to your HTML files.

Use the toolbar in the visual editor to set text properties in your pages. Attributes set
using the toolbar are marked with a green square in the Property Inspector. To undo
changes, from the main menu select Edit > Undo action. To reset text properties to
default values, select and delete the value from the Property Inspector.

To add text, do one of the following:
■ Click the position in the visual editor where you wish to insert text. Begin typing

when the blinking cursor appears.

■ Copy and paste text from files in the same project or different projects.

You can format inserted text using the Toolbar in the visual editor. The Toolbar
applies manual or inline formatting in the page. For example

<H5>This is a Heading 5 in italics
iUse the Toolbar to:n the color red</H5>

HTML Toolbar Features
When editing your pages in the visual editor you can use the toolbar for formatting
changes.

Use the tool bar to:

■ Set the default formatting style (None, Paragraph, Preformatted, Heading 1,
Heading 2, and so on) for a block of text.

■ Change the font, color, and alignment of selected text.

Tip: To quickly locate a property in a long list, click the search button
in the Property Inspector toolbar. In the Find text field, type the name
of the property, then press Enter.

Developing Applications with HTML Pages

11-74 User's Guide for Oracle JDeveloper

■ Apply formatting such as bold, italic, or underline.

■ Create ordered (numbered) and unordered (bulleted) lists.

Formatting Text with CSS Features
You can also use Cascading Style Sheets (CSS) to automatically update text and page
formatting within a page or across several web pages. CSS styles define the formatting
for all text in a particular class or redefine the formatting for a particular tag such as h2
or I. Apply CSS styles with an external style sheet.

You can use CSS styles and manual or online HTML formatting within the same page.
Manual HTML formatting overrides formatting applied by a CSS style. For complete
information on CSS style sheets, see the W3C Cascading Style Sheets home page at,
http://www.w3.org/Style/CSS.

To set text properties:
1. Select the text in which you wish to set a manual or online HTML style.

2. Use the tabular to set text properties.

11.3.4.3 How to Work with HTML Images
The JDeveloper design tools support the following graphic file formats:

■ JPEG/JPG

■ GIF

■ PNG

To insert an image:
1. With a file open in the visual editor, do one of the following:

■ Select the insertion point in the visual editor or the Structure window where
you want the image to appear on the page, then click Image on the page of the
Component Palette.

■ Drag the Image element from the page of the Component Palette to the
desired insertion point on the page or in the Structure window.

2. In the Insert Image dialog that displays, click Browse to choose a file, or type the
path for the image file location. Browsing to the file location opens the Select
Image Source dialog, which displays the directory based on current context. If the
image file is located outside the HTML root of the current project you will be
prompted with an option to add the file to the current context in the Application
Navigator. Click Yes for a Save Image dialog to add the image to the document
root.

3. Set additional image properties in the Insert Image dialog.

4. Click OK. The image appears on your page.

You can also drag an image from your Windows Desktop or Explorer to the
desired location on the page. You will be prompted with an option to add the file
to the directory based on current context in the Application Navigator. Click Yes
for a Save Image dialog to add the image to the document root. The image will
appear on your page.

To delete an image, do one of the following:
■ Select the image and click Delete or Backspace.

Working with Java Server Pages

Developing Applications Using Web Page Tools 11-75

■ Select the image and from the main menu choose Edit > Cut.

To resize an image, do one of the following:
■ Right-click and select Properties , then adjust pixels for width and height.

■ Select and use the resize handles at bottom and right sides of the image and in the
bottom right corner to adjust the image width and height.

■ Select and modify the image width and height attributes in the Property Inspector.

Image properties set using the visual editor are marked in the Property Inspector
with a green square. To return a resized element to its original dimensions delete
the values in the width and height fields in the Property Inspector, or click the
Reset Size button.

To move an image by dragging:
In the visual editor or Structure window do any of the following:

■ Drag the image from the original position to an insertion point in the visual editor
or Structure window.

■ Right-click drag the image from the original position to an insertion point in the
visual editor or Structure window, and then choose Move Here from the context
menu.

In the visual editor or Structure window do any of the following:

■ Cut the image. Then, paste into some other position in the Visual Editor or
Structure Window.

■ Cut the image. Then, paste into another file in the same project or a different
project.

To use an image as a background:
1. Select the page <body> element in the Structure window. The Property Inspector

displays the property values for the selected element. If the Property Inspector is
not in view choose View > Property Inspector or Ctrl+Shift+I.

2. Scroll to the background property in the Property Inspector, and then select it with
the mouse or the arrow keys.

3. Enter the property value in the right column in one of the following ways:

■ Click in a value field to choose an available background image from the
displayed list.

■ Click in a value field to display the ellipsis button. Click the ellipsis to display
a background dialog, and click Browse to choose a file, or type the path for the
image file location. Browsing to the file location opens the Select Image Source
dialog, which displays the directory based on current context. If the image file
is located outside the HTML root of the current project, you will be prompted
with an option to add the file to the current context in the Application
Navigator. Then click Yes for a Save Image dialog to add the image to the
document root. Click OK. The image will tile as the background image on
your page.

11.4 Working with Java Server Pages
This section covers JDeveloper support and tools for your user interface development
using JavaServer Faces (JSP) technology within the Java EE platform.

Working with Java Server Pages

11-76 User's Guide for Oracle JDeveloper

JDeveloper provides a complete user interface development environment for Java
Server pages (JSP) development in accordance with the JSP 2.1 specification defined at
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.htm
l.

11.4.1 How to Build Your JSP Application
You can build your application from the ground up using the features provided in
JDeveloper. The first thing you’ll want to do is build a framework, or application
template for your web pages. Get started quickly with your JSP projects using the
application templates. Choose from a combination of technologies to include in your
application as you build your application with the New Gallery Wizard. The
application you choose determines the project folders created and the libraries added
to the folders as shown in Table 11–6.

11.4.1.1 JSP Core Components
JDeveloper comes with a Component Palette stocked with standard JSP components
that you can easily drag and drop onto your JSP pages as shown in Figure 11–21 and
Table 11–16.

Figure 11–21 JSP Core Components Palette

Table 11–16 JSP Core Components

Tag Description

Attribute Defines the value of a tag
attribute in the body of an XML
element instead of in the value
of an XML attribute.

Body Specifies the body of the tag.

Working with Java Server Pages

Developing Applications Using Web Page Tools 11-77

Declaration Declares a method or variable
valid in the scripting language
used in the JSP page.

EL Expression Contains an expression in the
JSP Expression Language (EL)
to provide easy access to
application data stored in
JavaBeans components.

Element Dynamically defines the value
of the tag of an XML element.
This action can be used in JSP
pages, tag files and JSP
documents

Expression Contains an expression valid in
the scripting language used in
the JSP page. The expression is
evaluated, converted to a
String, and inserted into the
response where the expression
appears in the JSP page.

Fallback Displays a text message if the
dialog to initiate the download
of plug-in software fails. A
translation error will occur if
the element is used elsewhere.

Forward Forwards the request object
containing the client request
information from one JSP page
to another resource. The target
resource can be an HTML file,
another JSP page, or a servlet,
as long as it is in the same
application context as the
forwarding JSP page.

GetProperty Gets a bean property value
using the property's getter
methods and insert the value
into the response.

Hidden Comment Documents the JSP page
without inserting the comment
in the response.

Include Sends a request to an object
and include the result in a JSP
file.

Include Directive Inserts a static file of text or
code in a JSP page at
translation time, when the JSP
page is compiled.

Page Directive Defines attributes that apply to
the entire JSP page.

Param Passes one or more
name/value pairs as
parameters to an included
resource.

Table 11–16 (Cont.) JSP Core Components

Tag Description

Working with Java Server Pages

11-78 User's Guide for Oracle JDeveloper

11.4.1.2 How to Create JSP Pages
The New Gallery wizard walks you through all of the necessary steps to build the
web pages for of your application.

To create a new JSP page:
1. In the Application Navigator, select the project to create the new JSP.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Web Tier and select JSP, as shown in Figure 11–22.
A simple JSP is generated and appears in your active project. The deployment
descriptor file web.xml is also added to your project. The deployment descriptor
file is used by the Integrated WebLogic Server when you run the JSP.

Params Provide key value information.

Plugin Executes an Applet or
JavaBean in the specified
plugin.

Scriptlet Inserts a code fragment valid in
the page scripting language.

SetProperty Sets a property value or values
in a JavaBean

Taglib Directive Defines a tag library and prefix
for the custom tags used in the
JSP page.

UseBean Locates or instantiate a
JavaBean with a specific name
and scope.

Table 11–16 (Cont.) JSP Core Components

Tag Description

Working with Java Server Pages

Developing Applications Using Web Page Tools 11-79

Figure 11–22 Create JSP New Gallery Option

11.4.1.3 How to Register a Servlet Filter in a JSP Page
The Create Servlet Filter wizard available from the Web Tier category in the New
Gallery creates a new filter you can use to process requests or responses to or from
your JavaServer Page.

To register a servlet filter in a JSP page:
1. In the Application Navigator, select the project in which you want to create the

new servlet listener, usually the project which includes your JSP.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Web Tier and select Servlets.

4. In the Items list, double-click Servlet Filter to open the Create Servlet Filter
wizard. This starts the Create Servlet Filter wizard which will create the servlet
filter for you based on information you specify, including the implementation class
and initialization parameters.

5. Click Next if the Welcome page displays.

6. Enter the Filter Name, Filter Classname and Package. Then click Next.

7. Select Map to Servlet or JSP, and select the name of the JSP from the dropdown
list. Then click Next.

8. Click New, and enter the name and value for each initialization parameter. Then
click Finish.

A new servlet filter is generated and appears in your active project. The
deployment descriptor file web.xml is updated with the <filter> element. The
deployment descriptor file is used by the embedded web server in JDeveloper
when you run the JSP.

Working with Java Server Pages

11-80 User's Guide for Oracle JDeveloper

11.4.1.4 Understanding Flow Control in JSP Pages
Web applications implement flow control by directing the display content of the web
browser in response to specific user actions. Typically, web application developers
create separate JSP pages or sets of pages for each task the application provides. The
user makes choices in one page and clicks a link to submit their choices on the Request
object. The link they click directs the Request object to the page responsible for
handing the action.

How Can I Handle Flow Control in JDeveloper?
You decide the way your application handles the Request object. JDeveloper supports
various options for implementing JSP page flow control:

■ You can write JSP pages that use a combination of HTML generating code and
Java scriplet code to link back to themselves and handle the actions. In this case,
the entire action handling code is contained in the JSP page that also displays the
content. This mixes HTML and flow control logic within the same file.

Or

■ You can cleanly separate JSP pages and their actions by implementing the
controller outside of the JSP page.

What Features Can I Use for These Approaches?
The following approaches are supported:

■ In all-in-one JSP page development, JDeveloper helps to reduce the amount of
Java code visible in your JSP pages through tag libraries that provide JSP tags
which encapsulate complex behavior such as implementing databound,
performing data actions (such as query, browse, edit, and update), and generating
reports.

■ If you use JSP includes, you can benefit from the Oracle Business Components
Data Tag library that implements a set of JSP page-level tags (known as
component tags) that handle common actions such as navigation, querying,
browsing, editing, and scrolling.

■ If you fully separate the JSP display content and JSP action-handler classes,
JDeveloper supports two Java EE frameworks.

– JavaServer Faces page navigation.

– JDeveloper provides full support to allow you to visually design page flows
for web applications based on either framework.

■ When you want to build applications for the web and benefit from a framework
that implements many of the Java EE design patterns for interactive applications,
JDeveloper provides the Oracle Application Development Framework (Oracle
ADF). One of its central features is a data binding layer that uses a standard
declarative way to bind data from a business service, such as web services, EJB,
JavaBeans, and Oracle ADF Business Components, to UI components, such as
Oracle ADF Faces components and standard HTML elements.

11.4.2 How to Debug and Deploy JSPs
JDeveloper supports deploying Web applications on any Java EE application server
through the creation of a Web Module Archive (WAR). There is additional support for
deployment to Integrated WebLogic Server.

Working with Java Server Pages

Developing Applications Using Web Page Tools 11-81

To debug a JSP:
1. In the Navigator, select the JSP file you want to run.

2. Debug a JSP in any of these ways:

■ Choose Debug | Debug <source_file>.jsp from the main menu.

■ Right-click the JSP file and choose Debug from the context menu. The JSP is
launched.

3. Debug your JSP as you would any other Java application.

JDeveloper performs the following functions when debugging a JSP:

■ Translates the JSP into a servlet and compiles it.

■ Starts the Integrated WebLogic Server process.

■ Runs the resulting classes directly from the output project directory.

■ Invokes the JSP in your default Web browser. For example, your browser is
launched as follows:

http://<your_machine_IP_address>:<http_port>/<context_
root>/<path_to_JSP>

for example:

http://127.0.0.1:8988/Project1-context-root/untitled1.jsp

To create a web deployment descriptor:
1. In the Applications Navigator, select the project for which you want to create a

web deployment descriptor.

2. Add a JSP file to the project. JDeveloper adds the web.xml file to the WEB-INF
project folder the first time you create a JSP file.

Or, to add the web deployment descriptor file yourself:

In the New Gallery Categories tree, expand General and select Deployment
Profiles. In the Items list, select web.xml (Web Deployment Descriptor). Click
OK.

If the desired item is not enabled, check to make sure the project does not already
have a web deployment descriptor: a project may have only one instance of a
descriptor.

3. The web deployment descriptor will be created and added to the WEB-INF folder
in the project, and it will be opened in an XML editor window.

To inspect or change web deployment descriptor properties:
1. In the Applications Navigator, select the web deployment descriptor in the

WEB-INF folder.

2. Right-click and choose Properties.

3. Select items in the left pane to open dialog pages in the right pane. Configure the
descriptor by setting property values in the pages of the dialog. Click OK when
you are done.

To edit a web deployment descriptor as an XML file:
1. In the Applications Navigator, select the web deployment descriptor in the

WEB-INF folder.

Working with Java Server Pages

11-82 User's Guide for Oracle JDeveloper

2. Right-click and choose Open. The file opens in an XML editor.

11.4.3 How to Run a JSP
The Integrated WebLogic Server is responsible for running JSPs. After building your
JSP, you can run it in a few easy steps.

To run a JSP:
1. In the Navigator, select the JSP file you want to run.

2. Run the JSP in any of these ways:

■ Choose Run > Run <source_file>.jsp from the main menu.

■ Right-click the JSP file and choose Run from the context menu.

The JSP is launched.

3. The Configure Default Domain dialog appears if this is the first time you run or
start the domain when the server has not yet been created. Enter your new
password.

JDeveloper performs the following functions when a JSP is run.

■ Translates the JSP into a servlet and compiles it.

■ Runs the resulting classes directly from the output project directory.

■ Edits the Integrated WebLogic Server web.xml file to include the servlet name and
class information.

■ Invokes the JSP in your default Web browser. Your browser is launched using this
format:

http://<your_machine_IP_address>:<http_port>/<context_
root>/<path_to_JSP> for example,

http://127.0.0.1:8988/Project1-context-root/untitled1.jsp.

Dynamically Modifying JavaServer Pages Files While Running
When running your JSP in the Integrated WebLogic Server, you can modify and view
changes that you make to your JSP files without having to restart WebLogic Server. To
view changes in your browser, you can either reload the page from the browser or you
can run the page again in JDeveloper because the WebLogic Server is able to change
only the file, running from JDeveloper is much faster than reloading the page from the
browser.

Running JSPs with ADF Business Components Application Modules
If you are running JSPs with business components application modules in both the
Integrated WebLogic Server and in a remote server instance, and have two JSPs
contained in two different projects that depend on the same middle tier project, you
must declare that middle tier is running inside of a WebLogic Server instance with the
jbo.server.in_wls=true property.

Working with Timestamps on Source JSPs
When developing, compiling, and running JSPs, if the timestamp of a source JSP file is
ever changed to an earlier timestamp, the JSP will not automatically be recompiled by
JDeveloper or by WebLogic Server. It must be forced to recompile. To force
recompilation, right-click on the JSP and select Rebuild, use Build->Rebuild ,
Build->Rebuild All, Build->Clean , or Build->Clean All.

Developing Applications with Java Servlets

Developing Applications Using Web Page Tools 11-83

Timestamps can go backwards in time when using source control systems (restoring
an older version) or using timestamp preserving copy commands like xcopy or mv.

11.4.4 Understanding JSP Segments
A JSP fragment is a JSP page that can be included in another JSP page.

JSP segments use .jspf as a filename extension. By default JSP fragment files are
placed with the rest of the static content in the web application folder. JSP segments
that are not complete pages should always use the .jspf extension.

JSP segments are defined using JSP syntax as the body of a tag for an invocation to a
SimpleTag handler, or as the body of a <jsp:attribute> standard action specifying
the value of an attribute that is declared as a fragment, or to be of type JspFragment in
the TLD.

11.5 Developing Applications with Java Servlets
A servlet is a platform-independent, server-side Java component used to extend the
capabilities of a web server. Using servlets, you can dynamically tailor content,
function, and the look and feel of your web pages. Servlets process client requests and
can respond by returning any MIME type to the requesting client, including images,
XML, and HTML. Servlets run inside web servers, so they do not require a graphical
user interface. They are typically used to dynamically generate HTML content and
present it to the requesting client. You can think of a servlet as the server-side
counterpart to an applet.

Servlets are based on a standard API and protocol defined by JavaSoft. To run a
servlet, your environment needs a web server that supports the JavaSoft servlet API,
such as Oracle WebLogic Server, JavaSoft Java Server, and Apache Tomcat, among
others. JDeveloper provides support for servlet filters and listeners (Servlet API 2.5).
When you use the Create Filter wizard and Create Listener wizard, it updates the
web.xml with filter and listener entries. The web.xml can also be manually edited to
include or modify these entries.

For more information, see the Oracle Fusion Middleware Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

11.5.1 Understanding Servlet Support in JDeveloper
Servlets are often used to process HTTP requests submitted by a client, and to provide
dynamic content by returning results of a database query to a client. This type of Java
servlet is known as an HTTP servlet. A typical runtime scenario for an HTTP servlet is
as follows:

■ A client sends an HTTP request to the servlet. The client could be a web browser
or some other application or applet.

■ The servlet processes the request and responds by returning data to the client. In
the case of HTML servlets, these servlets generate and send dynamic HTML
content back to the client. If the servlet is designed to do so, it may request data
from a database server on behalf of the client, then package and return the results
to the client in an HTML form. This can be done using JDBC or by working with
Oracle ADF Business Components.

■ The client user can then interactively view and respond to the generated HTML
content, perhaps making additional requests through the generated HTML form.

Developing Applications with Java Servlets

11-84 User's Guide for Oracle JDeveloper

11.5.1.1 What You May Need to Know About Servlet Filters
A filter is a reusable piece of code that can transform the content of HTTP requests,
responses, and header information. Filters do not usually create a response; instead
you use filters to modify the requests or responses, or to perform some other action
based on the requests or responses, including:

■ Examining a request before calling a servlet.

■ Modifying the request or response headers or data (or both) by providing a
custom version of the object that wraps the real request or response objects.

■ .Performing some action before the servlet is invoked, after it completes, or both
(for example, logging).

■ Intercepting a servlet after the servlet is called.

■ Blocking a servlet from being called.

By default, the Create Servlet Filter wizard available from the Web Tier Servlets
category in the New Gallery creates a filter that dynamically intercepts requests and
responses to transform or use the information contained in the requests or responses.

11.5.1.2 What You May Need to Know About Servlet Listeners
A listener can be used to monitor and react to events on a servlet's life cycle by
defining listener objects whose methods get invoked when life cycle events occur.
Application event listeners are classes that implement one or more of the servlet event
listener interfaces. Servlet event listeners support notification for state changes in the
ServletContext and HttpSesion objects, specifically:

■ Servlet context listeners are used to manage resources or state held at a VM level
for the application.

■ HTTP session listeners are used to manage state or resources associated with a
series of requests made into a web application from the same client or user.

You can have multiple listener classes listening to each event type and specify the
order in which the container invokes the listener beans for each event type.

The Create Servlet Listener wizard available from the Web Tier > Servlets category in
the New Gallery creates a new listener you can use with your servlet or other web
components; you can run this wizard multiple times to create additional listeners.

11.5.1.3 How to Generate an HTTP Servlet
1. In the Applications Navigator, select the web deployment descriptor in the

WEB-INF folder.

2. Right-click and choose Open. The file opens in an XML editor.

1. In the Application Navigator, select the project in which you want to create the
new servlet.

2. From the main menu, choose File > New, or right-click and choose New. The New
Gallery opens.

3. In the Categories tree, select Web Tier.

4. In the Items list, double-click HTTP Servlet to launch the Create HTTP Servlet
wizard.

This wizard will create the servlet for you based on information you specify, including
the methods and parameters for the servlet. Click the Help button to obtain
context-sensitive help in the wizard panels.

Developing Applications with Java Servlets

Developing Applications Using Web Page Tools 11-85

A simple servlet is generated and appears in your active project. The deployment
descriptor file web.xml is also added to your project. The deployment descriptor file is
used by the Integrated WebLogic Server in JDeveloper when you run the servlet.

11.5.2 Implementing Basic Methods for an HTTP Servlet
When you use the Create HTTP Servlet wizard to create an HTTP servlet, the wizard
creates a Java class for the servlet. This class contains an initialization method and the
HTTP methods you specified for the servlet when using the wizard. To customize the
servlet, you must implement the servlet's HTTP methods.

The following methods are available from the Create HTTP Servlet wizard:

■ doGet handles GET, conditional GET, and HEAD requests.

■ doPost handles POST requests.

■ doPut handles PUT requests.

■ doDelete handles DELETE requests.

■ service handles Service requests.

JDeveloper creates skeleton code for these methods. These methods take two objects as
arguments HttpServletRequest and HttpServletResponse. You can also pass
in additional parameters and get them programmatically by calling the
ServletRequest.getParameter method within your servlet's Java code.

11.5.2.1 How to Use the HTTPServletRequest Object
The first HTTP argument in a basic servlet method is an HttpServletRequest
object. This object provides methods to access

■ HTTP header data, including cookies found in the request.

■ The HTTP method used to make the request.

■ The arguments sent by the client as part of the request.

The methods you call when implementing your servlet methods depend on the kind
of HTTP request the servlet will receive. Table 11–17 summarizes the relationship
between the possible kinds of HTTP requests and the corresponding methods you
should use when implementing your servlet methods.

Table 11–17 Types of HTTP Requests

Possible Client HTTP
Requests

Corresponding Client Data Access Methods and Techniques
to Use in Your Servlet Code

Any HTTP request Use the getParameter method to get the value of a named
parameter. Use the getParameterNames method to get the
parameter names. Alternatively, you can manually parse the
request. You should use either the getParameter method or
one of the methods that allow you to parse the data yourself.
You can not use them together in a simple request. To retrieve
cookies from the request, you can use the getCookies method.

HTTP GET request Use the getQueryString method to return a String to be
parsed.

HTTP POST, PUT, and
DELETE requests

In general, use the BufferedReader returned by the
getReader method for text data. For binary data, use the
ServletInputStream returned by the getInputStream
method.

Developing Applications with Java Servlets

11-86 User's Guide for Oracle JDeveloper

11.5.2.2 How to Use the HTTPServletResponse Object
The second HTTP argument in a basic servlet method is an HttpServletResponse
object. This object encapsulates the information from the servlet to be returned to the
client. This object supports the following ways of returning data to the client:

■ A writer for text data (via the getWriter method)

■ An output stream for binary data (via the getOutputStream method)

You can also send a cookie in the response using the addCookie method.

To change the HTTP Response Type:
By default, the Create HTTP Servlet wizard creates a servlet that dynamically
generates HTML content (MIME type: text/html). You can change to another MIME
type by selecting the desired type from the Generate Content Type dropdown in the
Create HTTP Servlet wizard. The wizard adds the setContentType method in the
servlet's Java file with the selected type to set. For example, if you choose the XML
content type, the wizard generates:

public class HelloWorld extends HttpServlet
{
 private static final String CONTENT_TYPE = "text/xml; charset=windows-1252";
 private static final String DOC_TYPE;
 public void init(ServletConfig config) throws ServletException
 {
 super.init(config);
 }
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();
 if (DOC_TYPE != null)
 {
 out.println(DOC_TYPE);
 }
 out.close();
 }
}

11.5.3 How to Create a Servlet Filter
The Create Servlet Filter wizard available from the Web Tier - Servlets category in the
New Gallery creates a new filter you can use to process requests or responses to or
from your servlet or JavaServer Page.

To create a servlet filter:
1. In the Application Navigator, select the project in which you want to create the

new servlet listener, usually the project which includes your servlet or JSP.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Web Tier and select Servlets.

4. In the Items list, double-click Servlet Filter to open the Create Servlet Filter
wizard.

Developing Applications with Java Servlets

Developing Applications Using Web Page Tools 11-87

The Create Servlet Filter wizard will create the servlet filter for you based on
information you specify, including the implementation class and initialization
parameters. Press F1 or click Help to obtain context-sensitive help in the wizard.

A new servlet filter is generated and appears in your active project. The deployment
descriptor file web.xml is updated with the <filter> element. The deployment
descriptor file is used by the Integrated WebLogic Server in JDeveloper when you run
the servlet or JSP.

11.5.4 How to Create a Servlet Listener
The Create Servlet Listener wizard available from the Web Tier - Servlets category in
the New Gallery creates a new listener you can use with your servlet or other web
components.

To create a servlet listener:
1. In the Application Navigator, select the project in which you want to create the

new servlet listener, usually the project which includes your servlet or other web
component.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Web Tier and select Servlets.

4. In the Items list, double-click Servlet Listener to open the Create Servlet Listener
wizard.

The Create Servlet Listener wizard creates the servlet listener for you based on
information you specify, including the implementation class and interface. Press F1 or
click Help to obtain context-sensitive help in the wizard.

A new servlet listener is generated and appears in your active project. The deployment
descriptor file web.xml is updated with the <listener> element. The deployment
descriptor file is used by the Integrated WebLogic Server in JDeveloper when you run
the servlet.

11.5.5 Registering a Servlet Filter in a JSP Page
The Create Servlet Filter wizard available from the Web Tier category in the New
Gallery creates a new filter you can use to process requests or responses to or from
your JavaServer Page.

To register a servlet filter in a JSP page:
1. In the Application Navigator, select the project in which you want to create the

new servlet listener, usually the project which includes your JSP.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Web Tier and select Servlets.

4. In the Items list, double-click Servlet Filter to open the Create Servlet Filter
wizard.

This will start the Create Servlet Filter wizard which will create the servlet filter
for you based on information you specify, including the implementation class and
initialization parameters. Press F1 or click Help to obtain context-sensitive help in
the wizard panels.

5. Click Next if the Welcome page displays.

6. Enter the Filter Name, Filter Classname and Package. Then click Next.

Developing Applications with Java Servlets

11-88 User's Guide for Oracle JDeveloper

7. Select Map to Servlet or JSP, and select the name of the JSP from the dropdown
list. Then click Next.

8. Click New, and enter the name and value for each initialization parameter. Then
click Finish.

A new servlet filter is generated and appears in your active project. The deployment
descriptor file web.xml is updated with the <listener> element. The deployment
descriptor file is used by the Integrated WebLogic Server in JDeveloper when you run
the JSP.

11.5.6 How to Run a Servlet
A servlet is a Java program that runs in a Java EE application server. Think of a servlet
as the server-side counterpart to a Java applet. The Integrated WebLogic Server is
responsible for running servlets in JDeveloper.

As an alternative to running your servlets inside the Integrated WebLogic Server, your
servlet can contain a main() routine that lets you run the servlet class as an application.
That declaration is: public static void main(String[] args)

This is useful when you want to test servlet classes without running under the Oracle
WebLogic Server.

To run a servlet:
After building your servlet, you can run it by executing the run command in one of the
following ways:

1. In the Navigator, select the Java file containing your servlet that you want to run.

2. Run a servlet in any of these ways:

■ Choose Run from the main menu.

■ Right-click the Java file containing your servlet and choose Run.
<servletname>.java (and the desired option for running when more than one
way to run exists) from the context menu.

■ Select the Java file containing your servlet and click Run on the toolbar.

3. If you set up your servlet to run as an application, use the dialog to select the way
you want to start the target servlet:

■ As an Application: The servlet is launched as a standalone Java application.

■ In Integrated WebLogic Server: the embedded server is started and the
servlet is run in the server.

Select the option you desire, then click OK.

JDeveloper performs the following functions when a servlet is run in Integrated
WebLogic Server:

■ Compiles the servlet source code.

■ Starts the embedded Integrated WebLogic Server process.

■ Runs the resulting classes directly from the output project directory.

■ Edits the embedded Integrated WebLogic Server web.xml file to include the
servlet name and class information.

■ Invokes the servlet in your default Web browser. For example, your browser is
launched as follows:

Developing Applications with Script Languages

Developing Applications Using Web Page Tools 11-89

http://<your_machine_IP_address>:<http_port>/<context_
root>/servlet/<servlet_full_class_name>

For example :

http://127.0.0.1:8988/Project1-context-root/servlet/package1.
Servlet1

11.5.7 How to Debug a Servlet
You can debug a servlet using the embedded Integrated WebLogic Server in
JDeveloper. The Debug command attempts to debug the selected Java file containing
your servlet. In JDeveloper, you can set breakpoints within servlet source code and
the debugger will follow calls from servlets into JavaBeans.

To debug a servlet:
1. Select the servlet Java file in the Navigator and select Debug | Debug <project_

name> from the JDeveloper main menu, or click the Debug icon. Alternatively,
right-click the servlet Java file and choose Debug.

When you debug a servlet, JDeveloper opens the default Web browser and
invokes the servlet.

2. Debug your servlet by setting breakpoints as you would any other Java
application.

3. When you are finished running and testing the servlet, you can terminate the
server by choosing Run | Terminate - Integrated WebLogic Server from the main
menu.

JDeveloper performs the following functions when a debugging a servlet:

■ Compiles the servlet source code.

■ Starts the Integrated WebLogic Server process.

■ Runs the resulting classes directly from the output project directory.

■ Invokes the servlet in your default Web browser. For example, your browser is
launched as follows:

http://<your_machine_IP_address>:<http_port>/<context_
root>/servlet/<servlet_full_class_name>

For example :

http://127.0.0.1:8988/Project1-context-root/servlet/package1.
Servlet1

11.5.8 How to Deploy a Servlet
JDeveloper supports deploying your Servlet applications on any Java EE application
server through the creation of a Web Module Archive (WAR).

For more information, see the Oracle Fusion Middleware Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

11.6 Developing Applications with Script Languages
JDeveloper provides scripting functionality including support for basic JavaScript
when working with JSP and HTML pages. This section discusses support in Oracle

Developing Applications with Script Languages

11-90 User's Guide for Oracle JDeveloper

JDeveloper for script languages, how to work with script languages, and how to
refactor JavaScript code.

11.6.1 Script Language Support in JDeveloper
JDeveloper supports script languages, specifically JavaScript and JSON, by offering
code insight, breadcrumb support, and the JDeveloper structure pane. JDeveloper
JavaScript Code Insight completes labels, variables, parameters and functions when
typing inside a script region, or inside an HTML event handler. Breadcrumb support
displays the location of a selected JavaScript function in the hierarchy as you work on
the file. And the Structure Pane shows the hierarchy of functions defined in the file,
and also of the variables defined in the functions.

11.6.1.1 How to Work with JavaScript Code Insight
The JDeveloper JavaScript Code Insight completes labels, variables, parameters and
functions when typing inside a script region, or inside an HTML event handler.

The JavaScript Code Insight feature displays a dynamic list of possible completions for
a given JavaScript function at the bottom of the editing pane. As you type, the Code
Insight feature will display a list of possible values appropriate to the values you have
already typed. To see a list of possible entries that have already been used or defined
in your project, click on the drop-down arrow and then select Show.

JavaScript Code Insight is available when editing an .html, .jsp, or .jspx source
file, or an included .js file for both user-defined and built-in JavaScript functions. The
assist window displays any referenced .js files as well as any .js file in the project
not yet included.

In a normal JavaScript Code Insight invocation, a large list of potential properties may
display. However, you can invoke JavaScript Smart Code Insight in the source editor
by pressing Ctrl-Alt-space. JDeveloper then attempts to smartly figure out the type of
the object on which insight is invoked, and then show only those properties.

The JavaScript Code Insight feature creates templates for the following elements.

To invoke Code Insight:
Type the JavaScript element or its abbreviation:

■ case

■ for

■ foreach

■ if

■ ife (if-else)

■ sw (switch)

■ wh (while)

■ fori (for loop with range)

■ try

■ trycf

■ tryf

■ al (alert)

■ fn (function)

Developing Applications with Script Languages

Developing Applications Using Web Page Tools 11-91

■ fne (function-expression)

■ dne (do-while loop)

JavaScript Code Insight is DOM-based and browser-aware, displaying one or more
browser icons for Internet Explorer, Mozilla, or Safari, to indicate browser support for
a method or variable.

11.6.1.2 How to Use Breadcrumb Support
When you are editing a JavaScript file in the Source Editor and have the cursor located
in a function, JDeveloper displays a breadcrumb trail in the lower margin of the Source
Editor window.

This breadcrumb trail shows the position of this function in the JavaScript hierarchy,
along with its subelements such as methods, parameters, and such. JDeveloper also
displays breadcrumbs for if, if-else, do, while, for, and try/catch/finally
(just as it does for Java).

To explore available functions within the hierarchy:
■ From the breadcrumb trail, click on a dropdown (at the file level) to go into the

functions defined within that parent.

11.6.1.3 How to Use Structure Pane Support
While you are editing a JavaScript file, JDeveloper tracks the location in the structure
of the project or application you are building and displays it in the Structure Pane.

The Structure Pane shows the hierarchy of functions defined in the file, and also of the
variables defined in the functions.

To find a location in the code editor from the Structure Pane:
■ Double-click any element in the Structure pane to take your focus to the

corresponding place in the code editor. If there are errors in the file, they also show
up in the Structure Pane.

11.6.2 Working with Script Languages
Working with script languages not only includes the direct use of script elements
inside an HTML or JSP page, but also involves using references to script files which
are associated with the overall application.

The JDeveloper code editor provides a syntax highlighting feature which assists in
determining the proper code for a script or script-language element.

Other elements of working with script languages include creating a JavaScript Object
Notation (JSON) file.

11.6.2.1 How to Create a Script
You can create a client-side script to include or embed in an HTML or JSP page.

To create a script in JDeveloper:
1. If not already done, open a JSP or HTML page by double-clicking its icon from the

Application Navigator.

2. In the Component Palette, select the HTML palette, Common page from the
dropdown list.

Developing Applications with Script Languages

11-92 User's Guide for Oracle JDeveloper

3. In the Source editor or Structure window, place your cursor in the location where
you want to create the script and select the Script element. Alternatively, drag the
Script element to the desired location on the HTML or JSP page.

4. In the Script dialog, either enter the location of an external script file, or select the
scripting language (text/javascript, text/tcl, text/vbscript) and enter
the script code. For additional assistance, press F1 or click Help in the dialog.

5. Click OK.

A script element that references the external script file is embedded in the page similar
to the following:

<script language="JavaScript" src="foo.js"></script>

or

The script code is embedded in the page and visible from the Source editor similar to
the following:

 <SCRIPT type="text/vbscript">

 <!--

 >Sub foo()

 ...

 End Sub

 ' -->

 </SCRIPT>

11.6.2.2 How to Add Script Language Elements to an HTML or JSP Page
JDeveloper provides basic JavaScript support when working with HTML and JSP
pages. In addition to drag and drop support, you can change the text presentation of
the JavaScript code in the Java Code Editor and associate file extensions for JavaScript
file recognition in JDeveloper.

To insert a JavaScript into a JSP or HTML page:
1. Choose File > New.

2. Select the Web Tier category.

3. In the Items list, select JavaScript File.

4. In the Create JavaScript File dialog, enter a name and location for the JavaScript
(.js) file.

5. In the Java Code Editor for the JavaScript file, enter the JavaScript code and save it.

The JavaScript file appears in the Application Navigator below the HTML or JSP
project's Web Content folder.

6. If not already done, open the HTML or JSP page in the JSP/HTML Visual Editor.

7. From the Application Navigator, drag a JavaScript onto the page where
appropriate. If you drag a JavaScript from the Component Palette, you are
prompted to copy the JavaScript file to the current project's document root.

JDeveloper creates a script element that references the JavaScript file.

Note: You can also import a JavaScript file into the project.

Developing Applications with Script Languages

Developing Applications Using Web Page Tools 11-93

11.6.2.3 How to Set Syntax Highlighting
Syntax highlighting is a JDeveloper feature that lets you more easily identify syntax
elements (such as brace matching) while you are editing Java, JavaScript, and JSON
files.

To set syntax highlighting options for JavaScript in the Code Editor:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Syntax Colors node.

4. For the Language category, select JavaScript.

The display on the page changes to reflect the JavaScript style settings.

5. Change any of the available style settings as appropriate.

6. Click OK.

For detailed help on any field, press F1 or click Help.

When you return to work in the Java Code Editor, JavaScript syntax is highlighted
according to these style settings.

11.6.2.4 How to Associate JavaScript File Extensions
By default, JDeveloper recognizes files with the .js file extension as JavaScript. You
can associate any other file extension for JDeveloper to recognize.

To add or remove file extensions for JavaScript file recognition in JDeveloper:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select File Types.

3. In the Recognized File Type list, select the JavaScript Source node.

4. The .js file extension is associated.

Click Add to create a JavaScript file extension.

In the Add Extension dialog, enter the file extension you want to associate to a
JavaScript file.

5. Click Remove to delete a file association.

6. Click OK.

For detailed help on any field, press F1 or click Help.

When you open a file with any of these extensions, JDeveloper recognizes the file as
JavaScript.

11.6.2.5 How to Create a JSON File
You can create a JSON (JavaScript Object Notation) file in JDeveloper. A JSON file
allows you to pass structured data easily between applications or between files within
an application, in a lightweight format that is easily readable by humans and easily
interpreted by dozens of programming languages.

To create a JSON file:
1. Select File > New > Web Tier > HTML > JSON File.

2. Supply the following data about your file:

Developing Applications with Script Languages

11-94 User's Guide for Oracle JDeveloper

File Name

The name of your JSON file. By default, this is untitled.json. The .json
extension makes it possible for other parsers to read the JSON format of the data
inside your file.

Directory

The pathname in your local file system for storing the JSON file.

Browse

Opens the file system browser for selecting a path in your local file system.

3. Click OK.

The JSON file is now available to be edited in JDeveloper. Use the normal functions of
the JavaScript editor to add content.

11.6.3 Refactoring JavaScript Code
JDeveloper provides support for renaming references to a function or variable.
JDeveloper also replaces all occurrences of function names with the new name when
you perform delete operations. This method of renaming and replacing function
names is known as refactoring.

Refactoring is an editing technique that modifies code structure without altering
program behavior. A refactoring operation is a sequence of simple edits that
transforms a program's code but keeps it in a state where it compiles and runs
correctly. JDeveloper provides a collection of automated refactoring operations for
JavaScript code and files.

Use refactoring when you modify a program's source code to make it easier to
maintain, extend, or reuse. Perform the modification as a series of refactoring steps.
After each step you can rebuild and revalidate the program to insure that no errors
have been introduced.

JDeveloper supports these refactoring operations for JavaScript code and files:

■ Renaming references to a function, variable, or label. Each occurrence of the
function or variable name is replaced by the new name.

■ Safe deletion. The definition of the function is replicated, and all occurrences of the
function name in the replicated definition are replaced by the new name.

11.6.3.1 Finding Usages of Code Elements
You can search within a JavaScript file for specific usages of code elements such as
functions, variables and labels. This allows you, when refactoring, to determine where
an element is used so that you can safely change it, or choose not to.

To search in a JavaScript file for a function, variable or label:
1. Place the cursor inside the function, variable or label you wish to search for and

click the right mouse button.

2. Select Find Usages.

JDeveloper will search through the JavaScript file for the element you have selected.

You can make two optional selections while searching for the element:

Developing Applications with Script Languages

Developing Applications Using Web Page Tools 11-95

Search in Comments
Select this if you want JDeveloper to search inside comments for the variable, label or
function name. This can be useful if you have commented out a section of code that
you plan to restore at a later date, or if you simply want to ensure that the comments
reflect the updated name of the element involved in the refactoring.

New tab
Select this if you want JDeveloper to display the results of the search in a new tab. If
you do not select this, JDeveloper displays the results in the Log window.

11.6.3.2 Renaming a JavaScript Code Element
While working with JavaScript code you can easily rename the definition and all
references to a function or variable. If you wish, you can first generate a preview — a
list of the usages that will be replaced. Use the preview to inspect and modify or
exclude selected usages, before causing the rest to be renamed.

The scope of a renaming operation is the full scope of the element in the project.
Function usages are replaced anywhere they appear in the project. Variables are
renamed only in the lexical scope of their definitions; other elements with the same
name are not modified.

By default, the operation will be run on JavaScript files, excluding comments (but not
documentation comment tags that name code elements) and annotations. Usages that
are not ambiguous will be replaced.

To rename a code element:
1. Select the element that is to be renamed:

■ In a JavaScript editor, select the function or variable name.

or

■ In a script in an JSP or HTML page, select the function or variable name.

2. Invoke the command:

■ From the Main menu or the context menu, choose Refactor > Rename.

or

■ Press Ctrl+Alt+R.

3. In the Rename To box, enter the new name. The name must be valid and not
already in use.

4. Select Search in Comments to extend the operation to comments, the bodies of
documentation comments, and to annotations.

5. Select Preview if you wish to inspect the usages that will be replaced before
committing to the renaming operation.

6. Click OK. If you selected Preview, finish the renaming operation from the Preview
Log window. Otherwise, all usages will be modified.

11.6.3.3 Deleting a JavaScript Code Element
While developing your JavaScript code, you can safely delete the definition of a
function, label or variable. The deletion will not be performed without your
confirmation if the element is still in use.

Developing Applications with Script Languages

11-96 User's Guide for Oracle JDeveloper

If the element is in use, a log showing the usages will be displayed. Use the list to
inspect and resolve the usages. If you then confirm the deletion, any remaining usages
will remain in the code as undefined references.

To delete a code element:
1. Select the element that is to be deleted:

■ In a JavaScript editor, select the function, label or variable name.

or

■ In a script in a JSP or HTML page, select the function, label or variable name.

2. Invoke the command:

■ From the Main menu or the context menu, choose Refactor > Delete Safely.

or

■ Press Alt+Delete.

The Delete Safely dialog will open while the project files are searched for usages.

3. If the dialog closes, the element has been deleted. If it remains open after
performing its search, the element has unresolved usages.

■ Click View Usages to inspect and resolve the usages. When finished, invoke
the command again to delete the element.

or

■ Click OK to delete the element's definition.

11.6.3.4 How to Preview a Refactoring Operation
When performing a refactoring operation that may modify many usages, it is useful to
preview the refactoring to identify those usages that should be modified by hand or be
excluded. You have the option, before committing these operations, of having usages
listed in the Preview Log window, from which you can inspect and resolve them. Once
you have confirmed the modifications, you can commit the operation.

The log displays a collapsible tree of packages and Java files. Under each file, the log
displays lines of code containing modified usages. For more information about the
Preview window, press F1.

To view a usage in an Edit window:
■ Double-click the entry in the log.

To exclude a usage from the refactoring operation:
■ Right-click the usage, and then select Exclude.

To commit the refactoring operation:
1. If you have made any edits that affect usages, click the Refresh button in the log

toolbar to rerun the usages search.

2. Click the Do Refactoring button in the log toolbar.

11.6.3.5 How to Reformat JavaScript Code
Often when editing JavaScript, you can lose sight of the initial scheme for
indentations, braces, and other visual cues that help you maintain a sense of the scope
of the operation you are editing and where it fits in the overall structure of the

Developing Applications with Script Languages

Developing Applications Using Web Page Tools 11-97

function. To aid clarity, JDeveloper can reformat your JavaScript code, causing parallel
elements to line up and make it easier for you to find visual cues to the parts of the
function you are editing. In addition, reformatting removes extraneous line breaks and
other whitespace from the JavaScript, rendering it more compact, which can improve
the efficiency of deployment by reducing file size.

To reformat a section of JavaScript code:
1. Place the cursor inside the section of code to be reformatted and click the right

mouse button, or select a snippet of JavaScript code to be reformatted.

2. Select Reformat.

The selected section of JavaScript code is reformatted. When you save the file, the code
will be saved in the new format.

11.6.3.6 How to Change Code Formatting Preferences
You can customize the code editor look and feel, general behavior, and Code Insight
and Java Insight options.

To change code formatting preferences
■ From the main menu, select Tools > Preferences > Code Editor.

11.6.3.7 How to Use Code Folding
You can also reformat a .js file if you have made modifications that affect readability
or file size. In addition, code folding can help with readability, as it lets you
concentrate only on specific areas of the file by "folding" selected logical elements
(such as function definitions) of the file. When folded, only the initial few key words of
the code element (such as the name of the function being defined) are displayed; the
rest are indicated by ellipsis (...) after the initial keywords.

To use code folding:
■ Click on the - sign to the left of the first column of text in the JavaScript editor.

This folds the code in the selected element, and changes the - sign to a +.

To unfold a section of code:
■ Click on the + sign.

Note that all JavaScript code formatting and highlighting features, as well as code
folding, also apply if you are editing or creating a JSON file.

11.6.3.8 How to Refactor and Move a File
When you move a file, references to that file need to change throughout your
application. JDeveloper helps with this task during refactoring by changing references
in the <script src=...> tag.

To refactor and move a JavaScript function:
1. Right-click on the file in the Application Navigator to be refactored and moved,

and then select Refactor Move.

Note: From this dialog, you can also choose options for editing Java
files in the Java source editor. Your selections apply to JavaScript as
well as Java files.

Working with JSP and Facelet Tag Libraries

11-98 User's Guide for Oracle JDeveloper

2. Enter the new name for the file into which you wish the function to be moved.

3. Click on Do Refactoring in the Rename log window.

On completion of the refactor, JDeveloper updates the <script src=...> tag in all
HTML files affected by the refactoring.

11.7 Working with JSP and Facelet Tag Libraries
JDeveloper supports both JSP 2.0 and JSP 1.2, and Facelet 2.0 custom tag libraries,
which enable the development of reusable modules called custom actions. Form
processing, accessing databases or email, and flow control are examples of tasks that
can be performed by custom actions. To invoke a custom action, you use a custom tag
inside a JSP page. A collection of custom tags forms a custom tag library. A tag library
descriptor (.tld) file is an XML document that describes your tag library and each tag
in it.

11.7.1 How to Use Tag Libraries with Your Web Pages
There are several tools to simplify the task of creating new JSP or facelet custom tag
libraries as well as importing and registering custom tag libraries from another source.
Custom tag libraries are supported by JDeveloper Code (tag) Insight and can be added
to the Component Palette. When working with custom tag libraries you can create
custom tag libraries and tags. Register custom tag libraries in order to invoke Code
(Tag) Insight for the tags while you are editing pages in the Java Code Editor. Add
customized pages to the Palette to display the available tags on the Palette while you
are editing pages.

The tags are common to many JSP or facelet applications. There is support for core
iteration and control-flow features, text inclusion, internationalization-capable
formatting tags, and XML-manipulation tags. Such standardization lets you learn a
single tag and use it on multiple containers for easy recognition and optimization
across containers. Using the expression language (EL) and a set of four standard tag
libraries, JSTL lets you develop dynamic, Java-based web sites.

With JSTL, using the Business Components Data Tag library is simpler since tags such
as <jbo:showvalue> and <jbo:rowsetiterate> are no longer required. Instead
of spending time on coding these common operations, you can focus on developing
tags and web pages that are specific to your own web application project.

You can manage your libraries, including locating the source for your tag libraries by
going to Tools > Manage Libraries > JSP Tag Libraries or Facelets Tag Libraries.

Tag support includes these custom tag libraries that you can use to create JSP or
Facelet pages:

■ JSTL Core. This tag library provides tags related to expressions, flow control, and
a generic way to access URL-based resources whose content can then be included
or processed within the JSP page.

■ JSTL Format. This tag library provides tags that support I18N and localized
formatting and parsing.

■ JSTL SQL. This tag library provides tags that allow direct database access from
within JSPs.

■ JSTL XML. This tag library provides tags that allow parsing and XSL
transformation of XML documents.

Working with JSP and Facelet Tag Libraries

Developing Applications Using Web Page Tools 11-99

■ Facelets 2.0. This tag library provides tags that allow you to create, manage and
handle UI components within a web page. For more information see the Facelets
Tag Library documentation at:
http://myfaces.apache.org/core20/myfaces-impl/tlddoc-facelets
/ui/tld-summary.html

■ Trinidad Components 2.0. For more information , see the Apache Trinidad page
at: http://myfaces.apache.org/trinidad/index.html.

After you create a custom tag library, you can reuse it in other applications you are
developing. JDeveloper includes a tag library as part of a deployment descriptor when
you use it in an application.

To add, delete, or edit project level tag libraries
1. Choose Application > Default Project Properties > JSP Tag Libraries

2. Add, delete, or edit project tag libraries as necessary.

To browse to a JSP tag library descriptor (TLD) file:
1. In the Java Code Editor, right-click anywhere in the tag library declaration for the

TLD file you want to browse. The tag library declaration begins with <%@
taglib.

2. From the context menu, choose Browse Tag Library. The JSP tag library descriptor
file opens in another Java Code Editor window.

11.7.2 How to Work with Custom Tag Libraries
To create a custom tag library, you will create the tag library descriptor file and then
create simple tags or component tags. A tag library descriptor file (TLD) is an XML
document that describes your tag library and each tag in it. It is used by a container to
validate the tags. Once you create tags, you can add attributes and scripting variables
to them.

To create a custom JSP or facelets tag library:
1. In the Application Navigator, select the project in which you want to create the

new tag library.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Web Tier and select JSP or JSF/Facelet.

4. In the Items list, double-click JSP or Facelet Tag Library to open the Create Tag
Library wizard.

5. After completing the required information for creating a new tag library, click
Finish.

To add your custom tag library to the Component Palette
To make your registered custom tag libraries available in the Component Palette of
your projects, go to Application > Project Properties > JSP Tag Libraries/Facelet Tag
Libraries > Add. Select Show Tag Library in Palette.

When you create a facelets tag library with the New Gallery wizard, it is added to the
Component Palette only if you select the Project Based option. If you select or leave
unchanged the default value of Deployable at creation time, you will need to perform
the following steps to register your library, which then makes it available to add to
your project through the Project Properties Add Tag Libraries option.

Working with JSP and Facelet Tag Libraries

11-100 User's Guide for Oracle JDeveloper

1. Deploy your new custom tag library.

2. Register your deployed library. To register your libary see Chapter , "To register a
JSP or facelet custom tag library:". After your library is registered it shows up in
the Project Properties and Add Tag Library options.

3. Add the tag library to your project using the Project Properties Add Tag Libraries
feature. Once the library is added to the project it shows in your Component
Palette.

To modify a custom TLD file using the Tag Library Descriptor property editor:
1. In the Structure window, select the TLD file you want to modify.

2. Right-click the file and choose Properties. The Tag Library Descriptor property
editor is displayed.

3. After completing your changes, click OK.

To edit a TLD file in the XML Source Editor:
1. In the Navigator, double-click or right-click a file and choose Open. Click the

Source tab if not selected by default for that file. While you are typing, you can
invoke Code Insight by pausing after typing the < (opening bracket) or by
pressing Ctrl+Space (if you are using the default keymapping). Code Insight
opens a list with valid elements, based on the grammar.

2. After selecting an element, enter a space and then either pause or press Ctrl+Space
to open a list of valid attributes from which you can select. After you enter the
opening quote for the attribute value, either the required type of value or a list of
available values is provided.

To register a JSP or facelet custom tag library:
1. Choose Tools > Manage Libraries to open the Manage Libraries dialog.

2. Select the JSP Tag Libraries or Facets Tag Libraries tab.

3. Click New to add a new JSP tag library descriptor file to the JSP Tag Libraries or
Facelets Tag Libraries tree.

4. Enter the custom tag library descriptor (TLD) file, the location of the JAR or ZIP
archive file, the URI, and prefix for the new tag library. The prefix that you enter
will be updated on the JSP Tag Libraries or Facelets Tag Libraries tree after you
click OK.

5. Click OK to close the Manage Libraries dialog.

To add a scripting variable to a tag:
1. In the Application Navigator, select the Tag.java or WebTag.java file.

2. Right-click the tag and choose Add Scripting Variable. The Add New Tag
Scripting Variable dialog opens.

3. After completing the required information for adding a scripting variable, click
OK. The new variable.java file that defines the attributes is created and opened in
the Java Code Editor. The new scripting class is also added to the pre-existing tag
handler class.

Tip: To edit a TLD file with the Component Palette, choose View >
Component Palette to open the Palette and select Tag Lib or one of
the available pages from the dropdown list. Then choose elements
from the page.

Working with JSP and Facelet Tag Libraries

Developing Applications Using Web Page Tools 11-101

To deploy your custom JSP tag library or facelets tag library as a JAR File:
1. In the Application Navigator, select the Deploy file you want to deploy.

2. Right-click the file and choose Deploy to JAR File. By default, the tag library is
deployed in the current project directory.

Working with JSP and Facelet Tag Libraries

11-102 User's Guide for Oracle JDeveloper

12

Developing with EJB and JPA Components 12-1

12Developing with EJB and JPA Components

This chapter describes how to use JDeveloper tools to build the business tier of a J2EE
enterprise application using Enterprise JavaBeans (EJB) 3.0 and Java Persistence API
(JPA) components.

This chapter includes the following sections:

■ Section 12.1, "About Developing with EJB and JPA Components"

■ Section 12.2, "Support For EJB Versions and Features"

■ Section 12.3, "Building EJB 3.0 Applications and Development Process"

■ Section 12.4, "How to Work with an EJB Business Services Layer"

■ Section 12.5, "Using Java EE Design Patterns in Oracle JDeveloper"

■ Section 12.6, "Building a Persistence Tier"

■ Section 12.7, "Implementing Business Processes in Session Beans"

■ Section 12.8, "Modeling EJB/JPA Components on a Diagram"

■ Section 12.9, "Deploying EJB Modules and JPA Persistence Units"

■ Section 12.10, "Running and Testing EJB/JPA Components"

12.1 About Developing with EJB and JPA Components
JDeveloper includes step-by-step wizards for creating EJB projects, entities, persistence
units, session beans, and message-driven beans. You can build entities from online or
offline database definitions and from application server data source connections. There
is also seamless integration with JPA and TopLink technology to provide a complete
persistence package.

12.2 Support For EJB Versions and Features
JDeveloper supports EJB 3.0, as well as versions 1.0 through 2.1. The current
JDeveloper documentation, including this chapter of the User Guide and the embedded
online help, focus on EJB 3.0 development tasks.

Previous versions of the JDeveloper documentation tell how to work with EJB 2.1 and
earlier. For those versions of the documentation, see
http://www.oracle.com/webapps/online-help/jdeveloper/10.1.3 and
search for and navigate to the topic "Developing Enterprise JavaBean Components." Be
aware that EJB application development interfaces may change from version to
version, and some historical help content will be outdated for the current version.

Support For EJB Versions and Features

12-2 User's Guide for Oracle JDeveloper

For the complete EJB Java Community Process specifications and documentation for
all versions, see the Oracle Technology Network at
http://www.oracle.com/technetwork/java/docs-135218.html.

Supported EJB 3.0 Features
The key differences between EJB 3.0 and previous versions are:

■ Simplified EJBs - EJB 3.0 eliminates the need for home and component interfaces
and the requirement for bean classes for implementing
javax.ejb.EnterpriseBean interfaces. The EJB bean class can be a pure Java
class (POJO), and the interface can be a simple business interface. The bean class
implements the business interface.

■ Use of Annotations Instead of Deployment Descriptors - Metadata annotation is
an alternative to deployment descriptors. Annotations specify bean types,
different attributes such as transaction or security settings, O-R mapping and
injection of environment or resource references. Deployment descriptor settings
override metadata annotations.

■ Dependency Injection - The API for lookup and use of EJB environment and
resource references is simplified, and dependency injection is used instead.
Metadata annotation is used for dependency injection.

■ Enhanced Lifecycle Methods and Callback Listener Classes - Unlike previous
versions of EJB, you do not have to implement all unnecessary callback methods.
Now you designate any arbitrary method as a callback method to receive
notifications for lifecycle events. A callback listener class is used instead of
callback methods defined in the same bean class.

■ Interceptors - An interceptor is a method that intercepts a business method
invocation. An interceptor method is defined in a stateless session bean, stateful
session bean, or a message-driven bean. An interceptor class is used instead of
defining the interceptor method in the bean class.

■ Simple JNDI Lookup of EJB - Lookup of EJB is simplified and clients do not have
to create a bean instance by invoking a create() method on EJB and can now
directly invoke a method on the EJB.

Session Beans
■ Simplified Beans - Session beans are pure Java classes and do not implement

javax.ejb.SessionBean interfaces. The home interface is optional. A session
bean has either a remote, local, or both interfaces and these interfaces do not have
to extend EJBObject or EJBLocalObject.

■ Metadata Annotations - Metadata annotations are used to specify the bean or
interface and run-time properties of session beans. For example, a session bean is
marked with @Stateless or @Stateful to specify the bean type.

■ Lifecycle Methods and Callback Listeners - Callback listeners are supported with
both stateful and stateless session beans. These callback methods are specified
using annotations or a deployment descriptor.

Note: If you are using EJB 3.0, you may be using annotations instead
of some deployment files. Include deployment descriptors to override
annotations or specify options not supported by annotations.

Support For EJB Versions and Features

Developing with EJB and JPA Components 12-3

■ Dependency Injection - Dependency injection is used either from stateful or
stateless session beans. Developers can use either metadata annotations or
deployment descriptors to inject resources, EJB context or environment entries.

■ Interceptors - Interceptor methods or interceptor classes are supported with both
stateful and stateless session beans.

Message-Driven Beans (MDBs)
■ Simplified Beans - Message-driven beans do not have to implement the

javax.ejb.MessageDriven interface; they implement the
javax.jms.MessageListener interface.

■ Metadata Annotations - Metadata annotations are used to specify the bean or
interface and run-time properties of MDBs. For example, an MDB is marked with
@MessageDriven for specifying the bean type.

■ Lifecycle Methods and Callback Listeners - Callback listeners are supported with
MDBs. These callback methods are either specified using annotations or the
deployment descriptor.

■ Dependency Injection - Dependency injection is used from an MDB. You either
use metadata annotations or deployment descriptors to inject resources, EJB
context, or environment entries used by an MDB.

■ Interceptors - Interceptor methods or interceptor classes can be used with MDBs.

Entities - Java Persistence API (JPA)
■ Simplified Beans (POJO Persistence) - EJB 3.0 greatly simplifies entity beans and

standardizes the POJO persistence model. Entity beans are concrete Java classes
and do not require any interfaces. The entity bean classes support polymorphism
and inheritance. Entities can have different types of relationships, and
container-managed relationships are manually managed by the developer.

■ Entity Manager API - EJB 3.0 introduces the EntityManager API that is used to
create, find, remove, and update entities. The EntityManager API introduces the
concept of detachment/merging of entity bean instances similar to the Value
Object Pattern. A bean instance may be detached and may be updated by a client
locally and then sent back to the entity manager to be merged and synchronized
with the database.

■ Metadata Annotations - Metadata annotations greatly simplify development of
entities by removing the requirement of deployment descriptors. The entity
annotation is used to specify a class to be an entity bean. Annotations are used to
specify transaction attributes, security permissions, callback listeners and
annotated queries.

■ Query Language Enhancements - EJB 3.0 greatly improves the query capability
for entities with Java Persistence Query Language (JPQL). JPQL enhances EJB-QL
by providing additional operations such as bulk updates and deletes, JOIN
operations, GROUP BY HAVING, projection and sub-queries. Also dynamic
queries can be written using EJB QL.

■ Lifecycle Methods and Callback Listeners - Callback listeners are supported with
entity beans. Callback methods are either specified using annotations or a
deployment descriptor.

Building EJB 3.0 Applications and Development Process

12-4 User's Guide for Oracle JDeveloper

12.3 Building EJB 3.0 Applications and Development Process
JDeveloper includes a complete set of features to set up the EJB business layer of an
enterprise application.

You can start by using the step-by-step wizard to create the framework for your EJB
web application, setting up the model layer of your enterprise application. You can
then use wizards to create entities that correspond to database tables. You can then use
a wizard to create session beans and facades and to build a persistence unit. Oracle
ADF provides components to enable data controls. When you are ready, you can use
the JDeveloper integrated server capabilities to test it.

12.3.1 EJB 3.0 Application Development Process
JDeveloper includes tools for developing EJB applications, as described in the
following sections.

■ Section 12.3.1.1, "Creating Entities"

■ Section 12.3.1.2, "Creating Session Beans and Facades"

■ Section 12.3.1.3, "Deploying EJBs"

■ Section 12.3.1.4, "Testing EJBs Remotely"

■ Section 12.3.1.5, "Registering Business Services with Oracle ADF Data Controls"

12.3.1.1 Creating Entities
Use the entity wizards to create entities or to create entities from tables using online,
offline, or application server data source connections. Use the Entity Beans from Tables
Wizard to reverse-engineer entities from database tables. In the entity wizards you can
select or add a a persistence unit and a database connection, or you can select a
database to emulate. You can also select database tables for your entity. For more
information, see Section 12.6.2, "How to Create JPA Entities".

You can create entities from existing tables, or manually in the Java Source Editor. If
you create entities from existing tables, the mapping is done automatically. If you
create entities manually, you have more control over the mapping, but you must code
it by hand. You can create entities using wizards or by using an EJB diagram.

12.3.1.2 Creating Session Beans and Facades
You can use session beans to implement the session facade design pattern. A session
facade aggregates and presents data, provides a place for business logic, and has a
transactional context via the container. For more information, see Section 12.7,
"Implementing Business Processes in Session Beans" and Section 12.7.1, "Using Session
Facades".

When you create a session bean with the wizard, you have the option of generating
session facade methods for every entity in the same project. You can choose which core
transactional methods to generate, get() and set() accessors, and finder methods
on the entities. If you create new entities or new methods on entities, you can update
your existing session facade by right-clicking it in the Navigator and choosing Edit
Session Facade.

12.3.1.3 Deploying EJBs
JDeveloper provides Oracle WebLogic Server as a container for deployed EJBs. A
JDeveloper server-specific deployment profile is generated by default. You can also

How to Work with an EJB Business Services Layer

Developing with EJB and JPA Components 12-5

create a WebLogic-specific deployment profile. For more information, see Section 12.9,
"Deploying EJB Modules and JPA Persistence Units".

12.3.1.4 Testing EJBs Remotely
JDeveloper can also create a sample client for use with a remote server. You generate
the sample client in the same manner as a local client, providing the remote connection
details. For more information, see Section 12.10.2, "How to Test EJB/JPA Components
Using a Remote Server".

12.3.1.5 Registering Business Services with Oracle ADF Data Controls
ADF provides components for enabling data controls for your entities. Your Java EE
application integrates selective components as you manually add a data control for
your entities. For more information, see "Using ADF Model Data Binding in a Java EE
Web Application" in Oracle Fusion Middleware Java EE Developer's Guide for Oracle
Application Development Framework.

12.4 How to Work with an EJB Business Services Layer
Create a model business services layer for a web-based EJB 3.0 application.

To create a web-based application:
■ Choose File, then New, then General Applications.

A list of available applications appears. For EJB projects you can choose to build
either a custom application or the Java EE Application. The Java EE Application
creates an EJB/JPA data-bound web application.

To create JPA entities:
1. In the Application Navigator, select Model.

2. Choose File, then New, then Business Tier, then EJB, then Entity or Entity from
Tables.

3. When you get to the Persistence Unit page, click Next to automatically create a
default persistence unit, persistence.xml, or click New to create a new
persistence grouping within the existing META-INF/persistence.xml file.

4. Follow the remaining steps in the wizard to create JPA entities.

To implement a session facade:
1. In the Application Navigator select Model.

2. Choose File, then New, then Business Tier, then EJB, then Session Bean.

3. Follow the steps in the wizard.

When you get to the EJB Name and Options page, be sure to check Generate
Session Facade Methods.This automatically adds the session facade methods to
your session bean. Note that you can create and edit session facade methods for all
entities in your project by right-clicking your session bean and choosing Edit
Session Facade. JDeveloper automatically recognizes new entities in your project
and new methods on the entities.

To register the business services model project with the data control:
■ Right-click your session bean in the Navigator and choose Create Data Control.

Using Java EE Design Patterns in Oracle JDeveloper

12-6 User's Guide for Oracle JDeveloper

This creates a file called DataControls.dcx which contains information to
initialize the data control to work with your session bean.

To run and test your application:
■ You have now created the basic framework for the model layer for a web-based

EJB application. Use this framework to test your application as you continue
building it. For more information, see Section 12.10, "Running and Testing
EJB/JPA Components".

To deploy your application:
The integrated server runs within JDeveloper. You can run and test EJBs using this
server and then deploy your EJBs with no changes to them. You do not need to create a
deployment profile to use this server, nor do you have to initialize it. Create the
deployment descriptor, ejb-jar.xml using the Deployment Descriptor wizard, and
then package your EJB modules for deployment with your application.

12.5 Using Java EE Design Patterns in Oracle JDeveloper
The Java EE design patterns are a set of best practices for solving recurring design
problems. Patterns are ready-made solutions that can be adapted to different
problems, and leverage the experience of successful Java EE developers.

JDeveloper can help you implement the following Java EE design patterns in your EJB
applications:

■ MVC - The MVC pattern divides an application into three parts, the Model, View,
and Controller. The model represents the business services of the application, the
view is the portion of the application that the client accesses, the controller
controls the flows and actions of the application and provides seamless interaction
between the model and view. The MVC pattern is automatically implemented if
you choose the Fusion Web Application (ADF) or Java EE Web Application
template when you begin your project.

■ Session Facade - The session facade pattern contains and centralizes complex
interactions between lower-level EJBs (often JPA entities). It provides a single
interface for the business services of your application. For more information, see
Section 12.7, "Implementing Business Processes in Session Beans".

■ Business Delegate - The business delegate pattern decouples clients and business
services, hiding the underlying implementation details of the business service. The
business delegate pattern is implemented by the data control, which is represented
in JDeveloper by the Data Control Palette. For more information, see "Using ADF
Model Data Binding in a Java EE Web Application" in Oracle Fusion Middleware
Java EE Developer's Guide for Oracle Application Development Framework.

12.6 Building a Persistence Tier
The persistence tier is the part of your EJB application that contains all of the persistent
data object that represent tables in a database. These business components are called
JPA entities since the entity model introduced in EJB 3.0 is defined in the Java
Persistence API.

12.6.1 About JPA Entities and the Java Persistence API
JPA entities adopt a lightweight persistence model designed to work seamlessly with
Oracle TopLink and Hibernate.

Building a Persistence Tier

Developing with EJB and JPA Components 12-7

The major enhancements with JPA entities are:

■ JPA Entities are POJOs

■ Metadata Annotations for O-R Mapping

■ Inheritance and Polymorphism Support

■ Simplified EntityManager API for CRUD Operations

■ Query Enhancements

12.6.1.1 JPA Entities are POJOs
JPA entities are now POJOs (Plain Old Java Objects) and there are no component
interfaces required for them. JPA entities support inheritance and polymorphism as
well.

 Example 12–1 contains the source code for a simple JPA entity.

Example 12–1 Source code for a simple JPA entity

@Entity
@Table(name = "EMP")
public class Employee implements java.io.Serializable
{
 private int empNo;
 private String eName;
 private double sal;
 @Id
 @Column(name="EMPNO", primaryKey=true)
 public int getEmpNo()
 {
 return empNo;
 }
public void setEmpNo(int empNo)
{
 this.empNo = empNo;
}
 public double getSal()
{
 return sal;
}
...
}

Note that the bean class is a concrete class, not an abstract one, as was the case with
CMP 2.x entity beans.

12.6.1.2 Metadata Annotations for O-R Mapping
The O-R mapping annotations allow users to describe their entities with O-R mapping
metadata. This metadata is then used to define the persistence and retrieval of entities.
You no longer have to define the O-R (object Relational) mapping in a vendor-specific
descriptor.

The example above uses the @Entity, @Table, and @Column annotations to specify
at the class level that this is an entity, and to specify the underlying database table and
column names for the entity. You can also use mapping annotations to define a
relationship between entities, as shown in Example 12–2.

Building a Persistence Tier

12-8 User's Guide for Oracle JDeveloper

Example 12–2 Mapping Annotations

@ManyToOne(cascade=PERSIST)
@JoinColumn(name="MANAGER_ID", referencedColumnName="EMP_ID")
public Employee getManager()
{
 return manager;
}

12.6.1.3 Inheritance and Polymorphism Support
Inheritance is very useful in many scenarios. The two types of inheritance that are
commonly used and supported by Oracle Application Server for JPA entities are:

■ Single table per class hierarchy

■ Joined sub class strategy

The inheritance can be expressed using annotations. Example 12–3 contains code that
uses the joined sub class strategy.

Example 12–3 Joined Subclass Strategy

@Entity
@Table(name="EJB_PROJECT")
@Inheritance(strategy=JOINED, discriminatorValue="P")
@DiscriminatorColumn(name="PROJ_TYPE")
public class Project implements Serializable
{
...
}
@Entity
@Table(name="EJB_LPROJECT")
@Inheritance(discriminatorValue="L")
public class LargeProject extends Project
{
...
}
@Entity
@Table(name="EJB_PROJECT")
@Inheritance(discriminatorValue="S")
public class SmallProject extends Project
{
...
}

12.6.1.4 Simplified EntityManager API for CRUD Operations
The javax.persistence.EntityManager API is used for CRUD (Create, Read,
Update, and Delete) operations on entity instances. You no longer have to write code
for looking up instances and manipulating them. You can inject an instance of
EntityManager in a session bean and use persist() or find() methods on an
EntityManager instance to create or query entity bean objects, as show in
Example 12–4.

Example 12–4 EntityManager in a Session Bean

@PersistenceContext
private EntityManager em;
private Employee emp;

Building a Persistence Tier

Developing with EJB and JPA Components 12-9

 public Employee findEmployeeByEmpNo(int empNo)
 {
 return ((Employee) em.find("Employee",empNo));
 }
public void addEmployee(int empNo, String eName, double sal)
{
 if (emp == null) emp = new Employee();
 emp.setEmpNo(empNo);
 ...
 em.persist(emp);
}
}

12.6.1.5 Query Enhancements
Queries are defined in metadata. You may now specify your queries using
annotations, or in a deployment descriptor. JPA entities support bulk updates and
delete operations through JPQL (Java Persistence Query Language). For more
information, see Section 12.6.7, "JDK 5 Annotations for EJB/JPA".

12.6.2 How to Create JPA Entities
JDeveloper offers you two easy wizards to create your JPA entities. You can create
entities from online or offline databases, add a persistence unit, define inheritance
strategies, and select from available database fields. The Entity from Tables wizard
allows you to create entities from online or emulated offline databases, as well as from
a application server data sources.

To create entities or entities from tables:
1. Choose File menu, then New, then Business Tier, then EJB, then Entity or Entities

from Tables.

2. Follow the steps in the wizard.

To create EJBs in an existing module:
1. In the Navigator, right-click an EJB module and choose New, then EJB, then

Entity or Entities from Tables.

Or, choose File menu, then New, then Business Tier, then EJB, then Entity or
Entities from Tables.

2. Follow the steps in the wizard.

To create EJBs in a new EJB module:
1. Choose File menu, then New, then General, then Projects.

2. Select the type of project you want to create and click OK.

3. In the Navigator, right-click on the new project and choose New.

Or, select the module and choose File menu, then New, then Business Tier, then
EJB, then Entity or Entities from Tables.

12.6.3 About SDO For EJB/JPA
JDeveloper provides support for the SDO (Service Data Objects) data application
development framework.

Building a Persistence Tier

12-10 User's Guide for Oracle JDeveloper

Use the SDO 2.0 framework and API to easily modify business data regardless of how
it is physically accessed. SDO encapsulates the backend data source, offers a choice of
static or dynamic programming styles, and supports both connected and disconnected
access. SDO handles XML parser operations, and automatically integrates the data
parsing logic with the application. For more information, "Integrating Service-Enabled
Application Modules" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

The SDO architecture supported by JDeveloper offers the following:

■ Simplifies the J2EE data programming model

■ Abstracts data in a service oriented architecture (SOA)

■ Unifies data application development by creating a standard way of passing data
between clients

■ Supports and integrates XML

■ Incorporates J2EE patterns and best practices

SDO is a unified framework for data application based on the concept of disconnected
data graphs. A data graph is a collection of tree-structured or graph-structured data
objects. To enable development of generic or framework code that works with Data
Objects, it is important to be able to introspect on Data Object metadata, which exposes
the data model for the Data Objects. As an alternative to Java reflection, SDO provides
APIs to access metadata stored in XML schema definition (XSD) files that you create,
based on the entity or data model information detailed in your EJB session beans.

12.6.4 Using an EJB/POJO-based ADF-BC Service for Deployment to the SOA Platform
The SDO feature in JDeveloper can be used as an EJB service or as an ADF-BC service.
If you choose to use an ADF-BC service you need add the listener reference to your
weblogic-application.xml file. For more information, see Section 12.6.5, "How to
Create an SDO Service Interface for JPA Entities".

For more information and specifications on SDO, see the OSOA (Open Service
Oriented Architecture) at http://www.oasis-opencsa.org/

12.6.5 How to Create an SDO Service Interface for JPA Entities
You can easily create a service interface API to access JPA entity data through either an
EJB session bean or a plain old Java object (POJO). This service class exposes
operations for creating, retrieving, updating, and deleting the JPA entities in your
JDeveloper J2EE application.

To create a SDO service interface:
1. Start with an EJB session bean, or an ordinary Java class (POJO), that exposes

CRUD methods for one or more JPA entities.

You can use the wizard to create your session beans. For more information, see
Section 12.7.2, "How to Create a Session Bean".

2. In the Structure window, right-click your EJB session Bean or POJO and choose
Create Service Interface.

3. Select the methods you want to make available in your service API.

By default all of the methods in your session bean interface are selected. Click the
checkbox to select or unselect a method.

Building a Persistence Tier

Developing with EJB and JPA Components 12-11

4. In this release, when you create a service interface, your original session bean file
and the remote (or local) interface are modified. New methods are added that
match the original ones, but they reference newly defined SDO data objects
instead of JPA entities. These SDO data objects match the JPA entities and are
defined in XSD files, which are also added to your project, and their names are
appended with SDO, such as DeptSDO or EmployeeSDO. Select Backup File(s) to
create a backup of your original session bean file.

5. Click OK.

12.6.5.1 How to Configure an EJB/POJO-based ADF-BC Service for Deployment to
the SOA Platform
To use an EJB/POJO SDO ADF-BC service from a fabric composite using SDO external
bindings, you need to set up the Weblogic application deployment listener to invoke
the ServiceRegistry logic. Set this up by adding the listener reference to your
weblogic-application.xml file.

To add the listener reference:
Add the code in Example 12–5 to the weblogic-application.xml which by
default is located in <workspace-directory>/src/META-INF.

Example 12–5 Code Added to weblogic-application.xml

<listener>
<listener-class> oracle.jbo.client.svc.ADFApplicationLifecycleListener
</listener-class>
</listener>

Once this listener is added, JDeveloper automatically registers the SDO service
application name _JBOServiceRegistry_ into the fabric service registry in the
composite.xml.

12.6.5.2 File Types Created to Support Your SDO Architecture
When you create your SDO service interface, the necessary files to support your
service interface are automatically created. These files include the following:

■ SessionEJBBeanWS.wsdl - This file describes the capabilities of the service that
provides an entry point into an SOA application or a reference point from an SOA
application. The WSDL file provides a standard contract language and is central
for understanding the capabilities of a service.

■ SessionEJBBeanWS.xsd - This is an XML schema file that defines your service
interface methods in terms of SDO data types. All of the entities that were
contained in your session bean interface will have a corresponding DataObject
element in this schema file. At runtime, these DataObjects are registered with the
SDO runtime by calling XSDHelper.INSTANCE.define() method. A static
type-specific DataObject is defined for each SDO type.

12.6.6 How to Generate Database Tables from JPA Entities
When you deploy the JDeveloper integrated server, database tables are automatically
created for every entity that does not have a corresponding existing mapped table.
One database table will be generated per unmapped JPA entity.

Building a Persistence Tier

12-12 User's Guide for Oracle JDeveloper

To generate database tables from JPA entities:
1. Create your JPA entity using the modeling tools or the Create Entity wizards. For

more information, see Section 12.6.2, "How to Create JPA Entities.".

2. Modify the entities as necessary, adding fields and constraints.

3. Name the tables:

■ EJB 3.0 - Annotate the bean class to provide a table name. For more
information, see the Enterprise JavaBean specification at
http://www.oracle.com/technetwork/java/docs-135218.html.

4. Deploy the persistence unit. For more information, see Section 12.9, "Deploying
EJB Modules and JPA Persistence Units.".

12.6.7 JDK 5 Annotations for EJB/JPA
Annotations can simplify your development tasks by reducing the number of
deployment descriptors needed for your application components. Annotations can
also be used to generate artifacts such as interfaces.

An annotation is a metadata modifier that is added to a Java source file. Annotations
are compiled into the classes by the Java compiler at compile time, and can be
specified on classes, fields, methods, parameters, local variables, constructors,
enumerations, and packages. Annotations can be used to specify attributes for
generating code, for documenting code, or for providing services like enhanced
business-level security or special business logic during runtime.

Every type of annotation available for your EJB/JPA classes can also, alternatively, be
added to an XML deployment descriptor file. At runtime the XML will override any
annotations added at the class level.

Annotations are marked with the @ symbol, such as this stateless session bean
annotation:

@Stateless public class MySessionBean

For more information on annotations for EJB 3.0, see
http://download.oracle.com/javase/1.5.0/docs/guide/language/anno
tations.html

During design time, JDeveloper displays a list of available annotations through the
Property Inspector. You can change any suitable Java class to an EJB or JPA component
using the annotation feature. For more information, see Section 12.6.8, "How to
Annotate Java Classes.".

12.6.7.1 EJB 3.0
Annotations are available to indicate the bean type. Adding your bean type annotation
to a regular class turns it into an EJB.

The following types of annotations are available:

Note: Primary key referential integrity constraints will be generated,
but other constraints may not be.

Note: Annotations are new to EJB 3.0, and not available for previous
versions of EJB.

Building a Persistence Tier

Developing with EJB and JPA Components 12-13

■ Is Stateless Session Bean. Choose TRUE or FALSE to annotate your class as a
stateless session bean.

■ Is Stateful Session Bean. Choose TRUE or FALSE to annotate your class as a
stateful session bean.

■ Is Message Driven Bean. Choose TRUE or FALSE to annotate your class as a
message driven bean.

12.6.7.2 JPA 1.0
Annotations support a new Java Persistence API as an alternative to entity beans.

The following types of annotations are available:

■ Is JPA Entity. Choose TRUE or FALSE to annotate your class as a JPA entity.

■ Is JPA Mapped Superclass. Choose TRUE or FALSE to annotate your class as a JPA
mapped superclass.

■ Is JPA Embeddable. Choose TRUE or FALSE to annotate your class as JPA
embeddable.

Once you transform your regular Java class into an EJB/JPA component, or if you used
one of the EJB/JPA wizards to create the component, the Property Inspector displays a
different set of contextual options, which you can use to add or edit annotations for the
various members within the component class.

12.6.8 How to Annotate Java Classes
During design time, JDeveloper provides you with the list of available annotations to
insert into your classes. The options change depending on what type of class you are
working on, and what member you have selected.

You can annotate any regular Java class to turn it into an EJB/JPA component. Once
the class is defined with annotations as an EJB/JPA, you can easily customize the
component with a variety of member-level annotations available to choose from in the
JDeveloper Property Inspector.

To annotate your Java class as an EJB/JPA component:
1. In the Application Navigator, select the class you want to transform.

2. In the Structure window, double-click the class name.

If your class is already open in the Java source editor, put your curser in the class
definition line.

3. Open the Property Inspector, select the EJB/JPA tab and choose the type of
component you want to create. Select True.

After your Java class is annotated as an EJB/JPA component, the EJB/JPA tab
disappears from the Property Inspector and a new tab appears, specific to the
component type you chose. To change the component back to a regular Java class,
remove the annotation from the code to reset the EJB/JPA component types displayed
in the Property Inspector.

Note: Annotations are only available for EJB 3.0, and not available
for previous versions of EJB.

Building a Persistence Tier

12-14 User's Guide for Oracle JDeveloper

Once your Java class is transformed into an EJB/JPA component using a class-level
annotation, use the Property Inspector to add or edit annotations to member fields or
methods within that component.

To add or edit annotations in an EJB/JPA component:

1. In the Application Navigator, select the class you want to annotate.

2. In the Structure window, double-click the member you want to annotate.

As an alternative, if your class is already open in the Java source editor, put your
curser in the location where you intend to insert your annotation.

3. In the Property Inspector, choose the tab corresponding to your EJB/JPA type.

4. Choose from any of the annotations available for the specific member you have
selected.

12.6.9 Representing Relationships Between Entities
When you create entities from database tables, foreign keys are interpreted as
relationships between entities. You can further define these relationships, create new
relationships, or map existing relationships to existing tables using the JDeveloper
modeling tools. With the modeling tools you can represent relationships as lines
between entities, and change the relationships by changing the line configurations. For
more information, see Section 23.3, "Modeling EJB/JPA Components on a Diagram.".

12.6.10 Java Persistence Query Language
Java Persistence Query Language (JPQL) offers a standard way to define relationships
between entity beans and dependent classes by introducing abstract schema types and
relationships in the deployment descriptor. JPQL also defines queries for navigation
using abstract schema names and relationships.

The JPAQL query string consists of two mandatory clauses: SELECT and FROM, and
an optional WHERE clause. For example:

select d from Departments d where d.department_name = ?1

There are two kinds of methods that use JPQL, finder methods and select methods.

■ Finder methods are exposed to the client and return either a single instance, or a
collection of entity bean instances.

■ Select methods are not exposed to the client, they are used internally to return an
instance of cmp-field type, or the remote interfaces represented by the
cmr-field.

12.6.11 JPA Object-Relational Mappings
The Java Persistence API lets you declaratively map Java objects to relational database
tables in a standard, portable way that works both inside a Java EE 5 application
server and outside an EJB container. This approach greatly simplifies Java persistence
and provides an object-relational mapping approach.

Note: EJB or JPA components created through the wizards already
contain the class type annotations. For more information, see
Section 12.3, "Building EJB 3.0 Applications and Development
Process.".

Implementing Business Processes in Session Beans

Developing with EJB and JPA Components 12-15

With Oracle TopLink you can configure the JPA behavior of your entities using
metadata annotations in your Java source code. At run-time the code is compiled into
the corresponding Java class files.

To designate a Java class as a JPA entity, use the @Entity annotation, as shown in
Example 12–6.

Example 12–6 Entity Annotation

@Entity
public class Employee implements Serializable {
...
}

You can selectively add annotations to override defaults specified in your deployment
descriptors.

For more information on JPA Annotations, see the TopLink JPA Annotation Reference at
http://www.oracle.com/technetwork/middleware/ias/toplink-jpa-ann
otations-096251.html.

12.6.12 How to Use Java Service Facades
A Java service facade implements a lightweight testing environment you can run
without an application server.

With EJB 3.0 the Java service facade is similar to an EJB session facade, because you
can generate facade methods for entities in the same persistence unit, without the
container.

Separating workflow with Java service facades eliminates the direct dependency of the
client on the participant JPA objects and promotes design flexibility. Although changes
to participants may require changes in the Java service facade, centralizing the
workflow in the facade makes such changes more manageable. You change only the
Java service facade rather than having to change all the clients. Client code is also
simpler because it now delegates the workflow responsibility to the session facade.
The client no longer manages the complex workflow interactions between business
objects, nor is the client aware of interdependencies between business objects.

You may choose to make the Java service class runnable by generating a sample Java
client with a main() method.

Use the JDeveloper Java service facade wizard to create a Java class as a service facade
to entities. To create a new Java service facade select the File menu, then New, then
Business Tier, then EJB, then Java Service Facade.

You can also create a data control from a service facade. In the Application Navigator,
right-click the name of the service facade, then select Create Data Control. From the
Bean Data Control Interface Chooser dialog, you can choose to implement
oracle.binding.* data control interfaces. The interfaces are
TransactionalDataControl, UpdatableDataControl, and
ManagedDataControl. For more information, select the Help button in the dialog.

12.7 Implementing Business Processes in Session Beans
A session bean represents a single client inside the application server. To access an
application deployed on the server, the client invokes the session bean methods. The
session bean performs work for its client, shielding the client from complexity by
executing business tasks inside the server. A session bean is similar to an interactive

Implementing Business Processes in Session Beans

12-16 User's Guide for Oracle JDeveloper

session. A session bean is not shared and has only one client, in the same way that an
interactive session can have only one user. Like an interactive session, a session bean is
not persistent as it does not save data to the database. When the client terminates, its
session bean appears to terminate and is no longer associated with the client.

Create your session beans and session bean facades using the JDeveloper Session Bean
Wizard. For more information, see Section 12.7.2, "How to Create a Session Bean.".

There are two types of session beans:

■ Stateful. A stateful session bean maintains conversational state on behalf of the
client. A conversational state is defined as the session bean field values plus all
objects reachable from the session bean fields. Stateful session beans do not
directly represent data in a persistent data store, but they access and update data
on behalf of the client. The lifetime of a stateful session bean is typically that of its
client.

■ Stateless. Stateless session beans are designed strictly to provide server-side
behavior. They are anonymous because they contain no user-specific data. The EJB
architecture provides ways for a single stateless session bean to serve the needs of
many clients. All stateless session bean instances are equivalent when they are not
involved in serving a client-invoked method. The term stateless means that it does
not have any state information for a specific client. However, stateless session
beans can have non-client specific state, for example, an open database connection.

12.7.1 Using Session Facades
With JDeveloper you can select to automatically generate your session facade methods
any time you create a session bean through the session bean wizard. This creates a
session bean that functions as a session facade for your business workflow. For more
information, see Section 12.7.2, "How to Create a Session Bean.".

The session facade is implemented as a session bean. The session bean facade
encapsulates the complexity of interactions between the business objects participating
in a workflow by providing a single interface for the business services of your
application.The session facade manages the relationships between numerous
BusinessObjects and provides a higher level abstraction to the client.

Session facades can be either stateful or stateless, which you define while creating a
session facade in the wizard.

For more information on session facades, see the Oracle Technology Network at
http://www.oracle.com/technetwork/java/sessionfacade-141285.html

Use the wizard to automatically implement a session facade when you create a session
bean, and to choose the methods you want to implement. Once you've created EJB
entities, any session beans you create in the same project are aware of the entities and
the methods they expose.

12.7.2 How to Create a Session Bean
Use the session bean wizard to create a new session bean or session facade bean. Or
you can create a session bean using the modeling tools.

To create a session bean or session facade using a wizard:
1. In the Navigator, select File, then New.

2. In the New Gallery, select Session Bean from the Business Tier category under the
EJB folder.

Implementing Business Processes in Session Beans

Developing with EJB and JPA Components 12-17

3. To make the bean a session facade select Generate Session Facade Methods on the
EJB Name and Options page.

4. Complete the remaining steps in the wizard.

To add or remove session bean facade methods:
1. In the Application Navigator, select the session bean you want to edit.

2. Right-click and choose Edit Session Facade.

3. In the Specify Session Facade Options dialog, check a method expose it through
the facade, or unchecked a method so it will not be exposed.

For more information on session facades, see the Core J2EE Pattern Catalog at
http://www.oracle.com/technetwork/java/sessionfacade-141285.html
.

You can also create a session facade manually by creating a local reference between a
session bean and an entity.

To create a local reference:
1. Create a session bean, if you have not already done so.

2. Create a local reference between the beans:

■ In the bean class - If you are using EJB 3.0, annotate the bean class to create a
reference.

■ Using the EJB Module Editor - If you are using EJB 2.1 (and previous), select
an EJB node in the Application Navigator, then double-click Methods in the
Structure pane to open the EJB Module Editor. Select EJB Local References.

To create a session bean on an EJB diagram:
1. Open your EJB diagram.

If you do not have an EJB diagram, select File, then New, then select EJB Diagram
from the Business Tier category.

2. In the Component Palette, click Session Bean.

If the Component Palette is not visible, from the View menu, choose Component
Palette.

3. Click inside the EJB diagram (note that you do not drag and drop).

12.7.3 How to Create Session or Message-Driven Beans in Modules
You can create EJBs in both new and existing modules.

To create EJBs in an existing module:
1. In the Navigator, right-click an EJB module and choose New EJB Session or

Message-Driven Bean.

Note: You must have already created a persistence unit before you
can generate a session facade bean. To generate a persistence unit
follow the same steps, but select JPA Persistence Unit instead of
Session Bean.

Implementing Business Processes in Session Beans

12-18 User's Guide for Oracle JDeveloper

Or, select the module and choose File menu, then New, then Business Tier, then
EJB Session or Message-Driven Bean.

2. Follow the steps in the wizard.

To create EJBs in a new EJB module:
1. In the Navigator, select File, then New, then General, then Projects.

2. In the New Gallery, select the type of project you want to create and click OK.

3. In the Navigator, right-click on the new project and choose New.

4. In the New dialog, expand the category for Business Tier.

5. Click EJB, then Session Bean or Message-Driven Bean.

Or, select the module and choose File menu, then New, then Business Tier, then
EJB Session or Message-Driven Bean.

6. Click OK.

7. Follow the steps in the wizard.

12.7.4 How to Add, Delete, and Edit EJB Methods
Once an EJB has been added to your project, you can add, delete, or edit the methods
in it. Adding methods as described below ensures that changes are synchronized with
remote and home interfaces, when defined.

To add methods (EJB 2.1):
1. In the Application Navigator, select an EJB.

2. In the Structure pane, right-click the Methods node, then choose New EJB
Method, then choose the type of method you want to create.

3. In the Method Details dialog, add details, as necessary.

4. When finished, click OK.

To add methods (EJB 3.0):
1. In the Application Navigator, select an EJB.

2. In the Structure pane, right-click the EJB, then choose Enterprise Java Beans (EJB),
then choose New Method.

3. In the Bean Method Details dialog, add details, as necessary.

4. When finished, click OK.

To delete methods (EJB 2.1):
1. In the Application Navigator, select an EJB.

2. In the Structure pane, expand the Methods node.

3. Right-click the method you want to remove. If you want to remove more than one,
select them using Ctrl-click or Shift-click, then right click the selection.

4. Choose Remove Methods....

5. Click Yes to confirm.

To delete methods (EJB 3.0):
1. In the Application Navigator, select an EJB.

Implementing Business Processes in Session Beans

Developing with EJB and JPA Components 12-19

2. In the Structure pane, double-click the method to locate it in the source file.

3. In the source file, delete the method.

To edit methods (EJB 2.1):
1. In the Application Navigator, select an EJB.

2. In the Structure pane, expand the Methods node.

3. Right-click the method you want to edit, then choose Properties.

4. In the Method Details dialog, edit details, as necessary.

5. When finished, click OK.

To edit methods (EJB 3.0):
1. In the Application Navigator, select an EJB.

2. In the Structure pane, right-click the EJB, then choose Enterprise Java Beans (EJB),
then choose Properties.

3. In the Bean Method Details dialog, edit details, as necessary.

4. When finished, click OK.

12.7.5 How to Add a Field to an EJB
You can add fields to EJBs on an EJB diagram or through the EJB Module Editor.

To add a field on an EJB Diagram (EJB 2.1):
1. Click in the fields compartment (the first compartment) on the EJB in the diagram.

2. Enter the name of the field and its type.

To add a field using the EJB Module Editor (EJB 2.1):
1. In the Application Navigator, right-click the EJB to which you want to add a field,

then choose Properties.

2. In the EJB Module Editor, click to expand the EJB, then select Fields.

3. Click Add.

4. In the Field Details dialog, add details, as needed.

To add a field (EJB 3.0):
1. In the Application Navigator, select an EJB.

2. In the Structure pane, right-click the EJB, then choose Enterprise Java Beans (EJB)
node, then choose New Field.

3. In the Field Details dialog, add details, as necessary.

4. When finished, click OK.

12.7.6 How to Remove a Field From an EJB
You can remove fields from EJBs, as described below.

To remove a field on an EJB Diagram:
1. Click in the fields compartment (the first compartment) on an EJB.

Implementing Business Processes in Session Beans

12-20 User's Guide for Oracle JDeveloper

2. Highlight the field and press the Delete key.

To remove a field using the EJB Module Editor (EJB 2.1):
1. In the Application Navigator, right-click the node for the EJB to which you want to

add a field, then choose Properties.

2. In the EJB Module Editor, click to expand the EJB, then select Fields.

3. Select the field you want to remove.

4. Click Delete.

To remove a field (EJB 3.0):
1. In the Application Navigator, select an EJB.

2. In the Structure pane, double-click the field to locate it in the source file.

3. In the source file, delete the field.

12.7.7 Customizing Business Logic with EJB Environment Entries
Environment entries are name-value pairs that allow you to customize the bean's
business logic. Since environment entries are stored in an enterprise bean's
deployment descriptor, a bean's business logic can be changed without changing its
source code.

For example, an EJB that calculates an order might give a discount depending on the
number of items ordered, a certain status (silver, gold, platinum), or for a promotion.
Before deploying the bean's application you could assign the discount a certain
percentage. When the application runs, a method would call the environment entry to
find out the discount value. If you wanted to change that percentage in a different
deployment, you would not need to change the source code, you would just need to
change the value in the environment entries for the deployment descriptor.

Environment entries are annotated in the source code.

For the complete EJB 3.0 Java Community Process specifications and documentation,
see http://www.oracle.com/technetwork/java/docs-135218.html.

12.7.8 Exposing Data to Clients
Depending on how your develop your application, there are different methods of
exposing data to clients.

■ If you're using the Oracle ADF framework, the preferred method of exposing data
to clients is to implement the session facade design pattern and drop the session
bean onto the data control palette. This option vastly simplifies data coordination
and is only available in the JDeveloper Studio release. For more information, see
Section 12.7, "Implementing Business Processes in Session Beans" and
Section 12.7.1, "Using Session Facades."

■ If you are not using the Oracle ADF framework, you typically create a managed
bean to coordinate connection to a JSF/JSP page. For more information, see
Section 11.2, "Developing Applications with JavaServer Faces."

12.7.9 How to Identify Resource References
A resource reference is an element in a deployment descriptor that identifies the
component's coded name for the resource. Resource references are used to obtain

Implementing Business Processes in Session Beans

Developing with EJB and JPA Components 12-21

connector and database connections, and to access JMS connection factories, JavaMail
sessions, and URL links.

To add or modify EJB 3.0 resource references:
Go to your source code to annotate resource references.

12.7.10 How to Define a Primary Key for an Entity
A primary key is a unique identifier with one or more persistent attributes. It identifies
one instance of a class from all other instances of the same type. Use primary keys to
define relationships and to define queries.

Each JPA entity instance must have a primary key. To accommodate your database
schema, you can define simple primary keys from persistent fields or composite
primary keys from multiple persistent fields. You can also define automatic primary
key value generation to simplify your JPA entity implementation.

The simplest way to specify a simple primary key is to use annotations for a single
primitive, or JDK object type entity field as the primary key. You can also specify a
simple primary key at deployment time using deployment XML.

To configure a simple primary key using annotations:
1. In your JPA entity implementation, annotate the primary key field using the @Id

annotation, as shown in Example 12–7.

Example 12–7 Configuring Primary Key Using Annotations

import javax.ejb.Entity;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.Column;

@Entity
@Table(name = "EMP")
public class Employee implements java.io.Serializable {
private int empNo;
private String eName;
private String birthday;
private Address address;
private int version;

public Employee() {
{

@Id
@Column(name="EMPNO")
public int getEmpNo() {
return empNo;
}
...
}

2. Package and deploy your application.

To configure a simple primary key using deployment XML:
1. In your JPA entity implementation, implement a primary key field, as shown in

Example 12–8.

Modeling EJB/JPA Components on a Diagram

12-22 User's Guide for Oracle JDeveloper

Example 12–8 Configuring Primary Key Using Deployment XML

public class Employee implements java.io.Serializable {
private int empNo;
private String eName;
private String birthday;
private Address address;
private int version;

public Employee() {
{

public int getEmpNo() {
return empNo;
}
...
{

12.7.11 How to Specify a Primary Key for ADF Binding
For certain ADF Faces features, a designated primary key is required. For example, if
you have an ADF Faces table that uses an af:tableSelectMany component, you
will need to specify a primary key to be able to implement sorting. When you create
EJB/JPA entities from tables (using EJB 3.0), the primary key is specified by default.
But if you have to specify a primary key, do the following:

To specify an attribute as primary key:
1. If you have not already done so, you will need to create an ADF Data Control to

create the XML definitions for each entity. For more information, see "Using ADF
Model Data Binding in a Java EE Web Application" in Oracle Fusion Middleware
Java EE Developer's Guide for Oracle Application Development Framework.

2. In the Application Navigator, select an EJB entity XML file.

3. In the Structure pane, select an entity attribute and then from the View menu,
choose Property Inspector.

4. In the Property Inspector, find the attribute you want as the primary key and set
the PrimaryKey value to true.

12.7.12 How to Use ADF Data Controls for EJBs
JDeveloper automatically provides a complete set of data control components when
you build an ADF Fusion web application. When you build a Java EE application,
and/or an EJB project, you assign ADF data controls on your individual session beans.
This adds a data control file with the same name as the bean.

For complete details on using ADF data controls for EJBs, see "Using ADF Model Data
Binding in a Java EE Web Application" in Oracle Fusion Middleware Java EE Developer's
Guide for Oracle Application Development Framework.

12.8 Modeling EJB/JPA Components on a Diagram
For information about modeling EJB and JPA components on a diagram, see
Section 23.3, "Modeling EJB/JPA Components on a Diagram.".

Deploying EJB Modules and JPA Persistence Units

Developing with EJB and JPA Components 12-23

12.9 Deploying EJB Modules and JPA Persistence Units
An EJB module is a software unit comprising one or more EJBs, a persistence unit, and
an optional EJB deployment descriptor. A JDeveloper project contains only one EJB
module. At deploy-time, the module is packaged as an ejb.jar file.

Entity beans were once packaged in the EJB JAR file along with the session and
message-driven beans. Today, with JPA entities and the persistence unit technology, at
deploy-time, they are packaged in their own JAR file, persistenceunit.jar.

Now your entity beans (JPA entities) are contained separately, in a JPA persistence
archive JAR, which includes a persistence.xml file. The JPA persistence unit does
not have to be part of the EJB module package, but can be bundled inside the
ejb.jar file.

12.9.1 About EJB Modules
JDeveloper project can contain only one EJB module. When you create your first
session or message-driven bean in a project, a module is automatically established, if
one does not already exist. You are given the option of choosing the EJB version and
the persistence manager for your new EJB module.

When you deploy your project you convert the aggregate of session and
message-driven beans, plus deployment descriptor into an a EJB JAR file (.jar file),
ready for deployment to an application server or as an archive file. By confining the
persistence unit to its own JAR file, the persistence unit can easily be reused in other
applications. For more information, see Section 9.1, "About Deploying Applications."

12.9.2 About JPA Persistence Units
A JPA persistence unit is comprised of a persistence.xml file, one or more
optional orm.xml files, and the managed entity classes that belong to the persistence
unit. A persistence unit is a logical grouping of the entity manager, data source,
persistent managed classes, and mapping metadata. A persistence unit defines an
entity manager's configuration by logically grouping details like entity manager
provider, configuration properties, and persistent managed classes.

Each persistence unit must have a name. Only one persistence unit of a given name
may exist in a given EJB-JAR, WAR, EAR, or application client JAR. You can package a
persistence unit in its own persistence archive and include that archive in whatever
Java EE modules require access to it.

The persistence.xml file contains sections or groupings, these groupings
correspond to your entities, and run-time data related to the entities. When you create
a new entity using the entity wizards, and if you have an existing persistence unit in
the project, the entity will be inserted into its own section in the persistence.xml. If you
do not have an existing persistence unit, one will be created automatically, with a
section included for the entity definitions.

The JAR file or directory, whose META-INF directory contains the persistence.xml file,
is called the root of the persistence unit. An EJB 3.0 application that uses entities must
define at least one persistence unit root either explicitly or using the OC4J default
persistence unit. When you deploy your persistence unit, a JAR file is created called
persistenceunit.jar. For more information, see Section 9.1, "About Deploying
Applications."

Deploying EJB Modules and JPA Persistence Units

12-24 User's Guide for Oracle JDeveloper

12.9.3 How to Create a JPA Persistence Unit
You can easily create a persistence unit for your entities using the JDeveloper
Persistence Unit wizard. Or, when you create a JPA entity, a default persistence unit is
created for you, if you do not already have one.

To create a JPA persistence unit:
1. Select a project in the Application Navigator.

2. Choose File menu, then New, then Business Tier, then EJB, then JPA Persistence
Unit.

3. Complete the steps in the wizard.

12.9.4 How to Remove EJBs in a Module
To remove an EJB from an EJB module, select the EJB in the System Navigator and
press Delete.

12.9.5 How to Import EJBs into JDeveloper
You can import existing EJBs from a JAR file or from a deployment descriptor.

To import an EJB module, or a subset of EJBs within an EJB module into a
project:
1. From the File menu, choose Import.

2. In the Import dialog, choose EJB JAR (.jar) File.

3. Follow the steps in the wizard.

To import an EJB deployment descriptor (ejb-jar.xml) file:
1. From the File menu, choose Import.

2. In the Import dialog, choose EJB Deployment Descriptor (ejb-jar.xml) File.

3. Follow the steps in the wizard

To import a WebLogic deployment descriptor (weblogic-ejb-jar.xml) file:
1. From the File menu, choose Import.

2. In the Import dialog, choose EJB Deployment Descriptor (ejb-jar.xml) File.

3. Follow the steps in the wizard

4. After completing the wizard, in the Navigator, right-click on weblogic-ejb-jar.xml
and choose Export to OC4J.

To avoid conflicts, if an EJB with the same name already exists in your existing
module, that EJB will not be imported.

Note: If you import a deployment descriptor using this wizard, and
then use the wizard to import more files, the wizard caches the last
used descriptor file, JAR file, and descriptor source directory in the
IDE preferences file for convenience. This makes it easier to do tasks
such as splitting an EJB module into multiple modules, importing
multiple JAR files residing in the same directory, etc.

Running and Testing EJB/JPA Components

Developing with EJB and JPA Components 12-25

12.9.6 How to Modify EJB/ADF Applications to Deploy to Websphere Application
Server

NOTE: Could not access this topic in Help Center.

12.10 Running and Testing EJB/JPA Components
To test your EJBs you need to run a client program that can create or find EJB instances
and call their remote interface methods. JDeveloper provides a sample client utility
that will help you create clients quickly. You can run and test EJBs using either the
integrated server or a remote server; the sample client utility can be used to create a
client for either type.

12.10.1 How to Test EJB/JPA Components Using the Integrated Server
The integrated Oracle WebLogic Server runs within JDeveloper. You can run and test
EJBs quickly and easily using this server, and then deploy your EJBs with no changes
to them. You do not need to create a deployment profile to use this server, nor do you
have to initialize it.

To run a sample client on the integrated Oracle WebLogic Server:
1. In the Application Navigator, right-click on an EJB and choose Run.

Notice in the Message pane that Oracle WebLogic Server has been launched.

2. Right-click on an EJB and choose Create Sample Java Client from the context
menu.

3. The default choice is to create a client for the integrated Oracle WebLogic Server,
so click OK.

The client is created and opens in the code editor.

If your session bean serves as a facade over JPA entities, code is generated to
instantiate the query methods. If you exposed methods on your bean, the
generated client contains methods that can be uncommented to call them.

4. After your EJB has been successfully started from the Application Navigator,
right-click on the sample client and choose Run.

12.10.2 How to Test EJB/JPA Components Using a Remote Server
To test EJBs on a remote server you need to deploy the EJB and then create a sample
client. If you deploy first, the framework picks up the deployed applications, which
populates the client pick list.

To run a sample client on a remote server:
1. Launch your application server.

2. In the Application Navigator, right-click your project node and choose New.

3. In the New dialog box, click the Deployment Profiles category and choose
Business Components EJB Session Bean.

The new deployment profile is displayed in the Application Navigator.

Note: You cannot mix different version EJBs in the same module.

Running and Testing EJB/JPA Components

12-26 User's Guide for Oracle JDeveloper

4. Right-click the deployment profile and choose Deploy to New Connection.

5. In the dialog box, specify the application server you want to use. (The Oracle
WebLogic Server that ships with JDeveloper is selected by default.)

6. Click OK.

7. In the Application Navigator, right-click on the deployment profile and choose
Deploy to <named connection>.

8. In the Application Navigator, right-click on an EJB and choose Create Sample Java
Client.

9. In the dialog box, choose to connect to a Remote Ape Server. Choose one of the
deployed Java EE applications listed in the combo box.

10. Click OK.

The client is created and displays in the Application Navigator.

11. Right-click the client and choose Run.

The Message pane shows you the running output.

12.10.3 How to Test EJB Unit with JUnit
JDeveloper provides support for JUnit regression testing for your EJBs. JUnit is an
open source Java regression testing framework that comes as an optional feature in
JDeveloper. To use this feature you'll need to install the JUnit extension.

Use JUnit to write and run tests that verify your code. After you install the JUnit
extension, you can use the simple wizard to select your session bean or Java class files,
to select the methods that you want to test within those files, and then to start the
JUnit test.

To run a JUnit test on an EJB:
1. Install the Junit extension from the JDeveloper Help menu. For more information,

see Section 18.12.1, "How to Install JUnit."

2. Select your EJB session bean or an ordinary Java class (POJO) in the Application
Navigator. Or you can navigate to it from within the wizard.

3. Click File menu, then New, then Business Tier, then EJB, then EJB JUnit
TestCase.

4. Start the JUnit wizard.

5. Complete the steps in the wizard.

For detailed information about JUnit, visit the JUnit website,
http://www.junit.org/.

13

Developing TopLink Mappings 13-1

13Developing TopLink Mappings

This chapter describes how to develop TopLink Mappings within Oracle JDeveloper.
Using the TopLink Editor, you can quickly and easily configure TopLink descriptors
and mappings for your Java classes, EJBs, and JPA entities to data source elements
(such as database tables or XML schema elements). With the TopLink Editor, you can
create this information without writing Java code.

This chapter includes the following sections which describe the general process for
creating TopLink mappings and integrating them in a JDeveloper project:

■ Section 13.1, "About Developing TopLink Mappings"

■ Section 13.2, "Developing TopLink JPA Projects"

■ Section 13.3, "Developing TopLink Relational Projects"

■ Section 13.4, "Developing TopLink XML Projects"

■ Section 13.5, "Developing TopLink EIS Projects"

■ Section 13.6, "Developing TopLink Sessions"

■ Section 13.7, "Developing TopLink Applications"

For more information, see the following:

■ Chapter 10, "Getting Started with Developing Java EE Applications"

■ Chapter 11, "Developing Applications Using Web Page Tools"

■ Chapter 12, "Developing with EJB and JPA Components"

13.1 About Developing TopLink Mappings
Oracle TopLink is an advanced, object-persistence and object-transformation
framework that provides development tools and run-time capabilities that reduce
development and maintenance efforts, and increase enterprise application
functionality.

Using the TopLink Editor available within JDeveloper you can configure and map
your Java classes, EJBs, and JPA entities to different data sources, including relational
databases, enterprise information systems (EIS), and XML schemas without using Java
code. The TopLink Editor supports multiple standards, including JPA, JAXB, and Java
EE.

TopLink links object-oriented programs with relational data structures. Using TopLink,
you can build high-performance applications that store persistent object-oriented data
in a relational database. TopLink successfully transforms object-oriented data into
either relational data or XML documents. Using TopLink, you can integrate persistence

About Developing TopLink Mappings

13-2 User's Guide for Oracle JDeveloper

and object-transformation into your application, while staying focused on your
primary domain problem by taking advantage of an efficient, flexible, and
field-proven solution.

13.1.1 Considering the Impedance Mismatch
TopLink enables you to address the disparity between Java and data sources, known
as impedance mismatch. While object-relational databases consist of such elements as
tables, rows, columns, and primary and foreign keys, Java and Java EE include entity
classes (regular Java classes or Enterprise JavaBeans (EJB) entity beans), business rules,
complex relationships, and inheritance. In a nonrelational data source, you must match
your Java entities with EIS records or XML elements and schemas. These differences
(as shown in Figure 13–1) are known as the object-persistence impedance mismatch.

Figure 13–1 Solving Object-Persistence Impedance Mismatch

13.1.2 Designing TopLink Applications
You can use TopLink to perform a variety of persistence and data transformation
functions on any enterprise architecture that uses Java, including:

■ Java EE

■ Spring

■ Java web servers such as Tomcat

■ Java clients such as Java SE and web browsers

13.1.3 Using TopLink in Application Design
TopLink can be used in the following ways:

■ Relational Database Usage: You can use TopLink to persist Java objects to
relational databases that support SQL data types accessed using JDBC.

■ Oracle XML Database (XDB) Usage: You can use TopLink to persist XML
documents to an Oracle XML database using TopLink direct-to-XMLType
mappings.

■ Enterprise Information System (EIS) Usage: You can use TopLink to persist Java
objects to an EIS data source using a JCA adapter. In this scenario, the application
invokes EIS data source-defined operations by sending EIS interactions to the JCA

About Developing TopLink Mappings

Developing TopLink Mappings 13-3

adapter. Operations can take (and return) EIS records. Using TopLink EIS
descriptors and mappings, you can easily map Java objects to the EIS record types
supported by your JCA adapter and EIS data source. This usage is common in
applications that connect to legacy data sources and is also applicable to web
services.

■ XML Usage: You can use TopLink for in-memory, nonpersistent Java
object-to-XML transformation with XML Schema (XSD) based XML documents
and JAXB. You can use the TopLink JAXB compiler with your XSD to generate
both JAXB-specific artifacts (such as content and element interfaces,
implementation classes, and object factory class) and TopLink-specific artifacts
(such as sessions and project XML files).

13.1.4 Creating TopLink Metadata
The TopLink metadata is the bridge between the development of an application and its
deployed runtime environment. You can capture the metadata using:

■ JDeveloper Mapping Editor, which creates TopLink sessions.xml and
project.xml files that you pass to the TopLink runtime environment.

■ JPA annotations, persistence.xml, orm.xml, and TopLink JPA annotation and
TopLink property extensions. The TopLink JPA persistence provider interprets
these metadata sources of metadata to create an in-memory TopLink session and
project at runtime.

■ Java and the TopLink API (this approach is the most labor-intensive).

The metadata enables you to pass configuration information into the runtime
environment, which uses the information in conjunction with the persistent classes
(Java objects, JPA entities, or EJB entity beans) and the code written with the TopLink
API, to complete the application.

Using TopLink JPA, you also have the option of specifying your metadata using
TopLink sessions.xml and project.xml while accessing your persistent classes
using JPA and an EntityManager.

The TopLink metadata architecture provides many important benefits, including the
following:

■ By using the metadata, TopLink does not intrude in the object model or the
database schema.

■ Allows you to design the object model as needed, without forcing any specific
design.

■ Allows DBAs to design the database as needed without forcing any specific
design.

■ Does not rely on code-generation (which can cause serious design,
implementation, and maintenance issues).

■ Is unobtrusive: adapts to the object model and database schema, rather than
requiring you to design their object model or database schema to suit TopLink.

Using TopLink JPA, you have the flexibility of expressing persistence metadata using
standard JPA annotations, deployment XML, or both. Optionally, you can take
advantage of TopLink JPA annotation and persistence unit extensions.

About Developing TopLink Mappings

13-4 User's Guide for Oracle JDeveloper

13.1.5 Creating Project Metadata
A TopLink project contains the mapping metadata that the TopLink runtime uses to
map objects to a data source. The project is the primary object used by the TopLink
runtime. The principal contents of project metadata include the following:

■ Descriptors

■ Mappings

■ Data Source Login Information

Using JPA, TopLink runtime constructs an in-memory project based on the employed
annotations, persistence.xml, orm.xml, and TopLink JPA extensions.

13.1.6 Creating Session Metadata
The TopLink Session configuration file (sessions.xml) allows you to easily manage
all of the sessions for a specific project. You can fully customize the information for
each session, including your data source login information, JTA transaction usage, and
caching.

A TopLink session contains a reference to a particular project.xml file, plus the
information required to access the data source. The session is the primary object used
by your application to access the features of the TopLink runtime.

The agent responsible for creating and accessing session metadata differs, depending
on whether or not you are creating a CMP project. In a POJO project, your application
acquires and accesses a session directly. In a CMP project, your application indirectly
accesses a session acquired internally by the TopLink runtime.

Using TopLink JPA, the TopLink runtime constructs an in-memory session based on
any combination of JPA annotations, persistence.xml, orm.xml, and TopLink JPA
annotation and persistence.xml property extensions. The use of a sessions.xml file
is optional.

13.1.7 Using TopLink Descriptors
TopLink uses descriptors to store the information that describes how a particular class
can be represented by a data source. Descriptors own mappings that associate class
instance variables with a data source and transformation routines that are used to store
and retrieve values. As such, the descriptor acts as the connection between a Java
object and its data source representation.

Two objects – a source (parent or owning) object and a target (child or owned) object
are related by aggregation if there is a strict one-to-one relationship between them, and
all the attributes of the target object can be retrieved from the same data source
representation as the source object. This means that if the source object exists, then the
target object must also exist, and if the source object is destroyed, then the target object
is also destroyed.

JDeveloper enables you to create the following TopLink descriptor types:

■ Relational Descriptors

■ EIS Descriptors

■ XML Descriptors

About Developing TopLink Mappings

Developing TopLink Mappings 13-5

13.1.7.1 Relational Descriptors
Relational descriptors describe Java objects that you map to tables in a relational
database. Using relational descriptors in a relational project, you can configure
relational mappings. In a relational project, you can designate the descriptor as an
aggregate, enabling you to configure an aggregate mapping, one that associates data
members in the target object with fields in the source object's underlying database
tables.

When you designate a relational descriptor as an aggregate, TopLink lets you specify a
mapping type for each field in the target class, but defers associating the field with a
database table until you configure the aggregate object mapping in the source
descriptor. In other words, the target class descriptor defines how each target class
field is mapped, but the source class descriptor defines where each target class field is
mapped. This lets you share an aggregate object among many parent descriptors
mapped to different tables.

13.1.7.2 EIS Descriptors
Describes Java objects that you map to an EIS data source by way of a JCA adapter. EIS
descriptors enable you to configure EIS mappings when creating an EIS project.

13.1.7.3 XML Descriptors
Describes Java objects that you map, in memory, to complex types in XML documents
defined by an XML schema document (XSD). Using XML descriptors in an XML
project, you can configure XML mappings in memory, to XML elements defined by an
XSD.

13.1.8 Using TopLink Mappings
TopLink transforms the data from an object representation to a representation specific
to a data source. This transformation is called mapping and it is the core of a TopLink
project. A mapping corresponds to a single data member of a domain object. It
associates the object data member with its data source representation and defines the
means of performing the two-way conversion between the object and data source. A
TopLink map belongs to a TopLink session, the facade through which applications
access TopLink functionality. The available mapping types may vary, depending on
the TopLink map and TopLink descriptor.

13.1.8.1 Relational Mapping Types
The relational mappings transform any object data member type to a corresponding
relational database representation in any supported relational database. Use them to
map simple data types including primitives (such as int), JDK classes (such as String),
and large object (LOB) values. You can also use them to transform object data
members that reference other domain objects by way of association where data source
representations require object identity maintenance (such as sequencing and back
references) and possess various types of multiplicity and navigability. The appropriate
mapping class is chosen primarily by the cardinality of the relationship

Table 13–1 illustrates the relational mapping types build maps using the TopLink
concepts of directionality, transformers, converters, and EJB 2.n CMP relational
mapping.

About Developing TopLink Mappings

13-6 User's Guide for Oracle JDeveloper

13.1.8.2 EIS Mapping Types
TopLink enterprise information system (EIS) mappings provide support for accessing
legacy data sources and enterprise applications through Java EE Connector
architecture (JCA) adapter. TopLink EIS mappings use the JCA Common Client
Interface (CCI) to access the EIS through its resource adapter. This provides the ability
to directly map from an existing Java object model to any transactional data source,
such as mainframes with flat file/hierarchical data. An EIS mapping transforms object
data members to the EIS record format defined by the object's descriptor.

Table 13–2 illustrates the EIS mapping types that TopLink provides:

Table 13–1 Relational Mapping Types

Mapping Type Description

Direct-to-field Map a Java attribute directly to a database field.

Direct-to-XMLType Map Java attributes to an XMLType column in an Oracle
Database.

One-to-one Map a reference to another persistent Java object to the database.

Variable one-to-one Map a reference to an interface to the database.

One-to-many Map Java collections of persistent objects to the database.

Many-to-many Use an association table to map Java collections of persistent
objects to the database.

Direct collection Map Java collections of objects that do not have descriptors

Direct map Direct map mappings store instances that implement
java.util.Map.

Aggregate object Create strict one-to-one mappings that require both objects to
exist in the same database row.

Transformation Create custom mappings where one or more fields can be used
to create the object to be stored in the attribute.

Table 13–2 EIS Mapping Types

Mapping Type Description

Direct mapping Map a simple object attribute directly to an EIS record.

Composite direct collection
mapping

Map a collection of Java attributes directly to an EIS record.

Composite object mapping Map a Java object to an EIS record in a privately owned
one-to-one relationship. Composite object mappings represent a
relationship between two classes.

Composite collection
mapping

Map a Map or Collection of Java objects to an EIS record in a
privately owned one-to-many relationship.

One-to-one mapping Define a reference mapping that represents the relationship
between a single source object and a single mapped persistent
Java object.

One-to-many mapping Define a reference mapping that represents the relationship
between a single source object and a collection of mapped
persistent Java objects.

Transformation mapping Create custom mappings where one or more EIS record fields
can be used to create the object to be stored in a Java class's
attribute.

About Developing TopLink Mappings

Developing TopLink Mappings 13-7

13.1.8.3 XML Mapping Types
The XML mappings transform object data members to the XML elements of an XML
document whose structure is defined by an XML schema document (XSD). You can
map the attributes of a Java object to a combination of XML simple and complex types
using a wide variety of XML mapping types. TopLink stores XML mappings for each
class in the class descriptor. TopLink uses the descriptor to instantiate objects mapped
from an XML document and to store new or modified objects as an XML document.

Table 13–3 indicates the XML mapping types you can use to map the attributes of a
Java object to a combination of XML simple and complex types:

13.1.9 Understanding the TopLink Editor
Use the TopLink editor to configure and map Java classes to different data sources,
including relational databases, enterprise information systems (EIS), and XML
schemas without using code. The TopLink editor supports multiple mapping
standards, including EJB 3.0 JPA.

The TopLink editor displays the information or properties specific to the element
selected in the Application Navigator or the Structure view. For example, selecting
TopLink project elements in the Application Navigator, such as a the TopLink Map or
the sessions configuration file (sessions.xml), enables you to configure their properties
in the TopLink editor. Likewise, selecting TopLink Maps, descriptors, and mapped or
unmapped attributes in the Structure view results in the display of their respective
properties in the TopLink editor.

13.1.9.1 Managing TopLink Maps
The TopLink Map contains the information about how classes map to database tables
or XML schema. Use the TopLink editor to edit each component of the mappings,
including:

■ Database information, such as driver, URL, and login information.

Table 13–3 XML Mapping Types

Mapping Type Description

XML Direct Mapping Map a simple object attribute to an XML attribute or text node.

XML Composite Direct
Collection Mapping

Map a collection of simple object attributes to XML attributes or
text nodes.

XML Composite Object
Mapping

Map any attribute that contains a single object to an XML
element. The TopLink runtime uses the descriptor for the
referenced object to populate the contents of that element.

XML Composite Collection
Mapping

Map an attribute that contains a homogenous collection of
objects to multiple XML elements. The TopLink runtime uses the
descriptor for the referenced object to populate the contents of
those elements.

XML Any Object Mapping The XML Any Object mapping is similar to the XML Composite
Object mapping except that the reference object may be of
different types (including String), not necessarily related to
each other through inheritance or a common interface.

XML Any Collection
Mapping

The XML Any Collection mapping is similar to the XML
Composite Collection mapping except that the referenced objects
may be of different types (including String), not necessarily
related to each other through inheritance or a common interface.

XML Transformation
Mapping

Create custom mappings where one or more XML nodes can be
used to create the object to be stored in a Java class's attribute.

About Developing TopLink Mappings

13-8 User's Guide for Oracle JDeveloper

■ Mapping defaults, such as identity map and cache options.

To configure a TopLink Map, choose Application Navigator context menu for a
TopLink Map (for example, tlMap) Open or choose the Structure view for TopLink
Map. The TopLink editor displays the properties for the object map depending on its
type, such as relational, or EIS. When using the TopLink editor for relational object
maps, for example, you can configure the sequencing policy. For more information
about TopLink editor, see Oracle Fusion Middleware Developer's Guide for Oracle
TopLink.

TopLink mappings use descriptors to store the information that describes how an
instance of a particular class can be represented in the data source. To configure a
map's descriptors, choose Structure view for tlMap descriptor. For example, using the
editor, you can improve application performance by creating named queries and also
prevent users from overwriting each other's work by configuring locking policies.

TopLink mappings define how an object's attributes are represented in the data source.
The Structure view enables you to configure the mappings for the descriptor's
attributes by choosing Structure view for tlMap descriptor attribute Map as context
menu mapping type.

13.1.9.2 Managing TopLink Sessions
The TopLink Sessions configuration file (sessions.xml) enables you to manage all of the
sessions for a specific project. For more information about TopLink sessions, see Oracle
Fusion Middleware Developer's Guide for Oracle TopLink.

By choosing Structure view for sessions.xml Open, you can use the TopLink editor to
fully customize the information for each session, such as data source login
information, JTA transaction usage, and caching. You can also use the TopLink editor
to create and configure individual sessions and the session brokers that manage them.
To manage session brokers, Structure view for sessions.xml session broker.

13.1.9.3 Managing Persistence Configurations
The TopLink editor enables you to configure the persistence.xml file, which packages
entities in TopLink JPA projects. By choosing Application Navigator for
persistence.xml Open, you can create persistence units.

The Structure window displays JPA descriptors and persistence units. By choosing
Structure view for persistence.xml persistence unit, you can configure the persistence
unit.

13.1.9.4 The TopLink Structure View Toolbar
The Structure view displays detailed information about the TopLink element selected
in Application Navigator or TopLink editor. For example:

■ When working with an EJB or Java class, the Structure view displays the related
TopLink descriptor and its mapping attributes.

■ When working with a TopLink sessions configuration file, the Structure view
displays sessions and session brokers.

■ When working with a persistence configuration, the Structure view displays JPA
descriptors and persistence units.

The Structure view contains a toolbar that provides access to modify descriptors,
mapping, sessions, and persistence units. This toolbar is context-sensitive; the buttons
displayed vary depending on the element that you select in the Structure view.

About Developing TopLink Mappings

Developing TopLink Mappings 13-9

13.1.9.5 TopLink Project Elements in the Application Navigator
The Application Navigator displays each element associated with your TopLink
project, including the TopLink Map, deployment descriptors, and sessions
configuration information.

TopLink project elements in the Application Navigator may include:

■ TopLink folder

■ Sessions configuration file (sessions.xml)

■ TopLink map (tlMap)

13.1.9.6 TopLink Editor Tabs in the Editor Window
The TopLink Editor displays your TopLink mapping information. The information in
the editor will vary, depending on the TopLink element you selected in the
Application Navigator or Structure view.

Table 13–4 Icons in the TopLink Structure View Toolbar

Icon Name Function

Add or
Remove
Descriptors

Adds or removes descriptors from the TopLink map

Automap Attempts to automap the selected descriptor or attribute to a
similarly named database field.

Aggregate
Descriptor

Changes the descriptor type to aggregate descriptor, meaning that
the descriptor's definitions for table, primary key and other
options are from the owning descriptor.

Class
Descriptor

Changes the descriptor type to class descriptor.

Map As Selects a mapping type for the selected attribute.

New
Persistence
Unit Click to create a new persistence unit.

Create a
New
Database or
Server
Session

Click to create a session within the sessions configuration file.

Create
Session
Broker Click to create a new session broker.

Create a
New
Named
Connection
Pool

Click to create a new named connection pool, a connection pool
used for any purpose, but typically for security purposes.

Add the
Sequence
Connection
Pool

Click to add a connection pool exclusively used for sequencing.
TopLink uses the sequence connection pool whenever it needs to
assign an identifier to a new object.

About Developing TopLink Mappings

13-10 User's Guide for Oracle JDeveloper

13.1.9.7 TopLink Project Elements in the Structure View
The Structure view displays detailed information about the TopLink element selected
in Application Navigator or TopLink Editor:

■ When working with an EJB or Java class, the Structure view displays the related
TopLink descriptor and its mapping attributes.

■ When working with a TopLink sessions configuration file, the Structure view
displays your sessions and session brokers.

■ When working with a persistence configuration, the Structure view displays your
JPA descriptors and persistence units.

When you select an item in the Structure view, the following properties appear in the
TopLink Editor:

■ TopLink map (tlMap)

■ Descriptor

■ Mapped Java attribute (one-to-one mapping)

■ Unmapped attribute

You can perform specific functions for an item by selecting the item in the Application
Navigator and then:

■ Right-clicking the object in Structure view and selecting the function from the
pop-up menu.

■ Selecting the object in Structure view and clicking a button in the Structure toolbar.

13.1.9.8 Using the TopLink Structure View Toolbar
The TopLink Editor Structure view contains a toolbar that offers quick access to
modify descriptors and mappings. This toolbar is context-sensitive; the actual buttons
displayed will vary, depending on which element in the Structure view is selected.

13.1.9.9 TopLink Mapping Status Report in Message Log
Error and status messages from the TopLink Editor appear in the TopLink Problems
window.

13.1.9.10 Configuring TopLink Preferences
You can configure which persistence provider to use, which JPQL editor to use, and
query types and formats.

To configure TopLink Editor preferences:
1. Select Tools > Preferences.

2. In the Categories list, expand TopLink Customization.

3. Configure JPA and Mappings options.

4. Complete each field and click OK.

13.1.9.11 How to Create a TopLink Mapping Project
JDeveloper stores the TopLink descriptors (for more information, see Section 13.1.7,
"Using TopLink Descriptors") and mappings (for more information, see Section 13.1.8,
"Using TopLink Mappings") in a TopLink map (.mwp file), and sessions in the
sessions.xml file. The TopLink map contains the information about how classes map to

About Developing TopLink Mappings

Developing TopLink Mappings 13-11

database tables. Use the TopLink Editor to edit each component of the mappings,
including:

■ Database information, such as driver, URL, and login information.

■ Mapping defaults, such as cache options.

When you select a TopLink map (or an element in a TopLink map), its attributes
display in the TopLink Editor.

TopLink maps persistent entities to the database in the application using the
descriptors and mappings you build with JDeveloper Mapping Editor. The Mapping
Editor supports such approaches to project development as:

■ Importing classes and tables for mapping.

■ Importing classes and generating tables and mappings.

■ Importing tables and generating classes and mappings.

■ Creating both class and table definitions.

Although JDeveloper Mapping Editor offers the ability to generate persistent entities
or the relational model components for an application, these utilities are intended only
to assist in rapid initial development strategies–not complete round-trip application
development.

To create a new TopLink-enabled project:
1. Select File > New.

2. In the Categories list, choose General > Projects.

3. In the Items list, select TopLink Project.

4. Click OK.

 The New TopLink-Enabled Project dialog displays.

5. Complete each field and click OK.

JDeveloper creates a new project, including an object map.

 To add a TopLink map to an existing JDeveloper project:
1. Right-click an existing project in the Application Navigator and choose New.

2. In the Categories list, choose Business Tier > TopLink/JPA.

3. In the Items list, select TopLink Object Map.

4. Complete each field and click OK.

JDeveloper creates a TopLink map file in an existing project.

13.1.9.12 How to Use Converter Mappings
TopLink no longer uses the following direct mapping types:

■ Type conversion

■ Object type

■ Serialized object

Instead, TopLink uses a direct-to-field mapping with a specialized converter. To
generate backward-compatible deployment XML files, use the Generate Deprecated
Direct Mappings option on the General page of the TopLink Map options.

Developing TopLink JPA Projects

13-12 User's Guide for Oracle JDeveloper

13.1.9.13 How to Automap TopLink Descriptors
The TopLink Automap wizard can automatically map your Java class attributes to a
similarly named database field. The Automap wizard only creates mappings for
unmapped attributes; it does not change previously defined mappings.

You can use the Automap wizard for an entire project or for specific classes or
descriptors.

To automap TopLink descriptors:
1. In the Application Navigator, select a TopLink Map.

The TopLink Map (and its attributes) appear in the Structure window.

2. In the Structure window, right-click the TopLink Map (or a specific Java class or
TopLink descriptor) and choose Automap.

The Automap Wizard wizard displays. Complete each page of the wizard.

13.1.9.14 Data Source Login Information
For TopLink mappings, you can configure a session login in the session metadata that
specifies the information required to access the data source.

13.2 Developing TopLink JPA Projects
Use a TopLink JPA (Java Persistence API) project for persisting Java objects based on
Plain Old Java Objects (POJOs).

The Java Persistence API is a lightweight framework for Java persistence based on
Plain Old Java Objects. JPA is a part of EJB 3.0 specification. JPA provides an
object-relational mapping approach that enables you to declaratively define how to
map Java objects to relational database tables in a standard, portable way. In addition,
this API enables you to create, remove and query across lightweight Java objects
within both an EJB 3.0-compliant container and a standard Java SE 5 and Java SE 6
environment.

The TopLink implementation of JPA is provided by EclipseLink. For more information,
see http://wiki.eclipse.org/EclipseLink.

You can perform object relational mapping with TopLink JPA through the following:

Table 13–5 Methods for Performing Object Relational Mapping with TopLink JPA

Method Description

Using Metadata
Annotations

 An annotation is a simple, expressive means of decorating Java
source code with metadata that is compiled into the
corresponding Java class files for interpretation at run time by a
JPA persistence provider to manage persistent behavior.You can
use annotations to configure the persistent behavior of your
entities.

Using XML You can use XML mapping metadata on its own, or in
combination with annotation metadata, or you can use it to
override the annotation metadata.

Defaulting Properties Each annotation has a default value. A persistence engine
defines defaults that apply to the majority of applications. To
override the default value, you need only to supply the
appropriate values. A configuration value is not a requirement,
but the exception to the rule. This is known as configuration by
exception.

Developing TopLink JPA Projects

Developing TopLink Mappings 13-13

13.2.1 How to Create and Configure a JPA Persistence Descriptor (persistence.xml)
Use the persistence configuration file (persistence.xml) file to package your entities.

To create a persistence configuration:
1. Select File > New.

2. In the Categories list, select Business Tier > TopLink/JPA.

3. In the Items list, select JPA Persistence Descriptor.

4. Click OK.

The New JPA Persistence Descriptor dialog displays.

5. Complete the fields to create a default persistence unit for the new JPA persistence
descriptor file (persistence.xml) and click OK.

Example 13–1 contains a sample persistence configuration.

Example 13–1 Sample Persistence Configuration (persistence.xml)

<?xml version="1.0" encoding="windows-1252" ?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence

Configuring an Entity You can configure an entity's identity, as well as the locking
technique and sequence generation option for the entity.

Declaring Basic Property
Mappings

Simple Java types are mapped as part of the immediate state of
an entity in its fields or properties. Mappings of simple Java
types are called basic mappings. By default, TopLink persistence
provider automatically configures a basic mapping for simple
types.

Mapping Relationships TopLink persistence provider requires that you map
relationships explicitly. Use such annotations as @OnetoOne,
@ManytoOne, @OnetoMany, @ManytoMany, @Mapkey, and
@Orderby to specify the type and characteristics of entity
relationships that fine-tune how the database implements
relationships.

Mapping Inheritance By default, TopLink persistence provider assumes that all
persistent fields are defined by a single entity class. Use the
@Inheritance, @MappedSuperclass,
@DiscriminatorColumn, and @DiscriminatorValue
annotations if your entity class inherits some or all persistent
fields from one or more superclasses.

Mapping Embedded Objects An embedded object does not have its own persistent identity. It
is dependent upon an entity for its identity. By default, TopLink
persistence provider assumes that every entity is mapped to its
own table. Use the following annotations to override this
behavior for entities that are owned by other entities:

■ @Embeddable

■ @Embedded

■ @AttributeOverride

■ @AttributeOverrides

■ @AssociationOverride

■ @AssociationOverrides

Table 13–5 (Cont.) Methods for Performing Object Relational Mapping with TopLink JPA

Method Description

Developing TopLink JPA Projects

13-14 User's Guide for Oracle JDeveloper

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="myPersistenceUnit">
 <properties>
 <property name="toplink.target-database" value="Oracle11g"/>
 <property name="toplink.target-server" value="WebLogic_10"/>
 </properties>
 </persistence-unit>
 <persistence-unit name="myPersitenceUnitName">
...
 </persistence-unit>
</persistence>

To configure a persistence configuration (persistence.xml) file:
1. Select the persistence.xml node in the Application Navigator.

2. In the Structure window, select the JPA Persistence Descriptor.

3. Complete the General and Metadata Preferences tabs on the JPA Persistence
descriptor (persistence.xml) page.

13.2.2 How to Create Persistence Units

To create a persistence unit:
1. Double-click the persistence configuration file (persistence.xml) in the

Application Navigator or Structure window.

2. On the General page, click Create New Persistence Unit to create a new
persistence unit.

3. Complete each field on the New Persistence Unit dialog.

4. On the Metadata Preferences page, specify how to persist new mapping metadata.
You can specify annotations or JPA mapping descriptors. In order to make this
choice, you must first create at least one orm.xml mapping descriptor file. (See
Section 13.2.4, "How to Create JPA Descriptors.")

Example 13–2 contains a sample persistence unit.

Example 13–2 Example Persistence Unit

...
 <persistence-unit name="myPersitenceUnitName"
 transaction-type="RESOURCE_LOCAL">
 <mapping-file>META-INF/orm.xml</mapping-file>
 <exclude-unlisted-classes/>
 <properties>
 <property name="eclipselink.jdbc.driver"
 value="oracle.jdbc.OracleDriver"/>
 <property name="eclipselink.jdbc.url"
 value="jdbc:oracle:thin:@localhost:1521:XE"/>
 <property name="eclipselink.jdbc.user" value="scott"/>
 <property name="eclipselink.jdbc.password"
 value="3E20F8982C53F4ABA825E30206EC8ADE"/>
 <property name="eclipselink.target-database" value="Oracle11g"/>
 <property name="eclipselink.logging.level" value="FINER"/>
 <property name="eclipselink.jdbc.native-sql" value="true"/>
 <property name="eclipselink.target-server" value="WebLogic_10"/>
 </properties>

Developing TopLink JPA Projects

Developing TopLink Mappings 13-15

 </persistence-unit>
...

13.2.3 How to Configure Persistence Units
The tabs of the Persistence Unit page (accessed by first selecting persistence.xml
in the Application Navigator and then expanding the JPA descriptor in the Structure
view) enable you to configure a persistence unit.

Configuring Persistence Units encompasses many steps, such as configuring:

■ General information

■ Connection information

■ TopLink information

■ Schema generation information

■ Properties

■ Metadata information

To configure the general information for a JPA persistence unit:
1. Select the JPA persistence descriptor (persistence.xml) in the Application

Navigator.

2. Select the persistence unit in the Structure window.

The Persistence Unit page displays.

3. Complete the fields on the General tab to specify how the persistence unit
connects to the application server and database.

To configure the connection information for a JPA persistence unit:
1. Select the JPA persistence descriptor (persistence.xml) in the Application

Navigator.

2. Select the persistence unit in the Structure window.

The Persistence Unit page displays.

3. Complete the fields on the Connection tab to select a persistence provider and
configure its general properties (such as JPA mapping descriptors, Java archives,
and mapped classes).

To configure the TopLink session-specific information for a JPA persistence
unit:
1. Select the JPA persistence descriptor (persistence.xml) in the Application

Navigator.

2. Select the persistence unit in the Structure window.

The Persistence Unit page displays.

3. Complete the fields on the TopLink Customization tab to specify TopLink-specific
information for the persistence unit.

To configure the DDL generation options:
Although most JPA persistence providers provide this support, these options are
TopLink-specific.

Developing TopLink JPA Projects

13-16 User's Guide for Oracle JDeveloper

1. Select the JPA persistence descriptor (persistence.xml) in the Application
Navigator.

2. Select the persistence unit in the Structure window.

The Persistence Unit page displays.

3. Complete the fields on the Schema Generation tab to specify how the TopLink
generates the DDL scripts.

To configure the non-TopLink specific properties for the persistence unit:
1. Select the JPA persistence descriptor (persistence.xml) in the Application

Navigator.

2. Select the persistence unit in the Structure window.

The Persistence Unit page displays.

3. Complete the fields on the Properties tab to specify the general, non-TopLink
specific properties.

To configure metadata overrides for a persistence unit:
1. Select the JPA persistence descriptor (persistence.xml) in the Application

Navigator.

2. Select the persistence unit in the Structure window.

The Persistence Unit page displays.

3. Complete the fields on the Metadata Preferences tab to specify the information for
the mapping descriptor.

This tab is available only if the persistence unit contains a JPA mapping descriptor.

13.2.4 How to Create JPA Descriptors
The JPA mapping descriptor is used as an alternative to annotations. Any information
you add as a JPA mapping descriptor will override the Java annotations.

To create new JPA mapping descriptors:
1. Select the persistence configuration (persistence.xml) in the Application

Navigator.

2. Select the General tab.

3. In the JPA Mapping Descriptors area, click the Create New JPA Mapping
Descriptor button.

4. Complete the fields on the dialog and click OK.

JDeveloper adds the Mapping Descriptors (orm.xml) to the project.

5. Complete the following tabs for each JPA descriptor on the ORM (orm.xml) page:

■ General

■ Persistence Unit Defaults

■ Generators

■ Queries

Developing TopLink JPA Projects

Developing TopLink Mappings 13-17

To configure the general information for a JPA mapping descriptor:
1. Select the JPA mapping descriptor (orm.xml) in the Application Navigator.

2. Select the descriptor in the Structure window.

The ORM (orm.xml) page appears.

3. Complete the fields on the General tab to select a persistence provider and
configure its general properties (such as mapped classes, development database,
and other defaults).

13.2.4.1 How to Configure Persistence Unit Defaults
You can configure the settings that apply to persistence units and associated entities
that include this mapping descriptor. These values will be overridden by any
configuration settings at the persistence unit-level.

To configure persistence unit defaults:
1. Select the JPA mapping descriptor (orm.xml) in the Application Navigator.

2. Select the descriptor in the Structure window.

The ORM (orm.xml) page appears.

3. Complete the fields on the Persistence Unit Defaults tab to configure the access
type, entity listeners, and other defaults.

13.2.4.2 How to Configure Generators
You can define the generators used by this mapping descriptor.

To configure generators:
1. Select the JPA mapping descriptor (orm.xml) in the Application Navigator.

2. Select the descriptor in the Structure window.

The ORM (orm.xml) page appears.

3. Complete the fields on the Generators tab to configure the database sequence and
table generators.

13.2.4.3 How to Configure Queries
You can define the JPQL and native queries in this mapping descriptor for use in
associated persistence units.

To configure queries:
1. Select the JPA mapping descriptor (orm.xml) in the Application Navigator.

2. Select the descriptor in the Structure window.

The ORM (orm.xml) page appears.

13.2.5 Using JPA Mappings
Oracle TopLink provides a complete, JPA 2.0-compliant JPA implementation. It
provides complete compliance for all of the mandatory features, many of the optional
features, and some additional features.

Developing TopLink Relational Projects

13-18 User's Guide for Oracle JDeveloper

TopLink offers support for deployment within an EJB 3.0 container or outside the
container. This includes Web containers, other non-EJB 3.0 Java EE containers, and the
Java SE environment.

Through its pluggable persistence capabilities TopLink can function as the persistence
provider in any compliant EJB 3.0 container.

13.2.6 Using TopLink Extensions
The Java Persistence API (JPA), part of the Java Enterprise Edition 5 (Java EE 5) EJB 3.0
specification, greatly simplifies Java persistence. It provides an object relational
mapping approach that allows you to declaratively define how to map Java objects to
relational database tables in a standard, portable way that works both inside a Java EE
5 application server and outside an EJB container in a Java Standard Edition (Java SE)
5 application.

TopLink JPA provides extensions to what is defined in the JPA specification. These
extensions come in persistence unit properties, query hints, annotations, TopLink's
own XML metadata, and custom API.

13.3 Developing TopLink Relational Projects
The TopLink Editor provides complete support for creating relational projects that
map Java objects to a conventional relational database accessed using JDBC. Use a
TopLink relational project for transactional persistence of Java objects to a
conventional relational database or to an object-relational database that supports data
types specialized for object storage, both accessed using JDBC.

To create relational projects for an object-relational database, you must create the
project using Java code. You can create a relational project for transactional persistence
of Java objects to an object-relational database that supports data types specialized for
object storage (such as Oracle Database) accessed using JDBC.

13.3.1 How to Create Relational Projects and Object Maps
To create relational projects for an object-relational database, you must create the
project using Java code. You can create a relational project for transactional persistence
of Java objects to an object-relational database that supports data types specialized for
object storage (such as Oracle Database) accessed using JDBC.

To create a new relational project:
1. Select File > New.

2. In the Categories list select General > Projects.

3. In the Items list, select TopLink Project.

4. Click OK.

The New TopLink-Enabled Project dialog displays.

5. Complete the fields on the dialog to specify the project name, project location, and
TopLink map.

6. In the Data Source area, select Database, then specify your specific database
information.

7. Click OK.

Developing TopLink Relational Projects

Developing TopLink Mappings 13-19

JDeveloper creates a new project, including the TopLink map and TopLink
sessions configuration file (sessions.xml).

To create a new TopLink object map for a relational project:
1. Select File > New.

2. In the Categories list select Business Tier > TopLink/JPA.

3. In the Items list, select TopLink Object Map.

4. Click OK.

The New TopLink Object Map dialog displays.

5. Complete the fields on the dialog to specify the TopLink map.

6. In the Data Source area, select Database, then specify your specific database
information.

7. Click OK.

JDeveloper creates a new project, including the TopLink map and TopLink
sessions configuration file (sessions.xml).

13.3.2 How to Create Relational Descriptors
Relational descriptors describe Java objects that you map to tables in a relational
database. In a relational project, you can designate the descriptor as a class descriptor
or an aggregate descriptor.

A class descriptor is applicable to any persistent object, but not an aggregate object.
Using a class descriptor, you can configure any relational mapping except aggregate
collection and aggregate object mappings.

An aggregate object is an object that is strictly dependent on its owning object.
Aggregate descriptors do not define a table, primary key, or many of the standard
descriptor options as they inherit these from their owning descriptor. If you want to
configure an aggregate mapping to associate data members in a target object with
fields in a source object's underlying database tables, you must designate the target
object's descriptor as an aggregate.

You can configure inheritance for a descriptor designated as an aggregate, however, in
this case, all the descriptors in the inheritance tree must be aggregates. Aggregate and
class descriptors cannot exist in the same inheritance tree.

You can change a class descriptor to an aggregate descriptor, or remove the aggregate
designation from a relational descriptor and return it to its default type. For more
information, see Section 13.3.3, "How to Configure Relational Descriptors.".

To create new TopLink descriptors:
1. Right-click the TopLink Map in the Application Navigator and select Add or

Remove Descriptors.

2. Select the packages and classes from which to create TopLink descriptors and click
OK.

Note: When you change a class descriptor to an aggregate descriptor,
the descriptor's existing information is permanently lost. If you
convert the descriptor back to a class descriptor, you will have to
configure it again.

Developing TopLink XML Projects

13-20 User's Guide for Oracle JDeveloper

JDeveloper adds the descriptors to the TopLink Map in the Structure window.

13.3.3 How to Configure Relational Descriptors
You can configure a relational descriptor as a Class type or an Aggregate type. By
default, when you add a Java class to a relational project, JDeveloper automatically
creates a relational class descriptor for it.

You can change a class descriptor to an aggregate descriptor.

To configure a TopLink relational class descriptor to an aggregate descriptor:
1. Select the TopLink Map in the Application Navigator.

2. In the Structure window, right-click the descriptor and from the Descriptor Type
submenu, select Aggregate.

The selected descriptor is now an aggregate descriptor.

3. To convert an aggregate descriptor to a class descriptor, right-click the descriptor
and from the Descriptor Type submenu, select Class.

13.4 Developing TopLink XML Projects
Use an XML project for nontransactional conversions between Java objects and XML
documents using JAXB (Java Architecture for XML Binding) which defines
annotations to control the mapping of Java objects to XML.

The TopLink runtime performs XML data conversion based on one or more XML
schemas. In an XML project, the TopLink Editor directly references schemas in the
deployment XML and exports mappings configured with respect to the schemas you
specify.

TopLink provides an extra layer of functions on top of JAXB. In particular, TopLink
provides the TopLink JAXB compiler, which generates both JAXB- and
TopLink-specific files.

The JAXB complier generates implementation classes that are named according to the
content, element, or implementation of the name attribute in the XSD. The generated
implementation classes are simple domain classes with private attributes for each
JAXB property. Public get and set methods return or set attribute values.

The JAXB complier generates TopLink project files, session.xml files, and TopLink
project XML files. The TopLink JAXB compiler generates a single class called
DescriptorAfterLoads if any implementation class contains a mapping to a type
safe enumeration.

TopLink can validate both complete object trees and subtrees against the XML schema
that was used to generate the implementation classes. In addition, TopLink will
validate both root objects (objects that correspond to the root element of the XML
document) and non-root objects against the schema used to generate the object's
implementation class.

JAXB provides a standard Java object-to-XML API. JAXB defines annotations to
control the mapping of Java objects to XML. For more information, see
http://www.oracle.com/technetwork/java/index-jsp-137051.html.

JAXB also defines a default set of mappings which TopLink uses to marshal a set of
objects into XML, and unmarshall an XML document into objects. TopLink provides
an extra layer of functions on top of JAXB. It allows for the creation and subsequent

Developing TopLink XML Projects

Developing TopLink Mappings 13-21

manipulation of TopLink mappings from an existing object model, without requiring
the recompilation of the JAXB object model.

13.4.1 How to Create XML Projects

To create a new XML project:
1. Select File > New.

2. In the Categories list select General > PropertiesTopLink.

3. In the Items list, select TopLink Project.

4. Click OK.

The New TopLink-Enabled Map dialog appears.

5. Complete the fields on the dialog to specify the project name, project location, and
TopLink map.

6. In the Data Source area, select Database, then specify your specific database
information.

7. Click OK.

 JDeveloper adds the TopLink map and TopLink sessions configuration file
(sessions.xml).

13.4.2 How to Create XML Object Maps

To create a new TopLink object map:
1. Select File > New.

2. In the Categories list select Business Tier > TopLink/JPA.

3. In the Items list, select TopLink Object Map.

4. Click OK.

The New TopLink-Enabled Map dialog appears.

5. Complete the fields on the dialog to specify the project name, project location, and
TopLink map.

6. In the Data Source area, select XML.

7. Click OK.

 JDeveloper adds the TopLink map and TopLink sessions configuration file
(sessions.xml).

13.4.3 How to Create XML Descriptors

To create new TopLink descriptors for an XML project:
1. Right-click the TopLink Map in the Application Navigator and select Add or

Remove Descriptors.

2. Select the packages and classes from which to create TopLink descriptors and click
OK.

JDeveloper adds the descriptors to the TopLink element in the Structure window.

3. Complete the fields on the XML Descriptor page to configure the descriptor.

Developing TopLink EIS Projects

13-22 User's Guide for Oracle JDeveloper

13.4.4 How to Add XML Schemas
If you have an existing data model (XML schema document), but you do not have a
corresponding object model (Java classes for domain objects), use this procedure to
create your TopLink project and automatically generate the corresponding object
model.

To add an XML schema:
1. Select the TopLink map in the Application Navigator.

2. In Structure window, right-click the Schemas element and select Import Schema.

3. Complete the fields on the dialog to specify the XML schema to import.

4. Click OK.

JDeveloper adds the schema (tlmap) to the TopLink map

Using the TopLink JAXB compiler simplifies JAXB application development with
TopLink by automatically generating both the required JAXB files and the TopLink
files from your XML schema (XSD) document. Once generated, you can fine-tune XML
mappings without having to recompile your JAXB object model.

13.5 Developing TopLink EIS Projects
Use a TopLink EIS project for transactional persistence of Java objects to a
nonrelational data source accessed using a Java EE Connector Architecture (JCA)
adapter and EIS records.

Oracle recommends using EIS projects to integrate TopLink with a legacy or
nonrelational data source. TopLink provides support for mapping Java objects to EIS
mapped, indexed, and XML records, through J2C, using the TopLink mappings. J2C
provides a Common Client Interface (CCI) API to access nonrelational EIS. This
provides a similar interface to nonrelational data sources as JDBC provides for
relational data sources.

EIS includes legacy data sources, enterprise applications, legacy applications, and
other information systems. These systems include such sources as Customer
Information Control System (CICS), Virtual Storage Access Method (VSAM),
Information Management System (IMS), ADABASE database, and flat files. Oracle
recommends using EIS projects to integrate TopLink with a legacy or nonrelational
data source. Other methods of accessing EIS data sources include:

■ Using a specialized JDBC driver that allows connecting to an EIS system as if it
were a relational database. You could use a TopLink relational project with these
drivers.

■ Linking to or integrating with the EIS data from a relational database, such as
Oracle Database.

■ Using a proprietary API to access the EIS system. In this case it may be possible to
wrap the API with a JCA CCI interface to allow usage with a TopLink EIS project.

13.5.1 How to Create EIS Projects
Use an EIS project for transactional persistence of Java objects to a nonrelational data
source accessed using a Java EE Connector Architecture (JCA) adapter and EIS
records.

Developing TopLink EIS Projects

Developing TopLink Mappings 13-23

To create an EIS project:
1. Select File > New.

2. In the Categories list select General > Projects.

3. In the Items list select TopLink Project.

4. Click OK.

5. Complete the fields on the dialog to specify the project name, project location, and
TopLink map.

6. In the Data Source area, select EIS, then specify your specific EIS platform.

7. Click OK.

JDeveloper creates a new project, including the TopLink map and TopLink
sessions configuration file (sessions.xml).

13.5.2 How to Create EIS Object Maps
An EIS mapping transforms object data members to the EIS record format defined by
the object's descriptor.

To create a new TopLink object map for an EIS project:
1. Select File > New.

2. In the Categories list select Business Tier > TopLink/JPA.

3. In the Items list select TopLink Object Map.

4. Click OK.

5. Complete the fields on the dialog to specify the TopLink map.

6. In the Data Source area, select EIS, then specify your specific EIS platform.

7. Click OK.

JDeveloper adds the TopLink map to the project.

13.5.3 How to Create EIS Descriptors
EIS descriptors describe Java objects that you map to an EIS data source by way of a
JCA adapter.

To create an EIS descriptor:
1. Select the TopLink map in the Structure window.

2. Click the Add or Remove Descriptors from the Selected TopLink Map button.

3. Select the classes from which to create an EIS descriptor and click OK.

JDeveloper adds the EIS descriptors to the Structure window.

4. Complete the property tabs for the EIS Descriptor.

13.5.4 Using EIS Data Sources
For each EIS project, you must specify one of the following JCA data source platforms
that you will be using:

■ Oracle AQ

Developing TopLink Sessions

13-24 User's Guide for Oracle JDeveloper

■ Attunity Connect

■ IBM MQSeries

This platform configuration is overridden by the session login, if configured.

13.6 Developing TopLink Sessions
Each TopLink map belongs to aTopLink session. A session is the facade through which
an application accesses TopLink functionality. A session associates data source
platform information, data source login information, and mapping metadata for a
particular application. You can reuse mapping metadata in different applications by
defining different sessions.

TopLink session provides the primary access to the TopLink runtime. It enables
applications to perform persistence operations with the data source that contains
persistent objects. A session associates data source platform information, data source
login information, and mapping metadata for a particular application. You can reuse
mapping metadata in different applications by defining different sessions.

TopLink provides different session types, each optimized for different design
requirements and data access strategies. You can combine different session types in the
same application.

The TopLink Editor provides the following TopLink sessions:

■ Server and Client Sessions – Server sessions provide session management to a
single data source (including shared object cache and connection pools) for
multiple clients in a three-tier architecture using database or EIS platforms. This is
the most flexible, scalable, and commonly used session. You acquire a client
session from a server session at run time to provide access to a single data source
for each client.

■ Database Session – A database session provides a client application with a single
data source connection, for simple, standalone applications in which a single
connection services all data source requests for one user.

■ Session Broker and Client Sessions – A session broker provides session
management to multiple data sources for multiple clients by aggregating two or
more server sessions (can also be used with database sessions).

You acquire a client session from a session broker at run-time to provide access to
all the data sources managed by the session broker for each client.

Other session types are can be configured directly in Java code. For more information
about session types, see the Oracle Fusion Middleware Developer's Guide for Oracle
TopLink.

13.6.1 How to Create a New Sessions Configuration File
Each TopLink sessions configuration (sessions.xml file) can contain multiple sessions
and session brokers. In addition, you can specify a classpath for each sessions
configuration that applies to all the sessions it contains.

 To create a new sessions configuration file:
1. Select File > New.

2. In the Categories list, select Business Tier > TopLink/JPA.

3. In the Items list, select TopLink Sessions Configuration.

Developing TopLink Sessions

Developing TopLink Mappings 13-25

4. Click OK.

The Create TopLink Sessions Configuration dialog appears.

5. Complete each field on the dialog and click OK.

In Application Navigator, JDeveloper adds the sessions.xml file in the folder
where it was created and the default session to the sessions configuration node in
the Structure view.

13.6.2 How to Create Sessions
A TopLink session provides the primary access to the TopLink runtime. It is the means
by which your application performs all persistence operations with the data source
that contains persistent objects.

A session associates data source platform information, data source login information,
and mapping metadata for a particular application. You can reuse mapping metadata
in different applications by defining different sessions.

To create a new TopLink session:
1. In the Application Navigator, right-click a TopLink sessions configuration file and

select Open.

The TopLink sessions configuration file appears in the TopLink Editor, showing
the existing sessions and session brokers in this sessions configuration file.

2. Click Create a New Session.

3. Complete each field in the New Session dialog and click OK.

JDeveloper adds the new session to the sessions configuration node in the
Structure view.

13.6.3 Acquiring Sessions at Runtime
After you create and configure sessions, you can use the TopLink session manager to
acquire a session instance at run time. The TopLink session manager enables
developers to build a series of sessions that are maintained under a single entity. The
session manager is a static utility class that loads TopLink sessions from the
sessions.xml file, caches the sessions by name in memory, and provides a single
access point for TopLink sessions.

The session manager has two main functions: it creates instances of the sessions and it
ensures that only a single instance of each named session exists for any instance of a
session manager.

The session manager instantiates sessions as follows:

■ The client application requests a session by name.

■ The session manager looks up the session name in the sessions.xml file. If the
session name exists, the session manager instantiates the specified session;
otherwise, it raises an exception.

■ After instantiation, the session remains viable until you shut down the application.

Once you have a session instance, you can use it to acquire additional types of sessions
for special tasks. This is particularly useful for EJB applications in that an enterprise
bean can acquire the session manager and acquire the desired session from it.

Developing TopLink Sessions

13-26 User's Guide for Oracle JDeveloper

13.6.4 How to Create Session Brokers
The session broker is a mechanism that enables client applications to transparently
access multiple databases through a single TopLink session. A session broker may
contain both server sessions and database sessions. Oracle recommends that you use
the session broker with server sessions because server sessions are the most scalable
session type.

After you create and configure a session broker with server sessions, you can acquire a
client session from the session broker at run time to provide a dedicated connection to
all the data sources managed by the session broker for each client.

To create a new session broker:
1. In the Application Navigator, open the sessions configuration file

(sessions.xml).

The sessions configuration displays in the TopLink Editor.

2. Click Create a New Session Broker.

3. Complete each field in the dialog, select the sessions to add to the session broker,
and then click OK.

13.6.5 How to Create Data Source Logins
The TopLink sessions configuration file (sessions.xml) overrides any login information
that you specified in the TopLink map. You can create data source logins for relational
database or EIS data sources.

To create a data source:
1. Select the TopLink sessions configuration (sessions.xml) in the Application

navigator.

2. Expand the sessions node in the sessions.xml Structure view and then select
the TopLink session.

The TopLink session information appears in the TopLink Editor.

3. Select the Login tab.

4. Complete the Connection information.

13.6.6 How to Create Connection Pools
A connection pool is a service that creates and maintains a shared collection (pool) of
data source connections on behalf of one or more clients. The connection pool provides
a connection to a process on request, and returns the connection to the pool when the
process is finished using it. When it is returned to the pool, the connection is available
for other processes.

Because establishing a connection to a data source can be time-consuming, reusing
such connections in a connection pool can improve performance. TopLink uses
connection pools to manage and share the connections used by server and client
sessions. Reusing connections to a single data source reduces the number of
connections required and allows your application to support many clients.

To create a new connection pool.
1. Select the TopLink sessions configuration (sessions.xml) in the Application

navigator.

Developing TopLink Applications

Developing TopLink Mappings 13-27

2. Expand the sessions node in the sessions.xml Structure window and then
select the TopLink session.

3. Right-click the session and select New > Named Connection Pool from the
context menu.

4. Enter a name for the connection pool and click OK.

JDeveloper adds the connection pool to the Structure window.

5. Select the newly created connection pool.

Its properties appear in the Connection Pool page in the Editor window.

13.7 Developing TopLink Applications
Oracle TopLink is an advanced, object-persistence and object-transformation
framework that provides development tools and run-time capabilities that reduce
development and maintenance efforts, and increase enterprise application
functionality.

13.7.1 Using TopLink the Cache
The TopLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values.

TopLink uses the cache to:

■ Improve performance by holding recently read or written objects and accessing
them in-memory to minimize database access.

■ Manage locking and isolation level.

■ Manage object identity.

TopLink uses two types of cache:

■ Session Cache – A shared cache that services clients attached to a given session.
When a client session reads objects from, or writes them to, a data source, TopLink
saves a copy of the objects in the parent server session’s cache and makes them
accessible to all other processes in the session.

TopLink adds objects to the session cache from the following:

– The data store, when TopLink executes a read operation.

– The unit of work cache, when a unit of work successfully commits a
transaction.

■ Unit of Work Cache – Services operations within the unit of work. It maintains
and isolates objects from the session cache, and writes changed or new objects to
the session cache after the unit of work commits changes to the data source.
TopLink updates the sessions cache when a unit of work commits to the data
source.

13.7.1.1 Object Identity
TopLink preserves object identity through its cache using the primary key attributes of
a persistent entity, which may or may not be assigned through sequencing. Oracle
recommends that you always maintain object identity. Disable object identity only if
absolutely necessary, for example, for read-only objects.

Developing TopLink Applications

13-28 User's Guide for Oracle JDeveloper

13.7.1.2 Querying and the Cache
A query that is run against the shared session cache is known as an in-memory query.

By default, a query that looks for a single object based on primary key attempts to
retrieve the required object from the cache first, searches the data source only if the
object is not in the cache. All other query types search the database first, by default.
You can specify whether a given query runs against the in-memory cache, the
database, or both.

13.7.1.3 Handling Stale Data
Stale data is an artifact of caching, in which an object in the cache is not the most recent
version committed to the data source.

13.7.1.4 Explicit Query Refreshes
For systems that require several objects be current, you can specify that these objects
be explicitly refreshed from the database without incurring the full cost of distributed
cache coordination. To do this:

1. Configure a set of queries that refresh the required objects.

2. Establish an appropriate refresh policy.

3. Invoke the queries as required to refresh the objects.

13.7.1.5 Cache Invalidation
Use a cache invalidation policy to specify how or when a cached object becomes
invalid. Using cache invalidation ensures that an application does not use stale data.
You can configure the cache to invalidate objects at a certain time of day, mark an
object as invalid after a specified time period after the object was read, or you can set
the set the invalidation policy to invalidate an object only explicitly. You can set an
invalidation policy to apply to all objects by configuring it at the project level, to
certain objects by applying it at the descriptor level, or to the results returned by a
query by applying it at the query level.

13.7.1.6 Cache Coordination
Cache coordination enhances performance by avoiding data source access. By enabling
the instances of a session to broadcast object changes to one another so that each
session's cache is kept current or notified that the cache must update an object from the
data source the next time that it is read, it also reduces stale data. In addition, cache
coordination reduces the optimistic lock exceptions in distributed environments as
well as the number of failed or repeated transactions in an application. Use cache
coordination for applications that are read-based, regularly request and update the
same objects, and have changes performed by a single Java application with multiple,
distributed sessions.

As an alternative to cache coordination, you can tune the TopLink cache for each
read-only, read-mostly, and write-mostly classes using identity type, cache
invalidation, or cache isolation. You can perform this tuning before cache coordination.

13.7.1.7 Cache Isolation
Isolated client sessions provide a mechanism for disabling the shared server session
cache. Any classes marked as isolated only cache objects relative to the life cycle of
their client session. These classes never utilize the shared server session cache. This is
the best mechanism to prevent caching as it is configured on a per-class basis allowing
caching for some classes, and denying it for others.

Developing TopLink Applications

Developing TopLink Mappings 13-29

13.7.1.8 Cache Locking and Transaction Isolation
By default, TopLink optimizes concurrency to minimize cache locking during read or
write operations. Use the default TopLink transaction isolation configuration unless
you have a very specific reason to change it.

13.7.2 How to Configure the TopLink Cache
In JDeveloper, you can configure the TopLink cache for a specific TopLink map. The
cache options will apply globally to all descriptors. You can override the map-level
cache configuration by defining cache configuration at the descriptor level.

To configure the TopLink cache at the TopLink map-level:
1. Select the TopLink map in the Application Navigator.

2. In the Structure window, select the TopLink map.

3. Complete the Caching files on the Defaults tab.

The TopLink cache is an in-memory repository that stores recently read or written
objects based on class and primary key values.

To configure the TopLink cache at the descriptor-level:
1. Select the TopLink map in the Application Navigator.

2. In the Structure window, select the TopLink map.

3. Complete the Caching files on the Caching tab.

13.7.3 Using Queries
TopLink enables you to create, read, update, and delete persistent objects or data using
queries in both Java EE and non-Java EE applications for both relational and
nonrelational data sources. For more information about queries, see the Oracle Fusion
Middleware Developer's Guide for Oracle TopLink.

Querying a data source means performing an action on, or interacting with, the
contents of the data source. To do this, perform the following:

■ Define an action in a syntax native to the data source being queried.

■ Apply the action in a controlled fashion.

■ Manage the results returned by the action (if any).

For TopLink, you must also consider how the query affects the TopLink cache.

13.7.3.1 TopLink Query Languages
TopLink enables you to express a query using any of the following query languages:

■ SQL Queries

■ EJBQL Queries

■ JPQL Queries

■ XML Queries

■ EIS Interactions

■ Query-by-Example

■ TopLink Expressions

Developing TopLink Applications

13-30 User's Guide for Oracle JDeveloper

13.7.3.2 TopLink Query Types
■ Named Queries – An instance of DatabaseQuery stored by name in a Session or

a descriptor's DescriptorQueryManager where it is constructed and prepared
once. Such a query can then be repeatedly executed by name.

■ Call Queries – An instance of Call that you create and then either execute directly,
using a special Session API to perform limited data source actions on data only, or
execute indirectly in the context of a DatabaseQuery. TopLink supports Call
instances for custom SQL, stored procedures, and EIS interactions.

■ Descriptor Query Manager – The DescriptorQueryManager defines a
default DatabaseQuery for each basic data source operation (create, read,
update, and delete), and provides an API with which you can customize either the
DatabaseQuery or its Call.

■ EJB 2.n CMP Finders – A query defined on the home interface of an enterprise
bean that returns enterprise beans. You can implement finders using any TopLink
query type, including JPAQLCall and EJBQLCall, a call that takes JPA/EJB QL.

In most cases, you can compose a query directly in a given query language or,
preferably, you can construct a DatabaseQuery with an appropriate Call and specify
selection criteria using a TopLink Expression. Although composing a query directly in
SQL appears to be the simplest approach (and for simple operations or operations on
unmapped data, it is), using the DatabaseQuery approach offers the compelling
advantage of confining your query to your domain object model and avoiding
dependence on data source schema implementation details.

13.7.4 How to Create Queries
Some queries are implicitly constructed for you based on passed in arguments and
executed in one step (for example, session queries) and others you create explicitly,
configure, and then execute, such as database queries.

To create a query:
1. Select the TopLink map in the Application Navigator.

2. In the Structure window, select the descriptor.

3. On the Queries tab, create your desired query.

The Queries tab allows you to create and manage queries associated with a
TopLink descriptor. You can create a named query in the Named Queries section,
or create a custom query in the Custom Calls section.

13.7.5 Using Basic Query API
The TopLink basic query API includes support for the following, most commonly used
queries:

■ Session Queries

■ DatabaseQuery Queries

■ Named Queries

■ SQL Calls

■ EJBQL Calls

■ EIS Interactions

■ Collection Query Results

Developing TopLink Applications

Developing TopLink Mappings 13-31

■ Report Query Results

13.7.6 Using Advanced Query API
The TopLink query API also allows the use of the following, more advanced query API
calls and techniques:

■ Redirect Queries

■ Historical Queries

■ Fetch Groups

■ Read-Only Queries

■ Interfaces

■ Inheritance Hierarchy

■ Additional Join Expressions

■ EJB Finders

■ Cursor and Stream Query Results

For more information about advanced query API, see the Oracle Fusion Middleware
Developer's Guide for Oracle TopLink.

13.7.6.1 Redirect Queries
A redirect query is a named query that delegates query execution control to your
application. redirect queried allow you to define the query implementation in code as
a static method. To perform complex operations, you can combine query redirectors
with the TopLink query framework.

13.7.6.2 Historical Queries
To make a query time-aware, you specify an AsOfClause that TopLink appends to
the query. Use the AsOfClause class if your historical schema is based on time
stamps or the AsOfSCNClause class if your historical schema is based on database
system change numbers. You can specify an AsOfClause at the time you acquire a
historical session so that TopLink appends the same clause to all queries, or you can
specify an AsOfClause on a query-by-query basis.

13.7.6.3 Fetch Groups
You can use a fetch group with a ReadObjectQuery or ReadAllQuery. When you
execute the query, TopLink retrieves only the attributes in the fetch group. TopLink
automatically executes a query to fetch all the attributes excluded from this subset
when and if you call a getter method on any one of the excluded attributes.

13.7.6.4 Read-Only Queries
In cases where you know that data is read-only, you can improve performance by
specifying a query as read-only: this tells TopLink that any object returned by the
query is immutable.

You can configure an object-level read query as read-only. When you execute such a
query in the context of a UnitOfWork, TopLink returns a read-only, non-registered
object. You can improve performance by querying read-only data in this way because
the read-only objects need not be registered or checked for changes.

Developing TopLink Applications

13-32 User's Guide for Oracle JDeveloper

13.7.6.5 Interfaces
When you define descriptors for an interface to enable querying, TopLink supports
querying on an interface, as follows:

■ If there is only a single implementor of the interface, the query returns an instance
of the concrete class.

■ If there are multiple implementors of the interfaces, the query returns instances of
all implementing classes.

13.7.6.6 Inheritance Hierarchy
When you query on a class that is part of an inheritance hierarchy, the session checks
the descriptor to determine the type of the class, as follows:

■ If you configure the descriptor to read subclasses (the default configuration), the
query returns instances of the class and its subclasses.

■ If you configure the descriptor not to read subclasses, the query returns only
instances of the queried class, but no instances of the subclasses.

■ If you configure the descriptor to outer-join subclasses, the query returns instances
of the class and its subclasses.

■ If you configure the descriptor to outer-join subclasses, the query returns instances
of the class and its subclasses.

13.7.6.7 Additional Join Expressions
You can set the query manager to automatically append an expression to every query
it performs on a class. For example, you can add an expression that filters the database
for the valid instances of a given class. Use this to do the following:

■ Filter logically deleted objects

■ Enable two independent classes to share a single table without inheritance

■ Filter historical versions of objects

13.7.6.8 EJB Finders
To create a finder for an entity bean that uses the TopLink query framework, you must
define, declare, and configure it. For predefined finders, you do not need to explicitly
create a finder. For default finders, you only need to define the finder method.

13.7.6.9 Cursor and Stream Query Results
Cursors and streams are related mechanisms that let you work with large result sets
efficiently. A stream is a view of a collection, which can be a file, a device, or a Vector.
A stream provides access to the collection, one element at a time in sequence. This
makes it possible to implement stream classes in which the stream does not contain all
the objects of a collection at the same time.

Large result sets can be resource-intensive to collect and process. To improve
performance and give the client more control over the returned results, configure
TopLink queries to use a cursor or stream. Cursors & streams are supported by all
subclasses of DataReadQuery and ReadAllQuery.

Developing TopLink Applications

Developing TopLink Mappings 13-33

13.7.7 How to Create TopLink Expressions
TopLink expressions let you specify query search criteria based on your domain object
model. When you execute the query, TopLink translates these search criteria into the
appropriate query language for your platform.

TopLink provides the following two public classes to support expressions:

■ The Expression class represents an expression that can be anything from a
simple constant to a complex clause with boolean logic. You can manipulate,
group, and integrate expressions.

■ The ExpressionBuilder class is the factory for constructing new expressions.
You can specify a selection criterion as an Expression with DatabaseQuery
method setSelectionCriteria and in a finder that takes an Expression.

A simple expression usually consists of the following parts:

■ The attribute, which represents a mapped attribute or query key of the persistent
class.

■ The operator, which is an expression method that implements boolean logic, such
as GreaterThan, Equal, or Like.

■ The constant or comparison, which refers to the value used to select the object.

To create basic expressions for use in named queries:
1. Select the TopLink map in the Application Navigator.

2. In the Structure window, select the descriptor.

3. Select the named query and in the Selection Criteria area, edit the expression.

13.7.8 Understanding TopLink Transactions
A database transaction is a set of operations (create, update, or delete) that either
succeed or fail as a single operation. The database discards, or rolls back, unsuccessful
transactions, leaving the database in its original state. Transactions may be internal
(that is, provided by TopLink) or external (provided by a source external to the
application, such as an application server).

In TopLink, transactions are contained in the unit of work object. You acquire a unit of
work from a session and using its API, you can control transactions directly or through
a Java 2 Enterprise Edition (Java EE) application server transaction controller such as
the Java Transaction API (JTA).

As a transaction is committed, the database maintains a log of all changes to the data.
If all operations in the transaction succeed, the database allows the changes; if any part
of the transaction fails, the database uses the log to roll back the changes.

Transactions execute in their own context, or logical space, isolated from other
transactions and database operations. The transaction context is demarcated; that is, it
has a defined structure that includes the following:

■ A begin point, where the operations within the transaction begin. At this point, the
transaction begins to execute its operations.

■ A commit point, where the operations are complete and the transaction attempts
to formalize changes on the database.

The degree to which concurrent (parallel) transactions on the same data are allowed to
interact is determined by the level of transaction isolation configured. ANSI/SQL

Developing TopLink Applications

13-34 User's Guide for Oracle JDeveloper

defines four levels of database transaction isolation. Each offers a trade-off between
performance and resistance from the following unwanted actions:

■ Dirty read: a transaction reads uncommitted data written by a concurrent
transaction.

■ Nonrepeatable read: a transaction rereads data and finds it has been modified by
some other transaction that was committed after the initial read operation.

■ Nonrepeatable read: a transaction rereads data and finds it has been modified by
some other transaction that was committed after the initial read operation.

13.7.9 TopLink Transactions and the Unit of Work
The unit of work isolates changes in a transaction from other threads until it
successfully commits the changes to the database. Unlike other transaction
mechanisms, the unit of work automatically manages changes to the objects in the
transaction, the order of the changes, and changes that might invalidate other TopLink
caches. The unit of work manages these issues by calculating a minimal change set,
ordering the database calls to comply with referential integrity rules and deadlock
avoidance, and merging changed objects into the shared cache. In a clustered
environment, the unit of work also synchronizes changes with the other servers in the
coordinated cache.

Like any transaction, a unit of work transaction provides the following:

■ Unit of Work Transaction Context – Unit of work operations occur within a unit
of work context, in which writes are isolated from the database until commit time.
The unit of work executes changes on copies, or clones, of objects in its own
internal cache, and if successful, applies changes to objects in the database and the
session cache.

■ Unit of Work Transaction Demarcation – In a TopLink application, your
application demarcates transactions using the unit of work. If your application
includes a Java EE container that provides container-managed transactions, your
application server demarcates transactions using its own transaction service. You
can configure TopLink to integrate with the container's transaction service by
specifying a TopLink external transaction controller.

■ Unit of Work Transaction Isolation – The unit of work does not directly
participate in database transaction isolation. Because the unit of work may execute
queries outside the database transaction, the database does not have control over
this data and its visibility. However, by default, TopLink provides a degree of
transaction isolation regardless of database transaction isolation configured on the
underlying database. Each unit of work instance operates on its own copy (clone)
of registered objects. In this case, because the unit of work provides an API that
allows querying to be done on object changes within a unit of work, the unit of
work provides read committed operations. Changes are committed to the database
only when the unit of work commit method is called.

14

Developing Secure Applications 14-1

14Developing Secure Applications

This chapter describes how you can develop, deploy, and administer secure Java EE
applications in Oracle JDeveloper.

This chapter includes the following sections:

■ Section 14.1, "About Developing Secure Applications"

■ Section 14.2, "Securing Applications in Phases"

■ Section 14.3, "About Web Application Security and JDeveloper Support"

■ Section 14.4, "Handling User Authentication in Web Applications"

■ Section 14.5, "Securing Application Resources in Web Applications"

■ Section 14.6, "Configuring an Application-Level Policy Store"

■ Section 14.7, "Migrating the Policy Stores"

■ Section 14.8, "Securing Development with JDBC"

14.1 About Developing Secure Applications
The Fusion Middleware Suite lets you develop, deploy, and administer secure
applications. You can secure Java EE applications using only container-managed
security or, for Fusion web applications, you can use Oracle ADF Security. Fusion web
applications are Java EE applications that you develop using the Oracle Application
Development Framework (Oracle ADF).

14.1.1 Understanding Java EE Applications and Oracle Platform Security Services for
Java (OPSS)

A Java EE application can be enhanced to use OPSS. In this scenario, you work with
JDeveloper's declarative editors to configure users and roles. You secure application
resources using Java EE container-managed security.

14.1.2 Understanding Fusion Web Applications and ADF Security
This scenario is a fully declarative implementation that adds ADF Security to enable
fine-grained security policies for Oracle ADF resources. You work with JDeveloper's
declarative editors to configure a file-based identity store, policy store, and credential
store; and, because your application utilizes Oracle ADF, you also run a wizard to
configure security for web pages associated with ADF resources (such as ADF task
flows and ADF page definitions) and then use the jazn-data.xml policy editor to
define security policies.

Securing Applications in Phases

14-2 User's Guide for Oracle JDeveloper

14.1.3 Understanding Container-managed Security
The Java EE security model is a role-based, declarative model based on
container-managed security, where resources are protected by roles that are assigned
to users. This model allows decoupling an application from its underlying security
infrastructure since security can be specified separately from the application logic in
an application deployment descriptor. The container, where an application runs,
provides security for the application according to a specifications in the deployment
descriptor. This model also allows embedding security data (annotations) in the
application code that can be referenced in deployment descriptors.

For more information about container-managed security, see the Oracle Fusion
Middleware Security Guide.

14.1.4 Additional Functionality
The Oracle ADF Security framework is the preferred technology to provide
authentication and authorization services to the Fusion web application. A prime
reason is that Oracle ADF Security is built on top of the Oracle Platform Security
Services (OPSS) architecture, which provides a critical security framework and is itself
well-integrated with Oracle WebLogic Server.

For more information about Oracle ADF security, see the "Enabling ADF Security in a
Fusion Web Application" chapter of the Oracle Fusion Middleware Developer's Guide for
ADF.

For more information on OPSS, see the Oracle Fusion Middleware Application Security
Guide.

14.2 Securing Applications in Phases
When developing secure applications in JDeveloper it is often useful to think of
development and deployment (to the production environment) as different phases,
each with different needs. This is because during development and testing, JDeveloper
supports easy to manage file-based security through integration with Oracle Platform
Security Services (OPSS).

JDeveloper simplifies the application development life-cycle for security, and allows
you to store the data in a flat file, for easy development. The jazn-data.xml file is
JDeveloper's default file-based security provider for integration with OPSS. The
jazn-data.xml file stores the users, groups, roles, and policies that you define the
Fusion web application built using the Oracle Application Development Framework
(Oracle ADF) and Oracle ADF Security. JDeveloper provides a dedicated editor for this
file that simplifies creating the security data stores.

A feature of OPSS is the abstraction of users defined by the production environment's
enterprise roles into application roles that are specific to the functions of your
application. During development the application developer adds application roles and
security policies that use application roles to the policy store of the jazn-data.xml
file. Then, to simplify testing, the developer may add a few users to the identity store
and directly assign these test users to application roles. Therefore, for testing the
application, the jazn-data.xml can also be used as the identity store.

During development, your application does not ned to be aware of the enterprise roles
defined in the production environment. After deployment an administrator will use
Oracle Enterprise Manager Fusion Middleware Control to map the production-level
enterprise roles to the application roles of your application's policy store. This

About Web Application Security and JDeveloper Support

Developing Secure Applications 14-3

mapping will allow a user who is a member of a given enterprise role to have access to
the resources that are accessible from the associated application role.

After you complete the application, you migrate the policy store to the production
environment provider on Oracle WebLogic Server. At that point, you will replace your
test user identity store with enterprise users configured in the Oracle WebLogic Server
embedded LDAP server. In contrast to the jazn-data.xml file, the LDAP server
supports a distributed application server configuration that may be employed in a
production environment. For details about the LDAP server, see Oracle Fusion
Middleware Securing Oracle WebLogic Server.

Therefore, working with the file-based provider and OPSS in JDeveloper helps
separate the demands of the production environment through:

■ Declaratively defining test users and application roles

■ Declaratively defining security policies for Oracle ADF resources

■ Easily migrating from application-level security provider to
system-jazn-data.xml security provider during deployment

■ Delaying the mapping of enterprise roles until deployment

14.3 About Web Application Security and JDeveloper Support
Java EE declarative security in Oracle WebLogic Server is implemented with Oracle
Platform Security Services (OPSS), Oracle's implementation of the JAAS standard.
OPSS extends Java EE security to provide application developers, system integrators,
security administrators, and independent software vendors with a portable,
integrated, and comprehensive security platform framework for Java SE and Java EE
applications.

To learn more about OPSS and its features, see Oracle Fusion Middleware Security Guide.

JDeveloper provides tools to support configuring Java EE security for web
applications and for deploying secure web applications to an application server
instance. A developer, while developing an application, can configure OPSS services
from JDeveloper through wizards and editors.

JDeveloper provides specific editors to create and edit Oracle Platform Security
configurations (jps-config.xml), JAAS configurations (jazn-data.xml), and Web
application deployment descriptors (web.xml). JDeveloper also supports direct
deployment of web applications to application servers. For more information, see
Section 14.2, "Securing Applications in Phases."

When you develop web applications you may choose to use Oracle Application
Development Framework (Oracle ADF) to work with data-aware components in the
user interface. When your user interface contains ADF resources, such as ADF task
flows and ADF page definitions, then you have the option to secure the web pages
that rely on those resources through the ADF Security framework. JDeveloper tools
support iterative development of security so you can easily create, test, and edit
security policies that you create for ADF resources. You can proceed to create test users
in JDeveloper and run the application in Integrated WebLogic Server to simulate how
end users will access the secured resources. For more information, see. Section 14.5.2,
"How to Secure ADF Resources Using ADF Security in Fusion Web Applications."

For more information on web application security, see Oracle Fusion Middleware
Programming Security for Oracle WebLogic Server.

Handling User Authentication in Web Applications

14-4 User's Guide for Oracle JDeveloper

14.4 Handling User Authentication in Web Applications
Authentication in declarative security is enforced when a user requests a protected
web application area.

14.4.1 About Authentication Type Choices
Authentication in declarative security is enforced when a user requests a protected
web application area. If the user has not been authenticated before, the container will
retrieve credentials from the user. Users stay authenticated throughout the server
session.

The supported types of authentication are: FORM based authentication, BASIC
authentication, and CLIENT-CERT authentication. The type of authentication is
specified in the web.xml deployment descriptor using the <login-config> element.

14.4.1.1 BASIC authentication
BASIC authentication uses the browser login dialog for the user to enter his user name
and password. This dialog form cannot be customized and thus varies in its look and
feel depending on the type of browser used. The user credentials are stored in the
browser session for the authenticated realm. A realm is a repository that contains a set
of permissions for the authenticated user. The default realm in Oracle Platform
Security Services is jazn.com.

The code snippet in Example 14–1 demonstrates how BASIC authentication is
specified in the web.xml file:

Example 14–1 BASIC Authentication Specified in web.xml File

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>jazn.com</realm-name>
</login-config>

14.4.1.2 FORM authentication
FORM based authentication allows the application developer to specify a custom login
dialog. The username parameter must have a name of j_username, the password
field must be named j_password. The login form action must have a value of j_
security_check for the Java EE container to authenticate the request.

The code snippet in Example 14–2 demonstrates how FORM authentication is
specified in the web.xml file:

Example 14–2 FORM Authentication Specified in web.xml File

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>loginform.jsp</form-login-page>
 <form-error-page>error.jsp</form-error-page>
 </form-login-config>
</login-config>

Handling User Authentication in Web Applications

Developing Secure Applications 14-5

14.4.1.3 CLIENT-CERT authentication
CLIENT-CERT authentication uses the X.509 certificate to authenticate users. This type
of authentication is also known as public key encryption.

For more information about authentication type choices, see the Oracle Fusion
Middleware Security Guide.

For more information about authentication type using Oracle WebLogic Server, see
Oracle Fusion Middleware Programming Security for Oracle WebLogic Server.

14.4.2 Encrypting Passwords for a Target Domain
As password encryption is specific to a WebLogic Server domain, you must manually
add the password handling to the weblogic-jdbc.xml file. To encrypt a password,
use the encrypt utility (weblogic.security.Encrypt) for the domain to which
you want to deploy.

The XML code you need to add to the weblogic-jdbc.xml should look something like
this:

<password-encrypted>toystore</password-encrypted>

You can either put the clear text password or the encrypted password string in
between the tags. This element goes inside of the <jdbc-driver-params> element,
which will already be present in the weblogic-jdbc.xml if it has been edited using
the Overview Editor.

14.4.2.1 weblogic.security.Encrypt
The weblogic.security.Encrypt utility encrypts cleartext strings for use with
WebLogic Server. The utility uses the encryption service of the current directory, or the
encryption service for a specified WebLogic Server domain root directory.

You can only run the weblogic.security.Encrypt utility on a machine that has
at least one server instance in a WebLogic Server domain; it cannot be run from a
client. Table 14–1 defines the arguments for the weblogic.security.Encrypt
utility.

Syntax
java [-Dweblogic.RootDirectory= dirname]
[-Dweblogic.management.allowPasswordEcho=true]

Note: Passwords are domain-specific, so each time you want to
deploy to a different domain you must re-encrypt the password for
the target domain

Note: An encrypted string must have been encrypted by the
encryption service in the WebLogic Server domain where it will be
used. If not, the server will not be able to decrypt the string.

Note: It is recommended that you run the utility from the
Administration Server domain directory or on the machine hosting
the Administration Server and specifying a domain root directory.

Handling User Authentication in Web Applications

14-6 User's Guide for Oracle JDeveloper

weblogic.security.Encrypt [password]

Examples
The utility returns an encrypted string using the encryption service of the domain
located in the current directory:

java weblogic.security.Encrypt xxxxxx {3DES}Rd39isn4LLuF884Ns

The utility returns an encrypted string using the encryption service of the specified
domain location:

java -Dweblogic.RootDirectory=./mydomain weblogic.security.Encrypt xxxxxx
{3DES}hsikci118SKFnnw

The utility returns an encrypted string in the current directory, without echoing the
password:

java weblogic.security.Encrypt Password: {3DES}12hsIIn56KKKs3

14.4.3 How to Create an Identity Store
An identity store is a data store of users, enterprise roles (user groups), and login
credentials. The credentials are verified during authentication and used to authorize
the user's access to application functions.

Understanding Users, Roles, and Realms
A user is an end user accessing a service; it could be an individual or a software
component. A enterprise role is a collection of users that you group with the purpose
of conferring the same set of permissions. A realm is a collection of authenticated users
and enterprise roles.

For more information about users, enterprise roles, and realms, see the Oracle Fusion
Middleware Security Guide.

Understanding Identity Stores in JDeveloper
When you develop secure applications in JDeveloper, you work with a file-based data
store to define the users you wish to allow to log on. The advantage of defining a
file-based identity store through the jazn-data.xml file is that it supports easy
testing yet remains compatible with deployment to your production environment
through migration to the system-jazn-data.xml file. It also avoids the complexity

Table 14–1 Arguments for the weblogic.security.Encrypt utility

Argument Definition

weblogic.RootDirectory Optional. WebLogic Server domain
directory in which the encrypted string will
be used. If not specified, the default
domain root directory is the current
directory (the directory in which the utility
is being run).

weblogic.management.
allowPasswordEcho

Optional. Allows echoing characters
entered on the command line.
weblogic.security.Encrypt expects that
no-echo is available; if no-echo is not
available, set this property to true.

password Optional. Cleartext string to be encrypted.
If omitted from the command line, you will
be prompted to enter a password.

Handling User Authentication in Web Applications

Developing Secure Applications 14-7

of setting up and maintaining an Oracle Internet Directory service for the LDAP-based
identity store.

When you create a Fusion web application with Oracle ADF, the identity store will be
created automatically when you run the Configure ADF Security wizard.

For more information about identity stores, see the Oracle Fusion Middleware Security
Guide.

To create an identity store:
1. Double-click the jps-config.xml file in the Descriptors > META-INF folder in the

Application Resources panel of the Application Navigator.

2. Select the Identity Store tab in the jps-config.xml Overview Editor.

3. Click the Add a New Identity Store icon at the top of the page. The Create
Identity Store dialog opens.

4. Choose the desired type of identity store option:

■ To create a file based identity store, choose XML-Based Identity Store, and
enter the name for the store. By default, the file name is idstore.xml.

■ To create an LDAP based identity store, choose LDAP-Based Identity Store,
and enter the name for the store. By default, the file name is idstore.oid.

Note: The LDAP-based identity store is a design time feature in JDeveloper,
and is not available at runtime. The Integrated WebLogic Server in JDeveloper
overrides any LDAP identity store configuration.

5. When you are done, click OK to close the dialog.

14.4.4 How to Add Test Users to the Identity Store
The identity store is an XML file that stores users and enterprise roles, and is used
while authenticating users. There can be an identity store at either the domain or
application level.

To add users to the identity store:
1. Open the application in the Application Navigator.

2. Choose Application > Secure >Users to open the overview editor for the
jazn-data.xml file.

3. On the Users page, click the New User icon.

4. Enter the new user name and password.

5. Select the user from the Users list and enter further details, such as display name
and description.

6. Save your changes to the jazn-data.xml file.

Note: The LDAP-based identity store is a design time feature in
JDeveloper, and is not available at runtime. JDeveloper's Integrated
WebLogic Server overrides any LDAP identity store configuration.

Handling User Authentication in Web Applications

14-8 User's Guide for Oracle JDeveloper

14.4.5 How to Add Enterprise Roles to the Identity Store
An enterprise role is a set of users that you group with the intention of conferring the
same permission grants. You add enterprise roles to the identity store. You add
application roles to the policy store.

To add roles to the identity store:
1. Open your application in the Application Navigator.

2. Choose Application > Secure > Groups to open the Enterprise Roles page of the
overview editor for the jazn-data.xml file.

3. Under Enterprise Roles, click the New Role icon. The new role appears in the
Enterprise Roles list.

4. Select the role from the Enterprise Roles list and enter further details, such as
display name and description.

To manage users assigned to enterprise roles:
1. Open the Enterprise Roles page of the overview editor for jazn-data.xml file.

2. Select the role from the Enterprise Roles list, and then click the Members tab.

3. In the Members section, add or remove other members or roles.

To view assigned enterprise roles:
1. Open the Enterprise Roles page of the overview editor for the jazn-data.xml

file.

2. Select the role from the Roles list, and then click the Assigned Roles tab.

14.4.6 How to Create a Credential Store
A credential store is a wallet-based file for storage of system credentials required by
Oracle Platform Security Services (OPSS) in connecting to external systems such as
databases. In JDeveloper, the credential store is the cwallet.sso file. The file
contains all your OPSS-based credentials, and will be used in JDeveloper to store
credentials that you define for Oracle ADF security. This file is normally not edited
directly.

JDeveloper checks for the existence of a credential store service instance and creates
the store the first time the you create a connection, for example, a database connection,
in the Application Resources panel of the Application Navigator.

For more information about credential stores, see the Oracle Fusion Middleware Security
Guide.

To create a credential store:
1. Double-click the jps-config.xml file in the Descriptors > META-INF folder in

the Application Resources panel of the Application Navigator.

2. Select the Credential Store tab in the jps-config.xml Overview Editor.

3. Click the Add the Credential Store icon at the top of the page. The Create
Credential Store dialog opens.

Note: Before adding a user to an enterprise role, ensure that you
have created users in the identity store

Handling User Authentication in Web Applications

Developing Secure Applications 14-9

4. Enter the name of credential store file, and click OK.

14.4.7 How to Add a Login Module
A login module is a component that authenticates users and populates a subject with
principals. Login modules can be plugged in and used by applications without
changing application code. An application can use more than one login module.

The login authentication process occurs in two distinct phases:

1. The login module attempts to authenticate a user requesting, as necessary, a name
and a password or some other credential data; only if this phase succeeds, the
second phase is invoked.

2. The login module assigns relevant principals to a subject, which is eventually used
to perform some privileged action.

All login modules in a domain are configured in the file jps-config.xml using the
following elements:

■ serviceProvider — to define a service provider for the login module.

■ serviceInstance — to define one or more instances of the service provider

■ jpsContext — to specify which instances to use

In JDeveloper, you can choose a pre-defined login module for your application, or
create a new custom login module. Table 14–2 contains the pre-defined login modules
that are available in JDeveloper:

Note: You can create only one credential store in an application.

Table 14–2 Predefined Login Modules

Module Description

saml.loginmodule Used for SAML token assertion and implements the
oracle.security.jps.internal.jaas.module.saml.
JpsSAMLLoginModule class.

krb5.loginmodule Used for Kerberos token assertion and implements
com.sun.security.auth.module.Krb5LoginModule
class.

wss.digest.loginmodule Used to authenticate the digest based user name token based on
WSS Digest specification and implements
oracle.security.jps.internal.jaas.module.digest
.WSSDigestLoginModule. This is supported only for JSE use
cases

certificate.authenticator.
loginmodule

Used to assert the X509 certificates and implements
oracle.security.jps.internal.jaas.module.x509.X
509LoginModule class.

user.authentication.
loginmodule

Used to authenticate the user based on valid user name and
password, and implements
oracle.security.jps.internal.jaas.module.authen
tication.JpsUserAuthenticationLoginModule class

user.assertion.loginmodule Used to authenticate the user based on valid user name and
password, and implements
oracle.security.jps.internal.jaas.module.assert
ion.JpsUserAssertionLoginModule class.

Handling User Authentication in Web Applications

14-10 User's Guide for Oracle JDeveloper

For more information about login modules, see the Oracle Fusion Middleware Security
Guide.

To add a login module:
1. Double-click the jps-config.xml file in the Descriptors > META-INF folder in

the Application Resources panel of the Application Navigator.

2. Select the Login Modules tab in the jps-config.xml Overview Editor.

3. Click the Choose from a list of pre-defined Login Modules icon at the top of the
page. The Add Login Modules dialog appears.

4. Select the checkbox of login modules you want to add. You can add more than one
login module in an application.

5. Click OK when you are done.

14.4.8 How to Authenticate Through a Custom Login Module
A key Oracle Platform Security component is the login service. Conceptually, the login
service is an adapter that ties the JAAS login module SPI
(javax.security.auth.spi.LoginModule) to the Oracle Platform Security for
Java framework (OPSS).

The primary role of the login service is to enable JAAS login module implementations
to be configured and used in OPSS.

To add a custom login module:
1. Double-click the jps-config.xml file in the Descriptors > META-INF folder in the

Application Resources panel of the Application Navigator.

2. Select the Login Modules tab in the jps-config.xml Overview Editor.

3. Click the Create New Login Module button at the top of the page.

4. Enter the Login Module Name then click OK.

5. Enter the classname for the login module. To search for an existing classname
available to the project, click the Search button.

6. Select the Login Control Flag. This can be: REQUISITE, REQUIRED, SUFFICIENT,
or OPTIONAL.

7. Select the Log Level. This can be: FINE, FINER, FINEST, CONFIG, INFO,
WARNING, SEVERE.

8. Click Debug to define whether the login module will output debug messages.

9. Select Add All Roles to define whether all directly or indirectly granted roles of
the user are added to the subject after authentication using the login module.

10. Enter the names and values for any other properties required by the login
modules.

idstore.loginmodule Used to authenticate JSE bases use cases and implements
oracle.security.jps.internal.jaas.module.
idstore.IdStoreLoginModule class

Table 14–2 (Cont.) Predefined Login Modules

Module Description

Handling User Authentication in Web Applications

Developing Secure Applications 14-11

14.4.9 How to Add a Key Store
A key store is a repository of private keys and digital certificates.

If you have keys and certificates and wish to use them for secure services in your
application, JDeveloper allows you to import a Java Key Store, Oracle Wallet (from a
*.sso or *.p12 file), or PCKS12 file (from a *.p12 file). You cannot create a key store
in JDeveloper.

For more information about key stores and key store providers, see the Oracle Fusion
Middleware Understanding Security for Oracle WebLogic Server guide.

To add a key store:
1. Double-click the jps-config.xml file in the Descriptors > META-INF folder in the

Application Resources panel of the Application Navigator.

2. Select the Key Stores tab in the jps-config.xml Overview Editor.

3. Click the Add a Key Store icon at the top of the page. The Add Key Store dialog
appears.

4. Import the key store file and complete the required fields. You can import a Java
Key Store (from a *.jks file), Oracle Wallet (from a *.sso or *.p12 file), or
PCKS12 (from a *.p12 file) file as a key store.

5. Click OK when you are done.

14.4.10 How to Enable an Anonymous Provider
The anonymous provider is an alternative to public pages in that unauthenticated user
access can have permissions assigned that are more fine grained than allowing access
to the whole (public) page.

Enabling the anonymous provider creates an anonymous JpsContext, which contains
the anonymous service instance and the anonymous login module. Anonymous
credentials will be used at runtime when the application user has not been
authenticated and the application allows some resources to be accessible without
authentication.

For more information about the anonymous provider, see the Oracle Fusion Middleware
Security Guide.

To enable an anonymous provider for a web application:
1. Double-click the jps-config.xml file in the Descriptors > META-INF folder in the

Application Resources panel of the Application Navigator.

2. Select the Anonymous Provider tab in the jps-config.xml Overview Editor.

3. Select Enable Anonymous Provider.

4. Select the Security Contexts tab and ensure that anonymous is automatically
chosen as the Anonymous Provider.

14.4.11 How to Add Credentials to Users in the Identity Store
Credentials contain the authentication password for a user. The credentials appear in
obfuscated form by default. Before adding credentials in the identity store, the
member users must first be defined for the identity store.

Securing Application Resources in Web Applications

14-12 User's Guide for Oracle JDeveloper

To add credentials to users in the identity store:
1. Open the application in the Application Navigator.

2. Choose Application > Secure > Users to open the Users page of the overview
editor for jazn-data.xml.

3. Select a user in the Users list, and add credentials to the Password field.

14.4.12 How to Choose the Authentication Type for the Web Application
Authentication in declarative security is enforced when a user requests a protected
web application area. If the user has not been authenticated before, the container will
retrieve credentials from the user. Users stay authenticated throughout the server
session.

The supported types of authentication are: FORM based authentication, BASIC
authentication, and CLIENT-CERT authentication. The type of authentication is
specified in the web.xml deployment descriptor using the <login-config> element.

For more information on authentication types, see Section 14.4.1, "About
Authentication Type Choices".

To select the authentication type for the web application:
1. Double-click the web.xml for the application in the Application Navigator.

2. Click the Security tab of the web.xml Overview Editor.

3. Expand the Login Authentication section and select the desired authentication
type.

14.5 Securing Application Resources in Web Applications
Web pages and other resources of the web application should be secured. Depending
on the type of application, you can secure your application in one of the two following
ways:

■ For a Java EE web application, use Oracle Platform Security Services (OPSS) to
secure your web application.

■ For an application developed using Oracle Application Development Framework
(ADF), use Oracle ADF Security to secure your application.

Using OPSS Security
The following tasks outline the process of securing an application using Java EE
security:

1. Specifying an authentication mechanism for users.

2. Managing users and groups in the realm.

3. Creating security roles for the application.

4. Mapping roles to users and groups.

Using Oracle ADF Security
You can use the Oracle ADF Security framework to provide authentication and
authorization services to the Fusion web application.

For more information about Oracle ADF security, see the "Enabling ADF Security in a
Fusion Web Application" chapter of the Oracle Fusion Developer's Guide for ADF.

Securing Application Resources in Web Applications

Developing Secure Applications 14-13

14.5.1 How to Secure Application Resources Using the jazn-data.xml Overview Editor
JDeveloper enables you to secure your application resource types. The resource types
can be known, that is, recognized by JDeveloper, or you can create your own resource
type.

A resource type represents the type of a secured artifact, such as a flow, a job, or a web
service, and, essentially, it is a template for creating resources of a particular type. All
resources have an associated type and are filtered or grouped according to type.

To secure an application resource:
1. Open the application in the Application Navigator.

2. In the main menu, choose Application > Secure > Resource Grants to open the
Resource Grants page in the overview editor for the jazn-data.xml file.

3. In the Resource Type dropdown list, select the resource type you want to secure,
for example, Task Flow. The list will display all the resource types available in the
selected projects. You can also create a new resource type.

4. Click the Select Source Project icon to select the source project. Instances of the
selected resource type from the selected source projects will be displayed in the
Resources list.

5. Add the grantees (application roles, enterprise roles, or code sources) that will be
granted the resource permissions. You can grant resource permissions to users,
application roles, enterprise roles, and code sources. Click the Add Grantee icon in
the Granted To list to add grantees.

6. In the Actions list, select the actions that will be allowed on the resource.

7. Save your changes to the jazn-data.xml file.

14.5.2 How to Secure ADF Resources Using ADF Security in Fusion Web Applications
Security policies that you define in a Fusion web application support fine-grained
access control for ADF security-aware resources, including ADF task flows and ADF
page definitions. To enable ADF security policies, you begin by running the Configure
ADF Security wizard on the user interface project.

After you enable ADF Security you must grant users access rights so that they may
view the web pages of the Fusion web application. Access rights that you grant users
are known as a security policy that you specify for the page's corresponding ADF
security-aware resource. Ultimately, it is the security policy on the ADF resource that
controls the user's ability to enter a task flow or view a web page:

■ Do not define security policies for the individual web pages of a bounded task
flow. When the user accesses the bounded task flow, security for all pages will be
managed by the permissions you grant to the task flow. And, because the
individual web pages (with associated page definitions) will be inaccessible by
default, ADF Security prevents users from directly accessing the pages of the task
flow. This supports a well-defined security model for task flows that enforces a
single entry point for all users.

■ Do define security policies for the individual web page only when the page is not
a constituent of a bounded task flow. Page-level security is checked for pages that
have an associated page definition binding file only if the page is directly accessed
or if it is accessed in an unbounded task flow.

ADF security policies are maintained in the file-based jazn-data.xml policy store.
Defining and updating ADF security policies in JDeveloper is supported by the

Configuring an Application-Level Policy Store

14-14 User's Guide for Oracle JDeveloper

overview editor for this file. The resulting declarative ADF security policies are easy to
read.

The detailed steps for securing Oracle ADF resources are in the "Enabling ADF
Security in a Fusion Web Application" chapter of the Oracle Fusion Developer's Guide for
ADF.

To define security policies for ADF resources:
1. Enforce ADF Security for the application by running the Configure ADF Security

wizard.

2. Add application role names to the policy store.

3. Grant permission on the entire set of web pages contained in an ADF bounded
task flows.

4. Grant permission on top-level web pages that are associated with an ADF page
definition file and that are not associated with a bounded task flow.

If your application contains top-level web pages that are not associated with an
ADF resource because they do not contain data-aware components, you can
optionally secure these pages too.

5. If necessary, grant permission on rows of data that are defined by an ADF entity
object.

6. Provision the identity store by adding the users who will login to test security.

7. Associate the test users you created with one or more application roles.

14.6 Configuring an Application-Level Policy Store
Security policies for web application resources are stored in the application-level
policy store.

14.6.1 About Policy Stores
A Policy Store is the repository of application and enterprise policies. A policy
specifies the permissions granted to code running from a specific location.

An Application Policy Store is a repository of application policies together with
application roles, application policies, principals, and permissions. Application roles
can include application users and roles, and roles specific to the application (such as
administrative roles). A policy can use any of these roles or users as principals.
Similarly, a System Policy store is a repository of system policies, principals, and
permissions. A system policy store does not contain roles.

When you create a Fusion web application with Oracle ADF, the policy store will be
created automatically when you run the Configure ADF Security wizard.

The difference between an application policy store and a system policy store is in their
scope. An application policy store is constrained within an application limiting it's
accessibility, where as a system policy store can be accessed openly.

For more information on policy stores, see the Oracle Fusion Middleware Security Guide.

A Principal is an identity assigned to an entity; the entity could be a user or a role. A
Permission is a set of operations allowed for a group of entities; the entity could be a
principal too. A Grant, or a custom policy, includes permissions and principals. In
JDeveloper, you cannot create a principal or a permission without creating a grant.

Configuring an Application-Level Policy Store

Developing Secure Applications 14-15

14.6.2 About Principals, Permissions and Grants
A Principal is an identity assigned to an entity; the entity could be a user or a role. A
Permission is a set of operations allowed for a group of entities; the entity could be a
principal too. A Grant, or a custom policy, includes permissions and principals. In
JDeveloper, you cannot create a principal or a permission without creating a grant.

14.6.3 How to Add Application Roles to an Application Policy Store
Application roles are specific to an application and defined in the application policy
store. They are used by the application directly (either a Java SE or Java EE
application) and are not necessarily known to the Java EE container. In the file-based
policy store in a jazn-data.xml file, these application roles are defined in
<app-role> elements under <policy-store>, and then written to
system-jazn-data.xml at the domain level during deployment.

To add application roles to the application policy store:
1. Open the application in the Application Navigator.

2. Choose Application > Secure > Application Roles to open the Application Roles
page of the overview editor for the jazn-data.xml file.

3. Click the Add icon to create a new application role as a peer or child of the
currently selected role, or to create a new role category. The new application role
or category is listed in the Roles list.

4. Enter details of the role or role category in the Name, Display Name, and
Description fields.

5. Save your changes to the jazn-data.xml file.

For more information, see the Oracle Fusion Middleware Securing Resources Using Roles
and Policies for Oracle WebLogic Server guide.

14.6.4 How to Add Member Users or Enterprise Roles to an Application Role
Deployment users and roles are defined in the security provider that you use. For the
file-based provider, deployment users and roles are defined in the jazn-data.xml
file.

To add users or enterprise roles to an application role:
1. Open the application in the Application Navigator.

2. Choose Application > Secure > Application Roles to open the Application Roles
page in the overview editor for the jazn-data.xml file.

3. From the Application Roles list, select the application role, and then click the
Members tab.

4. To add a user, under Member Users and Roles, click the Add User or Role icon,
and select Add User.

5. To add an enterprise role, under Member Users and Roles, click the Add User or
Role icon, and select Add Enterprise Role.

Note: Before adding member users or member roles to an
application role, the member users and member roles must first be
defined for the identity store.

Configuring an Application-Level Policy Store

14-16 User's Guide for Oracle JDeveloper

6. Save your changes to the jazn-data.xml file.

14.6.5 How to Create Custom Resource Types
You can create custom resource types and specify them in the jazn-data.xml file.

A resource type represents the type of a secured artifact, such as a flow, a job, or a web
service, and, essentially, it is a template for creating resources of a particular type. All
resources have an associated type and are filtered or grouped according to type.

To create a custom resource type:
1. Open your application in the Application Navigator.

2. Choose Application > Secure > Resource Grants to open the Resource Grants
page of the overview editor for the jazn-data.xml file.

3. In the Resource Grants page, click the New Resource Type icon next to the
Resource Type field.

4. In the Create Resource Type dialog, specify the properties of the resource, such as
name, display name, and associated actions. The Actions list in the Create
Resource Type dialog is used to populate the checkable items list in the Resource
Grants page for resources of this type.

5. Save the jazn-data.xml file.

14.6.6 How to Add Resource Grants to the Application Policy Store
You can add application resource grants to an application policy store by updating the
Resource Grants page of the overview editor for jazn-data.xml.

A resource is an instance of a resource type that represents a concrete resource; it
defines an application resource that can be secured by a policy, such as software
components managed by a container (for example, URLs, EJBs, JSPs) or an application
business (for example, Reports, Transactions, Revenue Charts).

To add a resource grant for the application policy store:
1. Open your application in the Application Navigator.

2. Choose Application > Secure > Resource Grants to open the Resource Grants
page of the overview editor for the jazn-data.xml file.

3. To define the security policy, select an item in the Security Policy field. The
application security policy is selected by default. To define global resource grants,
select Global.

4. Select the resource type from the Resource Type dropdown menu, or click the
New Resource Type icon to create one.

5. For the resource types that are filtered by project, the Source Project selector is
enabled. You may need to change the source project selection to find the desired
resources.

6. The resources that belong to the selected resource type are listed in the Resources
list.

7. Manage the entities that the resource permissions have been granted to, by
clicking the Add Grantee icon in the Granted To list. You can grant to an
application role, a user, an enterprise role, or a code source.

8. View and select the actions allowed on the resource in the Actions list.

Configuring an Application-Level Policy Store

Developing Secure Applications 14-17

14.6.7 How to Add Entitlement Grants to the Application Policy Store
Using the Entitlement Grants page of the overview editor for jazn-data.xml, you
can define a set of resource permissions and grant those permissions to multiple
application roles without having to grant each permission to each application role
individually.

An entitlement is a collection of permissions. Typically, it encapsulates the list of
permissions needed to perform a given business function or task.

To add entitlement grants to an application policy store:
1. Open your application in the Application Navigator.

2. In the main menu, choose Application > Secure > Entitlement Grants to open the
Entitlement Grants page in the overview editor for the jazn-data.xml file.

3. To add an entitlement, click the Add Entitlement icon in the Entitlements list.

4. To add a member resource, click Resources, and in the Member Resources list,
click the Add Member Resource icon.

5. To select the application role to grant the entitlement to, select Grants and then
click the Add Role Grant icon. In the Select Application Roles dialog, you can
select an application role or create a new one.

6. Save the jazn-data.xml file.

14.6.8 How to Create a Custom JAAS Permission Class
A new permission class is useful when you want to create your own JAAS permission
for a logical artifact type to secure. For example, although Oracle ADF already
provides built-in permission classes for the artifacts on which it enforces security
(including task flows, page definitions, entity objects, and entity attributes), you might
create a custom permission class for a set of UI components that you want to secure in
the user interface. Once this class is created, you can add enforcement checks using
Java, Expression Language (EL), or embedded Groovy expressions, and then you can
grant the new custom permission class to application roles by editing the
jazn-data.xml file directly. For example, you could define a security policy to limit
access to a menu that your application displays and then associate the rendering of the
menu with the user's granted custom permission using the EL value
userGrantedPermission on the component's rendered property.

To create a custom JAAS-compliant permission class:
1. Open your application in the Application Navigator.

2. From the main menu, select File > New to open the New Gallery.

3. In the New Gallery, under Categories, select Business Tier > Security.

4. Under Items, select JAAS Permission.

Tips:

■ You can view grants to resources that are members of an
entitlement group in the Resource Grants page by clicking the
Show Grants from Entitlements icon in the Granted To column.
This option is selected by default.

■ You can also add member resources to new or existing
entitlements from the context menu in the Resource Grants page.

Migrating the Policy Stores

14-18 User's Guide for Oracle JDeveloper

5. In the Create JAAS Permission dialog, enter the details of the custom permission
class. For any help from within the dialog, click Help or press F1.

14.6.9 How to Add Grants to the System Policy Store
Currently, this release does not provide an editor to add system permission grants to a
system policy store; you will need to manually add grants in the source code for
jazn-data.xml.

To add a grant to the system policy:
1. Open your application in the Application Navigator.

2. In the Application Navigator, double-click the jazn-data.xml to open the
overview editor.

3. Click Source to open the source editor.

4. In the source code, inside the <jazn-data> element, create a <jazn-policy>
element.

5. Inside the <jazn-policy> element create a <grant> element that defines the
<grantee> with the desired application role and the <permission> with the
fully qualified class name of the permission class, the name that you want to use
as the target for the grant, and the action that you want to grant to the application
role principal.

6. Save changes to the jazn-data.xml file.

14.7 Migrating the Policy Stores
JDeveloper is configured by default to deploy the security objects from your
application repositories to Integrated WebLogic Server each time you run the
application. You can change this behavior by selecting security deployment options in
the Application Properties dialog to:

■ Decide whether to overwrite the domain-level policies with those from the
application jazn-data.xml file.

■ Decide whether to overwrite the system credentials from the application’s
cwallet.sso file.

■ Decide whether to migrate the identity store portion of the jazn-data.xml file to the
domain-level identity store.

If you make no changes to the deployment settings, each time you run the application,
JDeveloper will overwrite the domain-level security policies and system credentials.
Additionally, JDeveloper will migrate new user identities you create for test purposes
and update existing user passwords in the embedded LDAP server that Integrated
WebLogic Server uses for its identity store. However, if you prefer to run the
application without updating the existing security objects in Integrated WebLogic
Server, you have this option.

14.7.1 How to Migrate the Policy Stores
When you are ready to deploy the application to standalone Oracle WebLogic Server,
you can use the same configuration settings to control how JDeveloper handles
migration of the security objects.

Migrating the Policy Stores

Developing Secure Applications 14-19

To configure deployment of security objects:
1. Choose Application > Secure > Configure Security Deployment to open the

Application Properties dialog.

2. In the Application Properties dialog, under Security Deployment Options, select
the security objects that you want to deploy with the application.

By default, each time your run the application, JDeveloper will overwrite the
application policies and credentials at the domain level with those from the
application. If you prefer not to overwrite either of these repositories, deselect
Application Policies or Credentials. When deselected, JDeveloper will merge
only new policies or credentials into the domain-level stores. For further details,
see the sections below.

By default, each time you run the application, JDeveloper will migrate new user
identities you create for test purposes and update existing user passwords in the
embedded LDAP server that Integrated WebLogic Server uses for its identity store.
You can disable migration of the application identity store by deselecting Users
and Groups. For further details, see the sections below.

3. Click OK.

14.7.2 Migrating Application Policies
Application policies, specified in jazn-data.xml, can be migrated to a domain
policy store when the application is deployed to a server in the Oracle WebLogic
Server environment. If desired, the policies can also be removed from the domain
policy store when the application is undeployed, or updated when the application is
redeployed.

If Application Policies is selected in the Application Properties dialog, a
jps.policystore.migration property is set to OVERWRITE in the packaged
weblogic-application.xml when you deploy the application using JDeveloper. If
Application Policies is unselected, the jps.policystore.migration setting will
not be added to the packaged weblogic-application.xml, and will be removed if
it is already present. This causes the default operation MERGE to be used by Oracle
WebLogic Server. Merge will only migrate policies the first time the application is
deployed if they do not already exist. If the policies for the application already exist,
they will not be remigrated.

To find out more about automatic and manual migration of application policies, see
the Oracle Fusion Middleware Security Guide.

14.7.3 Migrating Credentials
When you migrate your application policies, you might also want to migrate your
credentials. Application credentials, specified in cwallet.sso, can be migrated to a
domain credential store when the application is deployed or redeployed to a managed
server in the WebLogic environment. Thus, credential migration includes the
passwords for all connections created within JDeveloper, including those created for
web services. (This is not related to user credentials specified in the identity store of
the jazn-data.xml file. See Section 14.7.4, "Migrating Users and Groups" below for
details about identity store migration.)

If Credentials is selected in the Application Properties dialog, a
jps.policystore.migration property is set to OVERWRITE in the packaged
weblogic-application.xml when you deploy the application in JDeveloper. If
Credentials is unselected, the jps.policystore.migration setting will not be
added to the packaged weblogic-application.xml, and will be removed if it is

Securing Development with JDBC

14-20 User's Guide for Oracle JDeveloper

already present. This causes the default operation MERGE to be used by Oracle
WebLogic Server. Merge will only migrate credentials the first time the application is
deployed if they do not already exist. If the credentials for the application already
exist, they will not be remigrated.

The credential migration is possible only when the server is running in development
mode only. In production mode, credential overwrite is prohibited. Application
credentials must be manually migrated when you deploy using tools outside of
JDeveloper.

14.7.4 Migrating Users and Groups
Users and roles, specified in jazn-data.xml, can be migrated to a domain identity
store when the application is deployed to a server in the WebLogic environment.

If Users and Groups is selected in the Application Properties dialog, JDeveloper will
make calls when you deploy the application to create Oracle WebLogic Server users
and groups corresponding to the application's jazn-data.xml users and role. If the
user already exists in the domain store, only the description and password will be
remigrated during deployment. If a group exists in the domain store with the same
name as the roles in the jazn-data.xml file, it will be replaced entirely. If Users and
Groups is unselected, JDeveloper will not try to migrate the identity store from the
application jazn-data.xml.

14.8 Securing Development with JDBC
A JDBC database connection created in JDeveloper derives its encryption properties
from the database client install on your machine. To create a secure connection using
JDBC:

■ Configure encryption support using the OCI driver by setting parameters in the
sqlnet.ora file on your client machine.

■ Use the thin JDBC driver to create a secure JDBC connection in JDeveloper. To do
this, select Enter Custom JDBC URL in step 3 (Connection page) of the Create
Database Connection Wizard, then enter your encryption parameters as part of a
custom JDBC URL, as shown in Example 14–3.

Example 14–3 Encryption Parameters

jdbc:oracle:thin:@(description
=(address=(protocol=tcp)(host=myhost)(port=1521))(connect_data=
(sid=ORCL)(SQLNET.ENCRYPTION_CLIENT=REQUIRED)(SQLNET.ENCRYPTION_TYPES_
CLIENT=DES40)(SQLNET.CRYPTO_CHECKSUM_CLIENT=REQUESTED)
(SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENTMD5=MD5)))

Note: Before migrating users and groups ensure that administrator
roles (admin) and users (weblogic) are not used in the application
jazn-data.xml file so that the domain identity store is not
overwritten. When your application is ready for deployment to a
production environment, you should remove the identities from the
jazn-data.xml file or disable the migration of identities by
deselecting Users and Groups from the Application Properties dialog.

15

Developing Applications Using XML 15-1

15Developing Applications Using XML

This chapter describes how to create and update applications using the XML tools and
editors provided by JDeveloper.

This chapter includes the following sections:

■ Section 15.1, "About Developing Applications Using XML"

■ Section 15.2, "Using the XML Editors."

■ Section 15.3, "Creating XML Files in Oracle JDeveloper"

■ Section 15.4, "Editing XML Files in Oracle JDeveloper"

■ Section 15.5, "Working with XML Schemas"

■ Section 15.6, "Developing Databound XML Pages with XSQL Servlet"

15.1 About Developing Applications Using XML
JDeveloper provides you with the tools you need to work with the XML files in your
application. There is an XML source editor, an XML validator, and tools for working
with XML schemas. You can also use JDeveloper to create and edit your XSQL files. It
provides a robust XML editing environment that allows you to create and edit many
different types of XML files in your application.

XML Schema development is easy with JDeveloper. You can create a schema
document from scratch, generate schemas from XML documents or vice-versa. Once
your schema is created, manage your elements using the XSD Visual Editor and the
Component Palette. For more information, see Section 15.5, "Working with XML
Schemas".

You can also create XSQL files from scratch or edit existing files. JDeveloper provides a
complete development environment to simplify the task of developing databound
XML pages with XSQL servlet. For more information, see Section 15.6, "Developing
Databound XML Pages with XSQL Servlet".

15.2 Using the XML Editors
JDeveloper provides three different editors for working with your an XML files.

■ The XML editor is a specialized schema-driven editor for editing XML languages,
including XSQL, XSL, XSD, XHTML, and WSDL files.

■ The Overview editor allows you to view and edit XML files. It visually displays
aspects of your deployment-related XML files such as filters, security and

Using the XML Editors

15-2 User's Guide for Oracle JDeveloper

references. For more information, see Chapter 11, "Developing Applications Using
Web Page Tools."

■ The XSD Visual editor allows you to create or edit XML schemas. It visually
displays the structure, content, and semantics of an XML document. For more
information, see Section 15.5.3, "Understanding the XSD Component Display in
the XSD Visual Editor."

15.2.1 Understanding XML Editing Features
Table 15–1 summarizes the editing features that are available when you're working
with XML files.

Table 15–1 XML Editing Features

Feature Purpose

Code Insight While you are typing, you can invoke Code Insight by pausing
after typing the < (opening bracket) or by pressing Ctrl+Space
if you are using the default keymapping. Code Insight opens a
list with valid elements based on the grammar. After selecting an
element, enter a space and then either pause or press Ctrl+Space
to open a list of valid attributes from which you can select. After
you enter the opening quote for the attribute value, either the
required type of value or a list of available values is provided.

XML Validation In an open XML Source Editor window, or in the Application
Navigator, right-click an XML file and choose Validate XML. The
Validate XML command will validate the XML against a schema
registered with JDeveloper defined in the XML file. To register a
schema with JDeveloper choose Tools > Preferences > XML
Schemas. This command on the context menu is disabled
whenever an XML file does not have an XML namespace
defined.

Quick Form Check Right-click on an XML file and choose Make to check for
well-formedness of the file.

XML Schemas Preferences Use the options on the XML Schemas page in the Preferences
dialog to view all the currently registered XML schemas, to add
new schemas, to support additional namespaces and elements,
to remove user-defined schemas, and to unload schemas from
memory.

To get to the Preferences dialog choose Tools > Preferences >
XML Schemas.

XML Preferences These features can be customized in the XML Preferences page.
Choose Tools > Preferences > Code Editor > XML and
JSP/HTML to display XML Preferences.

If Required Attribute Insertion is selected, the required
attributes of an element will also be inserted for you.

If End Tag Completion is selected, the end tag will be
automatically inserted when you close the start tag, for example
if you have <foo and you type the >,</foo> is added
automatically.

Component Palette You can choose View > Component Palette to open the palette
and select one of the available pages from the dropdown list. For
example, while editing XSD files, you can select elements from
the XML Schema pages on the palette.

Property Inspector The Property Inspector displays attributes of elements in the file.
You can edit the values of attributes in the Property Inspector to
update your file.

Creating XML Files in Oracle JDeveloper

Developing Applications Using XML 15-3

15.2.2 Understanding the XML Editor Toolbar
Table 15–2 contains the icons that display on the XML Editor toolbar.

15.3 Creating XML Files in Oracle JDeveloper
The New Gallery offers several different XML file type options, as shown in
Table 15–3. To create a new XML file choose File menu > New > General > XML.

Structure Window A file's elements are displayed hierarchically in the Structure
window, which also displays any XML syntax errors found as
you type and edit. You can double-click on an element or error
to edit it in the XML editor.

Validate XML In an open XML editor window, or in the Application Navigator,
right-click an XML file and choose Validate XML. The Validate
XML command will validate the XML against the schema
defined in the XML file. It validates the XML constraints and
definitions but not XSDs. This context-menu command is
disabled whenever an XML file does not have an XML
namespace defined.

F2 Key After creating an XML schema, select an element in the Structure
window and press F2. The element now has focus in the XML
design editor. You are automatically able to input new text for
the element into the XML design editor.

Expand/Collapse Attributes You can expand or collapse attributes that display under the
complexType element. This is convenient because the list of
attributes that display under the element can be large.

Table 15–2 XML Editor Toolbar Icons

Icon Name Description

Search (Crtl + F) Enter search text in the XML Editor. Click the down
arrow to view and set additional parameters for the
search, including Match Case to perform a
case-sensitive search, Whole Word to locate complete
word matches only, and Highlight Occurrences to use
shading to show the location of the match.

Find Next (F3) Click to locate the first occurrence of the text that meets
the specified parameters in the file.

Find Previous (Shift
+ F3)

Click to locate the previous occurrence of the text that
meets the specified parameters in the file.

Table 15–3 XML File Types

File Type Description

XML Document Create a new XML file that includes only the <?xml
version="1.0"?> line at the top.

XML Document from XML
Schema

Generates an XML document from an existing XML schema.

XML Localization File
(XLIFF)

Creates an XML-based localization file with an .xlf extension.
For more information, see Section 15.3.1, "Localizing with XML".

XML Document from XML
Schema

Generates as XML Document from an XML Schema.

Table 15–1 (Cont.) XML Editing Features

Feature Purpose

Creating XML Files in Oracle JDeveloper

15-4 User's Guide for Oracle JDeveloper

15.3.1 Localizing with XML
JDeveloper has tools to support full localization for your application based on
XML-based XLIFF technology. XLIFF supports a full localization process by providing
tags and attributes that hold the data your translators and vendors will use when you
internationalize your application.

15.3.1.1 How to Create a New XLIFF file
You create a new XMLFF file in the JDeveloper New Gallery under the XML node.

To create a new XLIFF file:
Choose File menu >New > General > XML > XML Localization File.

For more information on XLIFF, see the OASIS open standard website at,
http://www.oasis-open.org/home/index.php

15.3.1.2 What You May Need to Know About XLIFF Files
The main elements in an XLIFF file are the trans-unit elements. These elements store
localizable text and its translations. These elements represent segments (usually
sentences in the source file that can be translated reasonably independently). The
trans-unit elements contain source, target, alt-trans, and a handful of other elements.

There are also elements for review comments, the translation status of individual
strings, and metrics such as word counts of the source sentences. The XLIFF file
consists of one or more file elements. Each of these contains a header and a body
section. The header contains project data, such as contact information, project phases,
pointers to reference material, and information on the skeleton file.

JDeveloper uses Resource Bundles to hold all of the localization information, including
the XLIFF files. When you create content in a JSF page, a resource bundle is
automatically created for you in that project.

15.3.2 How to Import and Register XML Schemas
Use the options on the XML Schemas page in the Preferences dialog to view all the
currently registered XML schemas, add new schemas to support additional
namespaces and elements, remove user-defined schemas, and unload schemas from
memory.

XQuery File Creates an XQuery File with an .xq extension. For more
information, see Section 15.4.2, "Using XQuery with XML".

XSL Map Creates an XSL Map File with an .xsl extension.

XSL Map from XSL
Stylesheet

Creates an XSL Map File with an .xsl extension from an XSL
Stylesheet.

XSL Stylesheet Creates an XSL Stylesheet with an .xsl extension. For more
information, see Section 15.6.12, "How to Create an XSL Style
Sheet for XSQL Files".

XSQL File Creates an XSQL file with an .xsql extension. For more
information, see Section 15.6.2, "How to Create an XSQL File".

Table 15–3 (Cont.) XML File Types

File Type Description

Creating XML Files in Oracle JDeveloper

Developing Applications Using XML 15-5

To import and register an XML schema:
1. From the main menu, choose Tools > Preferences.

2. Select the XML Schemas node.

3. Click Add to open the Add Schema dialog where you can specify a new schema to
add to the list of user schemas.

4. Enter the name and location of the XML Schema file you are adding in the Add a
Schema from the file system or a URL field.

5. Enter the file extension to register the schema for a specific file type in the
Extension field. JDeveloper uses the extension to efficiently load the schema into
memory and to display automatically created Component Palette pages based on
the items in the schema.

6. Click OK.

JDeveloper automatically validates the schema when you add it.

7. Confirm that the new schema has been added in the User Schemas for XML
Editing list and click OK.

15.3.3 How to Add an XML Element to the Palette
You can add pages to the Component Palette in JDeveloper to include the elements
from a registered schema or you can add elements to an existing page. Once you add
the elements to the Palette, you can insert the elements into the XML file while you are
editing, by selecting them from the Palette.

To add XML elements to the Component Palette:
1. From the main menu, choose Tools > Configure Palette to open the Configure

Component Palette dialog.

Skip to step 4 if you do not want to add a new page.

2. Click Add under the Pages list to open the New Palette Page dialog.

3. In the New Palette Page dialog, enter the name of the new page and select the
appropriate type from the dropdown list, then click OK.

Your new page name is added to the bottom of the Pages list in the Configure
Component Palette dialog.

4. Select the new page name in the Pages list and click Add under the Components
list to open the XML Elements dialog.

The XML Elements dialog displays the Registered Schemas.

5. Expand the appropriate schema node to display the elements you can add to the
Palette.

6. To add an individual element, select it in the tree. To add multiple elements, use
Ctrl-click or Shift-click to select them. Then click OK.

You can also click Use Default Icon or Select Icon to select the icon that will
display for an individual element on the Palette, before you click OK.

Tips: You can only remove user-defined schemas with the Remove
button.

If a schema changes, you must use the Clear Cache button to unload
all currently loaded schemas from memory. JDeveloper will then
reload any needed schemas including the modified schema.

Editing XML Files in Oracle JDeveloper

15-6 User's Guide for Oracle JDeveloper

7. After adding XML elements, click OK to close the Configure Component Palette
dialog.

The name of the page you added displays in the dropdown list in the Palette. All the
elements you added are displayed with angle brackets (< >) as the icon, if you
accepted the default icon. If you do not see any element names on the Palette,
right-click in the Palette and choose List View.

15.3.4 How to Generate Java Classes from XML Schemas with JAXB
In JDeveloper you can use JAXB (Java Architecture for XML Binding) to generate Java
classes from XML schemas. JAXB is an easy way to incorporate XML data and
processing functions in Java applications without having to know XML. You can
generate a JAXB 1.0 or 2.0 content model, including the necessary annotations, from an
XML schema.

When the JAXB binding compiler is run against an XML schema, JAXB packages,
classes, and interfaces are generated. You can then use the generated JAXB packages
and the JAXB utility packages in a binding framework to unmarshal, marshal, and
validate XML content.

To generate Java classes from XML schemas with JAXB:
1. From the main menu choose File > New > Business Tier > TopLink/JPA and

select either JAXB 1.0 or 2.0 Content Model from XML Schema to open the
compilation dialog.

2. Select the schema file and optionally the JAXB customization file to use and the
package to which the generated classes will be added.

The JAXB package and generated classes are added to the Application Resources
folder.

15.4 Editing XML Files in Oracle JDeveloper
The XML Source Editor in JDeveloper is a specialized schema-driven editor for editing
XML languages including XSD, WSDL, XSQL, XHTML, and XSL files.

To edit an XML file in the XML Source Editor:
1. In the Navigator, right-click a file and choose Open.

2. Click the Source tab if not selected by default for that file.

3. While you are typing, you can invoke Code Insight by pausing after typing the <
(opening bracket) or by pressing Ctrl+Space (if you are using the default
keymapping). Code Insight opens a list with valid elements, based on the schema.

4. After selecting an element, enter a space and then either pause or press Ctrl+Space
to open a list of valid attributes from which you can select. After you enter the
opening quote for the attribute value, Tip Insight displays the type of value that is
required.

Tip: To edit an XML document with the Component Palette, choose
View > Component Palette to open the Palette and select one of the
available pages from the dropdown list. Then choose elements from
the page.

Working with XML Schemas

Developing Applications Using XML 15-7

15.4.1 How to Set Editing Options for the XML Editor
When editing XML files in the XML Editor you can set two editing options.

To customize editing options for the XML Editor:
1. Choose Tools > Preferences.

2. Expand the Code Editor node.

3. Select the XML node.

4. Select the XML node. On the XML Preferences page, select Required Attribute
Insertion or End Tag Completion to enable the desired options.

5. Click OK.

15.4.2 Using XQuery with XML
You can create and edit your XML-based XQuery files in JDeveloper. XQuery provides
the means to extract and manipulate data from XML documents or any data source
that can be viewed as XML, such as relational databases or office documents.

15.4.2.1 How to Create a New XQuery File
You create a new XQuery file in the JDeveloper New Gallery under the XML node.

To create a new XQuery file:
 Choose File menu, > New, > General > XML > XQuery File.

For more information on XQuery, see the W3C website at,
http://www.w3.org/TR/xquery/

15.4.2.2 What You May Need to Know About XPath Expression Syntax
XQuery uses XPath expression syntax to address specific parts of an XML document. It
supplements this with a SQL-like "FLWOR expression" for performing joins. A
FLWOR expression is constructed from the five clauses after which it is named: FOR,
LET, WHERE, ORDER BY, RETURN.

The language is based on a tree-structured model of the information content of an
XML document, containing seven kinds of node: document nodes, elements,
attributes, text nodes, comments, processing instructions, and namespaces.

15.5 Working with XML Schemas
JDeveloper provides an XSD Visual Editor that gives a visual representation of the
structure, content, and semantics of an XML document.

15.5.1 Working with Attributes in the XSD Visual Editor
You can create an XML schema’s attributes and set properties and facets from using
the XSD Visual Editor. Figure 15–1 contains an example XML schema in the Design tab
of the XSD Visual Editor.

Working with XML Schemas

15-8 User's Guide for Oracle JDeveloper

Figure 15–1 Schema in XSD Visual Editor

You can edit attributes in attribute2 in the attribute editor, which is displayed in
Figure 15–1 as the union element. In this editor, you can:

■ Display all available attributes under an element. To hide or display details, click
the plus and minus signs next to the attribute.

■ Display all facets and type details of an attribute display in the attribute node

■ Display the default "Insert Into" menu with the valid schema components (for
example, union) when you right-click on an attribute node.

■ Expand an attribute node within to display a subtree containing child nodes like
list or union.

15.5.2 What Happens When You Create an XML Schema in the XSD Visual Editor
As you create an XML Schema in the XSD visual editor, JDeveloper automatically
updates the XML source in the design tab, as well as updating the contents of the
Structure window. Example 15–1 contains the source for the example.xsd file
shown in Figure 15–1.

Example 15–1 XML Source

<?xml version="1.0" encoding="windows-1252" ?>
 xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.example.org"
 targetNamespace="http://www.example.org"
<elementFormDefault="qualified">
 <xsd:complexType name="UnionTest">
 <xsd:sequence>
 <xsd:element name="element1">
 <xsd:complexType>
 <xsd:attribute name="attribute1">
 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="element2">
 <xsd:complexType>
 <xsd:attribute name="attribute2">
 <xsd:simpleType>
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:union/>
 </xsd:simpleType>
 <xsd:pattern value="abcd"/>
 </xsd:restriction>
 </xsd:simpleType>

Working with XML Schemas

Developing Applications Using XML 15-9

 </xsd:attribute>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>
</xsd:schema>

15.5.3 Understanding the XSD Component Display in the XSD Visual Editor
The JDeveloper XSD Visual Editor provides a visual representation of the structure,
content, and semantics of an XML document. Use the XSD Visual Editor to author a
new, or to edit an existing, XML Schema.

15.5.3.1 XSD Component Selection
The selection of any component or attribute in the editor is indicated by highlighting
the selected item in blue. In Figure 15–2, the selected simpleType component
defines a simple type and specifies the constraints and information about the values of
attributes or text-only components, in this case restricting the string type.

Figure 15–2 simpleType Component

15.5.3.2 XML Schema Component
The XML Schema component is displayed at the top of an XSD file, as shown in
Figure 15–3. Right-click the element and select Properties to display a dialog for
configuring the schema namespaces.

Figure 15–3 XML Schema Component

15.5.3.3 Choice Component
The choice component allows only one of the components contained in the <choice>
declaration to be present within the containing component, as shown in Figure 15–4.
Set attribute maxOccurs to >1 to have more than one item from the choice in the
parent.

Figure 15–4 Choice Component

15.5.3.4 All Component
The all component shown in Figure 15–5 specifies that the child components can
appear in any order and that each child component can occur zero or one time.

Working with XML Schemas

15-10 User's Guide for Oracle JDeveloper

Figure 15–5 All Component

15.5.3.5 Sequence Component
The sequence component shown in Figure 15–6 specifies that the child components
must appear in a sequence. Each child component can occur from 0 to any number of
times.

Figure 15–6 Sequence Component

15.5.3.6 Cardinality and Ordinality
In the example of cardinality shown in Figure 15–7, components are displayed with
the following attributes:

■ Required components (minOccurs=">0") are displayed with a solid line.

■ Optional components (minOccurs="0") are displayed with a dotted line.

■ Unbounded components(maxOccurs="unbounded") display an infinity symbol in
the component stack number. Any component that can appear more than once is
displayed as a "stack" of components. In the numbers to the left of the component
the number before the colon indicates the minimum number of times the
component can occur (minOccurs) and the number after the colon indicates the
maximum number of times the component can occur (maxOccurs). In the
illustration the maximum is unbounded so an infinity symbol is displayed.

■ Range of components is displayed in the component stack number. In the
illustration the component must appear at least 2 times in the instance document,
but no more than 7.

Figure 15–7 Cardinality Component

15.5.3.7 ComplexType Component
In Figure 15–8, the complexType component extends a base type, and inherits an
attribute and children from that base type. The yellow background represents a
reference to the baseType defined elsewhere in the schema and illustrated below the
complexType component. The component attributes are displayed as:

■ Inherited, marked with a square.

■ Optional, marked with a square.

■ Required, marked with an orange asterisk.

Working with XML Schemas

Developing Applications Using XML 15-11

■ Prohibited, marked with an orange X.

Figure 15–8 complexType Component

15.5.3.8 Attribute Group Component
The attribute group component groups a set of attribute declarations so that they can
be incorporated as a group into complex type definition.

Figure 15–9 displays three attribute groups.

Figure 15–9 Attribute Group Component

If you add an element to a schema that has multiple attributeGroups, you can add
choose one or more attributeGroups for the element by clicking on the element's
attribute and choosing from a drop-down list.

15.5.3.9 Union Component
The union component defines a simple type as a collection (union) of values from
specified simple data types. In Figure 15–10, the union represents all strings that begin
with the letter "i".

Figure 15–10 Union Component

15.5.3.10 List Component
The list component defines a simple type component as a space separated list of values
of a specified data type. In Figure 15–11, the component represents a series of short
value objects.

Working with XML Schemas

15-12 User's Guide for Oracle JDeveloper

Figure 15–11 List Component

15.5.4 How to Generate an XML Schema from XML Documents
Use the XML wizard in the New Gallery to help you quickly generate industry
standard W3C XML schema (.xsd) from your XML (.xml) documents. Conversely,
you can also generate XML documents from your XML schema.

To generate an XML schema from an XML document:
1. Choose File menu > New > General > XML > XML Schema from XML

Document.

2. Enter the information as directed.

To generate an XML document from an XML schema
1. Choose File menu > New > General > XML > XML Documents from XML

Schema.

2. Enter the information as directed.

15.5.5 How to Generate an XSD File from a DTD File
You can generate an XML schema document (XSD) file from a document type
definition (DTDs) file.

To generate an XSD file from a DTD:
1. On the main menu, click Tools.

2. In the Tools menu, click Convert DTD to XSD.

15.5.6 How to Display an XSD File for Editing
Open a schema (.xsd) file for editing in the XSD Visual Editor or XML Source Editor.
By default new schema files are opened with the XSD Visual Editor in focus.
Double-clicking a file in the Application Navigator opens or brings the default editor
on the Design tab to the foreground. Clicking the Source tab opens the file in the XML
Source Editor. Changes made in one editor are automatically updated in the other
editor.

A schema file (.xsd) can be edited simultaneously with the visual and source editors
by opening the page in one of the editors and using the splitter to open a second page
view in the alternate editor.

To display a schema file in both editors:
■ To split the file horizontally, grab the splitter just above the vertical scroll bar (on

the upper right-hand side of the window) and drag it downward.

■ To split the file vertically, grab the splitter just to the right of the horizontal scroll
bar (on the lower right-hand side of the window) and drag it left.

15.5.7 How to Create an Image of the XSD Visual Editor Design Tab
You can create the design tab of the XSD Visual Editor as an image. You can then share
the image as a file or print out or image with others.

Working with XML Schemas

Developing Applications Using XML 15-13

Supported image formats are .svg, .svgz, .jpg, and .png.

1. In the Application Navigator, double click the .xsd file you want to display in the
XSD Visual Editor.

2. Click the Design tab in the XSD Visual Editor.

A design view of the .xsd file displays, similar to Figure 15.6.

Figure 15–12 Design Tab in XSD Visual Editor

3. Right-click anywhere on the Design tab and choose Publish Diagram.

4. Enter a name, the path where you want to save the diagram, and the image type
you want to use.

15.5.8 How to Navigate with Grab Scroll in the XSD Visual Editor
In the XSD Visual Editor, you can quickly navigate an XML Schema that displays with
scroll bars using a grab scroll operation. Use the grab scroll to invoke a small hand
cursor to grab an XML Schema page and drag it inside the editor window.

To navigate using grab scroll in an XML Schema:
1. In the XSD Visual Editor press and hold down the spacebar.

The pointer turns into an open hand cursor.

2. Press and hold down the left mouse button.

The hand closes and grabs the XML Schema page.

3. Use your mouse to move the XML Schema page inside the editor window.

4. Release the XML Schema page by releasing the left mouse button.

5. Close grab scroll by releasing the spacebar.

15.5.9 How to Expand and Collapse the XSD Component Display
While working in the XSD Visual Editor or Design structure window, you can expand
or collapse XSD components to display children components or collapse container
components to create a higher level view of the schema.

Notes: If the diagram you are attempting to save is too large, a
message displays indicating that the image should be saved in .svg
format.

If you right-click on a node in the XSD Visual Editor, only the current
node and its child nodes are saved as an image.

Working with XML Schemas

15-14 User's Guide for Oracle JDeveloper

To expand one level beyond the parent component:
Click the + (plus) sign of the parent component.

To collapse all levels below the parent component:
Click the - (minus) sign of the parent component.

To expand all parent components in the schema:
Press Ctrl + *, using the * on the numeric keypad of the keyboard.

15.5.10 How to Zoom In and Out in the XSD Visual Editor
Zooming enables you to magnify (zoom in) or shrink (zoom out) on the display of an
XML Schema in the XSD Visual Editor.

To zoom in:
1. Place your cursor in the area of the XML Schema you wish to magnify.

2. Press Ctrl+Plus.

To zoom out:
1. Place your cursor on the area of the XML Schema you wish to shrink.

2. Press Ctrl+Minus.

15.5.11 How to Select XSD Components
One of the most common actions you perform in the XSD Visual Editor or Structure
window (Design or Source view) is to select components in order to do something
with them. There are several reasons for selecting components:

■ Edit the properties of the component(s)

■ Move the component(s)

■ Delete the component(s)

■ Select a target position in which to insert another component

You can select a single component without children, a component along with its
children, and multiple components.

To select a component:
■ Click the component.

If the selected component contains children, selecting the component also selects
all its children. If you copy, move, or delete the parent, all its children are also
copied, moved, or deleted.

Note: This view can be big.

Note: Use the Plus on the numeric keypad of the keyboard.

Note: Use the Minus on the numeric keypad of the keyboard.

Working with XML Schemas

Developing Applications Using XML 15-15

To select multiple components:
1. Click the first component.

2. Press and hold down the Ctrl key.

3. Click any additional components. If you want to deselect one without losing the
other selections, continue to hold down the Ctrl key and click the component
again.

Selecting multiple, non-adjacent components for any reason other than deleting
them can lead to unexpected results. For example, if the components exist at
different levels in the schema hierarchy, they can lose their relative hierarchical
positions if you move or copy them to another position in the schema page.

In the XSD Visual Editor it is possible to select a container component (and thereby
select its children) and also explicitly select one or more of the children. That
means that any explicitly selected child is selected twice. If you do this and then
copy and past the selection, the double-selected child will be pasted twice, once as
a child to the copied parent and once as a peer to the copied parent.

15.5.11.1 What Happens When You Select a Component in the XSD Visual Editor
When a component is selected in the XSD Visual Editor, the component displays in
blue. When a container component is selected and any of its children are also explicitly
selected, all are displayed in blue.

When selected in the Structure window (Design or Source view), the component is
highlighted. However, when you select any components with children, the children
are also selected with it, even if their names are not selected. If you delete or move the
parent, all the children are deleted or moved with it.

Whenever you select an component, you are also selecting a position in which another
component can be inserted. For more information, see Section 15.5.12, "How to Select
Target Positions for XSD Components".

15.5.12 How to Select Target Positions for XSD Components
While inserting, copying, or moving XSD components in the XSD Visual Editor or
Structure window (Design or Source view), you need to select a target position in
relation to the node on which you are performing the activity. The possible target
positions on a node are before, after, and inside.

To select a target position:
Choose from one of the following options:

Tip: Double-clicking an XSD component in the XSD Visual Editor
displays a property editor for the component.

Tips: When you pass the mouse pointer over a component, a tooltip
with the component's name is displayed. That makes it easier to know
where to click to select a component.

When you select a component in the XSD Visual Editor, it is also
selected in the Design and Source view of Structure window, and vice
versa. That means that you can look at the selection in both tools to
clarify what is selected and where the insertion position is.

The JDeveloper status bar explicitly states the insertion point for a
selected component.

Working with XML Schemas

15-16 User's Guide for Oracle JDeveloper

■ Select the target position by clicking the node on which you are performing the
action.

■ When dropping a component at a target position, do one of the following:

– To insert a component before a target node, drag it towards the top of the node
until you see a solid horizontal line (visual editor) or horizontal line with an
embedded up arrow (structure), then release the mouse button.

– To insert a component after a target node, drag it towards the bottom of the
node until you see a solid horizontal line (visual editor) or a horizontal line
with an embedded down arrow (structure), then release the mouse button.

– To insert a component inside a target node, drag it over the node until it is
surrounded by a box outline, then release the mouse button. This target
position is available only on nodes that can contain child nodes.

■ When using the context menu to select a target position, right-click the target
node, choose an option, and then select a component. The options are:

– Insert before <component> - inserts a component before the selected node.

– Insert inside <component> - inserts a component inside (under) the selected
node.

– Insert after <component> - inserts a component after the selected node.

Not all options are always available. Choosing an option displays a submenu from
which you can choose a component list and then select the component you desire.
Depending on the node you select, the submenu may also contain one or more
components that are eligible for insertion inside the selected node.

15.5.13 How to Insert XSD Components
In the XSD Visual Editor and Structure window (Design and Source view), you can
insert XSD components by dragging from the Component Palette or by using a context
menu. You can also insert XSD components by copying or by cutting and pasting. If
you are cutting and pasting, you can insert multiple components at a time. For more
information, see Section 15.5.16, "How to Cut, Copy, and Paste XSD Components".

Note: When you select a target position in the Design or Source
views in the Structure window, the selection is also reflected in the
XSD Visual Editor, and vice versa. This enables you to verify the
insertion position visually as well as hierarchically. The selection is
also explicitly stated in the status bar at the bottom of the JDeveloper
window.

Note: Pasting multiple components that were copied from different
places in the XML schema hierarchy can lead to unexpected results.

Working with XML Schemas

Developing Applications Using XML 15-17

To insert XSD components using the Component Palette:
1. In the XSD Visual Editor or Structure window, locate the desired position where

you wish to insert a component. You may have to expand nodes in the Structure
window to uncover the node you want.

2. In the Component Palette, select an XSD component list from the dropdown list
box, and then drag the desired component from the list and drop into the desired
target position in the XSD Visual Editor or Structure window.

You can also select the target position in the visual editor or Structure window and
then click the desired component in the Component Palette.

To insert XSD components using the context menu:
1. In the XSD Visual Editor or Structure window, right-click the desired node to

display a context menu. You may have to expand nodes to uncover the node you
want.

2. Choose an option in the context menu, and then select a component. The options
are:

■ Insert before <component> - inserts a component before the selected node.

■ Insert inside <component> - inserts a component inside (under) the selected
node.

■ Insert after <component> - inserts a component after the selected node.

Not all options in the context menu are always available. Choosing an option
displays a submenu from which you can choose a component list and then select
the component you desire. Depending on the node you select, the submenu may
also contain one or more components that are eligible for insertion inside the
selected node.

15.5.14 How to Set and Modify XSD Component Properties
The Property Inspector displays the properties of XSD components selected in the XSD
Visual Editor or the Structure (Design or Source view) window. Use the Property
Inspector to set or modify the property values for any component in your XML
Schema. Set property values are marked with a green square.

To undo changes, from the main menu select Edit, > Undo action. Use the Set to
Default button to reset a property that has been set to its default value (if any).

To set a component's properties:
1. With an XML Schema open, select a component in the visual editor or Structure

window.

The Property Inspector displays the property values for the selected component. If
the Property Inspector is not in view choose View > Property Inspector or use the
shortcut Ctrl+Shift+I.

2. Scroll until the property you want is visible, then select it with the mouse or the
arrow keys.

A brief description of the property is displayed at the bottom of the Property
Inspector.

Tip: A brief description of a component appears when the cursor is
placed over a component name in a list. For detailed help, right-click a
components in the list and choose Help.

Working with XML Schemas

15-18 User's Guide for Oracle JDeveloper

3. Enter the property value in the right column in one of the following ways:

■ In a text field, type the string value for that property, for example a text value
or a number value, then press Enter.

■ In a value field with a down arrow, click the down arrow and choose a value
from the list, then press Enter.

■ In a value field with an ellipsis (...), click the ellipsis to display an editor for
that property. Set the values in the property editor, then press OK.

15.5.15 How to Set Properties for Multiple Components
If you have multiple components selected, by default the Property Inspector displays
all the properties of the selected components. Click the Union button in the Property
Inspector toolbar to toggle between displaying all the properties of the selected
components (union) and displaying only the properties that the selected components
have in common (intersection). Values represented in italic font indicate common
properties that have differing values.

To set properties for multiple components:
1. Hold down the Ctrl key and select each of the components.

2. To change the list of properties displayed by the Property Inspector, click the
Union button in the Property Inspector toolbar.

■ Selected state displays all the properties of the selected components.

■ Unselected state displays only the properties the selected components have in
common.

3. Select and edit the desired property in the Property Inspector.

If the value is shown in italic font, the selected components have differing values.
Editing the value of a shared property will cause all selected components to have
the same value.

15.5.16 How to Cut, Copy, and Paste XSD Components
You can cut, copy, and paste XSD components in the XSD Visual Editor or Structure
(Design or Source) window. You can perform these operations between files of the
same project or different projects.

15.5.16.1 Cutting Components
When you cut a component, it is removed from the editor and placed into a local
clipboard only accessible by JDeveloper, not to the system clipboard. If you quit

Tip: To quickly locate a property in a long list, click the search button
in the Property Inspector toolbar. In the Find text field, type the name
of the property, then press Enter.

Tips: Double-click an XSD component or right-click the component
and choose Properties to display a property editor for the component.

In the property editor select an attribute and view a brief description
in the status area below the editor.

Click Help in the property editor for a link to a component reference
topic.

Working with XML Schemas

Developing Applications Using XML 15-19

JDeveloper without pasting the component, the cut version of the component will be
lost.

Deleting a component removes it without changing the contents. If you get in the habit
of using the cut command to remove items permanently, there is a chance that one day
you will inadvertently replace something in the clipboard that you would rather have
kept. For more information, see Section 15.5.18, "How to Delete XSD Components".

To cut one or more components:
1. Select the XSD component you wish to cut in the visual editor or the Structure

window.

2. Do one of the following:

■ Press Ctrl+X.

■ Right-click and select Cut.

■ Choose Edit > Cut from the main menu.

15.5.16.2 Copying Components
 You can copy XSD components in the visual editor or the Structure window.

To copy one or more components:
1. Select the XSD component you wish to copy in the visual editor or the Structure

window.

2. Do one of the following:

■ Press Ctrl+C.

■ Right-click and select Copy.

■ Choose Edit > Copy from the main menu.

■ Hold down Ctrl and drag a copy of the selected component to a target
position.

15.5.16.3 Pasting Elements
The elements you cut or copy from the XSD Visual Editor or Structure window can be
pasted into any other XSD file in JDeveloper. For more information, see
Section 15.5.12, "How to Select Target Positions for XSD Components".

To paste an element:
1. Open the file in which you want to paste a XSD element in the visual editor or

Structure window.

2. Select the insertion point where you want to paste the element.

3. Do one of the following:

■ Press Ctrl+V.

■ Right-click and select Paste.

■ Choose Edit > Paste.

15.5.17 How to Move XSD Components
You can move an XSD component to a new insertion point in the XSD Visual Editor or
Structure (Design or Source view) window by dragging or by cutting and pasting. You

Developing Databound XML Pages with XSQL Servlet

15-20 User's Guide for Oracle JDeveloper

can work in the visual editor or the Structure window to move components or work in
both at once, moving components between the editors. Move an XSD component to a
valid insertion point in another file in the same project or a different project by cutting
and pasting. For more information, see Section 15.5.11, "How to Select XSD
Components".

You can move one or multiple components at a time. However, you should be aware
that selecting and moving multiple, non-adjacent components or multiple components
from different levels in the schema hierarchy can lead to unexpected results.

To move components by dragging
In the visual editor or Structure window do either of the following:

■ Drag the component(s) from the original position to a target position in the visual
editor or Structure window. For more information, see Section 15.5.12, "How to
Select Target Positions for XSD Components".

■ Right-click drag the component(s) from the original position to an insertion point
in the visual editor or Structure window, and then choose Move Nodes Here from
the context menu.

To move components by cutting and pasting:
In the visual editor or Structure window do either of the following:

■ Cut the component(s). Then, paste into some other position in the visual editor or
Schema structure window.

■ Cut the component(s). Then, paste into another file in the same project or a
different project.

15.5.18 How to Delete XSD Components
You can remove components from your XML Schema in the XSD Visual Editor or
Structure (Design or Source view) window. When you delete a component, JDeveloper
deletes the associated lines from the source code.

To delete one or more XSD components:
1. Select one or more XSD components you wish to delete in the visual editor or

Structure window. For more information, see Section 15.5.11, "How to Select XSD
Components".

2. Do one of the following:

■ Press the Delete key.

■ Press Ctrl+X.

■ Right-click and select Delete.

■ Choose Edit > Delete from the main menu.

15.6 Developing Databound XML Pages with XSQL Servlet
JDeveloper provides a complete development environment to simplify the task of
developing databound XML pages with XSQL servlet.

Note: The selected components and all of its child components are
moved to the new target position.

Developing Databound XML Pages with XSQL Servlet

Developing Applications Using XML 15-21

15.6.1 Supporting XSQL Servlet Clients
JDeveloper provides support for XSQL Servlet with these features:

■ Provides XSQL tags on the Component Palette

■ Lets you automatically create XSQL pages

■ Includes XSQL libraries

■ Provides XSQLConfig.xml on the classpath; you can modify it as needed

■ Provides business component action handler tags so XSQL pages can use a
business logic tier to access data

15.6.1.1 What is XSQL Servlet?
XSQL servlet lets you create and use XSQL pages as clients. These pages are written in
XML with embedded SQL queries and other data manipulation language (DML)
statements. In addition, you can use action handlers to provide more functionality
than SQL, such as writing the XML data to a file.

An action handler is an application that allows you to call a Java class from within an
XSQL page. There are predefined action handlers that can talk directly to the database
or to Business Components for Java (BC4J), and you can create your own.

An XSQL Servlet application has these logical layers:

■ Client - XSQL pages take care of querying and getting data by using XML with
embedded SQL. To present the data, you need to convert the XML data to another
form, such as HTML, wireless markup language (WML), and so on. You can write
XSL style sheets to convert XML to any of these languages.

■ XSQL Servlet in a Web Server - The servlet uses the XML SQL Utility to talk to a
database.

■ Business Logic Tier - You can optionally use a Business Components for Java tier
to access and modify data.

■ Database - You can use any database supporting JDBC 2.0 drivers.

15.6.1.2 How Can You Use XSQL Servlet?
XSQL servlets offer a simple and productive way to get XML in and out of the
database. Using simple scripts developers can:

■ Generate simple or complex XML documents

■ Apply XSL style sheets to generate any text format

■ Parse XML documents and store the data in the database

■ Create complete dynamic web applications without programming a single line of
code

For example, a file such as emp.xsql in Example 15–2:

Example 15–2 emp.sql File

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="emp.xsl"?>
<FAQ xmlns:xsql="urn:oracle-xsql" connection = "scottDS">
 <xsql:query doc-element="EMPLOYEES" row-element="EMP">
 select e.ename, e.sal, d.dname as department
 from dept d, emp e
 where d.deptno = e.deptno

Developing Databound XML Pages with XSQL Servlet

15-22 User's Guide for Oracle JDeveloper

 </xsql:query>
</FAQ>

Generates the XML in Example 15–3:

Example 15–3 XML File

<EMPLOYEES>
 <EMP>
 <ENAME>Scott</ENAME>
 <SAL>1000</SAL>
 <DEPARTMENT>Boston</DEPARTMENT>
 </EMP>
 <EMP>
...
 </EMP>
</EMPLOYEES>

With JDeveloper, you can easily develop and execute XSQL files. The built-in web
server and your default web browser will be used to display the resulting pages.

For more information on XSQL Servlet, see your Oracle database documentation.

15.6.2 How to Create an XSQL File
With JDeveloper, you can easily develop and execute XSQL files. The built-in web
server and your default web browser will be used to display the resulting pages.

To create an XSQL file:
1. In the Navigator, select the project in which you want to create the new XSQL

page.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand General and select XML.

4. In the Items list, double-click XSQL Page.

This will add a skeleton XSQL file named untitled#.xsql to your project, which
opens in the XML Editor. You can type code in this editor, add tags by selecting them
from the Component Palette, and modify the file with your own style sheet
information.

15.6.3 How to Edit XML Files with XSQL Tags
JDeveloper's XML Editor supports syntax highlighting, Structure window view, and
the Property Inspector. You can also select tags from the Component Palette to insert in
your pages while you are editing.

To use the XML Editor to edit an XSQL file:
1. In the Navigator, right-click an XSQL file and choose XML Editor.

2. Choose View > Componenet Palette to open the Component Palette and select the
XSQL tag page from the dropdown list in the Palette. You can then select XSQL
tags from the Palette.

3. While you are typing, you can invoke Code Insight by pausing after typing the <
(opening bracket) or by pressing Ctrl+Space (if you are using the default
keymapping). Code Insight opens a list with valid tags.

Developing Databound XML Pages with XSQL Servlet

Developing Applications Using XML 15-23

4. After selecting a tag, enter a space and then either pause or press Ctrl+Space to
open a list of valid attributes from which you can select. After you enter the
opening quote for the attribute value, Tip Insight displays the type of value that is
required.

5. While you are editing, or after you finish, you can right-click in the file and choose
Auto Indent XML to properly indent the file.

6. You can also right-click in any tag and choose Locate in Structure to highlight that
tag in the Structure window.

15.6.4 How to Add XSQL Tags
All XSQL tags can be inserted by selecting them from the Component Palette, as
described below. You can also insert XSQL tags by typing them in the file. Code
Insight is available for XSQL tags.

To add XSQL tags to a file:
1. In the Navigator, select the XSQL file to which you want to add tags, right-click

and choose XML Editor to open the source file.

2. Place your cursor in the blank line after the <page
xmlns:xsql="urn:oracle-xsql"> tag.

3. Choose View > Component Palette to open the Palette if it is not displayed.

4. Select XSQL Tags from the dropdown list in the Palette if it is not displayed.

5. Select the appropriate tag from the Palette.

If the tag has no attributes, it appears in the XSQL page immediately. If the tag has
one or more attributes, a dialog displays.

6. In the dialog that displays, enter the required and any optional attributes. Press F1
or click Help in the dialog to get help for an XSQL tag and its attributes.

7. After entering attributes, click Next to display the next dialog or click Finish if it is
enabled.

The button you see and the number of dialogs depend on which tag you select.
Notice that the tag and attributes you entered appear in the XSQL page.

8. Add another line in the source file and select another tag from the Component
Palette if necessary.

9. When you have finished adding tags, choose File > Save All to save all your work
thus far.

After adding tags, you can view the raw XML data or format the XML data with a
style sheet.

15.6.5 How to Check the Syntax in XSQL Files
You can check your XSQL file to determine if it is a well-formed XML document and if
not, to find any errors.

To check the syntax in an XSQL file:
In the Navigator, or in an open XML Editor window, right-click an XSQL file and
choose Check XML Syntax.

The results display in the Log window.

Developing Databound XML Pages with XSQL Servlet

15-24 User's Guide for Oracle JDeveloper

15.6.6 How to Create XSQL Servlet Clients that Access the Database
You can create XML based clients for XSQL servlets using XSQL tags. XSQL servlets
allow you to easily get data in and out of the database in XML format. The following
procedure shows how to use the XSQL Query tag to display data

To create an XSQL servlet client that directly accesses the database:
1. Create a new project in the workspace that contains the Business Components

project by selecting the workspace in the Navigator and choosing File > New to
open the New Gallery.

2. In the Categories tree, expand General and select Projects.

3. In the Items list, double-click Empty Project to open the New Project dialog.

4. Complete the New Project dialog and click OK to add the empty project to your
workspace.

5. Select the new project in the Navigator and choose File > New.

6. In the Categories list, select General and select XML.

7. In the Items list, double-click XSQL Page.

This adds a skeleton XSQL file named untitled#.xsql to your project.

8. In the Navigator, right-click the new XSQL file, and choose XML Editor to open
the source file.

9. Place your cursor in the blank line after the <page
xmlns:xsql="urn:oracle-xsql"> tag.

10. Choose View > Component Palette to open the Palette if it is not displayed.

11. Select XSQL Tags from the dropdown list in the Palette if it is not displayed.

12. Drag the Query (XSQL) tag from the Palette onto the XSQL file.

The Query tag executes a SQL statement and includes its result set in XML format.

13. In the dialog that displays, you can enter values and change default values for the
attributes. Press F1 or click Help in the dialog to get help on the tag and its
attributes.

14. After entering attributes, click Next.

15. In the Connection Selection dialog, select your connection or create a new database
connection, then click Next.

16. In the Query dialog, type the SQL statement that you want to execute, then click
Next.

For example, you might type select * from customer to display all the
records in the customer database, based on the attributes you entered.

17. Click Finish.

Notice that the Query tag and attributes you entered appear in the XSQL page.

18. Choose File > Save All to save your work.

Note: The Validate XML command on this context menu is disabled
whenever an XML file does not have an XML namespace defined.

Developing Databound XML Pages with XSQL Servlet

Developing Applications Using XML 15-25

19. Right-click the XSQL file in the Navigator, and choose Run filename.xsql to view
the raw XML data in your web browser.

You can format the XML data with a style sheet. The XML data also can be passed on
to another application through a messaging service.

15.6.7 Creating XSQL Servlet Clients for Business Components
You can create XML based clients for business components using XSQL servlet. XSQL
servlet allows you to easily get data in and out of the database in XML format. The
following procedure shows how to bind an XSQL client to a business components
project you have already created, using the ViewObject Show tag to display the
view object's data in XML format. You could also use the ViewObject Update tag to
process inserts, updates, and deletes to a view object.

To create an XSQL servlet client for business components:
1. Create a new project in the workspace that contains the business components

project by selecting the workspace in the Navigator and choosing File > New to
open the New Gallery.

2. In the Categories tree, expand General and select Projects.

3. In the Items list, double-click Empty Project to open the New Project dialog.

4. Complete the New Project dialog and click OK to add the empty project to your
workspace.

5. Select the new project in the Navigator and choose File > New.

6. In the Categories list, select General and select XML.

7. In the Items list, double-click XSQL Page.

This adds a skeleton XSQL file named untitled#.xsql to your project.

8. In the Navigator, right-click the new XSQL file, and choose XML Editor to open
the source file if it is not open.

9. Place your cursor in the blank line after the <page
xmlns:xsql="urn:oracle-xsql"> tag.

10. Choose View > Component Palette to open the Palette if it is not displayed.

11. Select XSQL tags from the dropdown list in the Palette if it is not displayed.

12. Select the ViewObject Show tag from the Palette.

The ViewObject Show tag shows the view object's data in XML format. The
ViewObject Update processes inserts, updates, and deletes to a view object
based on an optionally transformed XML document.

13. In the View Object Selection dialog, select the appropriate view object > click Next.

14. Change or accept the default values for the attributes. Press F1 or click Help in the
dialog to get help on the tag and its attributes. After entering attributes, click Next.

15. Click Finish.

Notice that the tag and attributes you entered appear in the XSQL page.

16. Choose File > Save All to save all your work thus far.

17. Right-click the XSQL file in the Navigator, and choose Run filename.xsql to view
the raw XML data in your web browser.

Developing Databound XML Pages with XSQL Servlet

15-26 User's Guide for Oracle JDeveloper

You can format the XML data with a style sheet. The XML data also can be passed on
to another application through a messaging service.

15.6.7.1 What You May Need to Know About Business Components XSQL Action
Handlers
To use XSQL pages with the Business Components XSQL action handlers, the XSQL
Runtime and the JBO HTML libraries need to be in your project's classpath, in addition
to any JBO libraries that are needed based on your intended connection mode.
JDeveloper includes them in the classpath automatically.

15.6.8 How to Creating a Custom Action Handler for XSQL
An action handler in an XSQL page is a Java class that gets invoked to perform a
specific task. There are prebuilt action handlers for various tasks such as setting
cookies, applying style sheets, performing queries against databases, etc. However, if
you choose to perform some operation which is not provided by the built-in action
handlers, then you can write what is called a custom action handler. A custom action
handler is a Java class that can be invoked from an XSQL page just as easily as a
predefined action handler.

To create an action handler:
1. Add the XSQL configuration file to your project.

2. In the XSQL configuration file, register the new action handler by specifying the
element name and handler class.

3. In the XSQL file, add the new element and its attributes.

4. In the XSQL file, add connection information to the <page> tag.

5. Add a Java file to the project.

6. In the Java file, create a class that extends the XSQLActionHandlerImpl class.

The XSQL action handlers for BC4J are packaged as part of the JBO HTML library in
JDeveloper, which includes the relevant: <JdevHome>/BC4J/jlib/bc4jhtml.jar
archive in the build.

Example 15–4 Action Handler For XSQL

// Copyright (c) 2000, 2009, Oracle and/or its affiliates. All
 rights reserved. import oracle.xml.xsql.*;
import org.w3c.dom.Node;
import java.util.Date;
/**
 * A Class class.
 * <P>
 * @author Pas Apicella
public class JavaDate extends XSQLActionHandlerImpl
{
 public void handleAction (Node root)
 {
 addResultElement(root, "CURRENTDATE", (new Date()).toString());
 }

Note: Please refer to the section titled "Caveats while Querying View
Objects with Circular ViewLink Accessors" in the ViewObject Show F1
help topic if you get the XSQL error JBO-27122.

Developing Databound XML Pages with XSQL Servlet

Developing Applications Using XML 15-27

}

15.6.9 How to Run and Deploy XSQL Servlet Clients
After you have completed your XSQL file, you can test the XSQL query by running it
in Integrated WebLogic Server, which provides everything you need to develop, test
and debug web applications from within the IDE. For more information, see
Section 9.2, "Running Java EE Applications in the Integrated Application Server."

To run an XSQL servlet file:
1. In the Navigator, right-click the XSQL file and select Check XML Syntax.

JDeveloper will scan the XSQL file looking for XML syntax errors and display the
results in the Log window.

2. If there are no XML syntax errors, right-click the XSQL file and select Run
filename.xsql.

JDeveloper compiles the servlet. It then starts the Integrated WebLogic Server. The
first time you start Integrated WebLogic Server, a dialog is displayed where you
have to enter a password for the default user weblogic on the default domain.
You only need to do this once.

JDeveloper launches your default web browser, and displays the output of the servlet
in the browser.

After the XSQL file has run successfully in Integrated WebLogic Server, you can
deploy the application containing it to an external application server, such as Oracle
WebLogic Server.

To deploy an XSQL application:
1. The syntax used by JDeveloper and Oracle WebLogic Server to run XSQL is

different, so in your XSQL source file you have to change the connection
information as follows. Replace:

connection="java:comp/env/jdbc/database-connection-nameDS"

with

connection="jdbc/database-connection-nameDS"

2. In order to deploy the application, you first have to create a deployment profile
and deploy the application to it. In the navigator, right-click the project containing
your XSQL servlet, then choose New. In the New Gallery, expand General and
select Deployment Profiles.

3. Choose a profile, for example, a WAR deployment profile and click OK and
continue to create the deployment profile. For more information, see Section 9.3.2,
"How to Create and Edit Deployment Profiles."

4. To deploy the application to the deployment profile, right-click on the project
containing your XSQL servlet files and choose Deploy > profile where profile is
the name of the deployment profile you just created.

Note: If you want to run the application in the Integrated WebLogic
Server, you need to change the connection information back again.

Developing Databound XML Pages with XSQL Servlet

15-28 User's Guide for Oracle JDeveloper

In the Deployment dialog, choose Deploy to WAR (or the appropriate option if
you have chosen a different type of deployment profile) and click Finish.

5. The application is now ready to deploy to an application server, for example,
Oracle WebLogic Server. The steps you need to perform are:

■ Create a data source on the target application server using the connection
information in the XSQL file. For more information, see Section 9.3.6.4,
"Setting Up JDBC Data Sources on Oracle WebLogic Server."

■ Create a connection to the application server. For more information, see
Section 9.3.1, "How to Create a Connection to the Target Application Server."

■ Deploy the application by right-clicking on the project containing your XSQL
servlet files and choosing Deploy > profile where profile is the name of the
deployment profile.

In the Deployment dialog, choose Deploy to application server and on the
next page choose the application server connection and click Finish.

Once the application is deployed, you can view the results of the query in a
browser window by navigating to
http://targethost:port/web-context-root/filename.xsql.

15.6.10 How to View Output from Running XSQL Files as Raw XML Data
After creating an XSQL file and adding tags, you can view the raw XML data or
format the XML data with a style sheet.

To view an XSQL file as raw XML data:
Select the XSQL file in the Navigator, right-click and choose Run filename.xsql to open
the source file in your web browser.

JDeveloper starts the Integrated WebLogic Server, launches your default web browser,
and displays the raw XML data that is produced after the XSQL servlet processes the
XSQL page.

15.6.11 How to Format XML Data with a Style Sheet
After creating an XSQL file and adding tags, you can format the XML data with an
XSL style sheet or view the raw XML data. You can use a style sheet you previously
created or create a new one in JDeveloper and apply it. By applying a style sheet, you
can convert the XML data into HTML or another markup language, such as wireless
markup language (WML).

To format the XML data with a style sheet:
1. In the Navigator, select the XSQL file to which you want to add a style sheet,

right-click and choose XML Editor to open the source file.

2. Locate the xml-stylesheet line and comment, which looks like this:

<!--
Uncomment the following processing instruction and replace
the stylesheet name to transform output of your XSQL Page using XSLT
<?xml-stylesheet type="text/xsl" href="YourStylesheet.xsl" ?>
-->

3. Uncomment the <?xml-stylesheet?> line by moving it below the --> closing
comment bracket.

Developing Databound XML Pages with XSQL Servlet

Developing Applications Using XML 15-29

4. In this line, replace YourStyleSheet.xsl with the name of your style sheet; for
example, your style sheet could be named stylesheet1.xsl.

Next, add the file that you just specified to your project, if you used one created
outside of this project.

5. In the Navigator, select the project and choose Project > Add to Project project
name. In the Add to Project dialog, navigate to the directory and select the style
sheet file you specified.

6. Click Open.

7. Choose File > Save All to save all your changes.

The file you added displays in the Navigator and opens in the XML Editor. You
can close the open files.

8. Select the XSQL file in the Navigator, right-click and choose Run filename.xsql to
open the file in your web browser.

You can see the formatted XML data in the browser.

15.6.12 How to Create an XSL Style Sheet for XSQL Files
In JDeveloper, you can create an XSL style sheet that you can apply to your XSQL files
in order to format the data for HTML, WML or another output. When you create an
XSL style sheet, it is added to the selected XSQL project.

To create an XSL style sheet:
1. In the Navigator, select the project in which you want to create the new XSL file.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand General and select XML.

4. In the Items list, double-click XSL Style Sheet to open the New XSL File dialog.

5. Leave the Directory Name field unchanged to save your work in the directory
where JDeveloper expects to find web application files. In the File Name field,
enter the name of the file you want to generate.

A skeleton XSL file is generated and appears in your active project.

You can edit it in the XML Editor to create your own custom style sheet. An example
of an XSL style sheet that transforms XML data into wireless markup language (WML)
is provided below. When you are finished, you can specify the style sheet name in
your XSQL file to format the raw XML data.

XSL Style Sheet Example
The style sheet in Example 15–5 demonstrates the conversion of XML to WML. It uses
the default DeptView in a BC4J application.

Example 15–5 Conversion of XML to WML

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- Root template -->
<xsl:output type="wml" media-type="text/x-wap.wml"
doctype-public="-//WAPFORUM//DTD WML 1.1//EN"
doctype-system="http://www.wapforum.org/DTD/wml_1.1.xml"
indent="yes" />

Developing Databound XML Pages with XSQL Servlet

15-30 User's Guide for Oracle JDeveloper

<xsl:template match="* >/"><xsl:apply-templates/></xsl:template>
<xsl:template match="text()>@*"><xsl:value-of select="."/></xsl:template>
<xsl:template match="/">

<wml>
 <card id="C1">
 <p mode="nowrap">
 <big>DEPTLIST</big>
 </p>
 <xsl:for-each select="page/DeptView/DeptViewRow">
 <p>
 <xsl:value-of select="Deptno"/>
 xsl:value-of select="Dname"/>
 <xsl:value-of select="Loc"/>
 </p>
 </xsl:for-each>
 </card>
</wml>

</xsl:template>
</xsl:stylesheet>

15.6.13 How to Modify the XSQL Configuration File
The XSQL configuration file, XSQLConfig.xml, is on the classpath, so your XSQL
pages always have access to it. The connection information is added to the
XSQLConfig.xml file when you create a new connection in JDeveloper.
XSQLConfig.xml is located in the system directory and gets copied to the WEB-INF
directory when a project containing an XSQL file is compiled. You can add the file to
your project if you need to modify it; for example, to register custom action handlers.

To modify the XSQL configuration file for your project:
1. With the project selected in the Navigator, choose Project > Add to Project project

name.

2. Navigate to the system directory in your JDeveloper installation directory, select
XSQLConfig.xml and click Open.

3. Make any changes or additions in the XML Editor.

4. Choose File > Save to save your revised file.

15.6.14 Using XML Metadata Properties in XSQL Files
The custom properties shown in Table 15–4 affect XML generation when using the
writeXML method of a view object or row.

Note: When you migrate an XSQL project in JDeveloper, the
XSQLConfig.xml file is not updated for you. You can update your
connections after migrating the project by recreating the connection or
editing an existing connection in JDeveloper.

Developing Databound XML Pages with XSQL Servlet

Developing Applications Using XML 15-31

15.6.14.1 Using XML_ELEMENT
If the XML_ELEMENT custom property is present for a view object, its value is used
as the XML element name for the view object in XML, when it is generated using the
writeXML method and "consumed" by the readXML method.

If the XML_ELEMENT custom property is present for a view attribute, its value is
used as the XML element name for the attribute in XML, when it is generated using
the writeXML method and "consumed" by the readXML method.

For example, for a view object named DeptView with an attribute named Sal, setting:

■ XML_ELEMENT="Departments" in the view object properties

■ XML_ELEMENT="Salary" in the view attribute properties for Sal

would produce XML like:

<Departments>
 <DeptViewRow>
 <Empno>1010</Empno>
 <Ename>Steve</Ename>
 <Salary>1234</Salary>
 </DeptViewRow>
</Departments>

Instead of the default:

<DeptView>
 <DeptViewRow>
 <Empno>1010</Empno>
 <Ename>Steve</Ename>
 <Sal>1234</Sal>
 </DeptViewRow>
</DeptView>

15.6.14.2 Using XML_ROW_ELEMENT
If the XML_ROW_ELEMENT custom property is present for a view object, its value is
used as the XML element name for each row of query results produced by the view
object in XML, when it is generated using the writeXML method and "consumed" by
the readXML method.

For example, for a view object named DeptView with an attribute named Sal, setting:

■ XML_ELEMENT="Departments" in the view object properties

■ XML_ROW_ELEMENT="Department" in the view object properties

■ XML_ELEMENT="Salary" in the view attribute properties for Sal

would produce XML like:

Table 15–4 Metadata Properties

Property Name Value Valid For

XML_ELEMENT a legal element name view objects and view
attributes

XML_ROW_ELEMENT a legal element name view objects

XML_CDATA any value (not empty) view attributes

XML_EXPLICIT_NULL any value (not empty) view objects and view
attributes

Developing Databound XML Pages with XSQL Servlet

15-32 User's Guide for Oracle JDeveloper

<Departments>
 <Department>
 <Empno>1010</Empno>
 <Ename>Steve</Ename>
 <Salary>1234</Salary>
 </Department>
</Departments>

instead of the default:

<DeptView>
 <DeptViewRow>
 <Empno>1010</Empno>
 <Ename>Steve</Ename>
 <Sal>1234</Sal>
 </DeptViewRow>
</DeptView>

15.6.14.3 Using XML_CDATA
If the XML_CDATA custom property is set to a not empty value for a view attribute,
then its value will be output as a CDATA section instead of as plain text.

15.6.14.4 Using XML_EXPLICIT_NULL
If the XML_EXPLICIT_NULL custom property is set to a not empty value for a view
object, then any attribute with a null value will generate an XML element that looks
like:

<AttributeName null="true"/>

instead of omitting the <AttributeName> element from the XML result, which is the
default.

If the XML_EXPLICIT_NULL custom property is set to a not empty value for a view
attribute, then in the case that the indicated attribute has a null value, the system will
generate an XML element that looks like:

<AttributeName null="true"/>

instead of omitting the <AttributeName> element from the XML result, which is the
default.

16

Developing Applications Using Web Services 16-1

16Developing Applications Using Web
Services

This chapter describes how JDeveloper provides powerful tools that help you discover
and use existing web services, and develop and deploy new web services.

This chapter includes the following sections:

■ Section 16.1, "About Developing Applications using Web Services"

■ Section 16.2, "Using JDeveloper to Create and Use Web Services"

■ Section 16.3, "Working with Web Services in a UDDI Registry"

■ Section 16.4, "Creating Web Service Clients"

■ Section 16.5, "Creating SOAP Web Services (Bottom-Up)"

■ Section 16.6, "Creating SOAP Web Services from WSDL (Top Down)"

■ Section 16.7, "Creating RESTful Web Services"

■ Section 16.8, "Managing WSDLs"

■ Section 16.9, "Using Policies with Web Services"

■ Section 16.10, "Editing and Deleting Web Services"

■ Section 16.11, "Testing and Debugging Web Services"

■ Section 16.12, "Deploying Web Services"

■ Section 16.13, "Monitoring and Analyzing Web Services"

16.1 About Developing Applications using Web Services
Web services consist of a set of messaging protocols and programming standards that
expose business functions over the Internet using open standards. A web service is a
discrete, reusable software component that is accessed programmatically over the
Internet to return a response.

You can create web service clients to access existing web services. If you use web
services in your application, you can create bottom-up (starting from Java) and
top-down (starting from WSDL) web services as follows:

■ Configure JDeveloper to develop and run web services

■ Create web service clients by performing one or more of the following tasks:

– Find web services in a UDDI registry

Using JDeveloper to Create and Use Web Services

16-2 User's Guide for Oracle JDeveloper

– Create a client and proxy classes to access an existing web service to
incorporate it into an application

■ Create web services by performing one or more of the following tasks:

– Create SOAP web services from the underlying Java implementation (bottom
up)

– Create web services from the WSDL (top down).

– Create RESTful web services.

■ Secure web services using policies

■ Test and debug web services

■ Deploy web services to the Integrated WebLogic Server or Oracle WebLogic Server

■ Publish web services to a UDDI registry

Once deployed, your web services can then be accessed and used in other
applications.

16.1.1 Discovering and Using Web Services
You can quickly create a client to an existing web service in order to use it in your
application. You can view all web services in the application under the Web Services
folder in the Application Navigator.

In addition, JDeveloper incorporates a UDDI browser and you can define connections
to UDDI registries, for example, to one within your organization. For more
information, see Section 16.3, "Working with Web Services in a UDDI Registry".

16.1.2 Developing and Deploying Web Services
You can create web services from Java classes, the remote interface of EJBs, and an
ADF Business Components service session bean wrapped as an EJB. The Web service
creation wizards create the deployment files for you, so once you have created your
web service the final step is to deploy it to application servers. For more information,
see Section 16.5, "Creating SOAP Web Services (Bottom-Up)".

Alternatively, you can create a web service starting with a WSDL, as a top-down web
service. For more information, see Section 16.6, "Creating SOAP Web Services from
WSDL (Top Down)".

Finally, you can develop web services that are based on Representational State Transfer
(REST). A RESTful web service is a simple interface that transmits data over a
standardized interface (such as HTTP) without an additional messaging layer, such as
SOAP. For more information, see Section 16.7, "Creating RESTful Web Services"

JDeveloper also supports a set of standard Java-to-XML type mappings. You can also
create custom serializers for types of objects that are not automatically supported. For
more information, see Section 16.2, "Using JDeveloper to Create and Use Web
Services".

16.2 Using JDeveloper to Create and Use Web Services
This following information will help you understand more about web services, and
how you can use JDeveloper to create, configure, and use them.

■ Section 16.2.1, "How to Use Proxy Settings and JDeveloper"

Using JDeveloper to Create and Use Web Services

Developing Applications Using Web Services 16-3

■ Section 16.2.2, "How to Set the Context Root for Web Services"

■ Section 16.2.3, "How to Configure Connections to Use with Web Services"

■ Section 16.2.4, "How to Work with Type Mappings"

■ Section 16.2.5, "How to Work with PL/SQL Web Services and Types"

■ Section 16.2.6, "How to Choose Your Deployment Platform"

■ Section 16.2.7, "How to Work with Web Services Code Insight"

■ Section 16.2.8, "How to Migrate JAX-RPC 10.1.3 Web Services"

16.2.1 How to Use Proxy Settings and JDeveloper
By default, JDeveloper uses the proxy settings from the default browser on the same
machine. If you have problems making connections from JDeveloper, for example,
connecting to an application server that is on the same machine as JDeveloper, you
may need to change the proxy server settings you use.

For example, if you are connecting to an IP address behind a proxy server, and your
machine is also behind the same proxy server, then make sure that the web proxy
preferences exclude the IP address you are trying to connect to.

When you use the HTTP Analyzer, the analyzer itself is a proxy and any traffic to be
monitored by it is routed through it, just as though it was a normal proxy server. If you
already have a proxy set in JDeveloper, the analyzer will make sure that the traffic
goes through the original proxy after it has been passed through the analyzer.

To exclude an IP address:
1. Choose Tool > Preferences, and select Web Browser and Proxy.

For more information at any time, click F1 or Help from the Web Browser and
Proxy dialog.

2. Add the IP address to the Exceptions list.

To turn off use of the browser proxy server:
1. Choose Tool > Preferences, and select Web Browser and Proxy.

For more information at any time, click F1 or Help from the Web Browser and
Proxy dialog.

2. Deselect Use HTTP Proxy Server.

16.2.2 How to Set the Context Root for Web Services
The context root appears as part of the web service endpoint for a generated web
service, so it is important that it is set to an appropriate value. You set the context root
at the project level.

The web service context root is the string that comes after the host:port portion of
the web service URL. For example, if the deployed WSDL of a WebLogic web service is
as follows: http://hostname:7001/financial/GetQuote?WSDL

The context path for this web service is financial.

To set the context root:
1. In the Application Navigator, right-click the project and choose Project Properties

to open the Project Properties dialog.

Using JDeveloper to Create and Use Web Services

16-4 User's Guide for Oracle JDeveloper

For more information at any time, click F1 or Help from the Project Properties
dialog.

2. Expand Project Source Paths and select Web Application.

3. Either accept the default HTML Root Directory or enter a new value.

Click Browse to browse the local directory.

16.2.3 How to Configure Connections to Use with Web Services
You can develop simple web services that you can test using the Integrated WebLogic
Server. However, to develop more complex web services, and to deploy web services,
you will need the appropriate connections.

■ To deploy a web service to Oracle WebLogic Server, you need an application
server connection as described in Section 16.12, "Deploying Web Services".

■ To find web services using a Universal Description, Discovery and Integration
(UDDI) registry, you need to create a connection to the registry. For more
information, see Section 16.3.1, "How to Define UDDI Registry Connections".

16.2.4 How to Work with Type Mappings
Objects that can be passed to and from web services have to be able to be serialized to
an XML type, and then deserialized back to their original type. Objects that are
automatically handled are Java primitive types and certain Java standard types. If you
want to create a web service using objects that are not automatically serialized, you
can write your own custom serializer.

The objects that can be passed to and from web services are ones that conform to the
JavaBean conventions For the purposes of web services, a JavaBean is any Java class
that conforms to the following restrictions:

■ Must have a public default (zero argument) constructor.

■ Must expose all attributes of interest as accessors.

■ Order of the accessors for the properties (setMethod() and getMethod()) must
not matter.

■ Accessors must be written in mixed case with a lower case first letter. For example,
if an attribute is called name the accessors must be called getName and setName.

For web services, each property of the object must be of one of the Java types that
maps to an XML schema simple type. These are listed in the table below, which shows
the primitive XML Schema types and arrays of primitive XML Schema types that are
supported as parameters, and the return values for web services. In addition, a service
method can accept and return a single piece of XML element data, passed as an
org.w3c.dom.Element.

Table 16–1 XML schema type mapping to Java types

XML Schema type Java type

string java.lang.String

boolean java.lang.Boolean

decima java.lang.Double

float java.lang.Float

double java.lang.Double

Using JDeveloper to Create and Use Web Services

Developing Applications Using Web Services 16-5

JAX-WS web services use Java Architecture for XML Binding (JAXB), described at
http://jcp.org/en/jsr/detail?id=222, to manage all of the data binding
tasks. Specifically, JAXB binds Java method signatures and WSDL messages and
operations and allows you to customize the mapping while automatically handling the
runtime conversion. This makes it easy for you to incorporate XML data and
processing functions in applications based on Java technology without having to know
much about XML.

16.2.5 How to Work with PL/SQL Web Services and Types
This section describes the limitations for which PL/SQL web services cannot be
created for a particular circumstance:

■ Overloaded Program Units

■ BFILE Type

■ BCLOB Type

■ OUT and IN-OUT Parameters

■ Creating PL/SQL web services from PL/SQL records

■ Stored procedures of the same name which are accessible in more than one schema

■ Ref Cursors Return Types

■ SYS Schema

■ Types Declared Within a Package Spec

■ PL/SQL nested tables

Overloaded Program Units
A program unit that shares its name with another program unit in the same package is
an overloaded program unit. At runtime the WSDL processor cannot determine which
program unit to execute when there is more than one program unit with the same
name. Therefore, the PL/SQL program units cannot be deployed as web services.

You can avoid the problem of overloaded program units that you can adapt to suit
your requirements. Consider the following example of a PL/SQL package containing
the following program:

dateTime java.util.Date

time java.util.Date

date date java.util.GregorianCalendar

base64Binary java.lang.Byte[]

normalizedString java.lang.String

integer java.lang.Integer

long java.lang.Long

int java.lang.Integer

short java.lang.Short

byte java.lang.Byte

Table 16–1 (Cont.) XML schema type mapping to Java types

XML Schema type Java type

Using JDeveloper to Create and Use Web Services

16-6 User's Guide for Oracle JDeveloper

-- promotes an employee to the specified rank
PROCEDURE promote_emp(empno IN NUMBER, rank IN NUMBER);

-- promotes an employee to the rank above their current rank
PROCEDURE promote_emp(empno IN NUMBER);

You can workaround the overloaded types in one of the following ways:

■ If you are able to change the existing package, you can add the two procedures
shown below to the package, and publish the web services from the new
procedures.

or

■ You can add the two procedures shown below to a new package, and publish the
web services from the new package.

The new procedures are:

-- promotes an employee to the specified rank
PROCEDURE promote_emp_to_rank(empno IN NUMBER, rank IN NUMBER)
IS
BEGIN
promote_emp(empno, rank);
END;

-- promotes an employee to the rank above their current rank
PROCEDURE promote_emp_to_next_rank(empno IN NUMBER) IS
BEGIN
promote_emp(empno);
END;

BFILE Type
The PL/SQL type BFILE can only be used as an OUT argument or as a function return
value.

BCLOB Type
The PL/SQL type BCLOB is not supported.

OUT and IN-OUT Parameters
When you publish a program unit with OUT or IN-OUT parameters, these are
transferred back to the caller in a return type structure with one attribute for each OUT
or IN-OUT parameter. For example, a service with the following signature:

PROCEDURE a_proc(val1 IN VARCHAR2, val2 IN OUT NUMBER, val3 OUT INTEGER)

Returns the final values of val2 and val3 in a generated result class. You can use
accessor methods on the generated class to access these values.

Creating PL/SQL web services from PL/SQL records
JDeveloper does not allow you to create web services directly from PL/SQL packages
that use PL/SQL records. If your organization uses PL/SQL packages that have been
migrated from earlier versions of the Oracle database, you may find that you want to
expose some functionality as web services and be unable to do so because the
packages accept and return parameters that are record types, rather than object types.

You can use Oracle JPublisher on the packages that contain record types. For more
information, see Section 28.3.1, "How to Use JPublisher".

Using JDeveloper to Create and Use Web Services

Developing Applications Using Web Services 16-7

A SQL file is produced that you run against your database to create equivalent
packages that contain object types. You can then use the new packages to create your
PL/SQL web services in the usual manner.

Stored procedures of the same name which are accessible in more than one
schema
On Oracle9i Database release 2, when a stored procedure or function of the same name
and the same package name is accessible in more than one schema, then the SQLJ
translator invoked during publication of PL/SQL web services will fail.

In order to resolve this problem, ensure that packages to be published are visible only
in one schema, and that no other packages in other schemas share the same name.

Ref Cursors Return Types
You cannot create a web service from a packages that uses ref cursor as a return type,
for example:

PACKAGE TEST AS
type EmpCurType is ref cursor;
function EmpData return TEST.EmpCurType;
END;

SYS Schema
In order to prevent an arbitrary user from assuming SYS privilege, a connection cannot
be specified from the middle tier as SYS. This means that you cannot create a web
service from a package in the SYS schema.

If you need to access a PL/SQL package in the SYS schema from the middle tier, for
example, to create a web service in JDeveloper, log on to the database as SYS, and
grant package EXECUTE privileges to the user you then use to create the JDeveloper
database connection.

Types Declared Within a Package Spec
PL/SQL packages can have types declared within the package spec, however these
packages cannot be published as web services. To avoid this, create the types outside
the scope of the package.

PL/SQL nested tables
JDeveloper does not allow you to create web services directly from PL/SQL packages
that use PL/SQL nested tables.

16.2.6 How to Choose Your Deployment Platform
When you create a web service using the web services wizards, you are offered a
choice of deployment platforms, as defined in Table 16–2. The platform you choose
determines the options available to you in the wizard, and the libraries that are added
to the WAR/EAR file for deployment.

Using JDeveloper to Create and Use Web Services

16-8 User's Guide for Oracle JDeveloper

16.2.7 How to Work with Web Services Code Insight
The web services Code Insight completes annotations when typing in a Java class, and
is available for WSDL documents in the XML editor (that is, when typing in the Source
tab). You can configure how fast Code Insight responds. You can access the Code
Insight page in JDeveloper from Tools menu > Preferences > Code Editor > Code
Insight.

When you create a JAX-WS web service from a Java class by adding annotations in the
source editor, the Code Insight features of Quick Fixes and Code Assists are available
to help you.

For example, when you create a web service from a Java class by manually adding the
@WebService annotation, a ragged line appears under the annotation. Click the Audit
Fix icon and choose Configure project for web services.

From the Select Deployment Platform dialog, select one of the following JAX-WS
platforms for your service:

■ Java EE 1.5, with support for JAX-WS Annotations. In this case, JDeveloper adds:

– import javax.jws.WebService; statement to the class

– web.xml file to the project

■ Java EE 1.5, with support for JAX-WS RI. In this case, JDevleoper adds:

– import javax.jws.WebService; statement to the class

– sun-jaxws.xml and web.xml files to the project

Other examples include:

■ You can add policy annotations to a JAX-WS web service and use JDeveloper to
complete the policy you want. For example, if you enter @Pol, then click
Alt+Enter you can choose whether to use @Policy, for a single policy, or
@Policies for multiple policies. The appropriate import statement is also added
to the class.

■ If you are working on a WSDL document in the source editor, you can use code
completion to help you enter schema elements. For example, if you enter < and
wait a second, a popup appears from which you can select the entry you want.

■ If the WSDL and web service source files get out-of-sync, you can regenerate the
web service from source.

Table 16–2 Deployment Platforms

Deployment Platform Description

J2EE 1.4 JAX-RPC with support for
WebLogic Server 10.3

Generates a JAX-RPC web service that is configured for deploying to
Oracle WebLogic Server 10.3.

Java EE 1.5 with support for JAX-WS
Annotations

Generates a web service that takes advantage of the JAX-WS web
services API, released as part of Java EE 1. 5. This option provides
support for deploying to WebLogic Server 10.3 with Java annotations
using the JAX-WS annotation specification.

Java EE 1.5 with support for JAX-WS RI Generates a JAX-WS web service for deploying to any container that
supports the Sun JAX-WS Reference Implementation.

Note: Code Insight does not work with Java classes for JAX-RPC
web services, only with Java classes for JAX-WS web services.

Using JDeveloper to Create and Use Web Services

Developing Applications Using Web Services 16-9

■ If you rename a Java class in either the Java class or WSDL, click the Audit fix icon
and select how you would like to reconcile the discrepancy.

16.2.8 How to Migrate JAX-RPC 10.1.3 Web Services
You can migrate web services created as J2EE 1.4 JAX-RPC web services in JDeveloper
10.1.3.n.

The following actions are performed during the upgrade:

■ Remove the JAX-RPC 10.1.3 Web Services library and replace it with the JAX-RPC
11g Web Services library.

■ Regenerate the web service as an Oracle WebLogic Server compatible JAX-RPC
web service. For more information, see Section 16.5.6, "How to Regenerate Web
Services from Source".

The WSDL is not changed. After performing the upgrade, you can use the Edit Web
Service dialog to make any additional changes.

The limitations of the migrated service are:

■ JAX-RPC web services in this version of JDeveloper only support SOAP 1.1, so
support for SOAP 1.2 is removed.

■ Any attached policies are removed. You can attach new policies by editing the web
service and applying the appropriate Oracle WebLogic Server policies. For more
information, see Section 16.9.3, "How to Attach Policies to Web Services".

■ Support for the previous version of stateful services is removed. You can configure
support for the current version of stateful services in the Edit Web Services dialog.
For more information, see Section 16.10, "Editing and Deleting Web Services".

■ Support for REST is removed.

■ Methods with collection return type, which are not supported, are disabled in the
implementation.

To migrate a web service:
1. In the Application Navigator, select Open Application from the dropdown list.

Open the application that contains the web service.

The migration wizard is automatically invoked enabling you to migrate the
application and projects. For more information at any time, press F1 or click Help
from within the wizard.

2. On the Webapp 2.5 Migration page of the Migration Wizard, deselect Migrate to
Webapp 2.5. JAX-RPC is compatible with version 2.4 of web.xml, not version 2.5.

Note: You cannot migrate EJB 2.1 web services because they are
deprecated in this version of JDeveloper. You cannot migrate JMS web
services because they are Oracle-proprietary and no longer supported.

Note: JAX-RPC web services can only use Oracle WebLogic Server
security policies.

Working with Web Services in a UDDI Registry

16-10 User's Guide for Oracle JDeveloper

3. To upgrade the web service, in the Application Navigator, right-click the web
service container and choose Upgrade Web Service to WLS JAX-RPC
Configuration.

4. Read the Confirm Upgrade message and click Yes. The web service is upgraded to
use the JAX-RPC 11g Web Services library and regenerated.

5. If necessary, edit the web service to make any additional changes.

16.3 Working with Web Services in a UDDI Registry
Universal Description, Discovery and Integration (UDDI) is one of the standards and
protocols that underpin web services. It provides a common standard for publishing
and discovering information about web services. It contains a UDDI browser that
searches a UDDI registry using search criteria that you specify to find web services
that are described by Web Services Description Language (WSDL). For more
information about UDDI including the specification, see the UDDI OASIS standards at
http://uddi.xml.org/.

The following sections describe how to work with web services in a UDDI registry:

■ Section 16.3.1, "How to Define UDDI Registry Connections"

■ Section 16.3.2, "How to Configure the View of UDDI Registry Connections"

■ Section 16.3.3, "How to Search for Web Services in a UDDI Registry"

■ Section 16.3.4, "How to Generate Proxies to Use Web Services Located in a UDDI
Registry"

■ Section 16.3.5, "How to Display Reports of Web Services Located in a UDDI
Registry"

■ Section 16.3.6, "How to Publish Web Services to a UDDI Registry"

16.3.1 How to Define UDDI Registry Connections
You can define connections to UDDI registries, for example, to browse your
organization's internal UDDI registry. In addition, all defined UDDI registry
connections are accessible to any workspace or project.

For more information about UDDI including the specification, see the UDDI OASIS
standards at http://uddi.xml.org/.

The following sections describe how to define UDDI registry connections.

■ Section 16.3.1.1, "Creating UDDI Registry Connections"

■ Section 16.3.1.2, "Editing the Name of UDDI Registry Connections"

■ Section 16.3.1.3, "Changing the View of UDDI Registry Connections"

■ Section 16.3.1.4, "Refreshing UDDI Registry Connections"

■ Section 16.3.1.5, "Deleting UDDI Registry Connections"

16.3.1.1 Creating UDDI Registry Connections
You can create a new connection to a UDDI registry that is public or private (within
your organization). The UDDI registry connection is listed in the Resource Palette, in
the Connections panel.

Working with Web Services in a UDDI Registry

Developing Applications Using Web Services 16-11

To create a new connection:
1. In the Application Navigator, select the project.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Business Tier and select Web Services.

4. In the Items list, double-click UDDI Registry Connection to launch the Create
UDDI Registry Connection wizard.

For more information at any time, press F1 or click Help from within the Create
UDDI Registry Connection wizard.

Alternatively, you can create the connection directly in the Resource Palette as
described in Section 6.9, "Using WebDAV with JDeveloper".

16.3.1.2 Editing the Name of UDDI Registry Connections
You can edit an existing UDDI registry connection to change the name of the
connection, or to change the URL of the inquiry endpoint.

To change the inquiry endpoint of a registry:
1. In the main menu, choose View > Resource Palette. By default, the Resource

Palette is displayed to the right of the JDeveloper window.

2. In the Resource Palette, expand UDDI Registry.

3. From the context menu of the UDDI registry connection you want to edit, choose
Properties.

The reentrant UDDI Registry Connection wizard is launched.

For more information at any time, press F1 or click Help from within the Create
UDDI Registry Connection wizard.

16.3.1.3 Changing the View of UDDI Registry Connections
You can change the order that web services are listed in the UDDI registry from
Category view to Business view, or from Business View to Category view. For more
information, see Section 16.3.2, "How to Configure the View of UDDI Registry
Connections".

To change the view of a registry:
1. In the main menu, choose View > Resource Palette. By default, the Resource

Palette is displayed to the right of the JDeveloper window.

2. In the Resource Palette, expand the UDDI Registry.

3. From the context menu of the UDDI registry connection you want to edit, choose
Render Business Perspective or Render Category Perspective.

16.3.1.4 Refreshing UDDI Registry Connections
You can refresh a UDDI registry connection to ensure that information stored under
the connection is up to date.

To refresh a connection:
1. In the main menu, choose View > Resource Palette. By default, the Resource

Palette is displayed to the right of the JDeveloper window.

2. In the Resource Palette, expand the UDDI Registry.

Working with Web Services in a UDDI Registry

16-12 User's Guide for Oracle JDeveloper

3. From the context menu of the UDDI registry connection you want, choose
Refresh.

16.3.1.5 Deleting UDDI Registry Connections
When no longer needed, you can delete a UDDI registry connection from the Resource
Palette.

To delete a connection:
1. In the main menu, choose View > Resource Palette. By default, the Resource

Palette is displayed to the right of the JDeveloper window.

2. In the Resource Palette, expand the UDDI Registry.

3. From the context menu of the UDDI registry connection you want to delete,
choose Delete.

4. A message is displayed asking whether you want to delete the connection. Click
Yes.

16.3.2 How to Configure the View of UDDI Registry Connections
When you create the connection, as described in Section 16.3.1, "How to Define UDDI
Registry Connections", you are prompted whether the web services in the registry are
displayed in Business View or Category View. The view you choose will determine
how you search for services in the registry.

16.3.2.1 Choosing Business View
A UDDI registry contains four data structure types that group information about web
services:

■ businessEntity: Defines the top-level data structure that contains information
about the business providing the web service. When you find a web service, the
business is added to the UDDI browser in the Resource Palette.

■ businessService: Contains descriptive information for a family of services,
including the name and brief description, and category information.

■ bindingTemplate: Contains information about a web service entry point and
references to interface specification.

■ tModel: Represents the technical specification of the web service. When the Find
Web Services wizard finds a web service, it also displays other web services that
are compatible with the same tModel.

If you choose Business View, services are listed under Business Entities and Business
Services.

16.3.2.2 Choosing Category View
If you choose Category View, you can search for web services based on one or more of
the following categories:

■ UDDI Types: Search by UDDI type.

■ NAICS: Specify the type of industry.

■ ISO 3166: Search by location.

■ UNSPSC: Search by type of service.

Working with Web Services in a UDDI Registry

Developing Applications Using Web Services 16-13

When you search by name, you can enter all or part of a name and you can use
wildcards. The results are tModels where the name of the tModel matches the search
criteria. When a number of web services have the same tModel, they are listed in the
wizard so that you can choose the one that best fits your requirements.

16.3.3 How to Search for Web Services in a UDDI Registry
You can search a UDDI registry connection in the Resource Palette for a web service.

To search for a web service in a UDDI Registry:
1. Create a UDDI registry connection, if required. For more information, see

Section 16.3.1, "How to Define UDDI Registry Connections".

2. In the Resource Palette, search for the web service. For more information, see
Section 3.7, "Working with the Resource Palette".

16.3.4 How to Generate Proxies to Use Web Services Located in a UDDI Registry
You can create a proxy to a web service in a UDDI registry connection in the Resource
Palette.

To generate a proxy:
1. Open the Resource Palette.

In the main menu, choose View > Resource Palette. By default, the Resource
Palette is displayed to the right of the JDeveloper window.

2. Navigate to the web service you want, or search for it.

3. Navigate to the service

4. Right-click the service, and choose Generate Web Service Proxy to launch the Web
Service Proxy wizard.

For more information at any time, press F1 or click Help from within the wizard.

16.3.5 How to Display Reports of Web Services Located in a UDDI Registry
You can display a report of a web service in a UDDI registry.

To display a report of the service:
1. In the Resource Palette, expand the UDDI registry connection, and navigate to the

endpoint for the service.

2. Right-click the service, and choose View Report.

A report of the web service is displayed in the source editor.

Note: If you are creating a top-down web service, you can use the
Find Web Service Wizard to search a UDDI registry connection from
within the Create Java Web Service from WSDL wizard.

Note: You can only generate a proxy to a web service if the service
uses a WSDL link. To determine this, open the web service report, and
check that the Overview Description in the tModel Instances section of
the report is wsdl link.

Creating Web Service Clients

16-14 User's Guide for Oracle JDeveloper

16.3.6 How to Publish Web Services to a UDDI Registry
You can publish a web service to a UDDI registry through a connection to the registry
in the Application Server navigator. Before you can publish a service to a UDDI
registry, you must already have a connection to the registry in the Resource Catalog.
For more information, see Section 16.3.1.1, "Creating UDDI Registry Connections".

To publish a web service to a UDDI registry:
1. Deploy the web service to Oracle WebLogic Server.

2. In Application Server navigator, expand the application server node.

3. Expand the web services node and locate the node (which represents the WSDL)
of the web service you want to publish.

4. Right-click the WSDL node and choose Publish WSDL to UDDI to launch the
Publish WSDL to UDDI Registry dialog.

For more information at any time, press F1 or click Help in the Publish WSDL to
UDDI Registry dialog.

16.4 Creating Web Service Clients
JDeveloper makes it easy to use a web service in your application by allowing you to
create client and proxy classes to access the service using the Create Web Service Client
and Proxy wizard. You can launch the wizard when you locate or create a web service.
Alternatively, you can launch the wizard directly and enter the URL for the web
service or use the Find Web Service wizard to locate a web service in a UDDI registry.

JDeveloper automatically generates the correct type of proxy for an RPC or document
style web service.

For more information about:

■ Developing web service clients, see "Invoking Web Services" in the Oracle Fusion
Middleware Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

■ Securing and administering web services and clients, see the Oracle Fusion
Middleware Security and Administrator's Guide for Web Services.

The following sections describe how to create and use web service clients:

■ Section 16.4.1, "How to Create the Client and Proxy Classes"

■ Section 16.4.2, "How to Use Web Service Client and Proxy Classes"

■ Section 16.4.3, "How to View the WSDL Used to Create the Web Service Client"

■ Section 16.4.4, "How to Update the Web Service WSDL at Run Time"

■ Section 16.4.5, "How to Regenerate Web Service Client and Proxy Classes"

■ Section 16.4.6, "How to Manage the Web Service Clients"

Note: If you deploy the web service to the Integrated WebLogic
Server, then the UDDI registry to which you are publishing must be
local to the Integrated WebLogic Server.

Note: JAX-WS web services do not support RPC style.

Creating Web Service Clients

Developing Applications Using Web Services 16-15

■ Section 16.4.7, "How to Reference Web Services Using the @WebServiceRef
Annotation"

16.4.1 How to Create the Client and Proxy Classes
Use JDeveloper to automatically create a client and proxy classes to access a web
service and call its methods in your application. Using the wizard, you can also
generate asynchronous methods and attach policies, as required.

You can create a client and proxy classes to access a web service using the Create Web
Service Client and Proxy wizard. The wizard generates a new service class (JAX-WS)
or stub (JAX-RPC) and service interface for each exposed port and lists them in the
Application Navigator. It opens the generated client file port-nameClient.java in
the source editor. Once generated, you can call the methods in your application.

You can access the Create Web Service Client and Proxy wizard using one of the
following methods. For help in completing the wizard, press F1 or click Help from
within the wizard.

To create a client and proxy classes to access a web service:
1. In the Application Navigator, select the project you want to use.

2. Choose File > New to open the New Gallery.

3. In the Categories list, select Web Services.

4. In the Items list, double-click Web Services to launch t the Create Web Service
Client and Proxy wizard.

For more information at any time, press F1 or click Help from within the Create
Web Service Client and Proxy wizard.

To create a client and proxy classes to access a web service defined in
JDeveloper:
1. Right-click the web service container in the Application Navigator, and choose:

■ For a JAX-WS web service, Create Client for Web Service Annotations.

■ For a JAX-RPC web service, Generate Web Service Proxy.

2. The Create Web Service Client and Proxy wizard opens and is prepopulated with
the selected web service project.

Note: In some cases, you may encounter errors when you run a web
service client that you have created for a web service accessed on the
Internet or using a UDDI registry. Because web services standards are
still evolving, it is possible that the web services that you locate may
not conform to the latest standards, or the standards to which they
conform may not be compatible with those supported by the server on
which the client is running. If a web service client that you have
created in JDeveloper returns an error, examine the error message and
consider creating a client to another web service that provides a
similar service, but that is compatible with the server and will run
without problems.

Creating Web Service Clients

16-16 User's Guide for Oracle JDeveloper

16.4.2 How to Use Web Service Client and Proxy Classes
JDeveloper generates a number of files that define a proxy to the web service. Using
the generated files, you can develop the following types of web service client
applications:

■ Stand-alone client application

■ Java Standard Edition (SE) client application

■ Java EE component deployed to Oracle WebLogic Server

16.4.2.1 How to Use a Stand-Alone Client Application
A stand-alone client application, in its simplest form, is a Java program that has the
Main public class that you invoke with the java command. It runs completely separate
from WebLogic Server.

To use the generated client proxy classes in a stand-alone client:
1. Open the client proxy class, called port_nameClient.java, in the source editor.

This file opens automatically when you create the web service client proxy
initially. To re-open the class, right-click on the client proxy container and select
Go to Client Class or simply double-click on the file in the Application Navigator.

2. Locate the comment // Add your own code here, which is in a try-catch
block in the main method, and add the appropriate code to invoke the web
service.

3. Run the client.

16.4.2.2 How to Use the Java Standard Edition (SE) Client Application
Include the generated proxy classes as part of a Java Standard Edition (SE) application
and reference them to access the remote web service.

To use the generated client proxy classes in a JSE component:
1. Copy the generated client proxy classes to your JSE application source directory.

2. Using the main client proxy class, called port_nameClient.java, as your
guide, add appropriate methods to access the web service from your application.

3. Run the application.

Note: When you create the client and proxy classes for an EJB web
service that uses JavaBean parameters, the JavaBean must implement
the java.io.Serializable interface.

Note: In addition to the procedures described below, you can use
web service injection (using the @WebServiceRef method) to define
a reference to a web service and identify an injection target in your
web service client. For more information see Section 16.4.7, "How to
Reference Web Services Using the @WebServiceRef Annotation"

Creating Web Service Clients

Developing Applications Using Web Services 16-17

16.4.2.3 How to Use the Java EE Component Client Application Deployed to
WebLogic Server
In this case, the web service runs inside a Java Platform, Enterprise Edition (Java EE)
Version 5 component deployed to WebLogic Server, such as an EJB, servlet, or another
web service. This type of client application, therefore, runs inside a WebLogic Server
container.

To use the generated client proxy classes in a Java EE component:
1. Open the main client proxy class, called port_nameClient.java, in the source

editor.

This file opens automatically when you create the web service client proxy
initially. To re-open the class, right-click on the client proxy container and select
Go to Client Class or simply double-click on the file in the Application Navigator.

2. Replace the main method with your own method(s) to access the web service and
perform required operations. You can use the code generated in the main method
as a guide.

3. Deploy the full set of client module classes that JDeveloper has generated.

4. Reference the client proxy class in your Java EE application.

16.4.3 How to View the WSDL Used to Create the Web Service Client
You can view the WSDL that was used to generate the web service client under the
following circumstances:

■ If available, the local copy of the WSDL file is displayed. When generating the web
service client, you have the option to copy the WSDL of the source web service to
your local directory. See Section 16.4.1, "How to Create the Client and Proxy
Classes".

■ If the local version is not available, the remote WSDL is displayed.

To view the client WSDL:
1. Right-click on the web service client within the Application Navigator.

2. Select Go To WSDL from the pop-up menu.

The WSDL is displayed.

16.4.4 How to Update the Web Service WSDL at Run Time
In some cases, you may need to update your application to reference imported XML
resources, such as WSDLs and XSDs, from a source that is different from that which is
part of the description of the web service. Redirecting the XML resources in this way

Note: In most cases, the local copy of the WSDL will match the
WSDL of the remote web service. If the remote web service is
modified, the local WSDL may become out-of-sync with the remote
WSDL. To ensure the web service client will be able to access the
remote web service, you can regenerate the local WSDL using the
remote WSDL, as needed. See Section 16.4.5, "How to Regenerate Web
Service Client and Proxy Classes".

Creating Web Service Clients

16-18 User's Guide for Oracle JDeveloper

may be required to improve performance or to ensure your application runs properly
in your local environment.

For example, a WSDL may be accessible during client generation, but may no longer
be accessible when the client is run. You may need to reference a resource that is local
to or bundled with your application rather than a resource that is available over the
network.

You can modify the location of the WSDL that will be used by the web service at
runtime using one of the following methods:

■ XML Catalog File

■ Web Service Injection (@WebServiceRef) and a Deployment Plan

16.4.4.1 How to Use an XML Catalog File
When you create or regenerate a web service client, a jax-ws-catalog.xml file is
created automatically in the META-INF directory. The file complies with the OASIS
XML schema, as described in the Oasis XML Catalogs specification at
http://www.oasis-open.org/committees/download.php/14809/xml-cata
logs.html.

You can update the web service WSDL by modifying the uri attribute of the <system>
element in the jax-ws-catalog.xml file. The specified value will be used at run time.

The following provides a sample XML catalog (jax-ws-catalog.xml) file for a remote
WSDL:

<catalog xmln="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 prefer="system">
 <system systemId="http://foo.org/hello?wsdl"
 uri="http://foo.org/hello?wsdl" />
</catalog>

The following provides a sample XML catalog (jax-ws-catalog.xml) file for a local
WSDL:

<catalog xmln="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 prefer="system">
 <system systemId="http://foo.org/hello?wsdl"
 uri="../org/foo/HelloService.wsdl" />
</catalog>

In the preceding examples:

■ The <catalog> root element defines the XML catalog namespace and sets the
prefer attribute to system to specify that system matches are preferred.

■ The <system> element associates a URI reference with a system identifier.

Creating Web Service Clients

Developing Applications Using Web Services 16-19

16.4.4.2 How to Use Web Service Injection (@WebServiceRef) and a Deployment
Plan
This method involves the following steps:

1. Using the @WebServiceRef annotation to define a reference to a web service and
identify an injection target.

2. Updating the deployment plan and modifying the value of the web service WSDL
that is referenced at run time.

Step 1: Using the @WebServiceRef Annotation
The @WebServiceRef annotation injects an endpoint for the Web service interface that
is defined in the web.xml file. The following example demonstrates how to use the
@WebServiceRef annotation to define a reference to a web service and identify an
injection target.

@WebService
public class LoansApprover {
 /**
 ** Credit rating service injected from web.xml
 **/
 @WebServiceRef(name = "CreditRatingService")
 CreditRating creditRating;

 /**
 ** @return Loan application with approval code if approved.
 **/
 public LoanApprovalReponse approveLoan(LoanApplication la) {
 ...
 }
}

The web service class for the CreditRatingService is hard-coded in the web.xml file, as
shown in the following example:

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5"
 xmlns="http://java.sun.com/xml/ns/javaee">
 ...
 <service-ref>
 <service-ref-name>CreditRatingService</service-ref-name>
 <service-interface>
 com.somecreditrating.xmlns.rating.CreditRating_Service
 </service-interface>

Note: When creating the client and proxy classes for multiple web
services on a local system that share the same endpoint, to ensure that
URL is unique for each web service in the jaxws-catalog.xml file, the
service QName is appended as anchor text. For example:

http://foo.org/helloworld?wsdl

Might become:

http://foo.org/helloworld#%7Bhttp%3A%2F%2Fexample.com%2F%
7DHelloService?wsdl.

Creating Web Service Clients

16-20 User's Guide for Oracle JDeveloper

 </service-ref>
</web-app>

Step 2: Updating the Deployment Plan
To modify the value of the WSDL that is used at run time, you can generate and
update a deployment plan.

A deployment plan is an optional XML document that you use to configure an
application for deployment to a specific WebLogic Server environment. A deployment
plan defines or overrides deployment property values that would normally be defined
in an application’s WebLogic Server deployment descriptors. To update the
configuration for your application, you add or update variables in the deployment
plan, defining both the location of the WebLogic Server descriptor properties and the
value to assign to the properties. For more information, see the Oracle Fusion
Middleware Deploying Applications to Oracle WebLogic Server.

The following example illustrates a deployment plan that overrides the value of the
CreditRatingService web service WSDL, where:

■ The variable-definition element defines the CreditRatingService
variable and the value to assign to it.

■ As part of the module-override element for the
LoanApplication-LoanApprover-context-root.war, a
variable-assignment element defines the CreditRating Service variable and
the exact location within the descriptor where the property is overridden.

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://www.bea.com/ns/weblogic/deployment-plan"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/deployment-plan
 http://www.bea.com/ns/weblogic/deployment-plan/1.0/deployment-plan.xsd"
 global-variables="false">
 <application-name>production</application-name>
 <variable-definition>
 <variable>
 <name>CreditRatingService</name>
 <value>http://www.somecreditrating.com/xmlns/rating?WSDL</value>
 </variable>
 </variable-definition>
 <module-override>
 <module-name>production.ear</module-name>
 <module-type>ear</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-application</root-element>
 <uri>META-INF/weblogic-application.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>application</root-element>
 <uri>META-INF/application.xml</uri>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 </module-descriptor>
 </module-override>
 <module-override>
 <module-name>
 LoanApplication-LoanApprover-context-root.war

Creating Web Service Clients

Developing Applications Using Web Services 16-21

 </module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 <variable-assignment>
 <name>CreditRatingService</name>
 <xpath>
 /web-app/service-ref/[service-ref-name="CreditRatingService"]/wsdl-file
 </xpath>
 <operation>add</operation>
 </variable-assignment>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>weblogic-webservices</root-element>
 <uri>WEB-INF/weblogic-webservices.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>webservices</root-element>
 <uri>WEB-INF/webservices.xml</uri>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>webservice-policy-ref</root-element>
 <uri>WEB-INF/weblogic-webservices-policy.xml</uri>
 </module-descriptor>
 </module-override>
 <config-root>
 D:\prom-demo\jdeveloper\mywork\LoanApplication\deploy\production\.\plan
 </config-root>
</deployment-plan>

16.4.5 How to Regenerate Web Service Client and Proxy Classes
There are times that you may need to regenerate the web service client and proxy
classes.

To regenerate the web service client and proxy classes:
1. In the Application Navigator, right-click the web service client node that you want

to regenerate and choose Properties from the context menu.

The Web Service Client and Proxy Editor wizard is displayed.

2. Select Web Service Description. (It should be selected by default.)

3. Select Refresh Copied WSDL from Original WSDL Location if you wish to
refresh the local WSDL using the WSDL at the original location.

4. Click OK.

Note: When you regenerate the web service client and proxy classes,
JDeveloper discards any changes that you have made to the class,
WSDL, or supporting files since the client was last generated.

Creating Web Service Clients

16-22 User's Guide for Oracle JDeveloper

The local copy of the WSDL is refreshed and the web service client and proxy
classes are regenerated.

To regenerate the web service client and proxy classes:
You can regenerate the web service client and proxy classes quickly and easily using
the set of properties last defined in the Web Service Client and Proxy Editor wizard
and the current locally stored WSDL as follows:

■ In the Application Navigator, right-click the web service client node that you want
to regenerate and choose Regenerate Web Service Proxy from the context menu.

The web service client class, WSDL, and supporting proxy files are regenerated.

16.4.6 How to Manage the Web Service Clients
JDeveloper provides the ability to both edit and delete web service clients.

To edit web service clients:
You can edit a web service client using the Web Service Client and Proxy editor. To
access the Web Service Client and Proxy editor:

1. Double-click on the client within the Application Navigator.

2. Right-click on the client within the Application Navigator, and select Properties...

For help in completing the wizard, press F1 or click Help from within the wizard.

To delete web service clients:
1. In the Application Navigator, expand the node that contain the web service client

proxy files, package.proxy, and select the files.

2. Choose File > Erase from Disk. You can ignore any usages JDeveloper finds.

3. Expand the node that contains the web service proxy runtime files,
package.proxy.runtime, and select the files.

4. Choose File > Erase from Disk.

The files are permanently erased.

16.4.7 How to Reference Web Services Using the @WebServiceRef Annotation
When you use the javax.xml.ws.WebServiceRef annotation, you can inject a
reference to a web service into any container-managed Java class.

To add a @WebServiceRef annotation to your Java class quickly and easily,
right-click within the Java class editor at the location you want to inject the web
service reference, and select one of the following options:

■ Select Create Proxy and Insert Reference from the context menu.

This command invokes the Create Web Service Client and Proxy wizard, enabling
you to generate a web service client and proxy classes. Then, the
javax.xml.ws.WebServiceRef and web service proxy classes are imported
automatically and a reference to the selected web service is injected at the specified
location.

■ Select Insert Proxy Reference from the context menu, then select an existing Web
service proxy from the drop-down list.

Creating SOAP Web Services (Bottom-Up)

Developing Applications Using Web Services 16-23

The javax.xml.ws.WebServiceRef and web service proxy classes are
imported automatically and a reference to the selected web service is injected at
the specified location. If no web service proxy classes are currently available, then
this option is greyed out.

The following excerpt provides an example of the code that is automatically added to
the Java class:

import java.xml.ws.WebServiceRef;
import ratingservice.CreditRatingService;
...
/**
 ** Injectable field for service WebServiceClient
**/
@WebServiceRef
CreditRatingService creditRatingService1;
...

For more information, see "Defining a Web Service Reference Using @WebServiceRef
Annotation" in GD.

16.5 Creating SOAP Web Services (Bottom-Up)
Web services can be created using two development methods: top-down or bottom-up.
Bottom-up development refers to the process of developing a web service from the
underlying Java implementation using SOAP. For information about using top-down
development—starting from the WSDL—see Section 16.6, "Creating SOAP Web
Services from WSDL (Top Down)".

The following sections describe how to generate different types of web services from
the bottom up:

■ Section 16.5.1, "How to Create Java Web Services"

■ Section 16.5.2, "How to Use JSR-181 Annotations"

■ Section 16.5.3, "How to Create PL/SQL Web Services"

■ Section 16.5.4, "How to Create TopLink Database Web Service Providers"

■ Section 16.5.5, "How to Use Web Service Atomic Transactions"

■ Section 16.5.6, "How to Regenerate Web Services from Source"

■ Section 16.5.7, "How to Use Handlers"

■ Section 16.5.8, "How to Expose Superclass Methods for JAX-RPC"

■ Section 16.5.9, "How to Handle Overloaded Methods"

■ Section 16.5.10, "How to Set Mappings between Java Methods and WSDL
Operations Using the JAX-RPC Mapping File Editor"

16.5.1 How to Create Java Web Services
You can create web services from:

■ Java classes

■ Remote interface of EJBs

■ ADF Business Components service session bean wrapped as an EJB

Creating SOAP Web Services (Bottom-Up)

16-24 User's Guide for Oracle JDeveloper

The web service creation wizards create the deployment files for you, so once you
have created your web service the final step is to deploy it.

Before you begin:
If you have not already done so, set an appropriate context root for your web service.
For more information, see Section 16.2.2, "How to Set the Context Root for Web
Services".

To create the web service:
1. In the Application Navigator, select the project containing the Java class or EJB

from which you want to create a web service.

2. Choose File > New to open the New Gallery.

3. In the Categories list, expand Business Tier and select Web Services. In the Items
list, double-click Java Web Service to launch the Create Java Web Service wizard.

For detailed help about completing the wizard, press F1 or click Help from within
the wizard.

16.5.2 How to Use JSR-181 Annotations
JSR-181 specifies web services meta data, which allows you to use annotations to
declaratively to make creating and managing web services easier. You use the
annotations for methods and classes in order to expose these methods as web service
end-points.

You can add JSR-181 annotations to a class manually, choose to have JDeveloper add
them to the class when creating the web service, or add them when editing the web
service using the Edit Web Services dialog.

To add annotations:
1. Open the Java class open in the source editor.

2. On correct line, type @ and pause for a couple of seconds.

Code Insight displays possible values. For more information, see Section 16.2.7,
"How to Work with Web Services Code Insight".

For more information, see the following references:

■ JSR-181 specification at http://jcp.org/en/jsr/detail?id=18

■ JAX-WS specification at:
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.
html

■ For JWS annotations available with WebLogic Server see "JWS Annotation
Reference" in Oracle Fusion Middleware WebLogic Web Services Reference for Oracle
WebLogic Server.

Note: The Select Deployment Platform page is only displayed the
first time a web service is created in a project. Thereafter, all additional
web services in the same project will use the same version.

Note: If you delete the annotations using the Edit Web Services
dialog, any annotations that you entered manually are also deleted.

Creating SOAP Web Services (Bottom-Up)

Developing Applications Using Web Services 16-25

16.5.3 How to Create PL/SQL Web Services
The Create PL/SQL Web Service wizard makes it easy to generate a web service from
a PL/SQL package or a Java stored procedure that uses object types. A Java stored
procedure is defined by a SQL specification that invokes it, and the PL/SQL Web
Service wizard treats these in the same way as packages.

PL/SQL web services can be deployed to Oracle WebLogic Server. The Create PL/SQL
Web Service wizard uses the functionality of Oracle JPublisher to wrap the PL/SQL in
Java so that the service can be published. For more information see Section 28.3.1,
"How to Use JPublisher".

You can either:

■ Create the web service starting from a project in the Application Navigator. In this
case, you select the database connection and the PL/SQL package to generate the
web service from.

■ Create the web service from the PL/SQL package under the database connection
node in the Database Navigator or the Resource Palette. In this case, you have to
select the project into which the generated files for the web service are deployed.

It should be noted that:

■ If you edit a PL/SQL web service, make sure that the database connection still
exists otherwise you will see an error message. If you have deleted the database
connection, create a new one with the same name as the original connection.

■ There are some cases where a web service cannot be created. For more information
on the limitations, see Section 16.2.5, "How to Work with PL/SQL Web Services
and Types".

■ Deploying PL/SQL web services is similar to deploying other J2EE Web
Applications. For more information, see Section 16.12, "Deploying Web Services".

To create the PL/SQL web service from a project:
1. In the Application Navigator, select the project.

2. Choose File > New to open the New Gallery.

3. In the Categories list, expand Business Tier and select Web Services. In the Items
list, double-click PL/SQL Web Service to launch the Create PL/SQL Web Service
wizard.

For detailed help about completing the wizard, press F1 or click Help from within
the wizard.

To create the web service from a PL/SQL package:
1. In the Database Navigator or the Resource Palette, expand the database connection

node, the schema node, the Packages node, then the node of the package.

2. Right-click the PL/SQL package body, and choose Publish as Web Service to
launch the Create PL/SQL Service wizard.

Note: You can only create JAX-RPC PL/SQL Web Services. For more
information, see Section 16.2.6, "How to Choose Your Deployment
Platform".

Creating SOAP Web Services (Bottom-Up)

16-26 User's Guide for Oracle JDeveloper

16.5.4 How to Create TopLink Database Web Service Providers
The Create TopLink DB Web Service Provider wizard enables you to build a JAX-WS
web service provider for a TopLink database to perform one of the following tasks:

■ Access stored procedures and functions

■ Execute an SQL query

■ Perform CRUD operations on a table

Based on the type of service selected, the wizard generates a web service provider and
WSDL document that can be deployed to an application server, such as Oracle
WebLogic Server. Deploying TopLink web service providers is similar to deploying
other J2EE Web Applications. For more information, see Section 16.12, "Deploying Web
Services".

It should be noted that:

■ The wizard generates a JAX-WS web service provider.

■ If you edit a TopLink web service provider, ensure that the database connection
still exists; otherwise an error message is returned. If you have deleted the
database connection, create a new one with the same name as the original
connection.

■ In some cases, you may not be able to generate a TopLink web service provider.
For more information on the limitations, see Section 16.2.5, "How to Work with
PL/SQL Web Services and Types".

To create the TopLink web service provider from a project:
1. In the Application Navigator, select the project.

2. Choose File > New to open the New Gallery.

3. In the Categories list, expand Business Tier and select Web Services. In the Items
list, double-click TopLink DB Web Service Provider to launch the Create TopLink
Web Service Provider wizard.

For detailed help about completing the wizard, press F1 or click Help from within
the wizard.

16.5.5 How to Use Web Service Atomic Transactions
WebLogic web services enable interoperability with other external transaction
processing systems, such as Websphere, JBoss, Microsoft .NET, and so on, through the
support of the following specifications:

■ WS-AtomicTransaction (Versions 1.0, 1.1, and 1.2) at
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wst
x-wsat-1.2-spec-cs-01.html

■ WS-Coordination (Versions 1.0, 1.1, and 1.2) at
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/w
stx-wscoor-1.2-spec-cs-01.html

These specifications define an extensible framework for coordinating distributed
activities among a set of participants. The coordinator is the central component,
managing the transactional state (coordination context) and enabling web services and
clients to register as participants. For more information about web service atomic
transactions, see "Using Web Service Atomic Transactions" in Oracle Fusion Middleware
Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server.

Creating SOAP Web Services (Bottom-Up)

Developing Applications Using Web Services 16-27

To enable atomic transactions for a web service implementation at the class level or
synchronous method level (for two-way methods only) use one of the following
methods:

■ Adding @weblogic.wsee.wstx.wsat.Transactional annotation directly in
the Java class; the JDeveloper Code Insight feature can help you. For more
information, see Section 16.2.7, "How to Work with Web Services Code Insight".

■ Using the Property Inspector, as described below.

To enable atomic transactions for web service clients use one of the following methods:

■ Right click on the @WebServiceRef annotation or web service injectable target,
and select Add Transactional from the menu to add the @Transactional
annotation.

■ Pass the weblogic.wsee.wstx.wsat.TransactionalFeature as a
parameter when creating the web service proxy or dispatch. For more information,
see "Using Web Service Atomic Transactions" in Oracle Fusion Middleware
Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server.

When enabling web service atomic transactions, configure the following information:

■ Version: Version of the web service atomic transaction coordination context that is
used for web services and clients. For clients, it specifies the version used for
outbound messages only. The value specified must be consistent across the entire
transaction. Valid values include WSAT10, WSAT11, and WSAT12, and DEFAULT.
The DEFAULT value for web services is all three versions (driven by the inbound
request); the DEFAULT value for web services clients is WSAT10.

■ Flow type: Flag that specifies whether the coordination context is passed with the
transaction flow. The following table summarizes the valid values and their
meaning on the web service and client. The table also summarizes the valid value
combinations when configuring web service atomic transactions for an EJB-style
web service that uses the @TransacationAttribute annotation.

Table 16–3 Transaction Configurations

Value Web Service Client Web Service

Valid EJB
@TransactionAttrib
ute Values

NEVER JTA transaction: Do not
export transaction
coordination context.

No JTA transaction: Do
not export transaction
coordination context.

Transaction flow exists: Do
not import transaction
coordination context. If the
CoordinationContext
header contains
mustunderstand="true", a
SOAP fault is thrown.

No transaction flow: Do
not import transaction
coordination context.

NEVER, NOT_
SUPPORTED,
REQUIRED,
REQUIRES_NEW,
SUPPORTS

SUPPORTS
(Default)

JTA transaction: Export
transaction coordination
context.

No JTA transaction: Do
not export transaction
coordination context.

Transaction flow exists:
Import transaction context.

No transaction flow: Do
not import transaction
coordination context.

SUPPORTS, REQUIRED

Creating SOAP Web Services (Bottom-Up)

16-28 User's Guide for Oracle JDeveloper

To enable web service atomic transactions in the Java class:
1. Open the web service class in the source editor.

2. You can use the JDeveloper Code Insight to help you.

Start typing the annotation, for example, @Transactional. When you pause, or
click Ctrl+Shift+Space, a popup appears from which you can choose the correct
entry to complete the statement.

3. You can specify the version and flow type values as follows:

@Transactional(version=Transactional.Version.[WSAT10|WSAT11|WSAT12|DEFAULT],
 value=Transactional.TransactionFowType.[MANDATORY|SUPPORTS|NEVER])

To enable web service atomic transactions in the Property Inspector:
1. With the web service class open in the source editor, choose View Property

Inspector to open the Property Inspector.

For more information at any time, press F1 or click Help from within the Property
Inspector.

2. With the cursor in the public class, @WebService, or two-way method line of the
class, navigate to the Web Services Extensions node in the Property Inspector.

3. Select Add Transactional.

The Property Inspector is refreshed to display options to set the flow type and
version. For more information about the configuration options, see Table 16–3.

4. Select a flow type from the Flow Type drop-down list. Valid values include:
Supports, Never, and Mandatory. This field defaults to Supports.

5. Select a version from the Version drop-down list. Valid values include: WS-AT
1.0, WS-AT 1.1, WS-AT 1.2, and Default. The Default value for web
services is all three versions (driven by the inbound request); the Default value
for web services clients is WS-AT 1.0.

To enable web service atomic transactions in a web service client's injectable
target:
1. Open the web service client in the source editor.

2. Right-click on the @WebServiceRef annotation or injectable target and select
Add Transactional from the menu.

The @Transactional annotation is added to the web service client.

3. You can specify the version and flow type values as follows:

@Transactional(version=Transactional.Version.[WSAT10|WSAT11|WSAT12|DEFAULT],
 value=Transactional.TransactionFowType.[MANDATORY|SUPPORTS|NEVER])

MANDATORY JTA transaction: Export
transaction coordination
context.

No JTA transaction: An
exception is thrown.

Transaction flow exists:
Import transaction context.

No transaction flow:
Service-side exception is
thrown.

MANDATORY,
REQUIRED, SUPPORTS

Table 16–3 (Cont.) Transaction Configurations

Value Web Service Client Web Service

Valid EJB
@TransactionAttrib
ute Values

Creating SOAP Web Services (Bottom-Up)

Developing Applications Using Web Services 16-29

For more information about the configuration options, see Table 16–3.

16.5.6 How to Regenerate Web Services from Source
There are times that you may need to regenerate your web service. For example, if the
source from which the service was originally generated has changed.

After you regenerate the web service, you may need to regenerate the client to the web
service. Otherwise, you may get compilation errors (when the client is in the same
project as the web service), or run-time errors (when the client is in a different project
to the web service).

If you are not using annotations and change the name of the method in the underlying
class, when you regenerate the service you will receive an error message indicating
that no methods were selected. Because methods are tracked using namespaces, if you
modify the namespace JDeveloper is not able to determine what needs to be
regenerated. To correct this error, double-click the web service container to open the
Web Services Editor, go to the Methods page, and select the methods on which to base
the web service.

To regenerate a web service from source:
1. In the Application Navigator, right-click the web service container you want to

regenerate.

2. Choose Regenerate Web Service from Source from the context menu.

The service is automatically regenerated, and any changes you made to the WSDL
since it was last generated are lost.

16.5.7 How to Use Handlers
JDeveloper allows you to specify the handler classes to deal with the web service
message. The handlers can use initialized parameters, SOAP roles or SOAP headers.

To define handlers:
1. Create a web service. For more information, see Section 16.5.1, "How to Create

Java Web Services".

or

Open the web service editor. For more information, see Section 16.10, "Editing and
Deleting Web Services".

2. In the Handler Details page, enter the values you want to use.

For more information at any time, press F1 or click Help from within the dialog.

16.5.8 How to Expose Superclass Methods for JAX-RPC

Note: When you regenerate the web service, JDeveloper discards
any changes that you have made to the WSDL since it was last
generated.

Note: For JAX-WS web services, superclass methods are always
exposed.

Creating SOAP Web Services (Bottom-Up)

16-30 User's Guide for Oracle JDeveloper

To expose superclass methods for JAX-RPC, consider the following two examples:

package mypackage;
public class Shape {
 public void area() {
 }
}

and

package mypackage;
public class Circle extends Shape {
 public Circle() {
 }
 public void callParentMethod() {
 super.area();
 }
}

In class Circle, which extends Shape, there is a public method
callParentMethod() which is responsible for calling the parent class method
area. To call the superclass method area(), create a J2EE Java web service on the
Circle class using the public method callParentMethod().

16.5.9 How to Handle Overloaded Methods
If the Java class on which you base a web service has overloaded methods, JDeveloper
handles them automatically. However if you create a J2EE 1.4 web service, and then
change the class on which it is based so that an existing method becomes an
overloaded method you have to take action to update the mapping file.

The procedure to handle overloaded methods depends on the type of web service that
you are developing, JAX-WS or JAX-RPC.

Handling Overloaded Methods for JAX-WS Web Services
For JAX-WS web services, you can use the @WebMethod annotation to change the
name of an overloaded method. For example:

public class SimpleImpl {
 @WebMethod(operationName="sayHelloOperation")
 public String sayHello(String message) {
 System.out.println("sayHello:" + message);
 return "Here is the message: '" + message + "'";
 }
...
}

In the example, the sayHello() method of the SimpleImpl JWS file is exposed as a
public operation of the web service. The operationName attribute specifies, however,
that the public name of the operation in the WSDL file is sayHelloOperation.

For more information about @WebMethod, see "Specifying that a JWS Method Be
Exposed as a Public Operation (@WebMethod and @OneWay Annotations)" in Oracle
Fusion Middleware Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Handling Overloaded Methods for JAX-RPC Web Services
For JAX-RPC web services, there are two ways that you can handle overloaded
methods:

■ Manually modify the mapping file

Creating SOAP Web Services from WSDL (Top Down)

Developing Applications Using Web Services 16-31

■ Delete the mapping file and recreate the web service

To manually modify the mapping file
After you create the web service based on the Java class, add the overloaded method
to the class.

To delete the mapping file and recreate the web service
1. In the Application Navigator, expand Web Content and WEB-INF.

2. Right-click <web_service>-java-wsdl-mapping.xml and choose Delete.

3. Open the web service editor. For more information, see Section 16.10, "Editing and
Deleting Web Services".

4. Click OK to close it and regenerate the service.

16.5.10 How to Set Mappings between Java Methods and WSDL Operations Using the
JAX-RPC Mapping File Editor

JAX-RPC maps Java types to WSDL definitions. However when the types you want to
support are not covered by the JSR-109 specification, or when you want to use
different mappings to provide the functionality your web service requires, you can use
the JAX-RPC Mapping File Editor to amend an existing mapping file, or to create your
own.

The JAX-RPC Mapping File Editor is a specialized schema-driven editor which helps
you to create a JSR-109 compliant mapping file for a J2EE 1.4 web service. The
mapping file standardizes the Java- WSDL mappings, and in general you have to
provide a full mapping only when the default mapping rules in JSR-109 are not
satisfied.

These features are available while you are using the JAX-RPC Mapping File Editor:

■ While you are typing, you can invoke Code Insight by pausing after typing the <
(open bracket), or by pressing Ctrl+Space (if you are using the default key
mapping). Code Insight opens a list with valid elements based on the schema.

■ You can choose View > Component Palette to open the Palette and select one of
the available pages from the dropdown list.

■ A mapping file's elements are displayed hierarchically in the Structure window,
which also displays any XML syntax errors found as you type and edit. You can
double-click on an element or error to edit it in the JAX-RPC Mapping File Editor.

■ You can right-click on an XML element in the editor and choose Locate in
Structure to expand the Structure window to both show the element and select it.
While you are editing, you can right-click in the open file and choose Auto Indent
XML to properly indent the elements.

■ In an open JAX-RPC Mapping File Editor window, or in the Structure window
with the web service selected in the Application Navigator, right-click a mapping
file and choose Validate WSDL. The Validate WSDL command will validate the
XML against the registered schemas.

16.6 Creating SOAP Web Services from WSDL (Top Down)
JDeveloper allows you to develop top-down web services, that is, starting with the
WSDL. JDeveloper will generate a service implementation and its deployment

Creating RESTful Web Services

16-32 User's Guide for Oracle JDeveloper

descriptors. You can browse to a WSDL in the file system, or use the Find Web Service
Wizard to locate a web service in a UDDI registry connection in the Resource Palette.

To create a SOAP web service from WSDL (top down):
1. In the Application Navigator, select the project in which you want to create the

web service.

2. Choose File > New to open the New Gallery.

3. In the Categories list, expand Business Tier and select Web Services. In the Items
list, double-click Java Web Service From WSDL to launch the Create Java Web
Service from WSDL wizard.

For detailed help about completing the wizard, press F1 or click Help from within
the wizard.

The SOAP web service is created and the Java implementation class is opened
automatically in the editor

16.7 Creating RESTful Web Services
Representational State Transfer (REST) describes any simple interface that transmits
data over a standardized interface (such as HTTP) without an additional messaging
layer, such as SOAP. REST provides a set of design rules for creating stateless services
that are viewed as resources, or sources of specific information, and can be identified
by their unique URIs. A client accesses the resource using the URI, a standardized
fixed set of methods, and a representation of the resource is returned. The client is said
to transfer state with each new resource representation.

When using the HTTP protocol to access RESTful resources, the resource identifier is
the URL of the resource and the standard operation to be performed on that resource is
one of the HTTP methods: GET, PUT, DELETE, POST, or HEAD.

The following sections describe how to create RESTful web service and clients:

■ Section 16.7.1, "How to Add the Jersey JAX-RS Reference Implementation to Your
Project"

■ Section 16.7.2, "How to Create JAX-RS Web Services and Clients"

16.7.1 How to Add the Jersey JAX-RS Reference Implementation to Your Project
Before you can create RESTful web services in JDeveloper, you need to download and
add to your project the Jersey JAX-RS Reference Implementation (RI). The Jersey
JAX-RS RI is available at http://jersey.java.net. Click Download for more
information about the Jersey RI and to download the ZIP file that contains the relevant
library JAR files. Once downloaded, you need to add the Jersey RI to your project.

To add the Jersey JAX-RS RI to your project:
1. With the project selected in the Application Navigator, open the Project Properties

dialog.

To display the dialog, double-click the Project folder or select Edit > Properties.

2. Select the Libraries and Classpath node.

Note: The Jersey RI 1.1.5.1 (jersey-archive-1.1.5.1) version or
above is compatible with this release of JDeveloper.

Creating RESTful Web Services

Developing Applications Using Web Services 16-33

3. On the Libraries and Classpath page, click Add Library.

4. In the Add Library dialog, click New.

5. In the Create Library dialog, enter a name for the new library (for example,
JAX-RS) and select its location.

6. Enable Deployed by Default.

7. Select Class Path and click Add Entry.

8. In the Select Path Entry dialog, navigate to the lib directory of the Jersey archive.
For example, c:\mylibraries\jersey-archive-1.1.5.1\lib.

9. Select all of the JAR files in the lib directory and click Select.

10. If you downloaded the source files, you can set the Source Path to point to the
source files (similar to the way that you defined the Class Path in the previous
steps).

11. In the Create Library dialog, click OK.

12. In the Add Library dialog, click OK.

13. On the Libraries and Classpath page, if finished click OK.

Once you have added the Jersey JAX-RS RI to your project, you can then create JAX-RS
web services and clients.

16.7.2 How to Create JAX-RS Web Services and Clients
After you have added the Jersey JAX-RS RI to your project, you can start creating
JAX-RS web services and clients using JDeveloper. All of the standard Java source
editor features will work with the JAX-RS calls, such as code insight, import
assistance, and so on.

For more information about JAX-RS and samples, you might find it helpful to review
the Jersey RI documentation at:
https://wikis.oracle.com/display/Jersey/Main.

Once you create your RESTful web services, you can test them using the HTTP
Analyzer. For more information, see Section 16.13.4, "How to Examine Web Services
using the HTTP Analyzer".

Note: If you do not select this check box, you will experience errors
during deployment of your RESTful web services and clients.

Note: If you are developing RESTful web services only (that is, you
are not developing RESTful clients), you do not have to include the
jersey-client-1.1.5.1.jar. Similarly, if you are developing RESTful web
service clients only, you do not have to include the
jersey-server-1.1.5.1.jar.

Note: If you experience errors during the deployment of your
RESTful web services and clients, ensure that you have selected the
Deployed by Default check box when adding the Jersey JAX-RS RI to
your project.

Creating RESTful Web Services

16-34 User's Guide for Oracle JDeveloper

A Simple Hello World Example
Example 16–1 provides a very simple example of a RESTful web services:

Example 16–1 RESTful web services

package samples.helloworld;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;

// Specifies the path to the RESTful service
@Path("/helloworld")
public class helloWorld {

 // Specifies that the method processes HTTP GET requests
 @GET
 @Path("sayHello")
 @Produces("text/plain")
 public String sayHello() {
 return "Hello World!";
 }
}

Example 16–2 provides a simple RESTful client that calls the RESTful web service
defined previously. This sample uses classes that are provided by the Jersey JAX-RS RI
specifically; they are not part of the JAX-RS standard.

Example 16–2 RESTful client

package samples.helloworld.client;

import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.WebResource;

public class helloWorldClient {
 public helloWorldClient() {
 super();
 }

 public static void main(String[] args) {
 Client c = Client.create();
 WebResource resource = c.resource(
 "http://localhost:7101/RESTfulService-Project1-context-root/
 jersey/helloWorld");
 String response = resource.get(String.class);
 }
}

About the web.xml File
JDeveloper does not automatically add the servlet class to the web.xml file. Instead,
you are prompted to confirm whether you want to add it when you call a JAX-RS
method from your code. For example, see Figure 16–1.

Managing WSDLs

Developing Applications Using Web Services 16-35

Figure 16–1 Prompt to confirm update

To update the web.xml:
To update the web.xml, select Configure web.xml for Jersey JAX-RS web services as
follows:

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee">
 <servlet>
 <servlet-name>jersey</servlet-name>
 <servlet-class>
 com.sun.jersey.spi.container.servlet.ServletContainer
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>jersey</servlet-name>
 <url-pattern>/jersey/*</url-pattern>
 </servlet-mapping>
</web-app>

16.8 Managing WSDLs
JDeveloper provides a number of ways that you can manage WSDLs for a web service,
as described in the following sections:

■ Section 16.8.1, "How to Create WSDL Documents"

■ Section 16.8.2, "How to Add a WSDL to a Web Service Project"

■ Section 16.8.3, "How to Display the WSDL for a Web Service"

■ Section 16.8.4, "How to Save a WSDL to Your Local Directory"

16.8.1 How to Create WSDL Documents
You can create a WSDL document, for example, to create a top-down web service.

To create a WSDL:
1. In the Application Navigator, select the project containing the Java class or EJB

from which you want to create a web service.

2. Choose File > New to open the New Gallery.

3. In the Categories list, expand Business Tier and select Web Services. In the Items
list, double-click WSDL Document to open the Create WSDL Document dialog.

Note: Why is the web.xml file not updated automatically? In the
future, when you deploy to a Java EE 6.0 container, an update to the
web.xml will not be required. Therefore, this is set up as an optional
activity.

Managing WSDLs

16-36 User's Guide for Oracle JDeveloper

For detailed help about completing the wizard, press F1 or click Help from within
the dialog.

16.8.2 How to Add a WSDL to a Web Service Project
You can generate a WSDL file for a web service and add it to the project using the
procedures described below. The WSDL file is generated automatically and added to
the WEB-INF/wsdl directory for Web applications and to the META-INF/wsdl
directory for EJB applications within the project. In addition, the @WebService
annotation is updated with the wsdlLocation attribute to reference the location of the
local WSDL. For example:

@WebService(wsdlLocation="WEB-INF/wsdl/CreditRatingService.wsdl")

To add a WSDL to a web service project:
In the Application Navigator, right-click the web service for which you want to add a
WSDL and select Generate WSDL and Add to Project from the context menu. The
WSDL is automatically generated and added to the project in the WEB-INF/wsdl
directory.

16.8.3 How to Display the WSDL for a Web Service
You can display the WSDL for a web service. The WSDL file is generated based on the
annotations defined in the web service to a temporary directory and displayed.

To display the WSDL to a web service project:
In the Application Navigator, right-click the web service for which you want to
display the WSDL and select Show WSDL for Web Service Annotations from the
context menu.

The WSDL is generated to a temporary directory and displayed.

16.8.4 How to Save a WSDL to Your Local Directory
When viewing a remote WSDL for a web service, you can save the WSDL to your local
directory.

To save a WSDL to your local directory:
1. Display the WSDL file for the web service.

2. Choose Tools > Copy WSDL Locally.

Note: If a WSDL file already exists in the WEB-INF/wsdl or
META-INF/wsdl directory, you are prompted whether or not to
overwrite the existing WSDL file.

Note: If you want to use the WSDL within a web service project,
you need to copy it to a location that is accessible by the project
directory (for example, WEB-INF/wsdl for Web applications and
META-INF/wsdl for EJB applications) and update the @WebService
annotation to reference the WSDL location.

Using Policies with Web Services

Developing Applications Using Web Services 16-37

3. In the Select Destination for WSDL dialog, navigate to the location that you want
to save the WSDL, or enter the location in the Directory name text box, and click
Select.

The WSDL is saved to the location specified.

16.9 Using Policies with Web Services
This section describes how to use policies with web services created in JDeveloper.
You can use the following types of policies:

■ Oracle Web Service Manager (Oracle WSM) policies—Attach security policies only
to JAX-WS web services.

■ Oracle WebLogic web service policies—Attach to JAX-WS or JAX-RPC web
services.

You cannot mix the two types of policies in the same web service, so you should
decide which to use at the planning stage. Once you have added policies of one type to
your web service, you cannot switch to the other type without deleting the policies
that are currently attached. For example, if you have configured Oracle WSM policies
and later decide that you want to use Oracle WebLogic web service policies, you must
delete the Oracle WSM policies before you can attach the Oracle WebLogic web service
policies.

The following sections describe how to use policies with web services:

■ Section 16.9.1, "What You May Need to Know About Oracle WSM Policies"

■ Section 16.9.2, "What You May Need to Know About Oracle WebLogic Web Service
Policies"

■ Section 16.9.3, "How to Attach Policies to Web Services"

■ Section 16.9.4, "How to Attach Oracle WSM Policies to Web Service Clients"

■ Section 16.9.5, "How to Invoke Web Services Secured Using WebLogic Web Service
Policies"

■ Section 16.9.6, "How to Edit and Remove Policies from Web Services"

■ Section 16.9.7, "How to Use Custom Web Service Policies"

■ Section 16.9.8, "How to Use a Different Oracle WSM Policy Store"

Before you begin:
A detailed examination of all the tasks to be performed to use policies is outside the
scope of this guide, but in general the steps you need to perform are:

1. Decide on the policies you intend to use. For more information, see "Determining
Which Security Policies to Use" in the Oracle Fusion Middleware Security and
Administrator's Guide for Web Services.

2. Attach the policies to a class or service. For more information, see Section 16.9.3,
"How to Attach Policies to Web Services".

3. Configure a server with the correct key stores or other information that the policies
need to work, and deploy the web service to the server. For more information, see
"Configuring Policies" in the Oracle Fusion Middleware Security and Administrator's
Guide for Web Services.

4. Test the web service to ensure that the policies work as expected. For more
information, see Section 16.11.1, "How to Test Web Services in a Browser".

Using Policies with Web Services

16-38 User's Guide for Oracle JDeveloper

16.9.1 What You May Need to Know About Oracle WSM Policies
Oracle WSM policies can be attached to JAX-WS web services at the port-level.
JDeveloper currently supports Oracle WSM security policies only.

JDeveloper is preconfigured to use the policy store set at the default location in the WS
Policy page of the Preferences dialog at:

■ Tools menu > Preferences > WS Policy Store

or

■ Application menu > Application Properties > WS Policy Store

You can specify another policy store location to use your organization's custom Oracle
WSM policies. For more information Section 16.9.8, "How to Use a Different Oracle
WSM Policy Store".

For more information about Oracle WSM policies, see the Oracle Fusion Middleware
Security and Administrator's Guide for Web Services.

Policy Annotations
You can attach a single policy using the
weblogic.wsee.jws.jaxws.owsm.SecurityPolicy annotation in the Java class,
for example:

@SecurityPolicy(uri = "oracle/wss11_message_protection_service_policy")

You can attach multiple policies as a composite using @SecurityPolicies containing a
number of @SecurityPolicy elements, for example:

@SecurityPolicies({
 @SecurityPolicy(uri = "oracle/wss_http_token_service_policy"),
 @SecurityPolicy(uri = "oracle/wss_oam_token_service_policy")
})

16.9.2 What You May Need to Know About Oracle WebLogic Web Service Policies
Oracle WebLogic web service policies can be attached to JAX-WS and JAX-RPC web
services at the port or operation level. With Oracle WebLogic web service policies it is
possible to specify the usage direction of the policies, i.e., to be applied on the inbound
(request) message or outbound (response) message, or both.

You can configure JDeveloper to use your organization's custom Oracle WebLogic web
service policies. For more information, see Section 16.9.7, "How to Use Custom Web
Service Policies".

For more information, see the Oracle Fusion Middleware Securing WebLogic Web Services
for Oracle WebLogic Server.

Policy Annotations
You can attach a single policy using the weblogic.jws.Policy annotation in the
Java class, for example:

@Policy(uri = "policy:Wssp1.2-2007-Https-UsernameToken-Plain.xml")

Note: To display a list of valid policies, click Ctrl+Alt+Enter to
invoke the Code Assist feature.

Using Policies with Web Services

Developing Applications Using Web Services 16-39

You can attach multiple policies as a composite using @Policies containing a
number of @Policy elements, for example:

@Policies({
 @Policy(uri = "policy:Wssp1.2-2007-Https-BasicAuth.xml"),
 @Policy(uri = "policy:Wssp1.2-2007-Https-UsernameToken-Plain.xml")
})

16.9.3 How to Attach Policies to Web Services
JDeveloper allows you to attach Oracle Web Service Manager (Oracle WSM) policies or
Oracle WebLogic web service policies to web services.

After you attach a policy to a web service, you need to configure the policies. For more
information, see "Configuring Policies" in the Oracle Fusion Middleware Security and
Administrator's Guide for Web Services.

You can attach policies to web services by:

■ Selecting the policies to attach in the web service wizard when creating a new web
service or in the web service editor when updating a web service that already
exists.

■ Adding policy annotations directly in the Java class; the Code Insight feature can
help you. For more information, see Section 16.2.7, "How to Work with Web
Services Code Insight".

■ Using the Property Inspector.

To attach policies in the web service wizard or editor:
In the Create Java Web Service wizard or web service editor, navigate to the Configure
Policies page. For more information at any time, press F1 or click Help from within the
dialog.

When attaching Oracle WSM policies, you can view more information about the policy
and its assertions as follows:

■ Click the Show Descriptions checkbox to display a description of each of the
policies.

■ Click View to review the policy assertions in the policy file.

■ Click the Show Selected Policies checkbox to display only those policies that are
currently selected.

To attach policy annotations in the Java class:
1. Open the web service class in the source editor.

2. You can use the Code Insight to help you.

Start typing the annotation, for example, @Policies. When you pause, or click
Ctrl+Shift+Space, a popup appears from which you can choose the correct entry
to complete the statement.

For more information about using policy annotations, see "Updating the JWS File with
@Policy and @Policies Annotations" and "SecurityPolicy and SecurityPolicies

Note: To display a list of valid policies, click Ctrl+Alt+Enter to
invoke the Code Assist feature.

Using Policies with Web Services

16-40 User's Guide for Oracle JDeveloper

Annotations" in Oracle Fusion Middleware Securing WebLogic Web Services for Oracle
WebLogic Server.

To attach policies in the Property Inspector:
1. With the web service class open in the source editor, choose View > Property

Inspector to open the Property Inspector.

For more information at any time, press F1 or click Help from within the Property
Inspector.

2. With the cursor in the public class or @WebService line of the class, navigate
to the Web Services Extensions node where you can choose to use Oracle WSM
Policies or Oracle WebLogic web service policies.

3. Select Secure with OWSM Policies or Secure with WLS Policies.

The Property Inspector is refreshed to display options to select single or multiple
policies for the policy type selected (Oracle WSM or WLS).

4. Click ... to attach multiple policies from the Edit Property: Multiple Policies dialog,
or select a single policy from the Single Policy list.

When using the Edit Property: Multiple Policies dialog box to attach multiple
Oracle WSM policy files, click View to review the policy assertions in the policy
file.

You cannot use both types of policy in the same web service. If you choose the
wrong type, delete the lines containing the policy statements from the JAX-WS
class so that you can choose again.

16.9.4 How to Attach Oracle WSM Policies to Web Service Clients
JDeveloper allows you to attach Oracle Web Service Manager (Oracle WSM) to web
service clients.

After you attach an Oracle WSM policy to a web service client, you need to configure
the policies. For more information, see "Configuring Policies" in the Oracle Fusion
Middleware Security and Administrator's Guide for Web Services.

You can attach Oracle WSM policies to web service clients by:

■ Selecting the Oracle WSM policies to attach in the Create Web Service Client and
Proxy wizard when creating a new web service client or in the Web Service Client
and Proxy editor when updating a web service client that already exists. In the
Create Web Service Client and Proxy wizard or editor, navigate to the Policy page.

■ When attaching Oracle WSM policies, you can view more information about the
policy and its assertions as follows:

– Click the Show Descriptions checkbox to display a description of each of the
policies.

– Click View to review the policy assertions in the policy file.

Note: For information about updating client applications to invoke
web services that use WebLogic web service policies, see "Updating a
Client Application to Invoke a Message-Secured Web Service" in
Oracle Fusion Middleware Securing WebLogic Web Services for Oracle
WebLogic Server.

Using Policies with Web Services

Developing Applications Using Web Services 16-41

– Click the Show Selected Policies checkbox to display only those policies that
are currently selected.

– Click the Show only the compatible client policies for selection checkbox to
view the policies that are compatible with the associated web service.

For more information at any time, press F1 or click Help from within the
dialog.

■ Manually using
weblogic.wsee.jws.jaxws.owsm.SecurityPolicyFeature class to attach
a single policy or
weblogic.wsee.jws.jaxws.owsm.SecurityPoliciesFeature to attach
multiple policies.

For more information, see the Oracle Fusion Middleware Securing WebLogic Web
Services for Oracle WebLogic Server.

16.9.5 How to Invoke Web Services Secured Using WebLogic Web Service Policies
When creating or editing a web service client from a WSDL that advertises a WebLogic
web service policy, you can configure credentials to invoke the web service.

To configure credentials for a web service client that invokes a web service
secured using WebLogic web service policies:
1. Perform one of the following tasks:

■ Create a web service client. For more information, see Section 16.4.1, "How to
Create the Client and Proxy Classes".

■ Edit a web service client. For more information, see Section 16.4.6, "How to
Manage the Web Service Clients".

2. Navigate to the Select Credential page of the wizard.

3. Select an existing set of credentials from the dropdown list or click New to define a
new set of credentials.

For help in completing the wizard, press F1 or click Help from within the wizard.

4. Complete the wizard.

The client class is updated to include methods for setting the client credentials. Once
added, you can modify the credential values, as required.

The following provides an example of the code that is generated and included in the
client class:

@Generated("Oracle JDeveloper")
public static void setPortCredentialProviderList(
 Map<String, Object> requestContext) throws Exception
{
 // Values used from credential preference: TestCredential
 String username = "weblogic";
 String password = "weblogic1";
 String clientKeyStore = "/C:/temp/ClientIdentity.jks";
 String clientKeyStorePassword = "ClientKey";
 String clientKeyAlias = "identity";
 String clientKeyPassword = "ClientKey";
 String serverKeyStore = "/C:/temp/ServerIdentity.jks";
 String serverKeyStorePassword = "ServerKey";
 String serverKeyAlias = "identity";
 List<CredentialProvider> credList = new ArrayList<CredentialProvider>();

Using Policies with Web Services

16-42 User's Guide for Oracle JDeveloper

 // Add the necessary credential providers to the list
 credList.add(getUNTCredentialProvider(username, password));
 credList.add(getBSTCredentialProvider(clientKeyStore, clientKeyStorePassword,
 clientKeyAlias, clientKeyPassword, serverKeyStore,
 serverKeyStorePassword, serverKeyAlias, requestContext));
 credList.add(getSAMLTrustCredentialProvider());
 requestContext.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credList);
}

For information about how to program your web service client to invoke a web service
that is secured using WebLogic web service policies, see "Updating a Client
Application to Invoke a Message-Secured Web Service" in the Oracle Fusion Middleware
Securing WebLogic Web Services for Oracle WebLogic Server.

16.9.6 How to Edit and Remove Policies from Web Services
You can edit policies and remove them entirely from web services with either of the
following:

■ Web service editor

■ Source editor

■ Property Inspector

To change or remove policies using the web service editor:
1. Right-click the web service in the Application Navigator, and choose Web Service

Properties.

For more information at any time, press F1 or click Help from within the dialog.

2. Navigate to the Configure Policies page, where you can change the policies for the
type of policies selected, change to using a different type of policies (for example,
from Oracle WSM policies to Oracle WebLogic web service policies), or choose No
Policies. The web services is changed when you navigate away from this page of
the editor.

To change or remove policies using annotations in the Java class:
■ Open the web service class in the source editor, where the Code Insight feature is

available to help you. For more information, see Section 16.2.7, "How to Work with
Web Services Code Insight".Add or remove the annotations, as required.

To change or remove policies using the Property Inspector:
1. With the JAX-WS web service class open in the source editor, choose View >

Property Inspector to open the Property Inspector.

For more information at any time, press F1 or click Help from within the Property
Inspector.

2. With the cursor in the public class or @WebService line of the class, navigate
to the Web Services Extensions node:

■ To change multiple policies, click ... to open the Edit Property: Multiple
Policies dialog.

■ To change a single policy, delete the name from the from the Single Policy list
and choose another.

Using Policies with Web Services

Developing Applications Using Web Services 16-43

■ To change from one type of policy to another, delete all the policies so that you
can start again.

16.9.7 How to Use Custom Web Service Policies
You can use custom policies from within JDeveloper. The process is different based on
whether you are using custom Oracle Web Service Manager (Oracle WSM) policies or
Oracle WebLogic web service policies, as described in the following sections:

■ Section 16.9.7.1, "Using Custom Oracle WSM Policies"

■ Section 16.9.7.2, "Using Custom Oracle WebLogic Web Service Policies"

16.9.7.1 Using Custom Oracle WSM Policies
To use custom Oracle Web Service Manager (Oracle WSM) policies, perform one of the
following steps:

■ Add a custom policy in the default policy store location at:

JDEV_USER_
HOME\system11.1.1.2.x.x.x\DefaultDomain\oracle\store\gmds. If
not set,

JDEV_USER_HOME defaults to C:\Documents and
Settings\user-dir\Application Data\JDeveloper.

Within this directory, policies must be included using one of the following
directory structures:

– Predefined Oracle WSM policies: owsm/policies/oracle/policy_file

– Custom user policies: owsm/policies/policy_file

■ Specify a different policy store. Fro more information, see Section 16.9.7.2, "Using
Custom Oracle WebLogic Web Service Policies".

If you elect to use a policy store on a remote application server, you can import
custom Oracle WSM policies to the MDS repository on the remote application
server using Fusion Middleware Control or WLST.

For more information about importing policies to the Oracle WSM MDS on the
remote application server, see "Understanding the Different Mechanisms for
Importing and Exporting Policies" in the Oracle Fusion Middleware Security and
Administrator's Guide for Web Services.

For more information about creating custom policies, see "Creating Custom
Assertions" in Extensibility Guide for Oracle Web Services Manager.

Note: When exporting policy files from the Oracle WSM repository
for use in JDeveloper, this directory structure is not maintained. You
must ensure that when adding the exported policy to the JDeveloper
environment that you use the required directory structure noted
above. Otherwise, the policies will not be available in the JDeveloper
environment. For more information about exporting policies from the
Oracle WSM repository, see "Understanding the Different Mechanisms
for Importing and Exporting Policies" in the Oracle Fusion Middleware
Security and Administrator's Guide for Web Services.

Using Policies with Web Services

16-44 User's Guide for Oracle JDeveloper

16.9.7.2 Using Custom Oracle WebLogic Web Service Policies
To use custom Oracle WebLogic web service policies, perform one of the following
steps:

■ Place the custom policy JAR in the classpath and enable the WebLogic Server
property weblogic.wsee.policy.LoadFromClassPathEnabled to true.

■ Place the custom policy JAR in WEB-INF/policies (Web application) or
META-INF/policies (EJB).

■ Place the custom policy XML file in WEB-INF (Web application) or META-INF
(EJB).

To access the policies:

■ When using the @Policy annotation, ensure that you add the policy prefix; for
example, policy:mypolicy.xml.

■ Click the Add Custom Policies button on the Configure Policies page of the Java
Web Service Editor and select the custom policy files using the Select Custom
Policy Files dialog box.

For more information about creating custom policies, see "Creating Custom
Assertions" in Extensibility Guide for Oracle Web Services Manager.

16.9.8 How to Use a Different Oracle WSM Policy Store
The Oracle Web Service Manager (Oracle WSM) policy store is installed as part of
JDeveloper. You can use a different policy store, for example, to use a shared policy
store. You can use a policy store that is available on the local file store or on a remote
application server.

To specify a different policy store location:
1. Choose Tools > Preferences to open the Preferences dialog, and navigate to the

WS Policy Store page.

For more information at any time, press F1 or click Help from within the
Preferences dialog.

2. To specify a policy store that is in the local file store, click File Store and enter the
location of the policy store in the Override Location text box, or click Browse to
browse to its location.

3. To configure a policy store on a remote application server, click App Server
Connection and select a remote application server connection from the drop-down
list.

To add a new remote application server connection, click New.

Note: The remote application server that you select must be
configured with the Oracle WSM Policy Manager. To verify that the
Oracle WSM Policy Manager has been properly configured, use the
following URL: http://<host>:<port>/wsm-pm/validator. Enter the
username and password for the server when prompted. If the Oracle
WSM Policy Manager is operational, then a list of the predefined
policies is displayed with descriptions. For more information about
troubleshooting the Oracle WSM Policy Manager, see "Diagnosing
Problems" in the Oracle Fusion Middleware Security and Administrator's
Guide for Web Services.

Testing and Debugging Web Services

Developing Applications Using Web Services 16-45

16.10 Editing and Deleting Web Services
You can edit or delete a web service that you have created in JDeveloper, for example
to change the exposed method or a file location.

To edit a web service:
1. In the Application Navigator, right-click the web service container and choose

Properties. The reentrant web service wizard is displayed.

2. Make your changes to the web service. Click OK. The web service files are
regenerated.

For detailed help about completing the wizard, press F1 or click Help from within
the wizard.

After editing the web service files, you must redeploy the web service. For more
information, see Section 16.12, "Deploying Web Services".

When you edit a web service, the previously generated WSDL file is overwritten, and
any changes you have made to it will be lost. If you have already deployed the web
service and you edit it, you must redeploy it.

When you edit a PL/SQL web service, ensure that the database connection is present;
otherwise, you will receive an error message. If you have deleted the database
connection, create a new one with the same name as the original one.

To delete a web service:
■ In the Application Navigator, right-click the web service container and choose

Delete Web Service. The Delete Web Service dialog listing the files that will be
deleted is displayed. Click OK.

The files are deleted and any references to the service web.xml are removed.

When you delete a web service from JDeveloper, the web service container and the
files it contains (a WSDL file and possibly some interfaces) are deleted. The entries for
the web service in web.xml are removed, although the file is not deleted. The
WebServices.deploy file is unchanged as it may be used for other web services.

16.11 Testing and Debugging Web Services
Developer provides a number of ways that you can test web services. You can use the
debugger, which enables you to debug web services that you create locally, on the
Integrated WebLogic Server, and remotely, on Oracle WebLogic Server. You can also
run a web service deployed to Integrated WebLogic Server in a browser to check that it
returns what you expect.

In addition to the topics described in this section, you can use HTTP Analyzer to
examine the content of web services over HTTP, similar to examining other packet
information. For more information, see Section 16.13.4, "How to Examine Web Services
using the HTTP Analyzer".

The following sections describe how to test and debug web services:

■ Section 16.11.1, "How to Test Web Services in a Browser"

■ Section 16.11.2, "How to Debug Web Services"

Testing and Debugging Web Services

16-46 User's Guide for Oracle JDeveloper

16.11.1 How to Test Web Services in a Browser
Once you have created and deployed a web service, you can check that it returns what
you expect by running it in the browser.

The process that you use to test web services depends on whether you are testing
WebLogic web services or Oracle Infrastructure web services, such as ADF business
components.

■ Testing WebLogic Java EE web services in a browser

■ Testing Oracle Infrastructure web services in a browser

To test WebLogic Java EE web services in a browser:
1. Open the following URL in a browser: http://IP_address:port/wls_utc

2. Enter the URL of the WSDL and click Test.

For example: http://IP_
address:port/Project1-context-root/MyWebService1?WSDL

The browser shows a simple page which lists the operations available on the
service.

3. Enter values for each of the parameters and click the operation-name button to
review the request details.

Testing Oracle Infrastructure Web Services in a Browser
For Oracle Infrastructure web services, such as ADF business components, you can
test web services in a browser deployed to:

■ Integrated WebLogic Server

■ Oracle WebLogic Server

To test a service deployed to Integrated WebLogic Server:
1. When you deploy the Oracle Infrastructure web service to Integrated WebLogic

Server, examine the contents of the log window. Find the line containing the
following:

Use the following context root(s) to test your web
application(s): http://IP_
address:port/Project1-context-root/MyWebService1

2. Copy the URL and paste it into browser. The browser shows a simple page which
lists the operations available on the service.

3. Enter a parameter, and click Enter. The result from the web service is displayed.

To test a service deployed to Oracle WebLogic Server:
1. When you deploy the Oracle Infrastructure web service to Oracle WebLogic

Server, examine the contents of the log window. Find the line that says:

The application can be accessed at location: http://IP_
address:port/Project1-context-root

This URL only shows the context root for the web service.

2. Copy the URL and paste it into browser, and add the name of the web service to
the end to give the full location of the service:

http://IP_address:port/Project1-context-root/MyWebService1

Testing and Debugging Web Services

Developing Applications Using Web Services 16-47

The browser shows a simple page which lists the operations available on the
service.

3. Enter a parameter, and click Enter. The SOAP message containing the parameter
you entered to the web service is displayed.

4. Click Invoke. The result from the web service is displayed.

16.11.2 How to Debug Web Services
The debugging tools allow you to debug web services created using the web service
wizards. This is similar to debugging Java programs; you can debug a web service
locally or remotely by running a client against the service in debug mode. You set
breakpoints in the client, which is the proxy to the web service, to investigate the
functionality of the service.

Although you can debug a PL/SQL web service, what you are debugging is the Java
class generated by JDeveloper to wrap the PL/SQL for deployment as a web service.
Therefore, the correct way to ensure that a PL/SQL web service runs as expected is to
debug the PL/SQL before you create a web service from it. For more information, see
Section 29.3, "Debugging PL/SQL Programs and Java Stored Procedures".

You can use the HTTP Analyzer to examine and monitor HTTP request and response
packets. It acts as a proxy between code in JDeveloper and the HTTP resource that the
code is communicating with, and helps you to debug your application in terms of the
HTTP traffic sent and received. For more information, see Section 16.13.4, "How to
Examine Web Services using the HTTP Analyzer".

JDeveloper lets you debug a web service that is running in the Integrated WebLogic
Server, locally or a web service that is deployed remotely.

Debugging Web Services Locally
Once the web service is running in Integrated WebLogic Server, you can create a proxy
client to the web service. This client contains methods to run against each exposed
method in the web service, and you can add your own code and set breakpoints to
examine how the web service runs.

You can quickly debug a web service created in JDeveloper by debugging it locally.
There are two ways to do this:

■ By putting breakpoints in the web service class, then running a proxy client
against it. This allows you to debug the service class itself.

■ By putting breakpoints in the client.

Before locally debugging a web service, you should turn off the proxy settings.
Remember to turn the proxy settings back on when you have finished debugging.

To debug a web service locally:
1. First, turn off the proxy settings. Choose Tools > Preferences, and select Web

Browser and Proxy.

2. Deselect Use Http Proxy Server.

3. Run the web service in debug mode. In the navigator, right-click the web service
container, and choose Debug.

The Integrated WebLogic Server is started in debug mode, and the web service is
deployed to it. The results are displayed in the log window.

Deploying Web Services

16-48 User's Guide for Oracle JDeveloper

4. Create a web service client, as described in "Creating Web Service Clients" on
page 16-14.

A proxy container is generated and displayed in the navigator, with a Java class
called web_serviceSoapHttpPortClient.java displayed in the source
editor.

5. In the source editor, navigator to // Add your own code here, and enter
some code.

6. If you are debugging the client to the web service, add one or more breakpoints,
right-click and choose Debug.

Alternatively, if you have set breakpoints in the web service class, choose either
Debug or Run from the context menu.

The debugger operates as for any Java class. For more information, see Chapter 19,
"Running and Debugging Java Programs".

Debugging Web Services Remotely
JDeveloper lets you debug a web service that is deployed remotely.

The web service could be running on Oracle WebLogic Server on the local machine, or
it could be running on a service located on a remote machine. In either case, you will
need a connection to the server, and the server must be running in debug mode.

When you remotely debug a web service, you have to start the server in debug mode,
deploy the web service to it. You can then create a client to the service and set
breakpoints in it, and run the client in debug mode.

To debug a web service remotely:
1. Run the remote server in debug mode.

2. Deploy the web service. For more information, see Section 16.12, "Deploying Web
Services".

3. Create a client to the web service.

4. In the source editor, navigate to // Add your own code here, and enter some
code.

5. Add one or more breakpoints, right-click and choose Debug.

The debugger operates as for any Java class. For more information, see Chapter 19,
"Running and Debugging Java Programs".

16.12 Deploying Web Services
JDeveloper provides tools that help you create and deploy web services to Oracle
WebLogic Server, where they run within a Java EE container. You can:

■ Deploy web services to Integrated WebLogic Server. See Section 16.12.1, "How to
Deploy Web Services to Integrated WebLogic Server".

■ Deploy web services to Oracle WebLogic Server. See Section 16.12.2, "How to
Deploy Web Services to Oracle WebLogic Server".

■ Deploy web services to an archive file. For more information, see Section 9.4.1,
"Deploying to a Java JAR".

■ Undeploy a web service. See Section 16.12.3, "How to Undeploy Web Services".

Deploying Web Services

Developing Applications Using Web Services 16-49

In addition, you can define a different WebLogic Server domain to be the Integrated
WebLogic Server on which to run web services. For more information, see Section 9.2,
"Running Java EE Applications in the Integrated Application Server".

16.12.1 How to Deploy Web Services to Integrated WebLogic Server
You can deploy web service generated in JDeveloper to Integrated WebLogic Server.

To deploy a web service to Integrated WebLogic Server:
1. In the Application navigator, right-click the project containing the web service, and

choose Deploy > Web Services.

The first time you start Integrated WebLogic Server by running or debugging an
application or web service, a dialog is displayed where you enter a password for
the administrator ID on the default domain. When you click OK, the default
domain is created. You only need to do this once.

2. In the Deploy Web Services dialog, on the Deployment Action page, select Deploy
to Application Server and click Next.

3. On the Select Server page, select IntegratedWebLogicServer and click Next to
view the Summary page or Finish to deploy the web services.

16.12.2 How to Deploy Web Services to Oracle WebLogic Server
You can deploy a web service generated in JDeveloper to Oracle WebLogic Server.

When you used one of the Create Web Services wizards to generate the files for your
Java EE web service, the wizard automatically created all the files that you need,
including a deployment profile named WebServices.deploy. The
WebServices.deploy file is created at project level. The deployment profile
contains a WAR file and an EAR file.

To deploy a web service:
■ In the navigator, right-click the project containing the web service and choose

Deploy to > connection. From the list of available connections choose the
application server connection that you specified when you created the web
service.

To deploy a PL/SQL web service:
1. Create an application-level EAR deployment profile and add the web service to it.

2. Deploy the EAR to the application server connection to Oracle WebLogic Server.

3. Set the database connection details on Oracle WebLogic Server by following the
information about deploying EARs to Oracle WebLogic Server.

For more information, see Section 9.4.1, "Deploying to a Java JAR".

Note: If you are deploying a PL/SQL web service, you must create
an EAR, which is a deployment profile at application level, and
deploy the EAR file. The database connection information is contained
in the EAR, although password indirection is used so you also have to
set a JDBC data source on Oracle WebLogic Server.

Monitoring and Analyzing Web Services

16-50 User's Guide for Oracle JDeveloper

To examine the contents of a web services deployment profile:
1. To examine the contents of a web services deployment profile:

2. Choose the File Groups > WEB-INF/classes > Filters node to display a listing of
the .java and .wsdl files for the web service.

16.12.3 How to Undeploy Web Services
If you have deployed the web service to Integrated WebLogic Server you do not need
to undeploy it as the integrated server resets itself to the new application and project
whenever it is started.

If you have deployed the web service to a server using an application server
connection, you can undeploy it from the Resource Palette.

To undeploy a web service:
1. In the Application Server Navigator, select the application server connection you

have been using and expand Web Services.

2. Right-click application-name_project-name_ws and choose Undeploy.

16.13 Monitoring and Analyzing Web Services
You can analyze web services in a number of ways, for example to check whether they
conform to WS-I Basic Profile 1.1, or to investigate the contents of SOAP packets.

The Web Services-Interoperability Organization (WS-I) was formed by Oracle and
other industry leaders to promote the interoperability of web services technologies
across a variety of platforms, operating systems, and programming languages.
JDeveloper provides tools that allow you to test the interoperability of web services by
checking that the services conform to the WS-I Basic Profile 1.1. For more information
about WS-I, see the web site of The Web Services-Interoperability Organization (WS-I)
at http://www.ws-i.org.

In order to monitor a web service against the WS-I Basic Profile, or analyze the log file
resulting from monitoring a service, you need to have downloaded a WS-I compliant
analyzer.

You can analyze a web service for conformity to WS-I standards. The service can either
be one you have created that is listed in the Application Navigator, or it can be a web
service that you have located using a UDDI registry that is listed in the Resource
Palette. Alternatively, you can create a client and proxy classes to access a deployed
web service and use the HTTP Analyzer to create a log file that you then use to
analyze whether the web service conforms to WS-I standards.

In order to use a WS-I compliant analyzer to analyze a web service, you need to
download one to your machine and register it with JDeveloper.

To download and register a WS-I analyzer:
1. Download and install a WS-I analyzer from http://www.ws-i.org.

2. In JDeveloper choose Tools > Preferences and select WS-I Testing Tools.

3. Enter details of where your WS-I compliant analyzer is installed.

For detailed help in using this dialog, press F1 or click Help from within the
dialog.

The following sections describe how to monitor and analyze web services:

Monitoring and Analyzing Web Services

Developing Applications Using Web Services 16-51

■ Section 16.13.1, "How to Analyze Web Services in the Navigator"

■ Section 16.13.2, "How to Create and Analyze Web Service Logs"

■ Section 16.13.3, "How to Analyze Web Services Running in the Integrated Server"

■ Section 16.13.4, "How to Examine Web Services using the HTTP Analyzer"

16.13.1 How to Analyze Web Services in the Navigator
You can produce a report of a web service that is listed in the Application Navigator,
or that you have located using a UDDI registry and that is listed in the Resource
Palette to see whether it conforms with WS-I Basic Profile 1.1 standards. Before you
can do this you must have downloaded a WS-I compliant analyzer to your machine
and registered it with JDeveloper.

The parts of the WS-I Basic Profile that check the content of messages sent between a
web service and a client cannot be used until the client is run against the service. When
invoked from the navigator, the WS-I analyzer can only analyze the description of the
service in its WSDL document.

To analyze a web service:
1. With the web service selected in the navigator, choose WS-I Analyze WSDL from

the context menu.

2. The WS-I Analyze Web Service wizard is displayed.

For detailed help in using the wizard, press F1 or lick Help from within the
wizard.

3. Once the wizard has run, a report of the analysis called wsi-report.html is
displayed in JDeveloper. The report may take a few moments to appear,
depending on whether you are analyzing a local web service or one deployed
elsewhere on the Web.

16.13.2 How to Create and Analyze Web Service Logs
You can use the HTTP Analyzer to produce a log from running a web service client.
Then you can use a WS-I compliant analyzer that you have downloaded and
registered with JDeveloper to check whether the web service complies with WS-I
standards.

Because you are running the analyzer against a client to the web service, discovery,
description and messages of the service are reported on.

To create and analyze a web service:
1. Create a client to the web service you want to analyze.

■ Either to an external web service.

or

■ For a web service that you have created and deployed to Oracle WebLogic
Server, create a client stub or proxy.

or

Note: If you are working within a firewall, make sure that the proxy
server exceptions do not include the IP address of the machine on
which the web service is running.

Monitoring and Analyzing Web Services

16-52 User's Guide for Oracle JDeveloper

■ For a web service that you have just created in JDeveloper, ensure that the web
service is running on the embedded server by selecting Run from the web
service container's context menu. In the navigator, select Generate Web
Service Proxy from the web service container's context menu. You need to
make sure that the web service endpoint in the WSDL is exactly the same as
the _endPoint variable in the generated proxy.

2. Start the Http Analyzer. Choose View > HTTP Analyzer, and in the monitor click
the Start button.

3. Run the client. Either:

■ Select Run from the context menu of the client in the source editor.

or

■ Select Run from the context menu of the client in the navigator.

4. Once you have received the response you expect from the web service, stop the
Http Analyzer by clicking the Stop button.

5. Click the WS-I Analyzer button to launch the WS-I Analyze wizard, and follow the
instructions in the wizard. The message log records the progress, and the results
are displayed in the HTTP Analyzer.

16.13.2.1 What You May Need to Know About Performing an Analysis of a Web
Service
There are a number of reasons why you may find you have problems when
performing an analysis of a web service. Some of these are outside the scope of the
JDeveloper documentation, but there are two issues you might come across:

■ When the Message section of the wsi-report.html is missing all inputs

■ When the Discovery section of the wsi-report.html is missing all inputs

When the Message section of the wsi-report.html is missing all inputs
This can happen when the WSDL for an external web service has an endpoint that
contains the machine name in upper or mixed case, and the client generated by
JDeveloper has the _endPoint variable with the machine name in lower case. This is
similar to the case discussed in Section 16.13.3, "How to Analyze Web Services
Running in the Integrated Server".

The workaround is to import the WSDL into JDeveloper so that it is listed in the
navigator, then edit the WSDL so that the machine name is lower case. Then you can
generate the client (and associated proxy classes) and run it with the Http Analyzer
running.

To import the WSDL into the navigator:
1. Create a new WSDL document accepting the defaults.

2. Open the WSDL document in a browser. View the source of the document, and
copy the XML source of the WSDL.

Monitoring and Analyzing Web Services

Developing Applications Using Web Services 16-53

3. Replace the contents of the WSDL document you have just created with the source
from the WSDL document of the web service you want to use.

When the Discovery section of the wsi-report.html is missing all inputs
The Discovery section of wsi-report.html reports on the REGDATA artifacts that are
used by web services you locate in a UDDI registry. If you have created a report of a
web service that you have not located using a UDDI registry, then it all the Inputs in
this section of the report will be missing.

16.13.3 How to Analyze Web Services Running in the Integrated Server
The WS-I compliant analyzer correlates messages in the log file against a set of
standard assertions, and in particular the soap:address subelement of the service
element in the WSDL document must exactly match that specified in the wsi-log.xml
messageEntry's senderHostAndPort or receiverHostAndPort, otherwise the
messages will not be analyzed for WS-I compatibility.

16.13.3.1 Changing the Endpoint Address
When the web service is run in the Integrated Server (by choosing Run from the web
service's context menu), and you create the log by running the Http Analyzer while
running a generated client against the web service, you may need to change the web
service endpoint in the WSDL or the _endPoint variable in the generated client
before creating the log file of the client running.

To make sure the web service endpoint is the same as the _endPoint variable in
the proxy:
1. Edit the WSDL document of the web service using one of the following methods:

■ Double-click the web service container in the navigator, go to the Endpoint
page of the Edit Web Service dialog, and edit the Web Service Endpoint.

■ Select the web service container in the navigator, and double-click the WSDL
document in the Structure window. Navigate to the soap:address
subelement, and edit the endpoint.

2. Change the web service endpoint to one of the following:

■ IP_address:integrated_port_no (the default integrated port number is
8988)

■ hostname (lower-case)

3. For JAX-RPC web services, open the EmbeddedStub.java file by
double-clicking on it and navigate to the _endPoint variable. After ensuring the
web service endpoint is the same as the _endPoint variable in the proxy you can
create and analyze the web service logs. For more information, see Section 16.13.2,
"How to Create and Analyze Web Service Logs".

16.13.3.2 Changing the Endpoint Address Without Modifying the WSDL (JAX-WS
Only)
For JAX-WS web services, you can change the endpoint address without modifying
the WSDL, as shown in the following example:

import java.net.URI;
import java.net.URL;
import java.util.Map;
import javax.xml.ws.BindingProvider;

Monitoring and Analyzing Web Services

16-54 User's Guide for Oracle JDeveloper

import javax.xml.ws.WebServiceRef;
import project2.proxy.Hello;
import project2.proxy.HelloService;

public class HelloPortClient
{
 @WebServiceRef
 private static HelloService helloService;

 public static void main(String [] args) {
 helloService = new HelloService();
 Hello hello = helloService.getHelloPort();
 setEndpointAddress(hello, "http://some.new.addr/endpoint");
 hello.sayHello("Bob");
 }

 public static void setEndpointAddress(Object port, String newAddress) {
 assert port instanceof BindingProvider :
 "Doesn't appear to be a valid port";
 assert newAddress !=null :"Doesn't appear to be a valid address";

 //
 BindingProvider bp = (BindingProvider)port;
 Map <String, object> context = bp.getRequestContext();
 Object oldAddress = context.get(
 BindingProvider.ENDPOINT_ADDRESS_PROPERTY);
 context.put(
 BindingProvider.ENDPOINT_ADDRESS_PROPERTY, newAddress);
 }
}

16.13.4 How to Examine Web Services using the HTTP Analyzer
You can use the HTTP Analyzer to examine the network traffic of a client connecting
to a web service. More information, see Section 8.3, "Monitoring HTTP Using the
HTTP Analyzer". It allows you to:

■ Observe the exact content of the request and response TCP packets of your web
service.

■ Edit a request packet, resend the packet, and see the contents of the response
packet.

You can use the results to debug a locally or remotely deployed web service.

To examine the packets sent and received by the client to a web service:
1. Create the web service.

2. Either run the web service in the Integrated WebLogic Server by right-clicking the
web service container in the navigator and choose Run web_service.

or

Note: In order to use the HTTP Analyzer, you may need to amend
the proxy settings. For more information, see Section 16.2.1, "How to
Use Proxy Settings and JDeveloper".

Monitoring and Analyzing Web Services

Developing Applications Using Web Services 16-55

Deploy and run the web service on Oracle WebLogic Server. For more information,
see Section 16.12, "Deploying Web Services".

3. Start the HTTP Analyzer by selecting View > HTTP Analyzer. It opens in its own
window in JDeveloper.

4. Run the HTTP Analyzer by clicking Start HTTP Analyzer.

5. Run the client proxy to the web service. The request/response packet pairs are
listed in the Http Analyzer.

6. To examine the content of a request/response pair highlight it in the History tab
and then click the Data tab.

7. You can quickly move from one pair to the previous or the next by clicking the up
Next message and Previous message buttons.

Monitoring and Analyzing Web Services

16-56 User's Guide for Oracle JDeveloper

Part IV
Part IV Developing Java Applications

This part describes how to develop Java applications with Oracle JDeveloper.
JDeveloper enables you to build and assemble Java applets and client applications
using JavaBeans, and interactive, desktop-based GUI applications using Swing and
AWT components. You can also create and run Java client applications with Java Web
Start within the JDeveloper IDE.

■ Chapter 17, "Getting Started with Developing Java Applications"

This chapter describes the tools and features that JDeveloper provides to help you
develop Java applications. These include the Java Source Editor, toolbar icons, and
Code Insight.

■ Chapter 18, "Programming in Java"

This chapter describes how to build Java applications. It explains how to define
classes on a diagram. Class members, inheritance, and composition relationships
are all derived directly from the Java source code for those classes

■ Chapter 19, "Running and Debugging Java Programs"

This chapter describes how to run and debug Java programs. JDeveloper offers
several techniques to monitor and control the way Java programs run. When
running Java programs, JDeveloper keeps track of processes that are run and
debugged, or profiled.

■ Chapter 20, "Implementing Java Swing User Interfaces"

This chapter describes how to develop Java Swing interfaces. It explains the
fundamental tasks you perform as you work with components and the JDeveloper
UI design tools to create a user interface.

17

Getting Started with Developing Java Applications 17-1

17Getting Started with Developing Java
Applications

This chapter provides an overview of the tools and features that JDeveloper provides
to help you develop Java applications.

This chapter includes the following sections:

■ Section 17.1, "About Developing Java Applications"

■ Section 17.2, "About the Java Source Editor"

■ Section 17.3, "Understanding Java Source Editor Features"

■ Section 17.4, "Setting Preferences for the Java Source Editor"

■ Section 17.5, "Using Toolbar Options"

■ Section 17.6, "Using the Quick Outline Window"

■ Section 17.7, "About the Java UI Visual Editor"

17.1 About Developing Java Applications
JDeveloper enables you to build and assemble Java applets and client applications
using JavaBeans, and interactive, desktop-based GUI applications using Swing and
AWT components. You can also create and run Java client applications with Java Web
Start within the JDeveloper IDE.

JDeveloper provides resources for editing, optimizing, running, and debugging Java
code:

■ Editing Java Source Files - The Source Editor supports several Java-aware editing
features. For more information, see Section 18.3, "Editing Java Code".

■ Building Apache Ant - Compile projects using the Make and Rebuild commands,
or Apache Ant. For more information, see Section 18.6, "Building Java Projects".

■ Running Java Programs - Keep track of processes that are run, debugged, or
profiled. For more information, see Chapter 19, "Running and Debugging Java
Programs"

■ Debugging Java Programs - Tools for local and remote debugging. For more
information, see Section 19.6, "About the Debugger"

■ Java Beans Components - JavaBeans Components technology lets you implement
your own framework for data retrieval, persistence, and manipulation of Java
objects. For more information, see Section 18.7, "Working with JavaBeans".

About the Java Source Editor

17-2 User's Guide for Oracle JDeveloper

■ Refactoring Java Projects - A collection of automated refactoring operations that
modify code structure without altering program behavior. For more information,
see Section 18.8, "Refactoring Java Projects".

■ Optimizing Application Performance - Tools for analyzing the quality and
performance of your Java code. For more information, see Section 18.9,
"Optimizing Application Performance".

■ Modeling Java Classes - Tools to visually create Java classes and interfaces, or to
graphically view existing Java classes and interfaces. For more information, see
Section 18.11, "Modeling Java Classes".

■ Unit Testing for JUnit - Tools to write and run tests that verify Java code, using
the open source JUnit framework. For more information, see Section 18.12, "Unit
Testing with JUnit".

17.2 About the Java Source Editor
The Java Source Editor displays Java source files, and facilitates editing of Java code.
The Java Source editor is a specialized form of the generic Source Editor that
JDeveloper provides for editing source code across several technologies, including
XML, JSP, and HTML.

In additional to the Java-specific features of the Java Source Editor, you can also use
the common set of features that JDeveloper provides to enhance coding across all
domains. These features are available through the context menu or the Source menu.

Double-clicking a node in the Application Navigator either opens or brings the default
editor to the foreground. When a file is open in the Source Editor, its corresponding
elements are displayed hierarchically in the Structure window. Double-clicking a node
in the Structure window shifts the focus to the definition of that element in the Source
Editor.

You can customize the behavior of the Java Source Editor by specifying preferences in
the Preferences Dialog.

17.3 Understanding Java Source Editor Features
The Java Source Editor provides features to enable easier and quicker navigation
through code.

17.3.1 Using Code Insight
With Java Code Insight, you can filter out information not likely to be as useful to you
(such as top-level packages, imported classes, default Object methods, deprecated
items) and emphasize the information that you'll want to focus on (local variables,
locally declared members, overloaded methods).

You can configure member insight, the Java-specific implementation of Code Insight's
completion insight, and you can choose to display deprecated members or not in Code
Insight's parameter insight window.

Member insight provides you with a list of which instance and static members (fields,
methods, inner classes) are accessible from a given statement context. For example, it
tells you which methods you can call from any given method.

You can use Code Insight to speed up the process of writing code. Code Insight has
two varieties: completion insight and parameter insight. You can enable or disable

Understanding Java Source Editor Features

Getting Started with Developing Java Applications 17-3

each independently and set the delay in seconds for each to appear when the cursor is
paused at an appropriate insertion point.

To invoke completion after typing the period separator or, in the default keymap, press
Ctrl+Space. To invoke parameter insight, pause after typing an opening (the left)
parenthesis or, in the default keymap, press Ctrl+Shift+Space. To exit either type of
insight at any time, press Esc. Note that if you change your keymapping, these
keyboard accelerators may change. You can click QuickDoc, located at the bottom
right of the completion insight list, to display the Javadoc for the currently selected
element

After a method has been completed by completion insight, the source editor
automatically fills in the parameters based on the method code. You can tab between
these parameters, and edit them manually or using parameter insight.he source editor
will automatically add an import if it can find only one exact match for an unresolved
reference to a class. You can set preferences for this feature in the Preferences Dialog.

To change Code Insight settings or to view or change accelerators, from the main
menu choose Tools > Preferences to open the Preferences dialog and then navigate to
the appropriate page. For more information, see Section 17.4.1, "How to Set Code
Insight Options for the Java Source Editor"

17.3.1.1 Adding Annotations to Your Java Code
Use the Code Insight feature to quickly add annotations to your Java code. An
annotation is used to associate information with a program element. Annotations can
be used in classes, fields, methods, parameters, local variables, constructors,
enumerations, and packages. To add annotations in your Java code: declare the
annotation, create a function, and then add your annotations.

When you start adding an annotation, Member Insight (Ctrl-Space) displays a list of
options (fields, members, classes) based on the statement context. Parameter Insight
(Ctrl-Shift-Space) displays information about the annotation like the names of the
elements of the annotation type, the default values, and the created values. It also
highlights the element currently under the cursor in the annotation.

For more information see Section 18.5, "How to Customize Javadoc Options for the
Java Source Editor."

17.3.2 Using Code Peek
You can hold down the Shift key and then hover over a variable or method to show its
definition in a ghost window. This feature makes it convenient to quickly view code
without moving cursor focus from your current code.

17.3.3 Using Scroll Tips
While dragging the vertical scroll bar, a small tip window appears next to the bar,
revealing the methods that are visible or partially visible on screen. This enables you to
more easily see what methods are in view while quickly scrolling. You can also see the
name of the method whose beginning is not immediately in view.

17.3.4 Searching Incrementally
To search incrementally, from the main menu choose Search > Incremental Find
Forward or Search, then Incremental Find Backward. In the dialog that appears,
begin typing. As you type, the cursor jumps to the next instance of that particular

Understanding Java Source Editor Features

17-4 User's Guide for Oracle JDeveloper

letter combination, either forward or backward. The search does not support
wildcards.

17.3.5 Using Shortcut Keys
Shortcut keys, or accelerators, are combinations of keys that you can use to navigate or
to perform certain operations using the keyboard instead of the mouse. You can select
from a variety of predefined keymaps or define your own accelerators.

To view or change existing accelerators, to define new accelerators, or to load preset
keymaps, from the main menu choose Tools, then Preferences to open the Preferences
dialog and then navigate to the Shortcut Keys page. To view or change accelerators for
the editor, select Code Editor from the Category list.

Note that block commenting is indicated by Toggle Line Comments. It is defined in the
default keymap as Ctrl-Shift-Slash or Ctrl-Slash.

17.3.6 Bookmarking
While bookmarking code:

■ You can see a list of all bookmarks you have created in a Bookmarks window. This
window appears when you click the Go to Bookmark icon. This window also
displays the line number and method name that contains the bookmark.

■ You can create numbered bookmarks using the keyboard shortcut
Ctrl-Shift-number. You can quickly navigate to that bookmark with Ctrl-number.

17.3.7 Browsing Java Source
To navigate to the source for any identifier in an open Java file, right-click on the
identifier you would like to browse and choose Go to Declaration. Alternatively, you
can hold down the Ctrl key and click on an identifier to navigate to its source. If the
source is not available, JDeveloper will reverse-engineer the class file.

You may browse imported classes and interfaces, member fields and methods, and
local variables. If you are browsing a method or constructor invocation, this
declaration search will resolve the types in order to determine the correct method or
constructor invocation.

For instance, the code in Example 17–1 revokes the declaration search at SetText. It
brings up the source code for javax.swing.JButton, with the SetText() method
displayed.

Example 17–1 Revoking the Declaration Search

import javax.swing.JButton
...
JButton b1 = new JButton();
...
b1.SetText: (’OK’);

If the identifier cannot be browsed or if there is nothing at that cursor position, this
search command on the context-sensitive menu will be disabled. If JDeveloper is
unable to locate the appropriate location to jump to or if the identifier cannot be
browsed due to access restrictions (for example, private members), the Java Source
Editor's status bar will display a message indicating so.

Setting Preferences for the Java Source Editor

Getting Started with Developing Java Applications 17-5

17.3.8 Using Code Templates
Code templates are sections of pre-written code that can be conveniently inserted into
source file to avoid typing it in manually. Templates can intelligently modify the
inserted code to suit its surrounding code, and imports required by code templates are
automatically imported. You can use shortcuts to speed up the selection of the
required template.

Pressing Ctrl+Enter anywhere in the source file brings up a list of code templates that
you can select. The templates provided in this list are contextual and only those
suitable for the current location are offered. You can click QuickDoc on the bottom
right corner of this list to see the structure of the selected code template.

If you were using the existing template for the for loop, for instance, you would type
for and then (in the default keymapping) press Ctrl+Enter. The template would then
be filled in as follows:

for (;;)

A complete list of all code templates is available in the Code Editor Help.

To edit or create code templates, or to view or change accelerators, from the main
menu choose Tools > Preferences to open the Preferences dialog and then navigate to
the appropriate page.

For more information, see Section 18.3.9, "How to Use Code Templates."

17.4 Setting Preferences for the Java Source Editor
You can customize the behavior of the Java Source Editor using the Preferences Dialog.

You can also use the Preferences Dialog to specify settings for the general source
editing environment.

17.4.1 How to Set Code Insight Options for the Java Source Editor
You can set various Insight options to create the behavior you want.

To set the options for Code Insight as it applies to Java:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Code Editor node.

3. Expand the Java node and select Code Insight.

4. On the Java Insight page, set the options you want.

5. Click OK.

17.4.2 How to Set Comment and Brace-Matching Options for the Java Source Editor
JDeveloper enables you to set comment and brace-matching options for the Java
source editor.

To set the options for Java comment and brace matching in the source editor:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Code Editor node.

3. Select the Display node.

Using Toolbar Options

17-6 User's Guide for Oracle JDeveloper

4. On the Display page, enable or disable automatic brace matching and set the delay
time.

5. Click OK.

6. Reopen the Preferences dialog, expand the Code Editor node, and select the Java
node.

7. On the Java page, set the attributes for comments and brace matching to create the
behavior that you want.

8. Click OK.

Note that block commenting is an accelerator function. In the default keymap, use
Ctrl+Shift+/ or Ctrl+/ to block-comment Java code.

17.4.3 How to Enable Automatic Import Assistance for the Java Source Editor
You can view assistance that enables you to organize import statements in the Java
Source Editor.

To enable assistance for automatically adding import statements:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Code Editor node.

3. Expand the Java node and select Imports.

4. On the Imports page, select Enable Auto-Popup for Import Assistance.

5. Click OK.

17.4.4 How to Set Import Statement Sorting Options for the Java Source Editor
You can set options to sort import statements in the Java Source Editor.

To set the options for sorting import statements:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Code Editor node.

3. Expand the Java node and select Imports.

4. On the Imports page, set the attributes to create the behavior that you want when
sorting import statements in the editor.

5. Click OK.

17.5 Using Toolbar Options
The Java Source Editor displays Java source files, and facilitates editing of Java code.
Icons that perform various features are located at the top of the Java Source Editor, as
described in Table 17–1.

Using the Quick Outline Window

Getting Started with Developing Java Applications 17-7

17.6 Using the Quick Outline Window
Clicking the Quick Outline Toolbar icon directly to the right of the Find field brings up
the Quick Outline window shown in Figure 17–1. This window floats just above the
code and contains a tree of the available methods and fields of the current class and its
super classes. You can instantly start typing in a filter field to reduce the visible items,
allowing quick and easy selection for navigation to the desired place.

Table 17–1 Toolbar Options

Icon Name Description

Quick Outline Click to display a tree of the available methods
and fields of the current class and its super
classes.

Clicking this icon brings up the Quick Outline
window (for more information, see Section 17.6,
"Using the Quick Outline Window"). This
window floats just above the code and contains a
tree of the available methods and fields of the
current class and its super classes. You can
instantly start typing in a filter field to reduce the
visible items, allowing quick and easy selection
for navigation to the desired place

Code Highlight Click to highlight all instances of the code
component that the cursor is currently placed on.

Clear All Highlighting Click to clear all highlighting.

Generate Accessors Click to insert get and set methods into a class,
using the Generate Accessors dialog.

Override Methods Click to override inherited methods for the class
in focus.

Implement Interfaces Click to modify a target class to implement one
or more interfaces, or to make a target interface
extend one or more other interfaces, using the
Implement Interface dialog.

Reformat Click to apply source formatting to your code.

Surround Click to surround the currently selected block of
text in the Java Source Editor with a coding
construct, using the Surround With dialog.

Toggle Bookmark Click to insert or remove a bookmark on the line
of code currently in focus.

Go to Next Bookmark Click to place the cursor at the next bookmark.

Go to Previous Bookmark Click to place the cursor at the previous
bookmark.

Show Selected Element
Only

Click to view only one particular element in the
editor. You can use this feature to tightly focus
on a method, class, inner class, or field
declaration. A message at the bottom of the file
reminds you that the Show Selected Element
mode is currently active.

Block Coloring Click to activate block coloring. You can use this
feature to highlight blocks of code for better
readability. Coloring preferences can be set using
the Preferences Dialog.

About the Java UI Visual Editor

17-8 User's Guide for Oracle JDeveloper

Figure 17–1 Quick Outline Window

Table 17–2 lists the available icons and options.

17.7 About the Java UI Visual Editor
The Java UI Visual Editor displays the visual components of a user interface in Editing
mode. Note: You can use the Java Visual Editor for Swing/AWT Applications only.

When a Java Visual Editor is open, its corresponding elements are displayed
hierarchically in the Structure window. If the Property Inspector is open, selecting
elements in either the Structure window or the Java Visual Editor changes the selection
in the Inspector as well.

Table 17–2 Quick Toolbar Icons

Icon Name Description

Show Methods Click to display methods and constructors. The
default is methods, fields, and static members all
displayed.

Show Fields Click to display fields. The default is methods,
fields, and static members all displayed.

Show Static Members Click to display static members. The default is
methods, fields, and static members all displayed.

Show Public Members Only Click to display only public members. The default
value is deselected.

Show Inherited Member Click to display only inherited members.

Sort Alphabetically Click to sort class members alphabetically. The
default value is deselected.

Sort by Type Click to sort class members first by type (in this
order: constructors, methods, fields, inner classes),
and then alphabetically within those categories. The
default value is selected.

Click the down arrow next to Sort Alphabetically to
view the option.

Sort by Access Click to sort class members first by access modifier,
and then alphabetically within those categories. The
default value is deselected.

Click the down arrow next to Sort Alphabetically to
view the option

About the Java UI Visual Editor

Getting Started with Developing Java Applications 17-9

The Java Visual Editor displays a GUI hierarchy. If these are menu items, the hierarchy
is displayed in one fashion; if these are nonmenu items, it is displayed in another. The
mode of presentation differs, as the sort of editing that you are engaged in differs. For
more information, see Section 18.2.9, "How to View the Hierarchy of a Class or
Interface."

When the node is selected in the Navigator, its GUI structure also displays in the
Structure window. All nonmenu GUI items for this object appear under a node labeled
UI. Any menu items appear under a node labeled Menu. Any non-GUI items appear
under a node labeled Other. Once you have opened the Java Visual Editor for an
object in the Navigator, to switch between the display of nonmenu GUI elements and
menu elements you have only to click on a node below these UI or Menu nodes in the
Structure window.

Because the display in the Java Visual Editor is rooted in the GUI hierarchy, when you
click on a node (for all GUI objects) in the Structure window what loads into the editor
is the visual representation of the root node and all its descendants: the entire
hierarchy opens, regardless of which node in the hierarchy you selected. What
displays in the editor reflects the complete GUI hierarchy; the specific element selected
in the display reflects the specific node selected in the window. Selections in the
Structure window and the Java Visual Editor are kept in synch.

If you have an orphan node in the Structure window, that node and its descendants
comprise the entire hierarchy, with the orphan being the root of the hierarchy. The Java
UI display will reflect this. If you had a control, for instance, that was not parented,
and you selected the node for that control, the control and any descendants would
now appear in the editor, without a container. Any changes you make to that control,
however, will result in generated code.

Right-click anywhere within the Java Visual Editor to bring up a context-sensitive
menu of commands. The context menus differ, depending upon whether you are
editing nonmenu or menu items, and the commands available within the context
menu depend on the selected object.

17.7.1 Java Swing and AWT Components
Use Swing and AWT JavaBeans components to assemble the user interface (UI) for a
Java application or applet. You construct the UI in the Java Visual Editor by selecting
JavaBeans from the Component Palette, such as buttons, text areas, lists, dialogs, and
menus. Then, you set the values of the component properties and attach event-handler
code to the component events. Tools to visually design and program Java classes to
produce new compound or complex component.

For more information, see Section 20.1, "About Implementing Java Swing User
Interfaces."

About the Java UI Visual Editor

17-10 User's Guide for Oracle JDeveloper

18

Programming in Java 18-1

18Programming in Java

This chapter describes how to use the tools and features provided by JDeveloper to
build Java applications. It explains how to define classes on a diagram. Class members,
inheritance, and composition relationships are all derived directly from the Java
source code for those classes.

This chapter includes the following sections:

■ Section 18.1, "About Programming in Java"

■ Section 18.2, "Navigating in Java Code"

■ Section 18.3, "Editing Java Code"

■ Section 18.4, "Adding Documentation Comments"

■ Section 18.5, "How to Customize Javadoc Options for the Java Source Editor"

■ Section 18.6, "Building Java Projects"

■ Section 18.7, "Working with JavaBeans"

■ Section 18.8, "Refactoring Java Projects"

■ Section 18.9, "Optimizing Application Performance"

■ Section 18.10, "Profiling a Project"

■ Section 18.11, "Modeling Java Classes"

■ Section 18.12, "Unit Testing with JUnit"

18.1 About Programming in Java
JDeveloper enables you to build and assemble Java applets and client applications
using JavaBeans, and interactive, desktop-based GUI applications using Swing and
AWT components. You can also create and run Java client applications with Java Web
Start within the JDeveloper IDE.

JDeveloper provides resources for performing the following tasks in the Java domain:

■ Modeling Java Classes - Tools to visually create Java classes and interfaces, or to
graphically view existing Java classes and interfaces.

■ Editing Java Source Files - The Source Editor supports several Java-aware editing
features.

■ Refactoring Java Projects - A collection of automated refactoring operations that
modify code structure without altering program behavior.

Navigating in Java Code

18-2 User's Guide for Oracle JDeveloper

■ Building Apache Ant - Compile projects using the Make and Rebuild commands,
or Apache Ant.

■ Running Java Programs - Keep track of processes that are run, debugged, or
profiled.

■ Debugging Java Programs - Tools for local and remote debugging.

■ Optimizing Application Performance - Tools for analyzing the quality and
performance of your Java code.

■ Unit Testing with Junit - Tools to write and run tests that verify Java code, using
the open source JUnit framework.

18.2 Navigating in Java Code
JDeveloper supports Java-aware features for locating and moving to the source code
for your projects' classes and interfaces and their members.

18.2.1 How to Browse Classes or Interfaces
While working in JDeveloper, you can browse Java elements directly from the UI or
directly from a file open in the Java Source Editor.

To browse a Java element directly from the UI:
1. From the main menu, choose Navigate > Go to Java Type. Or, you can use the

keyboard shortcut, Ctrl-minus.

2. In the Go to Java Type dialog, enter the name of the Java type that you want to
locate. When you begin entering text in this field, a list of Java entities matching
the text is displayed.

3. Double-click an entity in the list to open it in the source editor.

To browse a class or an interface for a file currently open in the editor:
1. With the file open in the editor, ensure that the editor has focus.

2. Select the class or interface name in the source file, right-click, and choose Go to
Declaration.

The source file opens in the Java Source Editor.

18.2.2 How to Locate the Declaration of a Variable, Class, or Method
When working in the Java Source Editor, you can quickly locate the declaration of any
identifier.

To navigate to the declaration of a code element:
■ Right-click on the code element and choose Go to Declaration, or

■ Press the Control key and left-click on the code element.

The source code for that element opens, with the line on which it is declared
highlighted.

18.2.3 How to Find the Usages of a Class or Interface
While working in the Java Source Editor, you can quickly locate references to a class or
interface and its members. By default, usages in the current project and its dependency

Navigating in Java Code

Programming in Java 18-3

projects will be reported. You can extend the search to libraries if the source files for
the libraries are accessible.

The Find Usages command can also be applied to individual methods and fields, and
to local variables and parameters.

To find the usages of a class:
1. Select the class or interface in one of the following ways:

■ In a Java Source Editor, select the name.

■ In a navigator or the Structure window, select the class or interface.

2. Invoke the command using one of the following ways:

■ Choose Search > Find Usages.

■ Right-click and choose Find Usages.

■ Press Ctrl+Alt-U.

The Usages of <Object> dialog will open

3. In the Find box select the types of references that the search will return.

4. In the Where box define the optional additional areas you want to search in.

5. Direct the output of the search: select New Tab to direct the output to a new
Usages Log. If not selected, the result of the previous search for usages, if any, will
be discarded.

6. Click OK.

The search will commence, and the results will be displayed in the Usages Log
window.

18.2.4 How to Find the Usages of a Method
While working in the Java Source Editor, you can quickly locate references to a
method.

The search will show applications of the method to instances of the class or interface
for which the method is defined and also for instances of its subclasses or
subinterfaces, if any, that inherit the method.

The Find Usages command can also be applied to classes and interfaces, fields, and to
local variables and parameters.

To find the usages of a method:
1. Select the method in one of the following ways:

■ In a Java Source Editor, select the name.

■ In the Structure pane, select the field.

2. Invoke the command in one of the following ways:

■ Choose Search > Find Usages.

■ Right-click and choose Find Usages.

■ Press Ctrl+Alt-U.

The Usages of <Method> dialog displays. This dialog provides various options
that you can specify to search for usages.

Navigating in Java Code

18-4 User's Guide for Oracle JDeveloper

■ Specify options in the dialog and click OK to begin the search.

18.2.5 How to Find the Usages of a Field
While working in the Java Source Editor, you can quickly locate references to a field.

The search will show references to the field in instances of the class or interface for
which the field is defined and also for instances of its subclasses or subinterfaces, if
any, that inherit the field.

The Find Usages command can also be applied to classes and interfaces, methods, and
to local variables and parameters.

To find the usages of a field:
1. Select the field in one of the following ways:

■ In a Java Source Editor, select the name.

■ In the Structure pane, select the field.

2. Invoke the command in one of the following ways:

■ Choose Search > Find Usages.

■ Right-click and choose Find Usages.

■ Press Ctrl+Alt-U.

3. Complete the Usages of <Object> dialog and click OK. You can specify options to
extend the search to other areas, define the scope of the search, and optionally
specify that the results be displayed in a new tab in the Log window.

The search will commence, and the results will be displayed in the Usages of
<Object> Log window.

18.2.6 How to Find the Usages of a Local Variable or Parameter
While working in the Java Source Editor, you can quickly locate references to a local
variable or a parameter in a method body.

The Find Usages command can also be applied to classes and interfaces, methods, and
fields.

To find the usages of a local variable or parameter:
1. Select the variable or parameter name in the Java Source Editor.

2. Invoke the command in one of the following ways:

■ Choose Search > Find Usages.

■ Right-click and choose Find Usages.

■ Press Ctrl+Alt-U.

The search will commence, and the results will be displayed in the Usages Log
window.

18.2.7 How to Find Overridden Method Definitions
While working in the Java Source Editor, you can easily identify methods that override
superclass definitions. Overriding definitions are marked with the Overrides up
arrow icon in the Java Source Editor margin.

Navigating in Java Code

Programming in Java 18-5

To view the overridden definition of a method, click the Overrides margin icon.

If you navigate to the override, then click the Back Main toolbar button to return to the
previous view.

18.2.8 How to Find Implemented Method Declarations
While working in the Java Source Editor, you can easily identify methods that override
superclass definitions. Overriding definitions are marked with the Implements down
arrow icon in the Java Source Editor margin.

To view the overridden definition of a method, click the Implements margin icon.

If you navigate to the override, then click the Back Main toolbar button to return to the
previous view.

18.2.9 How to View the Hierarchy of a Class or Interface
While working in the Java Source Editor, you can inspect the hierarchy of subtypes
and supertypes of a class or interface. The Hierarchy window displays the hierarchy of
the selected classes or interface.

To view the hierarchy of a class or interface in the Java Source Editor:
1. Select the class or interface, then either right-click and choose Type Hierarchy or

choose Navigate > Type Hierarchy.

The Hierarchy window will open (if it is not already open) and the tree of either
subtypes or supertypes will be shown.

2. To toggle the display between subtypes and supertypes, click the Subtype
Hierarchy or Supertype Hierarchy button.

To open a hierarchy initially in the Java Visual Editor:
1. Select a node in the Navigator.

2. Right-click and choose Edit, or use the View menu.

The entire GUI hierarchy for the this node displays in the editor. The method of
display depends upon whether this hierarchy consists of menu or nonmenu items.

18.2.10 Stepping Through the Members of a Class
You can use keyboard accelerators to step from member to member in a class
definition in a Java Source Editor:

■ To step to the next member definition or declaration in the current Java source
view, press Alt-Down, or choose Navigate > Go To Next Member.

■ To step to the previous member definition or declaration in the current Java source
view, press Alt-Up, or choose Navigate, then Go To Previous Member.

These additional code-stepping commands are also defined, but are not assigned
default accelerators:

■ Go to Next Class

■ Go to Next Field

■ Go to Next Method

■ Go to Previous Class

Editing Java Code

18-6 User's Guide for Oracle JDeveloper

■ Go to Previous Field

■ Go to Previous Method

These commands are listed in the Navigate category of the Shortcut Keys page of the
Preferences dialog. You can add or change accelerators.

18.3 Editing Java Code
JDeveloper provides many Java-aware editing features you can use to improve your
productivity. As an alternative to text editing, you can also use the Java Visual Editor
when developing graphical user interfaces. The Source Editor and Visual Editor are
synchronized; a change in one is immediately reflected in the other. These Java editing
features augment generic source editing features that support coding in any
technology.

18.3.1 Editing Code with the Java Visual Editor
The Java Visual Editor displays the visual components of a user interface in Editing
mode.

When a Java Visual Editor is open, its corresponding elements are displayed
hierarchically in the Structure window. If the Property Inspector is open, selecting
elements in either the Structure window or the Java Visual Editor changes the
selection in the Inspector as well.

The Java Visual Editor displays a GUI hierarchy. If these are menu items, the hierarchy
is displayed in one fashion; if these are nonmenu items, it is displayed in another. The
mode of presentation differs, as the sort of editing that you are engaged in differs.

To open a hierarchy initially in the Java Visual Editor, you have only to select a node
in the Navigator and then right-click and choose Edit, or use the View menu. The
entire GUI hierarchy for the this node displays in the editor. The method of display
depends upon whether this hierarchy consists of menu or nonmenu items.

When the node is selected in the Navigator, its GUI structure also displays in the
Structure window. All nonmenu GUI items for this object appear under a node labeled
UI. Any menu items appear under a node labeled Menu. Any non-GUI items appear
under a node labeled Other. Once you have opened the Java Visual Editor for an object
in the Navigator, to switch between the display of nonmenu GUI elements and menu
elements you have only to click on a node below these UI or Menu nodes in the
Structure window.

Because the display in the Java Visual Editor is rooted in the GUI hierarchy, when you
click on a node (for all GUI objects) in the Structure window what loads into the editor
is the visual representation of the root node and all its descendants: the entire
hierarchy opens, regardless of which node in the hierarchy you selected. What
displays in the editor reflects the complete GUI hierarchy; the specific element selected
in the display reflects the specific node selected in the window. Selections in the
Structure window and the Java Visual Editor are kept in synch.

If you have an orphan node in the Structure window, that node and its descendants
comprise the entire hierarchy, with the orphan being the root of the hierarchy. The
Java UI display will reflect this. If you had a control, for instance, that was not
parented, and you selected the node for that control, the control and any descendants
would now appear in the editor, without a container. Any changes you make to that
control, however, will result in generated code.

Editing Java Code

Programming in Java 18-7

Right-click anywhere within the Java Visual Editor to bring up a context-sensitive
menu of commands. The context menus differ, depending upon whether you are
editing nonmenu or menu items, and the commands available within the context
menu depend on the selected object.

18.3.2 Opening the Java Visual Editor
Right-click the Java file in the Navigator that you want to modify and choose Open >
click the Design tab.

The source code is accessible in the Code Editor (right-click the file in the Navigator
and choose Open to view the source code) so you can view and edit your source code
in parallel with designing your UI. Any changes made in the Java Visual Editor or
Property Inspector are immediately reflected in the source code, and vice-versa.

The Java Visual Editor toolbar lets you easily work with components and duplicates
commands that you can choose from the context sensitive menu displayed on a
selected component. Among the component operations included are:

■ Constraints to specify component weight, fill, anchor position, padding, and inset.

■ Alignment to quickly position components relative to one another.

■ Z-Order to change the sequence of stacked components.

18.3.3 Understanding Java Visual Editor Proxy Classes
JDeveloper is a lightweight (JFC) application. As such, using heavyweight (AWT)
controls directly in the Java Visual Editor will not work as expected. Heavyweight
components always obscure lightweight components, including the lightweight
JDeveloper environment (including the Code Editor and UML Modelers).

The Java Visual Editor includes a proxy mechanism for registering lightweight proxies
to represent heavyweight controls for instantiation in the Java Visual Editor. By
default JDeveloper includes lightweight proxies for all the standard AWT controls.

18.3.4 Registering a Java Visual Editor Proxy for Custom Components
JDeveloper supports lightweight views of heavyweight components that you register
for use by the Java Visual Editor.

To register the proxy class:
Add a key-value definition to oracle.jdevimpl.uieditor.UIEditorAddin
section in the JDeveloper\lib\addins.xml file, as shown in Example 18–1.

Example 18–1 Key-value Definition

<property>
 <key>PREFIX.CLASS_NAME</key>
 <value>PROXY_CLASS_NAME</value>
</property>

where:

■ PREFIX is jdeveloper.concreteProxy

■ CLASS_NAME is the fully-qualified classname of the heavyweight component for
which a proxy is being registered

Editing Java Code

18-8 User's Guide for Oracle JDeveloper

■ PROXY_CLASS_NAME is the fully-qualified classname of the proxy class to
register

For example; if you were to register a hypothetical heavyweight component
implementation jdeveloper.concreteProxy.java.awt.Component using
the oracle.jdevimpl.uieditor.proxy.Component proxy class, the property
to add would look like Example 18–2.

Example 18–2 Heavyweight Component

<property>
 <key>jdeveloper.concreteProxy.java.awt.Component</key>
 <value>oracle.jdevimpl.uieditor.proxy.Component</value>
</property>

In order for the Java Visual Editor proxy class to be available from within the IDE, so
that it will appear can be added to the Component Palette, the proxy class must be
added to the IDEClasspath as a directive in JDeveloper\bin\jdev.conf file. For
example:

AddJavaLibFile <myUiProxies.jar>

where myUiProxies.jar contains the compiled class file for your Java Visual
Editor proxy implementation.

18.3.5 How to Create a New Java Class
Before creating a new class, note that you must first create an application and a project.
As soon as you create the class, it is added to the active project.

To create a new class and add it to a project:
1. In the Application Navigator, select the project you want to add the class to.

2. Right-click and choose New.

3. In the New Gallery, under the General category, select Java.

4. Under Items, select Class.

5. In the Create Java Class dialog, enter the class name, the package name, and the
superclass that the new class will extend. Select attributes as needed.

6. Click OK.

The new class appears in the active project.

18.3.6 How to Create a New Java Interface
Before creating a new interface, note that you must first create an application and a
project. As soon as you create the interface, it is added to the active project.

To create a new interface and add it to a project:
1. In the Application Navigator, select the project you want to add the class to.

2. Right-click and choose New.

3. In the New Gallery, under the General category, select Java.

4. Under Items, select Interface.

5. In the Create Java Interface dialog, enter the interface name, the package name,
and the superclass that the new class will extend. Select attributes as needed.

Editing Java Code

Programming in Java 18-9

6. Click OK.

The new class appears in the active project.

18.3.7 How to Implement a Java Interface
In the source editor, you can quickly add framework code to modify a target class to
implement an interface or to make a target interface extend another interface.

An implements or extends clause is added to the declaration for the target class or
interface, and an import statement is added to the file. If the target is a class, stub
definitions for the implemented interface's methods are appended to the class or
interface body.

To implement an interface:
1. Open a Java source file.

2. From the main menu, choose Source > Implement Interface.

3. On the Search or Hierarchy tab, locate the class that will implement the interface
and select the names of the interfaces that are to be implemented.

4. If you want documentation comments from the overridden methods to be
included, select Copy Javadoc.

5. Click OK.

18.3.8 How to Override Methods
In the source editor, you can quickly add stub definitions to a class to override
methods inherited from superclasses.

To override methods:
1. Open a Java source file.

2. From the main menu, choose Source > Override Methods.

3. In the Methods list, select the methods that are to be overridden.

The list displays methods inherited from all superclasses. Abstract methods are
shown in bold type.

4. If you want documentation comments from the overridden methods to be
included, select Copy Javadoc.

5. Click OK.

The stub method definitions are added to the class.

6. Edit the stub definitions.

18.3.9 How to Use Code Templates
JDeveloper provides predefined code templates that you can use. Code templates
assist you in writing code more quickly and efficiently by inserting text for commonly
used statements. For example, the "Iterate over a list" (itli) template inserts the
following code:

for (int i = 0; i < unknown.size(); i++) {
 Object object = (Object) unknown.get(i);
 }

Editing Java Code

18-10 User's Guide for Oracle JDeveloper

In addition to the templates provided by JDeveloper, you can also define your own
code templates in the Code Editor - Code Templates page of the Preferences dialog.

To evoke a defined code template:
1. In the file open in the editor, put the cursor at the point where the template is to be

inserted.

2. Type the shortcut associated with the template and then press Ctrl+Enter.

The code as defined in the template is inserted in the source file. Import
statements needed for the template, if any, are inserted at the top of the file.

18.3.10 Using Predefined Code Templates
This section lists the predefined code templates. The shortcut and the code that the
template introduces are shown for each.

Array Iterator
ai
for (int i = 0; i < $array$.length; i++)
{
 $type$ var = $array$[i];
 end
}

Data Action Event Handler
daev
public void onend(PageLifecycleContext ctx)
{
}

for loop
for
for (end ; ;)
{
}

if statement
if
if (end)
{
}

Note: If the template contains variables, the variables are
highlighted. You can edit each variable to complete the template.
Pressing Tab moves the caret to the next template variable.

Note: Ctrl+Enter is the accelerator assigned in the default keymap.
You can assign an alternative.

Editing Java Code

Programming in Java 18-11

if else statement
ife
if (end)
{

} else
{

}

integer based loop
fori
for (int i = 0; i < lim; i++)
{
 end
}

integer based loop
forn

int n = lim;
for (int i = 0; i < n; i++)
{
 end
}

instanceof + cast
iofc
if (var instanceof $type$)
{
 $type$ $casted$ = ($type$) var;
 end
}

Instantiate a BC4J application module
bc4jclient

String amDef = "test.TestModule";
String config = "TestModuleLocal";
ApplicationModule am =
Configuration.createRootApplicationModule(amDef,config);
ViewObject vo = am.findViewObject("TestView");
end// Work with your appmodule and view object here
Configuration.releaseRootApplicationModule(am,true);

Iterate over array
itar

for (int i = 0; i < $array$.length; i++)
{
 $type$ var = $array$[i];
 end
}

Editing Java Code

18-12 User's Guide for Oracle JDeveloper

Iterate over a collection
itco

for(Iterator $iter$ = col.iterator();$iter$.hasNext();)

{
 $type$ var = ($type$) $iter$.next();
 end
}

Iterate over a list
itli
for (int i = 0; i < $list$.size(); i++)
{
 $type$ var = ($type$) $list$.get(i);
 end
}

Iterate over map keys
itmk

Iterator $iter$ = map.keySet().iterator();
while ($iter$.hasNext())
{
 $type$ var = ($type$) $iter$.next();
 end
}

Iterate over map values
itmv

Iterator $iter$ = map.values().iterator();
while ($iter$.hasNext())
{
 $type$ var = ($type$) $iter$.next();
 end
}

JDBC Connection
conn

public static Connection getConnection() throws SQLException
{
 String username = "endscott";
 String password = "tiger";
 String thinConn = "jdbc:oracle:thin:@localhost:1521:ORCL";
 Driver d = new OracleDriver();
 Connection conn =
DriverManager.getConnection(thinConn,username,password);
 conn.setAutoCommit(false);
 return conn;
}

Editing Java Code

Programming in Java 18-13

List to array
ltoar

$type$ var = new $typeelem$[$list$.size()];
var = ($type$) $list$.toArray(var);
end

main method
main

public static void main(String[] args)
{
 end
}

out.println()
outp

out.println(end);

private ArrayList
pral

private ArrayList _end = new ArrayList();

private boolean
prb

private boolean _end;

private HashMap
prhm

private HashMap _end = new HashMap();

private int
pri

private int _end;

private String
prs

private String _end;

public static final
pusf

Editing Java Code

18-14 User's Guide for Oracle JDeveloper

public static final end;

public static final boolean
pusfb

public static final boolean end;

public static final int
pusfi
public static final int end;

public static final String
pusfs

public static final String end;

Reverse array iterator
ritar

for (int i = $array$.length; --i >= 0 ;)
{
 $type$ var = $array$[i];
 end
}

Reverse iteration over a list
ritli

for (int i = $list$.size(); --i >= 0 ;)
{
 $type$ var = ($type$) $list$.get(i);
 end
}

System.err.println
sep
System.err.println(end);

System.out.println
sop

System.out.println(end);

switch statement
sw

switch (end)
{
 case XXX:
 {
 }

Editing Java Code

Programming in Java 18-15

 break;
 default;
 {
 }
 break;
}

try statement
try

try
{
 end
} catch (Exception ex)
{
 ex.printStackTrace();
} finally
{
}

Insert a tag
tag

<tag>
 end
</tag>

while statement
wh

while (end)
{

}

18.3.11 How to Expand or Narrow Selected Text
You can use the Expand/Narrow Selection option to successively expand or narrow a
selected block of code, based on Java syntax.

To expand selected code:
1. With the file open in the editor, ensure that the editor has focus.

2. Put the cursor at the point where you want to expand the selection, or select a
portion of the code.

3. From the main menu, choose Source > Expand Selection, or press
Ctrl+Shift+Equals.

The selection expands to include the smallest logical unit containing the element
previously selected or within which the cursor previously resided.

With each successive application of the option, the selection expands to include the
next logical step up in the Java hierarchy, based on the starting point, until the entire
file is selected. For example: method name, qualified method call, assignment,
definition, and so on.

Editing Java Code

18-16 User's Guide for Oracle JDeveloper

Use the Narrow Selection option (or press Ctrl+Shift+Minus) to successively reduce
selected code in the same fashion.

18.3.12 How to Surround Code with Coding Constructs
You can easily surround Java statements and blocks with coding constructs in the Java
Source Editor.

To surround a block of code with a construct:
1. With the file open in the editor, right-click within a statement, or select a block of

code, and choose Surround. Alternatively, you can click the Surround ({ }) icon
the Source Editor toolbar.

2. In the Surround With dialog, select the coding construct.

18.3.13 Adding an Import Statement
You can add needed import statements while working in the Java Source Editor. If, as
you are typing in the Source Editor, you introduce a reference to a class that has not
yet been imported, a ragged line will appear below it. A popup will open showing that
an import is needed, giving the fully-qualified name of the class. JDeveloper will
automatically add an import if it can find only one exact match for an unresolved
reference to a class.

JDeveloper will automatically add an import if it can find only one exact match for an
unresolved reference to a class. If the import assistance matches more than one
possible match, then a popup list appears that lists all possible matches from the class
path. The user can then choose the appropriate import and the import statement is
automatically added.

The import assistance popup can be triggered at any time by pressing Alt+Enter.

The gutter-based code assistance can be used to add an import statement. If the editor
doesn't recognize a class, a lightbulb appears in the gutter when the line is highlighted
and various import options are displayed.

To configure or disable Import assistance, you can set Import Statement Options in the
Java Source Editor.

18.3.14 How to Organize Import Statements
You can organize import statements easily in the Java Source Editor. Set the options
for organizing imports to your liking in the Preferences dialog. The following options
are provided:

■ Sort and group the import statements alphabetically by package and class name.

■ Narrow the imports by replacing type-import-on-demand statements for packages
with single-type-import statements for individual classes.

■ Widen the imports by replacing two or more single-type-import statements for
classes from a common package with a single type-import-on-demand statement
for the package.

■ Remove import statements for classes that are not referenced.

Note: This icon is only enabled when the selected code is a valid
code block to which the Surround With feature can be applied.

Adding Documentation Comments

Programming in Java 18-17

You can configure or disable import organizing options. For more information, see
Section 17.4.3, "How to Enable Automatic Import Assistance for the Java Source
Editor."

To organize import statements in a source file:
With the file open in the editor, right-click and choose Organize Imports.

18.4 Adding Documentation Comments
You can use JDeveloper's editing commands to create and maintain documentation
comments.

18.4.1 How to Add Documentation Comments
You can add documentation comments to your source files in the Java Source Editor.

To add documentation comments to a source file:
■ Place the cursor just above the declaration of the class, field, or method to be

documented, type the start of a documentation comment (/**), and press Enter.

■ With the code element selected in the Structure window, right-click and choose
Add Javadoc Comments.

A template for the documentation comment will be inserted in the file. Add
information to the template to describe the element.

18.4.2 How to Edit Documentation Comments
You can customize the use of documentation comment tags in the Java code editor.
You can define custom tags, and choose which tags will be automatically included
when a documentation comment is created. These choices apply to all projects.

To define a custom tag:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, choose the Code Editor > Java > Javadoc page.

3. Click Add. A tag with the default name new will be added to the list.

4. In the Tag Properties box change the name of the tag and set its other properties.

5. When finished, click OK.

18.4.3 How to Update Documentation Comments
You can update documentation comments in the Java Source Editor.

To update documentation comments in a source file:
1. In the Structure window, place the cursor on the element for which comments are

to be updated.

2. Right-click and choose Add Javadoc Comments.

Tags will be added to or removed from the documentation comment to reflect
changes you have made to the element. Add descriptions for the new tags.

How to Customize Javadoc Options for the Java Source Editor

18-18 User's Guide for Oracle JDeveloper

18.4.4 How to Audit Documentation Comments
You can validate documentation comments in your source files. The audit will report
formatting errors and missing or extraneous tags.

To check documentation comments in a source file:
1. In the Application Navigator, select the file to be checked.

2. From the main menu, choose Build > Audit <filename>.

3. In the Audit dialog, select Javadoc Rules from the Profile dropdown list.

4. If you want configure the audit, to choose which types of errors to search for or to
ignore, click Edit.

The Audit Profile dialog opens.

5. Click Run.

The results of the audit appear in the Log window.

18.5 How to Customize Javadoc Options for the Java Source Editor
You can add new Javadoc tags and customize the attributes of some existing tags.
When creating custom tags, you can associate the tag with code elements, define it as
required or not, assign it a default value, and give it an order in the tag list.

To customize the options for Javadoc in the Java Source Editor:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, expand the Code Editor node.

3. Expand the Java node and select Javadoc.

4. On the Javadoc page, select an item in the Tags list to see its attributes displayed to
the right. Tags appearing in bold are customizable.

5. To add a tag, click Add and fill in the information.

6. To change a tag's position in the Tags list, select the tag and click the up or down
button.

To do this without using the mouse, tab to the button and press the spacebar.

7. To delete a tag, select it in the Tags list and click Remove.

8. When finished, click OK.

18.5.1 How to Add Documentation Comments
You can add documentation comments to your source files in the Java Source Editor.

To add documentation comments to a source file:
■ Place the cursor just above the declaration of the class, field, or method to be

documented, type the start of a documentation comment (/**), and press Enter.

■ With the code element selected in the Structure window, right-click and choose
Add Javadoc Comments.

A template for the documentation comment will be inserted in the file. Add
information to the template to describe the element.

How to Customize Javadoc Options for the Java Source Editor

Programming in Java 18-19

18.5.2 How to Set Javadoc Properties for a Project
Every project you create carries the JDeveloper project defaults or those you have
supplied yourself for all the projects across workspaces. You can also replace these
defaults on a project-by-project basis. Setting these properties is the same in either
case: only the location, and application, of the information differs.

To set Javadoc properties for an individual project:
1. In the Application Navigator, select the project.

2. From the main menu, choose Application > Project Properties, or right-click and
choose Project Properties.

The Project Properties dialog opens.

3. Make changes to the project properties as required.

4. When finished, click OK to close the Project Properties dialog.

18.5.3 How to View Javadoc for a Code Element Using Quick Javadoc
When working in the Java Source Editor, you can quickly access Javadoc-generated
documentation for the following code elements: a class, interface, or an individual
member, using the Quick Javadoc feature.

The Quick Javadoc feature looks up the selected entity on the source path and displays
the Javadoc comment entered in a popup window. If no Javadoc comment exists for
that element, an empty Javadoc comment is displayed. The source code is available if
one of the following is met:

To display Javadoc for a code element:
1. Select the code element.

2. From the main menu, choose Source > Quick Javadoc, or from within the editor,
right-click and choose Quick Javadoc.

A popup window displaying the documentation for the element appears. Click
outside the window to close it.

The Quick Javadoc feature is available when the selected source code meets of the
following criteria:

■ It is on this project's source path.

■ It is on the source path of a project that the current project depends on.

■ It is available for a library assigned to this project

■ It is a part of the JDK in use.

18.5.4 How to Preview Documentation Comments
You can preview documentation comments in your source files, in the same way that
you view Javadoc for a single source element.

To display documentation comments for a given class, member, or method call:
1. Select the name of the code element.

2. Right-click and choose Quick Javadoc.

A popup window showing the Javadoc for just that element now appears. From
this window, you can link to other Javadoc as you would in a browser.

Building Java Projects

18-20 User's Guide for Oracle JDeveloper

18.6 Building Java Projects
JDeveloper provides these facilities for building projects:

■ Make /Rebuild option

■ Ant

■ Apache Maven

18.6.1 Building with Make and Rebuild Commands
The Make and Rebuild commands execute standard operations for compiling projects
in JDeveloper.

■ Make project makes all the projects the project depends on (recursively), and then
makes the project.

■ Make project only makes the project but not any of the projects it depends on.

■ Rebuild project rebuilds all the projects the project depends on (recursively), and
then rebuilds the project.

■ Rebuild project only rebuilds the project but not any of the projects it depends on

18.6.1.1 Compiling with Make
Make operations compile source files that have changed since they were last compiled,
or have dependencies that have changed. Rebuild operations, in contrast, compile
source files unconditionally. You can invoke make on individual source files, on
working sets, or on containers such as packages, projects, and workspaces.

If you wish to compile more selectively, you can add an Ant buildfile to a project,
define additional targets, and run Ant to make those targets.

You cancel a compilation currently in progress by clicking the Cancel Build icon in the
main toolbar. When you click this icon, an error message gets printed to the top row of
the Compiler Log window.

Ways to make source file(s):
■ In a file's source editor window, right-click and choose Make.

■ Select one or more projects in the navigator, and click Make in the toolbar.

■ Select one or more projects in the navigator, and choose a Make item from the
Build menu.

■ Select one or more projects in the navigator, right-click, and choose Make.

18.6.1.2 Compiling with Rebuild
Rebuild operations compile all the source files in a project or workspace. Unlike make
operations, which recompile only those source files that have changed or have
dependencies that have changed, rebuild operations are not conditional.

If you wish to compile more selectively, you can add an Ant buildfile to a project,
define additional targets, and run Ant to make those targets.

You cancel a compilation currently in progress by clicking the Cancel Build icon in the
main toolbar. When you click this icon, an error message gets printed to the top row of
the Compiler Log window.

Building Java Projects

Programming in Java 18-21

Ways to rebuild source files:
■ Select one or more source files in the Navigator, right-click, and click Rebuild (for

one file), or Rebuild Selected (for multiple files).

■ Select one or more projects or workspaces in the navigator, and click Rebuild in
the toolbar.

■ Select one or more projects or workspaces in the navigator, and choose a Rebuild
item from the Build menu.

■ Select one or more projects or workspaces in the navigator, right-click, and choose
Rebuild.

18.6.1.3 Understanding Dependency Checking
JDeveloper provides fast yet complete compiling by analyzing dependencies while
building. Dependency checking results in fewer unnecessary compiles of
interdependent source files, and thus accelerates the edit and compile cycle.

When you compile using JDeveloper, dependency checking is performed whenever
you compile with Make. Make uses a dependency file that is automatically created
within JDeveloper.

If you compile from the command line, you create or use a dependency file by
specifying the following parameter:

javac -make <makedepfile>

18.6.1.4 How to Configure Your Project for Compiling
For each project, you can configure the Java compiler by setting options in the Project
Properties. For example, you may not want the compiler may to display compiler
messages such as:

Example 18–3 Compiler Messages

Note: Some input files use unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

To configure project properties for compiling:
1. Right-click a project in the navigator and choose Project Properties from the

context menu.

You can also double-click a project node in the Application Navigator.

2. In the Project Properties dialog, expand the Compiler node.

3. Expand the Javac node.

4. Optionally expand the Warnings node.

You can optionally check here first to see which options are turned on by default.
For example, if -Xlint:all is turned on, all -Xlint warnings are turned on.

If you don't want to display the -Xlint:unchecked message shown in Figure 18–3,
go to the Turn Individual Message Off section of the Project Properties dialog. This
allows you to turn off the display of specific Xlint messages, while continuing to
display others by default.

5. Optionally expand the Turn Individual Messages Off node.

6. Check the -Xlint Unchecked checkbox.

7. Close all dialogs and recompile.

Building Java Projects

18-22 User's Guide for Oracle JDeveloper

18.6.1.5 How to Specify a Native Encoding for Compiling
You can specify an encoding scheme to control how the compiler interprets multibyte
characters. If no setting is specified, the default native-encoding converter for the
platform is used.

Text characters are represented using different encoding schemes. In the Windows
environment, these are code pages, whereas Java refers to them as native encodings.
When moving data from one encoding scheme to another, conversion needs to be
done. Since each scheme can have a different set of extended characters, conversion
may be required to prevent loss of data.

Most text editors, including the JDeveloper source editor, use the native encoding of
the platform on which they run. For example, Japanese Windows uses the Shift-JIS
format. If the source code has been encoded with Shift-JIS and you are compiling it in
a US Windows environment, you must specify the Shift-JIS encoding for the compiler
to read the source correctly.

JDeveloper supports the character encoding schemes included with your currently
installed J2SE.

To set the encoding option, do one of the following:
1. Within JDeveloper, select Application > Project Properties. In the Project

Properties dialog, select the Compiler node.

2. On the command line, use the javac command with the -encoding option
followed by the encoding name.

3. Choose an encoding name in one of the two following ways:

– Select a name from the Character Encoding dropdown list.

– Select "default" from the Character Encoding dropdown list to use the default
encoding of your environment.

The Java SDK supported encodings are listed at
http://download.oracle.com/javase/6/docs/technotes/guides/intl/
encoding.doc.html

18.6.2 Compiling Applications and Projects
JDeveloper uses the Java Compiler (Javac) to compile Java source code (.java files)
into Java bytecode (.class files). The resulting bytecode is the machine code for a
Java Virtual Machine (JVM). Compiling a Java source file produces a separate class file
for each class or interface declaration. When you run the resulting Java program on a
particular platform, its JVM runs the bytecode contained in the class files.

Javac compiles the specified Java file and any imported files that do not have a
corresponding class file. Unless dependency checking is specified (with the -make
option), the compiler compiles all of the target Java files. For more information, see
Section 18.6.1.3, "Understanding Dependency Checking."

When you work inside JDeveloper, the compiler used is Javac. You can adjust
compiler options in the Project Properties > Compiler > Option.

The following command line options are supported:

Note: If you want to have all your project files automatically saved
before compiling, specify this in the Environment page of the
Preferences dialog.

Building Java Projects

Programming in Java 18-23

-classpath path

The path used to find classes. It overrides the default CLASSPATH or the
CLASSPATH environment variable. Directories are separated by semicolons. For
example, to search for the class foo.java in the myclasses directory, you would enter
the following:

javac -classpath c:\mydir;c:\jdeveloper\myclasses foo.java (Windows)
javac -classpath ~/mydir;/usr/jdeveloper/myclasses foo.java (UNIX)

If you are using the Java 2 platform (the default target is JDK 1.6), then the SYSTEM
CLASSPATH is prepended to the CLASSPATH. For the above example,
SYSTEMCLASSPATH would look similar to the following:

Windows
%JAVAHOME%\jre\lib\rt.jar; %JAVAHOME%\jre\lib\i18n.jar;
%JAVAHOME%\jre\lib\sunrsasign.jar;
%JAVAHOME%\jre\lib\jsse.jar; %JAVAHOME%\jre\lib\jce.jar;
%JAVAHOME%\jre\lib\charsets.jar;
%JAVAHOME%\jre\lib\classes; c:\mydir; c:\jdeveloper\myclasses

UNIX
$JAVA_HOME/lib/rt.jar;
$JAVA_HOME/lib/i18n.jar;
$JAVA_HOME/lib/sunrsasign.jar;
$JAVA_HOME/lib/jsse.jar;
$JAVA_HOME/lib/jce.jar;
$JAVA_HOME/lib/charsets.jar;
$JAVA_HOME/lib/classes;
~/mydir;
/usr/jdeveloper/myclasses

If JAVAHOME is not defined, then the JDK defined by the SetJavaHome in
jdev.conf will be used. If there is no JAVAHOME, then the JDK in the <jdev_
install>/jdeveloper/jdk will be used (if present).

If the target JDK is 1.6 (by using -target 1.6), the SYSTEM CLASSPATH is appended to
the CLASSPATH. For the above example it would then look similar to the following:

Windows
c:\mydir;
c:\jdeveloper\myclasses
%JAVAHOME%\lib\classes.zip
%JAVAHOME%\classes

UNIX
~/mydir;
~/usr/jdeveloper/myclasses
$JAVAHOME/lib/classes.zip;
$JAVAHOME/classes

To change the SYSTEMCLASSPATH use option -sysclasspath or option
-bootclasspath.

Building Java Projects

18-24 User's Guide for Oracle JDeveloper

-sourcepath pathlist
A semicolon-separated list of paths used to locate required Java files.

-sysclasspath pathlist
A semicolon-separated list of paths used to find the system class files.

-bootclasspath pathlist
Equivalent to -sysclasspath.

-d outdir
The root directory of the class (destination) file hierarchy. For example:

javac -d C:\JDeveloper\myclasses JavaBean.java (Windows)

javac -d ~/usr/jdeveloper/myclasses JavaBean.java (Unix)

causes the class files for the classes defined in the JavaBean.java source file to be
saved in the directory C:\JDeveloper\myclasses\MyPackage, assuming that
JavaBean.java contains the package statement MyPackage.

Java files are read from the SOURCEPATH and class files are written to the
CLASSPATH directory. The destination directory can be part of the CLASSPATH. The
default destination matches the package structure in the source files and starts from
the root directory of the source.

-deprecation:self
Detects usage of deprecated types, fields, and methods within the class they are
defined in.

-encoding name
You can specify a native-encoding name (or code page name) to control how the
compiler interprets characters beyond the ASCII character set. The default is to use the
default native-encoding converter for the platform. For more information, see
Section 18.6.1.5, "How to Specify a Native Encoding for Compiling."

For example,

javac -encoding SJIS JavaBean.java

compiles JavaBean.java and any directly imported Java files that do not have class
files. Characters in all source files are interpreted as the Shift-JIS character set for
Japanese.

-endorseddirs pathlist
Allows you to override the default value for java.endorsed.dirs, the default endorsed
standards JDK classes provided by Sun. In pathlist, separate path names with
semicolons.

-exclude classname(s)
This option allows you to specify class names to exclude from your build. The
compiler will ignore all calls to public static void methods of the specified class(es).
This is useful mainly for diagnostics where your non-production application build
may contain code that will need to be compiled in the official production build. More
than one class may be excluded by separating them with semicolons or specifying
-exclude more than once. For example: -exclude p1;p2;p3 -exclude p4 will
exclude four classes, p1, p2, p3, and p4.

Building Java Projects

Programming in Java 18-25

Example 18–4 contains example code that uses the -exclude option.

Example 18–4 -exclude option

// beginning of excludeTest.java
public class excludeTest
{
 public static void main(String argv[])

{
 diag.Trace("Application is about to start");
 System.out.println("Test successful");
 diag.Trace("Application is about to end");
 }
}
class diag
{
 static void Trace(String msg)
 {
 System.out.println(msg);
 }
}
// end of excludeTest.java

When compiling the application in Example 18–4 without the -exclude option, the
output is:

Application is about to start
Test Successful
Application is About to End

When compiling with the following -exclude option:

javac -exclude diag excludeTest.java

the output becomes:

Test Successful

and successfully ignores all calls to diag.Trace.

-extdirs pathlist
A semicolon-separated list of paths that overrides the location where the compiler
looks for extensions.

-g
Generates debugging information in the class file. It is required to access local
variables and other information while debugging the class.

-g:none
Forces the compiler not to generate debugging information in the class file.

-g:source,lines,vars
Generates selective debugging information in the class file.

Note: This option is also supported in the JDeveloper IDE, on the
Compiler - Options page of the Project Properties dialog.

Building Java Projects

18-26 User's Guide for Oracle JDeveloper

-help
-?
Displays the options for the compiler.

-make depfilename
Uses the named dependency file for dependency checking. If the specified file is not
found, it will be created.

-msglimit:#
Maximum number of errors and warnings written to output. Use -1 to represent no
limit. The default is 1000.

-noquiet
Displays file names as they are compiled.

-nowarn:<id>
When specified with an argument, suppresses the warning associated with the
number entered by the user.

-nowarn:486
Suppresses unused import statements.

-nowarn:487
Suppresses partially used import statements.

You can also use -nowarn in combination with -warn:

-nowarn -warn:487
to output warnings only for warning 487.

-nowrite
Compiles the program without outputting class files.

-p packagename(s)
Compiles all the source files found in the specified package(s)

-rebuild
Rebuilds specified files regardless of dependencies. Rebuild is assumed unless the
-make option is used.

-recurse [level]
Instructs the compiler to recursively descend into directories when expanding file
name specifications containing wildcards.

For example:

javac -recurse foo/*java

might be the equivalent to entering:

javac foo/bar/*java foo/lish/*java foo/lish/lee/*java

The option [level] takes an optional integer argument specifying the maximum
recursive level.

Building Java Projects

Programming in Java 18-27

For example:

javac -recurse 1 foo/*java

might be the equivalent to entering:

javac foo/bar/*java foo/lish/*java

Note that foo/lish/lee/*java would not be within the scope of the [level]
variable.

-s sourcefile
Compiles the specified source file name(s).

-source {1.1|1.2|1.3|1.4|1.5|1.6}
By default, the source is compatible with J2SE 1.5, which enables J2SE assertions in the
source code. You can enter -source 1.4 if you want the source compatibility to be J2SE
1.4.

-strictfp
Forces the compiler not to use extended precision for intermediate floating point
calculations.

-target [1.1|1.2|1.3|1.4|1.5|1.6]
If the target is set to 1.1, the compiler compiles for JSDK 1.1. If the target is set to 1.2,
the compiler compiles for Java 2 (JSDK 1.2). If the target is set to 1.3, the compiler
compiles for Java 2 v1.3 (J2SE 1.3). If the target is set to 1.4, the compiler compiles for
Java 2 v1.4 (J2SE 1.4).

 The default target is JDK 6 (J2SE 1.6), consistent with Sun's javac defaults

-verbose
This option gives more information about compiling, such as which class files are
loaded from where in the CLASSPATH. You get information about:

■ Which source files are being compiled

■ Which classes are being loaded

■ Which classes are being loaded

-verbosepath
This option displays SOURCE PATH and CLASSPATH values used by the compiler.

-warn:<id>
This option allows you to specify warnings. You can have any number of warnings in
combination with any suppressed warnings. When used with no arguments, all
warnings are displayed. Two useful warnings:

-warn:486
Displays Unused Import Statement

-warn:487
Displays Partially used Import Statement.

Building Java Projects

18-28 User's Guide for Oracle JDeveloper

-warningtag tag[, tag]
A list of javadoc comment tags. If listed tag occurs in source comment, a warning is
output. Use a comma to separate tags names.

18.6.2.1 Compiling from the Command Line
You have two ways to compile applications (workspaces) and projects:

■ Inside JDeveloper by using the various Build and Compile options on the
application and project nodes

■ From the command line by using ojmake and ojdeploy.

You can find both in the jdeveloper/jdev/bin directory.

■ ojmake can be used for applications and projects that don't involve any
deployment, for example, projects with no deployment profile defined.

■ ojdeploy can handle the build of any application and project (including any that
involve deployment). You can think of it as a super-set of ojmake.

You can view help for the tools simply by executing ojmake or ojdeploy on the
command line. The help will display in the console.

18.6.3 Cleaning Applications and Projects
You can clean your application or project using the Clean command. Running this
command cleans the output and deploy directories in your project or application.

Running the Clean command on an application or project removes all class files, all
copied resource files, and all deployed files. You can do this to ensure that there are no
outdated files in the output and deploy directories. For instance, classes get renamed,
moved, or deleted, and obsolete class files belonging to those classes need to be
removed. Similarly, resources and deployments also get renamed, moved or deleted,
and their obsolete copies in the output directory or deployment directory need to be
removed. Cleaning enables you to remove previous build artifacts and start afresh.

You can run the Clean command on applications or projects.

When you clean an application:

■ The content in the output and deploy directories of each of the constituent projects
in the application are deleted.

■ The content in the deploy directory of the application is deleted.

The content in the deploy directory of the application is deleted.

The following conditions must be satisfied for the Clean command to run successfully:

■ The output directory of the project to be cleaned, or of each of the projects in the
application to be cleaned, must be specified.

■ The output location must be specified as a directory, and not a file.

Note: When you work from the command line, it is possible to use
Javac to compile Java files, but it's not possible to build applications
and projects by executing Javac manually. You must use ojmake or
ojdeploy.

Building Java Projects

Programming in Java 18-29

18.6.3.1 How to Run the Clean Command
The Clean command enables you to remove artifacts left over from previous builds in
order to begin a fresh build process.

To clean a project:
1. In the Application Navigator, select the project to be cleaned.

2. In the Build menu, select Clean project.

3. In the Cleaning project dialog, click Yes.

To clean an application and all its projects:
1. In the Application Navigator, select the application you want to clean.

2. In the Build menu, select Clean All.

3. In the Cleaning application dialog, click Yes.

18.6.4 How to Run Javadoc
You can generate API references and other documentation directly from the navigator,
based upon the properties set for the project in the Javadoc page of the Preferences
dialog. The documentation will be generated by the javadoc utility from the code and
documentation comments in your files.

To run Javadoc on a package, file, or project:
1. Select the appropriate node in the navigator.

2. From the main menu choose Build, then Javadoc.

The Javadoc is generated in the background. Information and results appear in the
Log window. A link in the Log window allows you to add the index.html file
to the project.

18.6.5 Building with Apache Ant
Apache Ant is a build tool similar in functionality to the Unix make utility. Ant uses
XML formatted buildfiles to both describe and control the process used to build an
application and its components. Ant supports cross-platform compilation and is easily
extensible. Apache Ant is a product of the Apache Software Foundation. For more
information, see the website http://ant.apache.org/index.html.

An Ant buildfile defines targets and dependencies between targets. A target is a
sequence of programmatic tasks. When Ant is run to make a target, it first makes other
targets on which it depends, and then executes the target's own tasks.

Ant is integrated into JDeveloper. Ant buildfiles can be added to or created for
projects. Ant buildfiles can be edited with the XML Source Editor. Ant can be invoked
from the user interface to make targets defined in buildfiles.

Ways to run Ant on buildfile targets:
■ On targets in the project buildfile. A project can contain several Ant buildfiles, but

one can be designated as the project buildfile. You can configure the Run Ant on
project toolbar icon and dropdown menu to give easy access to the project
buildfile's targets.

Building Java Projects

18-30 User's Guide for Oracle JDeveloper

■ From the Structure pane when editing an Ant buildfile. When an Ant buildfile is
open in an XML source editor, its targets are listed in the structure pane. You can
select these and run them.

■ From external tools you define. Use the Create External Tool wizard to define
menu items and toolbar buttons that make Ant targets.

18.6.5.1 Running Ant on Project Buildfile Targets
You can invoke Ant from JDeveloper's main menu and toolbar to build targets defined
in the current project's project buildfile.

A project can contain several Ant buildfiles, one of which can be designated as the
project buildfile. You can configure the Run Ant on project toolbar button and
dropdown menu to give easy access to the project buildfile's targets.

To select and configure a project's project buildfile, go to the Ant project properties
page (choose Application > Project Properties).

Ways to run Ant on targets in the project buildfile:
■ From the toolbar, click Run Ant on project.

Ant will make the project's designated default target.

■ From the main menu, choose Build > Run Ant on project.

Ant will make the project's designated default target.

■ From the toolbar Run Ant on project dropdown menu, choose a target.

18.6.5.2 Using the Ant Tool in the IDE
The Ant Log window displays messages specific to the Ant build. Some features of the
Ant Log window are:

■ It displays messages generated by an Ant invocation to build one or more targets.

■ In the Ant Log window, messages generated by Ant tasks are linked to the
definitions of those tasks in the Ant buildfile, while compilation errors and
warnings are linked to the source code that produced them.

■ The color coding indicates the output level of messages.

18.6.6 Building and Running with Apache Maven
Apache Maven is a software project management and comprehension tool. Maven can
manage a project's build, reporting and documentation from a central piece of
information, the project object model (POM). You can build the project using its POM
and a set of plugins that are shared by all projects using Maven, providing a uniform
build system.

Maven can be extended by plugins to use a number of other development tools for
reporting or the build process. For more information about Maven, see
http://maven.apache.org/index.html.

18.6.6.1 Understanding the Project Object Model
The Project Object Model (POM) is an XML file that contains information about the
project and configuration details used by Maven to build the project. The XML file
contains most of the information required to build a project. Configuration
information that can be specified in the POM includes the project dependencies, the
plugins or goals that can be executed, and the build profiles.

Building Java Projects

Programming in Java 18-31

For more information about the Maven Project Object Model, see:
http://maven.apache.org/index.html

18.6.6.2 How to Create a Project Object Model
Use options in the New Gallery to:

■ Create a new Apache Maven POM

■ Create a POM for the Application

■ Generate a Maven POM from a Project

To create a POM:
1. Choose File > New to open the New Gallery.

2. In the Categories list, expand General and select Maven.

3. Select an option for creating a POM and click OK.

18.6.6.3 How to Create a Maven POM for a Project
You can create a Maven POM based on an existing project that you select in the
Application Navigator. Build elements will be added for multiple source directories.
Settings will be added for the Java compiler you have specified for the project.

To create a Maven POM from a project:
1. In the Application Navigator, select the project that you want to create the POM

from.

2. Choose File > New to open the New Gallery.

3. In the Categories list, expand General and select Maven.

4. Select Generate a Maven POM from a Project.

5. Click OK.

18.6.6.4 How to Generate a Project Object Model from an Application
You generate a new Project Object Model (POM) for the selected application and
optionally, a new POM for each project in the application. This generates a top level
POM for the application, and a POM for each project.

To generate a POM from a application:
1. Choose File, then New to open the New Gallery.

2. In the Categories list, expand General and select Maven.

3. Select Create a POM for the Application and click OK.

18.6.6.5 Creating a Maven Template
You can create a:

■ Maven Application template that is made of one or more Maven projects.

This generates an application, a top level Project Object Model file (pom.xml) for
the application, and a default pom.xml file for each project.

■ Maven Project template.

Building Java Projects

18-32 User's Guide for Oracle JDeveloper

This generates a Java project that includes a default Project Object Model file and
Maven Configuration. The Project Object Model file is automatically created
during project creation.

To create a JDeveloper Project with a default POM:
1. Choose File, then New to open the New Gallery.

2. Select All Items.

3. Select either Maven Application or Maven Project.

4. Click OK.

18.6.6.6 How to Run a Maven Project
Use the Application Navigator to locate and run a Maven project.

To run a Maven Project:
1. In the navigator, locate the project containing the pom.xml file you want to run.

The pom.xml file is typically located in the Resources folder under the project.

2. Right-click on the pom.xml file.

3. In context menu, select Run Goal(s), then select a goal.

The list of goals that displays in the context menu is set using the Maven: Goals
properties dialog.

18.6.6.7 How to Change the Maven Version
In the Maven project properties dialog, you can specify which version of Maven to
use. Maven version 2.0 and above is supported.

To specify the Maven version:
1. In the Application Navigator, locate the project whose properties you want to set.

2. Right-click on the project name.

3. Select Project Properties.

4. Select Maven.

5. Enter the Maven version you want to use in the Specify Maven Version field.

18.6.6.8 How to Set Project Properties
Use the Maven Project Properties dialogs to specify:

■ Which Maven version to use

■ Location of the settings.xml file

■ Location of the pom.xml file

■ Additional classpath entries

■ Dependencies

■ Choices that appear in the Run Goal(s) context menu

■ Java version

■ Environment variables

■ Maven repositories

Building Java Projects

Programming in Java 18-33

■ Command line options

To set Maven project properties:
1. In the Application Navigator, locate the project whose properties you want to set.

2. Right-click on the project name.

3. Select Project Properties.

4. Select Maven.

5. Select the name of a properties dialog.

18.6.6.9 How to Set Log Window Preferences
You can set the colors of various message text that displays in the messages log when
you run a Maven project.

To set Maven preferences:
1. Select Tools > Preferences.

2. Select Maven.

18.6.7 Creating a Profile Manually
You can create a profile by manually editing an XMI export of a class model.

A Profile owns one or more Stereotypes, that in turn own attributes (Properties), and
Extensions, that determine which metaclasses can be extended by a particular
stereotype. Profile, Stereotype and Extension have, respectively, exactly the same form
as Package, Class and Association so you can use the standard UML support to create
XML to use as the basis for the profile.

To create a manual profile:
1. Create a UML project.

2. Create a root package called MyProfile.

3. Create a class called MyStereotype.

4. Create an owned attribute in the class called myAttribute typed by String.

5. Create an owned attribute in the class called base_Class without a type.

6. Create an association called A_base_Class_myStereotype.

7. Create an owned end called myStereotype typed by
MyProfile::MyStereotype.

8. Update the memberEnd property of the association to also include
MyProfile::MyStereotype::base_Class.

9. Choose File > Export > UML as XMI.

The file should look something like Example 18–5.

Example 18–5 11.1.2.0.0 Profile Code

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>
<xmi:XMI xmi:version='2.1'
 xmlns:xmi='http://schema.omg.org/spec/XMI/2.1'
 xmlns:uml='http://schema.omg.org/spec/UML/2.1.1/uml.xml'>
 <documentation exporter='Oracle JDeveloper' exporterVersion='11.1.2.0.0'/>

Building Java Projects

18-34 User's Guide for Oracle JDeveloper

 <uml:Package xmi:id='urn:uuid:e758ac95-c939-437c-b8db-93b614d7a1e6'
name='MyProfile'>
 <packagedElement xmi:type='uml:Association'
 xmi:id='urn:uuid:bedc874e-54bb-43ac-8118-332da29ee332'
 name='A_base_Class_myStereotype'
 memberEnd='urn:uuid:9b0a1dac-f235-4c0f-8d23-5d050869376e
urn:uuid:c148a047-b02d-4144-a49d-e1ee6d363ae2'>
 <ownedEnd xmi:id='urn:uuid:9b0a1dac-f235-4c0f-8d23-5d050869376e'
 name='myStereotype'
 association='urn:uuid:bedc874e-54bb-43ac-8118-332da29ee332'
 type='urn:uuid:61415c2c-2835-42cd-87e7-9d95a8675bc3'/>
 </packagedElement>
 <packagedElement xmi:type='uml:Class'
 xmi:id='urn:uuid:61415c2c-2835-42cd-87e7-9d95a8675bc3'
 name='MyStereotype'>
 <ownedAttribute xmi:id='urn:uuid:bae8137e-8efc-4311-9cb6-bac77d25cef1'
 name='myAttribute'>
 <type href='http://schema.omg.org/spec/UML/2.1.1/uml.xml#String'/>
 </ownedAttribute>
 <ownedAttribute xmi:id='urn:uuid:c148a047-b02d-4144-a49d-e1ee6d363ae2'
 name='base_Class'
 association='urn:uuid:bedc874e-54bb-43ac-8118-332da29ee332'/>
 </packagedElement>
 </uml:Package>
</xmi:XMI>

10. Add xmlns:cmof='http://schema.omg.org/spec/MOF/2.0/cmof.xml'
to the xmi:XMI element.

11. Change the value of the package xmi:id to '_0'

12. Add uri='http://example.oracle.com/MyProfile.xmi' to the
uml:Package element.

13. Add <type href='http://schema.omg.org/
spec/UML/2.1.1/uml.xml#Class'/> as a child of the base_Class attribute.

14. Substitute uml:Profile for uml:Package.

15. Substitute uml:Stereotype for uml:Class.

16. Substitute uml:Extension for uml:Association.

17. Substitute ownedEnd xmi:type='uml:ExtensionEnd' for ownedEnd.

18. Add <cmof:Tag name='org.omg.xmi.nsURI'
value='http://example.oracle.com/MyProfile' element='_0'/> as
a child of xmi:XMI.

The file should look something like Example 18–6.

Example 18–6 11.1.2.0.0 Profile Code

<?xml version='1.0' encoding='UTF-8' standalone='yes'?>
<xmi:XMI xmi:version='2.1'
 xmlns:xmi='http://schema.omg.org/spec/XMI/2.1'
 xmlns:uml='http://schema.omg.org/spec/UML/2.1.1/uml.xml'
 xmlns:cmof='http://schema.omg.org/spec/MOF/2.0/cmof.xml'>
 <documentation exporter='Oracle JDeveloper' exporterVersion='11.1.2.0.0'/>
 <uml:Profile xmi:id='_0' name='MyProfile'
uri='http://example.oracle.com/MyProfile.xmi'>
 <packagedElement xmi:type='uml:Extension'
 xmi:id='urn:uuid:bedc874e-54bb-43ac-8118-332da29ee332'

Working with JavaBeans

Programming in Java 18-35

 name='A_base_Class_myStereotype'
 memberEnd='urn:uuid:9b0a1dac-f235-4c0f-8d23-5d050869376e
urn:uuid:c148a047-b02d-4144-a49d-e1ee6d363ae2'>
 <ownedEnd xmi:type='uml:ExtensionEnd'
 xmi:id='urn:uuid:9b0a1dac-f235-4c0f-8d23-5d050869376e'
 name='myStereotype'
 association='urn:uuid:bedc874e-54bb-43ac-8118-332da29ee332'
 type='urn:uuid:61415c2c-2835-42cd-87e7-9d95a8675bc3'/>
 </packagedElement>
 <packagedElement xmi:type='uml:Stereotype'
 xmi:id='urn:uuid:61415c2c-2835-42cd-87e7-9d95a8675bc3'
 name='MyStereotype'>
 <ownedAttribute xmi:id='urn:uuid:bae8137e-8efc-4311-9cb6-bac77d25cef1'
 name='myAttribute'>
 <type href='http://schema.omg.org/spec/UML/2.1.1/uml.xml#String'/>
 </ownedAttribute>
 <ownedAttribute xmi:id='urn:uuid:c148a047-b02d-4144-a49d-e1ee6d363ae2'
 name='base_Class'
 association='urn:uuid:bedc874e-54bb-43ac-8118-332da29ee332'>
 <type href='http://schema.omg.org/spec/UML/2.1.1/uml.xml#Class'/>
 </ownedAttribute>
 </packagedElement>
 </uml:Profile>

 <cmof:Tag name='org.omg.xmi.nsURI' value='http://example.oracle.com/MyProfile'
element='_0'/>
</xmi:XMI>

18.7 Working with JavaBeans
JDeveloper comes with a set of ready-to-use JavaBeans on the Component Palette. You
can also supplement these components by creating new JavaBeans yourself or by
installing third-party ones.

JavaBeans Component technology lets you implement your own framework for data
retrieval, persistence, and manipulation of Java objects. You can use JavaBeans
technology to create reusable software components for building Java applets and Java
client applications. In a Java EE application, applets and application clients can
communicate with business-tier components directly or indirectly through web-tier
components. For example, a client running in a browser would communicate with the
business tier through JSP pages or servlets.

Although JavaBeans components are not considered Java EE web components
according to the Java EE specification, JavaBeans components are often used to handle
data flow between server components and application clients or applets on the client
tier, or between server components and a database on the back end.

For more information on JavaBeans, for example, the basic notion of JavaBeans and
what makes a bean, see
http://download.oracle.com/javase/tutorial/javabeans/. The tutorial
also contains lessons on writing a simple bean, bean properties, manipulating events
and other topics.

18.7.1 Using JavaBeans in JDeveloper
JavaBeans are the Java building blocks used in the Java Visual Editor to build a
program. Each JavaBean represents a program element, such as a user interface object,

Working with JavaBeans

18-36 User's Guide for Oracle JDeveloper

a data-aware control, or a system facility. You build your program by choosing and
connecting these elements.

In order to speed up your UI design work in the future, create JavaBean components
such as toolbars, status bars, checkbox groups, or dialog boxes that you can add to the
Component Palette and reuse with no (or only minor) modifications

JDeveloper comes with a set of ready-to-use JavaBeans on the Component Palette. You
can also supplement these components by creating new JavaBeans yourself or by
installing third-party ones.

JavaBeans are objects in the true object-oriented programming (OOP) sense. Because
they are true objects, JDeveloper components exhibit the following:

■ Encapsulation of some set of data and data-access functions.

■ Inheritance of data and behavior from a superclass.

■ Polymorphism, allowing them to operate interchangeably with other objects
derived from a common superclass.

Each component encapsulates some element of a program, such as a window or dialog
box, a field in a database, or a system timer. Visual components must ultimately
extend either java.lang.Object or extend some other class that derives from it
such as javax.swing.Panel. Non-visual JavaBeans components do not have this
requirement.

To be recognized and used in JDeveloper, components must conform to the JavaBeans
specification.

To be useful in a program, a JavaBean must provide the means by which it can be
manipulated or interact with other components. JavaBeans meet this requirement by
defining properties, methods, and events.

All components have properties, methods, and events built into them. Some of the
properties, methods, and events that components provide are actually inherited from
ancestor classes, which means they share these elements with other components. For
example, all UI components inherit a property called background that represents the
background color of the component. Each component can also introduce its own
unique properties, methods, and events. For example, the Swing Checkbox component
has a property called selected that indicates whether or not this component
initially appears checked.

18.7.2 How to Create a JavaBean
The first step in developing a bean for reuse is to create the JavaBean class. Using the
Create Bean dialog, you can either create a new empty bean or extend an existing class
to conform to the requirements of the JavaBeans component model.

To create a JavaBean:
1. In the Application Navigator, select the project you wish the bean to be added to.

2. From the main menu, choose File > New, or right-click and choose New.

3. In the New Gallery, in the Categories tree, expand General and select Java.

4. In the Items list, double-click Bean.

5. In the Create Bean dialog, accept the defaults, enter new values, or use the Browse
buttons to navigate to an existing package and superclass.

6. Click OK.

Working with JavaBeans

Programming in Java 18-37

18.7.3 How to Create a BeanInfo Class
The BeanInfo class defines a set of methods that allow bean implementors to provide
explicit information about their beans. By specifying BeanInfo for a bean component,
you can hide methods, specify an icon for the toolbox, provide descriptive names for
properties, define which properties are bound properties, and much more.

 When you create a bean and install it on the Component Palette, in most cases you
will want its properties and events to appear in JDeveloper's Inspector. If you followed
the JavaBeans design and naming conventions while creating your bean, all the
properties and events you defined, plus all those inherited from superclasses, appear
automatically.

However, you may not use the JavaBeans design and naming conventions, or you may
have existing classes that don't use them. In addition, you may not want to give the
user of your bean access to every property at design time.

To handle these situations, you can create a BeanInfo class that will provide explicit
information about a bean to JDeveloper, rather than having JDeveloper derive the
information through automatic introspection. You create this class by extending the
SimpleBeanInfo class.

To create a BeanInfo class using the BeanInfo dialog:
1. In the Application Navigator, select the project you wish the bean to be added to.

2. From the main menu, choose File > New, or right-click and choose New.

3. In the New Gallery, in the Categories tree, expand General and select Java.

4. In the Items list, double-click BeanInfo.

5. In the Create BeanInfo dialog, choose the bean you want to create a BeanInfo for.
The dialog will generate the BeanInfo class name from the bean itself.

6. Accept the name of the package, or specify a different package to which the
BeanInfo should be added.

7. Click Browse to choose a base class other than SimpleBeanInfo for the
BeanInfo that you want to implement.

8. Click OK to add the new BeanInfo class to your project.

18.7.4 How to Implement an Event-Handling Method
In the Java Visual Editor, you see an event primarily as the event-handling method
that must be implemented in the class that contains the component. For example,
suppose you want to place a button named button1 into a container called Frame1.
In addition, you want something to happen when an end user clicks button1.

To implement the event-handling method
1. Select button1 in the Frame1 editor.

2. Navigate to the Event page of the Property Inspector.

3. Click to the right of actionPerformed (actionPerformed is the event
generated when a button is pressed).

This creates a default action-listener name, which you may edit.

4. Double-click the name to direct JDeveloper to create the appropriate method and
take you to the method body.

Working with JavaBeans

18-38 User's Guide for Oracle JDeveloper

5. JDeveloper switches to the Frame1 source view and inserts an event-handling
method into Frame1 that is called when that event occurs.

The method is called button1_actionPerformed() by default. The body of
the method is initially empty.

6. Add code into the method to respond to the button press.

The end user sees all of the potential events from button1 listed on the Events page
of the Property Inspector. As the component writer, you are responsible for creating
the component class in such a way that all the events it generates will appear in the
Property Inspector. All the end user must do to use your bean is write the code that
fills in the event-handling method.

18.7.5 What Happens When You Create an Event-Handling Method
Behind the scenes, JDeveloper also generates additional code in the Frame1.java file
to handle the other aspects of event listening:

1. It generates an anonymous inner class for the action adapter that implements the
ActionListener interface.

2. It instantiates the class in Frame1.

3. It registers itself as a listener for the button1 event by calling
button1.addActionListener().

All of this code is visible in the source, but your primary task is to fill in the
event-handling method that the action adapter calls when the event occurs.

18.7.6 Understanding Anonymous Adapters
The particular type of inner-class event adapters that JDeveloper generates by default
are known as anonymous adapters. This style of adapter avoids the creation of a
separate (named) adapter class. The resulting code is compact.

Example 18–7 contains code that is generated for an action-performed event using an
anonymous adapter:

Example 18–7 Code Generated for an Action-performed Event Using an Anonymous
Adapter

button1.addActionListener(new java.awt.event.ActionAdapter()
 public void actionPerformed(ActionEvent e) {
 button1_actionPerformed(e);
 }
}}

void button1_actionPerformed(ActionEvent e) {
 // your code to respond to event goes here
}

18.7.7 Understanding Standard Event Adapters
You can control how JDeveloper generates the adapter class by selecting the desired
option from the Code Style page of the Project Properties dialog. The standard event
adapters have only public- and package-level access, unlike anonymous adapters that
have access to all variables in the scope where the adapter is declared.

Working with JavaBeans

Programming in Java 18-39

Example 18–8 contains code that is generated for an action-performed event using a
standard class:

Example 18–8 Code Generated for an Action-performed Event Using a Standard Class

// Registers the adapter as a listener to button1.
button1.addActionListener(new Frame1_button1_actionAdapter(this));
...
// Adapter class definition.
class Frame1_button1_actionAdapter extends java.awt.event.ActionAdapter {
 Frame 1 adaptee;

 Frame1_button1_actionAdapter(Frame1 adaptee) {
 this.adaptee = adaptee;
 }
public voidactionPerformed(ActionEvent e) {
 adaptee.button1_actionPerformed(e);
 }
}
void button1_actionPerformed(ActionEvent e) {
 // code to respond to event goes here
}

18.7.8 How to Make Standard Adapters the Default for Your Projects
JDeveloper generated the code in Example 18–7 using an anonymous inner class.
Example 18–8 contains code that is generated for an action-performed event using a
standard class. Both ways of using adapters provide the code to handle
action-performed events, but the anonymous adapter approach is more compact.

To make standard adapters the default for your projects:
1. From the main menu, choose Tools > Preferences.

2. Select the Java Visual Editor node.

3. In the Event Settings group, select Standard Adapter as an event-handling option.

4. Choose OK.

Now JDeveloper will generate standard adapters (as opposed to anonymous, inner
classes) for its events.

18.7.9 How to Select an Event-Handling Adapter
When creating a bean for reuse, you will want to define its events. Once you have
defined its events, you will want to select an event-handling adapter.

To make standard adapters the default for your projects:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select the Java Visual Editor node.

3. On the Java Visual Editor page, under Event Settings, select Standard Adapter as
an event-handling option.

4. Click OK.

Now JDeveloper will generate standard adapters (as opposed to anonymous, inner
classes) for events.

Working with JavaBeans

18-40 User's Guide for Oracle JDeveloper

18.7.10 How to Create an Event Set
JDeveloper provides the functionality to create a set of custom events and create an
EventListener interface and an EventObject class to support those events.

To create an event set:
1. In the Application Navigator, select the project you wish the bean to be added to.

2. From the main menu, choose File > New, or right-click and choose New.

3. In the New Gallery, in the Categories tree, expand General and select Java.

4. In the Items list, double-click EventSet.

5. In the Create Event Set dialog, in the Name field, enter the name of the event set.

6. Specify the events you want to create, edit, or remove in the Notifications field.

7. Click OK to add the new event set classes to your project.

18.7.11 How to Create a Customizer
For complex beans, JDeveloper gives you the option of creating a customizer. A
customizer allows you to modify the appearance and behavior of a bean within an
application builder so it meets your specific needs. Sometimes properties are
insufficient for representing a bean's configurable attributes. Customizers are used
where sophisticated instructions would be needed to change a bean, and where
property editors are too primitive to achieve bean customization.

■ A simple customizer can edit the entire component at once. Usually a simple
customizer presents a dialog box or panel that lets the user set many properties in
the same step.

■ A complex customizer provides an interactive interface to the component user,
guiding the user through the steps to customize the component.

For a complex customizer, you might create a wizard that questions the user about
how the component should be customized. Based on the user's responses, the
customizer edits all affected properties of the component. Whenever a customizer
generates an event informing JDeveloper that something happened, JDeveloper
generates the appropriate code.

To create a customizer:
1. In the Application Navigator, select the project you wish the bean to be added to.

2. From the main menu, choose File > New, or right-click and choose New.

3. In the New Gallery, in the Categories tree, expand General and select Java.

4. In the Items list, double-click Customizer.

5. In the Create Customizer dialog, in the Name field, enter the name of the
customizer.

6. If you want to add the customizer to a package other than the default package of
your project, enter the package name in the Package field or click Browse
Packages.

7. If you want the customizer to extend a class other than the default, enter the class
name in the Extends field or click Browse Classes.

8. Click OK to add the new customizer class to your project.

Refactoring Java Projects

Programming in Java 18-41

18.7.12 How to Make a Component Capable of Firing Events
When you develop a bean, you must think of all the events that the bean should be
able to generate.

To make a component capable of firing events:
1. Determine what kind of event needs to be fired, and either:

■ Select an appropriate existing event set from the AWT or JFC, or

■ Create a new event set.

2. Create event registration methods for the component.

3. Create an event notification/propagation mechanism for the event:
fire<yourEventName>Event()

4. Call the event that is fired and call the event notification mechanism from the key
points in your bean where such an event should be sent.

18.8 Refactoring Java Projects
Refactoring is an editing technique that modifies code structure without altering
program behavior. A refactoring operation is a sequence of simple edits that transform a
program's code but, taken together, do not change its behavior. After each refactoring
operation the program will compile and run correctly. JDeveloper provides a
collection of automated refactoring operations.

Use refactoring when you modify a program's source code to make it easier to
maintain, extend, or reuse. Perform the modification as a series of refactoring steps.
After each step you can rebuild and revalidate the program to ensure that no errors
have been introduced.

Some examples of simple refactoring operations are:

■ Renaming a method. This operation finds usages of the target method and then
allows users to decide whether to replace each name occurrence.

■ Duplicating a class. The definition of the class is replicated, and all occurrences of
the class name in the replicated definition are replaced by the new name.

■ Introducing a parameter into a method. The method definition is modified by the
addition of a parameter, and each method call is modified to provide an argument
of the appropriate type and value.

JDeveloper also provides more sophisticated refactoring operations such as:

■ Extracting an interface from a class by deriving member declarations from selected
class members.

■ Pulling members of a class up into a superclass or pushing members down into a
subclass by moving member definitions from one class to another.

■ Extracting a class replaces a set of fields or methods with a new container object.

■ Introducing a field, variable, parameter, or constant by replacing a selected
expression with a reference to a new element constructed from the expression.

■ Extracting a method by replacing highlighted consecutive statements with a call to
a new method constructed from the statements.

Refactoring Java Projects

18-42 User's Guide for Oracle JDeveloper

■ Extracting a method object to create a new method out of an existing block of code
(similar to Extract Method) but moving it into a newly created inner class,
converting all the local variables to fields of the class.

■ Introducing a parameter object replaces a set of fields or methods with a new
container object.

If the results of the refactoring operation are not as desired, you can undo the
refactoring as you would any editing operation, by pressing Ctrl+Z.

18.8.1 Refactoring on Java Class Diagrams
If you rename or move a class using the in-place edit functionality on a diagram, the
source code for the class will be refactored automatically. Renaming or moving a Java
package on a diagram will automatically refactor the contents of that package.

Deleting a field, method, or inner class on a diagram will automatically apply the
Delete Safely refactoring pattern. For more information, see Section 18.8.4, "How to
Delete a Code Element".

To apply a refactoring pattern to a Java class, interface, enum, or member on a
diagram, select the class or member on the diagram and choose the refactoring pattern
from the Refactoring menu. Where a refactoring pattern is applied in this way, the
appropriate dialog is displayed, including the facility to preview the results of the
refactoring. For more information, see Section 18.8.6, "Refactoring Classes and
Interfaces."

The following refactoring patterns are available for the Java classes, interfaces, and
enums on a Java class diagram:

■ Rename

■ Move (applies to both single and multiple selections on the diagram)

■ Duplicate

■ Extract Interface

■ Extract Superclass

The following refactoring patterns are available for the Java fields and methods on a
Java class diagram:

■ Rename

■ Move

■ Make Static

■ Pull Members Up

■ Push Members Down

■ Change Method (Java methods only)

18.8.2 How to Invoke a Refactoring Operation
JDeveloper provides a wide range of automated refactoring operations that enable you
to enhance code quality in such a way that it does not alter the external behavior of the
code, yet improves its internal structure.

Refactoring Java Projects

Programming in Java 18-43

To invoke a refactoring operation:
1. Select a program element in a source editor window, navigator pane, or structure

pane.

2. Right-click on the program element.

3. Choose an operation from the context menu.

4. You can also choose Refactor from the toolbar and select a refactoring operation
from the drop-down list.

Refactoring context menus reflect the operations that are available in the current
context. This is determined by the source element that was at the cursor when you
right-clicked. These operations differ from element to element. Therefore, the
refactoring context menus contain different items depending on where in JDeveloper
you are right-clicking to display the menu.

For example, you can display different context menus containing different refactoring
operations by right-clicking on:

■ The structure menu

■ The beginning of the line of a method

■ The method's return type in the IDE

■ The method's name in the IDE

■ A parameter in the method's parameter list in the IDE

If the results of the refactoring operation are not what you want, you can undo the
refactoring as you would any editing operation, by pressing Ctrl+Z.

18.8.3 How to Rename a Code Element
While developing your Java application you can easily rename the definition and all
references to a package, class, interface, method, field, parameter, or variable. If you
wish, you can first generate a preview — a list of the usages that will be replaced. Use
the preview to inspect and modify or exclude selected usages, before causing the rest
to be renamed.

The scope of a renaming operation is the full scope of the element in the project.
Project, class, interface, and member usages are replaced anywhere they appear in the
project. Parameters and variables are renamed only in the lexical scope of their
definitions: other elements with the same name are not modified.

By default, the operation will be restricted to.java files, excluding comments (but not
documentation comment tags that name code elements) and annotations. Usages that
are not ambiguous will be replaced. Usages of class and interface names will be
replaced if they are fully qualified or if they are named in import statements.

For package, type, and member elements, you can choose to extend the operation to
comments or to other files. When extended to comments, replacements will be made in
line comments, commented-out code, the bodies of documentation comments, and in
annotations. When the operation is extended to other files, text replacements will also
be made in project files of types designated as text files in the File Types page of the
Preferences dialog. Replacements in comments and other files will be made more
aggressively than replacements in Java code.

To rename a code element:
1. Select the element that is to be renamed in one of the two following ways:

Refactoring Java Projects

18-44 User's Guide for Oracle JDeveloper

■ In a Java Source Editor, select the name.

■ In a Navigator or Structure pane, select the name.

2. Invoke the command in one of the two following ways:

■ From the Main menu or the context menu, choose Refactor > Rename.

■ Press Ctrl+Alt-R.

The Rename dialog opens.

3. In the Rename To box, enter the new name. The name must be valid and not
already in use.

4. Set the depth of the text substitution.

■ Select Search in Comments to extend the operation to comments, the bodies
of documentation comments, and to annotations.

■ (Package, type, and members elements only.) Select Search in Non-Java files
to extend the operation to other types of text files in the project.

5. Select Preview if you wish to inspect the usages that will be replaced before
committing to the renaming operation.

6. Click OK.

If you selected Preview, to avoid all the usages being modified, finish the
renaming operation from the Preview log window. For more information, see
Section 18.8.3, "How to Rename a Code Element."

18.8.4 How to Delete a Code Element
While developing your Java application you can safely delete the definition of a class,
interface, method, or field. The deletion will not be performed without your
confirmation if the element is still in use.

If the element is in use a log showing the usages will be displayed. Use the list to
inspect and resolve the usages. If you then confirm the deletion, any remaining usages
will remain in the code as undefined references.

To delete a code element:
1. Select the element that is to be deleted in one of the following ways:

■ In a Java Source Editor, select the name.

■ In a Navigator or Structure pane, select the name.

2. Invoke the command in one of the following ways:

■ From the Main menu or the context menu, choose Refactor > Delete Safely.

■ Press Alt+Delete.

The Delete Safely dialog displays while the project files are searched for
usages.

3. If the dialog closes, the element has been deleted. If it remains open after
performing its search, the element has unresolved usages.

■ Click View Usages to inspect and resolve the usages. When finished, invoke
the command again to delete the element.

■ Click Ignore to delete the element's definition without viewing the usages.

Refactoring Java Projects

Programming in Java 18-45

18.8.5 How to Preview a Refactoring Operation
When performing a refactoring operation that may modify many usages, it is useful to
preview the usages to identify those that should be modified by hand or be excluded.
You have the option, before committing these operations, of having usages listed in
the Preview Log window, from which you can inspect and resolve them, and if you
wish, commit the operation.

The log displays a collapsible tree of packages and Java files. Under each file, lines of
code containing usages are listed.

To view a usage in an Edit window:
Double-click the entry in the log.

To exclude a usage from the refactoring operation:
Right click it and choose Exclude.

To commit the refactoring operation:
1. If you have made any edits that affect usages, click the Refresh icon in the log

toolbar to rerun the usages search.

2. Click the Do Refactoring icon in the log toolbar.

18.8.6 Refactoring Classes and Interfaces
While developing your Java application you can easily define new classes and
interfaces and repurpose existing ones.

18.8.6.1 How to Move a Package, Class, or Interface
When developing your Java application you can easily move a package, class, or
interface to a different package. If you wish, you can first generate a preview — a list
of the usages that will be replaced. Use the preview to inspect and modify or exclude
selected usages, before completing the move.

When moving types, only primary classes and interfaces — those having the same
name as their file — can be selected to be moved. In effect the file is renamed, and the
definitions of secondary classes and interfaces remain with the primary. Accessibility
will be preserved: if other classes in the original package refer to the class being
moved, it will be given public access. If the class being moved refers to other classes in
the original package, those classes will be made public.

The scope of an operation to move a class or interface is the entire project.

By default, the operation will be restricted to .java files, excluding comments (but
not documentation comment tags that name code elements) and annotations. Usages
that are not ambiguous will be replaced. Usages will be replaced if they are fully
qualified or if they are named in import statements.

You can choose to extend the operation to comments or to other files. When extended
to comments, text replacements will be made in line comments, commented-out code,
the bodies of documentation comments, and in annotations. When the operation is
extended to other files, replacements will also be made in project files of types
designated as text files in the File Types page of the Preferences dialog. Replacements
in comments and other files will be made more aggressively than replacements in Java
code.

Refactoring Java Projects

18-46 User's Guide for Oracle JDeveloper

To move a class or interface:
1. Select the package, class, or interface that is to be moved, in one of the following

ways:

■ In a Java Source Editor, select the name.

■ In a navigator or in the Structure window, select the name.

2. Invoke the command in one of the following ways:

■ From the Main menu or the context menu, choose Refactor > Move.

■ Press Ctrl+Alt-M.

The Move Vehicle dialog opens.

3. In the Move To box, enter the new package name, or click [...] to navigate to an
existing package.

4. Set the depth of the text substitution.

■ Select Search in Comments to extend the operation to comments, the bodies
of documentation comments, and to annotations.

■ Select Search in Text Files to extend the operation to other types of text files in
the project.

5. Select Preview if you want to inspect the usages that will be replaced before
committing to the move operation.

6. Click OK.

If you selected Preview, to avoid all the usages being modified, finish the
renaming operation from the Preview log window. For more information, see
Section 18.8.3, "How to Rename a Code Element."

Classes can also be moved in the Application Navigator by dragging multiple classes
from one package to another.

18.8.6.2 How to Duplicate a Class or Interface
While developing your Java application you can easily duplicate a class or interface.

Only primary classes and interfaces — those having the same name as their file — can
be selected to be duplicated. The duplicated class or interface is added to the same
package as the original.

Member names in the new class are given the same name as those in the original,
except for those derived from the original class or interface name. When the original
name is embedded in a member name, the new name is substituted.

To duplicate a class or interface:
1. In a Java Source Editor, select the name of the class or interface that is to be

duplicated.

2. From the Main menu, choose Refactor > Duplicate.

The Duplicate type dialog opens.

3. In the Class Name box, enter the new name. You can also specify a new package.

Note: Only primary classes and interfaces - those having the same
name as their file - can be selected to be moved.

Refactoring Java Projects

Programming in Java 18-47

4. Click OK.

The new class will be added to the project.

18.8.6.3 How to Extract an Interface from a Class
While developing your Java application you can easily derive a new interface from
selected methods and static fields defined in an existing class.

Optionally, you can also generalize declarations — such as the type specifications of
parameters, variables, and members — by replacing each type name in the declaration
with the new interface name. Not all such declarations can be replaced. For example,
the replacement cannot be done for the declaration of a variable that is used in a
method invocation, if that method was not extracted into the new interface. The
replacements will be done anywhere in the project.

The declaration of the class will be modified to show that it is an implementation of
the new interface.

To extract an interface:
1. Select the class from which the interface will be derived in one of the following

ways:

■ In a Java Source Editor, select the class name.

■ In a navigator or in the Structure Window, select the class name.

2. From the Main menu, choose Refactor > Extract Interface.

The Extract Interface dialog opens.

3. In the Package field, enter the name of the package of the new interface.

4. In the Interface field, enter the name of the new interface.

5. In the Members to Extract table, select the members that will be included in the
new interface.

6. Select Replace Usages if you want to convert existing declarations that name the
class into declarations naming the interface.

7. Select Preview if you wish to inspect the usages before you commit to the
operation. This option is enabled only if you have selected Replace Usages.

8. Click OK.

Otherwise, the interface will be created, and no usages will be replaced.

18.8.6.4 How to Extract a Superclass
You can create a superclass based on chosen members of the current class. The
superclass will consist of field and method declarations that match the chosen
members.

To extract a superclass:
1. In a navigator, in the Structure window, or in a Java Source Editor window, select

the class name.

2. From the main menu, choose Refactor > Extract Superclass.

The Extract Superclass dialog opens

3. In the Package Name box, enter the name of the package to which the new
superclass will belong.

Refactoring Java Projects

18-48 User's Guide for Oracle JDeveloper

4. In the Class Name box, enter a name for the new superclass.

5. In the Members to Extract table, select the members that will be included in the
new interface.

If you want a method to be created as an abstract method in the superclass, check
the Abstract box against that method. If you want dependencies of a method to be
included in the superclass, check the Dependencies box.

6. Select Replace Usages if you wish to convert existing declarations that name the
class into declarations naming the superclass.

7. Select Preview if you wish to inspect the usages before you commit to the
operation.

This option is enabled only if you have selected Replace Usages.

8. Click OK.

If you selected Preview, finish the extraction operation from the Preview log
window. For more information, see Section 18.8.3, "How to Rename a Code
Element."

Otherwise, the interface will be created, and no usages will be replaced.

18.8.6.5 How to Use Supertypes Where Possible
While developing your Java application you can easily generalize declarations — such
as the type specifications of parameters, variables, and members — by replacing
references to the selected class with references to one of its supertypes. Not all such
declarations can be replaced. For example, the replacement cannot be done for the
declaration of a variable that is used in a method invocation, if that method is not also
defined in the supertype. The replacements will be done anywhere in the project.

To generalize declarations:
1. Select the class or interface whose declarations will be generalized in one of the

following ways:

■ In a Java Source Editor, select the name.

■ In a navigator or in the Structure window, select the name.

2. From the Main menu, choose Refactor > Use Supertype Where Possible.

The Use Supertype dialog opens.

3. In the Supertypes table, select the supertype that the declarations will be
generalized to.

4. Select Preview if you want to inspect the usages before you commit to the
operation.

5. Click OK.

If you selected Preview, finish the extraction operation from the Preview log
window. For more information, see Section 18.8.3, "How to Rename a Code
Element."

Otherwise, the substitutions will be made immediately.

18.8.6.6 How to Convert an Anonymous Class to an Inner Class
You can convert an unnamed inner class (an anonymous class) into a named inner
class.

Refactoring Java Projects

Programming in Java 18-49

To convert an anonymous class into an inner class:
1. In a Java source editor window, select the declaration of the anonymous class.

2. From the main menu, choose Refactor > Convert Anonymous to Inner Class.

The Convert Anonymous to Inner Class dialog opens

3. In the Class Name box, enter the name to be given to the inner class.

4. If you want the inner class to be given the static modifier, check the Static box.

5. To convert the anonymous class into an inner class, click OK.

18.8.6.7 How to Move an Inner Class
You can move an inner class to a newly created class at the top level.

To move an inner class:
1. Select the inner class name in the structure pane or in a Java source editor

window.

2. On the main menu select Refactor > Move. The Move Inner Class dialog opens.

3. If you do not want the new top level class to be created with the names already
shown in the dialog, overwrite them or select new ones.

4. To create a new class at the top level with the details shown in the dialog, click
OK.

18.8.7 Refactoring Members
While developing your Java application you can easily move member definitions from
one class to another.

18.8.7.1 How to Move a Class Member
You can move a class member (for example, a method) to another class.

To move a non-static method:
1. Select the method name in the Structure window or in a Java Source Editor

window.

2. From the main menu select Refactor > Move.

If there is at least one suitable target to which the member can move, the Move
Member dialog opens. Otherwise, a message box is displayed.

3. In the Targets panel, choose the class to which the member will be moved.

4. If you want new names to be used for the method and the parameter in the new
location, enter new names into the Method Name and Parameter Name boxes.

5. Select how usages of the member will be handled after the move.

■ Select Use Delegate to handle usages through a newly created delegating
method.

■ Select Replace to replace all usages with new ones that call the moved class
member directly.

Refactoring Java Projects

18-50 User's Guide for Oracle JDeveloper

To move a static method:
1. Select the method name in the Structure window or in a Java Source Editor

window.

2. From the main menu select Refactor > Move.

The Move Members dialog opens.

3. In the Target panel, enter or choose the class to which the member will be moved.

4. For each member that you want to move, ensure that the checkbox to its left in the
Members to Extract list is checked.

5. If you want the dependencies of a member to also be moved, check the
corresponding checkbox in the Dependencies column.

18.8.7.2 How to Change the Signature of a Method
You can change the signature of a method. The signature of a method is the
combination of the method's name along with the number and types of the parameters
(and their order.)

To change the signature of a method:
1. Select the method name in the Structure window or in a Java Source Editor.

2. On the main menu select Refactor > Change Method.

The Change Method dialog opens.

3. Make changes to the method name, return type, accessibility and parameters as
required.

If you change the name of the method to one that already exists in the class, you
will later see a second dialog. Through this you can opt to replace all usages of the
method that you are changing to usages of the existing method.

4. If you want to create tasks based on the changes you have made and add them to
the Tasks window, check the Add tasks to the task window box.

18.8.7.3 How to Change a Method to a Static Method
You can assign the static modifier to a method.

To change a method to a static method:
1. Select the method name in the Structure window or in a Java Source Editor.

2. On the main menu select Refactor > Make Static.

If the class is part of a class hierarchy, the Make Static dialog opens. Otherwise, the
static modifier is added immediately.

3. If the Make Static dialog opens:

■ In the Name box, enter or select a name to be used as a reference in the
modified method.

The options listed are derived from local object names.

■ If you want to create a method that cannot be overridden, check the Declare
final box.

Note: This feature does not apply to constructors.

Refactoring Java Projects

Programming in Java 18-51

18.8.7.4 How to Pull Members Up into a Superclass
While developing your Java application you can easily move the definitions of
members from a class (the source class) to one of its superclasses (the target class). This
operation can be applied to a class only if it has one or more potential target classes in
the project. Members cannot be pulled up into library classes. Also, this refactor
command is only available for a class that is declared with a superclass clause or a list
of implemented interfaces.

By default, when a method is pulled up, its definition is moved from the source class
to the target class. You can instead choose to abstract the method, in which case the
method definition will remain in the source class, and a declaration for it will be
added to the target class. Abstracting a method will convert the target class to an
abstract class, if it is not already.

A member that you wish to pull up may have dependencies. A member is a
dependency if it is used in the definition of a member that is to be pulled up. Pulling a
member up without also pulling its dependencies up will introduce undefined
references in the target class. When you select a member to be pulled up, its
dependencies will be indicated. You can choose whether or not to pull up the
dependencies as well.

When a member declared to be private is pulled up, its access changes to protected.

To pull members up:
1. Select the class from which the members will be pulled in one of the following

ways:

■ In a Java Source Editor, select the name.

■ In a navigator or the Structure window, select the name.

2. From the main menu, choose Refactor > Pull Members Up.

The Pull Members Up dialog will open.

3. From the Target drop-down menu, choose the superclass that will be the target
class.

4. In the Members to Extract table, select the members you want to pull up.

The members that are the dependencies of the selected members, if any, will be
indicated.

5. In the Abstract column, select the checkbox if you wish the method is to abstracted
to the target class.

6. In the Dependencies column select the checkbox if you wish to also pull up all of
the member's dependencies.

This selection is transitive. It will cause dependencies of dependencies to also be
pulled up.

7. Click OK.

18.8.7.5 How to Push Members Down into Subclasses
While developing your Java application you can easily move the definitions of
members from a class (the source class) to its immediate subclasses (the target classes).

Note: Members that are to be abstracted do not have dependencies.

Refactoring Java Projects

18-52 User's Guide for Oracle JDeveloper

By default, when a method is pushed down, its definition is moved from the source
class to the target classes. You can instead choose to leave a method declaration in the
source class, converting it to an abstract class, if it is not already.

A member that you wish to push down may have dependencies. A member is a
dependency if its definition uses a member that is to be pushed down. Pushing a
member down without also pushing its dependencies down will introduce undefined
references in the source class. When you select a member to be pushed down, its
dependencies will be indicated. You can choose whether or not to push down the
dependencies as well.

To push members down:
1. Select the class from which the members will be pulled in one of the following

ways:

■ In a Java Source Editor, select the name.

■ In a navigator or the Structure window, select the name.

2. From the main menu, choose Refactor > Push Members Down.

The Push Members Down dialog opens.

3. In the Members to Extract table, select the members you wish to push down.

The members that are the dependencies of the selected members, if any, will be
indicated.

4. In the Abstract column, select the checkbox if you wish an abstract definition of
the member to be left in the source class.

This selection is transitive. It will cause dependencies of dependencies to also be
pushed down.

5. Click OK.

18.8.8 Refactoring Expressions
While developing your Java application you can easily convert expressions into
named elements.

18.8.8.1 How to Inline a Method Call
You can incorporate the body of a method into the body of its callers and remove the
original method. This is known as inlining a method call.

To inline a method call:
1. In a Java Source Editor, select an instance of the method call that you want to be

inlined.

2. From the main menu select Refactor > Inline.

■ If there is only one call to the method in this class, the change is made
immediately.

■ If there is more than one call to the method in this class, the Inline dialog
opens.

3. If the Inline dialog has opened:

■ Choose between inlining only the selected instance of the call or inlining all
instances of the call.

Refactoring Java Projects

Programming in Java 18-53

■ Click OK.

18.8.8.2 How to Introduce a Field
While developing your Java application you can easily convert an expression into a
reference to a field. A new field declaration will be added to the class, and the selected
expression will become its initialization. The original expression will be replaced by a
reference to the new field.

An expression cannot be converted into a field if its type is void.

To introduce a field:
1. In the source editor, select the expression.

2. From the main menu, choose Refactor > Introduce Field.

The Introduce Field dialog opens.

3. From the Type drop-down menu choose a type for the field.

The menu lists all types that are consistent with the expression. This option will
not be shown if only a single type is valid.

4. A suggested name will be shown in the Name text box.

You can modify or replace it, or choose another suggestion from the drop-down
menu.

5. Select an initialization:

■ Select Current Method to put the assignment statement for the field
immediately preceding the statement that contains the expression.

■ Select Field Declaration to assign the value to the field in its declaration
statement. This option will not be enabled if the expression has a variable or
parameter with local scope.

■ Select Constructor to assign the value to the field in the constructor methods
of the class. This option will not be enabled if the expression has a variable or
parameter with local scope.

6. Click OK.

18.8.8.3 How to Introduce a Variable
While developing your Java application you can easily convert an expression into a
reference to a variable. A new variable declaration will be added to the method, and
the selected expression will become its initialization. The original expression will be
replaced by a reference to the new member.

An expression cannot be converted into a member if its type is void.

To introduce a member:
1. In the source editor, select the expression.

2. From the main menu, choose Refactor > Introduce Variable.

The Introduce Variable dialog opens.

3. From the Type drop-down menu choose a type for the field.

The menu lists all types that are consistent with the expression. This option will
not be shown if only a single type is valid.

Refactoring Java Projects

18-54 User's Guide for Oracle JDeveloper

4. A suggested name will be shown in the Name text box.

You can modify or replace it, or choose another suggestion from the drop-down
menu.

5. Select Declare final if you wish to add the final modifier to the variable's
declaration.

6. Click OK.

18.8.8.4 How to Introduce a Parameter
While developing your Java application you can easily convert a constant expression
in a method body into a new parameter for the method. The expression will be
replaced by the new parameter name, the new parameter will be added to the
method's parameter list, and in all invocations of the method the expression will be
inserted as an additional argument.

Expressions can be introduced as parameters only if they are literals or operations on
literals.

This operation is disallowed for methods that implement an interface. Altering the
signature of such a method would invalidate the implementation.

To introduce a parameter:
1. In the source editor, select the expression.

2. From the main menu, choose Refactor > Introduce Parameter.

The Introduce Parameter dialog opens.

3. From the Type drop-down menu choose a type for the field.

The menu lists all types that are consistent with the expression. This option will
not be shown if only a single type is valid.

4. A suggested name displays in the Name text box.

You can modify or replace it, or choose another suggestion from the drop-down
menu.

5. Select Declare final if you want to add the final modifier to the variable's
declaration.

6. Click OK.

18.8.8.5 How to Introduce a Constant
While developing your Java application you can easily convert a constant expression
into a constant reference. The new constant declaration initialized by the expression
will be added to the class, and the original expression will be replaced by the name of
the constant.

Expressions can be introduced as constants only if they are literals or operations on
literals.

To introduce a constant:
1. In the source editor, select the expression.

2. From the main menu, choose Refactor > Introduce Constant.

The Introduce Constant dialog opens.

3. From the Type drop-down menu choose a type for the field.

Refactoring Java Projects

Programming in Java 18-55

The menu lists all types that are consistent with the expression. This option will
not be shown if only a single type is valid.

4. A suggested name displays in the Name text box.

You can modify or replace it, or choose another suggestion from the drop-down
menu.

5. Click OK.

18.8.8.6 How to Extract a Method
While developing your Java application you can easily extract part of the body of one
method to create another. The extracted code is replaced in the original method with a
call to the new method. Local variables and parameters used in the extracted code
become parameters of the new method. An assignment made by a statement in the
extracted code, if any, will be converted in the original member to an assignment that
takes the value of the call to the new method.

To be extractable, a piece of code must satisfy several restrictions:

■ It must consist of a single complete expression, or a sequence of complete
statements.

■ It cannot make an assignment to more than one variable whose declaration is
external to the selection.

■ It cannot have more than one exit point. An exit point is a statement that throws
an exception that is not caught in the selection, a break or continue statement
for a loop outside of the selection, or a return statement.

The new method is added to the same class as the original. The new method is
declared to be private.

To extract a method:
1. In the source editor, select the expression or the sequence of expressions that you

wish to extract.

2. From the main menu, choose Refactor > Extract Method.

The Extract Method dialog opens.

3. Enter a name for the new method.

4. In the Parameters list, specify the substitutions that will be made for the local
variables and parameters that appear in the selected code:

■ In the Name column replacement names, which are similar or identical to the
original names, are proposed. You can select and modify the names.

■ In the Included column, select the proposed parameters that will become the
parameters of the new method. Those that you deselect will become
uninitialized local variables in the new method.

■ Use the Up and Down buttons to order the parameters

5. Select static if you want to declare the new method to be static.

Note: Only the selected code block gets replaced by the extracted
method. Other occurrences of the same code block do not get
replaced.

Refactoring Java Projects

18-56 User's Guide for Oracle JDeveloper

This option is disabled if the method is forced to be static because it is called from
a static method, or if it is forced to be non-static because it uses a non-static
member.

6. Click OK.

The new method is added to the class, and the code you selected will be replaced
by a call to the new method.

7. If you deselected any of the proposed parameters in the Parameters list, edit the
new method to initialize its local variables.

18.8.8.7 How to Replace a Constructor with a Factory Method
You can convert a constructor into a factory method.

To convert a constructor into a factory method:
1. Select the constructor name in the Structure window or in a Java Source Editor.

2. On the main menu select Refactor > Replace Constructor With Factory Method.

The Replace Constructor With Factory Method dialog opens.

3. In the Method Name box, enter a name for the new method.

A suggested name based on the current class name already appears in the box.

4. To convert the constructor into a factory method click OK.

18.8.8.8 How to Encapsulate a Field
You can change the fields of a class from being publicly accessible to being accessible
only from within the class.

To encapsulate a field:
1. Select the field name (or its parent class) in the Structure window or in the Java

Source Editor.

2. On the main menu select Refactor > Encapsulate Fields.

The Encapsulate Fields dialog opens.

3. In the Fields table, check the box next to each field that you want to be
encapsulated.

In this dialog, you can also specify options for method/field accessibilities and the
scope for replacements.

4. Select how you would like accessors to be replaced as part of the encapsulation.

5. If you want to create tasks based on the changes you have made and add them to
the Tasks window, check the Add tasks to the task window box.

6. If you want to inspect the changes before you commit to the operation, select
Preview.

7. Click OK.

If you selected Preview, finish the extraction operation from the Preview log
window. For more information, see Section 18.8.3, "How to Rename a Code
Element."

Optimizing Application Performance

Programming in Java 18-57

18.8.8.9 How to Invert a Boolean Expression
While developing your Java application, you can select a boolean field, parameter or
local variable and initialize it with the opposite value. JDeveloper automatically
corrects all references to maintain the same code functionality. JDeveloper looks at all
fields, parameters and local variables and inverts all usages. This refactoring changes
the sense of a Boolean method or variable to the opposite one. A Boolean expression
evaluating to true will be false. Likewise, a Boolean expression evaluating to
false will be true.

For example, if you have a variable that is enabled and you want to change to change
the meaning to disabled, the Invert Boolean menu choice changes usages to disabled.

To invert a boolean method:
1. In the source editor, select the boolean expression.

2. Right-click on the expression and choose Refactor > Invert Boolean.

Table 18–1 contains an example of an inverted boolean expression.

18.9 Optimizing Application Performance
JDeveloper provides a suite of tools for analyzing the quality and performance of your
Java code. Use these tools to improve both the quality of your code and your own
programming skills.You can use JDeveloper's Auditing feature to analyze Java code
for conformance to programming standards.

Auditing is the static analysis of code for adherence to rules and metrics that define
programming standards. Auditing finds defects that make code difficult to improve
and maintain. JDeveloper's auditing tools help you find and fix such defects. Code can
be audited even when it is not compilable or executable.

■ A rule is a qualitative test for the presence or absence of some feature. For
example, common Java coding style requires that class names be capitalized. A
violation occurs when a rule is not adhered to.

■ A metric is a quantitative measurement of size or complexity. For example, a
method that is too long, or covers too many cases should delegate some of its
functionality to other methods. An over-threshold anomaly occurs when the
specified upper bound is exceeded.

You can create and customize profiles, choose the rules to be used, and set parameters
for individual rules. Browse the audit rules and metrics to learn more about them. For

Table 18–1 Invert Boolean Example

Before After

private double a;

...

public boolean method() {

 if (enabled){

 a =5;

 return true;

 }

 false;

}

private double a;

...

public boolean method() {

 if (disabled{

 a =5;

 return false;

 }

 return true;

}

Optimizing Application Performance

18-58 User's Guide for Oracle JDeveloper

more information, see Section 18.9.25, "How to Browse Audit Rules, Code Assists, and
Metrics."

Developers's audit and metrics features are extensible. Audit and metrics are two
facets of a source code analysis and transformation framework that can be customized
and extended. The public API for both audit and metrics is the
oracle.jdeveloper.audit package.

To audit Java code:
■ Run the auditor on source files to produce an audit report. For more information,

see Section 18.9.6, "How to Run Audit to Generate an Audit Report."

■ Use Code Assist to audit while editing. Audit violations are highlighted as you
edit, and you can apply automated corrections.

■ Audit from the command line to produce an audit report. For more information,
see

■ The Status window displays audit violations in the document selected in the
Active view.

An audit report displays rule violations and measurements organized as a tree. A row
of the tree corresponds to either a construct or a violation, and includes any measured
values for the construct or theoretical violation. A construct is a method, class, file,
project, or workspace.

The following properties are found in the rules:

Default fix

The fix that will be used for violations of this rule are when Apply Default Fix is
applied to a construct.

Pattern

A regular expression used as a filter to find unconventional identifiers.

Severity

Use to sort rule violations in the audit report.

Visibility

A threshold based on the accessibility keyword. Violations will be reported only if
they occur in classes or methods having at least the chosen visibility.

18.9.1 Understanding Audit Rules
Audit rules are static, qualitative, analyses of code.

In an auditing profile individual rules can be enabled and configured by setting their
properties. When a code construct does not satisfy a rule, a rule violation is reported.
Some rules define automatic fixes that you can choose to apply.

Table 18–2 Audit Rules

Rule Description

Default Fix The fix that will be used for violations of this rule are when
Apply Default Fix is applied to a construct.

Pattern A regular expression used as a filter to find unconventional
identifiers.

Severity Use to sort rule violations in the audit report.

Optimizing Application Performance

Programming in Java 18-59

18.9.2 Understanding Audit Metrics
Audit metrics are static, quantitative analyses of code.

In an auditing profile individual metrics can be enabled and configured. Metrics are
configured by setting a threshold: when a code construct exceeds the threshold, an
over-threshold measurement is reported in the audit report.

JDeveloper measures the following metrics:

Depth of Inheritance Tree (DIT)

The depth of the inheritance tree of a class. By convention, java.lang.Object has DIT of
1, a class which directly extends java.lang.Object has DIT 2, and so on.

Number of Statements (NOS)

 The size, in Java statements, of a method, class, or other construct.

Cyclomatic complexity (V(G))

 The branching complexity of a method. Constructs which enclose methods, such as
classes and projects, are assigned the maximum complexity measured for an enclosed
method. Values above 10 are generally considered problematic.

18.9.3 Using the Auditing Tools
You can use auditing tools to view audit reports and to investigate and correct rule
violations and over-threshold measurements. A new tab will be created in the Log
window when auditing starts, and the audit report will be displayed in it.

Auditing is the static analysis of code for adherence to rules and metrics that define
programming standards. Auditing finds defects that make code difficult to improve
and maintain. The JDeveloper auditing tools help you find and fix such defects. Code
can be audited even when it is not compilable or executable.

18.9.3.1 Using the Audit Window Report Panel
An audit report is a set of rule violations and metrics measurements presented as a
tree organized into constructs. A construct is a method, class, package, file, project, or
workspace. If the audit profile includes rules, the table will have a Severity column
that shows the designated severity of the constructs. If the audit profile includes
metrics, the table will have an additional column for each metric showing the
measurements for the constructs.

To sort the report by the contents of a column, click the column header. To reverse the
sort order, click again.

18.9.3.2 Using the Audit Window Toolbar
From the Log window toolbar you can perform the operations shown in Table 18–3.

Prefix A regular expression used to find identifiers with
unconventional prefix.

Visibility A threshold based on the accessibility keyword. Violations will
be reported only if they occur in classes or methods having at
least the chosen visibility.

Table 18–2 (Cont.) Audit Rules

Rule Description

Optimizing Application Performance

18-60 User's Guide for Oracle JDeveloper

18.9.3.3 Using Filters
You specify filters to prune the set of Java classes whose violations are shown. You can
filter by package names, class names, or both. A filter consists of one or more patterns
separated by commas.

A pattern can contain the following special characters:

■ * matches any number of characters

■ ? matches any single character

■ ! at the beginning of a pattern denotes an exclusion pattern

The set of classes that passes a filter is determined by considering the patterns in
order. A non-exclusion pattern adds all classes that match the pattern to the set, an
exclusion pattern removes all classes that match the pattern from the set. Table 18–4
contains the filters you can specify

Table 18–3 Audit Window Toolbar Icons

Icon Name Description

Refresh Click to rerun the audit on the same selection with
the same profile.

Cancel Click to terminate a running audit. Note that this
may give partial results.

Export Click to open the Export Results Dialog, from
which you can save the report to a file. You may
save the results in XML, HTML, or plain text.

Expand All Click to expand all the container nodes in the
report, exposing all the rows.

Collapse All Click to collapse all the container nodes in the
report, hiding all but the top-level constructs.

Group Constructs By Click to open the Group By dialog, from which you
can specify the types of container constructs that
will be shown. Grouping by constructs enables you
to organize the results better, track defects and
violations quickly, and analyze the results easily.

Fix Choose a fix for a rule violation from the
dropdown menu. For an individual rule violation,
choose among the fixes defined for that violation's
type. For a group construct, the only choice is
Apply Default Fixes, which applies the default fix
defined for its type, if any.

 Show Over Threshold
Only

Toggle the display of measurements that are within
acceptable limits. The threshold is a settable
property of metrics.

Table 18–4 Filters

Name Description

Package Enter filter patterns that will apply to all but the last element of
fully qualified class names. If this field is empty it has no effect.

File Enter filter patterns that will apply only to the last element of
fully qualified class names. If this field is empty it has no effect.

Apply Click to apply the given Package and File filters to the report's
rows.

Optimizing Application Performance

Programming in Java 18-61

18.9.3.4 Using the Audit Window Context Menu
Select one or more constructs (container nodes) or rule violations (leaf nodes) and
right-click to open the context menu. From the context menu you can perform the
operations shown in Table 18–5 on the selected constructs or rule violations.

18.9.4 How to Audit Java Code in JDeveloper
JDeveloper's auditing tools help you find and fix defects that make code difficult to
improve and maintain. You can audit code even when it is not compilable or
executable. The focus of an audit is defined by a profile, which is a set of audit rules
and metrics.

You can browse the audit rules and metrics to learn more about them. For more
information, see Section 18.9.25, "How to Browse Audit Rules, Code Assists, and
Metrics."

Clear Click to erase the Package and File filters, and to restore the
report's rows.

Table 18–5 Audit Window Context Menu Items

Name Description

Apply Default Fixes Choose to apply the default fix, if any, to each selected rule
violation or to all the violations in the selected constructs. You
can define the default fixes using the Tools > Preferences >
Audit: Profiles page.

Apply <Fix> Choose to apply this fix to the selected rule violation in the
construct.

About <Rule> Choose to display an explanation of the rule that applies to this
rule violation.

Hide <Rule> Violations Choose to remove all violations of the selected rule from the
report.

Show Hidden Violations Choose to restore all previously hidden violations.

Show Over Threshold Only Click to toggle the display of measurements that are within
acceptable limits.

Cancel Choose to terminate a running audit.

Refresh Choose to rerun the audit.

Group By Choose to open the Group By dialog, from which you can
specify the types of container constructs that will be shown.

Expand All Click to expand all the container nodes in the report, exposing
all the rows.

Collapse All Click to collapse all the container nodes in the report, hiding all
but the top-level constructs.

Go to Source Choose to open the source file at the point of the rule violation.
If you wish, you can edit the file and correct the violation.

Export Choose to open the Export Results Dialog, from which you can
save the report to a file.

Table 18–4 (Cont.) Filters

Name Description

Optimizing Application Performance

18-62 User's Guide for Oracle JDeveloper

To audit Java Code:
1. Create an Audit Profile that specifies the rules, code assists, and metrics used to

analyze Java programs. In an Audit Profile, individual rules and metrics can be
enabled and configured by setting their properties. When a code construct does
not satisfy a rule, a rule violation is reported.

2. Run the Audit Report.

■ From the main menu, choose Build Audit.... For more information, see
Section 18.9.6, "How to Run Audit to Generate an Audit Report."

■ You can also audit Java code from the command line by invoking ojaudit.exe,
which is included in your JDeveloper installation. For more information, see
Section 18.9.5, "Auditing Java Code from the Command Line."

3. Inspect the completed Audit Report for rule violation. For more information, see
Section 18.9.15, "How to Inspect an Audit Report Violation or Measurement."

An Audit Report displays rule violations and measurements organized as a tree. A
row of the tree corresponds to either a construct or a violation, and includes any
measured values for the construct or theoretical violation. A construct is a method,
class, file, project, or workspace.

4. Fix an audit rule violation manually by editing the source, or for some rules, by
selecting an automated fix. For more information, see Section 18.9.16, "How to Fix
an Audit Rule Violation.".

5. If you want to run the audit again, you can modify an audit profile by enabling or
disabling rules, code assists, and metrics, or by changing their configuration. For
more information, see Section 18.9.22, "How to Modify an Audit Profile."

You can save the finished audit report as an XML file or as a formatted HTML or text
file. For more information, see Section 18.9.14, "How to Save an Audit Report."
Formats are defined by XSL stylesheet files in the /jdev//audit/stylesheets
directory (this directory is not created until audit is run). To create a custom format,
adapt a copy of one of the predefined stylesheet files, and add it to the directory.

18.9.5 Auditing Java Code from the Command Line
You can audit a workspace, a project, or a source file from the command line by
invoking ojaudit.exe, which is included in your JDeveloper installation, in the
<jdev_install>/jdeveloper/jdev/bin directory.

Synopsis
ojaudit option... file...

Table 18–6 contains the parameters you can use during the audit.

Table 18–6 Command Line Parameters

Parameter Description

file The workspace (.jws), project (.jpr), or source (.java) file to
be audited.

-classpath path Set class path for files to audit, if a project is not being audited.

-encoding code The character encoding for the report. If absent, the character
encoding specified for the project is used (see the Compiler page
of the project's Project Properties dialog).

-disable rule Disable rule in profile. To supply multiple values, repeat this
option.

Optimizing Application Performance

Programming in Java 18-63

18.9.6 How to Run Audit to Generate an Audit Report
Developer allows you to audit your Java programs and generate an audit report.

To audit Java code in JDeveloper:
1. In the Application Navigator, select one or more applications, projects, or Java

source files. The Audit command also works for selections from other views, such
as editors and the Structure window.

2. From the main menu choose Build then Audit target.

The Audit <File, Project, or Application> Dialog dialog appears.

-enable rule Enable rule in profile. To supply multiple values, repeat this
option.

-fail severity Set the issue severity that the Auditor will regard as failure.

-f[ix] Applies default fixes to the code. This option modifies source
files.

-h[elp] Prints help for the command help and exits.

-o[utput] file The pathname of the output file. If omitted, output is written to
standard output.

-p[rofile] name (required) The profile to use. It is either one of the profiles
defined in JDeveloper (as set in the Audit > Audit Profiles page
of the Tools > Preferences dialog), or the path name of an
exported Audit profile file.

Case and whitespace are ignored when searching for a matching
profile.

-profilehelp Print defined profile names and exit.

-project file The project context to use for parameters that are source files. If
all parameters are projects or workspaces, this option is not
required.

-q[uiet] Suppresses the copyright message.

-sourcepath path Set source path for files to audit, if a project is not being audited

-s[tyle] file The XSLT stylesheet to apply to the report. The name can either
be a style sheet defined in JDeveloper, or a pathname to a style
sheet file. If absent, the output will be an XML file.

Case and whitespace are ignored when searching for a matching
predefined stylesheet.

-stylehelp Print defined style sheet names and exit.

-title text The title to use for the report. If absent when -untitled is not
specified, a default title will be used.

-untitled Causes the title to be omitted from the report.

-v[erbose] Causes all execution messages to be displayed.

-version Prints the command's version and exits.

-w[orkspace] The workspace context to use for parameters that are not
workspaces. If no workspace is designated, a default workspace
is synthesized.

workspace file Sets workspace context for files to audit.

Table 18–6 (Cont.) Command Line Parameters

Parameter Description

Optimizing Application Performance

18-64 User's Guide for Oracle JDeveloper

3. Choose a profile to use in one of the two following ways:

■ From the Profile dropdown menu choose a profile to use.

■ Click Edit to create or modify a profile.

4. Click Run.

An audit report appears in the Log window, and the audit begins. If you wish to
stop the audit, click the stop icon in the log's toolbar.

18.9.7 How to Audit Serializable Fields That Do Not Have The serialVersionUID
An object is marked serializable by implementing the java.io.Serializable
interface, which signifies that the object can be flattened into bytes and subsequently
inflated in the future.

There is an identifier called serialVersionUID that enables versioning.

You can run an audit that flags all classes that implement java.io.Serializable but do
not also have the serialVersionUID.

To set audit rules
■ From the main menu, choose Tools then Preferences then Audit thenProfiles.

18.9.8 How to Audit Unserializable Fields
An object is marked serializable by implementing the java.io.Serializable interface,
which signifies that the object can be flattened into bytes and subsequently inflated in
the future.

To turn off serialization on a field of an object, tag the field of the class of the object
with the Java's transient keyword. If a class is marked as serializable, but contains
unserializable fields that are not marked as transient, then the class is not serializable.
You can run an audit to detect these unserializable fields.

To set audit rules:
■ From the main menu, choose Tools then Preferences then Audit then Profiles.

18.9.9 Viewing an Audit report
Audit reports are displayed as tabbed panes of the Log window. Use the audit report
to investigate and correct rule violations and over-threshold measurements.

18.9.10 Refreshing an Audit Report
Use refresh to rerun an audit using the same profile. You may wish to perform a
refresh after you have made changes and fixes to your code.

To refresh an audit report:
■ Click in the Log Window toolbar, or right-click and choose Refresh.

The Export Audit Results dialog is cleared, and a new audit will begin. If you wish to
stop the audit, click in the Log's toolbar.

18.9.11 Organizing Audit Report Columns
You can rearrange the audit report columns to follow your preferred organization.

Optimizing Application Performance

Programming in Java 18-65

To organize audit report columns:
■ Drag the column headers left or right to your preferred position.

18.9.12 How to Organize Audit Report Rows
Audit report rows are rule violations or measurements, or groups of violations and
measurements. The report is organized as a tree. A row of the tree corresponds to
either a construct or a violation, and includes any measured values for the construct or
a theoretical violation. A construct is a method, class, file, package directory, project,
or workspace.

You can choose the constructs that are shown in the report.

To organize audit report rows:
1. Click the Group By icon in the Log window toolbar.

The Group By dialog opens.

2. Select the constructs you wish to see.

3. Click OK.

To sort a metrics report:
■ Click a column header to sort rows by that column. To reverse the sort order, click

again.

18.9.13 How to Filter Audit Report Rows
You can use a class name pattern filter to hide violations and measurements in classes
that do not match the filter.

A filter is a sequence of patterns separated by commas, semicolons, or spaces. A
pattern can contain the following special characters:

■ * matches any number of characters

■ ? matches any single character

■ ! at the beginning of a pattern denotes an exclusion pattern

The set of visible classes is determined by considering the patterns in order. A
non-exclusion pattern adds all classes that match the pattern to the set; an exclusion
pattern removes all classes that match the pattern from the set. Patterns are matched
against classnames.

To filter audit report rows:
1. In the Package box of the audit log window, enter a sequence of patterns that will

apply to all but the last element of fully-qualified class names. You can leave this
box empty if you specify a File filter.

2. In the File box, enter a sequence of patterns that will apply only to the last element
of fully-qualified class names. You can leave this box empty if you specify a
Package filter.

3. Click Apply.

The report will be redisplayed to show only the selected rows.

Click Clear to delete text from the Package and File boxes.

Optimizing Application Performance

18-66 User's Guide for Oracle JDeveloper

18.9.14 How to Save an Audit Report
You can save an audit report as an XML file or as a formatted HTML or text file.

Formats are defined by XSL stylesheet files in the <jdev_install>/jdev/<
system>/audit/stylesheets directory (this directory is not created until audit is
run). To create a custom format, adapt a copy of one of the predefined stylesheet files,
and add it to the directory.

To save an audit report:
■ Click in the Log Window toolbar, or right-click and choose Export.

The Export Audit Results dialog opens. Choose a title, format, and destination for
the report, and click OK.

18.9.15 How to Inspect an Audit Report Violation or Measurement
JDeveloper generates a report of all audit rule violations.

To inspect an audit rule violation:
1. In the audit report, select the construct you wish to view.

2. Right-click and choose Go to Source, or double-click the construct.

An editor for the source file opens with the cursor positioned at the location of the
rule violation or the code element measured

3. Right-click on a violation or anomaly, and select About to learn more about the
rule that has been violated

18.9.16 How to Fix an Audit Rule Violation
You can fix an audit rule violation manually by editing the source, or for some rules,
by selecting an automated fix.

To manually fix an audit rule violation:
1. In the audit report, select the rule violation (a leaf node in the Constructs tree).

2. Right-click and choose Go to Source.

An editor for the source file opens with the cursor positioned at the location of the
rule violation.

3. Edit the code to correct the cause of the violation.

To apply an automated fix to an audit rule violation:
1. In the audit report, select the rule violation (a leaf node in the Constructs tree).

2. Right-click, and choose an Apply <Rule> Fix menu item, if any.

or

Click in the Log window toolbar, and choose one of the Apply <Rule> Fix menu
items.

18.9.17 How to Fix a Construct's Audit Rule Violations
You can apply automated fixes to all the rule violations in a construct. Default fixes
will be applied to each rule violation in the construct that has a Default Fix
property with a value other than None.

Optimizing Application Performance

Programming in Java 18-67

To fix a construct's audit rule violations:
1. In the audit report, select the construct (a container node in the Constructs tree.

2. You can apply default fixes in one of the two following ways:

■ Right-click, and choose Apply Default Fixes.

■ Click in the Log window toolbar, and choose Apply Default Values.

18.9.18 How to Hide Audit Rule Violations
You can suppress the display of all the rule violations of a given type in the audit
report. It is not possible to suppress individual rule violations.

To hide audit rule violations:
1. In the audit report, select a rule violation (a leaf node in the Constructs tree).

2. Right-click, and choose Hide <Rule> Violations.

All of the violations of <Rule> are removed from the audit report. The removed
rules are not tallied in their parent construct's summaries. Empty constructs are
removed if Show Over Threshold Only is enabled. If not, just the violations are
removed.

To restore hidden audit rule violations:
1. In the audit report, right-click to open the context menu.

2. Choose Show Hidden Violations.

All of the previously hidden rule violations are restored to the audit report.

18.9.19 How to Hide Audit Report Measurements
Metrics reports display measurements for the constructs in the analyzed code. You can
focus the report on over-threshold measurements by hiding the others. The threshold
is a settable property of metrics.

To show only over-threshold measurements:
In the Log window toolbar, click the over threshold icon. Click again to show all
measurements.

Removed measurements are not tallied in their parent construct's summaries. Empty
constructs are removed if Show Over Threshold Only is enabled. If not, just the
violations are removed.

18.9.20 Managing Audit Profiles
An audit profile defines the focus of an audit by specifying the rules, code assists, and
metrics that will be used to analyze Java code. While several profiles are predefined,
you can create others. You can modify an audit profile by enabling or disabling rules,
code assists, and metrics, or by changing their configuration.

Certain audit profiles are used by default with some JDeveloper processes and
features.

■ The Code Assist profile is used by the Source Editor, Status window, Application
Overview, and File List.

■ The Audit While Compiling profile is used at the end of a compile when Audit
While Compiling is selected in the Audit page of the Preferences dialog.

Optimizing Application Performance

18-68 User's Guide for Oracle JDeveloper

■ The Audit Rules profile is the initial default for the Audit command. However,
this is not permanent because the Audit dialog remembers whatever profile was
last selected.

18.9.21 How to Create an Audit Profile
JDeveloper allows you to specify the rules, code assists, and metrics used to analyze
Java programs.

To create an audit profile:
1. From the main menu, choose Tools then Preferences.

The Preferences dialog opens.

2. Choose the Audit - Profiles page.

3. From the Profile dropdown menu, choose a profile to copy.

4. Select the rules, assists, and metrics to enable in the new profile. For more
information, see Section 18.9.26, "How to Activate and Deactivate Components of
an Audit Profile."

5. Configure the selected rules, assists, and metrics, if desired. For more information,
see Section 18.9.27, "How to Set Property Values for an Audit Test."

6. Click Save As.

7. Enter a name for the new profile, and click Save.

The new profile name is shown in the in the Audit Profiles preferences page's
Profile box.

8. Click OK.

18.9.22 How to Modify an Audit Profile
JDeveloper allows you to modify audit profiles you created to analyze Java programs.

To modify an existing audit profile:
1. From the main menu, choose Tools > Preferences.

The Preferences dialog opens.

2. Choose the Audit - Profiles page.

3. From the Profile dropdown menu, choose a profile to modify.

4. Select the rules, assists, and metrics to enable in the new profile. For more
information, see Section 18.9.26, "How to Activate and Deactivate Components of
an Audit Profile."

5. Configure the selected rules, assists, and metrics, if desired. For more information,
see Section 18.9.27, "How to Set Property Values for an Audit Test."

6. Click OK.

Note: Names are not case or space sensitive, though case and space
are preserved. If the new name differs only in case or space from an
existing name, a warning message appears to inform you of this.

Optimizing Application Performance

Programming in Java 18-69

18.9.23 How to Delete an Audit Profile

To delete an existing audit profile:
1. From the main menu, choose Tools >Preferences.

The Preferences dialog opens.

2. Choose the Audit - Profiles page.

3. From the Profile dropdown menu, choose a profile to be deleted. (You cannot
delete the predefined profiles.)

4. Click Delete.

The profile's name will be removed from the Profile box.

5. Click OK.

18.9.24 How to Import or Export an Audit Profile
You can import or export audit profiles. This would enable you to share profiles, for
example, or to maintain a checked in profile used by ojaudit and a nightly build. Audit
profiles are imported or exported as XML files.

To import or export an audit profile:
1. In the Tools menu, select Preferences to open the Preferences dialog.

2. In the Preferences dialog, open the Audit - Profiles page

3. Click Import or Export, and select the profile you want to import or export.

18.9.25 How to Browse Audit Rules, Code Assists, and Metrics
Browse the audit tests to learn more about them.

To browse the audit rules:
1. From the main menu, choose Tools >Preferences.

The Preferences dialog opens.

2. Choose the Audit - Profiles page.

3. Select one of the Rules, Code Assists, and Metrics tabs.

4. In the list tree in the left panel, select a category.

A description of the category will be shown in the Explanation box.

5. Expand the category and select a rule, code assist, or metric, depending on the tab
selected.

A description of the selected item will be shown in the Explanation box, and its
properties and settings will be shown in the right pane

6. Click OK to close the dialog.

18.9.26 How to Activate and Deactivate Components of an Audit Profile
Activate and deactivate rules, code assists, and metrics for an audit profile from the
Audit Profiles preferences page while creating or modifying the profile.

Profiling a Project

18-70 User's Guide for Oracle JDeveloper

To activate or deactivate a rule, code assist, or metric:
1. Select the project in the Application Navigator

2. Choose Tools then Preferences - Audit - Profiles page.

3. In the dialog, select one of the Rules, Code Assists, and Metrics tabs.

4. In the list tree in the left panel, expand the category.

5. Click the checkbox for a test to activate or deactivate it.

6. Optionally, configure the rule, code assist, or metric. For more information, see
Section 18.9.27, "How to Set Property Values for an Audit Test."

7. Click OK when you are done.

To activate or deactivate a category:
In the left-hand list, click the checkbox for a rule category to activate or deactivate all
the category's items. Clicking on any item in the category while pressing the Ctrl key
achieves the same result.

18.9.27 How to Set Property Values for an Audit Test

To set an audit rule's property values:
1. Select the project in the Application Navigator.

2. Choose Tools then Preferences - Audit - Profiles page.

3. In the dialog, select one of the Rules, Code Assists, and Metrics tabs.

4. In the list tree in the left pane, expand a category and select an item.

5. The test's property names and current values are shown in the right panel.

6. Change the property values by choosing or entering alternative values.

7. Click OK when you are done.

18.10 Profiling a Project
The profiler gathers statistics on your program that enable you to more easily
diagnose performance issues, such as bottlenecks by identifying methods consuming
more time, which method is called the most, how memory is used, and what kind of
objects are being created.

The Profiler monitors and logs a running program's use of processor and memory
resources. It gathers statistics that enables you to more easily diagnose the
performance issues and correct the inefficiencies in your code.

JDeveloper offers two kinds of profilers: The CPU Profiler and the Memory Profiler,
for local as well as remote profiling.

■ The CPU Profiler is used to analyze your application's impact on the processor.
Use the CPU Profiler to test functions of your application, such as startup and
initialization, repainting, and compiling.

■ The Memory Profiler provides a visual and statistical analysis of how your
program utilizes memory in the Java heap.

Profiling a Project

Programming in Java 18-71

18.10.1 Understanding Memory Profiler Views
Memory profiling displays which parts of the application are using the most memory.
It also enables you to investigate which objects are responsible for holding the most
memory. The Memory Profiler displays data in three views: Classes and Allocators for
new objects/garbage collection reporting, and the References view for heap snapshots.

The Classes view shows new objects/garbage collection data organized by Java class.
It is used to discover which classes allocated the most memory.

The Allocators view shows the threadgroups, threads and methods that created the
most memory.

The References view contains a hierarchical display of all classes, objects and
references to objects in the application heap at the time of the snapshot.

Profilers are invoked from the Run menu. You can use the Profiler pages of the Edit
Run Configuration dialog to specify the mode of profiling you would like to analyze
your code.

In the dialog, you can also specify how you want to profile your programs, locally or
remotely. To profile your program locally, set Profiler Connection Parameters, and to
profile your program remotely, set Remote Profiling Parameters in the Profiler page
of the Edit Run Configuration dialog.

18.10.2 Profiling an Application
You can profile your application locally or remotely. In local profiling, you profile
your application within JDeveloper by choosing one of the CPU Profile or Memory
Profile commands from Run menu, or outside JDeveloper by choosing Attach Profiler
from the Run menu. In remote profiling, you run a profiling session remotely. You
profile your application external to JDeveloper with, or without, profiler parameters.
The application's JVM can be on the same host or on a network.

18.10.3 Configuring Profilers
You can configure options for the CPU and Memory profilers by right-clicking on a
project and clicking Project Properties. Click Run/Debug/Profile > Edit > Tool
Settings > Profiler to set the options.

18.10.4 Understanding CPU Profiling
You use the CPU Profiler to gather statistics on the performance of your application.
The CPU Profiler can be used to test functions of your application, such as startup,
initialization, repainting, and compiling.

The CPU Profiler collects sample data on a running application at regular intervals
based on the Sample Interval setting, which you can change using the CPU Profiler
options page. For more information, see Section 18.10.13, "How to Set Options for the
CPU Profiler."

The Profiler provides two CPU profiling options: Sample CPU Time and Count
Method Calls. You can use Sample CPU Time to determine the areas of your code
which are accounting for the most (or least) execution time. Count Method Calls
display which methods are called and the number of times they are called.

Profiling a Project

18-72 User's Guide for Oracle JDeveloper

Counting method calls is the most expensive form of profiling, both in terms of CPU
overhead and memory usage, because the process uses extra CPU for every method
entry and exit and it collects data for every method that is called during the use case.

The CPU Profiler window displays data that the Profiler returns. It provides several
options to view, sort, and organize Profiler results, as well as to begin, label, compare,
and end Profiler use cases.

18.10.5 Understanding Memory Profiling
The profiler has two tools for memory profiling: New objects/garbage collection
reporting and reference snapshots (also known as heap dumps). Use new
objects/garbage collection reporting to find out what parts of an application are using
the most memory. Use reference snapshots to find out what objects are responsible for
holding the most memory. The options allow you to use both at the same time, but
usually you would not need a snapshot unless you have spotted a memory leak, and
you would not need another new objects/G.C. report if you are investigating a
particular leak.

The Memory Profiler window displays data that the profiler returns. It provides
several options to view, filter, sort, and organize Profiler results, as well as to begin,
label, compare, and end Profiler use cases

18.10.6 Understanding Profiler Performance
The Profiler itself consumes CPU and memory resources during use. The overhead
varies depending on the profiling mode in operation. In general, CPU sampling (with
a 20 ms. sample interval) and reference snapshots are the fastest and use the least
memory.

Both CPU method call count and memory new objects/garbage collection profiling are
much more expensive in terms of CPU and memory in both the Profiler and profilee.
This is because they intercept essentially every method call and record per method,
per call stack, per thread data.

In the case of reference snapshots, it takes only a few seconds for the Profiler agent to
write a snapshot file. All other processing is done outside the application, so memory
snapshots have little effect on application performance.

Table 18–7 contains some actual performance times for an application's benchmark.

Note: The Profiler does not allow you to sample time and count
method calls at the same time. Counting method calls will cost you a
high level of CPU time, and also distorts the profiler results.

Table 18–7 Application Benchmark Times

Profile Type Relative Time Time (seconds) Notes

No profiling 1.0 720

CPU samples 1.025 738 20ms sample rate

CPU samples 1.29 930 10ms sample rate

Memory new objects/garbage
collection

1.56 1125

Reference Snapshot 1.02 735

Profiling a Project

Programming in Java 18-73

Table 18–8 contains the numbers produced by a shorter run:

As the Profiler output is essentially the same for both the 10 and 20 ms. sample
intervals, the 20 ms. interval is preferable.

The two tables illustrate that while profiling overhead can vary dramatically for
different use cases, CPU samples and reference snapshots are always less expensive
than the other alternatives.

In JDeveloper, you can profile a usecase in the default allocated 512MB memory, but
some use case require a memory of 1GB or more for new objects/G.C. memory
profiling.

18.10.7 Understanding Profiler Use Cases
The aim of profiling is to discover those parts of an application that use more
resources than desired, and improve them so that optimization of resources can be
achieved. The process is to find individual commands, transactions, or sequences of
actions that are perceived to be slow, use too much memory or leak memory. You then
investigate the cause, make changes intended to improve performance, and then
measure again to see if the changes had the desired effect.

In the profiler, we call such a command, transaction, or sequence of actions a use case.
The profiler is designed to allow you to isolate meaningful use cases and measure
them precisely. By default, the profiler measures nothing until you begin a use case
and stops measuring when you end the use case. The data displayed is always relative
to a given use case.

The toolbar in the profiler tab indicates the current use case status and provides
controls to start and stop use cases and navigate between them.

The Begin Use Case icon in the top left of the toolbar is used to start a new use case.
The End Use Case icon beside it is used to stop a running use case. When you start a
use case, the End Use Case toolbar icon is enabled and the Begin Use Case toolbar
icon is disabled.

If you save an active use case, the use case stops immediately; the End Use Case
toolbar icon is disabled, and Begin Use Case toolbar icon is enabled.

Both the begin and end use case controls are disabled when:

■ A use case has ended but is still being processed by the profiler.

■ The profilee application has stopped running.

■ The profiler is no longer connected.

■ You open a saved session.

Table 18–8 Shorter Run Times

Profile Type Relative Time Time (seconds) Notes

No profiling 1.0 30.7

CPU samples 1.4 41.8 20ms sample rate

CPU samples 1.7 51.2 10ms sample rate

Method call count 4.6 141.2 With method filter

Method call count 6.6 201.3 No filter

Profiling a Project

18-74 User's Guide for Oracle JDeveloper

18.10.8 How to Profile a Project in JDeveloper
The Profiler monitors and logs a running program's use of processor and memory
resources. It gathers statistics that enable you to diagnose performance issues and
correct the inefficiencies in your code.

The steps for profiling a project are:
1. Set options for the CPU and Memory Profilers. For more information, see

Section 18.10.13, "How to Set Options for the CPU Profiler" and Section 18.10.15.3,
"How to Set Options for the Memory Profiler."

For example, you can specify if you want the Profiler to sample CPU time usage
by your application, or to count method calls. Or you can specify if you want the
Profiler to report data on new objects and garbage collection, or to provide a heap
snapshot.

2. Start the CPU or Memory Profiler inJDeveloper. For more information, see
Section 18.10.14, "How to Start the CPU Profiler."

You can also run a profiling session remotely. When you start a remote profiling
session, the Profiler connects and profiles remote applications as if they were local.
For more information, see Section 18.10.16, "Profiling Remotely."

3. Isolate meaningful use cases in your program and measure them precisely. For
more information, see Section 18.10.7, "Understanding Profiler Use Cases."

The Begin Use Case control in the top left of the toolbar is used to start a new use
case. The End Use Case control beside it () is used to stop a running use case.
When you start a use case, the End Use Case toolbar icon is enabled and the Begin
Use Case toolbar icon is disabled.

4. Inspect the data that the profiler returns. The Profiler windows provide options to
view, filter, sort, and organize Profiler results, as well as to begin, label, compare,
and end Profiler use cases.

5. You can also save the results of your Profiling session for later analysis.

After you have completed your Profiling session, you can then use its statistics to more
easily diagnose the performance issues and correct the inefficiencies in your code.

18.10.9 CPU Profiling
The CPU Profiler tabulates and displays statistical data on the performance on your
application, either in terms of time usage, or methods called.

The CPU Profiler enables you to profile your code in one of two ways:

■ Sample CPU Time to identify which parts of an application are taking the most
time.

■ Count Methods Calls to confirm that methods are being called and how many
times they are called.

18.10.10 Understanding CPU Profiler Views
CPU profiling tabulates the processing time spent by each method in your application
by displaying Java Platform calls, and counting those method calls. The CPU Profiler
displays data in two views: Hotspots and Call Stacks.

The Hotspots view lists all Java platform methods and all methods they call, sorted by
time usage in the CPU Profiler's time sampling mode of operation. It also displays the

Profiling a Project

Programming in Java 18-75

cumulative amount of CPU time spent in each method. During the method call count
operation, the Hotspots view shows all the methods and the number of times they
were called.

The Call Stacks view, during the CPU Profiler's time sampling mode of operation, lets
you view the Java platform methods called in their call hierarchy. In the count method
call mode, the Call Stacks view lists the Java platform methods called, sorted by thread
group.

18.10.11 Understanding CPU Time Sampling Results
The CPU profiler, when used in time sampling mode, analyzes your program and
reports results on CPU time usage. The data is displayed in two views: Hotspots and
Call Stacks.

The Hotspots view lists all methods sorted by the value of the time spent in them. The
hierarchy beneath each method shows the callers of the method, and in turn, their
callers, and so on.

The topmost methods in Hotspots are often just noise; the path that the event
dispatcher takes to accomplish a task. You can use the Stack Filter to narrow the view
down to only relevant methods. Alternatively, you can use the Edit Filter dialog to
enter a find or filter expression that will specify the methods to be displayed.

The Call Stacks view lets you see the methods called in their call hierarchy. That is,
each level is called by the level immediately above it. Table 18–9 contains the data
columns that display in the Calls Stacks View.

Table 18–9 Profiler Data Columns

Column Description

Name Displays the fully qualified method names.

CPU% Displays the percentage of the currently selected data column.
For example, if the CPU column is selected, indicated by a
downward-pointing triangle, this column is named CPU%. If
CPU Shallow column is selected, the column name would be
CPU Shallow%.

CPU (ms) Displays the cumulative amount of CPU time spent in seconds,
in each method and all the methods it calls.

CPU Shallow (ms) Displays the amount of CPU time spent in each method
individually.

Blocked (ms) Displays the cumulative blocked time spent in each method and
all the method it calls. The column is available if the Collect
Blocked and Wait Time checkbox is selected in the Edit Run
Configuration dialog.

Blocked Shallow (ms) Displays the blocked time spent in each method. The column is
available if the Collect Blocked and Wait Time checkbox is
selected in the Edit Run Configuration dialog.

Wait (ms) Displays the cumulative wait time of each method and all the
method it calls. The column is available if the Collect Blocked
and Wait Time checkbox is selected in the Edit Run
Configuration dialog.

Wait Shallow (ms) Displays the wait time of each method. The column is available
if the Collect Blocked and Wait Time checkbox is selected in the
Edit Run Configuration dialog.

Profiling a Project

18-76 User's Guide for Oracle JDeveloper

18.10.12 Understanding Method Call Counts Results
The CPU Profiler, when used to count method calls, confirms that methods are being
called and tells you how many times. Method call counting is useful when you want to
know why a particular method is taking too much CPU time. You can use the
Profiler's count method call data to analyze the callers to that method, and edit your
code appropriately to reduce the number

18.10.13 How to Set Options for the CPU Profiler
You can specify if you want the Profiler to sample CPU time usage by your
application, or to count method calls.

To set CPU Profiler options:
1. In the navigator, double-click the project you want to profile to open the Project

Properties dialog.

2. Click Run/Debug/Profiler.

3. Click Edit.

4. In the Edit Run Configuration dialog, set the options as desired on the Tool
Settings - Profiler - CPU page.

You can specify if you want the profiler to sample CPU time or count method
calls.

5. When finished, click OK.

18.10.14 How to Start the CPU Profiler
Starting a CPU profiling session will automatically run your program. Once the CPU
profiler window is open, you can begin a use case to profile your application.

Elapsed (ms) Displays the cumulative elapsed time of each method and all the
method it calls. The column is available if the Collect Elapsed
Time checkbox is selected in the Edit Run Configuration dialog.

Elapsed Shallow (ms) Displays the elapsed time of each method. The column is
available if the Collect Elapsed Time checkbox is selected in the
Edit Run Configuration dialog.

I/O (ms) Displays the cumulative Input/Output time of each method and
all the method it calls. The column is available if the Collect IO
Time checkbox is selected in the Edit Run Configuration dialog.

I/O Shallow (ms) Displays the Input/Output time of each method. The column is
available if the Collect IO Time checkbox is selected in the Edit
Run Configuration dialog.

Note: If you see more than one top-level method per thread in the
Stacks view, the stack depth is too low for your application. To
increase the stack depth, you need to update the CPU Profiler options
page in the Edit Run Configuration dialog.

Table 18–9 (Cont.) Profiler Data Columns

Column Description

Profiling a Project

Programming in Java 18-77

To start the CPU Profiler:
1. In the navigator, select a runnable node, for example, Application1.java.

2. From the main menu, choose Run > CPU Profile project.

If no default run target is specified in the Launch Settings page of the Edit Run
Configuration dialog (Application menu > Project Properties >
Run/Debug/Profile), the Choose Default Run Target dialog opens. Use this dialog
to specify the default run target

3. Click the Begin Use Case icon to begin a profiling use case.

18.10.15 Memory Profiling
The Memory Profiler enables you to find out how your program is using the Java
heap. You can find inefficient heap usage and any suspect memory behavior.

The profiler has two tools for memory profiling: new objects/garbage collection
(hereafter referred to as new/G.C. reporting) and reference snapshots (also known as
heap dumps). Note the following points while using these tools:

■ Use new/G.C. reporting to find out what parts of an application are using the
most memory.

■ Use reference snapshots to find out what objects are responsible for holding the
most memory.

Memory profiling and method call counts, slows down the system and the application
considerably. Note the following points of information before you start profiling an
application:

■ Keep your use cases specific and short.

■ Wait for the application to start, before you start the use case.

■ When profiling large applications, JDeveloper requires more than the default
memory size. If your applications slows down, navigate to <jdev_install>/jdev/bin
directory and try launching JDeveloper from command line with the following
command:

jdev -J-Xmx1024m

This command allocates 1 GB of virtual memory to JDeveloper, overriding the
default memory of 512 MB.

■ A web application deployed in Oracle WebLogic Server is considered as a large
application. Hence, launch JDeveloper with the -J-Xmx1024m parameter to
increase the memory size before you start profiling.

■ Some large applications or use cases may fail when profiled in Windows, try
profiling such applications or use cases in Linux. Windows operating systems
limit the contiguous virtual memory for JVM, but there is no such limitation in
Linux.

Note: If you want to profile your application immediately when the
profiler is launched, select the Begin Use Case on Application
Startup checkbox in the Profiler page of Edit Run Configuration
dialog.

Profiling a Project

18-78 User's Guide for Oracle JDeveloper

18.10.15.1 Understanding Memory Profiler Views
The Memory Profiler displays data in three views: Classes view, Allocators view for
new/G.C. reporting, and the References view for heap snapshots.

■ The Classes view shows new objects/garbage collection data organized by Java
class. It is used to discover which classes allocated the most memory. You can
switch to this view by clicking the Classes tab at the bottom of the Memory
Profiler.

■ The Allocators view shows the threadgroups, threads, stacks, and methods that
created the most memory. You can switch to this view by clicking the Classes tab
at the bottom of the Memory Profiler.

■ The References view contains a hierarchical display of all classes, objects and
references to objects in the application heap at the time of the snapshot.

18.10.15.2 Understanding Reference Snapshots
A reference snapshot is a hierarchical display of classes, objects and references to
objects in the application heap at the time of the snapshot. There are two fundamental
kinds of references: references from JVM garbage collection roots to objects, and
references from one object to another.

JVM garbage collection roots include references from an active thread, references from
JNI local and global variables, and internal JVM references. These are the references
that keep objects in memory; if there is no path from a gc root to an object, it is eligible
for garbage collection. The snapshot contains only objects that are reachable from one
or more JVM gc roots.

Note that static references and references from class loaders are not garbage collection
roots. A class loader can be garbage-collected when there are no more references to the
class loader, any classes loaded by the class loader or any objects of these classes.
When a class loader is garbage collected, all classes it has loaded are also garbage
collected, as well as all objects that are only referred to by static references from these
classes.

There are four types of references from objects to objects: normal (strong) references,
soft references, weak references and pseudo references. When you are looking for
memory leaks, you normally only care about strong references. You can toggle
between viewing only strong references, or all references.

New and old references in different snapshots are indicated using different font styles.
When you compare two memory snapshots, the methods in the current snapshot show
up in boldface font. If there are methods that are also in the other snapshot, they are
shown in bold-italic font in the current snapshot.

There are several ways to compare reference snapshots. In the Memory Profiler
References view, for example, you can choose Compare With to select a different use
case (snapshot) from the current one. Or, if you have two profiler tabs open (for
example, if you have opened a saved profile session) select Compare With and Other,
then choose a use case from another session.

18.10.15.3 How to Set Options for the Memory Profiler
You can specify if you want the Profiler to sample CPU time usage by your
application, or to count method calls.

Profiling a Project

Programming in Java 18-79

To set memory profiler options:
1. In the navigator, double-click the project you want to profile to report data on new

objects and garbage collection, or to provide a heap snapshot.

2. Click Run/Debug/Profiler.

3. Click Edit.

4. In the Edit Run Configuration dialog, set the options as desired on the Tool
Settings - Profiler - CPU page.

 You can specify if you want the profiler to collect new objects/garbage collection
data, take a heap snapshot, or do both.

5. When finished, click OK.

18.10.15.4 How to Start a Memory Profiling Session
Starting a Memory profiling session also automatically runs your program. Once the
Memory profiler window is open, you can begin a use case to profile your application.

To start the Memory Profiler:
1. In the navigator, select a runnable node.

2. From the main menu, choose Run > Memory Profile project.

3. Click the Begin Use Case icon to start the profiling session.

18.10.16 Profiling Remotely
You can run a profiling session remotely. When you start a remote profiling session,
the Profiler connects and profiles remote applications as if they were local. Since you
still run the Profiler locally, you can profile applications on other computers provided
that they have a reachable IP address or DNS name.

The main difference between remote and local profiling is the way in which you begin
the profiling session. For local profiling, JDeveloper automatically launches the
program that you want to profile (the profilee) and then attaches the Profiler to that
program. For remote profiling, you must manually launch that profilee program and
attach the Profiler later. Once the profilee is launched and the JDeveloper Profiler is
attached to it, remote profiling is no different from local profiling. Remember that you
can use remote profiling whether or not the profilee process is running on the same
machine as JDeveloper.

Remote profiling and local profiling each have advantages over the other. When you
remote profile, the Profiler and profilee can be run on two different computers so that
they are not competing for the same resources. However, transferring large amounts
of data over a network could make profiler performance significantly slower.

Note: If you are profiling your application remotely, you can start
your external application with or without profiler parameters. An
application started with profiler parameters can have JVM can be on
the same host (local) or on a network. An application started without
profiler parameters must have JVM on the same host, and you may
attach the profiler later.

Profiling a Project

18-80 User's Guide for Oracle JDeveloper

18.10.17 Understanding Profiler Agent Support for JVMs
To profile remotely in JDeveloper, you invoke the profiler agent. The JDeveloper
profiler agent supports 32- and 64-bit JVMs in Windows and Linux. You specify a JVM
for a project using the Edit Run Configuration - Launch Settings page.

The names of the profiler agent files are based on the supported architecture and JVM
size:

■ profiler_x32.dll

■ profiler_x32.so

■ profiler_x64.dll

■ profiler_x32.so

If you launch the profilee from JDeveloper, the profiler automatically detects the size
of the JDeveloper JVM.

■ On Linux, it should use API to detect which of 32-bit or 64-bit architecture remote
JVM is and use appropriate agent. (This can be generalized to support additional
architectures.)

■ On Windows, it should use API to detect which of 32-bit or 64-bit architecture
remote JVM is and, if it is not the same as JDev JVM architecture, not show it in
the list of available JVMs to attach

If you attach locally and the JDeveloper JVM is 32-bit, the profiler attempts to load the
32-bit agent and if that fails, tries to use the 64-bit agent. If the JDeveloper JVM is
64-bit, the profiler only tries the 64-bit agent.

18.10.18 How to Invoke the Profiler Agent
To profile a program remotely in JDeveloper, you must start the Java process from the
command line. From the command line, you also invoke the Profiler Agent. Once the
process has started, you can connect the JDeveloper Profiler to the Profiler Agent.

You can invoke the Profiler Agent using the -agentlib or -agentpath option.

To invoke the Profiler Agent using the -agentlib option:
At the command line, enter the following execution string:

java
-agentlib:<Profiler-Agent-Library>=<sub-option1>[=<value1>],<sub-option2>
[=<value2>]... -classpath
 -classpath <Project_Directory>\classes <Java_Main_Class>

Example 1
java
-agentlib:C:\JDeveloper\jdeveloper\jdev\lib\
profiler_x32=jarpath=C:\JDeveloper\jdeveloper\jdev\lib\
profiler-agent.jar,port=4000,enable=t,startup=connect
-classpath c:\MyApp\MyProject\classes MyMainClass

Note: While specifying the -agentlib, you may specify the absolute
path of the agent excluding the .dll extension, or add the agent's path
to your PATH variable and then specify the agent without absolute
path and extension.

Profiling a Project

Programming in Java 18-81

Example 2
set PATH=C:\JDeveloper\jdeveloper\jdev\lib;%PATH%

java
-agentlib:profiler_
x64=jarpath=C:\JDeveloper\jdeveloper\jdev\lib\profiler-agent.jar,port=4000,
enable=t,startup=connect
 -classpath c:\MyApp\MyProject\classes MyMainClass

To invoke the Profiler Agent using the -agentpath option:
At the command line, enter the following execution string:

java
 -agentpath:<Path_to_Agent_Library>=<option1>[=<value1>],<option2>[=<value2>]...
 -classpath <Project_Directory>\classes <Java_Main_Class>

where

<Path_to_Agent_Library> is the full path to the profiler_x32.dll or
profiler_x64.dll. For example, <jdev_
install>\jdeveloper\jdev\lib\profiler_x32.dll.

Example
-agentpath:C:\JDeveloper\jdeveloper\jdev\lib\
profiler_x32.dll=jarpath=C:\JDeveloper\jdeveloper\jdev\lib\
profiler-agent.jar,port=4000,enable=t,startup=connect,depth=1000,interval=20
-classpath c:\MyApp\MyProject\classes MyMainClass

Table 18–10 contains the suboptions that are available with the -agentlib and
-agentpath options.

Note: While specifying the -agentpath, you must specify the
absolute path to the agent including the.dll extension.

Table 18–10 Suboptions

Suboption Description

port=<port> Specifies the port over which the data will be transferred.
Defaults to 4000.

jarpath=<path> Path to profiler JAR file. This JAR is located at
 <jdev_install>\jdeveloper\jdev\lib\
profiler-agent.jar. If the JAR path is not specified, the JAR
must be on bootstrap classpath.

enable=[t][c][m][r] Enables agent capabilities.

■ t = CPU time sampling

■ m = memory new/gc

■ c = count method calls

■ r = heap reference snapshot

 Only one of t, c or m may be specified. r may be specified in
combination with m or by itself.

Profiling a Project

18-82 User's Guide for Oracle JDeveloper

Command line examples
■ java

 -agentlib:profiler_x32=port=4000,
jarpath=C:\JDeveloper\jdeveloper\jdev\lib\profiler-agent.jar,

startup=time|mem|
count|refs|connect

If a use case is to begin on startup, you may specify one of the
following:

■ time - CPU time sampling

■ count - count method calls

■ mem - memory alloc/free

■ refs - heap reference snapshot (may be specified in
combination with mem or by itself)

■ connect - waits for connection before allowing application
to run

It is not possible to have a use case running unless the profiler is
connected.

startup=mem,refs also enables profiler agent's memory and
heap reference snapshot capabilities (enable = mr).

depth=<size> Sets maximum stack depth used for collection. Defaults to 1000.

interval=
<sample-interval>

Sample interval in milliseconds. Defaults to 20. This is only
applicable to CPU time sampling.

wait=y|n Report wait and blocked times. Default is n. This is only
applicable to CPU time sampling.

refpath=<path> Sets the path used to write reference snapshot files. Required if
enable=r is specified.

The same path is used for all snapshots, so it is important that
the file be copied before the next use case ends. The profiler and
file client do this automatically.

stackfilter=
<expression>

Specifies classes to include or exclude in stack traces. For
example:

stackfilter=(!java.lang.*)

This expression will ensure that no reported stack trace contains
any class whose name begins with java.lang.*. For example,
stack traces with java.lang.Integer and
java.lang.reflect.Method not appear. Any time used in
such methods is collected and added with the next caller.

methodfilter=
<expression>

Collects only stacks containing the specified methods specified
in the expression. For example:

methodfilter=(com.mycorp.MyClass.MyMethod*)

This expression will ensure that no stack will appear unless it
contains at least one call to
com.mycorp.MyClass.myMethod. The * in the filter ensures
that methods for any type signature are collected; in Java, there
could be more than one method that matches.

memfilter=
<expression>

Object classes to include or exclude from memory reports. For
example:

memfilter=(!java.lang)

This expression will ensure that no class that contains java.lang
in its string will be displayed.

Table 18–10 (Cont.) Suboptions

Suboption Description

Profiling a Project

Programming in Java 18-83

enable=t,depth=1000,startup=time,interval=20 -classpath
C:\JDeveloper\jdeveloper\mywork\Application1\Project1\classes
project1.Application1

■ java
-agentlib:profiler_x64=port=4000,
jarpath=C:\JDeveloper\jdeveloper\jdev\lib\profiler-agent.jar,
enable=m,startup=connect -classpath
C:\JDeveloper\jdeveloper\mywork\Application1\Project1\classes
project1.Application1

■ java
-agentlib:profiler_x32=port=4000,
jarpath=C:\JDeveloper\jdeveloper\jdev\lib\profiler-agent.jar,
startup=connect,mem -classpath
C:\JDeveloper\jdeveloper\mywork\Application1\Project1\classes
project1.Application1

■ java
-agentpath:C:\JDeveloper\jdeveloper\jdev\lib\profiler_
x64.dll=
jarpath=C:\JDeveloper\jdeveloper\jdev\lib\profiler-agent.jar,
port=4000,enable=t,startup=connect,depth=1000,interval=20
-classpath
C:\JDeveloper\jdeveloper\mywork\Application1\Project1\classes
project1.Application1 *

18.10.19 How to Connect the Profiler Remotely to a Java Program
To profile a program remotely in JDeveloper, you must first start the Java program
session and invoke the Profiler Agent. For more information, see Section 18.10.18,
"How to Invoke the Profiler Agent."

Once the session has started, you can connect the JDeveloper Profiler to it. Connecting
the Profiler involves first preparing JDeveloper for remote profiling.

To set up a remote profiling session:
1. In the Application Navigator, select the project to be remotely profiled.

2. Select a run configuration and click Edit. For more information, see Section 19.3,
"How to Configure a Project for Running."

3. In the Remote page under Profiler node, select the process type as local or remote.

4. Click OK when you are done.

5. Start the Java program session, if you have not already. For more information, see
Section 18.10.18, "How to Invoke the Profiler Agent."

To connect remotely:
1. In the Application Navigator, select the project to be remotely profiled.

2. From the Run menu, attach the profiler to CPU Profile or Memory Profile, as
desired.

3. In the Attach Profiler to Running JVM dialog, confirm that Attach to Remote
Process option is selected and host/port information is correct.

4. Click OK.

5. In the Profiler tab, click Begin Use Case to start profiling a use case.

Profiling a Project

18-84 User's Guide for Oracle JDeveloper

6. When you are done, detach the profiler. From the Run menu, select Detach.

18.10.20 How to Dynamically Attach and Detach the Profiler To a Running Process
JDeveloper allows you to dynamically attach and detach a profiler to a running
process. This is similar to profiler attached remote profiling, but doesn't require you to
specify profiler parameters on the command line when you launch the application. For
example, if you are running an application with no plan to profile it when you started
it, but later you wish to profile it because it is exhibiting some performance problems.
In such a scenario, dynamically attaching a profiler to a running process saves you
from restarting your JVM to attach a profiler to it.

Dynamically attaching a profiler has its limitations too. You can do CPU time
sampling or take memory reference snapshots (heap dumps), but you cannot do
method call counts or new/gc memory profiling as they require byte code
instrumentation, which can only be requested on the command line before the JVM is
launched.

To dynamically attach/detach the profiler to a running process:
1. Start the program outside of JDeveloper, for example, in a different command

window.

2. Open JDeveloper and open the Attach Profiler to Running JVM dialog (Run >
Attach Profiler > CPU Profile or Memory Profile).

3. In the Attach Profiler to Running JVM dialog, select the Attach to Local Process
option.

4. From the list of JVMs, select the program's JVM running on the local system.

5. Click OK. The profiler connects to the running JVM.

To detach profiler from a running process, select Detach from the Run menu. If you
disconnect the profiler by closing the Profiler tab, you cannot reattach to it. To reattach
later, you must use Detach command.

To reattach the profiler to a process:
You can detach and attach the profiler to a process as many times as you want, but
you must remember the following points before reattaching:

■ Ensure that profiler is detached before reattaching it again.

■ When you reattach the profiler, you start a new profiler session, and the data of
previous session is lost. To save data of previous session, select Save As from the
File menu.

When you reattach profiler to a process, you can change your configuration settings
and reattach with the new configuration settings. For example, if you are profiling
CPU, you can change CPU configuration to enable or disable collect I/O time, CPU
time, wait time, and so on. If you are memory profiling, you can reattach profiler to
take heap dumps. You can also switch back and forth between CPU profiling and
memory profiling.

Note: The Connect on Application Startup and Begin Use Case on
Application Startup checkboxes in the Profiler page of the Edit Run
Configuration dialog have no impact if you attach the profiler to a
local process. The checkboxes are applicable when you attach profiler
to a remote process only.

Profiling a Project

Programming in Java 18-85

However, you cannot reattach if you change your CPU profiling configuration to
count method calls, or memory profiling configuration to New/gc. These require
capabilities the profiler cannot acquire after the application starts running. To do
either of these, you must launch the application with appropriate profiling parameters
and attach profiler using the Attach to Remote Process command.

18.10.21 How to Set Profile Points
The Profile Points allow you to set a method filter on a method or class. This means
that only stacks that contain those methods, or classes, are reported by the profiler. It
is used to filter data so you only see a method, what calls it, and what it calls.

To set a profile point:
1. pen the file in the source editor, and right-click in the left margin next to a line of

executable code.

2. From the context menu, choose Toggle Profile Point. The profile point icon is
displayed on the left margin of the parent class or method name.

Disabling a Profile Point
You can disable a profile point in any of the following ways:

■ In the source editor, right-click the profile point symbol in the left margin and
choose Disable Profile Point.

■ In the Profile Point window (View > Profile Points) right-click the profile point
you want to disable and choose Disable.

■ To disable all current profile points, right-click in the Profile Points window, and
choose Disable All from the context menu.

Deleting a Profile Point
When you no longer need to examine the code at a profile point location, you can
delete the profile point. You can delete a profile point in any of the following ways:

■ In the source editor, right-click the profile point symbol in the left margin and
choose.

■ In the Profile Point window (View, then Profile Points) right-click the profile
point you want to remove and choose Delete.

■ To remove all current profile points, right-click in the Profile Points window, and
choose Delete All from the context menu.

18.10.22 Saving and Opening Profiler Sessions
The profiler allows you to save output for later viewing and analyzing.

To save a running profiler session to disk, in the File menu, select Save As. In the Save
As dialog, enter an appropriate name to describe your session, for example,
uianalysis.opr, or accept the default.

Note: If you are saving an active use case, it will be automatically
terminated. The End Use Case toolbar icon is disabled, and Begin Use
Case toolbar icon is enabled.

Modeling Java Classes

18-86 User's Guide for Oracle JDeveloper

To open a saved profiler session, in the File menu, select Open, and navigate to the
session you want to view.

A saved session is visually distinguishable from an active session by its unique
profiler icon. In a saved session, the use case begin and end icons are disabled, but the
use case navigation controls are active when multiple use cases are available.

18.10.23 How to Open HPROF Format Heap Dumps
JDeveloper allows you to open heap dumps in HPROF binary format and display
them in the profiler. HPROF binary format heap dumps can be created by the HPROF
profiler, by the JDK tools jmap and jconsole, or through the Java parameter
-XX:+HeapDumpOnOutOfMemoryError.

For example, to create the HPROF file using the jmap command, you could enter on
the command line:

jmap -dump:format=b,file=heap.hprof <jdev process id>

For more information about HPROF, see
http://java.sun.com/javase/reference/index.jsp

To open an HPROF binary file:
1. From the File menu, select Open.

2. Browse and select the HPROF binary format file, and then click Open.

The heap dump opens in the profiler References editor tab.

18.11 Modeling Java Classes
A Java class diagram allows you to visually create classes, interfaces, enums, and
inheritance and composition relationships, and to view existing Java classes and
interfaces. If you want to visualize a particular facet of your application, add only the
classes that contribute to that aspect to the diagram.

To model Java classes you should start with a Java class diagram, although you can
subsequently add other elements to the diagram. For more information, see
Section 18.11.10, "How to Create a Diagram of Java Classes." You can create and
modify the classes that comprise your application directly through the diagram.
Changes made on the Java class diagram are immediately available in the Java source
editor, and vice versa.

18.11.1 Modeling Dependencies
Dependencies are represented on the diagram as a dashed line with an open
arrowhead in the direction of the dependency and are used for documentation
purposes only and do not change the underlying Java code.

18.11.2 Creating Java Classes, Interfaces, and Enums
Java classes, interfaces, or enums are created on a diagram by clicking on the Java
Class icon, Java Interface icon or Java Enum icon on the Java Component Palette for

Note: Opening large heap dumps is a slow process and may take
several minutes to open. On Windows XP, the Profiler cannot open
large (> 990MB) HPROF files.

Modeling Java Classes

Programming in Java 18-87

the diagram, and then clicking on the diagram where you want to create the class. The
Java source file for the modeled class or interface is created in the location specified by
your project settings.

Java Class, Java Interface, and Java Enum icons are represented on a diagram as
rectangles containing the name and details of the Java class. Java classes and interfaces
are divided into compartments, with each compartment containing only one type of
information.

An ellipsis (...) is displayed in each compartment that is not large enough to display its
entire contents. To view a modeled class so that all the fields and methods are
displayed, right-click the class and choose Optimize Shape Size, then Height and
Width.

Each type of class on a diagram is identified by a stereotype in the name compartment.
This is not displayed by default.

Members (fields and methods) display symbols to represent their visibility. The
visibility symbols are: + Public, - Private, # Protected. If no visibility symbol is used,
the field or method has package visibility.

18.11.2.1 Modeling Java Interfaces
An interface is normally used to group together method signatures for groups of
methods that together define a coherent service. Classes that want to provide the
service defined by an interface do this by implementing the interface. Interface names
must be unique within a namespace. Because interfaces can be used to specify a set of
services that other classes provide, they can be used to enforce some level of
consistency on those other classes.

For more information, see Section 18.3.6, "How to Create a New Java Interface."

18.11.2.2 Modeling Inner Java Classes and Inner Java Interfaces
A diagram can include primary or inner classes from different packages, the current
application, or from libraries. Inner Java classes and inner interfaces are defined as
members of their 'owning' class. Hence, they are also referred as member classes.

Inner classes and inner interfaces are displayed in the inner classes compartment of
the modeled Java class or interface on the diagram. Inner classes are prefixed with the
term Class, and inner interfaces are prefixed with the term Interface, between the
visibility symbol and the class or interface name.

To create an inner class or inner interface on a modeled Java class or interface, either
add the inner class to the implementing Java code, or create a new Java class or
interface as an internal node on an existing modeled class.

Inner Java classes and inner Java interfaces cannot have the same name as any
containing Java class, Java interface or package or contain any static fields or static
methods.

18.11.2.3 Modeling Enums
Enumerated types, or enums, containing fields and methods, can be created on a
diagram. Enumerated types cannot implement interfaces, extend other classes, or be
extended by another class.

Note: Modeled Java interfaces can inherit from other interfaces using
extends relationships.

Modeling Java Classes

18-88 User's Guide for Oracle JDeveloper

18.11.3 Modeling Composition on a Java Class Diagram
A variety of references (previously referred to as associations) can be created quickly
between classes and interfaces on a diagram using the various reference icons on the
Java Class component palette for the diagram. References created between modeled
Java classes are represented as fields in the source code of the classes that implement
the references. Compositional relationships are represented on the diagram as a solid
line with an open arrowhead in the direction of the reference. Table 18–11 displays the
references that can be modeled on a diagram.

Labels are not displayed on references by default. To display the label for a reference,
right-click the reference and choose Visual Properties, then select Show Label. The
default label name is the field name that represents the reference. If you select this
label name on the diagram and change it, an @label <label_name> Javadoc tag
will be added before the field representing the reference in the code.

You can change the aggregation symbol used on a reference on a diagram by
right-clicking the reference, choosing Reference Aggregation Type, then choosing
None, Weak (which adds an @aggregation shared Javadoc tag to the code
representing the reference), or Strong (which adds an @aggregation composite
Javadoc tag to the code representing the reference). Aggregation symbols are for
documentary purposes only.

Table 18–11 References Between Classes or Interfaces

Reference Description

Reference (Object) A singular, direct reference from one class or interface to
another. This is represented in the code of the reference's
originating class as a field of type <destination_class>.

Reference (Array) A reference to an array of another class or interface. This is
represented in the code as an array of type <destination_
class>.

Reference (Collection) This is represented in the code as a Collection declaration, and
adds an @associates <{type}> Javadoc tag to the source to
identify this reference as well as the required import
java.util.Collection; statement.

Reference (List) This is represented in the code as a List declaration, and adds an
@associates <{type}> Javadoc tag to the source to identify
this reference as well as the required import java.util.List;
statement.

Reference (Map) This is represented in the code as a Map declaration, and adds
an @associates Javadoc tag to the source to identify this
reference as well as the required import java.util.Map;
statement.

Reference (Set) This is represented in the code as a Set declaration, and adds an
@associates Javadoc tag to the source to identify this
reference as well as the required import java.util.Set; statement.

Note: If you want to quickly change the properties of a reference on
a diagram, double-click it to display the Code Editor and change the
details of the reference.

Modeling Java Classes

Programming in Java 18-89

18.11.4 Modeling Inheritance on a Java Class Diagram
Inheritance structures, which are represented in the Java source as extends
statements, can be created on a diagram of Java classes using the Extends icon on the
Java Class Component Palette for the diagram. Extends relationships are represented
on the diagram as a solid line with an empty arrowhead pointing towards the
extended class or interface.

Where an interface is implemented by a class, this can be created using the
Implements icon on the Java Component Palette for the diagram. Creating an
implements relationship adds implements statement to the source code for the
implementing class. Implements relationships are represented on the diagram as a
dashed line with an empty arrowhead pointing towards the implemented Java
interface.

18.11.4.1 Extending Modeled Java Classes
Extends relationships model inheritance between elements in a class model. Extends
relationships can be created between Java classes and between Java interfaces, creating
an extends statement in the class definition. Enums cannot extend other classes, or be
extended by other classes.

18.11.4.2 Implementing Modeled Java Interfaces
Implements relationships specify where a modeled Java class is used to implement a
modeled Java interface. This is represented as an implements keyword in the source
for the Java class. Implements relationships are represented on class diagrams as
dashed lines with an empty arrowhead pointing towards the interface to be
implemented. Enums cannot implement interfaces.

If the implemented interface is an extension (using an extends relationship) of other
modeled interfaces, this is reflected in the Java source code for the interface.

A class that implements an interface can provide an implementation for some, or all, of
the abstract methods of the interface. If an interface's methods are only partially
implemented by a class, that class is then defined as abstract.

18.11.5 Modeling Java Fields and Methods
You can create members (fields and methods) of a Java class or interface on a diagram.
The fields and methods are added to modeled Java classes and interfaces on a diagram
by double-clicking the modeled Java class or interface then adding the field or method
using the Java Source Editor.

■ Fields are used to encapsulate the characteristics of a modeled Java class or Java
interface. All modeled fields have a name, a datatype and a specified visibility.

When a field or method is displayed on a class on a diagram, it is prefixed with +
(if declared as public), - (if declared as private) or # (if declared as protected).
Static fields are underlined on the diagram.

■ Methods are defined on a class to define the behavior of the class. Methods may
have return types, which may be either a scalar type or a type defined by another
class.

Note: As multiple class inheritance is not supported by Java, only
one extends relationship can be modeled from a Java class on a
diagram. Multiple extends relationships can be modeled from a Java
interface.

Modeling Java Classes

18-90 User's Guide for Oracle JDeveloper

18.11.6 Modeling Packages on a Java Class Diagram
A package is a general purpose mechanism for organizing elements into groups. It
may contain many different types of elements including packages, files, classes and
model elements (for example; classes, interfaces, entity objects). Packages may be
nested within other packages.

A package owns the elements within it and provides the context and namespace for
those elements. Elements owned by the same package must have unique names within
the package. Each element is directly owned by a single package, but can be
referenced (imported) from other packages; in other words, referred to by other
elements in other packages.

If a package is renamed on a diagram, or moved to another package, the contents of
the moved or renamed package will be refactored automatically to reflect this package
change.

Package names must be unique within a namespace, even if the names have different
capitalization.

Java packages can be either created on a diagram, or dragged onto a diagram from the
navigator. To open a diagram for a Java package, right-click the package on the
diagram and choose Drill Down.

18.11.7 How to Display Related Classes on a Diagram
Java classes and interfaces related to those currently displayed on the diagram can be
brought onto the diagram. This includes classes or interfaces that are extended,
implemented, or referenced by the selected class or interface.

To display related classes on a diagram, use one of the two following ways:
■ Select the class or interface, on the diagram, for which you want to display related

elements, then choose Model > Show > Related Elements.

■ Right-click the class or interface, on the diagram, for which you want to display
related elements, then choose Show > Related Elements.

18.11.8 How to Hide References between Java Classes
Relationships between Java classes or interfaces can be visualized on a diagram using
references. You can hide a reference on a diagram.

To hide a reference between Java classes:
■ Right-click the reference you want to hide and choose Hide Reference.

To display a hidden reference between Java classes:
1. Double-click the modeled Java class in which the field representing the reference

is defined.

2. Click the Source tab at the bottom of the editor window.

3. Remove the attribute Javadoc tag from above the member representing the
reference.

Note: Where classes are added to a diagram from the project's
source path, and are not already part of the project, those classes are
automatically added to the current project.

Unit Testing with JUnit

Programming in Java 18-91

The hidden reference will be displayed on the diagram.

18.11.9 What Happens When You Model a Java Class
The definitions of the classes on a diagram, their members, inheritance, and
composition relationships are all derived directly from the Java source code for those
classes. These are all created as Java code, as well as being displayed on the diagram. If
you change, add to, or delete from, the source code of any class displayed on the
diagram, those changes will be reflected on those classes and interfaces on the
diagram. Conversely, any changes to the modeled classes are also made to the
underlying source code. Some information relating to composition relationships, or
references, captured on a Java class diagram is stored as Javadoc tags in the source
code.

A Java class diagram can contain shapes from other diagram types (Oracle ADF
Business Components, UML elements, Enterprise JavaBeans, and database objects). A
form of UML notation is used to display the classes on your diagram. Modeled UML
classes can be transformed to modeled Java classes. Likewise, modeled Java classes
can be transformed to modeled UML classes. You can annotate a diagram of Java
classes using notes, dependency relationships and URL links.

18.11.10 How to Create a Diagram of Java Classes
Java classes, interfaces, and enums can be visually created on a Java class diagram,
together with their members, inheritance and composition relationships.

You can create UML classes, UML use cases, offline database objects, business
components, Enterprise JavaBeans, and web services on a Java class diagram.

Java classes on a diagram must have valid Java class names and must be unique
within the class's package. If you define a modeled Java class as abstract you should
create a concrete Java class with a generalization to the abstract Java class. The names
of modeled abstract Java classes are displayed in italics.

To create a diagram of Java classes:
1. Create a new diagram using the Java Class Diagram icon in the New Gallery.

2. Create the nodes you require on the diagram using the Java Class Component
Palette.

Also, Java classes and interfaces available to the current project can be dragged
from the navigator and dropped on the diagram to either modify the code for
those classes, or to visualize the structure of existing code.

18.12 Unit Testing with JUnit
JUnit is an open source regression testing framework for Java. Use JUnit to write and
run tests that verify Java code. For detailed information about JUnit, visit the JUnit
website, http://www.junit.org/

Note: Hiding a reference between Java classes on a diagram adds a
comment to the Java source for the class, so if this class is also on any
other diagrams, that reference will also be hidden on those diagrams.

Tip: You can also annotate your diagram by creating and attaching
notes to diagram elements, and adding URL links to other locations
such as files or web locations.

Unit Testing with JUnit

18-92 User's Guide for Oracle JDeveloper

Use JUnit wizards in JDeveloper to create test fixtures, cases, and suites. In addition to
wizards for creating test components for generic projects, specialized wizards for
business components projects are provided.

JUnit is an optional feature that can be installed and integrated with JDeveloper.

After you install JUnit as an extension, additional online documentation is installed.
These help topics appear under Help Table of Contents under the folder Creating a
JUnit Test for a Java Project.

18.12.1 How to Install JUnit
JUnit is an optional feature that is not distributed with JDeveloper. You must
download and install it if you wish to use it.

To install JUnit in JDeveloper:
1. Use the IDE Update Wizard to download JUnit from the Oracle Technology

Network (OTN).

2. Exit and restart JDeveloper.

3. JUnit will be installed. Use the Extension Manager if you wish to uninstall it.

18.12.2 Creating a JUnit Test for a Java Project
A JUnit test application consists of the following components:

■ One or more test cases, which invoke the methods that are to be tested, and make
assertions about the expected results. While test case classes generated by default
have 'Test' in their names, the user can specify any valid Java name.

■ Test fixtures, which provide the state in which the tests are run. Any class can
serve as a test fixture, but JDeveloper provides wizards to help you create
specialized test fixture classes. While test fixture classes generated by default have
'Fixture' in their names, the user can specify any valid Java name.

■ A test suite, which invokes the test cases. Default test suite classes have 'AllTests'
in their names.

■ A runner, which invokes the test suite and collates and displays the results of the
tests.

18.12.3 How to Create a JUnit Custom Test Fixture
A test fixture is a set of objects, having known values, that provide data for the test
cases. Any class can serve as a test fixture, but JDeveloper provides wizards to help
you create custom test fixture classes and various specialized test fixture classes.

To create a JUnit custom test fixture class:
1. In the Navigator, select the project.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand General and select Unit Tests.

4. In the Items list, double-click Test Fixture.

Note: JUnit is provided under an IBM public license agreement. You
must accept to the license agreement before downloading JUnit.

Unit Testing with JUnit

Programming in Java 18-93

5. Complete the wizard to create the test fixture class. The class created by the
wizard will be opened for editing.

6. In the Categories tree, expand General and select Unit Tests (JUnit).

7. In the Items list, double-click Custom Test Fixture.

8. Complete the wizard to create the test fixture class. For more information at any
time, press F1 or click Help from within the dialog.

9. In the Categories tree and expand the Unit Tests.

10. Click Test Suite > OK.

11. In the Items list, double-click Test Fixture.

12. Complete the wizard to create the test fixture class. For more information at any
time, press F1 or click Help from within the dialog.

The class created by the wizard will be opened for editing.

13. Modify the file as needed. In particular, to the setUp() method add code that
initializes test fixture objects, and to the tearDown() method add code that releases
any resources they acquire.

18.12.4 How to Create a JUnit JDBC Test Fixture
A test fixture is a set of objects, having known values, that provide data for the test
cases. A JDBC test fixture provides code that establishes a database connection for the
test cases to use.

To create a JUnit JDBC test fixture class:
1. In the navigator, select the project.

2. Choose File, then New to open the New Gallery.

3. In the Categories tree, expand General and select Unit Tests (JUnit).

4. In the Items list, double-click JDBC Test Fixture.

5. Complete the dialog to create the test fixture class. For more information at any
time, press F1 or click Help from within the dialog.

The class that was created will be opened for editing.

6. Modify the file as needed. In particular, to the setUp() method add code that
initializes test fixture objects, and to the tearDown() method add code that
releases any resources they acquire.

18.12.5 Creating a JUnit Test Case
A test case class has one or more methods that perform tests by calling JUnit
assertions. Example 18–9 shows a typical test case in JUnit 3.x. It passes test fixture
data to the method being tested, and then compare the result with a known value to
confirm that it is what is expected.

Example 18–9 JUnit 3.x Test Case

public void testCountChars()
{
 int expected = 4;
 int actual = fixture1.countChars('a');
 assertEquals(expected, actual);

Unit Testing with JUnit

18-94 User's Guide for Oracle JDeveloper

}

Example 18–10 JUnit 4 Test Case

@Test
public void testCountChars()
{
 int expected = 4;
 int actual = fixture1.countChars('a');
 Assert.assertEquals(expected, actual);
}

In the test case shown in Example 18–10, countChars() is being tested, and the
result of the test is checked by assertEquals(), which is one of a variety of
assertion methods defined in the JUnit Assert class. The state of the test fixture,
fixture1, is established in the setUp() method, which will have been called before
the test case is called, as shown in Example 18–11.

Example 18–11 setUp() method

protected void setup() throws Exception
{
fixture1 = new StringFixture("Goin' to Kansas City, Kansas City, here I come.");
}

To create a JUnit test case class:
1. In the navigator, select the project or the particular class that you want to test.

2. Choose File, then New to open the New Gallery.

3. In the Categories tree, expand General and select Unit Tests (JUnit).

4. In the Items list, double-click Test Case.

5. Complete the wizard to create the test fixture class. The class created by the
wizard will be opened for editing.

18.12.6 Creating a JUnit Test Suite
A test suite is a class that invokes test cases.

The JUnit Test Suite wizard has options to insert a main() method and a call to a
TestRunner class. Within JDeveloper, this will open the JUnit TestRunner log window
to display the test results. Edit the method if you wish to use a different test runner.

In the JUnit 3.x test suite shown in Example 18–12, the suite() method creates a
TestSuite instance and adds the test cases to it. Edit this method if you wish to add or
remove test cases.

Example 18–12 JUnit 3.x Test Suite

public class AllTests {
 public static Test suite() {
 TestSuite suite;
 suite = new TestSuite("project1.AllTests");
 return suite;
 }

Unit Testing with JUnit

Programming in Java 18-95

In the JUnit 4 test suite shown in Example 18–13, the test case classes are written with
@Suite and @RunWith annotations.

Example 18–13 JUnit 4 Test Suite

@RunWith(Suite.class)
@Suite.SuiteClasses({})
public class AllTests1 {
 public static void main(String[] args) {
 String[] args2 = { AllTests1.class.getName() };
 org.junit.runner.JUnitCore.main(args2);
 }
}

To create a JUnit test suite class:
1. In the navigator, select the project.

2. Choose File, then New to open the New Gallery.

3. In the Categories tree, expand General and select Unit Tests (JUnit).

4. In the Items list, double-click Test Suite.

5. Complete the wizard to create the test fixture class. The class created by the
wizard will be opened for editing.

6. Modify the file as needed. In particular:

■ In the suite() method add the test cases.

■ In the main() method replace the runner invocation, if desired.

18.12.7 How to Add a Test to a JUnit Test Case
You can add a unit test for a method to an existing JUnit test case class.

To add a test to a JUnit test case class:
1. In the code editor, select a method for which you want to create a new unit test.

2. From the main menu, choose Source > New Method Test. The New Method Test
dialog is opened.

3. Select Add to Existing TestCase Class.

4. From the Class Name dropdown box, or by using Browse, select the test case class
that you want to add the new test to.

5. To add the new test to the test case, click OK.

18.12.8 How to Update a Test Suite with all Test Cases in the Project
You update a test suite with all test cases in a project.

To update a test suite:
1. In a class that has a suite() method, from the main menu, choose Source > Refresh

Test Suite. The Refresh Test Suite dialog is opened.

2. Ensure that all items in the list of test cases are checked.

3. To update the test suite, click OK.

Unit Testing with JUnit

18-96 User's Guide for Oracle JDeveloper

18.12.9 How to Run JUnit Test Suites
When your test suite has been successfully compiled you can run it.

To run a JUnit test suite:
1. In the navigator, select the test suite class.

2. Right click it, and choose Run.

The test will execute, and the test runner will display the results.

1 9

Running and Debugging Java Programs 19-1

19Running and Debugging Java Programs

This chapter describes how to use the tools and features provided by JDeveloper to
run and debug Java programs. For information about writing and compiling a Java
program, see Chapter 18, "Programming in Java."

This chapter includes the following sections:

■ Section 19.1, "About Running and Debugging Java Programs"

■ Section 19.2, "Understanding the Run Manager"

■ Section 19.3, "How to Configure a Project for Running"

■ Section 19.4, "Running an Applet"

■ Section 19.5, "How to Run a Project or File"

■ Section 19.6, "About the Debugger"

■ Section 19.7, "Using the Debugger Windows"

■ Section 19.8, "Managing Breakpoints"

■ Section 19.9, "Examining Program State in Debugger Windows"

■ Section 19.10, "Debugging Remote Java Programs"

19.1 About Running and Debugging Java Programs
JDeveloper offers several techniques to monitor and control the way Java programs
run. When running Java programs, JDeveloper keeps track of processes that are run
and debugged, or profiled. In addition, JDeveloper offers both local and remote
debugging of Java, JSP, and servlet source files.

19.2 Understanding the Run Manager
The Run Manager keeps track of processes that are run, debugged, or profiled. When
two or more such processes are active at the same time, the Run Manager window is
automatically displayed. When a process has completed, it is automatically removed
from the Run Manager.

To open the Run Manager:
■ Choose View > Run Manager from the main menu.

To terminate a process with the Run Manager:
■ Right-click a process in the Run Manager and choose Terminate from the context

menu.

How to Configure a Project for Running

19-2 User's Guide for Oracle JDeveloper

To view the Run Log:
■ Right-click a process in the Run Manager and choose View Log from the context

menu.

19.3 How to Configure a Project for Running
Settings that control the way programs are run - such as the target, launch options, and
the behavior of the debugger, logger, and profiler - are collected in run configurations.

A project may have several run configurations, each set up for a specific facet of the
project or phase of the development process. A run configuration can be bound to the
project and be available to all who work on the project, or it can be custom
configuration, for your use only.

A default run configuration is created for each new project. You can modify run
configurations, and you can create a new configuration by copying an existing one.

To select a run configuration:
1. From the main menu choose Application > Project Properties.

2. Select the Run/Debug page.

3. From the Run Configurations list, select a run configuration.

To modify a run configuration:
1. Select a run configuration as described above.

2. Click Edit.

The Edit Run Configuration dialog is opened.

3. Make the required changes to the preferences on the dialog pages.

For help while using the dialog pages, press F1.

To create a run configuration:
1. Select a run configuration as described above.

2. Click New.

The Create Run Configuration dialog is opened.

3. In the Name box, enter a name for the new run configuration.

4. In the Copy Settings From dropdown box, choose an existing run configuration to
copy from.

5. To create a new run configuration having the same settings as the one it was
copied from, click OK.

19.4 Running an Applet
JDeveloper lets you run applets in the AppletViewer or in the Integrated WebLogic
Server instance. The AppletViewer provides a test bed to run your applet without
launching the web browser. When you want to run your applet in a browser, you can
run in the Integrated WebLogic Server instance.

After creating your applet and ensuring that the classpath is set up properly in the
HTML file, you can run it by executing the Run command in one of the following
ways:

How to Run a Project or File

Running and Debugging Java Programs 19-3

1. In the navigator, select the HTML file that contains the <APPLET> tag.

2. To run the applet, right-click the HTML file and choose Run.

3. In the dialog, select the way you want to start the target applet and click OK:

■ In AppletViewer: The applet is launched in the Applet Viewer.

■ In the Server Instance: The integrated server is started and the applet is run in
the server.

19.4.1 Using an HTML File to Store Arguments
An applet runs in an HTML page, from which it obtains its display size and other
parameters. To run an applet in JDeveloper, you need to provide an HTML file
containing the appropriate <APPLET> tag.

Parameter names are case-sensitive, although parameter tags are not:

<APPLET CODE="foo.class" WIDTH=200 HEIGHT=20> </APPLET>

You can also pass parameters to the applet by including a <PARAM> tag between the
<APPLET> and </APPLET> tags:

 <PARAM NAME=foo VALUE=true>

Example 19–1 shows an HTML fragment that is used to pass parameters.

Example 19–1 HTML Fragment That is Used to Pass Parameters

<H1>Test File</H1>
<HR>
<APPLET CODE="Test3.class" WIDTH=500 HEIGHT=120>
<PARAM NAME=level VALUE="8">
<PARAM NAME=angle VALUE="45">
<PARAM NAME=delay VALUE="1000">
<PARAM NAME=axiom VALUE="F">
<PARAM NAME=incremental VALUE="true">
<PARAM NAME=incremental VALUE="true">
</APPLET>
<HR>
The source
...

19.5 How to Run a Project or File
After building your project or file, you can run it.

To run a project or file:
1. In the navigator, select the project or file you want to run.

2. Run an application in any of these ways:

■ For a project only, from the main menu choose Run > Run Project.

■ From the context menu, select Run.

■ Click the Run icon on the toolbar.

The main method of your Java application is started.

How to Run a Project or File

19-4 User's Guide for Oracle JDeveloper

19.5.1 How to Run a Project from the Command Line
The following conditions must exist to run a project from the operating system
command line:

■ The project is a standalone executable.

■ You must select the class file containing the application main() method.

To launch an application:
Enter the following:

java -cp <jdev_install>\jdeveloper\jdev\mywork\Workspace1\Project1\classes
package1.Application1

To launch the executable JAR file from the command line:
Enter the following:

java -jar <application>.jar

where <application> is your JAR file name.

19.5.2 How to Change the Java Virtual Machine
You may need to change the Java Virtual Machine (VM) for which you are developing
because of operating system considerations. For example, for client-side applications,
you would use the HotSpot Client VM, whereas for executing long-running server
applications, you would use the Server VM.

To change the Java Virtual Machine:
1. Right-click a project in the navigator and choose Project Properties from the

context menu.

2. Open the Run/Debug/Profile page.

3. Select a run configuration and click Edit.

This opens the Edit Run Configuration dialog.

4. On the Launch Settings page, in the Virtual Machine list box, select an available
option.

The selected JVM is used when running and debugging the project.

5. Click Help for additional information.

19.5.3 Setting the Classpath for Programs
When you run a Java program from the command line, you must provide the Java
Virtual Machine (JVM) with a list of the paths to the class files and libraries that
comprise your application. The form of the classpath changes depending on the
method you use to run the Java program.

Your Java classes can be stored in Java Archive (*.jar) files, or as separate class
(*.class) files in their package directory. There are differences in the ways Java
handles JAR files and package directories.

■ When you refer to JAR files in your CLASSPATH, you use the fully qualified path
to the JAR file.

How to Run a Project or File

Running and Debugging Java Programs 19-5

■ When you refer to package directories in your CLASSPATH, you use the path to the
parent directory of the package.

■ You can refer to both JARs and package directories in a CLASSPATH statement.
When you refer to more than one CLASSPATH in the same statement, each
CLASSPATH is separated with a semicolon(;).

Once you have defined the classpath, you pass the value to the JVM in different ways,
depending on how you run your Java program.

■ Set the CLASSPATH environment variable to run a standalone application using
java.exe.

■ Set the CLASSPATH environment variable to.use the -classpath option of
java.exe.

■ Embed the CLASSPATH in the <APPLET> tag of an.html file to run an applet in
an Internet browser.

You have the option of using either the -classpath option when calling an SDK tool
(the preferred method) or by setting the CLASSPATH environment variable.

19.5.3.1 Setting the CLASSPATH Environment Variable (for java.exe)
The java.exe is included as part of the Java2 Standard Edition (J2SE). It is intended to
be used as a development tool, and is not licensed for distribution with your Java
programs. It is used to test your Java applications from the command prompt.

In order to run a Java application from the command prompt, the system environment
variable CLASSPATH must be defined to include all of the classes necessary to run
your program. This includes any library classes provided with JDeveloper that your
program uses.

19.5.3.2 Using the JDeveloper Library CLASSPATH
JDeveloper ships hundreds of library classes to help you generate your Java programs.
The classes come from J2SE, third-party developers, and Oracle Corporation. Each of
the libraries is kept separate for easy upgrade. As a result, many archive files may
need to be included in your classpath to ensure that any program you create in
JDeveloper can be run from the command prompt.

Oracle recommends that you list only the paths to each of the libraries that your
project uses. If you list paths that your project does not use, your program will still
run, but for performance reasons, you will want to eliminate any unnecessary libraries.

The command to set the CLASSPATH variable takes this format:

set CLASSPATH=path1;path2;path3;...path_n

19.5.3.3 Setting the CLASSPATH to Include Your Projects
If you have used the default directory for your output path, you can test your Java
application using java.exe by appending the following directory to your classpath:

C:\<jdev_install>\jdeveloper\jdev\mywork\Workspace1\Project1\classes

Note: Never use quotation marks in the classpath even when there is
a space character in one of the paths.

About the Debugger

19-6 User's Guide for Oracle JDeveloper

Having set this variable, you can use java.exe to run your application from the
output directory mywork.

If you have deployed your Java program to any other directory, you need to add the
path to the parent directory of the application package.

The CLASSPATH variable is a long string that can be difficult to type accurately. To
save time and reduce errors, you can set the CLASSPATH as a system environment
variable.

19.5.3.4 Setting the CLASSPATH Parameter (for java.exe)
The Java Runtime Engine (java.exe) doesn't use the CLASSPATH environment
variable. The CLASSPATH must be included as a parameter to the java.exe command.
The format for the command is:

java -cp <classpath> package.Application

Where classpath is the complete CLASSPATH to your Java program and the dependency
classes it uses. The quotation marks are optional if there are no spaces in any of the
CLASSPATH directory names.

19.5.3.5 Embedding the CLASSPATH Parameters in the <APPLET> Tag
When running applets, the browser uses a CLASSPATH you supply in the ARCHIVE
and CODEBASE parameters to the <APPLET> tag in the host *.html file.

The CODEBASE parameter sets the root directory where the Internet browser will look
for your class files. If the classes are stored in the same directory as the HTML page
calling the applet, you can omit the CODEBASE parameter entirely. Otherwise, use
either an absolute or relative path from the HTML file to the location of the CODEBASE
directory. Use forward slashes (/), not backslashes(\) to indicate directories.

The ARCHIVE parameter lists the locations and names of the JAR files that contain
your program and its supporting library files, similar to the CLASSPATH used with
applications. There are three important differences:

■ The names of the Java Archive files are separated by commas (,), not semicolons(;).

■ If the Java Archive files are in subdirectories of the CODEBASE, use forward
slashes (/), not backslashes(\), to indicate directories.

■ Due to the limitations enforced by the Java security model for applets, classes
referenced by your ARCHIVE parameter can only be located in subdirectories of
the CODEBASE directory. This means that if you attempt to set the location of an
archive file using a parent directory (../) you will receive a security violation error.

19.6 About the Debugger
Debugging is the process of locating and fixing errors in your programs. The
JDeveloper integrated debugger enables you to debug Java applications, applets,
servlets, JavaServer Pages (JSPs), and Enterprise JavaBeans (EJBs). You can debug a
single or several objects on the same or different machine as JDeveloper supports
distributed debugging.

The Debugger provides you with a number of features to investigate your code, and
identify and fix problem areas. Two types of debugging are available to analyze your
code - local and remote.

A local debugging session is started by setting breakpoints in source files, and then
starting the debugger. When debugging an application such as a servlet in JDeveloper,

About the Debugger

Running and Debugging Java Programs 19-7

you have complete control over the execution flow and can view and modify values of
variables. You can also investigate application performance by monitoring class
instance counts and memory usage. JDeveloper will follow calls from your application
into other source files, or generate stub classes for source files that are not available.

Remote debugging requires two JDeveloper processes: a debugger and a debuggee which
may reside on a different platform. Once the debuggee process is launched and the
debugger process is attached to it, remote debugging is similar to local debugging.

JDeveloper provides a number of special-purpose debugging windows that enable
you to efficiently identify the problematic areas in your code:

■ The Breakpoints Window displays the breakpoints for the current workspace and
project. For more information, see Section 19.7.1, "Using the Breakpoints Window."

■ The Smart Data Window displays the data which is being used in the code that
you are stepping through. For more information, see Section 19.7.2, "How to Use
the Smart Data Window."

■ The Data Window displays the arguments and local variables for the current
context. Note that Full Debug Info must be selected in the Compiler page of the
Project Properties dialog. For more information, see Section 19.7.3, "How to Use
the Data Window."

■ The Watches Window displays the values for a watched program. A watch
evaluates an expression according to the current context. If you move to a new
context, the expression is reevaluated for the new context. For more information,
Section 19.7.4, "How to Use the Watches Window."

■ The Inspector Window displays a single data item in its own floating window. An
inspector evaluates an expression according to the current context. For more
information, see Section 19.7.5, "How to Use the Inspector Window."

■ The Heap Window displays information about the heap in the program you are
debugging and helps you to detect memory leaks in your program. For more
information, see Section 19.7.6, "How to Use the Heap Window."

■ The Stack Window displays the call stack for the current thread. For more
information, see Section 19.7.7, "How to Use the Stack Window."

■ The Classes Window displays information about the classes which have been
loaded as your application runs, including the name and package of each class.
The debugger can also display the number of live instances of each class and the
amount of memory being consumed by those instances. For more information,
Section 19.7.8, "How to Use the Classes Window."

■ The Monitors Window displays information for active monitors in your
application, as well as information about the status of threads accessing those
monitors. This window is useful for examining deadlocks and other thread
synchronization problems. For more information, see Section 19.7.9, "How to Use
the Monitors Window."

■ The Threads Window displays the threads and the thread groups, highlights the
current thread, and shows the name, status, priority, and group of each thread. For
more information, see Section 19.7.10, "How to Use the Threads Window."

You can open the debugger windows by choosing View > Debugger.

About the Debugger

19-8 User's Guide for Oracle JDeveloper

19.6.1 Understanding the Debugger Icons
Table 19–1 contains the various JDeveloper debugger and runner icons. These icons are
available from areas in the JDeveloper user interface, including the Debugger window
and the Log window.

Table 19–1 Debugger and runner icons

Icon Name Description

Array Represents an array class in any JDeveloper
data-related window.

Add Breakpoint Represents the Breakpoint toolbar button used to
create a breakpoint.

Breakpoints menu Represents the View > Debugger > Breakpoints
menu option or the tab icon for the Breakpoints
window.

Class Represents the View > Debugger > Classes menu
option, the tab icon for the Classes window and a
class in the Classes window (grayed if the class
has tracing disabled).

Class Without Line Number
Tables

Appears in the Classes window. Represents a
class which does not have line number tables
(obfuscated class)

Current Execution Point Represents the current execution point shown in
the source editor margin which you can display
by choosing the Run > Show Execution Point
menu option.

Current Thread Represents the current thread in the Threads
window.

Data Represents the View > Debugger > Data menu
option; the View > Debugger > Smart Data
menu option; and the tab icon for the Data
window and Smart Data window.

Debug (Shift + F9) Represents the Run > Debug <project_name>
menu option; the debug toolbar button, a
debugging process contained in the processes
folder in the Run Manager Navigator, a log page
for a debugging process, the debug layout, and
the Remote Debugging and Profiling Project
Wizard

Debug Listener Node Represents a debug listener node in the Run >
Manager navigator.

Debug with Diagram Represents the Run > Debug with Diagram
<project_name> menu option. Lets you create a
UML sequence diagram while debugging.

Disabled Breakpoint Represents a disabled breakpoint in the source
editor margin and a disabled breakpoint in the
Breakpoints window. The icon also represents the
Breakpoint toolbar button to disable a breakpoint

Delete Breakpoint Represents the Breakpoint toolbar button to
remove a breakpoint.

Edit Breakpoint Represents the Breakpoint Toolbar button, which
you can use to edit the selected breakpoint

About the Debugger

Running and Debugging Java Programs 19-9

Garbage Collection Represents the Run > Garbage Collection menu
option and the Garbage Collection toolbar button
which you can click

Interface Represents an interface in the Classes window

Heap Represents the View > Debugger > Heap menu
option and the tab icon for the Heap window

Heap Folder Represents a folder in the Heap window.

Method Represents a method in the Stack window

Monitors Represents the View > Debugger > Monitors
menu option and the tab icon for the Monitors
window.

Object Represents an object in any JDeveloper
data-related window

Package Represents a package in the Classes window
(grayed if the package has tracing disabled)

Pause Represents the Run > Pause menu option and the
Pause toolbar button which you can click.

Primitive Represents a primitive item in any JDeveloper
data-related window.

Resume Represents the Run > Resume menu option and
the Resume toolbar button which you can click.

Run Represents a running process in the Run Manager
navigator, in a log page for a running process,
and in the toolbar to run the selected node.

Run to Cursor (F4) Represents the Run > Run to Cursor menu
option. Lets you run to a specified location and
execute the code until it reaches that location

Stack Represents the View > Debugger > Stack menu
option and the tab icon for the Stack window.

Stack Folder Represents the static folder in the Data window

Step to End of Method Represents the Run > Step to End of Method
menu option and the Step to End of Method
toolbar button which you can click.

Step Into (F7) Represents the Run > Step Into menu option and
the Step Into toolbar button which you can click.

Step Out Represents the Run > Step > Out menu option
and the Step Out toolbar button which you can
click.

Step Over Represents the Run > Step Over menu option
and the Step Over toolbar button which you can
click.

Terminate Represents the Terminate toolbar button which
you can click to stop debugging your application.

Thread Represents the View > Debugger > Thread menu
option and the tab icon for the Thread window.

Threads Represents the View > Debugger > Threads
menu option and the tab icon for the Threads
window.

Table 19–1 (Cont.) Debugger and runner icons

Icon Name Description

About the Debugger

19-10 User's Guide for Oracle JDeveloper

19.6.2 How to Debug a Project in JDeveloper
Your code must be compiled with debugging information before you can make use of
some of the debugger features such as viewing arguments and local variables in the
Data window.

 To set breakpoints and step through your code:
1. In a source editor, set a breakpoint on an executable statement by clicking in the

margin to the left of the statement. For more information, see Section 19.8,
"Managing Breakpoints."

The unverified breakpoints icon appears in the left margin.

2. Select Run > Debug [filename.java].

The class runs and stops at the first breakpoint.

3. From the toolbar, click Step Into to trace into a method call or click Step Over to
step over a method call.

4. Look in the Stack window to examine the sequence of method calls that brought
your program to its current state. Double-click a method to display the associated
source code in the source editor.

5. In the Smart Data and Data windows, examine the arguments and variables.

6. Display the Threads window to see the status of other threads in your program.

 To edit and recompile:
1. When you have found lines of code to change, you can end the debugging session

by clicking Terminate on the toolbar, or by choosing Run > Terminate.

2. Edit your code in the source editor.

3. In the navigator, click the appropriate object node.

4. Choose Run > Build <filename.java> from the main menu. The affected files in
your project are recompiled, and you can run the debugger again.

19.6.3 How to Debug ADF Components
JDeveloper allows you to debug with breakpoints using the ADF Declarative
Debugger. If an error cannot be easily identified, you can use the ADF Declarative
Debugger in JDeveloper to set breakpoints. When a breakpoint is reached, the
execution of the application is paused and you can examine the data that the Oracle
ADF binding container has to work with, and compare it to what you expect the data
to be. Depending on the types of breakpoints, you may be able to use the step
functions to move from one breakpoint to another.

JDeveloper provides three windows for debugging ADF components:

Thread Group Represents a thread group in the Threads
window.

Unverified Breakpoint Represents an unverified breakpoint in the source
editor margin, and an unverified breakpoint in
the Breakpoints window

Table 19–1 (Cont.) Debugger and runner icons

Icon Name Description

About the Debugger

Running and Debugging Java Programs 19-11

■ The ADF Data Window displays relevant data based on the selection in the ADF
Structure window when the application is paused at a breakpoint. For more
information, see Section 19.7.3, "How to Use the Data Window."

■ The EL Evaluator Window evaluates EL Expressions when a breakpoint is reached
during a debugging session. Only JSF applications can utilize the EL Evaluator.

■ The ADF Structure Window displays a tree structure of the ADF runtime objects
and their relationships when the application is stopped at a breakpoint. For more
information, see Section 3.11.6, "Structure Window."

You can control what type of information is displayed in each of the debugger
windows. To see what options are available in each window such as which columns to
display, right-click in a window and choose Preferences from the context menu. Or,
you can choose Tools > Preferences from the main menu and expand the Debugger
node to display a preferences page for each debugger window. You can also save the
debug information as text or HTML output file. For more information. see
Section 19.6.7, "How to Export Debug Information to a File."

To use the JDeveloper debugger to control the execution of a program:
1. Run to a breakpoint. For more information, see Section 19.8, "Managing

Breakpoints."

A breakpoint is a trigger in a program that, when reached, pauses program
execution. This allows you to examine the values of some or all of the program
variables. When your program execution encounters a breakpoint, the program
pauses, and the debugger displays the line containing the breakpoint in the source
editor.

2. Step into a method and execute a single program statement at a time. For more
information, see Section 19.6.11, "Stepping Into a Method."

If the execution point is located on a call to a method, the Step Into command steps
into that method and places the execution point on the method's first statement.

3. Step over a method. For more information, see Section 19.6.12, "Stepping Over a
Method."

If you issue the Step Over command when the execution point is located on a
method call, the debugger runs that method without stopping, instead of stepping
into it. Program statements are executed one at a time.

4. Run to the cursor location. For more information, see Section 19.6.16, "How to Run
to the Cursor Location."

This allows you to go to a particular location in the program without having to
single step or set a breakpoint.

5. Pause and resume the debugger. For more information, see Section 19.6.17, "How
to Pause and Resume the Debugger."

You can pause your program when the program is running in the debugger. You
can then use the debugger to examine the state of your program with respect to
this program location. When you have finished examining that part of the
program, you can then continue running the program.

6. Terminate a debugging session. For more information, see Section 19.6.18, "How to
Terminate a Debugging Session.".

When finished, you can modify program values as a way to test hypothetical bug fixes
during a program run. If you find that a modification fixes a program error, exit the

About the Debugger

19-12 User's Guide for Oracle JDeveloper

debugging session, fix your program code, and recompile the program to make the fix
permanent.

19.6.4 How to Configure a Project for Debugging
JDeveloper allows you to control how your program is debugged, including enabling
and disabling packages and classes and configuring remote debugging options.

To configure debugger and remote debugger options in JDeveloper:
1. Choose Application > Default Project Properties (to set preferences that apply to

all projects) or choose Application > Project Properties (to set preferences that
apply only to the current project).

2. Select the Run/Debug/Profile node.

3. Select a run configuration. For more information, see Section 19.3, "How to
Configure a Project for Running.".

4. Click Edit.

5. Select the Debugger node.

6. Set the options on the Debugger and Remote pages.

7. Click OK when finished.

19.6.5 How to Set the Debugger Start Options
By setting up the debugger start option, you are specifying how you would like the
debugger to behave when you start a new debugging session. Specifically, decide if
you want the debugger to execute until a breakpoint is reached, or if you want the
debugger to stop when it reaches your project's code (for example, at the beginning of
your application's main method).

To set the debugger start options:
1. From the main menu choose Tools > Preferences and open the Debugger page.

2. Select a Start Debugging Option:

■ Run Until a Breakpoint Occurs

When you start debugging, the debugger will let the program you are
debugging execute until a breakpoint is reached.

■ Step Over

When you start debugging, the debugger will let the program you are
debugging execute until a method in a tracing-enabled class is reached, but it
will not stop in a class static initializer method.

■ Step Into

When you start debugging, the debugger will let the program you are
debugging execute until any method, including a class static initializer
method, is reached.

19.6.6 How to Launch the Debugger
You must build the project before debugging it.

About the Debugger

Running and Debugging Java Programs 19-13

To build a project and start the debugger:
1. In the Application Navigator, select the project.

2. Right-click and choose Project Properties. The Project Properties dialog opens.

3. Open the Compiler page.

4. If not already enabled, select Full Debug Info.

5. Click OK to close the dialog.

6. Use one of the following methods to start the debugger:

■ To start the debugger using the current run configuration, from the main
menu choose Run > Debug <project name>.

■ To start the debugger using your choice of run configuration, select the
dropdown menu beside the Debug icon on the toolbar and click the required
run configuration name.

If the project builds successfully, the debugger starts.

19.6.7 How to Export Debug Information to a File
You can export debug information generated by the JDeveloper debugger to either a
text or HTML output file from within any of the debugger windows.

To export debug information to file:
1. Start debugging by clicking Debug from the toolbar.

2. Once the debugger has stopped at a breakpoint, locate the debugger window
containing the information you would like to export.

3. Right-click in a debugger window and choose Preferences from the context menu.

4. In the appropriate Preferences - Debugger page below Columns, select which
columns you want to show or hide in the debugger window and output file. Click
OK to close the Preferences dialog.

5. In the debugger window, right-click and choose Export.

6. In the Export dialog, enter the name of the file. The output file is saved as a text
file with tabs between columns and new lines between rows. To export to an
HTML file, add the extension as.html or .htm (case-insensitive).

If the project builds successfully, the debugger starts.

19.6.8 Using the Source Editor When Debugging
When the debugger stops (for example, at a breakpoint after completing a step
command, or when paused), the source file for the current class will open in the source
editor and will be marked with the execution point, as shown in Figure 19–1.

Figure 19–1 Execution Point Icon

If JDeveloper cannot locate the source file for the class while debugging, the Source
Not Found dialog is displayed prompting you for the source file location.

You can use the source editor to debug in the following ways:

About the Debugger

19-14 User's Guide for Oracle JDeveloper

■ To set a breakpoint, click in the source editor's margin.

■ To remove a breakpoint, click the breakpoint in the source editor's margin.

Figure 19–2 Breakpoint Icon

Using Context Menu Items
The debugger adds several menu items to the source editor's context menu including
those shown in Table 19–2.

Using Tooltips
The debugger will show tool tips in the source editor if you hover the mouse over the
name of a data item. By default, the tooltip will show the name, value, and type of the
data item; providing an easy way to quickly inspect a data item without adding it in
Data window or Watches window. If the data item is an array or object, you can
inspect children of the selected item deep in the object hierarchy. The tooltip displays
20 children data items, use the navigation buttons to view remaining data items.

The columns which display in the tooltip depend on the column settings that were
enabled in the Tools > Preferences – Debugger – Tooltip page.

If the project builds successfully, the debugger starts.

19.6.9 Using Java Expressions in the Debugger
Java expressions are used in the Watches window, Inspector window, Breakpoint
Conditions, and Breakpoint Log Expressions. The debugger accepts Java expressions
in the forms shown in Table 19–3.

Table 19–2 Context Menu Items

Item Function

Run to Cursor Lets you run to the current location of the cursor and execute the
code until it reaches that location.

Watch (Ctrl+F5) Lets you add an expression to the Watches Window.

Inspect Lets you open up a floating Inspector window.

Step Into Method at Cursor Executes Run to Cursor, and then steps into the method that the
cursor is currently on.

Table 19–3 Java Expressions Accepted by Debugger

Java Expression Form

Simple variable name rect

Field access rect.width

Method call myString.length()

Array element myArray[3]

Array length myArray.length

Comparison operation rect.height == 100
myArray.length > 7

About the Debugger

Running and Debugging Java Programs 19-15

If the project builds successfully, the debugger starts.

19.6.10 Moving Through Code While Debugging
The JDeveloper debugger lets you control the execution of your program; you can
control whether your program executes a single line of code, an entire method, or an
entire program block. By manually controlling when the program should run and
when it should pause, you can quickly move over the sections that you know work
correctly and concentrate on the sections that are causing problems. For more
information, see Section 19.6.5, "How to Set the Debugger Start Options."

The debugger lets you control the execution of your program in the following ways:

■ Stepping Into a Method

■ Stepping Over a Method

■ Controlling Which Classes are Traced Into

■ Locating the Execution Point for a Thread

■ Running to the Cursor Location

■ Pausing and Resuming the Debugger

■ Terminating a Debugging Session

The Step Into and Step Over commands offer the simplest way of moving through
your program code. While the two commands are very similar, they each offer a
different way to control code execution.

The smallest increment by which you step through a program is a single line of code.
Multiple program statements on one line of text are treated as a single line of code –
you cannot individually debug multiple statements contained on a single line of text.
The easiest approach is to put each statement on its own line. This also makes your
code more readable and easier to maintain.

Arithmetic operation rect.width * rect.height
x + y + z

Logical operation frame1.enabled && frame1.visible

textField1.hasFocus || textField2.hasFocus

Instance of operator <my_value> instanceof java.lang.String

Shift operator x << 2

y >> 1

Binary Operator keyEvent.modifiers &
java.awt.event.InputEvent.CTRL_MASK

Question-colon operation y>5 ? y*7 : y*4

Static field name java.awt.Color.pink

Fully qualified class name java.awt.Color

Table 19–3 (Cont.) Java Expressions Accepted by Debugger

Java Expression Form

About the Debugger

19-16 User's Guide for Oracle JDeveloper

19.6.11 Stepping Into a Method
The Step Into command executes a single program statement at a time. If the
execution point is located on a call to a method, the Step Into command steps into that
method and places the execution point on the method's first statement.

If the execution point is located on the last statement of a method, choosing Step Into
causes the debugger to return from the method, placing the execution point on the line
of code that follows the call to the method you are returning from.

The term single stepping refers to using Step Into to run successively though the
statements in your program code.

You can step into a method in any of the following ways:
■ Select Run > Step Into.

■ Press F7.

■ Click the Step Into button from the toolbar.

Figure 19–3 Step Into Button

Unlike previous JDeveloper releases, you cannot start debugging by pressing the Step
Into button. Step Into will only cause stepping on an already-started debugging
process.

When you set the debugger to start by stepping into, the debugger will let the program
you are debugging execute until a method in a tracing-enabled class is reached.

As you debug, you can step into some methods and step over others. If you are
confident that a method is working properly, you can step over calls to that method,
knowing that the method call will not cause an error. If you aren't sure that a method
is well behaved, step into the method and check whether it is working properly.

19.6.12 Stepping Over a Method
The Step Over command, like Step Into, enables you to execute program statements
one at a time. However, if you issue the Step Over command when the execution point
is located on a method call, the debugger runs that method without stopping (instead
of stepping into it), then positions the execution point on the statement that follows the
method call.

If the execution point is located on the last statement of a method, choosing Step Over
causes the debugger to return from the method, placing the execution point on the line
of code that follows the call to the method you are returning from.

You can step into a method in any of the following ways:
■ Select Run > Step Over.

■ Press F8.

■ Click the Step Over button on the toolbar.

Figure 19–4 Step Over Button

About the Debugger

Running and Debugging Java Programs 19-17

Unlike previous releases of JDeveloper, you cannot start debugging by pressing the
Step Over button. Step Over will cause stepping only on an already-started debugging
process.

When you set it to start by stepping over, the debugger will let the program you are
debugging execute until a method in a tracing-enabled class is reached, but it will not
stop in class static initializer method.

As you debug, you can step into some methods and step over others. If you are
confident that a method is working properly, you can step over calls to that method,
knowing that the method call will not cause an error. If you aren't sure that a method
is well behaved, step into the method and check whether it is working properly.

19.6.13 Controlling Which Classes Are Traced Into
Normally, you should set the tracing include and exclude lists in the project properties
before you start debugging. However, if you need to change the tracing include and
exclude lists, you can do so from the Classes window. Right-click in the Classes
window and choose Tracing from the context menu. The Tracing dialog appears in
which you can adjust the tracing include and exclude lists.

When you specify a package to be included or excluded from tracing, all descending
classes within that package are included or excluded as well unless you've specified
them individually.

To closely examine part of your program, you can enable tracing on only the files you
want to step through in the debugger. For example, you usually don't want to step
through classes that are in the J2SE library because you're not going to troubleshoot on
them; you usually only want to trace into your own classes.

19.6.14 How to Step Through Behavior as Guided by Tracing Lists
If you exclude a class or package, and you instruct the debugger to step into that class,
the debugger runs straight through that code without pausing. The debugger pauses
at the next line of code in a class which has not been excluded. The tracing include and
exclude lists are used for all step commands including Step Into, Step Over, Step Out,
and so on. Using these lists does not prevent you from setting a breakpoint in a class
which has been excluded. If the debugger stops at such a breakpoint, the step
commands will be disabled.

To enable tracing for a class, you can adjust the tracing include or exclude list
by adding or removing a class or package:
1. Right-click a project in the navigator and choose Project Properties from the

context menu.

2. Select the Run/Debug/Profile node.

3. Choose a run configuration and click Edit.

4. In the Edit Run Configuration dialog select the Debugger node.

5. In the Tracing Classes and Packages to Include and Tracing Classes and
Packages to Exclude parameters, enter the name of the packages or classes you
want to include or exclude in the appropriate field, separated by a semicolon (;).

Alternately, click Edit to open the Tracing Classes and Packages to
Include/Exclude dialog, then click Add or Remove. If you click Add, the Class
and Package Browser dialog appears. If you click Remove, the selected class or
package is removed from the appropriate tracing List. Navigate to the class or

About the Debugger

19-18 User's Guide for Oracle JDeveloper

package you want to add and click OK. The class or package is added to the
appropriate tracing list.

By leaving the include lists blank, you are actually specifying that you would like to
enable tracing in all packages except for those specifically listed in the exclude list. For
example:

include:
exclude:java;javax

19.6.15 How to Locate the Execution Point for a Thread
When you're debugging, the line of code that is the current execution point for the
current thread is highlighted and the execution point icon appears in the left margin of
the source editor.

The execution point marks the next line of source code to be executed by the debugger.

To find the current execution point:
1. Choose Run > Find Execution Point from the main menu.

2. Right-click a thread in the Threads window and choose Go To Source of Thread.

The debugger displays the block of code containing the execution point in the
source editor.

19.6.16 How to Run to the Cursor Location
When stepping through your application code in the debugger, you may want to run
to a particular location without having to single step or set a breakpoint.

To run to a specific program location:
1. In a source editor, position your text cursor on the line of code where you want the

debugger to stop.

2. Run to the cursor location in any of the following ways:

■ In the source editor, right-click and choose Run to Cursor.

■ Choose the Run > Run to Cursor option from the main menu.

■ Press F4.

Any of the following conditions may result:

■ When you run to the cursor, your program executes without stopping, until the
execution reaches the location marked by the text cursor in the source editor.

■ If your program never actually executes the line of code where the text cursor is,
the Run to Cursor command will cause your program to run until it encounters a
breakpoint or when your program finishes.

19.6.17 How to Pause and Resume the Debugger
You can pause your program when the program is running in the debugger. You can
then use the debugger to examine the state of your program with respect to this
program location. When you have finished examining that part of the program, you
can then continue running the program.

When you are using the debugger, your program can be in one of two possible states:
running, or paused by the debugger. When your program is waiting for user input, it

About the Debugger

Running and Debugging Java Programs 19-19

is still considered to be running. When your program is in the running mode, Pause is
available. When your program is paused by the debugger, the available debugger
buttons include Resume, Step Over, and Step Into.

You can pause the debugger in the following ways:
■ Choose Run > Pause from the main menu.

■ Click the Pause icon from the debugger toolbar.

Figure 19–5 Pause Icon

Your program may be paused at a location for which there is no source available. In
this case, the Source Not Found dialog is displayed prompting you for the source file
location or whether to generate stub files.

Also, your program may be paused at a location where tracing is disabled because the
class is on the tracing exclude list. For example, your program may be paused in the
java.lang.Object.wait method.

While the debugger is paused, you can force garbage collection to occur. The results of
the garbage collection are immediately reflected in the Classes and the Heap window.
This enables you to find memory leaks in your application.

To resume the debugger when it is paused, choose Run > Resume.

19.6.18 How to Terminate a Debugging Session
Sometimes while debugging, you will find it necessary to restart the program from the
beginning. For example, you might need to restart the program if you step past the
location of a bug.

To terminate the current debugging session:
■ Choose the Run > Terminate - <program name> menu option, or

■ Click Terminate in the debugger toolbar.

Terminating a debugging session closes all debugger windows. However, this action
does not delete any breakpoints or watches that you have set, which makes it easy to
restart a debugging session.

19.6.19 How to View the Debugger Log
The Debugger log displays information about the debugging process. You can view
the Debugger log at any time while the debuggee process is still active.

To view the Debugger log while the process is still active, use one of the two
following ways:
■ In the View menu, select Debugger and then select Log.

■ In the Run Manager, right-click the process and select View Log in the context
menu.

19.6.20 How to Debug an Applet
JDeveloper allows you to control how your Applet program is debugged.

About the Debugger

19-20 User's Guide for Oracle JDeveloper

To debug an applet:
1. In the navigator, select the HTML file that contains the <APPLET> tag.

2. Click Debug in the toolbar.

The applet starts. The debugger will stop at breakpoints you have set in your
applet source code.

19.6.21 How to Debug a Javascript Program
JDeveloper allows you to control how your Javascript program is debugged, including
configuring your browser for remote debugging.

To configure Javascript debugger options in JDeveloper:
1. Choose Application > Default Project Properties (to set preferences that apply to

all projects) or choose Application > Project Properties (to set preferences that
apply only to the current project).

2. Select the Run/Debug/Profile node.

3. Select a run configuration. For more information, see Section 19.3, "How to
Configure a Project for Running."

4. Click Edit.

5. Select the Javascript node under Launch Settings.

6. Select your browser.

Choose FireFox/Mozilla and you'll get more options to control your Javascript
debugging. If JDeveloper is not already configured for Firefox as your debugging
browser, follow these steps:

■ Enter the path of Firefox browser executable file (firefox.exe) in Browser
Command Line, or click Browse and select the executable file.

■ Click the Install debuggee extension in browser button to install the
debugging extension in Firefox. Firefox opens with a page that provides a link
to install the extension. Click the Install OracleJSDebugAgent for Windows
link and install the Oracle Javascript Debug Agent Extension. Restart Firefox
to complete the installation.

7. Click OK to close the Edit Run Configuration dialog, and then close the Project
Properties dialog.

To debug a Javascript program:
1. In the Application Navigator, select the HTML/JSP/JS file that contains the

Javascript code.

2. Right-click and choose Debug from the context menu.

3. In the How Should the Target be Started dialog, if you are debugging a JS file or an
HTML file without server programming, select In the Browser without Starting
Server Instance. If you are debugging a JSP file or an HTML file with server
programming, choose In the Server Instance. Click OK.

The program starts in Firefox browser and, in JDeveloper, the debugger stops at
the first breakpoint you have set in the source code.

Using the Debugger Windows

Running and Debugging Java Programs 19-21

19.7 Using the Debugger Windows
JDeveloper provides a number of special-purpose debugging windows to help you
analyze your code.

19.7.1 Using the Breakpoints Window
Information about set breakpoints can be viewed in the Breakpoints window. For more
information about this window including its context menu options, press F1 in the
Breakpoints window.

To open the Breakpoints window to displays a list of set breakpoints:
■ Choose View > Debugger > Breakpoints from the main menu. The Breakpoints

window appears.

To change which columns are displayed in the Breakpoints window:
■ Right-click in the Breakpoints window and choose Preferences from the context

menu. Under Columns, select the columns you want to be displayed in the
Breakpoints window.

■ Or, in the Breakpoints window, right-click on the columns heading and select the
desired column names.

19.7.2 How to Use the Smart Data Window
Unlike the Data window which displays all arguments, local variables, and static fields
for the current method, the Smart Data window displays only the data that appears to
be relevant to the source code that you are stepping through. Specifically, the debugger
analyzes the source code near the execution point and finds the variables, fields, and
expressions, that are used in the lines of code that you are stepping through.

For more information, see Section 19.6.15, "How to Locate the Execution Point for a
Thread."

The Smart Data window also displays the current return value of a non-void method
when you set a breakpoint in the method and issue a Step to End of Method
command or Step Out command. The return value is not displayed for Step Over or
Step Into commands.

By default, the debugger analyzes only one line of code for each location and analyzes
up to two locations. You can adjust these settings in the Tools > Preferences -
Debugger - Smart Data page which you can also access by right-clicking in the Smart
Data window and choosing Preferences from the context menu.

To open the Smart Data window:
1. Set a breakpoint in the Source Editor and start a debugging session.

2. Click Debug from the toolbar.

3. When the debugger hits a breakpoint, select View > Debugger > Smart Data.

To change which columns are displayed in the Smart Data window:
■ Right-click in the Smart Data window and choose Preferences from the context

menu. Under Columns, select the columns you want to be displayed in the Smart
Data window.

■ Alternatively, in the Smart Data window, right-click on the columns heading and
select the desired column names.

Using the Debugger Windows

19-22 User's Guide for Oracle JDeveloper

If the project builds successfully, the debugger starts.

19.7.3 How to Use the Data Window
You use the Data window to display information about variables in your program. The
Data window displays the arguments, local variables, and static fields for the current
context, which is controlled by the selection in the Stack window. If you move to a new
context, the Data window is updated to show the data for the new context. If the
current class was compiled without debug information, you will not be able to see the
local variables. The debugger analyzes the local variable memory locations in the stack
frame to show you as much information as possible.

The Data window also displays the current return value of a non-void method when
you set a breakpoint in the method and issue a Step to End of Method command or
Step Out command. The return value is not displayed for Step Over or Step Into
commands.

To open the Data window:
1. Open source files in the Source Editor and set breakpoints.

2. In the toolbar, click Debug.

3. When the debugger pauses at a breakpoint, select View > Debugger > Data from
the main menu.

To view array elements in Data window:
1. Start debugging the project and open Data window.

2. Select the array in the Data window and expand to view its elements. If the array
contains more than 20 elements, the Data window displays first 20 elements.

■ To view the next 20 entries, click Next.

■ To view the previous 20 entries, click Previous.

■ To view the first 20 entries, click First.

■ To view the last 20 entries, click Last.

■ To change the default display size of 20, select the array, right-click and select
Adjust Range from the context menu, and enter the new value in the New
Count field. Click OK when you are done.

To change which columns are displayed in the Data window:
■ Right-click in the Data window and choose Preferences from the context menu.

Under Columns, select the columns you want to be displayed in the Data window.

■ Or, in the Data window, right-click on the columns heading and select the desired
column names.

If the project builds successfully, the debugger starts.

Note: By default, the Data window displays local variable
information while debugging a program. To disable local variable
information in Data window, clear the Full Debug Info checkbox in
the Compiler page of the Project Properties dialog. The Full Debug
Info checkbox is selected by default.

Using the Debugger Windows

Running and Debugging Java Programs 19-23

19.7.4 How to Use the Watches Window
A watch enables you to monitor the changing values of variables or expressions as
your program runs. After you enter a watch expression, the Watches window displays
the current value of the expression. As your program runs, the value of the watch
changes as your program updates the values of the variables in the watch expression.

A watch evaluates an expression according to the current context which is controlled
by the selection in the Stack window. If you move to a new context, the expression is
re-evaluated for the new context. If the execution point moves to a location where any
of the variables in the watch expression are undefined, the entire watch expression
becomes undefined. If the execution point returns to a location where the watch
expression can be evaluated, the Watches window again displays the value of the
watch expression.

To open the Watches window:
1. Open source files in the Source Editor and set breakpoints.

2. Click Debug from the toolbar.

3. When the debugger pauses at a breakpoint, select View > Debugger > Watches
from the main menu.

To change which columns are displayed in the Watches window:
1. Right-click in the Watches window and choose Preferences from the context

menu. Under Columns, select the columns you want to be displayed in the
Watches window.

2. Alternatively, in the Watches window, right-click on the columns heading and
select the desired column names

To add a watch:
■ Right-click an item in the Data window and choose Watch from the context menu.

■ Drag and drop variables, fields, and objects from the Data window to the Watches
window.

■ Select text in the source editor, right-click, and choose Watch from the context
menu.

To watch a static field:
Enter the full name of the class followed by a period (.) and the name of the field. For
example:

java.io.File.separator

To watch the current exception while stopped at an exception breakpoint, enter:
_throw

19.7.5 How to Use the Inspector Window
The Inspector window allows you to single out a selected variable, field or object, and
display the same information that is available in the Watch or Data windows. For more
information about this window, including its context menu options, press F1 in the
Inspector window.

Using the Debugger Windows

19-24 User's Guide for Oracle JDeveloper

The Inspector window is slightly different from the other windows in that it floats by
default, and you can have multiple instances of Inspector windows. Each Inspector
window contains one data item. You can drag one Inspector window into another and
dock them together.

To open the Inspector Window:
1. Set at least one breakpoint in the Source Editor.

2. Click Debug from the toolbar.

3. When the debugger reaches a breakpoint, select a variable in the Source Editor,
right-click, and choose Inspect.

The floating Inspect window appears and contains the variable you selected. If
you want to inspect something else, enter a new expression or variable in the text
field, or select a previous one from the dropdown list.

If no variable or expression is selected, the Inspect dialog appears pre-populated
with the text under the cursor in the editor as the expression to inspect. Click OK
to open the Inspector window.

The Inspector window will appear floating in the center of your screen, but you can
dock the Inspector window with other windows. To prevent docking, press the Ctrl
key while moving the window. An inspector evaluates an expression according to the
current context of the Stack window. For more information, see Section 19.7.7, "How to
Use the Stack Window."

If you move to a new context, the expression is reevaluated for the new context. If the
execution point moves to a new location where any of the variables in the expression
are undefined, the entire expression becomes undefined. If the execution point returns
to a location where the expression can be evaluated, the inspector again displays the
value of that expression.

To change which columns are displayed in the Inspector window:
■ Right-click in the Inspector window and choose Preferences from the context

menu. Under Columns, select the columns you want to be displayed in the
Inspector window.

■ Or, in the Inspector window, right-click on the columns heading and select the
desired column names.

19.7.6 How to Use the Heap Window
The Heap window displays information about the heap in the program you are
debugging and helps you to detect memory leaks in your program. You can view all
instances of a class as well as why an object has not been garbage collected.

Two types of folders display in the Heap window:

■ Class Folder

Displays the name of the class and how many instances of the class exist in
memory, and when expanded lists the specific instances and their addresses in the
heap.

■ Reference Path Folder

 Contains all the "root" references which point, either directly or indirectly, to a
specific object. Root references are static fields, stack variables, pinned objects. The
garbage collector will not discard an object if there are any root references.

Using the Debugger Windows

Running and Debugging Java Programs 19-25

Expanding a root reference will show you the reference path from the root
reference to the specified object.

To open and use the Heap window:
1. Open source files in the Source Editor and set breakpoints.

2. In the toolbar, click Debug.

3. When the debugger hits the breakpoint, select View > Debugger > Heap from the
main menu.

4. Right-click in the Heap window and choose Add New Type from the context
menu. Alternatively, drag a class node from the Classes window into the Heap
window. Or, right click on a class node in the Classes window and choose Display
in Heap from the context menu. Information about the classes appears in the Heap
window.

To change which columns are displayed in the Heap window:
■ Right-click in the Heap window and choose Preferences from the context menu.

Under Columns, select the columns you want to be displayed in the Heap
window.

■ Alternatively, in the Heap window, right-click on the columns heading and select
the desired column names from the context menu.

19.7.7 How to Use the Stack Window
The Stack window displays the call stack for the current thread. When you highlight a
line in the Stack window, the Data window, Watches window, and all Inspector
windows are updated to show data for the highlighted method.

To open the Stack window:
1. Open source files in the Source Editor and set breakpoints.

2. Click Debug from the toolbar.

3. When the debugger pauses at a breakpoint, from the main menu, select View >
Debugger > Stack.

To view the stack of a thread:
1. Start debugging the project and open Stack window.

2. Select the thread from the dropdown list, above the columns. The Stack window
immediately reflects the stack of the selected thread.

To change which columns are displayed in the Stack window:
1. Right-click in the Stack window and choose Preferences from the context menu.

Under Columns, select the columns you want to be displayed in the Stack
window.

2. Alternatively, in the Stack window, right-click on the columns heading and select
the desired column names.

19.7.8 How to Use the Classes Window
The Classes window displays which classes have been loaded and may also include
useful information, such as the number of instances of a class. In conjunction with the
Classes window, the debugger also includes a garbage collection tool when you want

Using the Debugger Windows

19-26 User's Guide for Oracle JDeveloper

to force a run of the Java garbage collector. When you run the garbage collector, the
impact is shown immediately in the Classes window. You can only force a run of the
garbage collector when you are using a virtual machine that allows the debugger to do
so.

To open the Classes window:
1. Set a breakpoint in the Source Editor and start a debugging session.

2. When the debugger hits a breakpoint, select View > Debugger > Classes.

The Classes window displays all the classes that are currently loaded, how many
instances of that class are being used, and how much memory that number of
instances requires.

To choose information that is displayed in the Classes window:
■ Right-click an item in the Classes window and choose Preferences from the

context menu. Under Columns, select the columns you want to be displayed in the
Classes window.

■ Alternatively, in the Classes window, right-click on the columns heading and
select the desired column names.

To change the ascending or descending view order:
■ Click at the top of each column to change the sort order. You can sort by:

– Name

– Count

– Memory

– File

If the Show Packages check box is selected, by default the classes are displayed in a
tree structure, where each branch represents a package. Also, the icon and entry next
to each class or package indicates whether the class is included or excluded from
tracing. The special icon shown in Figure 19–6 for a class without line number tables is
used for classes to indicate that tracing is not possible because the class has been
stripped or obfuscated.

Figure 19–6 Icon Indicating Tracing Is Not Possible

In the Classes window, choose Preferences from the context menu to select which
columns to view from the following available options:

■ Count

■ Memory

■ File

19.7.9 How to Use the Monitors Window
Java supports multithreading at the language level through the use of synchronization.
Synchronization is the coordinating of activities and data access among multiple
threads. The mechanism that Java uses to support synchronization is the monitor. The
Monitors window displays status and control information for active monitors.

Using the Debugger Windows

Running and Debugging Java Programs 19-27

To open the Monitors window:
1. Open source files in the Source Editor and set breakpoints.

2. In the toolbar, click the Debug icon.

3. When the debugger stops at the breakpoint, select View > Debugger > Monitors.

To choose information that is displayed in the Monitors window:
■ Right-click an item in the Monitors window and choose Preferences from the

context menu. Under Columns, select the columns you want to be displayed in the
Classes window.

■ Alternatively, in the Monitors window, right-click on the columns heading and
select the desired column names.

19.7.10 How to Use the Threads Window
The Threads window displays the names and status of all the threads and thread
groups in your program.

To open the Threads window:
1. Open source files in the Source Editor and set breakpoints.

2. Click Debug from the toolbar.

3. When the debugger stops at a breakpoint, choose View > Debugger > Threads
from the main menu.

The step commands including Step Over, Step Into, and Set Next Statement
apply to the current thread. To select a different thread, right-click a thread and
choose Select Thread from the context menu.

When you highlight a thread in the Threads window, the Stack window is
automatically updated to show the stack for the highlighted thread.

To change which columns are displayed in the Threads window:
■ Right-click in the Threads window and choose Preferences from the context menu.

Under Columns, select the columns you want to be displayed in the Threads
window.

■ Alternatively, in the Threads window, right-click on the columns heading and
select the desired column names.

19.7.11 How to Set Preferences for the Debugger Windows
You can choose to customize various debugger window settings including the column
resize mode and other options you want to display.

To set any of the Debugger window preferences:
1. Choose Tools > the Preferences - Debugger page.

The debugging panel appears with customizable fields.

2. Make your selections from the fields and options provided.

Tip: If the debugger has trouble connecting to the debuggee (the
program you are debugging), try increasing the connection retry
setting.

Managing Breakpoints

19-28 User's Guide for Oracle JDeveloper

3. To set any options for a specific debugger window, expand the Debugger node
and click the appropriate window node. For example, if you want to change the
columns displayed in the Smart Data window, click Smart Data.

4. Edit any of the available options as desired.

5. Click OK when you are done.

19.8 Managing Breakpoints
A breakpoint is a trigger in a program that, when reached, pauses program execution
allowing you to examine the values of some or all of the program variables. By setting
breakpoints in potential problem areas of your source code, you can run your program
until its execution reaches a location you want to debug. When your program
execution encounters a breakpoint, the program pauses, and the debugger displays the
line containing the breakpoint in the source editor. You can then use the debugger to
view the state of your program. Breakpoints are flexible in that they can be set before
you begin a program run or at any time while you are debugging. Figure 19–7 displays
an example breakpoint in a Java Application source file.

Figure 19–7 Breakpoint in Source Editor

Breakpoints set on comment lines, blank lines, declarations, and other non-executable
lines of code are invalid and will not be verified by the debugger.

The JDeveloper debugger supports a number of different types of breakpoints:

■ Source breakpoints

■ Exception breakpoints

■ Method breakpoints

Managing Breakpoints

Running and Debugging Java Programs 19-29

■ Class breakpoints

■ File breakpoints

■ Deadlock breakpoints

Deadlock breakpoints are useful in situations when you find it difficult to locate the
source of the deadlock. When a deadlock breakpoint is encountered, the debugger
halts. The deadlock breakpoint is automatically enabled when you start debugging.

Information about set breakpoints can be viewed in the Breakpoints window.

19.8.1 About Verified and Unverified Breakpoints
While debugging, you can place a breakpoint to the left of any line of code in the
source editor. However, for a breakpoint to be valid, it must be set on an executable
line of code. Before a method is first executed, the debugger verifies all valid
breakpoints in the method. Breakpoints set on comment lines, blank lines,
declarations, and other non-executable lines of code are invalid and will not be
verified by the debugger.

When a breakpoint has been verified as valid, the icon displayed in the source editor
margin and in the Breakpoints window changes to the icon shown in Figure 19–8.

Figure 19–8 Verified Breakpoint Icon

19.8.2 Understanding Deadlocks
A deadlock occurs when one or more threads in your program are blocked from
gaining access to a resource or waiting on a condition that cannot be satisfied. A
common deadlock in Java is a monitor block cycle deadlock.

A monitor block cycle deadlock occurs when two or more threads are unable to
proceed because each is waiting to enter synchronized code that one of the others has
already entered.

Example 19–2 shows a typical Java synchronization deadlock.

Example 19–2 Java Synchronization Deadlock

synchronized (a)
 {
 ...
 synchronized (b)
 {
 ...
 }
 ...
 }

At the same time, thread 2 is executing the following code:

synchronized (b)
{
...
 synchronized (b)
 {
 ...

Managing Breakpoints

19-30 User's Guide for Oracle JDeveloper

 }
 ...
 }

A deadlock will occur if thread 1 enters the synchronized (a) as thread 2 enters
the synchronized (b). Thread 1 will be blocked from entering synchronized (b)
until thread 2 finishes the synchronized (b) and thread 2 will be blocked from
entering synchronized (a) until thread 1 finishes the synchronized (a). A deadlock is
also called a "deadly embrace." This example is for two threads but the same situation
could occur for 3, 4, 5, and so on threads. The deadlock breakpoint can detect this type
of deadlock.

Another kind of deadlock is where one thread calls the wait method on a particular
object and no other threads call the notify method on that object. The most common
cause of this kind of deadlock is timing. The notifying thread may have called notify
before the waiting thread called wait. The important thing to know about calling wait
is that even if notify was already called many times before, the wait method waits
until notify is called again. Also, notify doesn't return any kind of error if there was no
thread waiting. The deadlock breakpoint cannot detect this type of deadlock.

If you think your program is hanging, click Pause to pause your program in the
debugger, and open the Monitors window. Perhaps you can see that one thread is
waiting, investigate the code. If you can see that another thread probably called notify
before the first thread called wait, there is a deadlock. This kind of deadlock is very
hard to detect. You must know your code well in order to figure out which other
thread should have called notify.

19.8.3 Understanding the Deadlock Breakpoint
The JDeveloper debugger sets a persistent deadlock breakpoint when it starts running.
A deadlock breakpoint is useful in situations when you find it difficult to locate the
source of the deadlock. When the debugger encounters a deadlock breakpoint, the
debugger halts. It can detect a monitor block cycle deadlock as described above. The
Monitors window can be useful when working with deadlocks.

The deadlock breakpoint has the following characteristics:

■ It is a persistent breakpoint that is created automatically when you use JDeveloper.

■ It cannot be deleted, but it can be disabled.

■ It pauses the debugger if a monitor block cycle deadlock is detected. A monitor
block cycle deadlock occurs when two or more threads are unable to proceed
because each is waiting to enter synchronized code that one of the others has
already entered.

The JDeveloper debugger automatically creates a persistent deadlock breakpoint; this
breakpoint will occur whenever a monitor block cycle is detected. You cannot delete a
persistent breakpoint. You cannot create a new deadlock breakpoint, but you can edit
the existing persistent deadlock breakpoint.

Not all Java Virtual Machines support deadlock detection; for example, the HotSpot
VM does not support deadlock detection.

19.8.4 Understanding Grouped Breakpoints
Grouped breakpoints let you enable a set of breakpoints. When the debugger reaches a
certain point in your code, you can instruct the debugger to enable a breakpoint or a
group of breakpoints that was previously disabled.

Managing Breakpoints

Running and Debugging Java Programs 19-31

For example, even though your code might be catching a NullPointerException,
it may not be behaving correctly. In some cases, NullPointerExceptions occur
more frequently than expected which causes the debugger to stop repeatedly for
NullPointerExceptions, including those that are of no consequence to your code.
This situation can be resolved by creating a breakpoint group, adding this breakpoint
to the group, and disabling the breakpoint group so that the debugger does not stop at
this breakpoint when debugging.

Next, you can create a source breakpoint in some code that you know is executed just
before the problematic NullPointerException is thrown. You can set the actions
for this source breakpoint so that when the source breakpoint occurs, it will
automatically enable the breakpoint group which contains the exception breakpoint.

19.8.5 How to Edit a Breakpoint
JDeveloper allows you to edit the options of a breakpoint after you have added it in
the source code.

To view and modify the options of a breakpoint:
1. If the Breakpoints window is not open, select View > Debugger > Breakpoints

from the main menu.

2. In the Breakpoints window, select a breakpoint.

3. Right-click and choose Edit, or click the Edit icon on the Breakpoint toolbar.

The Edit Breakpoint dialog appears with a Definition tab, a Conditions tab, and
an Actions tab.

4. Make any necessary changes to the breakpoint options.

5. To accept the changes, click OK.

From the Edit Breakpoint dialog, you can:
■ Set a breakpoint option.

■ Set the threads to which the breakpoint will apply.

■ Set a pass count for the breakpoint.

■ Put the breakpoint in a breakpoint group.

■ Choose what actions the debugger will take when the breakpoint occurs.

You can right-click to edit a breakpoint located in the source editor:
1. Right-click on a breakpoint icon in the gutter of the source editor.

2. Choose Edit Breakpoint.

The Edit Breakpoint dialog displays, where you can specify the definition of the
breakpoint.

You can also hover over a breakpoint in the source editor:
■ With your mouse cursor, hover over a breakpoint icon in the gutter of an editor

window.

Managing Breakpoints

19-32 User's Guide for Oracle JDeveloper

Figure 19–9 Edit Breakpoints Dialog

The popup dialog shown in Figure 19–9 displays.

In the dialog, you can edit some of the most important breakpoint attributes, such
as enabled/disabled, condition and more.

19.8.6 How to Set Source Breakpoints
A source breakpoint is a breakpoint set in the source code and is the default type of
breakpoint.

You can set a source breakpoint in any of the following ways:
■ In the source editor, click in the left margin next to a line of executable code.

■ In the source editor, right-click in the left margin next to a line of code then choose
Toggle Breakpoint (F5).

■ Choose View > Debugger > Breakpoints to display the Breakpoints window.
Then, right-click anywhere in this window and choose Add Breakpoint from the
context menu. From the submenu, select Source as the breakpoint type, then
complete the package, source file name, and line number information in the
dialog. The source filename should not include any directory information, but
must include the extension of the file. For example:

Application1.java or MyWebApp.jsp

You'll probably want to set a least one breakpoint before you start debugging, but
it is not necessary. While your program is running in the debugger, you can set a
breakpoint. The program pauses when it reaches the breakpoint.

19.8.7 How to Control Breakpoint Behavior
You can control how the debugger behaves when a breakpoint occurs.

To control how the debugger behaves when a breakpoint occurs:
1. In the Breakpoints window toolbar, click Add Breakpoint; or select a breakpoint

and click Edit.

2. Click the Actions tab in the New/Edit Breakpoint dialog. The Actions tab allows
you to change these behaviors:

■ Halt execution (default)

■ Beep

■ Log breakpoint occurrence (enter a tag or an expression)

■ Enable a group of breakpoints

■ Disable a group of breakpoints

Managing Breakpoints

Running and Debugging Java Programs 19-33

19.8.8 How Disable and Delete Breakpoints
When you disable a breakpoint, all the breakpoint settings remain defined, but the
breakpoint is not triggered when your program is run; your program will not stop on a
disabled breakpoint. Disabling a breakpoint is useful if you have defined a breakpoint
that you don't need to use now, but might need to use at a later time.

To disable breakpoints:
■ In the source editor, right-click the breakpoint symbol in the left margin and

choose Disable Breakpoint.

■ In the Breakpoints window (View > Debugger > Breakpoints) right-click the
breakpoint you want to disable and choose Disable.

■ To disable a group of breakpoints in the Breakpoints window, select the group that
you want to disable, right-click and choose Disable Group.

You can also disable breakpoints from the Breakpoint toolbar. Select the breakpoint
or breakpoint group, and click Disable on the toolbar.

■ To disable all current breakpoints, right-click in the Breakpoints window, and
choose Disable All from the context menu.

To reenable disabled breakpoints:
■ To enable a breakpoint that is disabled, right-click the disabled breakpoint symbol

(or entry in the Breakpoints window), and choose Enable.

■ To enable all breakpoints that have been set, right-click in the Breakpoints window,
and choose Enable All.

■ To enable a group of breakpoints, right-click a breakpoint group in the Breakpoints
window, and choose Enable Group.

You can also enable breakpoints from the Breakpoint toolbar. Select the breakpoint
or breakpoint group, and click Enable on the toolbar.

To delete breakpoints:
When you no longer need to examine the code at a breakpoint location, you can delete
the breakpoint. You can delete breakpoints either using the source editor or in the
Breakpoints window.

■ In the left margin of the source editor, click the breakpoint you want to delete.

■ In the left margin of the source editor, right-click the breakpoint you want to
delete, and choose Toggle Breakpoint.

■ In the source editor, place the cursor in the line of code containing the breakpoint,
and press F5.

■ To delete all currently set breakpoints, right-click in the Breakpoints window and
select Delete All.

■ Select the breakpoint in the Breakpoints window and click Delete Breakpoint on
the toolbar.

Caution: You cannot undelete a breakpoint.

Managing Breakpoints

19-34 User's Guide for Oracle JDeveloper

19.8.9 How to Set Instance Breakpoints
Breakpoints typically have effect whenever they are reached. An instance breakpoint is
associated with a specific instance of the class that defines the method where the
breakpoint appears.

An instance breakpoint is a source breakpoint that has been associated with an
instance filter that identifies the selected instances. Instance breakpoints do not persist
between runs of the debugger. Instance filters are shown in the Instance Filters column
of the Breakpoints window.

To set an instance breakpoint:
1. Set the source breakpoint that you will convert to an instance breakpoint. It must

be in a method of the instance's class. For more information, see Section 19.8.6,
"How to Set Source Breakpoints.".

2. Set a second breakpoint at some point where the desired instance will be
accessible.

3. Define the instance filter:

■ Start or resume the debugger.

■ When the debugger stops at the second breakpoint, find the desired instance
in the Data window, Smart Data window, or Watches window.

■ Right-click the instance, choose Instance Filters, and choose the source
breakpoint that is to become an instance breakpoint.

Repeat for other instances you wish to track.

4. Resume the debugger.

The debugger will stop at the instance breakpoint only for the selected instances.

19.8.10 How to Set Exception Breakpoints
Breakpoints are typically attached to a particular line of code; they pause the debugger
when a particular line of code is about to be executed. In addition, you can set a
breakpoint to be activated when a certain type of exception is thrown. Exception
breakpoints are not associated with a particular line of code.

To set an exception breakpoint:
1. In the Breakpoints window, click Add Breakpoint on the Breakpoint toolbar. From

the submenu, choose Exception Breakpoint.

The Create Exception Breakpoint dialog appears.

2. In the Definition tab, enter or choose the name of an exception class.

3. If desired, select or clear the Break for Caught Exceptions or Break for Uncaught
Exceptions checkboxes. Both checkboxes are selected by default.

4. Click OK.

The debugger will now pause if an exception of the specified type is thrown.

By default, the debugger automatically creates a persistent exception breakpoint for
uncaught throws for java.lang.Throwable. This breakpoint will occur whenever
an uncaught exception is thrown. You cannot delete a persistent breakpoint, although
you can disable it.

Managing Breakpoints

Running and Debugging Java Programs 19-35

19.8.11 How to Make a Breakpoint Conditional
When you make a breakpoint conditional, the debugger pauses when a certain
condition is met. When a breakpoint is first set, the debugger pauses the program
execution each time the breakpoint is encountered. However, using the Edit
Breakpoints dialog, you can customize breakpoints so that they are activated only in
certain conditions.

The Conditions tab in the Edit Breakpoint dialog is where you enter an expression that
is evaluated each time the debugger encounters the breakpoint while executing the
program. If the expression evaluates to true, then the breakpoint pauses the program.
If the condition evaluates to false, then the debugger does not stop at that breakpoint
location.

For example, suppose you want a breakpoint to pause on a line of code only when the
variable mediumCount is greater than 10.

To set a breakpoint condition:
1. Set a breakpoint on a line of code by clicking to the left of the line in the source

editor.

2. Open the Breakpoints window by choosing View > Debugger > Breakpoints.

3. In the Breakpoints window, right-click the breakpoint you just set and choose Edit.

4. In the Edit Breakpoint dialog, click Conditions.

5. Enter an expression in the Condition field, for example, mediumCount > 1

6. Click OK.

You can enter any valid Java language expression in the Edit Breakpoint dialog, but all
symbols in the expression must be accessible from the breakpoint's location, and the
expression cannot contain any method calls. For an exception breakpoint, you may
want to use the exception object in your condition by using _throw.

You can also right-click a breakpoint located in the source editor to set
conditions:
1. Right-click on a breakpoint icon in the gutter of the source editor.

2. Choose Edit Breakpoint.

The Edit Breakpoint dialog displays, where you can specify conditions.

You can also hover over a breakpoint in the source editor to set conditions:
■ With your mouse cursor, hover over a breakpoint icon in the gutter of an editor

window.

The Edit Breakpoints popup dialog shown in Figure 19–9 displays. You can set
conditions in the dialog.

19.8.12 Using Pass Count Breakpoints
The Pass Count field specifies the number of times that a breakpoint must be passed
for the breakpoint to be activated. Pass counts are useful when you think that a loop is
failing on the nth iteration. The debugger pauses the program the nth time that the
breakpoint is encountered during the program run. The default value is 1.

If the Pass Count column is shown in the Breakpoints window, you can see the pass
count value decrement each time the breakpoint line of code is encountered during the

Managing Breakpoints

19-36 User's Guide for Oracle JDeveloper

program execution. If the pass count equals 1 when the breakpoint line is encountered,
the breakpoint is activated, and the program pauses at that line.

When pass counts are used together with breakpoint conditions, the breakpoint pauses
the program execution the nth time that the condition is true; the condition must be
true for the pass count to be decremented.

19.8.13 How to Examine Breakpoints with the Breakpoints Window
To see the list of breakpoints, choose View > Debugger > Breakpoints from the main
menu. Breakpoints that have been verified as valid by the debugger are indicated by
the icon shown in Figure 19–8. You can use the Breakpoints window to quickly find
the breakpoint location in your source code.

To use the Breakpoints window to locate a breakpoint in the source editor:
1. In the Breakpoints window, select a breakpoint.

2. Right-click and choose Go to Source from the context menu.

19.8.14 How to Manage Breakpoint Groups
You can enable or disable several breakpoints with a single action, by creating a
breakpoint group and putting breakpoints into it. Once you've created a breakpoint
group, you can enable, disable, or remove it like a single breakpoint.

You can also drag and drop a breakpoint into or out of a group in the Breakpoints
window.

To create a breakpoint group:
1. In the Breakpoints window, right-click a breakpoint and choose Edit from the

context menu.

The Edit Breakpoint dialog appears.

2. In the Breakpoint Group Name field, enter a group name for this breakpoint.

3. Click OK.

A new group is created in the Breakpoints window, and is indicated by a folder
icon. The breakpoint you just edited is automatically put in the new group.

To move a breakpoint into a breakpoint group:
Either drag-and-drop the breakpoint into the breakpoint group, or follow these steps.

1. In the Breakpoints window, right-click a breakpoint and choose Edit from the
context menu.

The Edit Breakpoint dialog appears.

2. From the Breakpoint Group Name field, select a breakpoint group from the
dropdown list, or enter a new group name.

3. Click OK.

The breakpoint is added into the specified group.

To enable, disable, or remove a breakpoint group, in the Breakpoints window,
right-click a breakpoints group, and choose Enable Group, Disable Group, or Delete
Group from the context menu.

Examining Program State in Debugger Windows

Running and Debugging Java Programs 19-37

You can also enable or disable a group from the Breakpoint toolbar. With the group
name selected in Breakpoints window, click the Enable or Disable icon on the toolbar.
All the breakpoints of the selected group will be enabled or disabled.

19.9 Examining Program State in Debugger Windows
Even though you can view your program by running and stepping through it, you
usually need to examine the values of program variables to uncover bugs. For
example, it is helpful to know the value of the index variable as you step though a
loop, or the values of the parameters passed in a method call. When your program is
paused in the debugger, you can examine the values of variables, arguments, fields,
and array items.

19.9.1 How to Inspect and Modify Data Elements
You can inspect and change the values of data items using the Data, Smart Data,
Inspector, or Watches windows during the course of your debugging sessions.

When you inspect a data item, you evaluate it with different expressions while your
debugging session is running. If desired, you can then modify program data values as
a way to test hypothetical bug fixes during a program run. If you find that a
modification fixes a program error, you can exit the debugging session, fix your
program code accordingly, and recompile the program to make the fix permanent.

You can modify program data values during a debugging session as a way to test
hypothetical bug fixes during a program run. If you find that a modification fixes a
program error, you can exit the debugging session, fix your program code accordingly,
and recompile the program to make the fix permanent.

When you modify the value of a variable, the modification is effective for that specific
program run only; the changes you make through the Data or Watches windows do
not affect your program source code or the compiled program. To make your change
permanent, you must modify your program source code in the source editor, then
recompile your program.

The new value needs to be type-compatible with the variable you want to assign it to.
A good rule of thumb is that if the assignment would cause a compile-time or run-time
error, it is not a legal modification value.

To inspect a data item:
1. Open the Data window while the debugger is stopped at a breakpoint.

2. Right-click an item in the Data window and choose Inspect from the context
menu.

The floating Inspector window opens displaying the item's name, value, and other
related information. The columns which display in this window depend on those
column settings that were enabled in the Tools > Preferences - Debugger -
Inspector page. For more information, see Section 19.7.5, "How to Use the
Inspector Window."

3. To evaluate the item for an expression, choose Edit Expression from the context
menu.

You can also add a watch expression or further inspect the data item.

4. When you are done, close the Inspector window.

Examining Program State in Debugger Windows

19-38 User's Guide for Oracle JDeveloper

To quickly inspect a data item:
If you just want to view a data item's value and do not want to evaluate it for any
expression, you can use the Quick Inspect feature.

1. Open the Data window while the debugger is stopped at a breakpoint.

2. Configure the Data window to display the Quick Inspect column. Right-click in
the header of the Data window columns and choose Quick Inspect. The Quick
Inspect is the first column of the window.

3. Select the data item and click the green spherical icon.

4. A child window opens showing the children of the selected item, allowing you to
quickly inspect variables deep in an object hierarchy. The quick inspect windows
close automatically when you move mouse pointer away from the data item.

JDeveloper also allows you to inspect a data item without adding it in Data window.
When the debugger has stopped at a breakpoint in the Source Editor, hover the mouse
over a data item to view the its name, value, and type. If the data item is an object or
an array, you can inspect children of the selected item deep in the object hierarchy.

To modify the value of a variable in the Data window:
1. Open the Data window while the debugger is stopped at a breakpoint.

2. Right-click an item in the Data window and choose Modify Value from the
context menu.

The Modify Value dialog appears with the selected item's name and its current
value.

3. Enter a new value for the item.

■ If you are modifying a primitive value, you can enter a new value.

■ If you are modifying a reference pointer (other than a string), you can enter the
memory address of an existing object or array.

■ If you are modifying a string, you can enter either a new string value or the
memory address of an existing string.

4. Click OK to change the value for the item and to close the dialog.

The new value appears in the Data, Smart Data, Inspector, or Watches windows.

19.9.2 How to Set Expression Watches
A watch enables you to monitor the changing values of variables or expressions as
your program runs. After you enter a watch expression, the Watch window displays
the current value of the expression. As your program runs, the value of the watch
changes as your program updates the values of the variables in the watch expression.

A watch evaluates an expression according to the current context which is controlled
by the selection in the Stack window. If you move to a new context, the expression is
reevaluated for the new context. If the execution point moves to a location where any
of the variables in the watch expression are undefined, the entire watch expression
becomes undefined. If the execution point returns to a location where the watch
expression can be evaluated, the Watches window again displays the value of the
watch expression.

To open the Watches window:
■ Choose View > Debugger > Watches from the main menu.

Examining Program State in Debugger Windows

Running and Debugging Java Programs 19-39

To add a watch from the Source Editor:
1. Select the expression you want to watch with your cursor.

2. Right-click and choose Watch from the context menu to add the expression to the
Watches window.

A dialog appears with the expression.

3. Edit the expression, if necessary.

4. Click OK.

Or, add a watch in the following ways:
■ Select a data item in the Data window. Then right-click, and choose Watch.

■ Right-click in the Watches window and choose Add Watch.

■ Use the mouse to drag a data item from the Data window and drop it on the
Watches window.

To edit a watch:
1. Select the expression in the Watches window, then right-click and choose Edit

Watch.

The Edit Watch dialog appears.

2. Enter a new expression or modify the existing one and click OK.

To delete a watch:
■ Select the expression in the Watches window, press the Delete key or right-click

and choose Remove Watch from the context menu. You can also delete all the
watches by choosing Remove All Watches from the context menu.

19.9.3 How to Modify Expressions in the Inspector Window
You can modify an existing expression in the inspector window.

To modify an expression in the Inspector window:
1. In the Inspector window, right-click and choose Edit Expression from the context

menu.

The Edit Expression dialog appears.

2. Enter a new expression.

3. Click OK.

19.9.4 How to Show and Hide Fields in the Filtered Classes List
While debugging, you can use filters to reduce the number of fields that are displayed
when you expand an object in a data-related debugger window. You can perform this
task in the Smart Data window, the Data window, the Inspector window, the Watches
window, and the left-hand side of the Monitors window through the Object
Preferences dialog. Displaying fewer fields narrows your focus when debugging and
may make it easier to locate and isolate potential problems in your program.

Caution: You cannot restore a deleted watch.

Debugging Remote Java Programs

19-40 User's Guide for Oracle JDeveloper

For example, you can create filters for classes in the data windows so that the
debugger displays only the fields of interest to you. This drastically reduces clutter
and allows you to find the relevant data more quickly.

To show or hide fields in the filtered classes list:
1. Select an object in a data-related debugger window. Right-click and choose Object

Preferences from the context menu.

Choosing Object Preferences lets you go directly to the Object Preferences dialog
for this specific object from which you can specify filters to control which fields are
displayed and which fields are not displayed when you expand an object.

2. In the Object Preferences dialog, you can easily traverse the superclass hierarchy of
the selected object, defining or updating the filters for each superclass. Select a
class in the Type Hierarchy and choose the fields to hide or display in the Value
column of the debugger window.

3. Click the arrows to shuttle filters from the Fields to Show list to the Fields to Hide
list.

4. Click OK when you are done.

19.10 Debugging Remote Java Programs
In addition to debugging code locally in the JDeveloper IDE, you can also debug code
which is located on a remote machine or running in a different VM instance. This
means that you can use the debugger to debug code that has already been deployed.
The debugger can simultaneously attach to multiple remote VMs, so you can
seamlessly debug distributed applications, such as JSPs deployed to a web server
accessing EJBs deployed to an application server.

The main difference between remote debugging and local debugging is how you start
the debugging session. For local debugging, JDeveloper automatically launches the
program you want to debug (called a debuggee process) and then attaches the
debugger to that program. For remote debugging, you must manually launch the
program you want to debug. Also, if you are debugging a JSP or a servlet, you must
manually start a browser to invoke your JSP or servlet.

Once the debuggee is launched and the JDeveloper debugger is attached to it, remote
debugging is very similar to local debugging. Remember that you can use remote
debugging when the debuggee process is running on the same machine as JDeveloper
or when the debuggee process is running on a different machine.

Unlike local debugging, you must choose which protocol to use before you start your
remote debugging session. The remote debugging protocols are configured in
Debugger - Remote page of the Edit Run Configuration dialog.

You can also debug Web pages such as JSPs or servlets using the HTTP Analyzer. For
more information, see Chapter 8, "Auditing and Profiling Applications."

Attach to JPDA
Select to attach to the debugger application at a specified address. For more
information about the Sun Java Platform Debugger Architecture (JPDA) Connection
and Invocation, see
http://java.sun.com/javase/6/docs/technotes/guides/jpda/conninv.
html

Debugging Remote Java Programs

Running and Debugging Java Programs 19-41

Listen for JPDA
Select to specify that the debugger listen for a debuggee to attach to the debugger.
Also, choose this option if you are debugging remote PL/SQL programs.

19.10.1 How to Start a Java Process in Debug Mode
After you've configured a project for remote debugging, you can start your remote
debugging session by issuing the appropriate command based on the debugging
protocol and the environment.

To start the Java process, enter the following at the command line:

java [-client|server] -cp <project_directory>\classes
-agentlib:jdwp,<option1>[=<value1>],<option2>[=<value2>]... <java_main_class>

The available options are:

■ server(=n/y)

If set to y, then the Java process waits for a Debugger to attach. If set to n (default),
the process attaches itself to the debugger application at the specified address.

■ address

Specifies the port for the connection. Defaults to 4000.

■ timeout

Time interval after which the connection attempt times out. Defaults to 2 seconds.

■ suspend =(y/n)

If set to y (default), the Java process runs after the debugger connects to it. If set to
n, the debuggee process starts right away without waiting for the debugger to
connect to it.

Command line examples:
■ java -cp <project_directory>\classes

-agentlib:jdwp=transport=dt_
socket,server=y,suspend=n,address=4000

Listen for a debugger connection on port 4000, but begin execution without
waiting for the debugger. Timeout after 2s (default). Implement the Client VM
(default).

■ java -server -cp <project_directory>\classes
-agentlib:jdwp=transport=dt_
socket,server=n,suspend=y,timeout=3,address=8000

Attach to a debugger connection on port 8000. Begin execution only after
connecting to the debugger. Timeout after 3s. Implement the Server VM.

For more information about the Sun JPDA Connection and Invocation, see
http://www.oracle.com/technetwork/java/javase/documentation/
index-jsp-135444.html.

19.10.2 How to Remote Debug Using the Javascript Debugger
JDeveloper allows you to remote debug a Javascript program in local instances and
server instances.

Before you start remote debugging, install the Firefox plugin for Javascript debugging
and configure JDeveloper for Javascript remote debugging.

Debugging Remote Java Programs

19-42 User's Guide for Oracle JDeveloper

To remote debug a Javascript program (HTML/JS files):
1. Enable remote debugging in JDeveloper.

■ Choose Application > Project Properties.

■ In the Project Properties dialog, select the Run/Debug/Profile node. From the
Run Configurations list, select a run configuration and click Edit.

■ In the Launch Settings page of the Edit Run Configuration dialog, select
Remote Debugging.

■ Select Remote node under Tool Settings > Debugger.

■ In the Remote page, select Protocol as Attach to Mozilla/Firefox.

■ Optionally, set host machine name, port, and timeout information. By default,
JDeveloper uses port 4000 and 2 seconds timeout values.

■ Click OK to close the Edit Run Configuration dialog, and then close the
Project Properties dialog.

2. Close all open instances of Firefox, if any.

3. In JDeveloper, set breakpoints in the Javascript program.

4. Open command window and start Mozilla Firefox with the following command:

firefox AnHtmlFile -oraclejsdebugport=<port> <another browser
argument>

For example:

C:\>firefox file://C:/Shopcart/Servlet/public_html/index.html
-oraclejsdebugport=4000

Firefox won't open, but its process will start in the background. Open Windows
Task Manager and verify that firefox process is running.

5. In JDeveloper, start the remote debugger. In Application Navigator, select the
project, right-click and choose Start Remote Debugger.

6. The program starts in Firefox browser and, in JDeveloper, the debugger stops at
the first breakpoint you have set in your source code. Now, you may continue
debugging your Javascript program using available debugger options.

To remote debug a Javascript program in a server instance (JSP/Servlets/HTML
files):
1. Start JDeveloper Integrated WebLogic server. From the Run menu, choose Start

Server Instance.

2. Deploy your project to the integrated WebLogic server.

3. Enable remote debugging in JDeveloper.

■ Choose Application > Project Properties.

■ In the Project Properties dialog, select the Run/Debug/Profile node. From the
Run Configurations list, select a run configuration and click Edit.

■ In the Launch Settings page of the Edit Run Configuration dialog, select
Remote Debugging.

■ Select Remote node under Tool Settings > Debugger.

■ the Remote page, select Protocol as Attach to Mozilla/Firefox.

Debugging Remote Java Programs

Running and Debugging Java Programs 19-43

■ Optionally, set host machine name, port, and timeout information. By default,
JDeveloper uses port 4000 and 2 seconds timeout values.

■ Click OK to close the Edit Run Configuration dialog, and then close the
Project Properties dialog.

4. Close all open instances of Firefox, if any.

5. In JDeveloper, set breakpoints in your program files.

6. Open command window and start Mozilla Firefox with the following command:

firefox webaddress -oraclejsdebugport=<port> <another browser
argument>

For example:

C:\>firefox http://130.35.102.18:7101/Shopcart/index.jsp
-oraclejsdebugport=4000

Firefox won't open, but its process will start in the background. Open Windows
Task Manager and verify that firefox process is running.

7. In JDeveloper, start the remote debugger. In Application Navigator, select the
project, right-click and choose Start Remote Debugger.

8. The program starts in Firefox browser and, in JDeveloper, the debugger stops at
the first breakpoint you have set in your source code. Now, you may continue
debugging your program using available debugger options.

19.10.3 How to Use a Project Configured for Remote Debugging
Any project can be configured to perform remote debugging.

To configure a project for remote debugging:
1. Click Debug from the toolbar.

The appropriate Attach to dialog appears.

2. In the Host list box, enter or select the name or IP address of the machine where
the remote debuggee has been started.

3. In the Port list box, enter or select the port number for the remote debuggee.

4. Click OK.

In the Log window, once the debugger has connected, a successful connection
message appears.

5. If you are remote debugging a JSP or servlet, you will want to access your JSP or
servlet by launching your browser. If you are remote debugging an EJB, you will
want to run an EJB client that will access your EJB.

6. Continue with your debugging session as usual.

7. To detach the debugger from the remote debugging process without terminating
the debuggee process, choose the Run > Detach menu option. This option is
appropriate for remote debugging an application server.

8. To terminate the remote debugging process, choose the Run > Terminate menu
option, or select the Terminate icon.

Debugging Remote Java Programs

19-44 User's Guide for Oracle JDeveloper

19.10.4 How to Configure JPDA Remote Debugging
In the following steps, you will configure JDeveloper for Java Platform Debugger
Architecture (JPDA) remote debugging.

To configure your project for remote debugging:
1. Make changes in the JSP section of global-web-application.xml as follows:

<init-param>
 <param-name>debug</param-name>
 <param-value>class</param-value>
</init-param>

2. Start commands for Integrated WebLogic Server (make sure -server is the first
parameter).

value="-server -agentlib:jdwp=transport=dt_
socket,server=y,suspend=n,address=4000 -Xms512m
-Xmx750m -XX:PermSize=128m -XX:MaxPermSize=256m
-Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
-Djava.awt.headless=true -Dhttp.webdir.enable=false"/>

To configure JDeveloper for remote debugging:
1. Choose Application > Project Properties, select the Run/Debug/Profile node,

select a run configuration and click Edit.

2. Select the Remote Debugging and Profiling check box.

3. On the Debugger - Remote page, verify that Protocol is set to Attach to JPDA.

4. Close the Preferences dialog.

5. Set breakpoints in your code and from the Debug button dropdown list select the
desired run configuration. Complete the connection dialog and verify connection
to the debuggee.

6. Access JSP previously deployed to server via a browser. The breakpoint should be
hit and all work as expected.

20

Implementing Java Swing User Interfaces 20-1

20Implementing Java Swing User Interfaces

This chapter describes how to use the tools and features that JDeveloper provides to
help you develop Java Swing interfaces. It explains the fundamental tasks you perform
as you work with components and JDeveloper's UI design tools. Included is a
description of the UI debugger, which is used to debug user interfaces specifically for
AWT and Swing-based client applications and applets.

This chapter includes the following sections:

■ Section 20.1, "About Implementing Java Swing User Interfaces"

■ Section 20.2, "Understanding the JDeveloper User Interface Design Tools"

■ Section 20.3, "Controlling the Look and Feel of a Swing Application"

■ Section 20.4, "Working with Java Swing and AWT Components"

■ Section 20.5, "Working with Layout Managers"

■ Section 20.6, "Prototyping Your UI with Layout Properties"

■ Section 20.7, "Working with Containers and Components"

■ Section 20.8, "Working with Components in a Container"

■ Section 20.9, "Working with Menus"

■ Section 20.10, "Working with Event Handling"

■ Section 20.11, "Working with Applets"

■ Section 20.12, "Working with the UI Debugger"

20.1 About Implementing Java Swing User Interfaces
Using the Java Visual Editor in JDeveloper, you can quickly and easily assemble the
elements of a user interface (UI) for a Java application or applet using Swing
components. You construct the UI with JavaBeans selected from the component
palette, such as buttons, text areas, lists, dialogs, and menus. Then, you set the values
of the component properties and attach event-handler code to the component events.

20.2 Understanding the JDeveloper User Interface Design Tools
With JDeveloper tools, you can visually design and program Java classes to produce
new compound or complex components.

JDeveloper UI design tools include the following:

Understanding the JDeveloper User Interface Design Tools

20-2 User's Guide for Oracle JDeveloper

■ A Java Visual Editor in which you create and arrange panels and other UI
components inside a frame or other UI container. You access the Java Visual Editor
by right clicking the file in the Navigator and choosing Open. Click the Design tab
to work the visual editor. For more information, see Section 18.3.1, "Editing Code
with the Java Visual Editor."

■ A Menu Editor in which you create and edit a menu bar, menus, menu items, and
popup menu components. You access the Menu Editor when you have the Java
Visual Editor open by dropping a menu component into your UI container from
the Component Palette. You can also edit an existing menu component by clicking
the menu component in the Structure window. For more information, see
Section 20.9.2, "Using the Menu Editor."

■ A Component Palette containing visual and nonvisual components. You display
the Component Palette for components that you select in the Java Visual Editor. To
display the Component Palette for an open file, choose View > Component
Palette. For more information, see Section 11.1.4, "How to Use the Component
Palette."

■ A Structure window that displays a hierarchical view of all the components in
your source file, and their relationships. You access the Structure window below
the Navigator window or, if docked, by choosing View > Structure. For more
information, see Section 3.11.6, "Structure Window."

■ The Property Inspector, used to inspect and set component properties and to
attach methods to component events. Changes made in the Inspector are reflected
visually in the Java Visual Editor and source code. You display the Property
Inspector for a particular file that you open in the Java Visual Editor. To display
the Property Inspector for an open file, choose View > Property Inspector. For
more information, see Section 11.1.3, "How to Use the Property Inspector."

If you want to use the UI design tools on a file, it must meet the following
requirements:

■ It must be a Java file.

■ It must be free from syntax errors.

■ It must contain a public class (the file name must be the same as the name of the
public class).

■ It must follow JDeveloper coding conventions:

– All UI controls are declared as class members or as local variables within
jbInit().

– All UI property settings done in jbInit(). This is necessary in order for the
JDeveloper Java Visual Editor and Property Inspector to reflect the settings.

– All property settings set as expressions involve only member UI controls or
static values.

■ It must have a default constructor.

Any file that meets the above requirements can be visually designed using the Java
Visual Editor and the Property Inspector. You can also visually design a non-UI class.

Note: These requirements are satisfied when you create your files
with any of the JDeveloper dialogs.

Controlling the Look and Feel of a Swing Application

Implementing Java Swing User Interfaces 20-3

When you first add a component to your design, the JDeveloper Java Visual Editor
ensures that your class has a default constructor, a private jbInit() method, and
that this jbInit() method is called correctly from the default constructor. If
JDeveloper does not find this code, it will add it. It will also add any imports needed
by the component.

When you open the file in the Java Visual Editor, JDeveloper updates the Structure
window tree. For example, if your class has a frame and a menu, there will be subtrees
for UI and Menu. If you drop any other JavaBeans components into the Structure
window, an 'Others' folder appears so you can select and edit these components in the
Property Inspector.

20.3 Controlling the Look and Feel of a Swing Application
JDeveloper includes the Swing GUI components. The Swing classes allow you to
specify a look and feel for a user interface. You can take advantage of this new Java
pluggable look-and-feel to create applications that have the look and feel of a user's
native desktop for Windows or Solaris machines. You can also ensure a uniform look
and feel in your applications across platforms with the Java Metal look and feel.

There are four look and feel choices in JDeveloper:

■ Oracle

■ Metal

■ CDE/Motif

■ Windows

There are also several considerations when setting the look and feel using the UI
Manager:

■ The line of code for the look and feel statement is inside a try/catch block. This
placement is necessary for it to compile.

■ This code needs to be run before any components are instantiated. That is why it is
placed in the <Application>.java static main() method.

■ The class UIManager lives in the com.sun.java.swing package.

20.3.1 How to Change the Oracle Look and Feel

To change to the Oracle look and feel:
1. Open the Application file in the Code Editor.

2. In the Main method, add the following code:

try {
 UIManager.setLookAndFeel(new oracle.bali.ewt.olaf.OracleLookAndFeel());
}
catch (Exception e) {
}

It is necessary to have the Oracle look and feel (OLAF) share.jar and
jewt4.jar files from the jlib directory in the classpath.

Working with Java Swing and AWT Components

20-4 User's Guide for Oracle JDeveloper

20.3.2 How to Change the Windows Look and Feel

To change to the Windows look and feel:
1. Open the Application file in the Code Editor.

2. In the Main method, add the following code:

try {
 UIManager.setLookAndFeel(new
 com.sun.java.swing.plaf.windows.WindowsLookAndFeel());
}
catch (Exception e) {
}

It is necessary to have the Oracle look and feel (OLAF) share.jar and
jewt4.jar files from the jlib directory in the classpath.

20.3.3 How to Change the Metal Look and Feel
The Metal look and feel is default for Swing components. If you want to use the Metal
look and feel, you do not have to change your code.

To change to the Metal look and feel:
1. Open the Application file in the Code Editor.

2. In the Main method, add the following code:

try {
 UIManager.setLookAndFeel(new
 javax.swing.plaf.metal.MetalLookAndFeel());
}
catch (Exception e) {
}

20.4 Working with Java Swing and AWT Components
Use Swing and AWT JavaBeans components to assemble the user interface (UI) for a
Java application or applet. You construct the UI in the Java Visual Editor by selecting
JavaBeans from the Component Palette, such as buttons, text areas, lists, dialogs, and
menus. Then, you set the values of the component properties and attach event-handler
code to the component events. Tools to visually design and program Java classes to
produce new compound or complex component.

20.4.1 Using Swing JavaBeans Components
Swing components are lightweight components that are self-rendering and do not use
Windowing resources as do AWT components. In many cases, these components have
corresponding AWT components, but the Swing version is enhanced to allow greater
flexibility and consistency between platforms.

Note: It is necessary to have the Oracle look and feel (OLAF)
share.jar and jewt4.jar files from the jlib directory in the
classpath.

Working with Java Swing and AWT Components

Implementing Java Swing User Interfaces 20-5

Table 20–1 contains the Swing JavaBeans components.

Note: Swing components rely on underlying functionality in Swing
containers. If you intend to use Swing JavaBeans, you must create
your program using a JFrame, JPanel or other container that
implements the basic Swing functionality.

Table 20–1 Swing JavaBeans Components

Component Description

JButton A simple push button. A JButton can have an embedded icon.

JCheckBox A square box used to display boolean (true/false) values. When
its value is set to true, the box displays a checkmark by default.
You have the option of setting your own checkmark graphic.

JComboBox Similar to the Choice control in AWT, displays a list of values
that the user can select at runtime. JComboBox has the property
editable which enables the user to type a new value at runtime.

JEditorPane A specialized JTextComponent that displays text formatted with
HTML 3.2 or RTF. It is intended to allow you to create help
pages for your application or applet.

JLabel A text component that enables you to display a text string and
optional icon. Additional properties enable you to set the
position of the text relative to the icon.

JList Displays a list of objects.

Tip: The JList, unlike the AWT List component, doesn't have a
scrolling facility built into the component. To make a scrollable
list, you need to drop the list component into a JScrollPane
container.

JPasswordField A JTextField that by default displays asterisks (*) in place of the
characters entered by the user.

JProgressBar Displays a progress bar that graphically depicts the percentage
of completion for a process.

JRadioButton This component is specifically designed to behave as a Radio
Button. When grouped with other JRadioButtons in a
ButtonGroup, only one of the buttons in the group can be
selected at one time. The ButtonGroup is a non-visual
component.

JScrollBar A graphic control the user can use to set an integer value. This
component can be displayed with either a horizontal or a
vertical orientation.

JSeparator A component that draws a straight line. It is intended to be used
as a component in a JMenu, but since it is an actual component,
you can use it to draw a line in your UI that separates one set of
controls from another. The JSeparator can be displayed in
vertical or horizontal orientation.

JSlider Similar to a JScrollBar, this control allows the user to set an
integer value using a graphic control. JSlider allows you to set
major and minor tick marks, and to display a border around the
control.

Working with Java Swing and AWT Components

20-6 User's Guide for Oracle JDeveloper

20.4.2 Using AWT JavaBeans
AWT JavaBeans components use the standard controls of the underlying platform to
display the user interface. This architecture makes AWT components simple and
straightforward to implement, but limits control over the final display of the UI and
reduces flexibility. They also require more system resources to run, which is why they
are sometimes referred to as heavyweight components. Swing components are
implemented in Java to be self-rendering and therefore make less use of system
resources, which is why they are referred to as lightweight components. Swing
components can be more complex to implement, but offer greater flexibility and
consistency between host platforms.

Table 20–2 contains the AWT JavaBeans Components.

JTable Displays information in a two-dimensional grid, similar to a
spreadsheet application.

Tip: The JTable, unlike the AWT List component, doesn't have a
scrolling facility built into it. To make a scrollable table, you need
to drop the list component into a JScrollPane container.

JTextArea An editable text area that displays a single string in multiple
rows, each of which ends in a newline character.

 Tip: In order to make a JTextArea scrollable, it needs to be
displayed in a JScrollPane container.

JTextField An editable text area that displays a single string in a single row.

JTextPane A full-featured text editor control that enables word wrap, image
display, and style definition.

Tip: In order to make a JTextPane scrollable, it needs to be
dropped in a JScrollPane container.

JTree Displays hierarchical information, such as file directories, in a
tree format.

 Tip: The JTree, unlike the AWT List component, doesn't have a
scrolling facility built into it. To make a scrollable tree, you need
to drop the list component into a JScrollPane container.

JToggleButton Toggle buttons are similar to JCheckBox controls. When they are
pushed (set to true) they remain true until they are set to false by
pressing them again. JToggleButtons can be placed in a
ButtonGroup so that only one in the group can be true at one
time. Toggle buttons are useful in toolbars to display a tool in an
active state. The buttons in the Component Palette are examples
of toggle buttons.

Table 20–2 AWT JavaBeans Components

Component Description

Button Displays a simple push button

Table 20–1 (Cont.) Swing JavaBeans Components

Component Description

Working with Java Swing and AWT Components

Implementing Java Swing User Interfaces 20-7

Checkbox True/false, on/off boolean control. As a standalone component,
the checkbox appears as a square with an X to indicate when its
value is set to true. When set as a member of a checkbox group,
the checkbox becomes a circle (Radio Button): a dot in the circle
indicates that its value is set to true. Add a checkbox component
to a CheckboxGroup by setting its CheckboxGroup property to
the name of the CheckboxGroup to which it belongs.

CheckboxGroup Non-visual component used to integrate the behavior of a set of
check box components. Only one item in a checkbox group can
be set to true at one time. Checkbox components are added to
the CheckboxGroup by setting the CheckboxGroup property to
the name of the corresponding CheckboxGroup. The default
value for a CheckboxGroup can be set by setting its
SelectedCheckbox property to the name of the checkbox
component.

Tip: Depending on the order in which you add the Checkbox
components and CheckboxGroup, the CheckboxGroup may be
instantiated before the Checkboxes. To ensure that the correct
default is set, you can move the SelectedCheckbox and current
initialization statements to the bottom of the JbInit method so
that all of its constituents are instantiated before the default is
set.

Choice Displays a popup menu. The label of the Choice control is the
currently selected item. This is similar to a combobox.

Label Displays a non-editable text label in the application, though its
value may change programmatically.

List Displays a scrolling list of data items. The user may be able to
select one or more items depending on the property settings of
the List.

MenuBar Displays a menubar. Any container can add a MenuBar control
as a child, however only Frame has the setMenubar() method
which will parent the MenuBar at a specific location and will not
interfere with the locations of any other children. Menubars are
not available in Applets.

PopupMenu Displays a popup menu with a list of commands. Popup menus
can be attached to panels, and are available for use in Applets.
For more information about creating menus, see Section 20.9,
"Working with Menus".

Panel A container which is used to display a group of controls. Each
panel can have its own layout to give you control over the
positioning of components in relation to one another.

Scrollbar A slider control that allows the user to set an integer value. The
scrollbar can be set to display horizontally or vertically.

ScrollPane A type of panel that has horizontal and vertical scrollbars
available to enable you to display a child component that is
larger than the ScrollPane itself.

TextArea A text component that displays a single string of text in multiple
rows, each ending with a newline character. Text can be scrolled
up and down, left and right.

TextField An editable text component that displays a single string of text
in a single row.

Table 20–2 (Cont.) AWT JavaBeans Components

Component Description

Working with Layout Managers

20-8 User's Guide for Oracle JDeveloper

20.5 Working with Layout Managers
Use JDeveloper's layout managers to control how components are located and sized in
the container each time it is displayed. A layout manager automatically arranges the
components in a container according to a particular set of rules specific to that layout
manager.

A Java program can be deployed on more than one platform. If you use standard UI
design techniques of specifying absolute positions and sizes for your UI components,
your UI might not look good on all platforms. What looks fine on your development
system might be unusable on another platform. To solve this problem, Java provides a
system of portable layout managers. Layout managers allow you to specify rules and
constraints for the layout of your UI in a way that will be portable.

Layout managers give you the following advantages:

■ Correctly positioned components that are independent of fonts, screen resolutions,
and platform differences.

■ Intelligent component placement for containers that are dynamically resized at
runtime.

■ Ease of translation with different sized strings. If a string increases in size, the
components stay properly aligned.

A Java UI container uses a special object called a layout manager to control how
components are located and sized in the container each time it is displayed. A layout
manager automatically arranges the components in a container according to a
particular set of rules specific to that layout manager.

The layout manager sets the sizes and locations of the components based on various
factors such as:

■ the layout manager's layout rules

■ the layout manager's property settings, if any

■ the layout constraints associated with each component (for more information, see
Section 20.5.24, "Understanding Layout Constraints").

■ certain properties common to all components, such as preferredSize,
minimumSize, maximumSize, alignmentX, and alignmentY

■ the size of the container

In Java, certain types of containers use specific layout managers by default.

■ All panels (including applets) use FlowLayout.

■ All windows (including frames and dialog boxes) use BorderLayout.

When you create a container in a Java program, you can accept the default layout
manager for that container type, or you can override the default by specifying a
different type of layout manager.

Normally, when coding your UI manually, you override the default layout manager
before adding components to the container. When using the Java Visual Editor, you
can change the layout whenever you like. JDeveloper will adjust the code as needed.

The Java Visual Editor in JDeveloper uses a default layout manager for each container,
usually null layout. If you want to use a different layout manager than the default, you
can do so by explicitly adding a layout manager to the source code for the container, or
by selecting a layout from the container's layout property list in the Inspector.

Working with Layout Managers

Implementing Java Swing User Interfaces 20-9

Choose a layout manager based on the overall design you want for the container.
Some layouts can be difficult to work with in the Java Visual Editor because they
immediately take over placement and resizing of a component as soon as you add it to
the container. To alleviate this problem during initial layout prototyping, JDeveloper
provides a default layout called null, which leaves the components exactly where you
place them and at the size you specify. Starting with an null makes prototyping easier
in your container. Later, after adding components to the container, you can switch to
an appropriate portable layout for your design.

In some designs, you might use nested panels to group components in the main
Frame, using various different layouts for the Frame and each of its panels.

Experiment with different layouts to see their effect on the container's components. If
you find the layout manager you've chosen doesn't give you the results you want, try
a different one, or try nesting multiple panels with different layouts to get the desired
effect.

20.5.1 Understanding Sizing Properties
Layout managers use various pieces of information to determine how to position and
size components in their container. Components provide a set of methods that allow
layout managers to intelligently lay out components. All of these methods allow a
component to communicate its desired sizing to the layout manager.

The methods in Table 20–3 are property getters and represent the following:

Note: If you want to change the properties for a layout manager
using the Java Visual Editor, you must explicitly specify a layout for a
container so its properties will be accessible in the Property Inspector.

Note: If you really want to design a panel without a layout manager,
you can set the layout manager in the source code to null. However,
you should not leave it this way for deployment.

Table 20–3 Sizing Properties

Method Description

getPreferredSize() The size a component would choose to be, that is, the ideal size
for the component to look best. Depending on the rules of the
particular layout manager, the preferredSize may or may
not be considered in laying out the container.

getMinimumSize() How small the component can be and still be usable. The
minimumSize of a component may be limited, for example, by
the size of a label. For most controls, minimumSize is the same
as preferredSize. Layout managers generally respect
minimumSize more than they do preferredSize.

getMaximumSize() The largest, useful size for this component. This is used so that
the layout manager won't waste space on a component that can't
use it effectively. For example, BorderLayout could limit the
center component's size to its maximum size, and then either
give the space to the edge components, or limit the size of the
outer window when resized.

getAlignmentX() How the component would like to be aligned along the x axis,
relative to other components.

Working with Layout Managers

20-10 User's Guide for Oracle JDeveloper

To understand how each layout manager uses these pieces of information, see the
individual layouts listed in Section 20.5.2, "Understanding Layouts Provided with
JDeveloper".

20.5.2 Understanding Layouts Provided with JDeveloper
JDeveloper provides the following standard layout managers from the Java AWT
BorderLayout, FlowLayout, GridLayout, CardLayout, and GridBagLayout.
For Swing, BoxLayout2 and OverLayout2 have been included.

JDeveloper also provides FormLayout, a grid-based container that places components
in a grid of columns and rows, allowing specified components to span multiple
columns or rows. FormLayout is provided by JGoodies Forms, an open source
framework included with JDeveloper.

Additionally, JDeveloper provides these custom layouts:

■ XYLayout that keeps components you put in a container at their original size and
location (x,y coordinates).

■ PaneLayout, used by the SplitPanel control.

■ VerticalFlowLayout, which is very similar to FlowLayout except that it
arranges the components vertically instead of horizontally.

You can create custom layouts of your own, or experiment with other layouts like the
ones in the sun.awt classes, or third-party layout managers, many of which are
public domain on the Web. If you want to use a custom layout in the Java Visual
Editor, you may have to provide a Java helper class file to help the Java Visual Editor
use the layout.

20.5.3 Using BorderLayout
BorderLayout arranges a container's components in areas named North, South, East,
West, and Center.

■ The components in North and South are given their preferred height and are
stretched across the full width of the container.

■ The components in East and West are given their preferred width and are
stretched vertically to fill the space between the north and south areas.

■ A component in the Center expands to fill all remaining space.

getAlignmentY() How the component would like to be aligned along the y axis,
relative to other components.

Table 20–3 (Cont.) Sizing Properties

Method Description

Working with Layout Managers

Implementing Java Swing User Interfaces 20-11

Figure 20–1 BorderLayout

The BorderLayout that appears in Figure 20–1 is good for forcing components to one
or more edges of a container, and for filling up the center of the container with a
component. It is also the layout you want to use to cause a single component to
completely fill its container.

You will probably find BorderLayout to be the most useful layout manager for the
larger containers in your UI. By nesting a panel inside each area of the
BorderLayout, then populating each of those panels with other panels of various
layouts, you can achieve quite complicated UI designs.

Components are positioned in one of five areas within a BorderLayout, based on the
constraints property. You can set the constraints property for the component in the
Inspector to one of the following values: North, South, East, West, or Center.

For example, to put a toolbar across the top of a BorderLayout container, you could
create a FlowLayout panel of buttons and place it in the North area of the container.
You do this by selecting the panel and choosing North for its constraints property in
the Inspector.

To set the constraints property:
1. Select the component you want to position, either in the Java Visual Editor or the

Structure window.

2. Select the constraints property in the Inspector, and click its value field.

3. Click the down arrow on the constraints property dropdown list and select the
area you want the component to occupy.

4. Press Enter or click anywhere else in the Property Inspector to commit the change
to code.

If you use the Java Visual Editor to change the layout of an existing container to
BorderLayout, the components near the edges automatically move to fill the closest
edge. A component near the center may be set to Center. If a component moves to an
unintended location, you can correct the constraints property in the Inspector, or drag
the component to a new position in the Java Visual Editor.

Each of the five areas can contain any number of components (or panel of
components), however, unless the topmost component is not opaque, any lower
components in the same area will be covered by the topmost one.

The following are some general guidelines for working with multiple components and
BorderLayout:

■ Make sure the container has no more than five components.

■ Use XYLayout first to move the components to their approximate intended
positions, with only one component near each edge.

■ Group multiple components in an area into a panel before converting.

Working with Layout Managers

20-12 User's Guide for Oracle JDeveloper

By default, a BorderLayout puts no gap between the components it manages.
However, you can use the Inspector to specify the horizontal or vertical gap in pixels
for a BorderLayout associated with a container.

To modify the gap surrounding BorderLayout components, select the BorderLayout
object in the Structure window (displayed immediately below the container it
controls), then modify the pixel value in the Property Inspector for the hgap and vgap
properties.

20.5.4 Using BoxLayout2
BoxLayout2 allows you to arrange a container's components either vertically or
horizontally. By nesting components in containers, you can achieve complex layouts.
Figure 20–2 shows three panels (P1, P2, P3) arranged vertically. Each panel contains
two buttons arranged vertically.

Figure 20–2 BoxLayout2

When you use BoxLayout2 for a component, you specify whether its major axis is the
Y axis (top placement) or X axis (left to right placement). Components are arranged
from left to right (or top to bottom), in the same order as they were added to the
container.

BoxLayout2 attempts to arrange components at their preferred widths (for left to
right layout) or heights (for top to bottom layout). The components will not wrap if the
container is resized.

If all the components are not the same height in a horizontal layout, BoxLayout2
attempts to make all the components as high as the highest component. If that's not
possible for a particular component, then BoxLayout2 aligns that component
vertically, according to the component's Y alignment.

If the components are not all the same width in a vertical alignment, BoxLayout2
attempts to make all components in the column as wide as the widest component; if
that fails, it aligns them horizontally according to their X alignments.

20.5.5 Using CardLayout
CardLayout places components (usually panels) on top of each other in a stack like a
deck of cards. You see only one at a time, and you can flip through the panels by using
another control to select which panel comes to the top.

Note: BorderLayout ignores the order in which you add components
to the container.

Working with Layout Managers

Implementing Java Swing User Interfaces 20-13

CardLayout is a good layout to use when you have an area that can contain different
components at different times. This gives you a way to manage two or more panels
that need to share the same display space.

20.5.5.1 How to Create a CardLayout Container
You can see an example of using CardLayout by looking at the wizards in JDeveloper.
The Cancel, Next, and Back buttons control which panel is displayed next.

To create a CardLayout container:
1. Create a new Application.

2. Right-click the frame file in the Navigator and choose Open.

3. Add a panel to your UI in the Java Visual Editor and set its layout property to
CardLayout. For more information, see Section 20.7.9, "How to Create a Panel".

4. Drop a new panel into the CardLayout panel. This new panel will completely fill
up the CardLayout panel.

5. Set the layout property for this new panel to XYLayout and add the desired
components.

6. Click a panel on the Component Palette, then click on the CardLayout panel in
the component tree in the Structure window to add it to the stack in CardLayout
panel.

7. Set this second panel to XYlayout and add components to it.

8. Repeat steps 6 and 7 for each new panel you want to add to the stack.

20.5.5.2 How to Specify the Gap Surrounding a CardLayout Container
Using the Structure window, you can specify the amount of horizontal and vertical
gap surrounding a stack of components in a CardLayout.

To specify the gap surrounding a cardLayout container:
1. Select the cardLayout object in the Structure window, displayed immediately

below the container it controls.

Figure 20–3 cardLayout

2. Click the hgap (horizontal gap) or vgap (vertical gap) property in the Inspector.

3. Enter the number of pixels you want for the gap.

Note: The first component you add to a CardLayout panel will
always fill the panel.

Working with Layout Managers

20-14 User's Guide for Oracle JDeveloper

4. Press Enter or click anywhere else in the Inspector to register the changes.

20.5.6 Using FlowLayout
FlowLayout arranges components in rows from left to right, and then top to bottom
using each component's preferredSize. FlowLayout lines up as many components as it
can in a row, then moves to a new row. Typically, FlowLayout is used to arrange
buttons on a panel.

Figure 20–4 FlowLayout

You can choose how to arrange the components in the rows of a FlowLayout
container by specifying an alignment justification of left, right, or center. You can also
specify the amount of gap (horizontal and vertical spacing) between components and
rows. Use the Inspector to change both the alignment and gap properties when you're
in the Java Visual Editor.

Alignment
■ LEFT- groups the components at the left edge of the container.

■ CENTER - centers the components in the container.

■ RIGHT groups the components at the right edge of the container. The default
alignment in a FlowLayout is CENTER.

To change the alignment, select the FlowLayout object in the Structure window,
then specify a value in the Property Inspector for the alignment property as
follows:

– 0=LEFT

– 1=CENTER

– 2=RIGHT

Gap
The default gap between components in a FlowLayout is 5 pixels.

To change the horizontal or vertical gap, select the FlowLayout object in the
Structure window, then modify the pixel value of the hgap (horizontal gap) or vgap
(vertical gap) property in the Inspector.

Note: Note: If you want a panel that arranges the components
vertically, rather than horizontally, see Section 20.5.21, "Using
VerticalFlowLayout".

Working with Layout Managers

Implementing Java Swing User Interfaces 20-15

Order of Components
To change the order of the components in a FlowLayout container, drag the
component to the new location, or right-click a component and choose Move to First
or Move to Last.

20.5.7 Using FormLayout
FormLayout places components in a grid of columns and rows, allowing specified
components to span multiple columns or rows. Columns and rows need not have the
same width or height.

You can change the following column and row properties. Columns and rows are
specified by three parts: a mandatory size, an optional default alignment, and an
optional resize behavior. To edit these properties, when you're in the Java Visual
Editor, drag the mouse and select the entire FormLayout grid, then right-click inside
the selected grid and choose Column Properties or Row Properties.

Alignment
The default alignment of components in a column or row. The default alignment in a
FormLayout is Fill.

Size
The width of a column or height of a row. You can specify a constant size, a component
size (minimum or preferred), or a bounded size (minimum and maximum). Constant
size is specified by a value plus a unit. Component sizes give a column or row the
maximum size of its contained components and are measured by the component's
minimum or preferred size. Bounded size lets you specify lower and upper bounds for
the column and row start size (before resizing). This ensures a minimum or maximum
column or row size. Note that the maximum size does not limit the column/row size if
the column/row can grow (see resize behavior).

Resize
Controls whether or not resizing is allowed. Columns and rows can grow if the layout
container becomes larger than the preferred size. The default is not to allow resizing.

Gap
The default places gaps between components.

Order of Components
To change the order of the components in a FormLayout container, drag the
component to the new location.

Note: FormLayout is provided by JGoodies Forms, an open source
framework included with JDeveloper. To add FormLayout layout
manager, add JGoodies Forms library in the current project's library.

Note: Gap size is currently fixed and can not be edited in the
Property Inspector.

Working with Layout Managers

20-16 User's Guide for Oracle JDeveloper

20.5.8 Using GridLayout
GridLayout places components in a grid of cells that are in rows and columns.
GridLayout expands each component to fill the available space within its cell. Each
cell is exactly the same size and the grid is uniform. When you resize a GridLayout
container, GridLayout changes the cell size so the cells are as large as possible,
given the space available to the container.

Figure 20–5 GridLayout

Use GridLayout if you are designing a container where you want the components to
be of equal size, for example, a number pad or a toolbar.

You can specify the number of columns and rows in the grid, but only one of the rows
or columns can be zero. You must have a value in at least one so the GridLayout
manager can calculate the other.

For example, if you specify four columns and zero rows for a grid that has 15
components, GridLayout creates four columns of four rows, with the last row
containing three components. Or, if you specify three rows and zero columns,
GridLayout creates three rows with five full columns.

In addition to number of rows and columns, you can specify the number of pixels
between the cells by modifying the horizontal gap (hgap) and vertical gap (vgap)
properties. The default horizontal and vertical gap is zero.

To change the property values for a GridLayout container, select the GridLayout object
in the Structure window, then edit the values for the rows, cols, hgap, or vgap
properties in the Property Inspector.

20.5.9 Using GridBagLayout
GridBagLayout is an extremely flexible and powerful layout that provides more
control than GridLayout in laying out components in a grid. GridBagLayout
positions components horizontally and vertically on a dynamic rectangular grid. The
components do not have to be the same size, and they can fill up more than one cell.

Working with Layout Managers

Implementing Java Swing User Interfaces 20-17

Figure 20–6 GridBagLayout

GridBagLayout determines the placement of its components based on each
component's constraints and minimum size, plus the container's preferred size.

In the following discussion:

■ A component's cell refers to the entire set of grid cells the component occupies.

■ A component's display area refers to all the space of the cell that it occupies which is
not taken up by the component's external padding (insets).

While GridBagLayout can accommodate a complex grid, it will behave more
successfully (and more predictably) if you organize your components into smaller
panels, nested inside the GridBagLayout container. These nested panels can use
other layouts, and can contain additional panels of components if necessary. This
method has two advantages:

■ It gives you more precise control over the placement and size of individual
components because you can use more appropriate layouts for specific areas, such
as button bars.

■ It uses fewer cells, simplifying the GridBagLayout and making it much easier to
control.

On the other hand, GridBagLayout requires more containers, and therefore your
program uses more memory, than if you used other layout managers.

20.5.9.1 Understanding GridBagLayout Constraints
GridBagLayout uses a GridBagConstraints object to specify the layout
information for each component in a GridBagLayout container. Since there is a
one-to-one relationship between each component and GridBagConstraints object,
you need to customize the GridBagConstraints object for each of the container's
components.

GridBagLayout components have the following constraints:

■ anchor

■ fill

■ gridx, gridy

■ gridwidth, gridheight

■ ipadx, ipady

■ weightx, weighty

GridBagConstraints give you control over:

■ The position of each component, absolute or relative.

Working with Layout Managers

20-18 User's Guide for Oracle JDeveloper

■ The size of each component, absolute or relative.

■ The number of cells each component spans.

■ How each cell's unused display area gets filled.

■ The amount of internal and external padding for each component.

■ How much weight is assigned to each component to control which components
utilize extra available space. This controls the component's behavior when resizing
the container.

For a detailed explanation of each of the constraints, including tips for using them and
setting them in the Java Visual Editor, see the individual constraint topics.

20.5.9.2 Setting GridBagConstraints Manually in the Source Code
When you use the Java Visual Editor to design a GridBagLayout container,
JDeveloper always creates a new GridBagConstraints2 object for each component
you add to the container. GridBagConstraints is derived from
GridBagConstraints , and has a constructor that takes all eleven properties of
GridBagConstraints so the code generated by the Java Visual Editor can be
simpler.

For example:

bevelPanel1.add(textFieldControl3, new GridBagConstraints2(0, 5, 6, 2, 1.0, 0.0,
GridBagConstraints.WEST, GridBagConstraints.HORIZONTAL, new Insets(0, 24, 0, 0),
150, 0));
bevelPanel1.add(checkboxControl1, new GridBagConstraints2(7, 5, 4, 1, 0.0, 0.0,
GridBagConstraints.CENTER, GridBagConstraints.NONE, new Insets(8, 29, 0, 24), 18,
-11));

You can modify the parameters of the GridBagConstraints2 constructor directly in
the source code, or you can use the Constraints property editor to change the values.

When you create a GridBagLayout container by coding it manually, you only need
to create one GridBagConstraints object for each GridBagLayout container.
GridBagLayout uses the GridBagConstraints default values for the component
you add to the container, or it reuses the most recently modified value. If you want the
component you're adding to the container to have a different value for a particular
constraint, then you only need to specify the new constraint value for that component.
This new value will stay in effect for subsequent components unless, or until, you
change it again.

20.5.9.3 Modifying Existing GridBagLayout Code to Work in the Java Visual Editor
If you have a GridBagLayout container that was previously coded manually by
using one GridBagConstraints object for the container, you will not be able to
edit that container in the Java Visual Editor without making the following
modifications to the code:

■ You must create a GridBagConstraints2 object for each component added to
the container.

Note: While this method of coding GridBagLayout is the leanest
(recycling constraint values from previously added components), it
doesn't allow you to edit that container visually in the Java Visual
Editor.

Working with Layout Managers

Implementing Java Swing User Interfaces 20-19

■ The GridBagConstraints2 object must have a large constructor with
parameters for each of the eleven constraint values, as shown above.

20.5.9.4 Designing GridBagLayout Visually in the Java Visual Editor
GridBagLayout is a complex but useful layout manager. JDeveloper has additional
features in the Java Visual Editor that make GridBagLayout much easier to design
and control, such as a Constraints property editor, a grid, and a pop-up menu on
selected components.

There are two approaches you can take to designing GridBagLayout in the Java
Visual Editor. You can design it from scratch by adding components to a
GridBagLayout panel, or you can prototype the panel in the Java Visual Editor
using another layout first, such as XYLayout, then convert it to GridBagLayout
when you have all the components arranged and sized the way you want them. This
method can speed up your design work substantially.

Whichever method you use, it is recommended that you take advantage of using
nested panels (for more information, see Section 20.5.33, "Working with Nested
Containers and Layouts") to group the components, building them from the inside out.
Use these panels to define the major areas of the GridBagLayout container to
simplify your GridBagLayout design, which gives you fewer cells in the grid and
fewer components that need GridBagConstraints.

20.5.10 Converting to GridBagLayout
When you prototype your layout in another layout first, the conversion to
GridBagLayout will be much cleaner and easier if you are careful about the
alignment of the panels and components as you initially place them, especially left and
top alignment. Keep in mind that you are actually designing a grid, so try to place the
components inside an imaginary grid, and use nested panels to keep the number of
rows and columns as small as possible. Using XYLayout for prototyping gives you the
advantage of component alignment functions on the components' popup menu
(accessed by right-clicking a component in the Java Visual Editor).

As the Java Visual Editor converts the design to GridBagLayout, it assigns
constraint values for the components based on where the components were before you
changed the container to GridBagLayout. Often, only minor adjustments are
necessary, if any.

Converting to GridBagLayout assigns weight constraints to certain types of
components (those which you would normally expect to increase in size as the
container is enlarged at runtime, such as text areas, fields, group boxes, or lists). If you
need to make adjustments to your design after converting to GridBagLayout, you'll
find the task much easier if you remove all the weight constraints from any
components first (set them all to zero).

If even one component has a weight constraint value greater than zero, it is hard to
predict the sizing behavior in the Java Visual Editor due to the complex interactions
between all the components in the container.

You can easily spot a GridBagLayout whose components have weights because the
components will not be clustered together in the center of the container. Instead, the
components fill the container to its edges.

Working with Layout Managers

20-20 User's Guide for Oracle JDeveloper

20.5.11 Adding Components to a GridBagLayout Container
If you want to create your GridBagLayout by starting out with a new GridBagLayout
container and adding all the components to it from scratch, there are certain behaviors
you should expect.

■ Since the default weight constraint for all components is zero, when you add the
first component to the container, it will locate to the center of the container at its
minimumSize. You will now have a grid with one row and one column.

■ The next component you add will be placed in an adjacent cell, depending on
where you click. If you click under the first component, it will go on the next row
in that column. If you click to the right of the component, it will go on the same
row in the next column. All subsequent components are added the same way,
increasing the number of cells by one as you add each one.

■ Once you have several components, or cells containing components, you can use
the mouse to drag the components to new cell locations, or you can change the
gridx and gridy constraints in the Constraints property editor.

■ No matter how many components you add, as long as the grid stays smaller than
the container, they will all cluster together in the middle of the container. If you
need a bigger container, simply enlarge it in the Java Visual Editor.

■ If after several rows, your design has been fitting nicely into a certain number of
columns, then you suddenly have a row that requires an odd number of
components, consider dropping a panel into that row that takes up the entire row,
and use a different layout inside that panel to achieve the look you want.

20.5.12 How to Set GridBagConstraints in the Constraints Property Editor
By using the GridBagLayout Constraints property editor, some of the
GridBagConstraints can be specified in the Java Visual Editor without having to
edit the source code.

Tip: When you remove all the weights from the components in a
GridBagLayout, one of two things will happen:

■ If the container is large enough for the grid, the components will
all cluster together in the center of the container, with any extra
space around the edges of the grid.

■ If the container is too small for the components, the grid will
expand beyond the edges of the container and the components
that are off the edges of the container will be invisible. Enlarge the
size of the container until all the components fit. If the
GridBagLayout container you are designing is a single panel in
the center of the main UI frame, enlarge the size of the frame. You
can resize this container to the final size after you have finished
setting all the components' constraints.

Working with Layout Managers

Implementing Java Swing User Interfaces 20-21

Figure 20–7 Constraints Editor

One big advantage to using the Constraints property editor for setting constraints is
the ability to change constraints for multiple components at the same time. For
example, if you want all the buttons in your GridBagLayout container to use the same
internal padding, you can hold down the Shift key while you select each one, then
open the Constraints property editor and edit the constraint.

To use the Constraints property editor:
1. Select the component(s) within the GridBagLayout container you want to

modify, either in the Structure window or in the Java Visual Editor.

2. Select the constraints property in the Property Inspector and click its value field.

3. Set the desired constraints in the property editor, then press OK.

20.5.13 Displaying the Grid
The Java Visual Editor displays an optional grid that lets you see exactly what is
happening with each cell and component in the layout.

■ To display this grid, right-click on a component in the GridBagLayout container
and select Show Grid.

■ To hide the grid temporarily when Show Grid is selected, click on a component
that is not in the GridBagLayout container (including the GridBagLayout
container itself) and the grid will disappear. The grid is only visible when a
component inside a GridBagLayout container is selected.

■ To hide the grid permanently, right-click a component and select Show Grid
again.

20.5.14 Using the Mouse to Change Constraints
The Java Visual Editor allows you to use the mouse for setting some of the constraints
by dragging the whole component or by grabbing various sizing nibs on the
component. Directions for setting constraints visually are included in the individual
following constraint topics.

Working with Layout Managers

20-22 User's Guide for Oracle JDeveloper

20.5.15 Using the GridBagLayout Popup Menu
Right-clicking a GridBagLayout component displays a context menu that gives you
easy access to some of the properties of the Constraints property editor, and lets you
quickly set or remove certain constraints.

20.5.16 GridBagConstraints
The following section lists each of the GridBagConstraints separately. It defines each
one, explaining its valid and default values, and tells you how to set that constraint
visually in the Java Visual Editor.

anchor
When the component is smaller than its display area, use the anchor constraint to tell
the layout manager where to place the component within the area.

The anchor constraint only affects the component within its own display area,
depending on the fill constraint for the component. For example, if the fill constraint
value for a component is GridBagConstraints.BOTH (fill the display area both
horizontally and vertically), the anchor constraint has no effect because the component
takes up the entire available area. For the anchor constraint to have an effect, set the fill
constraint value to GridBagConstraints.NONE,
GridBagConstraints.HORIZONTAL , or GridBagConstraints.VERTICAL.

Valid values:

GridBagConstraints.CENTER

GridBagConstraints.NORTH

GridBagConstraints.NORTHEAST

GridBagConstraints.EAST

GridBagConstraints.SOUTHEAST

GridBagConstraints.SOUTH

Table 20–4 GridBagLayout Popup Menu Commands

Menu Command Action

Remove Padding Sets any size padding values (ipadx and ipady) for the selected
component to zero.

Constraints... Displays the Constraints popup editor for the selected
GridBagLayout component.

Fill Horizontal Sets (ors) the fill constraint value for the component to
HORIZONTAL. The component expands to fill the cell
horizontally. If the fill was VERTICAL, it sets the constraint to
BOTH.

Fill Vertical Sets (ors) the fill constraint value for the component to
VERTICAL. The component expands to fill the cell vertically. If
the fill was HORIZONTAL, it sets the constraint to BOTH.

Remove Fill Changes the fill constraint value for the component to NONE.

Weight Horizontal Sets the weightx constraint value for the component to 1.0.

Weight Vertical Sets the weighty constraint value for the component to 1.0

Remove Weights Sets both weighty and weighty constraint values for the
component to 0.0.

Working with Layout Managers

Implementing Java Swing User Interfaces 20-23

GridBagConstraints.WESTGridBagConstraints.SOUTHWEST

GridBagConstraints.NORTHWEST

Default Value: GridBagConstraints.CENTER

To set the anchor constraint in the Java Visual Editor:
You can use the mouse to set the anchor for a component that is smaller than its cell.
Simply click on the component and drag it, dragging the component toward the
desired location at the edge of its display area, much like you would dock a movable
toolbar. For example, to anchor a button to the upper left corner of the cell, click the
mouse in the middle of the button, and drag it until the upper left corner of the button
touches the upper left corner of the cell. This sets the anchor constraint value to
NorthWest.

You can also specify the anchor constraint in the Constraints property editor:

1. Select the component in the Java Visual Editor.

2. In the Property Inspector click the constraints property to display the Constraints
editor.

3. Select the desired anchor constraint value in the Anchor area, then press OK.

fill
When the component's display area is larger than the component's requested size, use
the fill constraint to tell the layout manager which parts of the display area should be
given to the component. As with the anchor constraint, the fill constraint only affects
the component within its own display area. Fill tells the layout manager to expand the
component to fill the whole area it has been given.

Valid values:

GridBagConstraints.NONE

(Don't change the size of the component.)

GridBagConstraints.BOTH

(Resize the component both horizontally and vertically to fill the area completely.)

GridBagConstraints.HORIZONTAL

(Only resize the component to fill the area horizontally.)

GridBagConstraints.VERTICAL

(Only resize the component to fill the area vertically.)

Default Value: GridBagConstraints.NONE

To specify the fill constraint in the Java Visual Editor:
The fastest way to specify the fill constraint for a component is to use the component's
context menu in the Java Visual Editor.

1. Right-click the component in the Java Visual Editor to display the context menu.

2. Do one of the following:

■ Select Fill Horizontal to set the value to HORIZONTAL.

■ Select Fill Vertical to set the value to VERTICAL.

■ Select both Fill Horizontal and Fill Vertical to set the value to BOTH.

Working with Layout Managers

20-24 User's Guide for Oracle JDeveloper

■ Select Remove Fill to set the value to NONE.

You can also specify the fill constraint in the Constraints editor.

1. In the Property Inspector click the constraints property to display the
Constraints editor.

2. Select the desired fill constraint value in the Fill area, then press OK.

gridwidth, gridheight
Use these constraints to specify the number of cells in a row (gridwidth) or column
(gridheight) the component uses. This constraint value is stated in cell numbers, not in
pixels.

Valid values:

gridwidth=nn, gridheight=nn

(Where nn is an integer representing the number of cell columns or rows.)

GridBagConstraints.RELATIVE (-1)

Specifies that this component is the next to last one in the row (gridwidth) or column
(gridheight.) A component with a GridBagConstraints.RELATIVE takes all the
remaining cells except the last one. For example, in a row of six columns, if the
component starts in the third column, a gridwidth of RELATIVE will make it take up
columns three, four, and five.

GridBagConstraints.REMAINDER (0)

Specifies that this component is the last one in the row (gridwidth) or column
(gridheight).

Default Value: gridwidth=1, gridheight=1

To specify gridwidth and gridheight constraints in the Java Visual Editor:
You can specify gridwidth and gridheight constraint values in the Constraints
property editor.

1. In the Property Inspector click the constraints property to display the Constraints
editor.

2. In the Grid Position area, enter a value for gridwidth in the Width field, or a value
for gridheight in the Height field. Specify the number of cells the component
will occupy in the row or column.

■ If you want the value to be RELATIVE, enter a -1.

■ If you want the value to be REMAINDER, enter a 0.

You can use the mouse to change the gridwidth or gridheight by sizing the
component into adjacent empty cells.

gridx, gridy
Use these constraints to specify the grid cell location for the upper left corner of the
component. For example, gridx=0 is the first column on the left, and gridy=0 is the
first row at the top. Therefore, a component with the constraints gridx=0 and gridy=0
is placed in the first cell of the grid (top left).

GridBagConstraints.RELATIVE specifies that the component be placed relative
to the previous component as follows:

Working with Layout Managers

Implementing Java Swing User Interfaces 20-25

■ When used with gridx, it specifies that this component be placed immediately to
the right of the last component added.

■ When used with gridy, it specifies that this component be placed immediately
below the last component added.

Valid values:

gridx=nn, gridy=nn

GridBagConstraints.RELATIVE (-1)

A maximum value of 512 rows and columns is supported by GridBagLayout;
therefore, values you specify for X and Y must be not exceed 512.

Default value:

gridx=0, gridy=0

To specify the grid cell location in the Java Visual Editor:
You can use the mouse to specify which cell the upper left corner of the component
will occupy. Click near the upper left corner of the component and drag it into a new
cell. When moving components that take up more than one cell, be sure to click in the
upper left cell when you grab the component. Sometimes, due to existing values of
other constraints for the component, moving the component to a new cell with the
mouse may cause changes in other constraint values, for example, the number of cells
that the component occupies might change. To more precisely specify the gridx and
gridy constraint values without accidentally changing other constraints, use the
Constraints property editor.

1. In the Property Inspector click the constraints property to display the
Constraints editor.

2. In the Grid Position area, enter the column number for gridx value in the X field,
or the row number for gridy value in the Y field. If you want the value to be
RELATIVE, enter a -1.

insets
Use insets to specify the minimum amount of external space (padding) in pixels
between the component and the edges of its display area. The inset says that there
must always be the specified gap between the edge of the component and the
corresponding edge of the cell. Therefore, insets work like brakes on the component to
keep it away from the edges of the cell. For example, if you increase the width of a
component with left and right insets to be wider than its cell, the cell will expand to
accommodate the component plus its insets. fill and padding constraints never
steal any space from insets.

Valid values:

insets = new Insets(n,n,n,n)

Note: When you use the mouse to move a component to an occupied
cell, the Java Visual Editor ensures that two components never overlap
by inserting a new row and column of cells so the components will
not be on top of each other. When you relocate the component using
the Constraints property editor, the Java Visual Editor does not check
to make sure the components don't overlap.

Working with Layout Managers

20-26 User's Guide for Oracle JDeveloper

Top, left, bottom, right (where each parameter represents the number of pixels
between the display area and one edge of the cell).

Default values:

insets = new Insets(0,0,0,0)

To set inset values in the Java Visual Editor:
The Java Visual Editor displays blue sizing nibs on a selected GridBagLayout
component to indicate the location and size of its insets. Grab a blue nib (sizing
handle) with the mouse and drag it to increase or decrease the size of the inset.

When an inset value is zero, you will only see one blue nib on that side of the cell, as
shown in Figure 20–8.

Figure 20–8 GridBagLayout with Inset Value Set to 0

As shown in Figure 20–9, when an inset value is greater than zero, the Java Visual
Editor displays a pair of blue nibs for that inset: one on the edge of the cell and one on
the edge of the display area. The size of the inset is the distance (number of pixels)
between the two nibs. Grab either nib to change the size of the inset.

Figure 20–9 GridBagLayout with Inset Value Set to Greater Than 0

For more precise control over the inset values, use the Constraints property editor to
specify the exact number of pixels.

1. In the Property Inspector click the constraints property to display the
Constraints editor.

2. In the External Insets area, specify the number of pixels for each inset: top, left,
bottom, or right.

Working with Layout Managers

Implementing Java Swing User Interfaces 20-27

ipadx, ipady
These constraints specify the internal padding for a component. Use ipadx and
ipady to specify the amount of space (in pixels) to add to the minimum size of the
component for internal padding. For example, the width of the component will be at
least its minimum width plus ipadx in pixels. The code only adds it once, splitting it
evenly between both sides of the component. Similarly, the height of the component
will be at least the minimum height plus ipady pixels.

1. ipadx specifies the number of pixels to add to the minimum width of the
component.

2. ipady specifies the number of pixels to add to the minimum height of the
component.

For example, when added to a component that has a preferred size of 30 pixels wide
and 20 pixels high:

■ If ipadx= 4, the component will be 34 pixels wide

■ If ipadx= 2, the component will be 22 pixels high.

Valid values:

ipadx=nn, ipadx=nn

Default value:

ipadx=0, ipady=0

To set the size of internal padding constraints in the Java Visual Editor:
Setting the size of internal padding constraints in the Java Visual Editor. If you drag
the sizing nib beyond the edge of the cell into an empty adjacent cell, the component
will occupy both cells (the gridwidth or gridheight values will increase by one
cell).

Figure 20–10 Before Dragging the Sizing Nib Beyond the Edge of a Cell

Note: Although negative inset values are legal, they can cause
components to overlap adjacent components, and are not
recommended.

Working with Layout Managers

20-28 User's Guide for Oracle JDeveloper

Figure 20–11 After Dragging the Sizing Nib Beyond the Edge of a Cell

For more precise control over the padding values, use the Constraints property editor
to specify the exact number of pixels to use for the value.

1. In the Property Inspector click the constraints property to display the
Constraints editor.

2. Enter the number of pixels for the Width and Height values in the Size Padding
area, then press OK.

To quickly remove the padding (set it to zero), right-click the component in the Java
Visual Editor and choose Remove Padding. You can also select multiple components
and use the same procedure to remove the padding from all of them at once.

Negative values are valid. They will make the component smaller than its preferred
size.

weightx, weighty
Use the weight constraints to specify how to distribute a GridBagLayout container's
extra space horizontally (weightx) and vertically (weighty) when the container is
resized. Weights determine what share of the extra space gets allocated to each cell and
component when the container is enlarged beyond its default size.

Weight values are of type double and are specified numerically in the range 0.0 to 1.0
inclusive. Zero means the component should not receive any of the extra space, and 1.0
means the component gets a full share of the space.

■ The weight of a row is calculated to be the maximum weightx of all the
components in the row.

■ The weight of a column is calculated to be the maximum weighty of all the
components in the column.

Valid Values:

weightx=n.n, weighty=n.n

Default Value:

weightx=0.0, weighty=0.0

To set weightx and weighty constraints in the Java Visual Editor:
To specify the weight constraints for a component in the Java Visual Editor, right-click
the component and choose Weight Horizontal (weightx), or Weight Vertical
(weighty). This sets the value to 1.0. To remove the weights (set them to zero),

Note: Padding, much like XYLayout, may not be accurate on
different computer systems or in different languages.

Working with Layout Managers

Implementing Java Swing User Interfaces 20-29

right-click the component and choose Remove Weights. You can do this for multiple
components: hold down the Shift key when selecting the components, then right-click
and choose the appropriate menu item.

If you want to set the weight constraints to something other than 0.0 or 1.0, you can
set the values in the Constraints editor.

1. In the Property Inspector click the constraints property to display the
Constraints editor.

2. Enter a value between 0.0 and 1.0 for the X (weightx) or Y (weighty) value in
the Weight area, then press OK.

Examples of How Weight Constraints Affect Components' Behavior
■ As shown inFigure 20–12, if all the components have weight constraints of zero in

a single direction, the components will clump together in the center of the
container for that dimension and won't expand beyond their preferred size.
GridBagLayout puts any extra space between its grid of cells and the edges of
the container.

Figure 20–12 Weight Constraints Set to Zero

■ As shown inFigure 20–13, if you have three components with weightx constraints
of 0.0, 0.3, and 0.2 respectively, when the container is enlarged, none of the extra
space will go to the first component, 3/5 of it will go the second component, and
2/5 of it will go to the third.

Figure 20–13 Three Components with Weight Constraints Set to 0.0, 0.3, and 0.2

■ You need to set both the weight and fill constraints for a component if you want it
to grow. For example, if a component has a weightx constraint, but no horizontal
fill constraint, then the extra space goes to the padding between the left and right
edges of the component and the edges of the cell. It enlarges the width of the cell
without changing the size of the component. If a component has both weight and

Note: Because weight constraints can make the sizing behavior in
the Java Visual Editor difficult to predict, setting these constraints
should be the last step in designing a GridBagLayout.

Working with Layout Managers

20-30 User's Guide for Oracle JDeveloper

fill constraints, then the extra space is added to the cell, plus the component
expands to fill the new cell dimension in the direction of the fill constraint
(horizontal in this case).

In Figure 20–14, all the components in the GridBagLayout panel have a weight
constraint value of zero. Because of this constraint, the components are clustered
in the center of the GridBagLayout panel, with all the extra space in the panel
distributed between the outside edges of the grid and the panel. The size of the
grid is determined by the preferred size of the components, plus any insets and
padding (ipadx or ipady).

Figure 20–14 All Components with Weight Constraint Value Set to Zero

In Figure 20–15, a horizontal weight constraint of 1.0 is specified for the
ListControl. Notice that as soon as one component is assigned any weight, the
UI design is no longer centered in the panel. Since a horizontal weight constraint
was used, the GridBagLayout manager takes the extra space in the panel that
was previously on each side of the grid, and puts it into the cell containing the
ListControl. Also notice that the ListControl did not change size.

Figure 20–15 Horizontal Weight Constraint Set to 1.0 For ListControl.

As shown in Figure 20–16, if a horizontal fill is then added to the
ListControl, the component expands to fill the new horizontal dimension of the
cell.

Tip: f there is more space than you like inside the cells after adding
weight to the components, decrease the size of the UI frame until the
amount of extra space is what you want. To decrease the size of the
frame, select the frame in the Java Visual Editor or the Structure
window, this(BorderLayout), then click its black sizing nibs and
drag the frame to the desired size.

Working with Layout Managers

Implementing Java Swing User Interfaces 20-31

Figure 20–16 Horizontal Fill Added to ListControl

■ If one component in a column has a weightx value, GridBagLayout gives the
whole column that weight. Conversely, if one component in a row has a weighty
value, the whole row is assigned that weight.

20.5.17 Using OverlayLayout2
OverlayLayout2 arranges components over the top of each other. The requested size
of the container will be the largest requested size of the children, taking alignment
needs into consideration. The alignment is based upon what is needed to properly fit
the children in the allocation area. The children will be placed such that their
alignment points are all on top of each other. Unlike BorderLayout's centering,
OverlayLayout2 does not expand the component to fill the available space, but
instead leaves it at its preferred size.

20.5.18 Using PaneLayout
As shown in Figure 20–17, PaneLayout allows you to specify the size of a
component in relation to its sibling components. PaneLayout applied to a panel or
frame lets you control the percentage of the container the components will have
relative to each other, but does not create moveable splitter bars between the panes.

Figure 20–17 PaneLayout

In a PaneLayout, the placement and size of each component is specified relative to
the components that have already been added to the container. Each component
specifies a PaneConstraints object that tells the layout manager from which
component to take space, and how much of its existing space to take. Each
component's PaneConstraints object is applied to the container as it existed at the

Working with Layout Managers

20-32 User's Guide for Oracle JDeveloper

time the component was added to the container. The order in which you add the
components to the container is very important.

The constraint for a PaneConstraints component that is being added to a container
consists of four variables:

■ String name

The name for this component (must be unique for all components in the container
- as in CardLayout).

■ String splitComponentName

The name of the component from which space will be taken to make room for this
component.

■ String position

The edge of the splitComponentName to which this component will be
anchored.

Table 20–5 shows valid values.

■ float proportion

The proportion of splitComponentName that will be allocated to this
component. A number between 0 and 1.

20.5.19 How Components are Added to PaneLayout
Components are added to PaneLayout as follows:

■ The first component will always take all the area of the container. The only
important variable in its PaneConstraint is its name. Other components will use
this value, specifying it as their splitComponentName.

■ The second component must specify its splitComponentName as the name of
the first component.

■ The splitComponentName of subsequent components may be the name of any
component that has already been added to the container.

20.5.20 How to Create a PaneLayout Container in the Java Visual Editor
You can create a PaneLayout container in the Java Visual Editor.

To create a PaneLayout Container:
1. Add a container to your UI in the Java Visual Editor. This can be any kind of a

frame or panel, such as the one shown in Figure 20–18.

Table 20–5 Valid values for String position

Select this To do this

PaneConstraints.TOP This component will be above splitComponentName.

PaneConstraints.BOTTOM This component will be below splitComponentName.

PaneConstraints.RIGHT This component will be to the right of splitComponentName.

PaneConstraints.LEFT This component will be to the left of splitComponentName.

PaneConstraints.ROOT This component is the first component added.

Working with Layout Managers

Implementing Java Swing User Interfaces 20-33

Figure 20–18 UI Container in Java Visual Editor

2. Change the container's layout property to PaneLayout. This allows you to access
the PaneLayout properties in the Inspector.

3. From the Component Palette, select the first component and drop it into the
PaneLayout container. This component will completely fill the container until
you add another component.

Figure 20–19 Component Dropped in PaneLayout Container

4. Select the second component and drag it to the desired size in the desired position.

Working with Layout Managers

20-34 User's Guide for Oracle JDeveloper

Figure 20–20 Second Component Dragged into PaneLayout

5. To add a third component to the PaneLayout, draw it similarly to define its
position relative to the other components.

For example, to split the right half of the container, begin drawing the third
component starting from the middle of the right edge of the panel to the bottom
right corner of the first component.

Figure 20–21 Third Component Dragged into PaneLayout

6. Use the same method to add subsequent components.

20.5.21 Using VerticalFlowLayout
VerticalFlowLayout arranges components in columns from top to bottom, then
left to right using each component's preferredSize. VerticalFlowLayout lines
up as many components as it can in a column, then moves to a new column. Typically,
VerticalFlowLayout is used to arrange buttons on a panel.

Note: f the first component you added to a PaneLayout container
was itself a container, the Java Visual Editor assumes you are trying to
add the second component to the outer container instead of to the
PaneLayout container. Use the component tree to specify to the
containers that you want the component to be placed in.

Working with Layout Managers

Implementing Java Swing User Interfaces 20-35

Figure 20–22 VerticalFlowLayout

You can choose how to arrange the components in the columns of a
VerticalFlowLayout container by specifying an alignment justification of top,
middle, or bottom. You can also specify the amount of gap (horizontal and vertical
spacing) between components and columns. It also has properties that let you specify
the components should fill the width of the column, or the last component should fill
the remaining height of the container. Use the Inspector to change these properties
when you're in the Java Visual Editor.

Alignment
■ TOP - groups the components at the top of the container.

■ MIDDLE - centers the components vertically in the container.

■ BOTTOM - groups the components so the last component is at the bottom of the
container.

The default alignment in a VerticalFlowLayout is MIDDLE.

To change the alignment, select the verticalFlowLayout object in the Structure
window, then specify a value in the Inspector for the alignment property as follows:

■ 0=TOP

■ 1=Middle

■ 2=BOTTOM

Gap
The default gap between components in a VerticalFlowLayout is 5 pixels.

To change the horizontal or vertical gap, select the VerticalFlowLayout object in
the Structure window, then modify the pixel value of the hgap (horizontal gap) or
vgap (vertical gap) property in the Inspector.

Order of Components
To change the order of the components in a VerticalFlowLayout container, drag
the component to the new location.

Horizontal Fill
horizontalFill lets you specify a fill to edge flag which causes all the components
to expand to the container's width.

Working with Layout Managers

20-36 User's Guide for Oracle JDeveloper

Figure 20–23 horizontalFill

Vertical fill
verticalFill lets you specify a vertical fill flag that causes the last component to fill
the remaining height of the container.

Figure 20–24 verticalFill

The default value for verticalFill is False.

20.5.22 Using XYLayout
XYLayout is a JDeveloper custom layout manager. XYLayout puts components in a
container at specific (x,y) coordinates relative to the upper left corner of the container.
Regardless of the type of display, the container will always retain the relative (x,y)
positions of components. However, when you resize a container with an XYLayout,
the components do not reposition or resize.

For XYLayout containers, the preferredSize of the container is defined by the values
specified in the width and height properties of the XYLayout. For example, if you
have the following lines of code in your container initialization,

xYLayoutN.setWidth(400);

xYLayoutN.setHeight(300);

and if xYLayoutN is the layout manager for the container, then its preferredSize
is 400 x 300 pixels.

If one of the nested panels in your UI uses XYLayout, that panel's preferredSize
will be determined by the layout's setWidth() and setHeight() calls. This value
will be used for the panel in computing the preferredSize of the next (outer) container.

WARNING: Your program can become unstable if the main panel
has less space than it needs. This property also prohibits
multi-column output.

Working with Layout Managers

Implementing Java Swing User Interfaces 20-37

Figure 20–25 XYLayout

You'll discover that XYLayout is very convenient to use in prototyping a user
interface. When you design more complicated user interfaces with multiple nested
panels, XYLayout can be used for the initial layout of the panels and components,
after which you can choose from one of the standard layouts for the final design.

You can use the UI design tools to specify the container's size and its components' x,y
coordinates.

■ To specify the size of a container using XYLayout, select the XYLayout object in
the Structure window and enter the pixel dimension for the height and width
properties in the Property Inspector. This setting specifies the size of the
XYLayout container.

■ To change the (x,y) values for a container using XYLayout, do one of the
following:

– In the Java Visual Editor, drag the component to a new size. JDeveloper
automatically updates the constraint values in the Property Inspector.

– Select the component in the Structure window, then click the constraints
property edit field and enter coordinates for that component.

the alignment options available from the context menu.

Note: XYLayout uses absolute x,y values when positioning objects
on the screen, and does not adjust to different screen resolutions. To
ensure your layout adjusts to other resolutions, don't leave any
containers in XYLayout in your final design.

Table 20–6 Alignment Options

Select this To do this

Move to first Moves the selected component to the top of the Z-order.

Move to last Moves the selected component to the bottom of the Z-order.

Align left Lines up the left edges of the selected components with the left
edge of the first selected component.

Align center Horizontally lines up the centers of the selected components
with the center of the first selected component.

Align right Lines up the right edges of the selected components with the
right edge of the first selected component.

Working with Layout Managers

20-38 User's Guide for Oracle JDeveloper

A simpler approach to XYLayout is to prototype the UI directly in the Java Visual
Editor by setting the layout to null. UI components are set where you place them
at the size you create them. For more information, see Section 20.6, "Prototyping
Your UI with Layout Properties".

20.5.23 Understanding Layout Properties
Each container normally has some kind of layout manager attached to its layout
property. The layout manager has properties that can affect the sizing and location of
all components that are added to the container. You can view and edit these properties
in the Inspector when the layout manager is selected in the Structure window. The
layout manager displays as an item in the Structure window just below the container
to which it is attached.

Figure 20–26 Layout Properties

20.5.24 Understanding Layout Constraints
For each component you add to a container, JDeveloper may instantiate a constraints
object, or produce a constraint value, which provides additional information about
how the layout manager should size and locate this specific component. The type of
constraint object or value created depends upon the type of layout manager being
used. The Inspector displays the constraints of each component as if they were
properties of the component itself, and allows you to edit them.

20.5.25 Determining the Size and Location of Your UI Window at Runtime
If your UI class is a Frame or Dialog, you can control its size and location at
runtime. The size and location are determined by what the code does when the UI
window is created and what the user does to resize or reposition it.

Align top Lines up the top edges of the selected components with the top
edge of the first selected component.

Align middle Vertically lines up the centers of the selected components with
the middle of the first selected component.

Align bottom Lines up the bottom edges of the selected components with the
bottom edge of the first selected component.

Even space horizontal Evenly spaces the selected components horizontally between the
first and last selected components.

Even space vertical Evenly spaces the selected components vertically between the
first and last selected components.

Same size horizontal Makes all the selected components the same width as the first
selected component.

Same size vertical Makes all the selected components the same height as the first
selected component.

Table 20–6 (Cont.) Alignment Options

Select this To do this

Working with Layout Managers

Implementing Java Swing User Interfaces 20-39

When the UI window is created, and various components are added to it, each
component that is added affects the preferredSize of the overall window,
typically making the preferredSize of the window container larger as additional
components are added. This effect on preferredSize depends on the layout
manager of the outer container, as well as any nested container layouts. For more
details about the way that preferredLayoutSize is calculated for various layouts, see
the sections in this document on each type of layout.

The size of the UI window, as set by your program (before any additional resizing that
may be done by the user), is determined by which of the following container methods
is called last in the code:

■ pack()

■ setsize()

The location of your UI at runtime will be at 0,0 unless you override this by setting the
location property of the container (for example by calling setLocation() before making
it visible).

20.5.26 Sizing a Window Automatically with pack()
The pack() method computes a window's preferredSize, based upon the
components it contains, and sizes itself accordingly. pack() creates the smallest
possible window, while still respecting the preferredSize of the components that are
placed within it.

20.5.27 How the preferredSize is Calculated for a Container
preferredSize is calculated differently for containers with different layouts

20.5.28 Portable Layouts
Portable layouts, such as FlowLayout and BorderLayout, calculate their
preferredSize based on a combination of the layout rules and the preferredSize of each
component that was added to the container. If any of the components are containers
(such as a Panel), then the preferredSize of that Panel is calculated according to its
layout and components. The layout calculation is recursed into as many layers of
nested containers as necessary. For more information about preferredSize
calculation for particular layouts, see the individual layout descriptions.

20.5.29 Explicitly Setting the Size of a Window Using setSize()
If you call setSize() on the container (rather than pack() or subsequent to calling
pack()), the size of the container will be set to a specific size, in pixels. setSize()
overrides the effect of pack() and preferredSize for the container.

Note: The Application.java file created by the New Application
dialog calls pack(), packing the frame to its preferredSize
before making it visible.

Note: Because different screens have different pixel sizes, if you use
setSize() you must call validate() in order for child containers
to be properly laid out. Note that pack() automatically calls
validate().

Working with Layout Managers

20-40 User's Guide for Oracle JDeveloper

20.5.30 Making the Size of your UI Portable to Various Platforms
To make your UI portable, either use pack() or calculate an appropriate size to use
with setSize() based on the pixel sizes of the various screens your application will
be deployed on.

For example, you might want the UI to appear at 75% of the width and height of the
screen. For the UI to appear at this sizing, you can add the following lines of code to
your application class instead of calling pack():

Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
frame.setSize(screenSize.width * 3 / 4, screenSize.height * 3 / 4);

20.5.31 Positioning a Window on the Screen
If you don't explicitly position your UI, it will appear in the upper left corner of the
screen.

To center the UI on the screen, obtain the width and height of the screen, subtract the
width and height of your UI, divide the difference by two (in order to create equal
margins on opposite sides of the UI), and use these figures for the location of the
upper left corner of your UI.

The code in Example 20–1 is generated when you select the Center Frame on Screen
option in the New Application dialog, and performs this calculation for you.

Example 20–1 Code Generated When You Select Center Frame on Screen Option

//Center the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();
if (frameSize.height > screenSize.height)
 frameSize.height = screenSize.height;
if (frameSize.width > screenSize.width)
 frameSize.width = screenSize.width;
frame.setLocation((screenSize.width- frameSize.width) / 2,
(screenSize.height - frameSize.height) /2);

20.5.32 Placing the Sizing and Positioning Method Calls in your Code
The calls to pack(), validate(), setSize(), or setLocation() can be made
from inside the UI container class for example, this.pack(). These calls can also be
made from the class that creates the container, for example, frame.pack(), after
invoking the constructor, before setVisible(). The latter is what the New
Application dialog-generated code does; the calls to pack() or validate(), and
setLocation() are placed in the Application class, after the frame is constructed
(after the call to jbInit()).

If you are constructing the UI from various places within your application, and you
want it to come up in the same size and place, place your calls in the constructor of
your UI container class (after the call to jbInit(). If your application instantiates the
UI from only one place, such as in the New Application dialog generated application,

Note: To ensure portability, change all XYLayout containers to a
portable layout after prototyping. For more information, see
Section 20.6, "Prototyping Your UI with Layout Properties".

Working with Layout Managers

Implementing Java Swing User Interfaces 20-41

put the sizing and positioning code in the place where the UI is created, in this case the
Application class.

20.5.33 Working with Nested Containers and Layouts
Most UI designs in Java use more than one type of layout to get the desired
component positions by nesting multiple panels with different layouts in the main
container. By creating a composite design, and by using the appropriate layout
manager for each panel, you can group and arrange components in a way that is both
functional and portable.

For example, Figure 20–27 demonstrates the use of nested panels with different
layouts. The solid gray objects are the buttons and other visible components in the UI
which are nested in various levels of panels.

Figure 20–27 Nested Panels

20.5.33.1 How to Create Nested Panels
You can nest panels within other panels to gain more control over the placement of
components.

To create nested panels:
1. Add a panel to the UI design of your application. For more information, see

Section 20.7.9, "How to Create a Panel."

2. In the Property Inspector, change the Layout property to null.

When you add a panel to the UI design, it uses FlowLayout. Change the layout
to null initially because it is the easiest layout to work with during the design
process. After you have all the panels and other components in place in your UI,
you will set it to its final layout.

To locate a specific panel in the Java Visual Editor, you can select the panel in the
Structure window.

3. Place panels within panels to logically group components.

■ Make sure components are fully nested inside their panels. Examine the
Structure window to make sure each component is indented under the correct
panel in the tree outline.

Working with Layout Managers

20-42 User's Guide for Oracle JDeveloper

■ The components will probably be irregular sizes and shapes. Don't worry
about getting it perfect at this point, because when you change the panel
layouts, the layout manager will realign the components.

4. Set the layout property for each panel to the appropriate layout. For more
information, see Section 20.5.23, "Understanding Layout Properties."

■ Be aware that when you change a layout manager for one panel, the effects
may change again when you change the layout manager for the panel that
holds it.

■ Select the layout object in the Structure window to change its settings.

20.5.34 Adding Custom Layout Managers
JDeveloper supports the integration of other layout managers with its Java Visual
Editor. Users will be able to work with the layout manager using both the Java Visual
Editor and the Property Inspector when you:

1. Write an oracle.jdevimpl.uieditor.LayoutAssistant implementation
to be associated with the LayoutManager.

2. Register the LayoutAssistant implementation with the IDE.

3. (Optionally) Register a java.beans.PropertyEditor with the IDE to handle
any special constraints type.

To create a custom layout manager assistant:
Each LayoutManager must be associated with a LayoutAssistant
implementation. The class
oracle.jdevimpl.uieditor.assistant.BasicLayoutAssistant provides a
minimal implementation of the interface
oracle.jdevimpl.uieditor.LayoutAssistant and will be used for any
LayoutManager for which no explicit registration has been made. There are several
required methods in the interface, but it is beyond the scope of this topic to describe
them. Integrators may wish to subclass their LayoutAssistant implementations
from this minimal implementation. Refer to the Javadoc for the LayoutAssistant
interface for details.

To register the layout assistant:
To register the new layout assistant, you need to add a key-value definition to
oracle.jdevimpl.uieditor.UIEditorAddin section in the
JDeveloper\lib\addins.xml file as follows:

<property>
 <key>PREFIX.LAYOUT_MANAGER_CLASS_NAME</key>
 <value>LAYOUT_ASSISTANT_CLASS_NAME</value>
</property>

where:

■ PREFIX is jdeveloper.uiassistant

■ LAYOUT_MANAGER_CLASS_NAME is the fully-qualified classname of the
layout manager for which an assistant is being registered

■ LAYOUT_ASSISTANT_CLASS_NAME is the fully-qualified classname of the
layout manager assistant to register

Prototyping Your UI with Layout Properties

Implementing Java Swing User Interfaces 20-43

For example, if you were to register a LayoutAssistant implementation
oracle.jdevimpl.uieditor.assistant.GridBagLayoutAssistant for the
java.awt.GridBagLayout layout manager, the property to add would look like:

<property>
 <key>jdeveloper.uiassistant.java.awt.GridBagLayout</key>
 <value>oracle.jdevimpl.uieditor.assistant.GridBagLayoutAssistant</value>
</property>

Note that in order for the layout assistant to be available from within the IDE, so that it
will appear in the Property Inspector's layout property list, the layout assistant must
be added to the IDEClasspath as a directive in JDeveloper\bin\jdev.conf file.
For example:

AddJavaLibFile <myAssistant.jar>

where:

myAssistant.jar contains the compiled class file for your LayoutAssistant
implementation.

To register a constraints property editor for the layout manager:
If your custom layout manager uses a constraint class, you may want to register a class
implementing java.beans.PropertyEditor for editing the constraints. You
register the property editor class under Inspector.PropertyEditor in the
ide.properties file, where:

■ Inspector.PropertyEditor.count=# provides the total number of property
editors that are registered in ide.properties. You must increment the count for each
new property editor you wish to add.

■ <#> is the zero-based index, in the list of registered editors, corresponding to the
editor you are registering.

■ <fully qualified type> is the fully-qualified type of the constraints for
which a PropertyEditor is being registered.

■ <Fully qualified class> is the fully-qualified classname of the
java.beans.PropertyEditor implementation being registered for editing
instances of the given constraints type.

For example, if you were to register the property editor for the GridBagLayout layout
manager's GridBagConstraints, your entry in the ide.properties file would look like:

Inspector.PropertyEditor.count=1

Inspector.PropertyEditor.editor1.type=java.awt.GridBagConstraints
Inspector.PropertyEditor.editor1.editor=oracle.jdevimpl.uieditor.assistant.GridBag
ConstraintsEditor

20.6 Prototyping Your UI with Layout Properties
Before you start creating your UI, it is useful to sketch your UI design on paper to get
an idea of the general strategy you'll use for placing various panels and components,
and for assigning layouts. You can also prototype your UI directly in the Java Visual

Note: Your property editor class also needs to be in the
IDEClasspath as described above for the layout manager assistant.

Prototyping Your UI with Layout Properties

20-44 User's Guide for Oracle JDeveloper

Editor. JDeveloper makes this easy by providing a layout called null that leaves the
components where you place them at the size you create them.

20.6.1 Using null Layout for Prototyping
To make this approach simpler, JDeveloper provides the null layout. When you start a
project using the New Application dialog, JDeveloper generates a UI container class
(usually one that extends Frame or JFrame) that uses null. You can open the frame in
the Java Visual Editor and do your design work directly on the frame.

When you initially add a new panel of any type to the Java Visual Editor, you'll notice
that the layout property in the Inspector says <default layout>, which means that
the Java Visual Editor will automatically use the default layout for that container.
However, you may want to change the layout property to the layout manager you
want to use so it is visible in the Structure window and that component constraints can
be modified in the Property Inspector. You cannot edit layout properties for <default
layout>.

20.6.2 Designing the Big Regions First
Design the big regions of your UI first, then, using null, work down into finer details
within those regions. Once the design is right, work systematically from the inner
regions outward, converting the panels to more portable layouts such as FlowLayout,
BorderLayout, or GridLayout, making minor adjustments if necessary.

In most cases, you will place a container in your design first, then add components to
it. You can also draw a new container around existing components. However, these
components will not automatically nest into the new panel. After drawing the
container, you must move each component in the container. You may even need to
move a component out of the container, then back in. Check the Structure window to
make sure each component nests properly. Each component inside a container should
be indented in the Tree under its container.

20.6.3 Saving Before Experimenting
When designing in JDeveloper, expect to work by trial and error, especially when
changing the layouts. Be sure to save your work before experimenting with a layout
change.

You may discover that a particular layout you planned to use doesn't work as you
expected. You may need to reexamine your design process and use a different
configuration of containers, components, and layouts. For this reason, you may want
to copy the container file (for example Frame1.java) to a different name and safe
location at critical points so that, when you need to back up in your work, you don't
need to start over completely.

20.6.4 Selecting a Final Layout Manager
If you've used the null or XYLayout Manager to design your Java program, you'll
need to change the layout manager to one of the standard layout managers that is
supported across different platforms.

To change the layout manager, see Section 20.8.3, "How to Change the Layout for a
Container".

Working with Containers and Components

Implementing Java Swing User Interfaces 20-45

20.7 Working with Containers and Components
JDeveloper provides easy tools to help you generate your containers. Containers hold
and manage other components. When you lay out a form to design the UI in
JDeveloper you use containers. There are two general classes of containers:

■ Heavyweight Swing containers, extends their AWT equivalents and are thus
heavyweight implementations, and include JFrame, JDialog, and JApplet.

■ Lightweight Swing containers, which don't contain operating system-specific
code, and include, for example, JTabbedPane, JPanel, JSplitPane, and JScrollPane.

Containers are also components; you interact with them by getting and setting their
properties, calling their methods, and responding to their events as with any other
component.

20.7.1 Using Windows
A Window is a stand-alone top-level container component with no borders, title bar, or
menu bar. Although a Window could be used to implement a popup window, you
normally use a subclass of Window in your UI such as one of those listed in
Table 20–7.

20.7.2 Using Panels
A Panel is a simple UI container, without border or caption, used to group other
components, like buttons, checkboxes, and text fields. Panels are embedded within
some other UI, such as in a frame or dialog. They can also be nested within other
panels.

20.7.3 Using Lightweight Swing Containers
The lightweight Swing containers available from JDeveloper's Component Palette
pages include JMenuBar, JPopupMenu, JSplitPane, JScrollPane, JTabbedPane, and

Table 20–7 Windows Subclasses

Window Description

Frame A top-level window with a border and a title. A Frame has
standard window controls such as a control menu, buttons to
minimize and maximize the window, and controls for resizing
the window. It can also contain a menu bar.

Dialog box A popup window, similar to a Frame, but it needs a parent.
Dialog boxes are used for getting input from the user or to
present warning messages. It can also contain a menu bar.
Dialog boxes are usually intended to be transient, or temporary,
and can be one of the following types:

■ Modal: Prevents user input to any other windows in the
application until that dialog box is dismissed.

■ Modeless: Lets the user enter information in both the dialog
box and the application.

Table 20–8 Panels

Panel Description

Applet A subclass of Panel used to build a program intended to be
embedded in an HTML page and run in an Internet browser or
applet viewer. Since Applet is a subclass of Panel, it can contain
components, but does not have a border or caption.

Working with Containers and Components

20-46 User's Guide for Oracle JDeveloper

JToolbar. All are a subclass of JComponent. You can add other containers and
components to these containers, combining components and their containers in
various ways to get the interface you want.

Table 20–9 Lightweight Swing Containers

Lightweight Container Description

Menu Bar The lightweight Swing containers available from the Component
Palette pages include JMenuBar, JPopupMenu, JSplitPane,
JScrollPane, JTabbedPane, and JToolbar. All are a subclass of
JComponent. You can add other containers and components to
these containers, combining components and their containers in
various ways to get the interface you want.

Popup Menu A small window which pops up and displays a series of choices,
which you create in JDeveloper using the Menu Editor. A
JPopupMenu is used for the menu that appears when the user
selects an item on the menu bar. It is also used for "pull-right"
menu that appears when the selects a menu item that activates
it. Finally, a JPopupMenu can also be used anywhere else you
want a menu to appear -- for example, when the user right-clicks
in a specified area.

Split Pane Manages two panes that are separated horizontally or vertically
by a divider that can be repositioned by the user. You can choose
which pane to add a component to. You can specify the
components with the properties leftComponent and
rightComponent, or topComponent and
bottomComponent. In these properties, "Left" is equivalent to
"Top" and "Right" is equivalent to "Bottom" -- so if you change
the arrangement, your existing code still works. Subsequent
adds to the same pane replace its contents with the new object.

Scroll Pane Manages two panes that are separated horizontally or vertically
by a divider that can be repositioned by the user. You can choose
which pane to add a component to. You can specify the
components with the properties leftComponent and
rightComponent, or topComponent and bottomComponent. In
these properties, "Left" is equivalent to "Top" and "Right" is
equivalent to "Bottom" -- so if you change the arrangement, your
existing code still works. Subsequent adds to the same pane
replace its contents with the new object.

Along with its scroll bars and viewport, a JScrollPane can have a
column header and a row header. Each of these is a JViewport
object that you specify with rowHeader and columnHeader
properties. The column header viewport automatically scrolls
left and right, tracking the left-right scrolling of the main
viewport. (It never scrolls vertically, however.) The row header
acts in a similar fashion.

Tabbed Pane Manages multiple panels that completely overlap each other.
The user can select a panel to view by clicking on a "tab"
attached to the panel (like the tab on a file folder). You add tabs
in JDeveloper by dropping a JPanel onto the tabbed pane from
the Component Palette. The tabPlacement property lets you
position tabs on the top, bottom, left side, or right side of the
container.

Toolbar Provides a component which is useful for displaying commonly
used Actions or controls. It can be dragged out into a separate
window by the user (unless the floatable property is set to
false). In order for drag-out to work correctly, it is recommended
that you add JToolBar instances to one of the four 'sides' of a
container whose layout manager is a BorderLayout, and do not
add children to any of the other four 'sides'.

Working with Containers and Components

Implementing Java Swing User Interfaces 20-47

20.7.4 Understanding Component Properties in the Property Inspector
A property is a named attribute of a class that can affect its appearance or its behavior.
A property can be:

■ Readable: These properties have a "get" method, which enables you to read the
property's value. If it is a Boolean property, it can also use "is" to read the value.

■ Writable: These properties have a "set" method, which enables the property's
value to be changed.

■ Both readable and writable: These properties have both "get" and "set" methods.

20.7.5 Setting Property Values in the Property Inspector
Properties are attributes that define how a component appears and responds at
runtime. In JDeveloper, you set a component's initial properties during design time,
and your code can change those properties at runtime.

The Property Inspector window displays the properties of the selected component(s)
and is where you set the property values at design time for any component in your
design. By setting properties at design time, you are defining the initial state of a
component when the UI is instantiated at runtime.

20.7.6 Setting Shared Properties for Multiple Components
When you open the Property Inspector with more than one component selected in the
Java Visual Editor, by default the Property Inspector displays all the common
properties of the selected components.

Despite the fact that you may have selected multiple components in the Java Visual
Editor, the Property Inspector still only displays property values for one component at
a time. When the properties are shared among the selected components, sometimes the
values will be the same, and in other cases, the property values may differ among the
components. The Property Inspector helps you to identify which shared properties
have differing values by representing the value in italics.

When the values for shared properties differ among the selected components, the
property value that is displayed always belongs to the anchor selection. The anchor
selection is the one that appears with hollow selection handles in the Java Visual
Editor. You may alter the anchor selection by holding down the Shift key and clicking
one of the other currently selected components. Altering the anchor selection changes
which components' properties are shown in the Inspector, as well as altering which
component the Java Visual Editor context menu operations apply to (for example, the
Align context menu item).

When you change any of the shared properties in the Property Inspector, the property
value changes to the new value in all the selected components.

20.7.7 Laying Out Your User Interface
This section explains the fundamental tasks you perform as you work with
components and JDeveloper's UI design tools to create a user interface. If you're
comfortable using controls in a graphical user interface environment, much of the

Note: To modify the initial property values at runtime, you can put
code in the body of the methods or event handlers which you can
create on the Events section of the Property Inspector.

Working with Containers and Components

20-48 User's Guide for Oracle JDeveloper

material discussed here, such as selecting, sizing, and deleting components might be
familiar to you.

Before you begin actually creating your UI, you may want to prototype your UI. For
more information, see Section 20.6, "Prototyping Your UI with Layout Properties".

To design a user interface in JDeveloper:
■ Create containers such as frames, panels, or dialogs. These containers hold specific

types of components.

■ Add and arrange components in the containers. You can add components to a
container and then arrange them using layout managers. For more information,
see Section 20.8.1, "How to Add Components to Your User Interface".

■ Set component properties. You can set properties for each component using the
Property Inspector. For more information, see Section 20.7.4, "Understanding
Component Properties in the Property Inspector".

■ Attach event-handling code to a component event. Events are the actions a
component takes when they are triggered by a user or another component. For
more information, see Section 20.10.2, "How to Attach Event-Handling Code to a
Component Event".

■ Set container layouts and component constraints. A layout constraint tells the
layout manager how to size and position a component. For more information, see
Section 20.8.4, "How to Modify Component Layout Constraints".

To start your project:
These instructions assume that you have already created a project that includes a
designable container class. If not, you will need to:

1. Create or open a JDeveloper Project.

2. Create an applet or an application.

20.7.8 How to Create a Frame
A frame is a top-level window with a border and a title. It has standard window
controls such as a control menu, buttons to minimize and maximize the window, and
controls for resizing the window.

The New Frame dialog adds a new class to the active project. It adds necessary import
statements, creates a default constructor, and it creates a jbInit() method in which
JDeveloper sets properties and other initialization code used by the Java Visual Editor.

To add a frame:
1. Open or create a project.

2. Choose File > New to locate the New Frame dialog in the New Gallery.

3. In the Categories list, expand Client Tier and select Swing/AWT.

4. In the Items list, select Frame and click OK to launch the New Frame dialog.

5. In the New Frame dialog, enter the name of the package and class.

6. Choose which frame type to extend.

7. Type the frame title.

8. If there are any options (such as Menu Bar) select any you feel are appropriate.

Working with Containers and Components

Implementing Java Swing User Interfaces 20-49

9. Click OK to create the frame and its source code.

The frame is displayed as a.java source file in the Navigator.

To view the frame in JDeveloper:
■ Right-click the file in the Navigator and choose Open and click the Design tab to

use the interactive UI design tools, such as the Component Palette and the
Property Inspector.

■ Click the Source tab begin editing the source code directly.

20.7.9 How to Create a Panel
A panel is a UI container that groups components such as buttons, checkboxes, and text
fields. A panel has a border and may have a title if the border selected is a
TitledBorder. Typically, a panel is embedded within a dialog box or frame.

The New Panel dialog adds a new class to the opened project that extends a panel you
select. It creates a default constructor, and a jbInit() method in which JDeveloper
puts property setters and other initialization code used by the Java Visual Editor.

To create a panel:
1. Open or create a project.

2. Choose File > New to locate the New Panel dialog in the New Gallery.

3. In the Categories list, expand Client Tier and select Swing/AWT.

4. In the Items list, select Panel and click OK to launch the New Panel dialog.

5. In the New Panel dialog, enter a name of the panel's class and package.

6. Choose the base class from which the panel is derived.

You can choose from any of the base classes installed with JDeveloper. If you
prefer, you can search for another class that isn't from an installed package using
the browse button. By default, the selection is limited to the panel container
provided with the core J2SE (Java 2, Standard Edition) and Swing classes.

7. Click OK to create the panel and its source code.

The panel is displayed as a.java source file in the Navigator.

To view the panel in JDeveloper:
1. Right-click the file in the Navigator and choose Open and click the Design tab to

use the interactive UI design tools, such as the Component Palette and the
Property Inspector.

2. Click the Source tab begin editing the source code directly.

20.7.10 How to Create a Dialog Box
A dialog box is a popup window with a border and a title. Dialog boxes are typically
used to collect user input.

The New Dialog dialog creates a new class that extends Dialog or JDialog and adds it
to the current project. It adds the necessary import statement. It also creates a
jbInit() method in which JDeveloper puts property setters and other initialization
code used by the Java Visual Editor. The jbInit() method will be invoked when
using any of the constructors.

Working with Containers and Components

20-50 User's Guide for Oracle JDeveloper

After adding the dialog box, you can design the dialog directly using the Java Visual
Editor. This is how you add buttons and other controls to your new dialog box.

To create a dialog box:
1. Open or create a project.

2. Choose File > New to locate the New Panel dialog in the New Gallery.

3. In the Categories list, expand Client Tier and select Swing/AWT.

4. In the Items list, select Dialog and click OK to launch the New Dialog dialog.

5. In the New Dialog dialog, enter the name of the dialog box's package and class.
The file name is automatically filled in for you; it is assigned the same name as the
class and is saved to the package directory.

6. Choose whether to extend java.awt.Dialog or javax.swing.JDialog.

7. Click OK to create the dialog box and its source code.

The dialog box is displayed as a.java source file in the Navigation window.

To view the dialog box in JDeveloper:
■ Right-click the file in the Navigator and choose Open and click the Design tab to

use the interactive UI design tools, such as the Component Palette and the
Property Inspector.

■ Click the Source tab begin editing the source code directly

20.7.11 How to Use a Dialog Box That is Not a Bean
Once the dialog box has been created and its UI designed, you will want to test or use
your dialog box from some UI in your program.

To test or use your dialog box:
1. Instantiate your dialog class from someplace in your code where you have access

to a Frame which can serve as the parent Frame parameter in the dialog
constructor. A typical example of this would be a Frame whose UI you are
designing, which contains a Button or a MenuItem which is intended to bring up
the dialog box. In applets, you can get the Frame by calling getParent() on the
applet.

For a modeless dialog box (which we are calling dialog1 in this example), you can
use the form of the constructor that takes a single parameter (the parent Frame) as
follows:

Dialog1 dialog1=new Dialog1(this);

For a modal dialog box, you will need to use a form of the constructor that has the
boolean modal parameter set to true, such as in the following example:

Dialog1 dialog1=new Dialog1(this, true);

You can either place this line as an instance variable at the top of the class (in
which case the dialog box will be instantiated during the construction of your
Frame and be reusable), or you can place this line of code in the actionPerformed
event handler for the button that invokes the dialog box (in which case a new
instance of the dialog box will be instantiated each time the button is pressed.)
Either way, this line instantiates the dialog box, but does not make it visible yet.

Working with Containers and Components

Implementing Java Swing User Interfaces 20-51

(In the case where the dialog is a bean, you must set its frame property to the
parent frame before calling show(), rather than supplying the frame to the
constructor.)

2. Before making the instantiated dialog box visible, you should set up any default
values that the dialog box fields should display. If you are planning to make your
dialog into a Bean, you need to make these dialog box fields accessible as
properties. You do this by defining getter and setter methods in your dialog class.

3. Next, you have to cause the dialog box to become visible during the
actionPerformed event by entering a line of code inside the event handler that
looks like this:

dialog1.show();

4. When the user presses the OK button (or the Apply button on a modeless dialog
box), the code that is using the dialog box will need to call the dialog's property
getters to read the user-entered information out of the dialog, then do something
with that information.

■ For a modal dialog box, you can do this right after the show() method call,
because show() doesn't return until the modal dialog box is dismissed. You
can use a result property to determine whether the OK or Cancel button was
pressed.

■ For a modeless dialog box, show() returns immediately. Because of this, the
dialog class itself will need to expose events for each of the button presses.
When using the dialog box, you will need to register listeners to the dialog's
events, and place code in the event handling methods to use property getters
to get the information out of the dialog box.

20.7.12 How to Create a Tabbed Pane
A tabbed pane is a UI container that groups components such as buttons, checkboxes,
and text fields on multiple panels. Each panel has a title and a tab that the end user
clicks to view the panel contents.

To create a tabbed pane:
1. Create a frame or other container. For more information, see Section 20.7.8, "How

to Create a Frame."

2. In the Swing Containers page of the Component Palette, click the
JTabbedPane component.

3. Click inside the container in the Java Visual Editor to drop the tabbed pane with its
default size.

4. Resize the tabbed pane as desired.

5. To add the first tab to the tabbed pane, click the JPanel component in the Swing
Containers page of the Component Palette, then click on the JTabbedPane inside
the Java Visual Editor.

6. To add additional tabs to the tabbed pane, after you click the JPanel component in
the Component Palette, you must click specifically on the tab itself of a previously
added tab panel.

7. To add a layout panel (one that has no tabs) to any of the tabbed pane tabs, click
the JPanel component in the Swing Containers page of the Component Palette,
then click the content area of the JTabbedPane inside the Java Visual Editor (in
this case, do not click the tab itself).

Working with Components in a Container

20-52 User's Guide for Oracle JDeveloper

To work with a panel that is not currently the top most tab in the Java Visual
Editor, click directly on the tab. When you select tab, you also raise the panel to the
top of the stacking order. Alternatively, you can select tab panels by choosing the
desired panel in the Structure Window. To view the panels you have added to the
tabbed pane, expand the UI folder, expand the dataPanel node, and finally
expand the JTabbedPane node to see the list of JPanels.

20.8 Working with Components in a Container
You can create and manage your container components using the JDeveloper tools.

20.8.1 How to Add Components to Your User Interface
There are several ways to insert a component from the JDeveloper Component Palette
into a UI container you create.

■ Using the mouse to select, insert, and position a component

■ Using keyboard bindings to select and insert a component

When you visually add a component in the Java Visual Editor, JDeveloper generates
an instance variable for the component and adds it to the source code. When you
delete a component, the Java Visual Editor deletes the associated lines from the code.

To add a component to your UI using the mouse:
1. Create a container component.

2. Choose the desired component list from the Component Palette dropdown menu.

3. Click the desired component in the palette.

4. To insert the selected component into the container, do one of the following:

■ Click inside the container to insert the component at its default size, or

■ Drag the mouse in the Java Visual Editor to form a bounding box from the
initial mouse click to a final point which represents the desired dimensions of
the object to be created. Dragging to a specific size is only appropriate when
layouts for a container that consider individual component dimensions.
Ultimately, the layout manager for each container in your UI will determine its
components' size and position, or

■ Drop the component onto the desired container in the Structure window. Be
aware that this method gives you no control over where the component
appears in the container.

To add a component to your container using only keystokes:
1. Create a container component. For more information, see Section 20.8, "Working

with Components in a Container."

2. Choose the desired component list from the Component Palette dropdown menu.

3. To select a component from the palette, press the tab key to focus on the desired
component, then press the spacebar to select the component.

4. To insert the selected component into the container, press Enter.

The inserted component appears in the top, lefthand corner of the UI container.
You may use the Property Inspector to size and position the inserted component.

Working with Components in a Container

Implementing Java Swing User Interfaces 20-53

To add multiple instances of a component:
Press the Shift key while clicking the component in the Component Palette. You may
release the Shift key and the palette will still remain in multiple creation mode.

Click the arrow tool in the Component Palette to turn off multiple object creation.

20.8.2 How to Set Component Properties at Design Time
The Property Inspector window displays the properties of the component selections
you make in the Java Visual Editor. Use the Property Inspector window to set the
property values at design time for any component in your UI design.

To set a component's properties at design time:
1. Select a component in the Java Visual Editor or in the Structure window.

2. To display the Property Inspector with the values for the selected component,
choose View, then Property Inspector or right-click the component in the Java
Visual Editor and choose Property Inspector. The Property Inspector window is
highlighted.

3. To display the Property Inspector with the values for the selected component,
choose View Property Inspector or right-click the component in the Java Visual
Editor and choose Property Inspector. The Property Inspector window is
highlighted. OR

In the Property Inspector toolbar, type the name of the property in the Find text
field, and press Enter to display the property in the Inspector. If you entered a
partial name or more than one property exists by the same name, you can use the
Up or Down arrow buttons to jump to properties matching the entered name.

4. Enter the value in the right column one of the following ways:

■ When there is only a text field, you simply type the string value for that
property, for example a text value or a number value, then press Enter.

■ When the value field is displayed with a down arrow, click the down arrow
and choose a value from the list, then press Enter.

■ When the value field shows an ellipses (...) button, click it to display a
property editor for that property, for example, a color or font selector. Set the
values in the property editor, then press OK.

To set properties for multiple components:
1. Hold down the Ctrl key or Shift key, and select the desired components.

2. The Property Inspector displays the properties that are shared by selected
components. Select and edit the desired property in the Property Inspector. Editing
the value of a shared property will cause all selected components to have the same
value. If the value is shown in italic font, that means the value belonging to the
anchor component's value differs from the other selected components.

Working with Components in a Container

20-54 User's Guide for Oracle JDeveloper

Using either the Ctrl or Shift key, if a control goes from being not selected to selected,
it will become the new anchor until the user changes the anchor using the Shift select
action.

20.8.3 How to Change the Layout for a Container
JDeveloper provides a layout property in the Inspector, in which you can choose a new
layout for any container in the Java Visual Editor.

To select a new layout:
1. Select the container in the Structure window.

2. Click the Properties tab in the Inspector, select the layout property, and click its
value field.

3. Click the down arrow in the layout property's value field and choose a layout from
the dropdown list.

JDeveloper does the following:

■ Substitutes the new layout manager in the Structure window.

■ Changes the source code to add the new layout manager and updates the
container's call to setLayout.

■ Changes the layout of components in the Java Visual Editor.

■ Updates the layout constraints for the container's components in the Inspector and
in the source code.

20.8.4 How to Modify Component Layout Constraints
When you drop a component into a container, JDeveloper creates an appropriate
constraint object or value for that container's layout manager. JDeveloper
automatically inserts this constraint value or object into the constraint property of that
component in the Property Inspector. It also adds it to the source code as a parameter
of the add() method call in the jbInit() method.

To edit a component's layout constraints:
1. Select the component in the Java Visual Editor or the Structure window.

2. Select the constraints property in the Property Inspector and click its value
field.

When working with a null layout manager, there is no constraints property on
the children, set the layout constraints on the bounds property instead.

3. Use the Property Editor to modify the constraints, or

Note: The Ctrl key causes the selection state of the selected object to
be toggled (from either not selected to selected, else from selected to
not selected). Using the Shift key to make selections also changes the
object's anchor usage:

■ If the object is not yet selected, it will become selected and become
the anchor.

■ If the object is already selected, it will just become the anchor.

Working with Components in a Container

Implementing Java Swing User Interfaces 20-55

Click the desired toolbar constraint button in the Java Visual Editor and, when
available, choose the value from the dropdown list.

20.8.5 How to Select Components in Your User Interface
Before attempting to select an existing component in your UI, be sure the selection
arrow in the Component Palette is depressed. Otherwise, you may accidentally place a
component on your UI.

To select a single component, do one of the following:
■ Click the component in the Java Visual Editor.

■ With focus on the Java Visual Editor, tab to the component (Tab = forward;
Shift+Tab = backward).

■ Select the component in the Structure window

To select multiple components, hold down the Ctrl key and do one of the
following:
■ Click the components in the Java Visual Editor one at a time.

■ Click and drag around the outside of the components you want to select.

20.8.6 How to Size and Move Components
For many layouts, the layout manager determines the size of the components by
constraints, making sizing in the Java Visual Editor have no effect. However, when
working with null, XYLayout, or GridBagLayout, you can size components when
you first place them in your UI, or you can resize and move components later.

To size a component as you add it:
1. Select the component in the Component Palette.

2. Place the cursor where you want the component to appear in the UI.

3. Drag the mouse pointer before releasing the mouse button. As you drag, an
outline appears to indicate the size and position of the control.

Note: We recommend using the Ctrl key to perform multiple
selections because the Shift key changes which of the selected objects
is the 'anchor' of the selection. The selection anchor is the object whose
property values will be displayed in the Property Inspector; it is also
the object to which context menu actions apply (i.e., alignment).

As you drag, you surround the components with a rectangle, or
"lasso." When this rectangle encloses all the components you want to
select, release the mouse button. If necessary, you can then use
Ctrl+click to individually add or remove components from the
selected group.

Hold down the Ctrl key and select the components in the Structure
window.

Note: GridBagLayout currently ignores size on creation, but you
can then resize components after creation.

Working with Components in a Container

20-56 User's Guide for Oracle JDeveloper

4. Release the mouse button when the outline is the size you want.

To move a component one pixel at a time:
1. Make sure that the snap-to-grid feature is turned off (see Tools > Preferences, Java

Visual Editor).

2. Select the component in the Component Palette.

3. Hold down the Ctrl + shift keys, then use the direction arrow keys to move the
object one pixel at a time

To resize or move a selected component:
1. Click the component in the Java Visual Editor or in the Structure window to select

it.

When you select a component, sizing handles or nibs appear on the perimeter of
the component. For some containers, a move handle appears in the middle of the
component.

2. Click the appropriate outer handle and drag to resize.

3. Click anywhere in the component and drag it any direction to move it. If the
component is a container that is covered with other components, use the center
move handle to drag it.

To resize or move a group of selected components:
1. Do one of the following to select the group of components to be changed:

■ Hold down the Ctrl key and select each of the components.

■ Hold down the left mouse button and draw a "lasso" around the group of
components you want to change.

When you select a component, sizing handles or nibs appear on the perimeter of
the component. For some containers, a move handle appears in the middle of the
component.

2. Click the appropriate outer handle and drag to resize.

3. Click anywhere in the component and drag it any direction to move it. If the
component is a container that is covered with other components, use the center
move handle to drag it.

4. Right-click and choose Size and Space, then choose the desired operation.

OR

Click the desired size button in the Java Visual Editor toolbar. Operations which
are invalid for the currently selected components appear disabled in the toolbar
and context menu.

20.8.7 How to Group Components
JDeveloper provides a number of container components for grouping components
together so they behave as a single component at design time.

For instance, you might group a row of buttons in a Panel to create a toolbar. Or you
could use a container component to create a customized backdrop, status bar, or
checkbox group.

When you place components within containers, you create a relationship between the
container and the components it contains. Design time operations you perform on the

Working with Components in a Container

Implementing Java Swing User Interfaces 20-57

containers, such as moving, copying, or deleting, also affect any components grouped
within them.

To group components by placing them into a container:
1. Add a container to the UI.

If you are working in a layout that considers size such as the GridBagLayout,
null layout or XYLayout, you can drag to size it.

2. Add each component to the container, making sure the mouse pointer falls within
the container's boundaries. (The status bar at the bottom of JDeveloper displays
which container your mouse is over.) You can add a new component from the
Component Palette, or drag an existing component into the new container.

As you add components, they appear inside the selected container in the Java
Visual Editor, and under that container in the Structure window.

20.8.8 How to Change Component Z-Order
JDeveloper lets you modify the order in which components, which have been visually
stacked one on top of another, appear in the UI design. The topmost component
specified by Z-order is the one which the user sees at runtime by default.

To change the Z-order of the topmost component:
1. Select the component in the Java Visual Editor from that is currently on top of the

stack.

2. Right-click and choose Order > Send to Back.

To change the Z-order of a component that is not visually on top:
1. Select the stacked component in the Structure window for which you want to

change the order.

2. In the Java Visual Editor, right-click and choose Order, then choose either Bring to
Front or Send to Back.

20.8.9 How to Cut, Copy, Paste and Delete Components
JDeveloper supports Cut, Copy, Paste and Delete functionality in the Java Visual
Editor. You can perform these operations between files of the same project or different
projects.

Tip: If you want the components to stay where you put them,
change the container's layout to null before adding any components.
Otherwise, the size and position of the components will change
according to the layout manager used by the container. You can
change to a final layout after you finish adding the components.

Note: Although the Java Visual Editor only displays the topmost
component in a stack, you can view the Z-order of the stack in the
Structure window: the topmost component appears first in the list of
nodes, followed by the next component in the stack, and so on. When
you change the Z-order, the Structure window is updated to display
the new order.

Working with Components in a Container

20-58 User's Guide for Oracle JDeveloper

20.8.10 How to Copy a Component
Visual components copied in the Java Visual Editor are not copied to the system
clipboard, and cannot be transferred into other applications. Use a screen capture
utility to create an image of a control, or copy the source text to use the Java code in
another Java development environment.

When you copy a component that has defined event methods, the event listener is
copied with the component, but not the event handler. This is because in most cases
it's the format of the control, and not the behavior, that you want to copy. If your goal
is to copy the control and its behavior to a different Java class file, you need to
separately copy the handler: open the file in the Code Editor, locate the handler code,
select it, and choose Edit > Copy.

To copy one or more components:
1. Select the components you want to copy. For more information, see Section 20.8.5,

"How to Select Components in Your User Interface."

2. Choose Edit > Copy.

The components are copied to a local clipboard in JDeveloper.

20.8.11 How to Cut a Component
Before you cut your component be sure to paste the previously cut object since cutting
the event code will overwrite the contents of the clipboard.

To cut a component from your user interface:
1. Select the components you want to cut.

2. Choose Edit > Cut.

The component is removed from the Java Visual Editor and placed into a local
clipboard only accessible by JDeveloper (not to the system clipboard). If you quit
JDeveloper without pasting the control into a container, the cut version of the control
will be lost.

The cut command is the first step in a cut and paste action. If you just want to remove
a component, see Deleting a component, below. Deleting a component removes it
without changing the contents of your clipboard. If you get in the habit of using the
cut command to remove items permanently, there is a chance that one day you will
inadvertently replace something in the clipboard that you would rather have kept.

When you cut a component that has defined event methods, the event listener is cut
with the component. The event handler is not removed from the source code, nor is it
placed on the clipboard. There are two reasons for this:

■ In most cases, it isn't the behavior of the control, but the format that you want to
retain.

Note: When you cut, copy, paste from one file to a file in another
project, you may be required to update your project properties on the
target project to include additional libraries. If the target project does
not define the right libraries for the pasted object, the paste will fail
since the Java Visual Editor will not recognize the class of the
incoming objects.

Working with Menus

Implementing Java Swing User Interfaces 20-59

■ More than one component may use the same event handler, so removing it from
the code may impact other parts of your program.

To cut an event handler in the Code Editor, locate the handler code, select it, and
choose Edit, then Cut.

20.8.12 How to Paste a Component
The components you copy or cut from a JDeveloper Design window can be pasted into
any other designable class file.

To paste a component:
1. Open the file to which you want to paste the component in the Java Visual Editor.

2. Select the container to which you want to paste the component.

3. Choose Edit, then Paste.

The JavaBeans components you paste will add any existing event listener code from
the original component to your source code. The event handler code does not get
copied or cut with the component: if you want to use the same event handler, you
need to copy and paste the handler separately using the Code Editor.

20.8.13 How to Delete a Component from your UI
Delete a component when you want to remove it from your Java program without
affecting the contents of the clipboard.

To delete a component:
1. Select the component in the Java Visual Editor or the Structure window.

2. Press the Delete key.

When you delete a JavaBeans component from the Java Visual Editor, the event
listener methods, if any, are deleted from the source code, but the event handler
methods are not. If you want to remove the event handler methods, you need to delete
them in the Code Editor.

20.9 Working with Menus
The basic parts of a menu are referred to using the following terms:

■ A menu bar is displayed at the top of a frame. It is composed of one or more
top-level menus, such as File, Edit, or Help. A JMenuBar may have any
component as a child, such as a JComboBox or JToggleButton, for example.

■ A menu is a child of menu bar and contains a collection of menu items, submenus,
and separators.

■ A submenu is a menu whose parent is another menu instead of the menu bar.

■ A menu item is an individual element on a menu which can invoke a command.
Menu items can have attributes such as being disabled (gray) when not allowed,
or checkable so their selection state can be toggled.

■ An accelerator, also known as an keyboard shortcut, allows an alternative way to
invoke a menu item. When a menu item has an accelerator, it is displayed at the
right of the menu item.

Working with Menus

20-60 User's Guide for Oracle JDeveloper

■ The separator bar helps to visually group related items. It does not invoke a
command.

20.9.1 Understanding Menu Components
There are four types of menu component on the Component Palette: a MenuBar,
JMenuBar, PopupMenu, and JPopupMenu.

■ A MenuBar or a JMenuBar is attached to the main UI Frame, and appears at the
top of the frame.

■ A PopupMenu or a JPopupMenu appears when the user right-clicks in your UI.
At runtime, popup menus do not appear on the menu bar, instead they are
displayed where the user invokes them.

All of these controls can be edited in the Property Inspector.

The first MenuBar or JMenuBar control dropped onto the UI container is considered
the current menubar for your UI. However, you can create more than one menubar for
an application; they are displayed in the Inspector in the frame's MenuBar property.
Select a menu from the MenuBar property dropdown list to make it active.

20.9.2 Using the Menu Editor
You access the Menu Editor by opening the Java file in the Java Visual Editor, which
makes the Structure window visible. Then, in the Structure window, when you click on
a menu, menu item, or menu root node, the Menu Editor appears.

There are multiple ways that you work with the Menu Editor to create menus:

■ Keyboard Arrow, Esc, and Enter keys let you change the focus of the editable
menu component

■ Drag and drop operations let you move menus or menu items

■ Menu Editor toolbar or menu item context menus let you insert menu components

For instance, you can type labels directly into the menu component which has the
current focus in the Menu Editor as indicated by the highlighted box. Pressing Enter
validates the label and lets you type the next menu component label. You can also use
the keyboard arrow keys to move the current focus in the Menu Editor to another
position in the menu you want to edit. The Esc key changes the focus from anywhere
inside a menu to the menu bar.

In addition to labels that you specify, you can insert various menu components either
through the Menu Editor toolbar or the commands duplicated by right-clicking on a
menu component. These operations are supported by the toolbar and context menu:

■ Insert MenuItem

■ Insert Separator

■ Insert Submenu

Note: Menu components are only editable at design time in the
Menu Editor, not the Java Visual Editor. The menu bar and its
top-level menus display in the Java Visual Editor, but they are not
selectable and cannot be edited from there. However, you can always
see and select them in the Structure window. To see how the menu
looks in your UI, run your application.

Working with Menus

Implementing Java Swing User Interfaces 20-61

■ Enable (or disable) menu item

■ Make menu item checkable

Additionally, you can rearrange entire menus or single menu items using drag and
drop operations by clicking along the menus in the menu bar or inside the menus in
their menu items.

20.9.3 Interacting with the Code Editor and the Property Inspector
JDeveloper synchronizes your changes as you work. As you edit menu items in the
Menu Editor, all changes are reflected in the source code by the Code Editor and the
Property Inspector. When you make changes to the menus in the source code or the
Property Inspector, those changes are reflected in the Menu Editor.

For example, when you add a Menu to a MenuBar component, this Menu appears in
the Structure window as a child of the MenuBar. Also, when you change properties for
Menu or MenuItem (like text or enabled), those changes are reflected in the code,
Menu Editor, and Property Inspector.

Since JDeveloper also maintains synchronization with the Code Editor, there is no
need to save your menu design manually. JDeveloper generates the code which you
can view and edit in the Code Editor as you use the Menu Editor. The generated code
is saved when you save your Java source file. The next time you open the Java file and
select a MenuBar component in the Structure window, the Menu Editor will open
and reload everything for that component.

Once you add a menu component to the UI design, you can use the Menu Editor to
design the menu structure. To activate the menus in the user interface, you must use
the Property Inspector to attach the menu items to events, or enter the code manually
in the Code Editor.

20.9.4 How to Add a Menu Component to a Frame
Since a non-popup menu can only be attached to container, such as a JFrame or a
JDialog, you must first open or a container file. You can open one in one of the
following ways:

■ Open an existing Frame or Dialog file.

■ Use the New Gallery to create a new frame or create a dialog. For more
information, see Section 20.7.8, "How to Create a Frame".

To add a menu component to the UI:
1. Right-click the UI frame file in the Navigator and choose Open.

2. Select your main UI frame in the Java Visual Editor or in the Structure window.

3. Click a menu component on the Component Palette and drop it anywhere in the
Java Visual Editor.

You can choose either a menu bar or a popup menu.

■ A menu bar is attached to the main UI frame or dialog, and is displayed at the
top of the application.

■ A popup menu is displayed when the user right-clicks in your UI. Popup
menus do not have menu bars.

Alternatively, you can open a file that already contains a menu component.

Working with Menus

20-62 User's Guide for Oracle JDeveloper

At this point, nothing is visible on the UI. The added menu component is
displayed in the Structure window and opens in the Menu Editor.

20.9.5 How to Add a Popup Menu
Popup menus can be created so they open on a particular UI container. You add the
popup menu to the container and create an event handler to specify the user's action
that triggers the popup.

To add a popup menu:
1. Open your UI class in the Java Visual Editor.

2. Drop a popup menu from the AWT or Swing Containers Component Palette into
the Structure window. The Menu Editor appears.

3. Add one or more menu items to the popup menu. For more information, see
Section 20.9.8, "How to Add a Menu Item".

4. Expand the UI folder in the Structure window and select the panel or other
component whose event you want the popup menu attached to so you can see that
component in the Property Inspector. For the following example, panel1 was
selected.

5. In the Property Inspector, click the Events tab and click the desired event value
field.

6. Type the stub name of the event into the event value field and press Enter to create
an event-handling method stub in the source code with the supplied name. For the
following example, the MouseClicked event was selected and the name
panel1_mouseClicked entered.

7. Edit your event-handler stub to resemble the following:

Example 20–2 Event Handler Stub

void panel1_mouseClicked(java.awt.event.MouseEvent e) {
 panel1.add(popupMenu1);
 if (e.isPopupTrigger()) {
 // Make the PopupMenu visible relative to the current mouse
 // position in the container.
 opupMenu1.show(panel1, e.getX(), e.getY());
 }
}

8. Add event handlers to the popup menu's menu items as needed for your
application.

20.9.6 How to Create a Submenu
Submenus can appear on menus to provide additional, related commands. Such
nested lists are displayed with the menu text followed by an arrow. JDeveloper
supports as many levels of submenus as you want to build into your menu.

Organizing your menu structure with submenus can save vertical screen space.
However, for optimal design purposes you probably want to use no more than two or
three menu levels in your UI design.

When you move a menu off the menu bar into another menu, it becomes a submenu.
Similarly, if you move a menu into an existing submenu, it forms another submenu
under the submenu.

Working with Menus

Implementing Java Swing User Interfaces 20-63

To create a submenu:
1. Select the menu item to which you want to add a submenu.

2. Right-click and choose Insert Submenu.

Alternatively, you can create a submenu by selecting the menu item and pressing
Ctrl and the right arrow key.

3. Click the new submenu item and type a name for the nested menu item, or drag
an existing menu item into this placeholder.

4. Press Enter, or the Down arrow, to create the next placeholder.

5. Repeat steps 3 and 4 for each item you want to create in the submenu.

6. Press Esc to return to the previous menu level.

20.9.7 Customizing Menus with the Menu Editor
Use the JDeveloper Menu Editor to customize and manage your menu items.

20.9.8 How to Add a Menu Item
When you first open the Menu Editor, it displays the menu bar or popup menu that
you opened with any defined menu items. There is also a blank menu to the right of
the last menu in the menubar and a placeholder at the end of each menu, indicated by
a dotted rectangle.

To add menu items to an existing menu:
1. In the Menu Editor, select the position on the menu bar where you want to add a

new menu, or on the menu select where you want to add a new menu item,
separator or submenu.

2. Right-click and choose Insert MenuItem.

3. While the menu item appears highlighted in the Menu Editor, type the text for the
new menu component's label.

As you start to type, the highlighted dotted rectangle changes to a normal text edit
field containing a cursor. The text field will scroll as you type to accommodate
labels longer than the edit field.

4. When you're finished typing, press Enter.

The width of the list expands if necessary to display all the labels in the list, and a
placeholder for the next menu item is automatically selected.

5. Enter a label for each new item you want to create in the list, or press Esc to return
to the menu bar.

In addition to directly selecting items in the Menu Editor, you can use the arrow
keys to move from the menu bar into a menu, and to move between items in the
list; press Enter to complete an action.

20.9.9 How to Disable a Menu Item
You can prevent users from accessing certain menu commands based on current
program conditions without removing the command from the menu. For example, if
no text is currently selected in a document, the Cut, Copy, and Delete items on the
Edit menu are disabled and are displayed dimmed.

Working with Menus

20-64 User's Guide for Oracle JDeveloper

Use the enabled property to disable a menu item. As with most properties, you can
specify an initial value for enabled using the Inspector. The default enabled state of a
menu item is True; this may change when an event occurs.

To disable a menu item:
1. Select the menu item in the Menu Editor or in the Structure window.

2. Right-click and choose Enabled.

3. Alternatively, in the Property Inspector, set the enabled property for the menu
item to false.

In contrast to the visible property, the enabled property leaves the item visible. A
value of false dims the menu item.

20.9.10 How to Specify Accelerators
Accelerators enable the user to perform an action without accessing the menu directly
by typing in an accelerator key combination. For example, a commonly used
accelerator for File > Save is Ctrl+S.

To specify an accelerator for a menu item:
1. Select the menu item in the Design view, or in the Structure window.

2. In the Property Inspector window, select the accelerator property from the
Model section, and choose KeyStroke from the dropdown menu. Use the
accelerator dialog to supply the key combination.

20.9.11 How to Insert a Separator Bar
A separator bar inserts a line between menu items and between sibling menu
components, including menu items and submenus. You can use separator bars to
indicate groupings within the menus.

To insert a separator bar on a menu:
1. Select the menu item before which you want a separator, or choose the blank item

at the end of a menu.

2. Right-click and choose Insert Separator.

The separator bar is inserted above the selected menu item.

3. Alternatively, you can type a hyphen (-) for the menu item label.

Using the right-click menu to insert the separator will result in the line
addSeparator() to be generated, whereas using the hyphen for the label will use
the more memory intensive creation of an additional class member whose label is
a hyphen.

20.9.12 How to Create Checkable Menu Items
To make a menu item checkable, you need to change the menu item from a regular
MenuItem component to a CheckboxMenuItem. A CheckboxMenuItem has a State
property (boolean) that allows an event-handler to determine how the associated
event, or behavior, should be executed.

■ The state property for a checked menu item is set to true.

■ The state property for an unchecked menu item is set to false.

Working with Event Handling

Implementing Java Swing User Interfaces 20-65

To change a regular menu item to a CheckboxMenuItem:
1. Select the menu item.

2. Right-click and choose Checkable.

20.9.13 How to Insert and Delete Menus and Menu Items
To insert a new, blank menu or menu item, place the cursor on an existing menu item
and right-click and choose Insert (Menu or Menu Item).

Menus are inserted to the left of the selected item on the menu bar, and menu items are
inserted above the selected item in the menu.

To delete a menu item, select the menu item and press the Delete key.

20.9.14 How to Move a Menu Item
In the Menu Editor, you can move menus and menu items by dragging and dropping
them. When you move a menu item with submenu items, the submenu items move as
well.

You can move menu items and submenu items:

■ Within a menu

■ To other menus

You move entire menus along the menu bar.

To move a menu item:
1. Click and drag the menu item or submenu item to the new location.

If you are dragging the menu item to another menu, drag it along the menu bar
until the cursor points to the new menu.This action causes the menu to open,
enabling you to drag the item to its new location.

2. Drop the menu item or submenu item at the new location.

To move a menu:
1. Click menu label in the menu bar and drag to the new location across the menu

bar until the cursor points to the location where you want the menu to appear.

2. Drop the menu at the new location.

20.10 Working with Event Handling
Use UI design tools in JDeveloper to attach event handler code to component and
menu events.

In building your Java program, you can think of your code as being divided into two
categories: initialization code and event-handling code.

■ Initialization code is executed when the UI components are created. You can think
of this primarily as "start up" code for the components. This initialization code
includes anything in the jbInit() method that all JDeveloper-designed GUI classes

Note: A default placeholder (which you cannot delete) appears after
the last menu on the menu bar and below the last item on a menu.
This placeholder does not appear in your menu at runtime.

Working with Event Handling

20-66 User's Guide for Oracle JDeveloper

have. JDeveloper generates this code based on your UI design. For example,
JDeveloper generates a button1.setLabel("OK") method call because you set
the label property of a button, using the Inspector, to "OK".

■ Event-handling code is the code that is executed when the user performs an
action, such as pressing a button or using a menu item. JDeveloper creates the stub
(empty) event-handling method for you when you enter an event name in the
Inspector for that component and press Enter. In that stub, you write code to
handle the actual action caused by the event.

Your entire program consists of the initialization code, which says how things should
look when they first appear, and the event-handling code, which says what should
happen in response to user input.

There are some JDeveloper components, such as dialogs, which normally appear only
when event-handling code is executed. For example, a dialog isn't part of the UI
surface you are designing in the Java Visual Editor; instead it is a separate piece of UI
which appears transiently as a result of a user selecting a menu item or pressing a
button. Therefore, some of the code associated with using the dialog, such as a call to
its show() method, might be placed into an event-handling method.

20.10.1 How to Attach Event Handling Code to Menu Events
In Swing, a menu item has actionPerformed events and CheckboxMenuItems
have itemStateChanged events. Code that you add to the actionPerformed
event for a menu item is executed whenever the user chooses that menu item or uses
its accelerator keys.

To add code to a menu item's event:
1. Open the Java Visual Editor for your UI frame.

2. Add a menubar to your UI frame and insert menus and menu items into the
menubar. Alternatively, you can open a file that already contains a menu.

3. Select a menu item in the Menu Editor or the Structure window.

4. In the Property Inspector, click the Events tab and click the desired event value
field.

5. Type the stub name of the event into the event value field and press Enter to create
an event-handling method stub in the source code with the supplied name.

When you enter a name in the event value field, JDeveloper open the Code Editor
and displays the source code in the Structure window. The cursor is positioned in
the body of the newly created event-handling method, ready for you to enter code.

6. Inside the open and close braces, enter the code you want to have executed when
the user clicks this Menu command.

20.10.2 How to Attach Event-Handling Code to a Component Event
Using the Events page of the Inspector, you can attach handlers to component events
and delete existing event handlers.

To attach event-handling code to a component event:
1. Select the component in the Java Visual Editor or in the Structure window.

2. In the Property Inspector, select the Events tab to display the Events for that
component and click the desired event value field.

Working with Applets

Implementing Java Swing User Interfaces 20-67

3. Type the stub name of the event into the event value field and press Enter to create
an event-handling method stub in the source code with the supplied name.

JDeveloper creates an event handler with the new name and switches to that event
handler in the source code. JDeveloper also inserts some additional code into your
class, called an Adapter, to make the connection from the event to your event
handling method.

4. Inside the stub of the event handler write the code that specifies the response to
that component event.

To quickly create an event handler for a component's default event:
1. Select a component on the Component Palette and add it to your UI.

2. Double-click the component in the Java Visual Editor. An event stub is created and
focus switches to that event handler in the source code.

3. Add the necessary code to the event handler to complete it.

20.11 Working with Applets
Use JDeveloper's UI design tools to create an applet class and applet HTML file. You
can also convert any HTML files that contain applets to a format that can be used with
the Java Plug-in.

20.11.1 How to Create an Applet
In JDeveloper, you can easily create a skeleton Java applet and then edit it with the
Code Editor.

To create a Java applet:
1. In the Navigator, select the project in which you want to create the new applet.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Web Tier and select Applet.

4. In the Items list, double-click Applet to open the Create Applet dialog.

This will open the Create Applet dialog that will create the applet for you based on
information you specify, including the name, package and class it extends.

When you are finished, you will have a skeleton.java file containing the applet class,
based on the details you entered. You can edit this file in the Code Editor. Using
JDeveloper you will also be able to embed your applet within an HTML page, which
you can create with the Applet HTML File wizard. You can also run the applet
standalone in order to test it from JDeveloper.

Note: To find out what methods and events a component supports,
right-click that component in the Code Editor and choose Go to
Declaration to open the class in the Code Editor. You can also
right-click the component and choose Browse Javadoc to view the
documentation for that class.

Note: The default event is defined by beanInfo, or as
actionPerformed if none was specified.

Working with Applets

20-68 User's Guide for Oracle JDeveloper

20.11.2 How to Create an Applet HTML File
In JDeveloper, you can easily create a Java applet HTML file that acts as a container for
your applet.

To create a Java applet HTML file:
1. In the Navigator, select the project that contains your applet.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Client Tier and select Swing/AWT.

4. In the Items list, double-click Applet HTML Page to open the Applet HTML File
wizard.

The Applet HTML File wizard will create the file for you based on information you
specify, including the file location, code attributes, positioning attributes, and applet
parameters. You can also create an optional deployment profile.

20.11.3 How to Convert an HTML Page that Contains an Applet
JDeveloper includes the Java Plug-in HTML Converter; it can convert any HTML files
that contain applets to a format that can be used with the Java Plug-in.

To convert HTML files that contain applets:
1. Choose Tools > Convert HTML to open the Java Plug-in HTML Converter.

2. Specify a file or the directory path of the files to be converted.

3. Specify matching file names if you entered a directory path, and optionally select
Include Subfolders.

4. Change or accept the default folder for backup files.

5. Select the template file to use from the dropdown list.

6. Click Convert.

This plug-in places copies of your original files in the backup folder and converts
all the files you specified in their original location. Once you have run the
converter, your files will be setup to use the Java Plug-in.

7. Click Done when the Progress window shows that all files have been processed.

20.11.4 Deploying Applets
Deploying your applet, or any other Java EE web modules in Oracle Application
Server with JDeveloper is a completely automated process.

20.11.4.1 How to Configure an Applet for Deployment
A standalone applet is packaged as a web archive (WAR) file which contains the
applet, the Applet HTML file, as well as the standard Java EE web deployment
descriptor, web.xml and possibly target-specific deployment descriptors, as well. After
you have created the deployment profile and the appropriate deployment descriptor
files, you can deploy the application to an application server, or as an archive file.

To configure a web application for deployment:
1. Create a WAR file deployment profile for your project.

Working with the UI Debugger

Implementing Java Swing User Interfaces 20-69

A profile may have already been created for your project. If you wish to deploy to
multiple targets, create a separate profile for each.

2. Add a web.xml deployment descriptor to your project, if it is not already present.

Normally, this file is created with the WAR file deployment profile.

20.11.4.2 How to Deploy an Applet as a WAR File
You can deploy web application components including applets as a WAR or EAR file
to the target application server.

To deploy an applet as a WAR file:
1. If not already done, configure the applet for deployment.

2. If not already done, create an application server connection.

3. In the Navigator, right-click the project and choose Deploy > deployment profile.

4. In the Deploy dialog, select one of the deployment options:

■ Deploy to application server connection to create the archive type specified in
the deployment profile, and deploy it to the application server connection you
select or create on the Select Server page of the Deploy dialog.

■ Deploy to EAR file to deploy the project and any of its dependencies
(specified in the deployment profile) to an EAR. JDeveloper puts the EAR file
in the default directory specified in the deployment profile.

■ Deploy to WAR file to deploy the project to a WAR. JDeveloper puts the WAR
file in the default directory specified in the deployment profile.

20.12 Working with the UI Debugger
In addition to JDeveloper's standard Java and PL/SQL debugger facilities, JDeveloper
also provides support for debugging graphical user interfaces (GUIs) specifically for
AWT and Swing-based client applications and applets.

The UI Debugger offers an alternative way of debugging a GUI application.
Traditional debuggers let you examine the data structure and track program flow.
Instead, the UI Debugger lets you examine the GUI structure and the event sequences.

Notes: If you encounter problems when deploying a Swing applet
(JApplet), for example, the error "Class not found" is displayed, this
may indicate that JDeveloper cannot locate the Swing libraries. Your
clients may need to use Sun's Java SE browser plugin or bundle the
Swing libraries for JVMs version 1.1 with your applet.

Deployed applet files must reside in a separate location from any
other web application files you have deployed.

Notes: The deployed applet files must reside in a separate location
from any other web application files you have deployed.

If you encounter problems when deploying a Swing applet (JApplet),
for example, the error "Class not found" is displayed, this may
indicate that JDeveloper cannot locate the Swing libraries. You may
need to force your clients to use Sun's Java SE browser plugin or
bundle the Swing libraries for JVMs version 1.1 with your applet.

Working with the UI Debugger

20-70 User's Guide for Oracle JDeveloper

The UI debugger helps you to see the relationship between UI components displayed
on the screen with the actual data. It will also show you the events that are fired by the
UI components, and the listeners that receive the events.

To use the UI Debugger, you need to first download it by choosing Help > Check for
Updates and following the instructions in the wizard. For more information on how to
install an Oracle JDeveloper Extension, see the Oracle Fusion Middleware Installation
Guide for Oracle JDeveloper.

There are no additional special prerequisites for the using the UI Debugger beyond
those requirements for using the JDeveloper debugger, other than ensuring that the
JDeveloper Runtime library, jdev-remote.jar, is selected in the Project Properties
- Libraries page.

Debugging a GUI application can be a challenge since most traditional debuggers do
not let you easily examine the tree structure of a GUI application, nor do they display
the details of what is displayed by your application.

To start debugging, select a project and choose Run > UI Debug <projectname>.jpr to
start debugging.

20.12.1 Working with UI Debugger Windows
You can use the UI Debugger features which are exposed in JDeveloper via three
dockable windows. The UI Tree and the UI Outline windows appear automatically
when the UI Debugger is started. The Events window appears the first time you track
events. You can toggle all three windows by choosing View > UI Debugger - <UI_
debugger_window>.

■ UI Tree: Displays a hierarchical structure of your application's components and
sub-components and their parent-child relationships. Select a component from the
tree and right-click to display the context menu options. You will notice that the
component is also selected in the UI Outline window.

■ UI Outline: Displays an image or outline image of the application's GUI. Select a
component from the graphical representation of the GUI application and
right-click to display the context menu options.

■ Events: Displays information about those events you've selected to listen to from
the Listeners dialog. The Listener dialog displays when you choose the Events
context menu option from either the UI Tree or UI Outline windows. When you
select an event in this window, its source component is selected in the tree and
outline windows.

20.12.2 How to Start the UI Debugger
Before performing any UI Debugger task, you'll need to first start the UI Debugger.

Note: No information is displayed in the UI Debugger windows
until you take a snapshot. Click the Snapshot (F5) button to populate
the UI Tree and the UI Outline windows.

Note: Since AWT components may not be painted correctly, Oracle
recommends that you work in Outline mode for non-Swing based
applications.

Working with the UI Debugger

Implementing Java Swing User Interfaces 20-71

To start the UI debugger:
1. Select the project in the navigator that you want to debug.

2. Select a run configuration. For more information, see Section 19.3, "How to
Configure a Project for Running."

3. Choose Run > UI Debug <projectname>.jpr to start the project's default target
and to run the application.

JDeveloper starts the UI Debugger. The application is launched and the UI Tree
and UI Outline windows automatically appear. However, no information is
displayed in the UI Debugger windows yet.

4. After the application is completely launched, go to the dialog or window you want
to debug and select it.

5. From either UI Debugger windows, click the Snapshot (F5) button.

JDeveloper displays a hierarchical structure of the application in the UI Tree
window and displays a graphical representation of the application's user interface
in the UI Outline window.

20.12.3 Examining the Application Component Hierarchy
The information in the UI Tree and the UI Outline windows and the relationship
between them are always synchronized. Since the information in the UI Tree and the
UI Outline windows is identical (only the way they are presented is different),
whenever you select a component in the UI Tree hierarchy, JDeveloper locates and
highlights the same object in the UI Outline window, and vice versa.

Before examining the application component hierarchy, you must start the UI
Debugger and take a snapshot. Whenever the UI of the application is updated, you
must click Snapshot again to update the information displayed by the UI Debugger
windows.

Ways to examine the application component hierarchy:
■ Use the tree of the UI Tree window to explore the hierarchical structure of the

components or use the UI Outline window to locate the components visually.

■ Use the Image and Outline checkboxes at the top of the UI Outline window to
toggle respectively the image and the borders of the components.

■ You can use the icons at the bottom of the UI Outline window to zoom in or zoom
out of the application image. If the image is larger than the window, you can pan
across by clicking and dragging the image.

■ The components that are not selected in the UI Outline window are shaded red.

■ Hidden components are represented by gray text in the UI Tree.

■ You can right-click a component in either windows to display the context menu
options. See UI Tree or UI Outline for more information.

20.12.4 How to Display Component Information in the Watches Window
To examine the data associated to a component, you can choose to watch the
component in the JDeveloper Watches window. A watch enables you to monitor the
changing values of variables or expressions as your program runs.

Working with the UI Debugger

20-72 User's Guide for Oracle JDeveloper

To display component information in the Watches window:
1. If not already done, start the UI Debugger and take a snapshot.

2. Right-click a component either in the UI Tree or the UI Outline window and
choose Watch from the context menu.

The Watches window opens as a tab in the Smart Data window (if it is not already
open), and a tree representing the component's structure is displayed in it.

20.12.5 How to Inspect a UI Component in an Inspector Window
You can view the state of a UI component in a JDeveloper Inspector window.

To display a UI component in an Inspector window:
1. If not already done, start the UI Debugger and take a snapshot.

2. Right-click a component either in the UI Tree or the UI Outline window and
choose Inspect from the context menu.

The Inspect window opens as a tab in the Smart Data window (if it is not already
open), and a tree representing the component's structure is displayed in it.

20.12.6 How to Trace Events Generated by Components
Use the event tracing feature to monitor the firing of selected events generated by UI
components. Use this information to determine the content of events, and their
sequence.

To trace events generated by components:
1. If not already done, start the UI Debugger and take a snapshot.

2. Right-click a component either in the UI Tree or the UI Outline window and
choose Trace Events from the context menu.

The Trace Events dialog opens, displaying a list of the listeners that receive the
event types fired by the component.

3. (Optional) Select Include Children to also show additional event types fired by
the children of the selected component.

4. In the Listeners dialog, select which event listener(s) you want to trace. For
example, if you select FocusListener, all focus events will be traced.

5. Click OK.

6. The events fired by the selected listeners are displayed in the Events window.
Right-click in the window to Clear the contents of the window or to Remove a
specific Listener.

20.12.7 How to Show Event Listeners
Use the show listeners feature to find the recipients of events fired by UI components.
Use this information to determine the extent of UI events.

Note: Event listeners are listed only for UI components that were
visible when the snapshot was taken. If subsequent execution have
added or removed UI components, the change will not be seen in the
list.

Working with the UI Debugger

Implementing Java Swing User Interfaces 20-73

To trace events generated by components:
1. If not already done, start the UI Debugger and take a snapshot.

2. Right-click a component either in the UI Tree or the UI Outline window and
choose Show Listeners from the context menu.

The Listeners dialog opens for the selected component, displaying a list of listener
types informed by the component, the classes of the registered listeners for each
listener type, and the event methods implemented by each class.

3. Select a method.

4. Click Go To Source.

An edit window opens, showing the source code for the selected method.

20.12.8 How to Remote Debug GUI Applications
JDeveloper supports remote debugging GUI applications via the command line. To
achieve this, you must manually launch the program you want to debug. Once the
program is launched and the JDeveloper debugger is attached to it, remote debugging
is very similar to local debugging.

Performing remote UI debugging is similar to remote debugging any application. Just
make sure that the following requirements are met first:

■ Add the JDeveloper runtime, jdev-remote.jar, to the libraries

■ Specify the UI Debugger agent's main class before your application's main class

To remote debug GUI applications:
1. Configure your project for debugging, making sure to enable it for remote

debugging.

2. Start your application manually as follows by executing:

java -XXdebug -cp ...\jdev\lib\jdev-remote.jar
oracle.jdevimpl.runner.uidebug.debuggee.Debuggee <MainClass>

where

■ ...\jdev\lib\jdev-remote.jar is the JDeveloper Runtime Library
classpath which you must add to the command.

■ oracle.jdevimpl.runner.uidebug.debuggee.Debuggee is the name
of the main class of the UI Debugger's agent.

3. A message similar to the following is printed in the command window:

*** Port is 4000 ***
*** Waiting for JVM debugger connection. ***

Caution: Event listeners are listed only for UI components that were
visible when the snapshot was taken. If subsequent execution have
added or removed UI components, the change will not be seen in the
list.

Note: The debugger's tracing filter is applied to the listener's list. A
listener whose class is excluded by the filter will not be shown.

Working with the UI Debugger

20-74 User's Guide for Oracle JDeveloper

4. The UI Debugger uses a socket to interact with your application. The default port
number for the socket is 4030 but you can specify another port number by
inserting -uidport,<port> before the application's main class as follows:

java -XXdebug -cp ...\jdev\lib\jdev-remote.jar
oracle.jdevimpl.runner.uidebug.debuggee.Debuggee -uidport,5678
mypackage1.Application1

In this case, you will also have to specify the port number when you start the UI
Debugger in the JDeveloper IDE.

To Start JDeveloper IDE for Remote UI Debugging:
1. Select a run configuration that has been set up for remote debugging (Run >

Choose Active Run Configuration).

2. Choose Debug, then UI Debug <project_name>.jpr.

The main method of your Java application is started.

3. The Attach to JPDA dialog appears, prompting you to specify a host name and a
UI debugger port.

Unless you have used the -uidport option, you should leave this value to the
default 4030.

4. Your UI debugging session will now behave as if it were performing local UI
debugging. You can begin performing any UI debugger task.

20.12.9 Automatic Discovery of Listeners
The list of events that can be tracked by the UI Debugger is not hard-coded but is
dynamically discovered at runtime. It is therefore possible to track events fired by any
listener, provided that they adhere to the following guidelines:

■ The component class must have public methods to add and remove a listener.

■ The name of the methods must start with add or remove and end with Listener.

■ The return type must be void.

■ The methods must have only one argument.

■ The type of the argument must be an interface that extends
java.util.EventListener.

■ The name of the method must be equal to the name of the interface preceded by
add or remove.

■ The return type of each method in the specified interface must be void.

■ The method can only have one argument (the event).

■ The type of the argument must be a class accessible as a bean.

■ The return values of the getters can be anything except void. If the type is a
non-primitive type, the value that will be shown in the UI Debugger will be the
string obtained by calling the object's toString() method.

Examples
■ For example, if you want to define a new event listener of type Xxx, your

component must have methods with the following signatures:

public void addXxxListener(XxxListener);

Working with the UI Debugger

Implementing Java Swing User Interfaces 20-75

public void removeXxxListener(XxxListener);

■ An example of an XxxListener interface could be:

public interface XxxListener extends java.util.EventListener
{
 public void methodOne(XxxEvent xxxEvent);
 public void methodTwo(XxxEvent xxxEvent);
 public void methodThree(XxxEvent xxxEvent);
}

■ An example of a XxxEvent class could be:

public class XxxEvent
{
 public int getA(){...}
 public String getB(){...}
 public OtherType getC(){...}

Working with the UI Debugger

20-76 User's Guide for Oracle JDeveloper

Part V
Part V Developing Applications Using Modeling

This part describes how to use Oracle JDeveloper diagrams and related diagramming
tools and technologies to model the various components of your application.

■ Chapter 21, "Getting Started With Application Modeling Using Diagrams"

This chapter introduces you to the modeling features.

■ Chapter 22, "Creating, Using and Managing Diagrams"

This chapter walks you through how to use and manage your diagrams.

■ Chapter 23, "Developing Java EE and Java Applications Using Modeling"

This chapter details the modeling features related to your Java EE application
modeling.

21

Getting Started With Application Modeling Using Diagrams 21-1

21Getting Started With Application Modeling
Using Diagrams

This chapter describes how to get started modeling your applications, and various
application sub-systems, and databases using the diagrams and related diagramming
tools and technologies included in Oracle JDeveloper.

This chapter includes the following sections:

■ Section 21.1, "About Modeling with Diagrams"

■ Section 21.2, "Diagram Types"

■ Section 21.3, "How to Set Paths for a Modeling Project"

21.1 About Modeling with Diagrams
JDeveloper supports four standard UML diagrams types, and four additional diagram
types to model and collaborate the software and systems development for your
applications. You can use the diagrams in JDeveloper to model your typical business
applications, including custom applications.

21.2 Diagram Types
JDeveloper provides New Gallery wizards to create the diagrams for your modeling
projects. You can easily create any of these diagrams and related UML and non-uml
components using the New Gallery wizards. Select File > New > General > Diagrams
from the Menu bar.

Select your diagram type then double-click, or click OK to start the wizard. The
wizard lets you choose the package for your new diagram, as well as select the
optional components you want available for that diagram. The component selection
feature enables you to choose the diagram-related components you want to show up
in the Component Palette while you are editing your diagram. Figure Figure 21–1
shows an example create diagram dialog for a class diagram.

Choose from a variety of different tools, elements, and UML-compliant objects to
model your application systems on the diagrams, for example, those available in the
Component Palette for a typical class diagram, as shown in Figure 21–2.

Diagram Types

21-2 User's Guide for Oracle JDeveloper

Figure 21–1 Create Class Diagram Example

Figure 21–2 Class Diagram Component Palette

21.2.1 UML Diagrams
JDeveloper offers four standard UML diagram types to model your Java classes. You
can use all of the standard UML objects, and class and diagram transformation
features for UML to easily transform classes to online and offline database objects, or
vice-versa. For more information, see Chapter 22.7.1, "How to Transform UML and
Offline Databases".

How to Set Paths for a Modeling Project

Getting Started With Application Modeling Using Diagrams 21-3

Available UML diagram types include the following:

■ Activity Diagram. Model system behavior as coordinated actions. You can use
activities to model business processes, such as tasks that achieve specific business
goals, like shipping, or order processing.

■ Class Diagram. Model the structure of your system. Create new or inspect the
architecture of existing class models, interfaces, attributes, operations, associations,
generalizations and interface realizations.

■ Sequence Diagram. Model sequence of event occurrences. Sequence diagrams are
organized according to time, and show the calls between the different objects in
the sequence. Use the diagram to create or inspect interactions between events,
lifelines, messages and combined fragments.

■ Use Case Diagram. Visually model what a system is supposed to do. A use case
diagram is a collection of actors, use cases, and their communications.

21.2.2 Business Services Diagrams
You can model your business services and entities and their relationships in your
applications using both regular and UML objects. Using JDeveloper transformation
features for UML objects, you can transform online or offline database tables to classes,
or classes to database tables. All of these objects can be modeled on any of the
following four diagrams:

■ Business Components Diagram. Diagram your business component
interrelationships, entity classes, interactions, and public interfaces.

■ Database Diagram. Model your online and offline database tables and their
relationships. Use transformation features to create a diagram model that
represents your database schema, or transform your classes to database tables
online or offline.

■ EJB Diagram. Create, edit, and model the entity objects, session and
message-driven beans inside a system, and the relationships between them.

■ Java Class Diagram. Model the relationships and the dependencies between Java
classes. Use Java Class Diagrams to visually create or inspect objects like
interfaces, enums, fields, methods, references, inheritance relationships, and
implementation relationships.

21.3 How to Set Paths for a Modeling Project
You can configure the settings of a JDeveloper project to specify the root locations of
the package hierarchies for modeled elements available to that project. The model path
is configured by default. Change it if you want to include model element files to your
model that are stored somewhere else, or to store new model element files somewhere
else.

Modeled elements can be shared between projects by adding their file system location
to the model path for a project.

To set the model path for a project:
1. Right-click the project whose model path you want to specify.

2. Choose Project Properties.

3. Open the Project Source Paths node and select the Modelers node.

How to Set Paths for a Modeling Project

21-4 User's Guide for Oracle JDeveloper

4. In the Model Path area, use Add to enter the file system location for your project's
model elements. Note that the order in which file system locations are entered in
the Model Path signifies the order in which the folders are searched for a model
element. These folders are the 'roots' of the package hierarchies used by a model.
The first location specified in the model path is also the location in which new
model elements are stored.

5. To complete the setting of the model path, click OK.

22

Creating, Using and Managing Diagrams 22-1

22Creating, Using and Managing Diagrams

This chapter describes how to create and manage diagrams using the latest tools and
technologies included in Oracle JDeveloper.

This chapter includes the following sections:

■ Section 22.1, "About Creating, Using, and Managing Diagrams"

■ Section 22.2, "How to Use the Basic Diagramming Commands"

■ Section 22.3, "Working with Diagram Nodes and Elements"

■ Section 22.4, "How to Work with Diagram Annotations"

■ Section 22.5, "Changing the Way a Diagram is Viewed"

■ Section 22.6, "Laying out Diagrams"

■ Section 22.7, "Transforming Java Classes and Interfaces"

■ Section 22.8, "Importing and Exporting UML Using XMI"

■ Section 22.9, "Using UML Profiles"

■ Section 22.10, "Working with UML Class Diagrams"

■ Section 22.11, "Working with UML Activity Diagrams"

■ Section 22.12, "Working with Sequence Diagrams"

■ Section 22.13, "Working with Use Case Diagrams"

■ Section 22.14, "How Diagrams are Stored on Disk"

■ Section 22.15, "How UML Elements are Stored on Disk"

22.1 About Creating, Using, and Managing Diagrams
Oracle JDeveloper provides you with a wide range of tools and diagram choices to
model your application systems. There are handy wizards to walk you through
creating your diagrams and elements, as well as a Component Palette and Property
Inspector to make it easy to drag and drop, and to edit a variety of elements without
leaving your editing window. In addition there are four UML diagram options,
including features to create, manage and transform your classes to UML and UML to
classes, as well as XMI import and export capabilities.

Figure 22–1 shows the diagram editor window, with a class diagram, as well as the
Application Navigator and Component Palette. You can open diagrams by
double-clicking them in the Navigator, and once open, drop-and-drag components
onto the diagram editor. Notice the standard formatting icons at the top of the editor,
such as color, font, and zooming features.

How to Use the Basic Diagramming Commands

22-2 User's Guide for Oracle JDeveloper

Figure 22–1 Class Diagram Showing Objects in Navigator and Available Components

22.2 How to Use the Basic Diagramming Commands
You can perform many of the basic diagramming tasks and commands in a few clicks
using JDeveloper menu options. Diagram files contain graphical properties such as
positions, sizes and colors. The visual elements are generally stored in separate files.
Changes you make to the diagram updates all related files. To ensure these are
consistent, select File > Save All.

To create a new diagram:
1. In the Application Navigator, select your project, then choose File > New >

General > Diagrams.

2. Select a diagram type, lick OK.

3. You might need to change the default name and package for the diagram. The
default package for a diagram is the default package specified in the project
settings. An empty diagram is created in the specified package in the current
project, and opened in the content area. Click OK.

To publish a diagram as a image:
1. Right-click on the diagram that you want to publish as an image, then choose

Publish Diagram.

Or

Click on the surface of the diagram that you want to publish as an image, then
choose Diagram > Publish Diagram.

2. Using the location drop-down list, select the destination folder for the image file.

3. In the File name box, enter a name for the image file, including the appropriate file
extension (.svg, .svgz, .jpg, or .png).

4. From the File type drop-down list, select the file type for the image file (SVG,
SVGZ, JPEG, or PNG).

5. Click Save.

How to Use the Basic Diagramming Commands

Creating, Using and Managing Diagrams 22-3

To rename a diagram:
1. In the Application Navigator, select the diagram to rename.

2. Choose File > Rename.

3. Choose Rename the file only do not update references. References updates are
not applicable to diagrams in this case.

To set up the page before printing:
1. Click on the surface of the diagram you want to print, then choose File > Page

Setup.

2. Make changes to the settings on the tabs of the Page Setup dialog.

To set the area of the diagram to print:
1. Choose File > Print Area > Set Print Area.

2. On the diagram, drag the mouse pointer to enclose the objects on the diagram to
print. The area to print is shown with a dashed outline. If you do not set an area,
then the whole diagram is printed.

To clear a previously set print area:
■ Choose File > Print Area > Clear Print Area.

To see a preview of the page before printing:
■ Choose File > Print Preview.

To delete a diagram:
1. In the navigator, select the diagram to remove.

2. Choose Edit > Delete. These commands remove the diagram file from the system
and close the editing window for that diagram. The elements for the deleted
diagram remain in the navigator and on the file system.

You can also delete a diagram from the Application Navigator. In the Application
Navigator, right-click on the diagram name and choose Delete.

To Zoom In and Out of a Diagram:
Use Ctrl+scroll to zoom in and out of diagrams. When using the thumbnail view, use
scroll to zoom.

To display the diagram at original size:
In the zoom drop-down list, located on the diagram toolbar, choose 100%, or click the
diagram, then choose Diagram > Zoom > 100%.

To display the entire diagram:
In the zoom drop-down list, located on diagram toolbar, choose Fit to Window, or
click the diagram, then choose Diagram > Zoom > Fit to Window.

To display the selected elements at the maximum size:
In the zoom drop-down list, located on the diagram toolbar, choose Zoom to Selected,
or click the diagram, then choose Diagram > Zoom > Zoom to Selected.

Working with Diagram Nodes and Elements

22-4 User's Guide for Oracle JDeveloper

22.3 Working with Diagram Nodes and Elements
Use nodes and elements to represent the various elements and related resources of
your system architecture.

22.3.1 How to Work with Nodes
A node is shape on a diagram.

To create a node on a diagram:
1. Select the node type you want to create from those listed in the Component Palette

for your diagram.

2. Click the diagram where you want to create the node. This adds the node at its
default size.

Or

Click and hold down the mouse button where you want to place one of the corners
of the node and drag the node outline to the opposite node corner and release the
mouse button.

3. Enter the name for the node when the default element name is highlighted on the
new node.

Or

Complete the wizard.

Nodes for certain elements can also be created inside other nodes.

To Create Internal Nodes on a Diagram Element:
Elements can be represented on a diagram as internal nodes on other diagram
elements.

Internal nodes can be used to create the following:

■ Inner classes and inner interfaces in modeled UML classes and interface.

■ Inner classes and inner interfaces in modeled Java classes and interfaces.

■ Relation usages in modeled database views.

Figure 22–2 Symbolic Diagram Class View

Note: To add properties to nodes on a diagram, double-click the
node or right-click the node and choose Properties. Then add the
properties using a dialog or editor. You can also create the property on
the diagram using in-place creation.

Working with Diagram Nodes and Elements

Creating, Using and Managing Diagrams 22-5

Figure 22–3 Expanded Diagram Class View Showing Internal Nodes

To create an internal node on a diagram element:
1. Select the node on the diagram to create an internal node.

2. Choose Diagram > View As Expanded to display an expanded view of the node.

3. Create the node for the internal node inside the expanded box, or drag the
appropriate node from the navigator, or diagram, and drop it in the expanded
node to create an inner node.

To change the way nodes are shown on a diagram:
Select the diagram element(s) and choose one of the following:

■ Diagram > View As > Compact.

■ Diagram > View As > Symbolic.

■ Diagram > View As > Expanded.

To connect two nodes on a diagram:
Relationships between node elements are identified using connectors. A connector is
the end point of a diagram edge.

1. Select the connector type from those listed in the Component Palette for the type
element you are connecting.

2. Click the originating end node. Connectors with an implied or actual direction will
traverse from the originating to the destination end.

3. Click the node to be the destination end of the connector.

To optimize the size of nodes on a diagram:
1. Select the nodes to resize.

2. Right-click the selected nodes then choose Optimize Shape Size > Height and
Width, as one option.

22.3.2 How to Work with Diagram Elements
There are many options available for changing the properties on your diagrams and
managing the elements.

To select all elements of the same type:
1. Select an object of the type you want.

2. From the context menu, choose Select All This Type.

To select all elements on the active diagram:
Choose Edit > Select All.

Working with Diagram Nodes and Elements

22-6 User's Guide for Oracle JDeveloper

To select specific diagram elements on the active diagram:
Press and hold down the Ctrl key, then click the elements on the diagram to select.

To select all elements in a given area of the active diagram:
1. Position the pointer at the corner of the area on the diagram to select the elements,

then press and hold down the mouse button.

2. Drag the mouse pointer over the area.

3. Release the mouse button when the objects are entirely enclosed within the
selection area.

To deselect a selected element in a group of selected elements:
1. Press and hold down the Ctrl key.

2. Click the element(s) on the diagram to deselect.

To group elements on a diagram:
1. In the Component Palette, click Group.

2. Position the pointer at the corner of the area on the diagram to group the elements,
then press and hold down the mouse button.

3. Drag the mouse pointer over the area.

4. Release the mouse button when the objects are entirely enclosed.

To manage grouped elements on a diagram:
Use the Manage Group feature to move elements in and out of groups, move elements
to other groups, or move groups in and out of other groups.

1. Select the group to manage.

2. Right-click and select Manage Group.

You can also move elements in and out of groups by Shift+dragging the element to
the desired position.

To display related elements on a diagram:
Select the diagram item, then choose Diagram > Show Related Elements.

Or

Right-click the diagram item, then choose Show Related Elements.

To change the properties of a diagram element using the Properties dialog:
Open the Properties dialog in one of the following ways:

■ On the diagram, double-click the element

Or

■ Select the element on the diagram, then, from its context menu, choose Properties.

To change certain properties of a diagram using in-place creation and editing:
You can create new secondary elements directly and change properties in place on
modeled diagram elements.

Working with Diagram Nodes and Elements

Creating, Using and Managing Diagrams 22-7

To change the properties of diagram elements using the Property Inspector:
1. Open the Property Inspector by selecting View > Property Inspector.

2. In a navigator, select the element (s).

3. In the Property Inspector, find the property value to change.

4. On the right of the Property Inspector, select the control and change the value.
(The control may be an edit box, a drop-down list, a checkbox, etc.).

You can toggle the diagram display between symbolic mode, where all elements are
displayed, and compact mode, where only basic information about the element is
displayed.

To find an element on a diagram:
Click on the element name in the structure pane. The element is selected in the
diagram. You can also use the thumbnail view of the diagram to find an element. To
display a thumbnail view of a diagram, select the diagram either in the navigator or by
clicking on the background of the diagram, then choose View > Thumbnail. You can
grab the view area box and move it over elements on the thumbnail view of the
diagram. The corresponding elements are brought into view on the main diagram.

To change the color or font of one or more elements that are already on a
diagram:
1. Select the element or elements on the diagram.

2. Then in the property inspector (View >Property Inspector), on the Graphical
Options tab, select the current color (or the box for font type), make the required
change(s), then press Enter.

Or

On the tool bar, select the font type, font size, or color box, then make the required
change.

Or

Choose Visual Properties from the context menu, then make the required change.

To change the color or font of diagram elements to be added to a diagram:
1. Choose Tools > Preferences, select Diagrams, select the diagram type, and then

(from the Edit Preferences For drop-down box), select the element type to change,
as shown in Figure 22–4.

2. On the Color/Font tab, make the required changes.

Note: These options are not all valid for all elements.

Working with Diagram Nodes and Elements

22-8 User's Guide for Oracle JDeveloper

Figure 22–4 Diagram Preferences Dialog

To copy the diagram graphical options of fill color, font, font color, and line color
to one or more elements:
1. Select the element with the properties you want to copy.

2. Right-click and select Visual Properties. (You can also go to Tools > Preferences >
Diagrams to customize all of the visual and graphical properties.)

3. Select one or more elements with the properties to change. (Press Shift+select to
select a group of elements.)

4. Right-click and select Paste Visual Properties.

To copy elements from a diagram and paste them into another diagram:
1. Select the diagram elements, then choose Copy on the context menu, or choose the

Copy icon on the toolbar, or press Ctrl-C.

2. Open the destination diagram.

3. Place the pointer where you want the diagram elements to be added, then choose
Paste from the context menu (or choose the Paste icon on the toolbar, or press
Ctrl-V.

To copy elements from a diagram and paste them into another application:
1. Select the diagram elements, then choose Copy on the context menu, or choose the

Copy icon on the JDeveloper toolbar, or press Ctrl-C.

2. Open the destination application.

3. Use the clipboard paste facility in the destination application to place the diagram
elements where you require them.

Working with Diagram Nodes and Elements

Creating, Using and Managing Diagrams 22-9

22.3.2.1 How to Resize and Move Diagram Elements
Resize an element by dragging the grab bars until the item is the size you want. Some
diagram elements cannot be resized, such as initial and final pseudo states.

Certain element types also have internal grab bars, that are displayed when an
element is selected. These internal grab bars are for resizing the compartments of those
diagram elements.

Whenever a diagram element is resized or moved towards the visible edge of the
diagram, the diagram automatically scrolled. New diagram pages are added where an
element is resized or moved off the diagram surface.

Dragging selected diagram elements on the diagram surface is the easiest way of
moving elements incrementally on a diagram. To move elements over a larger
diagrams, cut and paste them using the clipboard.

To resize a diagram element:
1. Select the element to resize.

2. Position the pointer on any grab bar on the element and hold down the mouse
button. The pointer is displayed as a double-headed arrow when it is over a grab
bar.

3. Drag the grab bar until the element is resized, then release the mouse button.

To move diagram elements:
1. Select the element, or elements to move.

2. Position the pointer on the elements, then press and hold down the mouse button.

3. Drag the selected elements to their new position.

4. Release the mouse button. If an element overlaps another element they are
displayed on top of one another. Right-clicking the element and choose Bring to
Front to view.

22.3.2.2 How to Delete Diagram Elements
A diagram element can be removed from the current diagram without removing the
file, or files where that element is stored. It can also be removed from the file system.

Diagram nodes and inner elements are removed the following ways:

■ Nodes (excluding nodes inside an expanded node) are the only elements on
diagrams that can be removed using File > Cut.

■ Inner UML and Java classes and interfaces can be deleted using Erase from Disk.
(If dragged outside the parent element they become primary nodes and can be
removed using File > Cut.

■ Other inner nodes (view object instances, entity object usages and application
module instances) cannot exist outside of their parent elements. They can be
deleted by selecting using Edit > Cut.

To remove an element from a diagram:
1. Select the element.

2. Choose Edit > Delete or press the Delete key. Using delete on elements such as
associations and attributes completely removes them from the system.

How to Work with Diagram Annotations

22-10 User's Guide for Oracle JDeveloper

To bring elements to the front or back of a diagram:
Right-click the diagram element and choose Bring to Front or Send to Back.

22.3.2.3 How to Undo the Last Action on a Diagram
You can undo and redo your most recent graphical actions. Graphical actions change
the appearance of elements on the diagram surface and include the following:

■ Cutting and pasting elements on class diagrams.

■ Altering the position and size of diagram elements.

■ Changing the font, color, and line width of diagram elements.

 Any change to a diagram element that is not graphical, such as changing the
properties of that element, cannot be undone. Changing the properties of an
element also prevents any previous graphical changes from being undone.

To undo the last graphical action on a diagram:
Choose Edit >Undo [...] or click the undo icon.

To redo a previously undone graphical action on a diagram:
Choose Edit > Redo [...] or click the redo icon.

22.3.2.4 How To Create UML Elements Independently of a Diagram
You can create UML elements without having to create any type of UML diagram in
the New Gallery. The UML elements that you create in the New Gallery are listed in
the navigator and can be dropped onto your diagrams.

To create a UML element using the New Gallery:
1. Select the project in the navigator.

2. Select File > New. The New Gallery opens.

3. In the Categories panel, open the General node and select the UML node. The
UML elements are listed in the Items panel.

4. In the Items panel, select the UML element to create, then click OK. The properties
dialog opens for the selected UML element.

5. Complete the properties dialog, then click OK. The UML element is added to the
navigator. If the UML element has a use case template associated with it, a use
case form is opened in the default editor.

22.4 How to Work with Diagram Annotations
A note or annotation is a graphical object on a diagram containing textual information.
Notes are used for adding comments to a diagram or the elements on a diagram. A
note can be attached to one or more elements. A note is stored as part of the current
diagram, not as a separate file system element. Note options are available in the
Component Palette, as shown in Figure 22–5.

Changing the Way a Diagram is Viewed

Creating, Using and Managing Diagrams 22-11

Figure 22–5 Annotations in the Component Palette

To add a note to a diagram:
1. Click the Note icon in the Diagram Annotations section of the Component Palette.

2. To create the note at the default size, click the diagram to create the note.

Or

To create the note at a different size, click the diagram, drag the note box to the
desired size, and release the mouse button.

3. Enter the text for the note, then click the diagram surface.

To attach a note to an element on a diagram:
1. Click the Attachment icon in the Diagram Annotations section of the Component

Palette.

2. Click the note.

3. Click the element that you want to attach the note to.

To change the font size, color, bolding, or italics on an element:
1. Click the note element. The text editing box appears.

2. Select the text to edit.

3. Select your text format.

22.5 Changing the Way a Diagram is Viewed
Change the way your diagram is shown by right-clicking an element, or using the
many options available under Tools > Preferences for diagrams.

22.5.1 How to Hide, Show, and Layout Connectors on Diagram
Choose to hide a single connector or any number of connectors on your diagrams.
Connectors that are hidden on a diagram continue to show in the Structure window,
with ’hidden’ appended. If there are any hidden connectors, you can bring them back
into view individually or all at once.

To hide one or more connectors on a diagram:
1. Select the diagram connector or connectors to hide. (To select all connectors of a

particular type, right-click a connector, then choose Select All This Type.)

2. Right-click and choose Hide Selected Shapes.

Changing the Way a Diagram is Viewed

22-12 User's Guide for Oracle JDeveloper

You can also go to the Structure window, select the connector or connectors to
hide, right-click and choose Hide Shapes.

To show one or more connectors that are hidden on a diagram:
In the Structure window, select the connector or connectors to show, right-click and
choose Show Hidden Shapes.

To show all hidden connectors on a diagram:
Right-click any part of the diagram and choose Show All Hidden Edges .

To list all hidden connectors together in the Structure window:
Right-click an object listed in the Structure window and choose Order By Visibility.

22.5.1.1 How to Show and Hide Page Breaks
You can display or hide page breaks on your diagrams. Page breaks are displayed as
dashed lines on the diagram surface.

To display page breaks on new diagrams:
1. Choose Tools > Preferences.

2. Click Diagrams in the left pane of the dialog.

3. Click the diagram type in the left pane of the dialog. Note that class diagrams do
not have pages.

4. Select the Show Page Breaks checkbox to display page breaks on new diagrams.

5. Click OK.

22.5.1.2 How to Lay Out Connectors on a Diagram
Connectors are laid out in oblique or rectilinear line styles.

Oblique lines can be repositioned at any angle. Rectilinear lines are always shown as a
series of right angles. If the line style for a diagram is set to oblique, you can
subsequently move the line (or portions of it) into a new position at any angle.

You can set the default line style for each type of connector element on a diagram.
("Line style" is one of the diagram preferences that you can set for each type of element
that is a connector.)

You can also set the line style for a particular diagram, overriding the default line style
for the diagram type:

■ If you use this method to change the line style from oblique to rectilinear, lines
already on the diagram that were drawn diagonally will be redrawn at right
angles.

■ If you use this method to change the line style from rectilinear to oblique, no
change will be apparent on the diagram, but you will subsequently be able to
move any of the lines on the diagram into a new position at any angle.

Whatever the line style for a drawing, you can select individual lines on the drawing
and change their line style. If you change an individual line from oblique to rectilinear,
the line will be redrawn using right angles. If you change an individual line from
rectilinear to oblique, no change will be made to the line, but you can subsequently
reposition it (or portions of it) at any angle.

Laying out Diagrams

Creating, Using and Managing Diagrams 22-13

There is an option to straighten all lines that are already on a diagram. If you choose
this option, all lines will be redrawn along the shortest route between their start and
end points, using diagonal lines if necessary. Using this option will also set the line
style for the current diagram to oblique. After this, setting the line style for the
diagram back to rectilinear will redraw all the lines at right angles.

You can also choose the crossing styles for your lines to be bridge or tunnel style.
Selecting bridge style creates two parallel lines where the lines intersect. Selecting
tunnel style creates a semi-circle shape on the intersection. The default style is a
regular crossing over of the two lines where the lines intersect.

To set the default line style for a diagram (or for an element type that is a
connector):
1. Select Tools >Preferences, then open the Diagrams node and choose the diagram

type.

2. From the Edit Preferences For drop-down box, choose All Edges. If, instead of
choosing All Edges, you choose a particular element type that is a connector, the
default line style will be set only for that element type.

3. In the Display Options section, click the current line style. The current line style
name becomes a drop-down box.

4. Select the required line style (either Oblique or Rectilinear) from the drop-down
box.

To change the line style for particular connectors on the current diagram:
With the connector or connectors selected on the diagram, choose Diagram > Line
Style, then either Oblique or Rectilinear.

To add a new elbow to a connector:
Shift+click on the connector where you want to create a new elbow. (New elbows can
be added and used to change the route of a connector only if the line style is set to
oblique.)

To remove an elbow from a connector:
Shift+click the elbow that you want to remove.

To straighten connectors:
Select the connector or connectors that you want to straighten on a diagram, then
choose Diagram > Straighten Lines. (This will remove all intermediate elbows.)

To change the crossing style of all lines:
Select Tools > Preferences > Diagrams > Crossing Style. You can also change the
crossing style in the Property Inspector for that diagram. The default style is a regular
crossing over of the two lines where the lines intersect.

22.6 Laying out Diagrams
There are a number of ways to change the layout of a diagram. These include applying
a layout style to any or all of the elements on a diagram, changing the height of nodes
on a diagram so that they display all the properties of those elements, and aligning
and distributing elements.

Laying out Diagrams

22-14 User's Guide for Oracle JDeveloper

Diagrams can be laid out according to one of the predefined styles: Hierarchical,
Symmetrical, Grid, and Row.

22.6.1 How to Use Diagram Layout Styles
You can lay out diagrams, or just selected diagram elements according to one of
several layout styles, depending on your requirements: hierarchical (top to bottom,
bottom to top, left to right, right to left), symmetric, grid, orthogonal, and row.

22.6.1.1 Hierarchical UML Diagram Layout
This lays out the diagram elements in hierarchies based on generalization structures
and other connectors with a defined direction. Connectors between the nodes are laid
out using the most direct route. Nodes on a diagram that are not connected to any
other nodes are laid out in a grid layout. Hierarchical layout is available in four
orientations: top to bottom, bottom to top, left to right and right to left.

Figure 22–6 Hierarchical UML Diagram Layout

22.6.1.2 Symmetrical Diagram
This lays out the diagram elements in the most symmetrical way based on the
connectors between the nodes. Under certain circumstances, a symmetrical layout will
position nodes in a radial layout around a central node. Nodes on a diagram that are
not connected to any other nodes are laid out in a grid layout.

Figure 22–7 Symmetrical Diagram Layout

22.6.1.3 Orthogonal UML Layout
Orthogonal diagrams show hierarchical and non-hierarchical elements where the
aligned edges of a component all follow the same direction. For UML class diagrams, a
layout is created which represents each generalization hierarchy in an aligned fashion.

Figure 22–8 Orthogonal UML Diagram Layout

Laying out Diagrams

Creating, Using and Managing Diagrams 22-15

22.6.1.4 Grid Diagram
This lays out the diagram elements in a grid pattern with nodes laid out in straight
lines either in rows from left to right, or in columns from top to bottom. Nodes are laid
out in the grid pattern starting with the top left node.

Figure 22–9 Grid Diagram Layout

22.6.1.5 How to Use the Diagram Grid to Lay Out Diagrams
Diagram elements that are created or moved on a diagram can be automatically
'snapped' to the grid lines that are nearest to them, even if the grid is not displayed on
the diagram. Grid cells on the diagram are square, so only one value is required to
change both the height and width of the grid cells. By default, elements are not
snapped to the grid on activity diagrams.

To define diagram grid display and behavior for the current diagram:
1. Click the surface of the diagram for which you want to define diagram grid

display and behavior.

2. In the Property Inspector (View > Property Inspector), select the current value of
the property that you want to change, then enter or select the new value for that
property.

To define diagram grid display and behavior for new diagrams:
1. Choose Tools > Preferences, select Diagrams then the required diagram type.

2. Select from the following options:

■ Select the Show Grid checkbox to display the grid.

■ Select the Snap to Grid checkbox to snap elements to the grid. The grid does
not have to be displayed for elements to be snapped to it.

■ Enter the grid size in the Grid Size field.

3. Click OK.

22.6.2 How to Align and Distribute Diagram Elements
You can align elements both vertically and horizontally on your diagrams. You can
also change the location of elements so that they have equal vertical and horizontal
spacing.

Laying out Diagrams

22-16 User's Guide for Oracle JDeveloper

When you are distributing elements, the outermost selected elements on the vertical
and horizontal axes are used as the boundaries. To fine tune the distribution, move the
outermost elements in the selection, then redistribute the element.

To align and size elements on a diagram:
1. Select two or more elements in the diagram. Choose Diagram > Align.

2. Choose from the following:

■ Select the horizontal alignment.

■ Select the vertical alignment.

3. Use the Size Adjustments checkboxes to set the size of the selected elements:

■ Select the Same Width checkbox if you want all the selected elements to have
the same width. The new element width is the average width of the selected
element.

■ Select the Same Height checkbox if you want all the selected elements to have
the same height. The new element height is the average height of the selected
elements.

4. Click OK.

To distribute elements on a diagram:
1. Select three or more diagram elements and choose Diagram > Distribute.

2. Select the distribution for the elements.

■ Select the horizontal distribution: None, Left, Center, Spacing, or Right.

■ Select the vertical distribution: None, Top, Center, Spacing, or Bottom.

3. Click OK.

22.6.3 How to Layout Diagram Elements
Layout styles are available by opening the context menu for a diagram and choosing
Lay Out Shapes, or by using the Diagram Layout Options Dropdown as shown in
Figure 22–10,

Figure 22–10 Diagram Layout Options Dropdown

To layout elements on a diagram:
1. Choose one of the following:

■ Select the individual elements on the diagram.

■ Click the surface of the diagram to layout all the elements on a diagram.

■ Select the container element to layout all the elements within a container
element.

Transforming Java Classes and Interfaces

Creating, Using and Managing Diagrams 22-17

2. On the diagram tool bar, choose the required layout style from the dropdown list,
shown in Figure 22–10.

After the selected elements have been laid out they remain selected to be moved
together to any position on the diagram.

To set the layout for new elements on the current diagram:
In the Property Inspector (View > Property Inspector), select the layout style.

To set the default layout of elements on a diagram:
1. Choose Tools > Preferences > Diagrams, then select the diagram type.

2. Select your layout style and click OK.

22.7 Transforming Java Classes and Interfaces
JDeveloper supports UML transformations on your Java classes and interfaces as well
as XMI import and export features. You can use these transformation features to
produce a platform-specific model like Java from a platform-independent model like
UML. You can perform transformations multiple times using the same source and
target models. There are also some reverse transforms to UML from Java classes. You
can do transformations on individual or groups of UML objects, classes, and interfaces
in the following ways:

■ Transformation on the same diagram as the original.

■ Transformation on a new diagram created for the transformed element.

■ Transformation only in the current project, and not visually on a diagram.

To transform UML, Java classes, or interfaces:
1. Select the UML objects, Java classes, or interfaces to transform.

2. Do one of the following:

■ To create only the definitions of the transformed elements, but not add them to
a diagram, choose Diagram > Transform > Model Only.

■ To create the transformed elements on the current diagram choose Diagram >
Transform > Same Diagram.

■ To create a new diagram for the transformed elements, and display the
transformed elements on it, choose Diagram > Transform > New Diagram.

■ Select the transformation you want to perform on the selected elements, then
click OK, as show in Figure 22–11 and Figure 22–12.

Transforming Java Classes and Interfaces

22-18 User's Guide for Oracle JDeveloper

Figure 22–11 Transform Dialog Showing UML Options

Figure 22–12 Transform Dialog Showing Java to UML Options

22.7.1 How to Transform UML and Offline Databases
You can use the UML modeling tools to create a UML Class model, and to then
transform it to an offline database or vice-versa.

To transform a UML class diagram to an offline database:
1. Create or open the diagram to transform.

2. Select the class or classes to transform. Right-click and choose Transform.

3. Choose from one of the following:

■ Model Only. The offline database model based on the UML Class model is
created in the Application Navigator in the current project.

■ Same Diagram. The offline database model based on the UML Class diagram
is created. The offline database model can be viewed in:

– The Application Navigator.

– The UML Class diagram, as modeled tables.

■ New Diagram. The offline database model based on the UML Class diagram
is created. The offline database model can be viewed in both:

– The Application Navigator.

Transforming Java Classes and Interfaces

Creating, Using and Managing Diagrams 22-19

– A new database diagram, as modeled tables and constraints.

4. Choose UML to Offline Database.

5. Click Finish.

To transform offline database objects to UML
1. Select the offline database object or objects you want to transform.

2. Right-click and choose Transform. Select from one of the following options:

■ Model Only. A UML class model based on the database schema is created in
the Application Navigator in the current project.

■ Same Diagram. A UML class diagram based on the offline schema is created.
The new classes can be viewed in both:

– The Application Navigator.

– The UML Class diagram, as classes for each transformed database table.

■ New Diagram. When the wizard finishes, a UML class diagram based on the
offline database schema is created. The classes can be viewed in both:

– The Application Navigator as a new UML classes.

– A new class diagram, as classes for each transformed database table.

3. The Transform dialog appears as shown in Figure 22–13. Select Offline Database
Objects to UML.

4. Click OK.

Figure 22–13 Transformation Dialog Showing Offline Database to UML Dialog Option

To create offline database objects from UML using the New Gallery Wizard:
1. In the Application Navigator, select the project containing the UML classes to

transform.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Database Tier and select Offline Database Objects.
In the Items list, double-click Offline Database Objects from UML Class Model.

If the category or item is not found, make sure the correct project is selected, and
select All Features in the Filter By dropdown list.

Transforming Java Classes and Interfaces

22-20 User's Guide for Oracle JDeveloper

4. The Offline Database Objects from UML Class Model wizard opens, as show in
Figure 22–14. Select the UML classes and associations to transform.

5. Click Finish. The offline database objects are created in the Application Navigator.

When you invoke the wizard from the New Gallery, the offline database objects are
only available in the Application Navigator.

During transformation you have the following choices:

■ How the UML names are converted to offline database names.

■ How UML class hierarchies and many-to-many associations are handled.

■ Where the schema the objects are going to.

■ Which log messages you want to see. You can choose which transformation
messages to be logged, and you can choose whether to send the messages to the
Log Window or to a log file.

Figure 22–14 New Gallery Offline Database from UML

To choose the type of transformation messages to log:
1. Invoke the Offline Database Objects from UML Class Model wizard.

2. On the Set Logging Options page, choose where you want the log messages to
appear, and the type of actions you want logged.

You have the option of reviewing the changes before running the transform. In
addition, you can specify the types of transformation messages to be logged, and
whether they appear in the Log Window or are sent to a log file.

Transformation generalization
There are four types of generalization to specify on the Set Class Options page on the
Offline Database Objects from UML Class Model Wizard.

The options are:

Transforming Java Classes and Interfaces

Creating, Using and Managing Diagrams 22-21

■ Transform root classes

■ Transform leaf classes

■ Transform all classes, with generalization

■ Transform all classes, creating foreign keys

Consider the case of two root classes and three leaf classes, as shown in Figure 22–15.

Figure 22–15 Diagram Showing Two Root and Three Leaf Classes

If you select the option Transform Root Classes, root classes are transformed into
offline tables, and all the columns and foreign keys from their descendant classes in
the hierarchy are also transformed as shown in Figure 22–16. You also have an option
of creating a discriminator column. The discriminator column contains marker values
for the persistence layer to decipher what subclass to instantiate for a particular row.

Figure 22–16 Java Classes Transformed Root Classes

If you select the option Transform only leaf classes, inheriting from generalized
classes, leaf classes are transformed into offline tables, and they inherit their columns
and foreign keys from their ancestor classes, as shown in Figure 22–17.

Transforming Java Classes and Interfaces

22-22 User's Guide for Oracle JDeveloper

Figure 22–17 Leaf Classes Transformed Inheriting From Generalized Classes

If you select the option Transform all classes, inheriting from generalized classes, an
offline table is created for every class in the transform set. Each table inherits columns
and foreign keys from its ancestor tables but is otherwise independent, as shown in
example Figure 22–18.

Figure 22–18 All Classes Transformed, Inheriting from Generalized Classes

If you select the Transform all classes, creating foreign keys option to generalized
classes, an offline table is created for every class in the transform set. No columns or
foreign keys are inherited; a foreign key is created to the parent table or tables, as
shown in Figure 22–19.

Transforming Java Classes and Interfaces

Creating, Using and Managing Diagrams 22-23

Figure 22–19 All Classes Transformed with Foreign Keys

22.7.2 Using DatabaseProfile
JDeveloper comes with a UML profile called DatabaseProfile which you can use to
specify what happens to class models when they are transformed to offline database
models. For more information about UML profiles, see Section 22.9, "Using UML
Profiles."

For example, attributes can be assigned to column datatypes that are to be used when
the attributes are transformed to columns.

DatabaseProfile allows you to use properties for the stereotypes it contains to control
how elements are transformed. The stereotypes and their properties in this profile are
described in Table 22–1.

Table 22–1 Stereotypes and Properties in DatabaseProfile

Stereotype Applied to

Offline
Database
Type Properties Notes

Database
Package

UML::Package SCHEMA Name after
transfer

Database
Class

UML::Class TABLE Name after
transfer

Database
Attribute

UML::Propert
y

COLUMN Name after
transfer
Datatypes
Primary

A UML Property can be an
"attribute" or an association
end

Database
Datatype

UML::Type n/a Datatype

Primary

In the UMl metamodel, Type
is the superclass for a large
range of elements, including,
Class, Association,
PrimitiveType and so on.
This stereotype can be
applied to all of them. It can
be read by the transformer
whenever a property
(attribute) is of a certain type.

Transforming Java Classes and Interfaces

22-24 User's Guide for Oracle JDeveloper

The attributes, or properties, are described in Table 22–2.

To use DatabaseProfile to transform a class model:
1. Open the Package Properties dialog of a UML package package.uml_pck by

right-clicking on it in the Application Navigator and choosing Properties.

For more help at any time, press F1 or click Help from within the Package
Properties dialog.

2. In the Package properties dialog, select Profile Application and click Add.

3. In the Properties window, select DatabaseProfile from the list of available
profiles, as shown in Figure 22–20.

Figure 22–20 Choosing the Profile to Apply

Database
Association

UML::
Association

CONSTRAINT Name after
transfer

Foreign Key
naming rule

Database
Generalization

UML::
Generalization

CONSTRAINT Name after
transfer

Foreign Key
naming rule

Certain transforms create
foreign keys out of
generalizations and this
stereotype can apply here.

Table 22–2 Properties of Stereotypes in DatabaseProfile

Property Description Type

Name after
transfer

The name of the transformed database object. If blank, default
naming rules are applied.

String

Datatype SQL text of the datatype.

There are a number of datatypes, including default, ansi,
Oracle, and other supported database types.

String

Foreign key
naming rule

The rule to use when naming a foreign key from an
association: use the UML name, use the databaseName
property or derived a default name from the table names.

Both Tables
Database Name
Owning Name
UML Name

Primary Flag to indicate that transformed column is part of the
primary key for the parent table.

Boolean

Table 22–1 (Cont.) Stereotypes and Properties in DatabaseProfile

Stereotype Applied to

Offline
Database
Type Properties Notes

Transforming Java Classes and Interfaces

Creating, Using and Managing Diagrams 22-25

Optionally, choose to specify the name to use after the package has been
transformed into an offline database schema. Select the Applied Sterotype node
and click Add. Under Properties, a new property Name after transfer is
listed. Enter a name.

Click OK. A new file DatabaseProfile.uml_pa is now listed in the
Application Navigator, as shown in Figure 22–21.

Figure 22–21 Profile Application File

4. To examine the Database Profile file, right-click it in the Application Navigator
and choose Properties. The dialog shows the profile that is will be used in the
transform. Click OK to close the dialog.

5. Now you can apply stereotypes to the various elements in the project. In the
example shown in Figure 22–21, you apply stereotypes to the Employee class by
right-clicking Employee.uml_cla and choosing Properties. This opens the Class
Properties dialog for that element.

To specify the name to use after transformation, select Applied Stereotype, click
Add, and choose Database Class. Under Properties, enter a value next to
Name after Transform, as shown in Figure 22–22.

Figure 22–22 Applying a Name after Transform

6. You can apply stereotypes to other elements. For example, you can specify
datatypes and a primary key to attributes owned by this class. In the same Class
Properties dialog, expand Owned Attibute. and select an existing attribute, or
create one by clicking Add and entering a name for it.

Expand the node for the owned attribute, select Applied Stereotype and click
Add. Figure 22–23 shows that at this level you can specify a number of datatypes,

Importing and Exporting UML Using XMI

22-26 User's Guide for Oracle JDeveloper

whether the attribute should be transformed to a primary key, and the name after
transform.

Figure 22–23 Using Stereotypes with Owned Attributes

For information about the stereotypes and properties covered by DatabaseProfile,
see Table 22–1, " Stereotypes and Properties in DatabaseProfile" and Table 22–2,
" Properties of Stereotypes in DatabaseProfile".

7. Once you have set the stereotypes you want to have applied, you can proceed to
transform the UML Class model following the steps in Section 22.7.1, "How to
Transform UML and Offline Databases." This time, the stereotypes and properties
in DatabaseProfile you have used are applied during transformation.

22.8 Importing and Exporting UML Using XMI
UML models created using other modeling software can be imported into JDeveloper
using XML Metadata Interchange (XMI) if the models are UML 2.1.1 compliant.

The XMI specification describes how to use the metamodel to transform UML models
as XML documents. JDeveloper complies with the specification. For more information
see the "Catalog of OMG Modeling and Metadata Specification" at
http://www.omg.org/technology/documents/
modeling_spec_catalog.html.

22.8.1 How to Import and Export UML Models Using XMI
The following are restrictions that apply to import processes:

■ Diagrams cannot be imported.

■ XMI must be contained in a single file. Any profiles referenced by XMI must be
registered with JDeveloper through Tools > Preferences > UML > Profiles before
importing. The profiles must be in separate files. For more information see,
Section 22.9, "Using UML Profiles".

Diagrams can be automatically created when you import classes, activity, sequence,
and use case elements. The dialog will offer you this option during the process, as
shown in Figure 22–25.

To import UML model as XMI:
1. With an empty project selected in the navigator, choose File > Import.

2. Select UML from XMI, then click OK.

Importing and Exporting UML Using XMI

Creating, Using and Managing Diagrams 22-27

3. Complete the Import UML from XMI dialog.

Figure 22–24 Import Choose UML from XMI Dialog

Figure 22–25 Import UML from XMI Detail Dialog

To export UML model as XMI:
1. Select your project.

2. Choose File > Export.

Figure 22–26 Export Choose UML as XMI Dialog

22.8.2 Typical Error Messages When Importing
There are some typical errors and warnings that you can encounter in your XMI
Import Log during import. Many of these can be easily resolved with a few simple
steps.

Importing and Exporting UML Using XMI

22-28 User's Guide for Oracle JDeveloper

 As with other XML, the structure of a valid file is specified by an XML schema which
are referenced by xmlns namespaces. The XML consists of elements that represent
objects or the values of their parent element object and attributes that are values.
Sometimes the values are references to other objects that may be represented as an href
as for HTML. Double clicking on the items in the log navigates to the problem
element. Often issues arise because of incorrect namespaces and standard object
references.

The following are typical error messages, and how to resolve them:

Missing Profile

■ Error(16,80): The appliedProfile property has multiplicity [1..1]

■ Error(17,70): Attempt to deference missing element
http://example.oracle.com/MyProfile#_0

■ Warning(2,356): http://example.oracle.com/MyProfile is not a recognized
namespace

■ Warning(22,142): Element urn:uuid:2b45f92d-31c8-4f67-8898-00a2f5bbfd22 ignored

In UML there is an extension mechanism that allows further XML schemas to be
specified in a 'profile'. The first three problems above indicate that a relevant profile
has not been registered. To register a profile see, Chapter 22.9, "Using UML Profiles".

Invalid XMI Version

■ Error(2,360): 2.0 is incorrect version for http://schema.omg.org/spec/XMI/2.1

This message occurs because there is a mismatch between the xmi:version
attribute and the xmlns:xmi namespace. The xmi:version should be 2.1.

Invalid UML Namespace

■ Warning(2,356): http://schema.omg.org/spec/UML/2.1.1/Unknown is not a
recognized namespace.

This message occurs because the xmlns:uml namespace should be
http://schema.omg.org/spec/UML/2.1.1/uml.xml.

Invalid Standard L2 Profile Namespace

■ Error(13,80): The appliedProfile property has multiplicity [1..1].

■ Error(14,81): Attempt to deference missing element
http://schema.omg.org/spec/UML/2.1.1/L2Unknown#_0

■ Warning(2,344): http://schema.omg.org/spec/UML/2.1.1/L2Unknown is not a
recognized namespace

This case is when a standard profile is already registered with the tool. Change the
XMI so that the xmlns namespace is
http://schema.omg.org/spec/UML/2.1.1/StandardProfileL2.xmi and the reference is
http://schema.omg.org/spec/UML/2.1.1/StandardProfileL2.xmi#_0.

Invalid Standard L3 Profile Namespace

There is a second standard profile already registered. If the profile is incorrectly
referenced the messages will be similar to the L2 Profile Namespace. The correct
namespace is http://schema.omg.org/spec/UML/2.1.1/StandardProfileL3.xmi and
the correct reference is
http://schema.omg.org/spec/UML/2.1.1/StandardProfileL3.xmi#_0.

Invalid Standard Data Type Reference

Using UML Profiles

Creating, Using and Managing Diagrams 22-29

■ Error(7,75): Attempt to deference missing element
http://schema.omg.org/spec/UML/2.1.1/Unknown#String

There is a standard set of data types to reference and resolve this error, such as
attribute type. The XMI href should be updated to one of the following:

■ http://schema.omg.org/spec/UML/2.1.1/uml.xml#Boolean

■ http://schema.omg.org/spec/UML/2.1.1/uml.xml#Integer

■ http://schema.omg.org/spec/UML/2.1.1/uml.xml#String

■ http://schema.omg.org/spec/UML/2.1.1/uml.xml#UnlimitedNatural

22.9 Using UML Profiles
UML Profiles are subsets of the UML metamodel. These subsets specify
well-formedness rules beyond those identified in the UML metamodel.
Well-formedness rule is a term used in the normative UML metamodel specification to
describe a set of constraints written in UML Object Constraint Language (OCL) that
contribute to the definition of a metamodel element. JDeveloper comes with a handful
of standard profiles for UML.

You can add your own profile by going to Tools > Preferences > UML > Profiles, and
clicking the add symbol, as shown on Figure 22–27. Once you have added a custom
profile, edit the document URL by selecting the profile and clicking Edit. For more
information on UML Profiles, see the OMG Catalog at,
http://www.omg.org/technology/documents/profile_catalog.htm.

Figure 22–27 UML Profiles Dialog

Profiles allow you to apply stereotypes to UML models, and you use them by applying
them to a UML package.

Working with UML Class Diagrams

22-30 User's Guide for Oracle JDeveloper

To use a UML profile:
1. If necessary, create a new UML package from the New Gallery. Choose File >

New, and in the General category choose UML and under Items choose Package.

Otherwise open the Package Properties dialog of an existing UML package by
right-clicking on it in the Application Navigator and choosing Properties.

For more help at any time, press F1 or click Help from within the Package
Properties dialog.

2. In the Package Properties dialog, select the Profile Application node, click Add
and choose the UML profile you want to use from the list of those available.

3. Now you can create a class, and add a stereotype. In the Package Properties
dialog, select the Packaged Element node and click Add and choose Class.

4. Expand the Class node, and choose Applied Stereotype and click Add. The
property that you can give a value to depends on the UML profile you are using.
Figure 22–28 shows the Name after Transform property from the UML profile
DatabaseProfile, which is delivered as part of JDeveloper.

Figure 22–28 Stereotype Properties

This section has described how to associate a profile with a UML package, and apply a
stereotype at package level. Depending on the type of profile, you may be able to
apply stereotypes to other elements. An example is given in Section 22.7.2, "Using
DatabaseProfile."

22.10 Working with UML Class Diagrams
Use the UML class diagram to model a collection of static elements such as classes and
types, their contents and relationships, as well as visually create or inspect classes,
interfaces, attributes, operations, associations, generalizations and realizations.

22.10.1 How to Work with Class Diagrams
You can use the Component Palette to add classes and related elements to your class
diagram. Each of the elements is represented by a unique icon and description as
shown in Figure 22–29.

Working with UML Class Diagrams

Creating, Using and Managing Diagrams 22-31

Figure 22–29 Class Diagram Component Palette

To add classes and interfaces to a diagram:
Create classes and interfaces by dragging the class onto the diagram. The element is
created in the location specified by the model path in your project settings and default
properties. (Application > Default Project Properties). You can also model packages by
clicking on the package.

If you right-click a modeled package and choose Drill Down, a diagram is displayed
for that package.

To add or edit class properties:
Class properties are added to modeled classes and interfaces on a diagram by doing
one of the following:

■ Double-click the modeled class or interface to access the properties dialog.

■ Right-click the class or interface and choose Properties.

To add generalizations, realizations, and associations:
Generalized structures are created on a diagram of classes by using the Generalization
icon on the Class Component Palette.

Where an interface is realized by a class, model it using the Realization icon on the
Class Component Palette for the diagram.

A variety of associations can be created between modeled classes and interfaces using
the association icons. Associations are modified by double-clicking the modeled
association and changing its properties.

To add nested classes and nested interfaces:
Nested classes and nested interfaces are created either by creating them in the
modeled class or interface using in-place create (with symbolic presentation only) and
by changing shape display preferences, or by right-clicking the class and choosing
View As > Expanded then creating another class inside the expanded node.

Working with UML Class Diagrams

22-32 User's Guide for Oracle JDeveloper

To add attributes and operations:
Attributes and operations are added to modeled classes and interfaces by doing any of
the following:

■ Double-click the modeled class or interface, then add the attribute or operation
using the element property dialog.

■ Right-click the class or interface and choose Properties, then add the attribute or
operation using the element property dialog.

■ Drag an existing attribute or operation from one class or interface on a diagram to
another class or interface on the same diagram.

The order of an attribute or operation within a class or interface is changed by
dragging it up or down on the screen. The Sort Alphabetically property for
attributes or operations must be deselected: (Tools >Preferences > Diagrams >
Class > Edit Preferences for: Class or Interface | Attributes or Operations | Sort
Alphabetically).

To hide one or more attributes or operations:
1. Select the attributes or operations to hide.

2. Right-click the selected items and choose Hide > Selected Shapes.

To show all hidden attributes or operations on a class or interface:
Select the class or interface, then right-click and choose Show All Hidden Members.

22.10.1.1 How to Read a Class Diagram
Classes are represented as rectangles containing class name and details. Classes can be
displayed as compact, symbolic or expanded nodes. To set the display properties go to
Tools > Preferences > Diagrams > (Diagram Type) > Display Options.

You can also change the way elements are represented on a diagram. On the diagram,
classes and interfaces are divided into compartments, with each compartment
containing only one type of information. An ellipsis (...) is displayed in each
compartment when not large enough to display its entire contents. To display all the
attributes of a modeled class, right-click the class and choose Optimize Shape Height.
Figure 22–30 shows an example of a typical class diagram layout.

All attributes and operations display symbols to represent their visibility. The visibility
symbols are: + Public, - Private, # Protected, and ~ Package.

Working with UML Class Diagrams

Creating, Using and Managing Diagrams 22-33

Figure 22–30 UML Class Diagram with Elements

Table 22–3 Elements in Class Diagram

Elements Description

Interface Interfaces are represented with a keyword in the name
compartment: «interface». interfaces can be displayed as
compact, standard or expanded nodes. Nested classes and
interfaces can be modeled inside standard and expanded
interfaces.

Enumeration Enumerations are data types with a finite, and normally small,
set of named literals. Enumerations contain sets of named
identifiers to represent the values of the enumeration. An
enumeration has a name that describes its role in a model.

*1 to * Association One to Many defines a relationship between classes.
Represented on the diagram as a solid line.

Directed One to One
Association

Directed One to One Association is represented on the diagram
as a solid line with an open arrowhead in the direction of the
association.

Directed One to Many
Association

Directed One to Many Association is represented on the diagram
as a solid line with an open arrowhead in the direction of more
than one association.

Directed Composite
Aggregation

Represented on the diagram as a solid line with an open
arrowhead in the direction of the association and a filled
diamond shape at the originating end of the association.

Generalization Defines generalization relationships between classes.
Represented on the diagram as a solid line with an empty
arrowhead pointing towards the specialized class or interface.

Realization Defines where an interface is realized by a class. Represented on
the diagram as a dashed line with an empty arrowhead pointing
towards the implemented interface.

Working with UML Class Diagrams

22-34 User's Guide for Oracle JDeveloper

22.10.1.2 How to Specify UML Operation Notation
Operation notation in this release is closely related to the UML2 notation. Previously
the notation for an operation in a class diagram followed Java-line syntax.

print(int param1, int param2):void

In this release of JDeveloper, operation notation follows UML2 syntax:

print(param1:int, param2:int):void

22.10.2 Refactoring Class Diagrams
If you rename or move a class using the in-place edit functionality on a diagram, the
source code for the class is refactored automatically. Renaming or moving a Java
package on a diagram automatically refactors the contents of that package.

Deleting a field, method, or inner class on a diagram automatically applies the Delete
Safely refactoring pattern. To apply a refactoring pattern to a Java class, interface,
enum, or member on a diagram, select the class or member on the diagram and choose
the refactoring pattern from the refactoring menu.

The following refactoring patterns are available for the Java classes, interfaces, and
enums on a Java class diagram:

■ Rename

■ Move (applies to both single and multiple selections on the diagram)

■ Duplicate

■ Extract Interface

■ Extract Superclass

The following refactoring patterns are available for the Java fields and methods on a
Java class diagram:

■ Rename

■ Move

■ Make Static

■ Pull Members Up

Dependency Represents where one diagram element depends on another.
Represented on the diagram as a dashed line with an open
arrowhead in the direction of the dependency.

Class Represents an object. Classes form the main building blocks of
an object-oriented application. Represented on the diagram as a
rectangle containing three compartments stacked vertically.*

Package Use to divide a system into multiple packages, which can
simplify and make the system easier to understand.

Data Type Data types are modeled elements that define your data values.

Primitive Type Primitive types or data types are data types such as boolean,
byte, decimal, DateTime, Double Float, and Time.

Constraint Constraints are the degree of freedom, or lack thereof that you
have in modeling a system behavior, or solution.

Table 22–3 (Cont.) Elements in Class Diagram

Elements Description

Working with UML Activity Diagrams

Creating, Using and Managing Diagrams 22-35

■ Push Members Down

■ Change Method (Java methods only)

22.10.2.1 How to Invoke a Refactoring Operation
There are several automated refactoring operations available that enhance code quality
by improving the internal structure of code without altering the external behavior.

To invoke a refactoring operation:
1. Select a program element in a source editor window, navigator pane, or structure

pane.

2. Right-click on the program element.

3. Choose an operation from the context menu.

4. You can also choose Refactor from the toolbar and select a refactoring operation
from the drop-down list.

22.11 Working with UML Activity Diagrams
Use activity diagrams to model your business processes. Your business process are
coordinated tasks that achieve your business goals such as order processing, shipping,
checkout and payment processing flows.

Activity diagrams capture the behavior of a system, showing the coordinated
execution of actions, as shown in Figure 22–31.

Figure 22–31 Sample Activity Diagram Showing Elements

Working with UML Activity Diagrams

22-36 User's Guide for Oracle JDeveloper

22.11.1 How to Work with Activity Diagrams
The Component Palette contains the elements that you can add to your activity
diagram. An Activity is the only element that you can place directly on the diagram.
You can place the other elements inside an Activity. Each of the elements is
represented by unique icons as well as descriptive labels, as shown in Figure 22–32
and Table 22–4.

Figure 22–32 Component Palette for Activity Diagram

Table 22–4 Activity Diagram Elements

Element Description

Action An action is the fundamental unit of behavior specification, for
example, Send Invoice or Receive Payment. It represents a single
step within an activity. An action takes a set of inputs and
converts them into a set of outputs. The execution of an action
represents some transformation or processing in the modeled
system.

An action may receive inputs in the form of control flows and
object flows (the latter via input pins) and passes the results of
its processing or transformations to outgoing control flows or
object flows (the latter via output pins) and onto downstream
nodes. Execution of the action cannot begin until all its
prerequisites are satisfied.

Activity A behavior performed by a system, for example a business
process. An activity is a behavior defined by its owned actions,
object nodes and the flows between them.

Activity Final Node Terminates the execution of the activity when it first receives a
control token. There can be multiple final nodes in an activity.
An Activity Final Node indicates that every action on this
diagram has finished.

Fork/Join Displayed as a vertical or horizontal bar. A Fork is a control
node that has a single incoming flow and two or more outgoing
flows. A Join is a control node that synchronizes a number of
incoming flows into a single outgoing flow. Fork/Join pairs can
be combined as a single diagram node.

Call Behavior Action Maps the action inputs and outputs are simply mapped to the
behavior parameters as appropriate.

Working with UML Activity Diagrams

Creating, Using and Managing Diagrams 22-37

To create an activity diagram:
1. Create a new diagram following the steps in To create a new diagram:.

2. Choose the elements to add to your diagram from the Component Palette as
shown in Figure 22–32.

To show a partition on an activity diagram:
1. In the activity diagram, select an action.

2. In the Property Inspector, expand the Display Options node.

3. Select Show Activity Partition. The action on the diagram displays the text, (No
Partition).

4. Click on the text. An editing box appears where you can enter a name for the
partition.

22.11.1.1 Getting a Closer Look at the Activity Diagram Elements
To model activities, actions, central buffer nodes, and data store nodes, you need to
start with a Activity diagram.

Partitions
You create partitions on a diagram by selecting an action, then selecting Show Activity
Partition under Display Options in the Property Inspector.

Activities and Actions
Activities are created by first selecting the Activity icon on the Component Palette,
then clicking on the diagram where you want to create the activity or action.

Call Operation Action Transmits an operation call request to the target object, where it
may cause the invocation of associated behavior. The behavior
results become the action outputs. The argument values of the
action are available to the execution of the invoked behavior.

Central Buffer A type of object node. It gives the node the capability of storing
(buffering) tokens. It manages the tokens that arrive at incoming
flows from one or more object nodes and selects which tokens
and in what order these tokens will be presented to the
downstream object nodes via the outgoing flows.

Control Flow Shows the flow of control tokens.

Data Store A type of object node that passes a buffer for non-transient data.

Flow Final Node Terminates any incoming flow without terminating the
execution of the entire activity.

Initial Node The starting point for executing an activity. It has no incoming
flows and one or more outgoing flows. There can be only one
initial state on a diagram.

Object Flow Connects object nodes. Object flows can be connected to actions
using pins.

Merge Node A merge node has two or more incoming flows and a single
outgoing flow. A Decision has one incoming flow and two or
more outgoing flows

Table 22–4 (Cont.) Activity Diagram Elements

Element Description

Working with Sequence Diagrams

22-38 User's Guide for Oracle JDeveloper

Initial and Final Nodes
An initial node is a starting point for an activity execution. A final node is the
termination of execution, either for the activity if an activity final node, or a particular
flow if a flow final node.

To create, click the Initial Node icon, the Activity Final Node icon, or Final Flow
Node icon on the Component Palette, then click on the diagram where you want to
place the node.

22.12 Working with Sequence Diagrams
The sequence diagram describes the interactions among class instances. These
interactions are modeled as exchanges of messages. At the core of a sequence diagram
are class instances and the messages exchanged between them to show a behavior
pattern, as shown in Figure 22–33.

Figure 22–33 Typical Sequence Diagram Example

22.12.1 How to Work with Sequence Diagrams
The elements you add from the Component Palette are laid out in a default position on
your sequence diagram. Object lifelines are aligned vertically, unless they are related to
another object lifeline, in which case they are aligned with the create message.
Synchronous and asynchronous messages and are placed in time order down the page.

Figure 22–34 displays the elements in the Component Palette available to use in your
sequence diagram. Each element is represented by a unique icon as well as a
descriptive label.

Working with Sequence Diagrams

Creating, Using and Managing Diagrams 22-39

Figure 22–34 Sequence Diagram Component Palette

To create a sequence diagram:
1. Create a new diagram following the steps in "To create a new diagram:" on

page 22-2.

2. Choose the elements to add to your diagram from the Component Palette as
shown in Figure 22–34, "Sequence Diagram Component Palette".

Table 22–5 Sequence Diagram Elements

Element Description

Asynchronous Message Represented on a diagram by a diagonal line with an open
arrowhead. An asynchronous message is one for which the
sender does not have to wait for a response before continuing
with processing.

Creation Message Represented on a diagram by the shifting down, relative to the
originating object, of the rectangle and dashed line that
represents the object to be created. A creation message is a
message that leads to the creation of an object

Interaction Captures the behavior of a single case by showing the
interaction of the objects in the system to accomplish the task.

Message A message is a model element that defines a specific kind of
communication between participants in an interaction. A
message conveys information from one participant, which is
represented by a lifeline, to another participant in an interaction.

Object Lifeline Represented on a diagram by a rectangular box with a vertical
dashed line descending beneath it. An object lifeline represents
the existence of an object over a period of time

Return A return message is a message that returns from an object to
which a message was previously sent. Return messages are valid
only from synchronous messages, and are themselves
synchronous.

Stop or Destroy Message Represented on a diagram by showing the execution
specification at the end of the message with a large cross
through it. A stop message is a message that leads to the
deletion of an object (or to the indication that an object is no
longer needed).

Working with Sequence Diagrams

22-40 User's Guide for Oracle JDeveloper

To start the sequence tracer:
On any part of the sequence diagram, open the context menu and choose Trace
Sequence. The tracer steps through each of the execution specifications and messages,
highlighting each one.

22.12.1.1 Getting A Closer Look at the Sequence Diagram Elements
The sequence diagram elements are added to your diagram by clicking or dragging
and dropping from the component palette.

Interactions
Model your interactions within a system by adding the Interaction component to your
diagram. Interactions are a container for the specific elements that comprise the
behavior.

You can right-click an Interaction and choose Sequence, then Automatic Layout to
autolayout the elements within the Interaction.

Object Lifelines
You add object lifelines to a sequence diagram by first adding an interaction then
clicking on the Object Lifeline icon, and then clicking on the interaction. An edit box
opens for you to enter an instance name for the object. This can be left blank for
anonymous instances.

You can add a classifier by right-clicking on the object lifeline and choosing Attach
Classifier, which opens a list of elements from which you choose the one you want
associated with the object lifeline. Another way to attach a classifier is to drag the
classifying object from the navigator onto the object lifeline. These methods are
confirmed by the appearance (in the top left of the object lifeline) of an icon
representing the classifying element.

Execution Specifications and Synchronous Messages
You add a synchronous message by clicking on the Message icon, then clicking on the
vertical dashed line or execution specification that is the starting point for the message,
and then on the vertical dashed line that is the destination of the message.

Merge execution specifications by overlapping them on the diagram. Then right-click
and choose Merge Overlapping Occurrences.

You can move an execution specification (and the messages attached to it) to a position
higher or lower than its original one. In some cases this will result in an invalid
diagram. When this happens, the message line will turn red and the destination object
will contain an arrow icon which indicates the direction the object should be moved, to
make the diagram valid.

To resize an execution specification box, drag the small black box that appears on the
lower edge when you select it. An execution specification will be resized if you drag a
message line extending from it.

Open an editing box for the text by clicking on the message line and then clicking
inside the gray box that appears.

The starting point and destination point of a synchronous message can be the same
object lifeline, in which case you have created a self call.

Note: Trace Sequence is available for a selected Interaction. It does
not appear in the context menu for the diagram.

Working with Sequence Diagrams

Creating, Using and Managing Diagrams 22-41

Synchronous messages are depicted on the sequence diagram by solid lines with filled
arrowheads.

Creation Messages
Add a creation message by clicking on the Creation Message icon, then on the
originating object, then on the object to create. The rectangle and dashed line that
represents the object is shifted down the page relative to the originating object.

If the object to be created is not already on the diagram, click within the interaction
that contains the originating object to create an object lifeline representing the object.
By default, a creation message is given the name "create". You can open an edit box for
the message name by clicking on the message line and then clicking inside the gray
box that appears.

Stop or Destroy Messages
Before you add a stop or destroy message, you must already have added an object
lifeline for the object that the message deletes.

Add a stop or destroy message by clicking on the Stop or Destroy Message icon, then
on the originating object, then on the object to delete. If you start and end the stop
message on the same object, you will create a self-deleting object. The execution
specification at the end of a stop message is shown with a large cross through it. You
can open an edit box for the message name (for example, close) by clicking on the
message line and then clicking inside the gray box that appears.

If you add a stop message earlier in the sequence than other execution specifications,
those execution specifications will be not be implementable and will be shown with a
warning flag.

Return (Messages)
Add a return message by clicking on the Return icon, then on an end execution
specification, then on the corresponding start execution specification. You will not be
able to end this return message line on any other object. The return message is
depicted by a dashed line with a filled arrowhead. You can open an edit box for the
text of the message by clicking on the message line and then clicking inside the gray
box that appears.

Asynchronous Messages
Add an asynchronous message (and the execution specifications at each end) by
clicking on the Async Message icon, then clicking on the vertical dashed line or
execution specification that is the starting point for the message, then on the vertical
dashed line that is the destination of the message. You can open an edit box for the text
of the message by clicking on the message line and then clicking inside the gray box
that appears.

The starting point and destination point of an asynchronous message can be the same
object lifeline, in which case you have created a self call.

Asynchronous messages are depicted on the sequence diagram using diagonal lines
and open arrowheads.

22.12.1.2 How to Work with Sequence Diagram Combined Fragment Locks
On your sequence diagram interactions you will see combined fragment lock icons.
Locking and unlocking an interaction allows you to keep the combined fragment
behavior within that interaction on that diagram, or extend its reach to other
interactions and other diagrams.

Working with Sequence Diagrams

22-42 User's Guide for Oracle JDeveloper

22.12.1.3 Using Combined Fragments
A combined fragment defines an expression of an interaction defined by an interaction
operator and corresponding interaction operands. A Combined Fragment reflects a
piece or pieces of interaction (called interaction operands) controlled by an interaction
operator, whose corresponding boolean conditions are known as interaction
constraints. It displays as a transparent window, divided by horizontal dashed lines
for each operand.

 Figure 22–35 shows a loop fragment that iterates through purchase items, after the
cashier requests payment. At this point, two payment options are considered and an
alternative fragment is created, divided to show the two operands: cash and credit
card. After the fragment completes its trace, the cashier gives a receipt to the customer,
under the fulfilled condition of payment requirements met.

Figure 22–35 Typical Sequence Diagram with Combined Fragments

Figure 22–36 shows the combined fragments that display in the Component Palette
when your diagram is open in the diagrammer.

Working with Use Case Diagrams

Creating, Using and Managing Diagrams 22-43

Figure 22–36 Combined Fragments Drop-down List in Component Palette

22.13 Working with Use Case Diagrams
Use case diagrams overview the usage requirements for a system. For development
purposes, use case diagrams describe the essentials of the actual requirements or
workflow of a system or project, as shown in Figure 22–37.

Table 22–6 Combined Fragments Interaction Operators

Interaction Operator Description

alt Use to divide up interaction fragments based on Boolean
conditions.

assert Use to specify the only valid fragment to occur.

Break Use to designate that the combined fragment represents a
breaking scenario in the sense that the operand is a scenario that
is performed instead of the remainder of the enclosing
interaction fragment.

Critical Use to indicate a sequence that cannot be interrupted by other
processing.

Loop Use to indicate that the operand repeats a number of times, as
specified by interaction constraints.

Neg Use to assert that a fragment is invalid, and implies that all other
interaction is valid.

Opt Use to enclose an optional fragment of interaction.

Par Indicate that operands operate in parallel.

Seq Use to indicate that the combined fragment is weakly
sequenced. This means that the ordering within operands is
maintained, but the ordering between operands is undefined, so
long as an occurrence specification of the first operand precedes
that of the second operand, if the occurrence specifications are
on the same lifeline.

Strict Use to indicate that the behaviors of the operands must be
processed in strict sequence.

Working with Use Case Diagrams

22-44 User's Guide for Oracle JDeveloper

Figure 22–37 Typical Use Case Diagram

22.13.1 How to Work with Use Case Diagrams
Use case diagrams show how the actors interact with the system by connecting the
actors with the use cases with which they are involved. If an actor supplies
information, initiates the use case, or receives information as a result of the use case,
then there is an association between them.

Figure 22–38 displays the Component Palette with the elements available to add to
your use case diagram. Each element is represented by a unique icon and descriptive
label.

An Interaction is the only element you can add directly to the diagram. You put all of
the other elements within an Interaction.

Working with Use Case Diagrams

Creating, Using and Managing Diagrams 22-45

Figure 22–38 Use Case Elements in the Component Palette

To create a use case diagram:
1. Create a new diagram following the steps in "To create a new diagram:" on

page 22-2.

2. Choose the elements to add to your diagram from the Component Palette as
shown in Figure 22–38.

22.13.1.1 Getting A Closer Look at the Use Case Diagram Elements
You can determine the appearance and other attributes for subject, actor and other
objects of these types by modifying the properties in the Property Inspector, or by
right-clicking the object and modifying the properties, or by creating and customizing
an underlying template file.

You can use templates to add the supporting objects to the Component Palette. For
more information, see Chapter 22.13.1.3, "How to Work with Use Case Component
Palette Templates".

Table 22–7 Use Case Elements

Component Description

Actor Represents an abstract role within a system.

Communication Identifies where an actor is associated with a particular use case.

Dependency Shows a relationship between one element and another.

Extend Shows a target use case extends the definition of a source use
case.

Generalization Identifies where one or more elements specialize another
element. For example, an actor Team Member could be
specialized to actors Manager and Developer.

Include Shows a relationship in a use case that includes another use case.

Subject Two types of subjects are available. One system usually contains
sets of use cases and actors that comprise the whole system
being modeled. The second type usually contains groups of use
cases that comprise a coherent part of the system being
developed.

Use Case Indicates that one element requires another to perform some
interaction.

Working with Use Case Diagrams

22-46 User's Guide for Oracle JDeveloper

Figure 22–39 Use Case Subject, Actor and object Example

Subjects
You can show the system being modeled by enclosing all its actors and use cases
within a subject. Show development pieces by enclosing groups of use cases within
subject lines. Add a subject to a diagram by clicking on Subject in the Component
Palette, then drag the pointer to cover the area that you want the subject to occupy.
Figure 22–39 shows an accounting subject attached to their related actors. If you drop
an element just inside a subject, the subject line expands to enclose the element. You
also can manually resize subjects. If you reduce the size and there are elements that
can no longer be seen, an ellipsis appears in the lower right corner.

Actors and Use Cases
Create actors on a diagram by clicking on the Actor icon on the Component Palette,
and then clicking on the diagram where you want to create it.

To change the properties of an actor or use case, double-click on the modeled element
and edit the element details in the editor.

Relationships Between Actors and Use Cases
You can represent interactions between actors and use cases on a diagram using the
Communication icon on the Component Palette. You can create generalization
structures between actors and between use cases by using the Generalization icon. To
represent where one use case includes another, use the Include icon, and to represent
where one use case extends another use the Extension icon.

You can annotate a diagram of use cases using notes, dependency relationships and
URL links. Annotation components are available at the lower part of the component
palette under Diagram Annotations.

Working with Use Case Diagrams

Creating, Using and Managing Diagrams 22-47

Relationships Between Use Cases and Subjects
You can represent interactions between use cases and subjects using the
Communication icon on the Component Palette.

Relationships Between Use Cases and Subjects
You can represent interactions between use cases and subjects using the
Communication icon on the Component Palette.

22.13.1.2 How to Work with Use Case Templates
XHTML files can be used as templates for the documents that support some objects in
use case diagrams. Templates allow you to determine the appearance and other
attributes of the document initially created for each object type. You can either edit the
source code of a template directly or use the visual editor.

To open a use case template:
Choose File > Open, then navigate to the <jdeveloper_install>/jdev
/system[...]/o.uml.v2.usecase.html/templates/usecase folder and
open (by double-clicking) one of the files located there.

The files have the following names and uses:

■ Actor.xhtml_act - template for actor documents.

■ Casual.xhtml_usc - template for casual use case document.

■ FullyDressed.xhtml_usc - template for fully dressed use case documents.

■ Milestone.xhtml_sub - template for subject - milestone use case
documents.

■ SystemBoundary.xhtml_sub - template for subject - use case documents.

To edit the use case template source code:
Select the Source tab. To insert HTML tags at specific locations, open the context menu
and choose Insert HTML.

As a general rule, do not remove tags that include the uml: prefix (for example
<uml:usecase_extends>). If you are removing an entire section of the template (for
example, between a td tag and a /td tag), any uml: prefixes can be safely removed
along with the other content of the section.

To change the appearance of text on the use case [modeler] template:
Select the Editor tab and the text that you want to change, then choose one or more of
the formatting options from the toolbar.

To insert HTML interface objects, code objects, and development inputs:
Select the Editor tab, select the place in the template where you want to make the
insertion, then choose the required location and object from the context menu.

You can insert HTML interface objects (such as buttons and checkboxes), HTML code
objects (such as anchors and tables), and development inputs (such as comments and
processing instructions).

You are initially given the choice of inserting an object before a selected template item
or after it, or into the <head> section of the template. Subsequently, these options are
unavailable if inappropriate. If you choose HTML or Browse from the context menu, a
dialog box is opened from which you can choose one of various HTML interface

How Diagrams are Stored on Disk

22-48 User's Guide for Oracle JDeveloper

objects and code objects. Choosing an item here will open an insertion dialog to enter
properties appropriate to the object.

22.13.1.3 How to Work with Use Case Component Palette Templates
New use case templates can be created by copying the one included in JDeveloper.
You can modify the copies as needed.

For each new component palette there must be one use case template that supports it.
The use case template that you specify is not copied or moved: it remains in its original
location.

To create a new Component Palette page and add a new use case component:
1. Go to Tools > Configure Palette.

2. In the Configure Component Palette dialog, select use case for Page Type.

3. Click Add.

4. Enter a name for the new Component Palette page.

5. From the drop-down list, choose Use Case, then click OK. The new page appears
in the Component Palette. The Pointer item is included automatically.

6. Open the context menu for the component area of the Component Palette and
select Add Component. The Add Use Case Template dialog opens.

7. Enter a name for the new component.

8. Enter the path to the use case template on which the new component is to be
based. The path can be a URL.

9. To add the new component to the Component Page, click OK.

22.14 How Diagrams are Stored on Disk
Diagrams are stored on disk as diagram files. Diagram files reference the elements that
are displayed on the diagram and contain display information for those elements (size,
color, font, display of various properties etc.). Diagram files are stored in the folder for
the package in which the diagram resides, and is stored in the model path specified in
the project settings. Notes, diagram links and dependencies are also stored in the
diagram file.

To set the model path, choose Application > Default Project Properties > Project
Source Paths > Modelers.

Diagram elements such as Java classes are referenced in the diagram file, but their
definition and implementation details are only stored in the implementation files for
those elements. Although the diagrammatic details for these elements (position, color,
size, etc.) are stored in the diagram file, no separate model definitions of these
elements are stored.

22.15 How UML Elements are Stored on Disk
UML elements are stored in individual files. Their location is dependent on the
package property of the element. These element files hold the properties defined
against the various elements, but the diagram file still defines which elements are
displayed on the diagram and the visual properties of those elements. Element files for
modeled UML elements are stored in the appropriate package folder under the folder

How UML Elements are Stored on Disk

Creating, Using and Managing Diagrams 22-49

specified in the project model path. To set the model path, choose Application >
Default Project Properties > Project Source Paths > Modelers.

How UML Elements are Stored on Disk

22-50 User's Guide for Oracle JDeveloper

23

Developing Java EE and Java Applications Using Modeling 23-1

23 Developing Java EE and Java Applications
Using Modeling

This chapter describes how to work with Java EE and Java application diagrams using
the latest modeling tools and technologies included in Oracle JDeveloper.

This chapter includes the following sections:

■ Section 23.1, "About Developing Java EE and Java Applications Using Modeling"

■ Section 23.2, "Business Component Diagram"

■ Section 23.3, "Modeling EJB/JPA Components on a Diagram"

■ Section 23.4, "Java Class Diagram"

■ Section 23.5, "Database Diagram"

23.1 About Developing Java EE and Java Applications Using Modeling
Oracle JDeveloper provides you with a wide range of diagramming tools to model
your Java EE and Java applications systems.

23.2 Business Component Diagram
Use the business component diagram to visualize and organize the business entities
and objects in your enterprise application.

For more information see, “Creating an Entity Diagram for Your Business Layer” in
the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

23.3 Modeling EJB/JPA Components on a Diagram
Enterprise JavaBeans (EJBs) modeling helps you visualize your EJB entity relationships
and architecture, and to quickly create a set of beans to populate with properties and
methods, and to create a graphical representation of those beans and the relationships
and references between them. Whenever a bean is modeled, the underlying
implementation files are also created.

To model EJBs start by creating an EJB diagram. For more information, see "To create a
new diagram:" on page 22-2. You can later add other elements like UML classes, Java
classes, business components, offline database tables, UML use cases and web services
to the same diagram. For more information, see "How to Work with Diagram
Elements" on page 22-5.

Modeling EJB/JPA Components on a Diagram

23-2 User's Guide for Oracle JDeveloper

About Entity, Session and Message-Driven Beans
Enterprise JavaBeans are created on a diagram by using the Entity Bean icon, Session
Bean icon or Message-Driven Bean icon on the EJB Component Palette for the
diagram, and then clicking on the diagram where you want to create the element. The
implementation files for the modeled elements are created in the location specified by
your project settings.

Properties and methods are added by either double-clicking the bean and adding the
property or method using the EJB Module Editor or by creating the new property or
method 'in-place' on the modeled bean itself. For more information, see Section 23.3.5,
"Modeling Properties and Methods".

Relationships Between Beans
References can be created from any bean to any other bean with a remote interface
using the EJB Reference icon and local references can be created from any bean to any
other bean with a local interface using the EJB Local Reference icon on the EJB
Component Palette for the diagram. For more information, see Section 23.3.6, "How to
Model Cross Component References".

A variety of relationships can be created quickly between modeled entity beans using
the 1 to * Relationship icon, Directed 1 to 1 Relationship icon, Directed 1 to *
Relationship and Directed Strong Aggregation icons on the EJB Component Palette
for the diagram. For more information, see Section 23.3.3, "How to Model a JPA
Relationship".

You can annotate a diagram of Enterprise JavaBeans using notes, dependency
relationships and URL links.

23.3.1 Creating a Diagram of EJB/JPA Components
The relationships between entity, session, and message-driven beans, and their
properties and methods, can all be modeled graphically on an EJB diagram. EJB
diagrams are also used for modeling UML classes, Java classes, UML use cases, offline
database objects, business components and web services.

To create a diagram of Java classes:
1. Create a new EJB diagram in a project or application in the New Gallery.

2. Create the elements for the diagram using the EJB Component Palette. Table 23–1
shows the EJB Component Palette.

Tip: If you want to model the implementing Java classes for a
modeled bean on a diagram, right-click the modeled bean and choose
Show Implementation Files.

Note: If you change, add to, or delete from, the implementation files
for anything that is displayed on a diagram, those changes will be
reflected on modeled representations of those elements. Conversely,
any changes to the modeled Enterprise JavaBeans are also made to the
underlying implementation files.

Modeling EJB/JPA Components on a Diagram

Developing Java EE and Java Applications Using Modeling 23-3

You can annotate your diagram by attaching notes to diagram elements. For more
information, see Chapter 22.4, "How to Work with Diagram Annotations."

23.3.2 How to Read an EJB/JPA Components Diagram
You can model session, entity and message-driven beans in JDeveloper. Modeled
session and entity beans are made up of several compartments. For example,
Message-driven beans have only a name compartment containing the
«message-driven bean» stereotype and the name of the bean. For EJB 3.0 beans
the model looks different because there are no compartments for interfaces.

Table 23–1 EJB Component Palette Icons

Drop-down List Icon Name

EJB Nodes Entity

Message-driven Bean

Session Bean

Entity Relationships Bidirectional * to * Relationship

Bidirectional * to 1 Relationship

Bidirectional 1 to 1 Relationship

Unidirectional * to * Relationship

Unidirectional * to 1 Relationship

Unidirectional 1 to * Relationship

Unidirectional 1 to 1 Relationship

EJB Edges Entity Inheritence Edge

Session Facade Edge

Diagram Annotations Attachment

Group

Link

Note

Modeling EJB/JPA Components on a Diagram

23-4 User's Guide for Oracle JDeveloper

Figure 23–1 EJB/JPA Components Diagram

Notice the relationship and connectors between the beans. References can be created
from any bean to any other bean with a remote or local interface. References can only
be modeled between beans that are inside the current deployment descriptor.

23.3.3 How to Model a JPA Relationship
You can model a relationship between any two entities on a class diagram by dragging
the relationship component from the palette. You can also show the inheritance edge
between the root and child entity. The entity at each end of a relationship must have
container-managed persistence and a local interface.

To model a relationship between two entities on a diagram:
1. Click the icon for the relationship you want to create, from those listed on the EJB

Component Palette.

2. Click the entity at the 'owning', or 'from', end of the relationship.

Notes: The navigability and multiplicity of a relationship end can be
changed after it has been created.

If these icons are not displayed, select EJB Components from the
dropdown on the Component Palette.

Modeling EJB/JPA Components on a Diagram

Developing Java EE and Java Applications Using Modeling 23-5

3. Click the entity bean at the 'to' end of the relationship.

4. Click the relationship line on the diagram, then click the text fields adjacent to the
association to enter the relationship name.

23.3.4 How to Model an EJB/JPA Component On a Diagram
Entity, session, and message-driven beans can be modeled using the diagram features
in JDeveloper. Properties and methods can also be modeled.

■ Entity beans can be either Container-Managed Persistence (CMP) or
Bean-Managed Persistence (BMP). Before creating entity beans with
bean-managed persistence, you may want to first consider whether you will need
to create relationships between those entity beans. Relationships can only be
created between entity beans with container-managed persistence.

■ Session beans can be have their session type changed on a class diagram by
right-clicking on the session bean and choosing Session Type, then Stateful or
Session Type, then Stateless.

■ Message-driven beans are most often used to interact (using EJB References) with
session and entity beans.

23.3.5 Modeling Properties and Methods
Properties and methods can be added to modeled EJBs by either double-clicking the
bean and adding the property or method using the EJB Module Editor or by creating
the new property or method directly on the modeled bean.

23.3.5.1 Creating Properties on Modeled Beans
When creating a property directly on a modeled bean, enter the name and datatype of
the property. For example:

name : java.lang.String

A public (+) visibility symbol is automatically added to the start of the property.

Note: If you want to represent this relationship using a
container-managed relationship (CMR) field, this is the bean in which
the field will be created.

Note: To change the multiplicity of a relationship end on the
diagram, right-click on the relationship end and choose either
Multiplicity > 1 or Multiplicity > *.

Note: If a property type from the java.lang package is entered
without a package prefix, for example, String or Long, a property
type prefix of java.lang. is automatically added. If no type is given
for a property, a default type of 'String' (java.lang.String) is
used

Modeling EJB/JPA Components on a Diagram

23-6 User's Guide for Oracle JDeveloper

23.3.5.2 Creating Methods on Modeled Beans
Both local/remote and local/local home methods can be created on modeled beans on
a class diagram. Modeling a method on a bean also creates the corresponding code in
the implementing Java class.

When creating a method in-place on a modeled bean, enter the name, and optionally
the parameter types and names, and return type of the method. The method return
type must be preceded by a colon (:). For example:

getName(String CustNumber) : java.lang.String

 A public (+) visibility symbol is automatically added to the start of the method.

23.3.6 How to Model Cross Component References
References can be created between modeled beans on a class diagram.

■ EJB References can be created from any bean to any other bean with a remote
interface.

■ EJB Local References can be created from any bean to any other bean with a local
interface.

To model a reference between modeled beans:
1. Click the icon for the reference you want to create, from those listed on the EJB

Component Palette:

■ EJB Reference

■ EJB Local Reference

2. Click the bean at the 'owning', or 'from', end of the reference.

3. Click the bean at the 'to' end of the reference.

Notes: If a return type from the java.lang package is entered
without a package prefix, for example, String or Long, a return type
prefix of java.lang. is automatically added to the Java in the
method's class.

If no parameter types are provided, the method will be defined with
no parameters. If no return type is specified, a default return type of
void is used. To change a property of the method, double-click the
class on the diagram, or on the Navigator pane, then change the
details of the method using the EJB Editor.

Note: References can only be made to beans that are inside the
current deployment descriptor.

Note: If these icons are not displayed, select EJB from the list on the
Component Palette.

Modeling EJB/JPA Components on a Diagram

Developing Java EE and Java Applications Using Modeling 23-7

23.3.7 How to Display the Implementing Source Code for a Modeled Bean
Each modeled bean has underlying Java source files that contain the implementation
code for that element. These implementation files can be displayed on the diagram as
modeled Java classes.

To display a modeled implementing Java class for a modeled bean:
■ Select the bean, the Java implementation of which you want to model on the

diagram, then choose Model, then Show, then Implementation Files.

■ Or, right-click the bean on the diagram, the Java implementation of which you
want to model on the diagram, then choose Show Implementation, then Files.

23.3.8 How to Display the Source Code for a Modeled Bean
The Java source code for a modeled bean can be displayed in the source editor with
simple commands on the diagram.

To display the Java source code for a model element:
■ Right-click the element on the diagram. Choose Go to Source, then choose the

source file you want to view.

■ Or, select the element on the diagram. Choose Model > Go to Source.

23.3.9 How to Change the Accessibility of a Property or Method
You can change the accessibility of a property or method on a modeled bean on a
diagram with simple commands on a diagram.

To change the accessibility of a property or method:
1. Right-click the property or method you want to change.

2. Choose the required accessibility option from the Accessible from option on the
context menu.

 The accessibility options are:

■ Local Interface

■ Remote Interface

■ Local and Remote Interfaces

23.3.10 How to Reverse-Engineer a JPA Entity on a Diagram
Modeled entity beans can be reverse-engineered on a diagram of EJBs from table
definitions in your application database connection.

To reverse-engineer a table definition to an entity bean:
1. Open, or create a diagram.

2. Expand the node in the Connections Navigator for your database connection.

3. Expand the user node, then the Tables nodes.

4. Click the table, the definition to use to create an entity bean, and drag it to the
current diagram.

Java Class Diagram

23-8 User's Guide for Oracle JDeveloper

To reverse-engineer several tables to entity beans, hold down the Ctrl key, select
the tables in the navigator and drag these tables to the diagram, then release the
Ctrl key.

5. Select the EJB version and click OK.

23.4 Java Class Diagram
Model your Java EE Java classes and class systems using the Java class diagram
features. For more information see Chapter 22.10.1, "How to Work with Class
Diagrams."

23.5 Database Diagram
Modeling your database structures gives you a visual view of your database schema
and the relationships between the tables, stored in your online or offline database. You
can also transform database tables to Java classes and interfaces and vice-versa using
the transformation features. For more information on database transformation see
Chapter 22.7, "Transforming Java Classes and Interfaces".

23.5.1 How to Work with the Database Modeling Features
With JDeveloper, you can model offline database objects as well as database objects
from a live database connection. You can also create database objects such as tables
and foreign key relationships right on your diagram and integrate them with an
online or offline database.

Use database diagrams to view your business entity structure and relationships, as
well as create directly on your diagram components such as tables and foreign key
relationships, views and join objects, materialized views, synonyms and sequences.

All of the database objects from online or offline databases, as well as the new objects
you create, are displayed in the Application Navigator.

23.5.1.1 Benefits of Database Modeling
Add or create offline and live online database objects using the Application Navigator
and the Component Palette.

Use a database diagram to do the following:

■ Create and visualize tables and their columns.

■ Create and visualize foreign key relationships between tables.

■ Create and visualize views, materialized views, and materialized view logs.

■ Create and visualize sequences and synonyms.

In addition, you can create database objects on a diagram based on templates.

23.5.1.2 How to Get Started with Database Modeling
Create your database using the New Gallery. See "To create a new diagram:" on
page 22-2. Once you’ve created your database diagram, you can choose from the
available components in the Component Palette, as shown in Figure 23–2.

Database Diagram

Developing Java EE and Java Applications Using Modeling 23-9

Figure 23–2 Database Component Palette

Create an offline database object on the diagram by clicking on the icon on the
Database Objects Component Palette, and then clicking on the diagram where you
want to create the object. You can also drag objects from a database connection in the
Database Navigator, or from an offline schema in the Application Navigator, onto a
diagram.

You can model online or offline tables on any type of diagram, (except an activity
diagram), and you can add elements like UML classes, Java classes, business
components, Enterprise JavaBeans, UML use cases, and web services on the same
diagram.

You can create offline database objects on a diagram that are based on templates. The
first time you add an object to a new database diagram, the Specify Location dialog
appears, where you specify whether the objects are offline database objects in a project,
or database objects in a database connection. If you want to create offline database
objects based on templates, you can create a set of templates at the same time.

You can add the elements that define the object by either double-clicking the modeled
object to display the appropriate edit dialog, or by creating the new element 'in-place'
on the modeled object.

You can annotate a diagram of database objects using notes, dependency relationships,
and URL links.

If you change, add to or delete from the definition of anything that's displayed on a
diagram, those changes will be reflected on the modeled representations of those
database objects. Conversely, any changes to the modeled database objects are also
made to the underlying definitions.

Foreign keys
Foreign keys can be created quickly between modeled tables clicking Foreign Key on
the Database Component Palette, then clicking the table you want to originate the
foreign key, and then clicking the destination table for the foreign key. The Create
Foreign Key dialog allows you to select an existing column in the target table, or create
a new column.

Join Objects
You can create join objects between two table usages in a view by clicking (Join
Objects) on the Database Component Palette, then clicking on the two table usages to
be joined. The Edit Join dialog allows you to specify the join.

Database Diagram

23-10 User's Guide for Oracle JDeveloper

Materialized Views
Materialized Views are created on a diagram by clicking on (Materialized View) on the
Database Component Palette, and then clicking on the diagram where you want to
create the materialized view. You can also drag materialized views from a database
connection defined in JDeveloper, or from an offline database in the Application
Navigator, and drop them on the diagram.

Materialized Views from Template
Materialized Views based on templates are created on a diagram by clicking on
(Materialized View from Template) on the Database Component Palette, and then
clicking on the diagram where you want to create the materialized view. The Choose
Template Object dialog is displayed, which allows you to choose the template you
want to base the materialized view on.

Private and Public Synonyms
Synonyms are created on a diagram by clicking on (Synonym) on the Database
Component Palette, and then clicking on the diagram where you want to create the
synonym. You can also drag synonyms from a database connection defined in
JDeveloper, or from an offline database in the Application Navigator, and drop them
on the diagram.

Public synonyms are created in the PUBLIC schema.

Relation Usage
Define a base relation for a view by clicking on (Relation Usage) on the Database
Component Palette, and then clicking on the view.

Sequences
Sequences are created on a diagram by clicking on (Sequence) on the Database
Component Palette for the diagram, and then clicking on the diagram where you want
to create the sequence. You can also drag sequences from a database connection
defined in JDeveloper, or from an offline database in the Application Navigator, and
drop them on the diagram.

Sequences from Templates
Sequences based on templates are created on a diagram by clicking on (Sequence from
Template) on the Database Component Palette for the diagram, and then clicking on
the diagram where you want to create the sequence. The Choose Template Object
dialog is displayed, which allows you to choose the template you want to base the
materialized view on.

Synonyms from Templates
Synonyms based on templates are created on a diagram by clicking on (Synonym from
template) on the Database Component Palette for the diagram, and then clicking on
the diagram where you want to create the synonym. The Choose Template Object
dialog is displayed, which allows you to choose the template you want to base the
materialized view on.

Tables
Tables are created on a diagram by clicking on (Table) on the Database Component
Palette, and then clicking on the diagram where you want to create the table. You can
also drag tables from a database connection defined in JDeveloper, or from an offline
database in the Application Navigator, and drop them on the diagram.

Database Diagram

Developing Java EE and Java Applications Using Modeling 23-11

You can choose to view table column icons on a modeled table which indicates which
columns are primary keys, or foreign keys, or unique keys.

The first column in the modeled table indicates whether the column is in a primary,
unique, or foreign key:

■ Column is in a primary key

■ Column is in a foreign key

■ Column is in a unique key

■ Column has a check constraint

The second column indicates whether the table column is mandatory.

Tables from Templates
Tables are created on a diagram by clicking on (Table from template) on the Database
Component Palette, and then clicking on the diagram where you want to create the
table. The Choose Template Object dialog is displayed, which allows you to choose the
template you want to base the materialized view on.

Views
Views are created on a diagram by clicking on (View) on the Database Component
Palette, and then clicking on the diagram where you want to create the view. You can
also drag views from a database connection defined in JDeveloper, or from an offline
database in the Application Navigator, and drop them on the diagram.

Define the view by adding tables and views, or table columns or elements of other
views to the newly defined view. You can add the views by creating them from the
Component Palette, by dragging other views and tables on the diagram onto the view,
by dragging offline database objects from the Application Navigator, or by dragging
database objects from a connection in the Database Navigator.

Views from Templates
Views are created on a diagram by clicking on (View from template) on the Database
Component Palette, and then clicking on the diagram where you want to create the
view. The Choose Template Object dialog is displayed, which allows you to choose the
template you want to base the materialized view on.

23.5.1.3 How to Change the Database or Schema
1. On the database diagram, right-click and choose Create Database Objects In >

Database or Schema.

2. Complete the Specify Location dialog (selecting Application Project for offline
database objects, or Database Connection for database objects) or Select Offline
Schema dialog.

Note: If a table column is in a primary key it will only display the
primary key icon even though it may also be in a unique key or
foreign key.

Note: All subsequent database objects will be created in the database
or schema you have chosen. Existing objects are unchanged.

Database Diagram

23-12 User's Guide for Oracle JDeveloper

Part VI
Part VI Working with Databases

This part describes the general concepts of working with Oracle JDeveloper to connect
to and design databases and contains the following chapters:

■ Chapter 24, "Getting Started with Working with Databases"

This chapter introduces the various concepts and features.

■ Chapter 25, "Using the Database Tools"

This chapter introduces the tools and features that JDeveloper provides to help
you to design and work with databases.

■ Chapter 26, "Connecting to and Working with Databases"

This chapter introduces connecting to Oracle and non-Oracle databases.

■ Chapter 27, "Designing Databases Within Oracle JDeveloper"

This chapter introduces designing databases in JDeveloper by modeling database
objects, and how to generate these to a database.

■ Chapter 28, "Using Java in the Database"

This chapter describes the features that allow you to write and execute Java
programs that access Oracle Databases.

■ Chapter 29, "Running and Debugging PL/SQL and Java Stored Procedures"

This chapter how to use PL/SQL and Java Stored Procedures in a database.

24

Getting Started with Working with Databases 24-1

24Getting Started with Working with Databases

This chapter describes how to get started using JDeveloper to work with databases. If
you are new to using database you will find the section on connecting to Oracle
Database XE, an entry-level, small-footprint database.

This chapter includes the following sections:

■ Section 24.1, "About Working with Databases"

■ Section 24.2, "Getting Started With Oracle Database 10g Express Edition"

■ Section 24.3, "How to Manage Database Preferences and Properties"

24.1 About Working with Databases
JDeveloper enables you to work with Oracle and non-Oracle databases directly, and to
design, create, and edit databases by working with offline database definitions.

Refer to the following documentation to quickly get started with using Oracle
databases in JDeveloper:

■ Using Oracle Database 10g Express Edition. For more information, see
Section 24.2, "Getting Started With Oracle Database 10g Express Edition."

■ Creating connections to Oracle and non-Oracle databases. For more information,
see Section 26.4, "Connecting to Databases."

■ Working in the Database Navigator. For more information, see Section 25.1, "Using
the Database Navigator."

■ Database Development with JDeveloper. For more information, see "Database
Development with JDeveloper 11g" at
http://st-curriculum.oracle.com/obe/jdev/obe11jdev/11/index.h
tml.

24.1.1 Connecting to and Working with Databases
Usually you start working with a database by creating a connection to it. JDeveloper
helps you quickly to create connections to Oracle databases, and you can also connect
to and work with a number of non-Oracle databases. Once you have a database
connection you can search for database objects in the Database Navigator, or use the
search tools to find specific objects, or compare databases and their contents. You can
also edit data and import and export data, and you can create reports about the
database and objects in it.

Getting Started With Oracle Database 10g Express Edition

24-2 User's Guide for Oracle JDeveloper

24.1.2 Designing Databases
You can work directly with databases through a database connection using the
integrated tools in JDeveloper which include SQL Worksheet and the database object
editors, and you can edit database objects using the database object editors.
Alternatively, you can create an offline database and working either in the Application
Navigator or the database diagrammer you can work with offline database definitions
to model the database and then generate the results to a database through a database
connection.

Database connections can be listed in the Application Navigator or Database
Navigator, where they are available to applications you are working on, or in the
Resource Palette, where they are available for reuse in other applications.

Once you have a database connection, you can:

■ Browse and search databases for specific objects.

■ Produce reports about databases and their contents.

■ Import and export data.

■ Copy, compare and export databases.

You can work with offline databases, which you can model on the database
diagrammer or work with in the Application Navigator.

You can create, edit, and drop objects in a database or in an offline database.

You can write and execute Java programs using JDBC that access Oracle and
non-Oracle databases.

If you are new to using databases with JDeveloper, one of the easiest ways to get
started is to try out Oracle Database 10g Express Edition (Oracle Database XE).

24.2 Getting Started With Oracle Database 10g Express Edition
If you are new to using databases with JDeveloper, one of the easiest ways to get
started is to try out Oracle Database 10g Express Edition (Oracle Database XE). Oracle
Database XE is an entry-level, small-footprint database based on the Oracle Database
10g Release 2 code base. It is free to develop, deploy, and distribute; fast to download;
and simple to administer. You can download it from Getting Started: Oracle Database
10g Express Edition (XE), which is available at
http://www.oracle.com/technetwork/database/express-edition/overv
iew/index.html

After you have downloaded and installed Oracle Database XE, follow the instructions
in the Getting Started Guide to unlock the sample user, HR. You may want to grant
additional privileges, for example to create tables and materialized views. Now you
can create a database connection from JDeveloper to the sample user.

In the Create Database Connection dialog, use the following values. Leave blank any
fields that are not mentioned.

Table 24–1 Connection details for Oracle Database 10g Express Edition

Field Value

Create Connection In Choose Application resources. The connection will be displayed
in the Application Navigator, under Application Resources.

Connection Name Enter a meaningful name for this connection.

Connection Type Oracle (JDBC) (default).

How to Manage Database Preferences and Properties

Getting Started with Working with Databases 24-3

Click Test Connection at the bottom of the dialog. Success! indicates that you have a
connection to the database. If you get any other message, check that you have entered
the values above correctly, and check that the Oracle Database XE has started.

24.3 How to Manage Database Preferences and Properties
There are a number of preferences that allows you to control how to use the database
functionality in JDeveloper. These are available in the Preferences dialog, available
from the Tools menu:

■ Database page, where you can choose not to have date and time default values
validated, set the default path for export DDL files, and enter the location of a
database startup script.

■ Database: Advanced page, where you set options such as the SQL array fetch size
and display options for null values.

■ Database: Autotrace/Explain Plan page, where you specify the information to be
displayed on the Autotrace and Explain Plan pages in the SQL Worksheet.

■ Database: Drag and Drop page, where you specify the type of SQL statement
created in the SQL Worksheet when you drag an object from the Database
Navigator into the SQL Worksheet.

■ Database: JDBC Driver Options page, where you register and manage JDBC
drivers for the BI JDBC driver, and the WebLogic JDBC drivers for DB2, Informix,
SQL Server and Sybase.

■ Database: NLS page, where you specify globalization support parameters, such as
the language, territory, sort preference, and date format.

■ Database: Objectives options page, where you specify whether to freeze object
viewer windows, and display options for the output.

■ Database: PL/SQL Compiler page, where you specify options for compilation of
PL/SQL subprograms.

■ Database: Reports page, where you can choose that database reports in JDeveloper
are closed when the database is disconnected.

■ Database: SQL*Plus, where you set the path to the SQL*Plus command line tool.

Username HR to use the sample user. If you have created a new database
user, enter the name of that user.

Password Enter the password you entered when you unlocked the sample
user or created a new user.

Save Password Selected (default).

Driver thin (default)

Host Name When Oracle Database XE is installed on the local system use the
default of localhost or 127.0.0.1. Otherwise enter the IP
address or resolvable hostname of the machine where it is
installed.

JDBC Port 1521 (default)

SID XE (default)

Table 24–1 (Cont.) Connection details for Oracle Database 10g Express Edition

Field Value

How to Manage Database Preferences and Properties

24-4 User's Guide for Oracle JDeveloper

■ Database: SQL Editor Code Templates page, which allows you to view, add, and
remove templates for editing SQL and PL/SQL code. Code templates assist you in
writing code more quickly and efficiently by inserting text for commonly used
statements.

■ Database: SQL Formatter page, which allows you to control how statements in the
SQL Worksheet are formatted.

■ Database: User Defined Extensions page. (Not used by JDeveloper.)

■ Database: Worksheet page, where you specify options for the SQL Worksheet.

■ Diagrams: Database (under the Diagrams node). Use to set preferences that control
how diagrams are displayed.

To manage database preferences in the Preferences dialog:
1. Choose Tools > Preferences.

2. From the Preferences page, select the page you want. For more information at any
time, press F1 or click Help from within the dialog.

To manage properties in the Project Properties dialog:
1. Choose Application > Project Properties (to change or specify a property for just

the current project), or Default Project Properties (to set default properties).

2. In the dialog, choose the page you want. For more information at any time, press
F1 or click Help from within the dialog.

As well as managing these preferences and properties, you can also filter schemas or
objects in a database connection to just see the ones you want.

25

Using the Database Tools 25-1

25Using the Database Tools

This chapter provides an introduction to the various tools that JDeveloper uses to help
you work with and manage databases.

This chapter includes the following sections:

■ Section 25.1, "Using the Database Navigator"

■ Section 25.2, "Using the Structure Window"

■ Section 25.3, "Using the Database Reports Navigator"

■ Section 25.4, "Using the Find Database Object Window"

■ Section 25.5, "Using the SQL Worksheet"

■ Section 25.6, "Using the SQL History Window"

■ Section 25.7, "Using the Snippets Window"

■ Section 25.8, "Using the Database Object Viewer"

■ Section 25.9, "Using SQL*Plus"

■ Section 25.10, "DBMS Output Window"

■ Section 25.11, "OWA Output Window"

25.1 Using the Database Navigator
The Database Navigator provides you with a complete editing environment for online
databases. You can create, update and delete database objects using the navigator.

The Database Navigator is integrated with:

■ The SQL Worksheet.

■ The Database Object Viewer.

In addition, you can drag database objects from a database connection onto a database
diagram to either:

■ Model the database objects on the diagram.

■ Copy the database objects to a project, and model the offline database objects on
the diagram.

For more information about database modeling, see Section 23.5, "Database Diagram."

When you first open the Database Navigator, it appears in the docked position, along
with any other open navigators. Its default docked position is in the upper left-hand

Using the Database Navigator

25-2 User's Guide for Oracle JDeveloper

corner, flush with the main work area of JDeveloper. When more than one navigator is
open, each appears with a tab displaying its name.

Right-click on a node within the Database Navigator to bring up a context-sensitive
menu of commands. The menu commands available depend on the node selected. You
can open nodes in their default editors, as well as other editors common to that node
type, using the context menu.

You can perform various tasks from the context menus in the Database Navigator.
Right-click the IDE Connections node (for globally defined connections) or an
application name node (for connections that are locally-scoped, and just available
within the application) and select the appropriate menu item to:

■ Open the New Gallery.

■ Create a new database connection.

■ Import an XML file with connection definitions.

■ Export current connections.

You can perform the following operations from a database connection node:

■ Connect to and disconnect from the database.

■ Open the New Gallery.

■ Delete the database connection.

■ Generate SQL from database objects.

■ Copy database objects as offline database objects to a project.

■ Run SQL*Plus.

■ Filter the objects displayed in the connection.

■ Edit the database connection properties.

■ Open the SQL Worksheet.

■ Generate DB doc

■ Remote Debug

■ Gather Schema Statistics

■ XML DB Protocol server configuration

■ Perform remote debugging if you are using the Java Platform Debugger
Architecture (JPDA) using a debugger to listen so that a debuggee can attach to the
debugger.

Table 25–1 Database Navigator Toolbar Icons

Icon Name Function

New
Connection

Click to open the Create Database Connection wizard, where you
enter the details to create a connection to a database.

Refresh Click to synchronize the display in the navigator with the contents
of the connection.

Apply Filter Click to filter which objects will be displayed for a given
connection. To enable the icon, select a node within the connection
in the navigator and wait for the connection to be established.

Using the Database Reports Navigator

Using the Database Tools 25-3

There are additional options available from database object type nodes (for example,
Tables, Indexes, or Procedures) or from database object nodes (such as a specific table,
or a specific view). The options available depend on the node selected.

25.2 Using the Structure Window
The database view of the Structure Window displays details of a database object
selected in the Database Navigator, or an offline database object selected in the
Application Navigator.

When you select a database object such as a table in a database connection in the
Database Navigator or an offline database object such as a table in an offline database
in the Application Navigator, a node for that object is shown in the Structure Window.
You can expand the node to see details of the sub objects that make up the database
object. In the case of a table, these include sub objects such as columns, constraints,
and indexes.

You can perform the following operations from the database view of the Structure
Window:

■ View properties or edit properties (offline database objects only) by choosing
Properties from the context menu of an appropriate node. The Edit dialog for the
object type opens. It is read only for database objects.

■ Use a database object or offline database object such as a table as a template to
create a new object by choosing Use as Template from the context menu. The
Create dialog for the object type opens.

■ Find usages of an offline database object such as a table by choosing Find Usages
from the context menu.

25.3 Using the Database Reports Navigator
Use the Database Reports Navigator to view reports about the database and its objects.

You can also create your own user defined reports.

To open a pre-defined report, expand Data Dictionary Reports and navigate to the
report you want. Double-click the report name to run it. A number of dialogs may be
displayed before the report is opened in the Reports Results window:

■ Select Connection dialog (all reports), where you can choose an existing database
connection or create a new database connection. Once you have chosen the
connection, the same connection is used for subsequent reports you run.

■ Enter Bind Values dialog (All Objects reports), where you can enter values for each
bind variable. Bind variables enable you to restrict the output.

■ Diagnostic Pack Required dialog (ASH and AWR reports). You must have a
licensed copy of Oracle Diagnostic Pack running on the database to run these
reports, and the dialog allows you to confirm that you have one.

Table 25–2 Icons in the SQL Worksheet Toolbar

Icon Name Function

Refresh Click to refresh the content of the Structure Window. You may
want to do this when a database object has been changed outside
JDeveloper, for example using SQL*Plus, and you want to be sure
that the Structure Window reflects the current state of the object.

Using the Find Database Object Window

25-4 User's Guide for Oracle JDeveloper

You can create your own reports and store them in folders and sub-folders under the
User Defined Reports node.

Some reports may take some time to run, and the time is affected by the number and
complexity of objects involved, and by the speed of the network connection to the
database.

From the Data Dictionary Reports node you can:

■ Export a report into an XML file that can be imported later by right-clicking the
report name and choosing Export.

■ Create a shared report from an exported report.

User Defined reports are any reports that are created by JDeveloper users.

Information about user defined reports, including any folders for these reports, is
stored in UserReports.xml in the directory for user-specific information.

You can perform the following operations from the User Defined Reports node:

■ Create a user defined report by choosing Add Report from the User Defined
Reports context menu.

■ Organize user defined reports in folders, and create a hierarchy of folders and
subfolders. Choose Add Folder from the User Defined Reports context menu.

■ Import a report that had previously been exported. Select report folder in which to
store the imported report, right-click, and select Import.

The Shared Reports node is displayed once you have defined the first shared report in
the Preferences dialog.

For more information about creating and sharing database reports, see Section 26.8,
"Working with Database Reports".

25.4 Using the Find Database Object Window
The Find Database Object Window allows you to search for and work on database
objects within a live database.

The Find Database Object Window is fully integrated with the online database
functionality, including the SQL Worksheet and the Database Object Viewer.

While you are using the Find Database Object Window these features are available:

■ Open any currently closed navigator, or bring a currently open navigator to the
foreground, using View > navigator-name.

■ Move, resize, float, minimize, maximize, restore or close the Find Database Object
Window using the context menu available by right-clicking its tab or by pressing
Alt+Minus.

Table 25–3 Find Database Object Toolbar

Name Function

Connection Choose the database connection to search in from the dropdown
list. You must already have a connection to the database.

Name Enter the search term. You can use the wildcard % to return a
number of matching objects.

Type Choose the type of database object to restrict the search to. The
default is ALL OBJECTS.

Using the SQL Worksheet

Using the Database Tools 25-5

You can perform the following tasks from the Find Database Object window:

■ Close or open the panel by clicking its bar.

■ Change the area used by the panel by grabbing its bar and moving it up or down.

■ Remove the panel from view by opening its dropdown menu (panel bar, far right)
and choosing Minimize. Restore it by clicking the three dots at the very bottom of
the Application Navigator and then clicking Recently Opened Files.

■ Open an object, or the parent object that contains the specified object, in its default
editor, or bring the default editor into focus, by selecting the object in the list.

25.5 Using the SQL Worksheet
Use to enter and execute SQL, PL/SQL, and SQL*Plus statements. You can specify any
actions that can be processed by the database connection associated with the
worksheet, such as creating a table, inserting data, creating and editing a trigger,
selecting data from a table, and saving that data to a file.

You enter SQL statements in the SQL Statement area, and use the buttons on the
toolbar to perform actions.

Table 25–4 describes the icons and fields in the toolbar above the SQL Worksheet
statement area.

Usage Only for certain types of object) Choose the usage of the object,
for example ALL.

Lookup Click to display the results of the search. The results of the
search are displayed in the panel. Double-click on an object to
open it in the appropriate editor.

Table 25–4 Icons in the SQL Worksheet Toolbar

Icon Name Function

Run
Statement
(Ctrl+Enter)

Click to execute the statement at the mouse pointer in the SQL
statement area. The SQL statements can include bind variables
and substitution variables of type VARCHAR2. If necessary,
VARCHAR2 is automatically converted to NUMBER. If you use
variable values, a window is displayed for you to enter them.

Run Script
(F5)

Click to execute all statements in the SQL statement area. The SQL
statements can include bind variables and substitution variables
of type VARCHAR2. If necessary, VARCHAR2 is automatically
converted to NUMBER. If you use variable values, a window is
displayed for you to enter them.

Autotrace (F6) Click to generate trace information for the statement. Too see trace
information, click the Autotrace tab.

Explain Plan
(F10)

Click to generate the execution plan for the statement, which
internally executes the EXPLAIN PLAN statement. Trace
information is shown in the Explain Plan Results window.

Commit (F11) Click to write any changes to the database. This ends the
transaction and clears any output in the Results and Script Output
tabs.

Table 25–3 (Cont.) Find Database Object Toolbar

Name Function

Using the SQL Worksheet

25-6 User's Guide for Oracle JDeveloper

The results area has a number of tabs:

■ Results tab, Displays the results of clicking Run Statement.

■ Script Output tab, which displays the results of clicking Run Script.

■ Autotrace tab, which displays output as a result of clicking Autotrace.

■ Explain tab, which displays output as a result of clicking Explain Plan.

The SQL Worksheet provides code insight for SQL code. When you type a word, a
dropdown menu of valid code appears. For example:

■ If you type select, SELECT is displayed.

■ If you type select *, a list containing BULK, FROM, and INTO is displayed.

■ If you are connected to the HR schema and type select * from em, a list
containing the table employees and the view emp_details_view is displayed.

 To configure Code Insight for the SQL Worksheet:
1. Select Tools > Preferences > Code Editor > Code Insight.

2. In the Code Insight page, adjust font size or font type, and completion insight and
parameter insight timing.

3. Click OK. Your changes are active the next time you use the editor.

To open the SQL Worksheet:
1. Choose View > Database > Database Navigator.

2. Expand IDE Connections or Application Connections.

3. Right-click the connection in the Navigator, and choose Open SQL Worksheet.

Rollback (F12) Click to discard any changes without writing them to the
database. This ends the transaction and clears any output in the
Results and Script Output tabs.

Unshared
SQL
Worksheet
(Ctrl+Shift+N)

Click to open a new unshared SQL Worksheet for a different
connection.

To
Upper/Lower/
Inicat
(Ctrl+Quote)

Click to switch the selected text between upper case, lower case,
and initial capitals.

Clear (Ctrl+D) Click to erase the statement or statements in the Enter SQL
Statement area.

Cancel (Only displayed while a script is running) Click to stop execution
of the script.

(Only displayed once a statement or script has run) Displays the
time it took to execute a statement or run a script. This can be used
with Explain Plan to provide useful tuning information.

Use to choose a different database connection.

Table 25–4 (Cont.) Icons in the SQL Worksheet Toolbar

Icon Name Function

Using the SQL Worksheet

Using the Database Tools 25-7

Alternatively, click the SQL Worksheet button on the JDeveloper toolbar.

For more information at any time, press F1 or choose Help from within the SQL
Worksheet.

Alternatively, from the main toolbar, click and choose the database connection from
the Choose Connection dialog.

You can create a SELECT statement by dragging and dropping table and view names,
and by graphically specifying columns and other elements of the query using Query
Builder. You can run the statement within Query Builder to see the results, and when
you close Query Builder, the resulting SELECT statement is inserted into the SQL
Worksheet.

To use Query Builder:
1. Open the SQL Worksheet.

2. Right-click and choose Query Builder. For more information at any time, press F1
or click Help from within the Query Builder.

3. Select the schema you want, and drag the table you want to base the query on
onto the main pane of the dialog. There will be a delay of a few seconds while
Query Builder connects to the database and loads information about the table.

4. Choose the columns you want to use in the query from the dialog that is
displayed.

5. To add a WHERE clause, click the Create Where Clause tab, and enter values for the
clause.

6. View the SQL comprising the query in the View SQL tab.

7. You can see the results of the query by selecting the View Results tab, and clicking
Run Results.

8. When you press Apply in the Query Builder dialog, the dialog closes and the
query is inserted into the SQL Worksheet.

To execute a SQL statement:
1. Enter a SQL statement in the worksheet's upper pane.

2. Do any one of the following:

■ Press Ctrl+Enter.

■ Click the Execute the statement button on the toolbar.

■ Right-click, and select Execute SQL Statement from the context menu.

3. View the data returned by the statement in the lower pane.

For more information, see "Using the SQL Worksheet" in the Oracle Database SQLJ
Developer's Guide.

25.5.1 Using Execution Plan
An execution plan is the sequence of operations that will be performed to execute the
statement, and you can use the SQL Worksheet to inspect the execution plans chosen
by the Oracle optimizer for SQL SELECT, UPDATE, INSERT, and DELETE statements.
You can also view explain plan for the SQL code for the query part of a view
definition.

Using the SQL Worksheet

25-8 User's Guide for Oracle JDeveloper

An execution plan shows a row source tree, which is the hierarchy of operations that
comprise the statement. For each operation it shows the following information:

■ An ordering of the tables referenced by the statement

■ An access method for each table mentioned in the statement

■ A join method for tables affected by join operations in the statement

■ Data operations such as filter, sort, or aggregation

In addition to the row source tree, the plan table displays the following information
about selected operations:

■ Optimization, such as the cost and cardinality of each operation

■ Partitioning, such as the set of accessed partitions

■ Parallel execution, such as the distribution method of join inputs

For more information, see "Using EXPLAIN PLAN" in the Oracle Database Performance
Tuning Guide.

An additional source of information that can be used to tune SQL queries is the
elapsed time that is displayed in the toolbar of the SQL Worksheet when statements
are executed or scripts are run.

To view a SQL statement's execution plan:
1. If necessary, open the SQL Worksheet.

2. Enter a SQL statement in the worksheet's upper pane.

3. Do one of the following:

■ Click the Explain Plan button on the toolbar.

■ Right-click to open the context menu, and select Execute Explain Plan.

The Explain Plan tab shows the explain plan information for the SQL statement.

25.5.2 How to Recall Statements from the SQL Worksheet History
The statements executed in a session with the SQL Worksheet are preserved in a
history list. You can retrieve previous statements from the history, and re-execute them
or view their execution plans.

To recall a statement from the SQL Worksheet history:
1. Do either of the following:

■ Click the View History dialog button.

■ Right-click in the SQL Worksheet to open the context menu, and select
History.

A dialog showing the list of the statements previously entered is displayed.

2. Select the desired statement from the dialog.

3. Click OK.

The statement is displayed in the upper pane of the worksheet.

Using the Snippets Window

Using the Database Tools 25-9

25.6 Using the SQL History Window
The SQL History Window allows you to reuse statements previously executed in a
session with the SQL Worksheet.

SQL statements and scripts that you have executed are listed in the window, and you
can select one or more statements to have them either replace the statements currently
on the SQL Worksheet or be added to the statements currently on the SQL Worksheet.

While you are using the SQL History Window these features are available:

■ Open any currently closed navigator, or bring a currently open navigator to the
foreground, by choosing it from the View menu.

■ Move, size, float, minimize, maximize, restore or close the Find Database Object
Window using the context menu available by right-clicking its tab or by pressing
Alt+Minus.

25.7 Using the Snippets Window
Snippets are code fragments, such as SQL functions, Optimizer hints, and
miscellaneous PL/SQL programming techniques. Some snippets are just syntax, and
others are examples. The Snippets Window is integrated with the SQL Worksheet and
when you are creating or editing a PL/SQL function or procedure.

In the Snippets Window, the snippets are organized in categories in the drop-down
list, such as Aggregate Functions or Character Functions. You can create new snippets
and add them to an existing category, or to a new category. To see a brief description of
a snippet, hover the mouse pointer over the function name.

To insert a snippet into your code in a SQL Worksheet or in a PL/SQL function or
procedure, drag the snippet from the snippets window and drop it into the desired
place in your code; then edit the syntax so that the SQL function is valid in the current
context.

For example, you could type SELECT and then drag CONCAT(char1, char2) from
the Character Functions group. Then, edit the CONCAT function syntax and type the
rest, as in this example:

SELECT CONCAT(title, ' is a book in the library.') FROM books;

Table 25–5 SQL History Toolbar Icons

Icon Name Function

Append Click to append the selected statement or statements to any
statements currently on the SQL Worksheet. You can also append
the selected statement or statements by dragging them from the
SQL History window and dropping them at the desired location
on the SQL Worksheet.

Replace Click to replace any statements currently on the SQL Worksheet
with the selected statement or statements.

Clear
History

Click to remove all statements from the SQL history.

Filter Use to filter the SQL statements visible in the SQL History
window. Type a string in the text box and click Filter. Only SQL
statements containing that string are listed. To remove the filter,
delete the string in the field and click Filter again.

Using the Database Object Viewer

25-10 User's Guide for Oracle JDeveloper

From the Snippets window, you can:

■ Display snippets by choosing the category from the list.

■ Add a snippet to the cursor position in a file such as a SQL file by double-clicking
it.

25.8 Using the Database Object Viewer
The Database Object Viewer allows you to manage the structure and contents of
objects in a database. The tabs available depend on the type of object being viewed.

You can edit the value in any of the cells by double-clicking the cell to select it, then
clicking ... to open the Edit Value dialog.

Information about the object is contained in a number of tabs.

■ Columns, which shows the columns comprising the object.

■ Data, which shows the data in this object. You can edit the value in any of the cells
by double-clicking the cell to select it, then clicking ... to open the Edit Value
dialog.

■ Constraints, which shows the details of any constraints.

■ Grants, which shows privilege details.

■ Statistics, which shows statistical information.

■ Triggers, which shows information about triggers

■ Dependencies, which shows information about references.

■ Details, which Indexes, which displays details of any indexes.

■ SQL, which displays the SQL that represents this object.

25.8.1 Database Object Viewer Tabs Toolbars
The specific buttons on the toolbar vary from tab to tab.

Table 25–6 Snippets Window Toolbar Icons

Icon Name Function

Add
Snippets

Click to open the Save Snippet dialog where you can create a new
snippet and save it in an existing group or in a new group.

Edit User
Snippets

Click to open the Edit Snippets dialog which lists user snippets.
You can create, edit and delete snippets in this dialog.

Table 25–7 Database Object Viewer Tabs Toolbar Icons

Icon Name Function

Freeze and
Unfreeze
View

Use to toggle freezing the table viewer on the current view.

Edit Click to open the Edit Table dialog.

Refresh Click to refresh the data.

Using SQL*Plus

Using the Database Tools 25-11

25.9 Using SQL*Plus
SQL*Plus is an interactive and batch query tool that is installed with every Oracle
Server or Client installation. It has a command-line user interface. You can launch
SQL*Plus from within JDeveloper. For more information, see the SQL*Plus User's
Guide and Reference.

In most cases, using SQL Worksheet is preferable to using SQL*Plus as it is fully
integrated with JDeveloper, and you can use SQL Worksheet to enter and execute SQL,
PL/SQL, and some SQL*Plus statements.

SQL*Plus can use parameter substitution. The default escape character is '&', thus any
comments that have '&' in them may cause an error. Additionally, the character used in
the SQL*Plus session that runs the script can be changed from the default using SET
DEFINE, so JDeveloper cannot look for the parameter substitution character in
comments and warn you. If you encounter this error in a script, you can use SET
DEFINE OFF to ignore the parameter substitution character or remove the character
from the comment. For more information, see "'Using Scripts in SQL*Plus'" in the
SQL*Plus User's Guide and Reference.

In order to launch SQL*Plus from JDeveloper, you must have SQL*Plus installed on
your machine. For information about installing a SQL*Plus client, see the information
about Oracle Database Instant Client at
http://www.oracle.com/technetwork/database/features/instant-clie
nt/index-100365.html.

You can launch SQL*Plus from:

■ The Tools menu

■ A database connection in the Database Navigator

■ A SQL file in the Application Navigator

If you have not already specified the SQL*Plus executable in JDeveloper, you will able
to do so when you launch SQL*Plus. Alternatively, you can specify the SQL*Plus
executable in the Preferences dialog. You only need to perform this task once.

Insert Row Click to insert a new blank row below the row where the focus is.

Delete
Selected
Row(s)

Click to delete the selected rows of data.

Commit Click to commit the changes to the database. The changes are
logged in the Data Editor log window, and commit will fail if
there is an error, such as a unique constraint violation.

Rollback Click to rollback database changes already made. The Data Editor
log window reports on whether the rollback has succeeded.

Click to open the Sort dialog where you specify the columns to
sort by and the sort order.

Enter a value to reduce the number of records displayed, for
example DEPARTMENT_ID>20.

Click to perform one of a range of common table actions.

Table 25–7 (Cont.) Database Object Viewer Tabs Toolbar Icons

Icon Name Function

DBMS Output Window

25-12 User's Guide for Oracle JDeveloper

To specify the SQL*Plus executable:
1. Choose Tools > Preferences, and select Database Connections.

2. Specify the path to the SQL*Plus executable.

3. Click OK to close the dialog. Now the SQL*Plus item is active in the Tools menu.

4. Select a database connection in the Database Navigator, then choose Tools >
Database > SQL*Plus. If the path specified in step 2 is correct, a SQL *Plus
command window will open.

To launch SQL*Plus from a connection:
1. Choose View > Database > Database Navigator.

2. Right-click the connection, and choose SQL*Plus.

To launch SQL*Plus from a SQL file:
1. In the Application Navigator, navigate to a SQL file.

2. Right-click the SQL file, and choose Run in SQL*Plus.

3. In the submenu, select the connection you wish to use. If you have not already
specified the location of the SQL *Plus executable, you will be prompted for that
first.

25.10 DBMS Output Window
The PL/SQL DBMS_OUTPUT package enables you to send messages from stored
procedures, packages, and triggers. The PUT and PUT_LINE procedures in this
package enable you to place information in a buffer that can be read by another
trigger, procedure, or package. In a separate PL/SQL procedure or anonymous block,
you can display the buffered information by calling the GET_LINE procedure. The
DBMS Output window is used to display the output of that buffer.

Add New DBMS Output Tab: Prompts you to specify a database connection, after
which a tab is opened within the DBMS Output pane for that connection, and the SET
SERVEROUTPUT setting is turned on so that any output is displayed in that tab. (To
stop displaying output for that connection, close the tab.)

Note: On Unix, use xterm to create a terminal window to run the
SQL*Plus command in.

Table 25–8 DBMS Output Window Toolbar Icons

Icon Name Function

Enable
DMBS
Output

Click to toggle the SET SERVEROUTPUT setting between ON and
OFF. Setting server output ON checks for any output that is
placed in the DBMS_OUTPUT buffer, and any output is displayed
in this tab.

Clear Click to erase the content of this tab.

Save File Click to open the Save dialog where you can enter a filename to
save the results in this tab.

Print Click to open the Print dialog, where you can choose the printer to
print the content of this tab.

OWA Output Window

Using the Database Tools 25-13

25.11 OWA Output Window
OWA (Oracle Web Agent) or MOD_PLSQL is an Apache (Web Server) extension
module that enables you to create dynamic Web pages from PL/SQL packages and
stored procedures. The OWA Output window enables you to see the HTML output of
MOD_PLSQL actions that have been executed in the SQL Worksheet.

Buffer Size For databases before Oracle Database 10.2, click to limit the
amount of data that can be stored in the DBMS_OUTPUT buffer.
The buffer size can be between 1 and 1000000 (1 million).

Poll Move the slider to set the interval (in seconds) at which
JDeveloper checks the DBMS_OUTPUT buffer to see if there is
data to print. The poll rate can be between 1 and 15.

Choose DB
Connection

Change to a different database connection by choosing it from the
list.

Table 25–9 OWA Output Window Toolbar Icons

Icon Name Function

Enable
OWA
Output

Click to toggle the SET SERVEROUTPUT setting between ON and
OFF. Setting server output ON checks for any output that is
placed in the DBMS_OUTPUT buffer, and any output is displayed
in this tab.

Clear Click to erase the content of this tab.

Save File Click to open the Save dialog where you can enter a filename to
save the results in this tab.

Print Click to open the Print dialog, where you can choose the printer to
print the content of this tab.

Choose DB
Connection

Change to a different database connection by choosing it from the
list.

Table 25–8 (Cont.) DBMS Output Window Toolbar Icons

Icon Name Function

OWA Output Window

25-14 User's Guide for Oracle JDeveloper

26

Connecting to and Working with Databases 26-1

26Connecting to and Working with Databases

This chapter describes how to create and work with database connections.

This chapter includes the following sections:

■ Section 26.1, "About Connecting to and with Working with Databases"

■ Section 26.2, "Configuring Database Connections"

■ Section 26.3, "Browsing and Searching Databases"

■ Section 26.4, "Connecting to Databases"

■ Section 26.5, "Importing and Exporting Data"

■ Section 26.6, "Copying, Comparing, and Exporting Databases"

■ Section 26.7, "Working with Oracle and Non-Oracle Databases"

■ Section 26.8, "Working with Database Reports"

■ Section 26.9, "Troubleshooting Database Connections"

26.1 About Connecting to and with Working with Databases
You can connect to and work with Oracle databases and a number of non-Oracle
databases.

Database connections can be available in the Application Navigator or Database
Navigator, where they are available to applications you are working on, or in the
Resource Palette, where they are available for reuse in other applications.

Once you have a database connection, you can:

■ Browse for database objects

■ Search for specific database objects

■ Import and export data

■ Copy a database objects from one database schema to another

■ Compare one database schema to another

■ Export some or all objects of one or more database types to a DLL file

■ Use pre-defined reports and create new reports to provide information about a
database and its objects

If you are new to using databases with JDeveloper, one of the easiest ways to get
started is to try out Oracle Database Express Edition (Oracle Database XE). For more

Configuring Database Connections

26-2 User's Guide for Oracle JDeveloper

information, see Section 24.2, "Getting Started With Oracle Database 10g Express
Edition."

26.2 Configuring Database Connections
You can define and manage connections to external data sources using the Create
Database Connection dialog.

■ The Resource Palette, where they can be added to catalogs to facilitate
collaborative working or to make them available to more than one application.

■ The Database Navigator, where you can create, edit, and modify objects in the
database.

■ Application Resources in the Application Navigator, where they are available in
the current application.

When you delete a connection, JDeveloper does not warn you that a project may be
dependent upon it. For this reason, it is best to use caution when deleting connections.

26.2.1 Connection Scope
In JDeveloper 11g you have two ways of creating and managing database connections.
You can define database connections for an application (called an Application
Resource connection) or for the IDE as a whole (called an IDE connection). You use the
same dialog to define these, but their scope within JDeveloper is different.

When you first create a database connection, you choose the connection scope, which
you cannot subsequently change. For more information, see Section 3.7.2.2, "Defining
the Scope of a Connection."

26.2.2 What Happens When You Create a Database Connection
When you create a database connection, JDeveloper creates a node for the connection
in the Database Navigator, and an additional node in either the Resource Palette or in
the Application Resources panel of the Application Navigator depending on the scope
of the connection.

In the Application Navigator and Database Navigator, you can expand the database
connection node to view and work with database objects. In the Resource Palette, you
can only work with a database connection after you have added it to the application.

Database Connections Created as Application Resources
Database connections created as application resources are only available to the
application in which they are created.

In the Database Navigator, the node for the connection is under the node with the
same name as the application.

In the Application Navigator, the node for the connection is under Connections in the
Applications Resources panel. Connection information is stored in
connections.xml, which is under the Descriptors node, under ADF META-INF. You
can open the file in the XML editor by double-clicking it, and you can discover the file
path by hovering the mouse over the filename.

The file system location for the connection descriptor definition information is
application_folder/.adf/META-INF/connections.xml where
application_folder is the path for the selected application.

Configuring Database Connections

Connecting to and Working with Databases 26-3

Database Connections Created as IDE Connections
These database connections are globally defined connections.

You can copy an IDE connection to the application navigator to use it in an application
by:

■ From the Resource Palette, dragging the connection and dropping it on the
Connections node in the Application Navigator under Application Resources.

■ From the Resource Palette, right-clicking the connection and choosing Add to
Application.

■ In the Database Navigator, dragging the connection from under the IDE
Connections node to the Application Connections node under the node for the
application.

The file system location for the connection descriptor definition information is
sys-dir/jdeveloper/system11.1.x.x.nn.nn.nn/o.jdeveloper.rescat2.
model/connections/connections.xml.

26.2.3 About Connection Properties Deployment
A connections.xml file is included with JDeveloper deployments, and in the
application it is in the folder .adf\META-INF. This file contains the connection
information necessary for deployment and the runtime connection execution.

26.2.4 How to Create Database Connections
After you have defined a connection, you can return to the dialog and edit its
attributes.

To create a database connection:
1. If necessary, choose View > Database > Database Navigator. Right-click IDE

Connections or application, and choose New Connection to open the Create
Database Connection dialog.

Alternatively, from the main menu, choose File > New to open the New Gallery. In
the Categories list, expand General and select Connections. In the Items list,
double-click Database Connection to open the Create Database Connection
dialog.

For more information at any time, press F1 or click Help from within the Create
Database Connection dialog.

2. Enter the appropriate connection information, then click Test Connection. You
may have to briefly wait while JDeveloper connects to the database.

If the test succeeds, a success message appears in the status text area. If the test
does not succeed, an error appears. In this case, change any previously entered
information as needed to correct the error, or check the error content to determine
other possible sources of the error.

Note: You cannot change the connection type after the database
connection has been created.

Configuring Database Connections

26-4 User's Guide for Oracle JDeveloper

26.2.5 Connecting to Oracle Database Using OCI8
The recommended way of connecting to Oracle Database is using the thin driver,
however you can connect using OCI8 (thick connection).

To connect using OCI8:
■ Define the jar location using the system property oracle.jdbc.library. For

example:

jdev -J-Doracle.jdbc.library=/jdev_install/jdeveloper/ojdbc6.jar

26.2.6 How to Edit Database Connections

To edit a database connection:
1. Choose View > Database > Database Navigator.

2. Expand IDE Connections or application, and select a database connection.

3. Right-click the connection and choose Properties to open the Edit Database
Connection. For more information at any time, press F1 or click Help from within
the Create Database Connection dialog.

26.2.7 How to Export and import Database Connections
You can also import and export database connections created as IDE connections in the
Resource Palette. For more information, see Section 3.7.6, "How to Import and Export
Catalogs and Connections."

26.2.7.1 Exporting Database Connections
When you export connections, selected connection descriptors are copied to an XML
file. The file can be imported by other users to easily create connections.

To export a database connection:
1. Choose View > Database > Database Navigator.

2. Right-click either IDE Connections or application and choose Export
Connections.

3. In the Export Connection Descriptors dialog, enter the filename or click Browse to
specify a location and name for the connection file. For more information at any
time, press F1 or click Help from within the Export Connection Descriptors dialog.

4. After you have specified a filename, select the appropriate connections from the
list.

The connection information for the selected connections is saved in the file and
can be imported for use by others.

5. Click OK.

An alternative way of exporting connections, including database connections that are
IDE Connections, is to use the Resource Palette.

26.2.7.2 Importing Database Connections
You can import connection descriptors that have previously been exported.

Note: You can filter which schemas appear in the connection.

Configuring Database Connections

Connecting to and Working with Databases 26-5

To import a database connection:
1. Choose View > Database > Database Navigator.

2. Right-click either IDE Connections or application and choose Import Connections.

3. In the Import Connection Descriptors dialog, enter the file name of your exported
connection file or click Browse to locate it. For more information at any time, press
F1 or click Help.

4. After you have specified a file name, select one or more connections from the list
that appears.

5. Click OK.

An alternative way of importing connections that can include database connections is
to use the Resource Palette.

26.2.8 How to Open and Close Database Connections
You can manually connect to a database connection already defined in JDeveloper, or
disconnect a database connection.

To open a database connection:
1. Choose View > Database > Database Navigator.

2. Expand IDE Connections or application, and select a database connection.

3. Expand the node.

Alternatively, right-click the closed connection and choose Connect.

To close a database connection:
1. Choose View > Database > Database Navigator.

2. Expand IDE Connections or application, and select a database connection.

3. Right-click the connection and choose Disconnect.

26.2.9 How to Delete Database Connections
Deleting connections removes them from the Database Navigator and the installation
of JDeveloper.

When you delete a connection, JDeveloper does not warn you that a project may be
dependent upon it, and removes the connection from all of JDeveloper, not just a
workspace or project. It is best to use caution when deleting connections.

To delete a database connection:
1. Choose View > Database > Database Navigator.

2. Expand IDE Connections or application, and select a database connection to
delete.

3. Right-click the connection and choose Delete.

4. In the confirmation dialog, click Yes.

Configuring Database Connections

26-6 User's Guide for Oracle JDeveloper

26.2.10 How to Register a New Third-Party JDBC Driver
If you plan to use a third-party JDBC driver for the BI JDBC driver, or the WebLogic
JDBC drivers for DB2, Informix, SQL Server and Sybase, you must register it with
JDeveloper so that it will be available when you define the connection.

To register a new third-party JDBC driver:
1. Choose Tools > Preferences.

2. In the Preferences dialog, select JDBC Driver Options.

3. The list of third-party JDBC drivers currently registered with JDeveloper is
displayed. To add a new entry to the list, click New.

A new entry appears in the list and in the Driver Class field, with a default driver
class name.

4. In the Driver Class field, alter the new entry to reflect its fully qualified class
name.

Make sure that the correct entry is still selected in the Registered JDBC Drivers
list.

5. Select a library to associate the driver with. You can browse to an existing library,
or enter the fully qualified path to the library. The classpath for the library is
displayed in Classpath.

Be sure to include this library in any project that uses the third-party driver.

6. Click OK.

The driver will now appear in the list of available third-party JDBC drivers both in
this dialog (after you return to it) and in the Create Database Connection dialog.

Alternately, if you are already in the Create Database Connection dialog, you can
register a third-party JDBC driver without leaving the dialog. Choose Generic JDBC
as the Connection Type, and click New to open the Register JDBC Driver dialog where
you provide the class name and library for the driver.

26.2.11 How to Create User Libraries for Non-Oracle Databases
To connect to a non-Oracle database, you first have to create a library containing the
JDBC drivers.

After you have created a user library, you can create a database connection.

To create a user library:
1. Choose Tools > Manage Libraries.

2. In the Manage Libraries dialog, select the Libraries tab, then select the User node,
and click New.

3. In the Create Library dialog, enter a library name, select the Class Path node, and
click Add Entry. In the Select Path Entry dialog, browse to the location of the
drivers for the database you are connecting to. Select the driver files, and click
Select.

4. In a similar way, in the Create Library dialog, enter a library name, select the
Source Path node, and click Add Entry. In the Select Path Entry dialog, browse to
the location of the drivers for the database you are connecting to. Select the driver
files, and click Select.

Configuring Database Connections

Connecting to and Working with Databases 26-7

5. In the Create Library dialog, click OK, and in the Manage Libraries dialog, click
OK.

The library containing the JDBC drivers will be available for you to select when you
create a connection to the non-Oracle database.

26.2.12 Reference: Connection Requirements for Oracle's Type 2 JDBC Drivers (OCI)
When you create connections using Oracle's JDBC/OCI drivers, be aware of the
following platform-specific requirements:

■ You must have the required native libraries (.dll files on Windows, and
.so/.sl files on UNIX).

With the Oracle Type 2 driver (JDBC/OCI), the version of the JDBC driver must
match the version of the Oracle home. For example, the Oracle JDBC Driver
version 11 requires that Oracle home contain version 11 of ocijdbc11.dll, as
well as the Oracle Network software and Required Support Files.

You can download drivers from the JDBC Driver Downloads page at
http://www.oracle.com/technetwork/database/features/jdbc/inde
x-091264.html.

If you are connecting to a local database which is a different version from the
JDBC driver you are using, then you must install the Oracle client software into a
separate Oracle home, and connect via the Oracle Net Listener.

■ You must place the ORACLE_HOME directory in which the client-side file for the
required native libraries resides into a directory listed in your PATH environment
variable.

– On Windows: In your PATH environment variable list the %ORACLE_
HOME%\bin directory in which the client-side DLL file resides. If you have
multiple Oracle homes installed on your machine, use the Oracle home Switch
utility to choose the correct Oracle home.

– On UNIX: List the {ORACLE_HOME}/lib directory in which the client-side
.so/.sl file resides in your PATH environment variable.

■ If your Oracle home for the OCI driver is not the same as the Oracle home in
which JDeveloper is installed, you must set the ORACLE_HOME environment
variable.

■ If your Oracle home for the OCI driver is not the same as the Oracle home in
which JDeveloper is installed and you have no other OCI drivers listed in
java.library.path, you can edit {$ORACLE_
HOME}/jdeveloper/jdev/bin/jdev.conf with a line similar to the
following, replacing the path shown with the full path to your Oracle home:

 On Windows: AddNativeCodePath C:/ORACLE/ORAnn/BIN

On UNIX: AddNativeCodePath /u01/app/oracle/product/n.n.n/lib

AddNativeCodePath adds to java.library.path the directory name in
which the Java VM searches for shared libraries.

Note: Because AddNativeCodePath only appends the directory to
the path, if you have an OCI driver path already in the PATH
environment variable, set ORACLE_HOME instead of editing PATH with
AddNativeCodePath.

Browsing and Searching Databases

26-8 User's Guide for Oracle JDeveloper

26.3 Browsing and Searching Databases
You can control how much of the data source you view and how you view it, and
search for database objects.

26.3.1 Browsing Databases
You can browse online databases and offline database objects.

26.3.1.1 Browsing Online Databases
You can browse online databases by opening JDBC connections accessible in the
Database Navigator.

JDBC connections permit access to PL/SQL objects and blocks and the Java classes
that implement those objects. Any database can be browsed; however only Oracle
Database permits access to the full range of database objects.

Database connections are shown in the Database Navigator, under the IDE
Connections node or the node for the application. Expand the connection to show the
database's schemas. By default, the connection only allows the schema of the user
identified in the connection to be browsed. Other schemas can be browsed as well, if
the user has the required privileges. Expanding a schema shows nodes for the object
types that the schema contains. Expanding the node for an object type show the
individual objects it contains. When you have expanded a node as far as it can be
expanded, you can double-click an object (or right-click and choose Open) to display
its content. Depending on the type of the object, its structure may also be displayed in
the structure pane.

26.3.1.2 Browsing Offline Database Objects

You can browse offline database objects using the Application Navigator.

26.3.1.3 How to View Online and Offline Database Objects
You can view database objects:

■ To view database objects through a real time connection (online database), use the
Database Navigator.

■ To view offline database objects, use the Application Navigator.

Changes to database objects in projects (i.e. visible via Application Navigator) can
be reconciled against a live database, but until reconciliation, no changes to the
offline objects affect online databases.

To open a navigator:
1. Choose View from the main toolbar.

2. To open:

■ The Application Navigator, choose Application Navigator.

■ The Database Navigator, choose Database > Database Navigator.

26.3.2 How to Browse online Database Objects
You can browse schemas and the objects they contain via a JDBC connection to an
online database.

Browsing and Searching Databases

Connecting to and Working with Databases 26-9

 To browse live database connections:
1. Choose View > Database > Database Navigator.

2. Expand a connection to view the schemas available.

3. Expand a schema to view all the object types visible.

4. If necessary, apply a filter at the connection, schema, or database object type level.

26.3.3 How to Browse Offline Databases and Schemas
Browse offline databases and schemas in the Application Navigator to find objects
such as offline tables or views.

To view offline schemas and the objects they contain:
1. In the Application Navigator, expand the project containing your offline schemas.

2. Expand Offline Database Sources and then expand the database and schema you
want to browse.

26.3.4 How to Use Database Filters
You can filter schemas, database object types, and database objects within a type, so
that a subset that you define is displayed under the connection node. This is useful in
environments where there may be thousands of schemas accessible from a connection.

You can define a filter for schemas in a connection, or for any set of object types
(Tables, Views, etc.) within a schema, or for any set of objects within an object type
node (for example, display only the tables that begin with DB).

Figure 26–1 Filtered Objects in Database Navigator

Note: By default, a filter is set on tables to exclude those in the
recycle bin for an Oracle database.

Note: When you create a connection to Oracle Database, objects for
the schema named in the connection are shown. To see the contents of
other schemas, expand the Other Users node and then expand the
node for the schema you want.

If you connect via Generic JDBC or JDBC-ODBC connections, all
schemas are shown.

Browsing and Searching Databases

26-10 User's Guide for Oracle JDeveloper

To use filters:
1. Choose View > Database > Database Navigator.

2. Expand IDE Connections or application, and select a database connection.

3. Expand the connection if it has not yet been loaded. Filtering is not available until
the connection has been loaded (once per connection per JDeveloper session).
Select a connection, schema within a connection, or node within a schema:

4. If a filter is currently applied to the selection, a filter icon appears on the node of
the selected object, and (filtered) appears next to the node name, as shown in
Figure 26–1, "Filtered Objects in Database Navigator".

With the object still selected, click the Apply Filter button in the Database
Navigator toolbar and a dialog appears, showing the current selection, if any.
From this dialog, you can change the filter currently applied.

26.3.5 How to Enable and Disable Database Filters
JDeveloper provides filters so that you can view defined sets of schemas, tables, views,
or other objects.

To create filters for online database objects:
1. Choose View > Database > Database Navigator.

2. Expand IDE Connections or application.

3. Select the connection, schema within a connection, or node within a schema, then
perform either of these actions:

■ Right-click your selection and choose Apply Filter.

■ In the Database Navigator toolbar, click the Apply Filter button in the
Database Navigator toolbar.

4. A filter dialog appears, appropriate to the object you selected. For connections and
schema, a selection box appears. For other objects, type in the text (case-sensitive)
which JDeveloper matches to object names in the selected node. You can use the
wildcard character %.

5. Click OK. Notice that the list of objects is now filtered to display only those names
that match the criteria you selected.

26.3.6 How to Open a Database Table in the Database Object Viewer
You can open a table in a live database connection in the Database Object Viewer.

There are a number of tabs along the bottom of the Database Object Viewer that allow
you to examine and change the structure of the table and the data contained in the
table.

To view and edit the structure of the table in the object viewer:
1. Open the table in the Database Object Viewer by selecting it in the Database

Navigator and double-clicking it. Alternatively, you can right-click the table and
choose Open.

2. Select the tab that contains the information you are interested in, for example,
Columns. For more information at any time, press F1 or click Help from within the
Database Object Viewer.

Connecting to Databases

Connecting to and Working with Databases 26-11

An alternative way of viewing and editing the structure of a table is in the Edit Table
dialog.

You can edit the data in a table.

26.3.7 How to Edit Table Data
You can change the data in a database table, for example to test the functionality of an
application you are developing. You can change the value in a single cell, and add and
delete rows. When you have finished you can choose to commit your changes to the
database, or to rollback the changes and leave the database table unchanged.

To edit data in a table:
1. Display the table in the Database Object Viewer by double-clicking it in the

Database Navigator.

2. Click the Data tab to display the contents of the table.

3. Position the cursor in the cell you want to change and type the new value.

■ To add a new record, click the Insert Row button.

■ To delete one or more records, select them and click the Delete Selected
Row(s) button.

4. When you have finished, either:

■ Click the Commit Changes button to commit your changes to the database.

■ Click the Rollback Changes button to rollback your changes.

26.3.8 How to Find Objects in the Database
You can search for database objects in Oracle Database which has a connection to
JDeveloper using the Find Database Object Window.

You must already have a connection to the database.

To find database objects:
1. From the main menu, choose View > Database > Find DB Object to open the Find

Database Object Window.

For more information at any time, press F1 or click Help from within the
navigator.

2. Select the connection name from the Connection list.

3. Enter search terms in the Name field. You can use the wildcard % to return a
number of matching objects. For example, enter EM% to return all objects with
names starting with EM.

4. If necessary, click More to enter more search criteria.

5. Click Lookup. The results are returned in the Search window. To view or edit one
of the objects (or the parent object that contains the specified object), double-click
or right-click its name in the results display.

26.4 Connecting to Databases
This section describes how to connect to Oracle and non-Oracle databases.

Connecting to Databases

26-12 User's Guide for Oracle JDeveloper

26.4.1 What Happens When You Create a Connection to a Database
When you create a database connection using the Create Database Connection dialog,
the new connection is created and a node representing the connection is displayed in
the:

■ Database Navigator.

■ Application Navigator.

■ Resource Palette.

26.4.2 How to Create Connections to Oracle Databases
You can connect to and work with Oracle databases. For information about the specific
versions that are supported, see "JDeveloper Certification Information" at
http://www.oracle.com/technetwork/developer-tools/jdev/documenta
tion/index.html.

26.4.2.1 How to Create a Connection to Oracle Database
JDeveloper allows you to connect to:

■ Oracle Database 11g Release 2

■ Oracle Database 11g Release 1

■ Oracle Database 11g Release 2 XE.

■ Oracle Database 10g XE.

■ Oracle Database 10g Release 2

■ Oracle Database 10g Release 1

■ Oracle Database 9i Release 2

You can also connect to (although the connection does not use Oracle (JDBC):

■ MySQL 4.1 or 5.0

■ Oracle TimesTen In-Memory Database

■ Oracle Database Lite 10g Release 1 and Release 3

To create a database connection to Oracle Database:
1. Use a connection type of Oracle (JDBC).

2. Enter appropriate username, role, and password values for the database
connection.

3. By default the Save Password field is checked so that you will not be prompted to
enter it again.

4. Select the thin driver.

5. If the database is on the local machine, use the default of localhost. Otherwise
enter an IP address or a host name that can be resolved by TCP/IP, for example,
myserver.

6. Enter either the SID or service name for the database.

7. Test the connection by clicking Test Connection. You may have to briefly wait
while JDeveloper connects to the database.

Connecting to Databases

Connecting to and Working with Databases 26-13

If the test succeeds, a success message appears in the status text area. If the test does
not succeed, an error appears. In this case, change any previously entered information
as needed to correct the error, or check the error content to determine other possible
sources of the error.

26.4.2.2 How to Create a Connection to MySQL
JDeveloper allows you to connect to MySQL 4.1 or, 5.0, or to emulate MySQL 4.1 or, 5.0
for offline database operations. For more information about MySQL, see
http://www.oracle.com/us/products/mysql/index.htm.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with MySQL. You can:

■ Create tables:

– Add column(s) specifying data types, NOT NULL constraints, default values
and column comments

– Add primary key and foreign key constraints

■ Alter tables:

– Add column(s)

– Drop column(s)

– Add index

– Drop index

– Add constraint (primary key, unique key, and foreign key)

– Drop constraint (primary key, unique key, and foreign key)

■ Rename table

■ Drop table

To create a database connection to MySQL:
1. From http://mysql.com/downloads, download and install MySQL

Connector/J 3.1.

2. Set up the user library to contain the following
mysql-connector-java-3.1.8-bin.jar.

3. Create a database connection to MySQL.

4. Use the following values:

■ Connection Type: MySQL

■ Username and Password: enter the appropriate values for the connection.

■ Driver Class: com.mysql.jdbc.Driver

■ Library: the library you created for the driver.

■ JDBC URL: jdbc:mysql://machine-name/database-name

26.4.2.3 How to Create a Connection to Oracle TimesTen In-Memory Database
Oracle TimesTen In-Memory Database is a memory-optimized relational database that
provides applications with extremely fast response time and very high throughput as
required by many application in a wide range of industries. Deployed in the

Connecting to Databases

26-14 User's Guide for Oracle JDeveloper

application tier, TimesTen databases reside entirely in physical memory with
persistence to disk storage for recoverability.

JDeveloper allows you to connect to Oracle TimesTen In-Memory Database 6.0, 7.0, or
11g, or to emulate TimesTen databases for offline database operations. For more
information about Oracle TimesTen In-Memory Database 11g, see
http://www.oracle.com/technetwork/database/timesten/overview/ind
ex.html.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with TimesTen databases. You can:

■ Create tables.

– Add columns

– Add primary keys and foreign keys

■ Alter tables.

– Add columns

– Drop columns

– Add primary keys and foreign keys

– Drop primary keys and foreign keys

■ For Oracle TimesTen In-Memory Database v6.0, a current limitation is that in order
to see constraints such as primary keys, you must ensure that your connection
username is the same as the name of the schema you are connecting to.

To create a database connection to Oracle TimesTen In-Memory Database:
1. Create a database connection to the TimesTen database.

2. Use the following values:

■ Connection Type: Generic JDBC

■ Username and Password: leave blank

■ Driver Class: com.timesten.jdbc.TimesTenDriver

■ Library:

– Release 6.0.1: timesten-install\tt60\lib\classes14.jar

– Release 7.0.5: timesten-install\tt70_32\lib\ttjdbc5.jar

– Release 11.2.1: timesten-install\tt1121_32\lib\ttjdbc5.jar

■ JDBC URL:

– Release 6.0.1: jdbc:timesten:client:RunDataCS60

– Release 7.0.5: jdbc:timesten:client:RunDataCS_tt70_32

– Release 11.2.1: jdbc:timesten:client:cachealone1_CS

26.4.2.4 How to Create a Connection to Oracle Database Lite
Oracle Database Lite allows an image of an Oracle database to exist on a remote
device. Users can update the data on Oracle Database Lite and commit it to the main
database at given intervals. For more information about Oracle Database Lite 10g, see
http://www.oracle.com/technetwork/database/database-lite/overvie
w/index.html.

Connecting to Databases

Connecting to and Working with Databases 26-15

JDeveloper supports connections to and database emulation of Oracle Database Lite
10g Release 1 and Release 3. For information, see "JDeveloper Certification
Information" at
http://www.oracle.com/technetwork/developer-tools/jdev/documenta
tion/index.html.

This driver requires installation of Oracle Database Lite 4.0 JAR or higher. Projects
using the driver must include ORACLE_HOME/lite/classes/olite.jar in a
library.

To create a database connection to Oracle Database Lite:
1. Download a Java JDBC driver for Oracle Database Lite. Download and install

Oracle Database Lite 4.0 JAR or higher, and create a library to include
oracle-database-lite/lite/classes/olite.jar.

2. If you are using a type 2 driver, you must edit the ide.conf file to provide one
new value:

1. Close JDeveloper.

2. In a text editor, open ide.conf in the jdev-install/ide/bin directory.

3. Add the new entry

AddJavaLibPath oracle-database-lite\olite40.jar

3. Create a database connection to the Oracle Database Lite.

Use the following values:

■ Connection Type: Oracle Lite

■ Username and Password: enter the appropriate values for the connection.

■ Driver: Type 2

■ Datasource name: enter an appropriate value for the connection.

26.4.3 How to Create Connections to Non-Oracle Databases
You can connect to and work with non-Oracle databases. For information about the
specific versions that are supported, see "JDeveloper Certification Information" at
http://www.oracle.com/technetwork/developer-tools/jdev/documenta
tion/index.html.

In general, you can:

■ Import database objects to JDeveloper.

■ Create offline database objects.

■ Edit offline database objects.

Creating a database connection:
1. Create a library containing the JDBC drivers.

2. Create a database connection.

3. In the Create Database Connection dialog, enter the appropriate values for the
database. For more information, refer to the help topic for the database you are
connecting to.

4. Finally, you must configure your projects to use the correct data types.

Connecting to Databases

26-16 User's Guide for Oracle JDeveloper

In the descriptions below for specific types of connection the JDBC URL is shown,
however if you prefer you can enter details of the server, port, and database in the
fields of the Create Database Connection dialog.

26.4.3.1 How to Create a Connection to Apache Derby
Apache Derby is an open source relational database implemented entirely in Java.
JDeveloper allows you to connect to Apache Derby 10.5, or to emulate Apache Derby
10.5 for offline database operations. For more information about Apache Derby, see
http://db.apache.org.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with Apache Derby. You can:

■ Create tables:

– Add column(s)

– Add primary key and foreign key constraints

■ Alter tables:

– Add column(s)

– Drop column(s)

– Add constraint

– Drop constraint

You can connect to Apache Derby using Derby’s embedded JDBC driver or you can
create a connection as a client.

To connect to Apache Derby using the embedded driver:
1. Create a database connection to the Apache Derby database.

Use the following values:

■ Connection Type: Generic JDBC

■ Username and Password: enter the appropriate values for the connection.

■ Driver Class: org.apache.derby.jdbc.EmbeddedDriver

■ Library: lib/derbyclient.jar

■ JDBC URL:
jdbc:derby://machine-name:port/databases/database-name

To connect to Apache Derby as a client:
1. Create a database connection to the Apache Derby database.

Use the following values:

■ Connection Type: Generic JDBC

■ Username and Password: enter the appropriate values for the connection.

■ Driver Class: org.apache.derby.jdbc.ClientDriver

■ Library: lib/derbyclient.jar

Note: Column default values are not supported

Connecting to Databases

Connecting to and Working with Databases 26-17

■ JDBC URL:
jdbc:derby://machine-name:port/databases/database-name

26.4.3.2 How to Create a Connection to IBM DB2 Universal Database
JDeveloper allows you to connect to IBM DB2 Universal Database 9.5 or 8.1, or to
emulate IBM DB2 Universal Database 9.5 or 8.1 for offline database operations. For
more information about IBM DB2 Universal Database, see http://www.ibm.com.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with IBM DB2, and working with IBM DB2 databases is
subject to the following limitations:

■ Create tables, and add columns specifying Datatypes, NOT NULL constraints and
default values, add primary and foreign keys, and create indexes.

■ Alter tables, and add and drop columns, add and drop indexes, add and drop
constraints (primary keys, unique keys, check and foreign keys).

■ Rename tables.

■ Drop tables.

You can connect to IBM DB2 using the WebLogic JDBC driver or using IBM’s native
driver.

To connect to IBM DB2 using the WebLogic JDBC driver:
1. Create a database connection to the IBM DB2 database.

Use the following values:

■ Connection Type: Generic JDBC

■ Username and Password: enter the appropriate values for the connection.

■ Driver Class: weblogic.jdbc.db2.DB2Driver

■ JDBC URL:
jdbc:weblogic:db2://machine-name:port;DatabaseName=databas
e-name

To connect to IBM DB2 using the native driver:
1. Download the Type 4 JDBC driver for IBM DB2.

2. Set up the user library to contain the following files.

■ DB2 UDB 8.1

– db2jcc.jar

– db2jcc_javax.jar

Notes: IBM DB2 Universal Database 9.5 syntax of DROP column and
ALTER COLUMN is supported for IBM DB2 Universal Database 9.5.

You can only connect to DB2 Universal Database 8.1 with Fix Patch 3
or higher, or to DB2 Universal Database 9.5. When you have a DB2
connection, column and constraint information is not displayed in the
Database Navigator. Instead columns and constraints are displayed in
the Structure window when the table is selected in the Database
Navigator.

Connecting to Databases

26-18 User's Guide for Oracle JDeveloper

– db2jcc_license_cu.jar

■ DB2 UDB 9.5

– db2jcc.jar

– db2jcc4.jar

3. Create a database connection to IBM DB2.

Use the following values:

■ Connection Type: DB2 UDB

■ Username and Password: enter appropriate values for the database
connection.

■ Driver Class: com.ibm.db2.jcc.DB2Driver

■ Library: the library you created for the driver.

■ JDBC URL: jdbc:db2://machine-name:50000/database-name

26.4.3.3 How to Create a Connection to IBM Informix Dynamic Server
JDeveloper allows you to connect to IBM Informix DS 10 or 11.5, or to emulate IBM
Informix DS 10 or 11.5 for offline database operations. For more information about
IBM Informix DS, see www.IBM.com.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with IBM Informix DS. You can:

■ Create tables, and add columns.

■ Add primary key and foreign key constraints.

■ Alter tables, add columns, and drop columns.

You can connect to IBM Informix DS using the WebLogic JDBC driver or using IBM’s
native driver.

To connect to IBM Informix DS using the WebLogic JDBC driver:
1. Create a database connection to the IBM Informix DS database.

Use the following values:

■ Connection Type: Generic JDBC

■ Username and Password: enter the appropriate values for the connection.

■ Driver Class: weblogic.jdbc.informix.InformixDriver

■ JDBC URL:
jdbc:weblogic:informix://machine-name:port;informixServer=
server-name;databaseName=database-name

To connect to IBM Informix DS using native drivers:
1. From www.IBM.com, download and install the appropriate Informix JDBC Driver:

■ For IBM Informix DS 10, choose v2.21.JC5 or later.

■ For IBM Informix DS 11.5, choose v3.00.JC3 or later.

2. Set up the user library to contain install-directory\lib\ifxjdbc.jar.

3. Create a database connection to IBM Informix DS.

Connecting to Databases

Connecting to and Working with Databases 26-19

Use the following values:

■ Connection Type: Generic JDBC

■ Username and Password: enter the appropriate values for the connection.

■ Driver Class: com.informix.jdbc.IfxDriver

■ Library: the library you created for the driver.

■ JDBC URL:
jdbc:informix-sqli://machine-name:port/database-name:INFOR
MIXSERVER=machine-name

26.4.3.4 How to Create a Connection to Microsoft SQL Server
JDeveloper allows you to connect to Microsoft SQL Server 2005, or 2008, or to emulate
Microsoft SQL Server 2005, or 2008 for offline database operations. For more
information about Microsoft SQL Server, see http://www.microsoft.com.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with Microsoft SQL Server. You can:

■ Create tables:

– Add column(s) specifying data types, NOT NULL constraints, default values
and column comments

– Add primary key and foreign key constraints

– Create indexes

■ Alter tables:

– Add column(s)

– Drop column(s)

– Add indexes

– Drop indexes

– Add constraint (primary key, unique key, and foreign key)

– Drop constraint (primary key, unique key, and foreign key)

■ Drop tables

You can connect to Microsoft SQL Server using the WebLogic JDBC driver or using
Microsoft’s native driver.

To connect to Microsoft SQL Server using the WebLogic JDBC driver:
1. Create a database connection to the Microsoft SQL Server database.

Use the following values:

■ Connection Type: Generic JDBC

■ Username and Password: enter the appropriate values for the connection.

■ Driver Class: weblogic.jdbc.sqlserver.SQLServerDriver

■ JDBC URL:
jdbc:weblogic:sqlserver://machine-name\MSSQLSERVER:port;da
tabaseName=database-name

Connecting to Databases

26-20 User's Guide for Oracle JDeveloper

To connect to Microsoft SQL Server:
1. From www.microsoft.com, download and install the appropriate Microsoft SQL

Server driver:

■ For Microsoft SQL Server 2005, choose Microsoft SQL Server 2005 Driver.

■ For Microsoft SQL Server 2008, choose Microsoft SQL Server 2008 Driver.

2. Set up the user library to contain install-directory\sqljdbc.jar.

3. Create a database connection to Microsoft SQL Server. Use the following values:

■ Connection Type: SQLServer

■ Username and Password: enter the appropriate values for the connection.

■ Driver Class: com.microsoft.sqlserver.jdbc.SQLServerDriver

■ Library: the library you created for the driver.

■ JDBC URLs:
jdbc:sqlserver://machine-name:port;DatabaseName=database-n
ame, where the section DatabaseName=database-name is optional

What you May Need to Know
If you are using Windows Authentication credentials to connect to Microsoft SQL
Server, you need to add do the following:

■ Add the connection property integratedSecurity=TRUE and the username
and password values to the JDBC URL, for example

jdbc:sqlserver://machine-name:port;DatabaseName=database-name;username=USERNAME
;password=PASSWORD;integratedSecurity=TRUE

■ Add the location of sqljdbc_auth.dll to your PATH variable:

– For 32bit JVM, this is installation-directory\sqljdbc_
version\language\auth\x86

– For 64bit JVM, this is installation-directory\sqljdbc_
version\language\auth\x64

For more information, see Building the Connection URL, which is available as part of
Connecting to SQL Server with the JDBC Driver at the Microsoft MSDN website.

26.4.3.5 How to Create a Connection to SQLite
SQLite is a relational database management system represented by a
platform-independent file that resides on a host computer, for example, smartphone
platforms. JDeveloper allows you to connect to a SQLite 3.6 database file, or to emulate
SQLite 3.6 for offline database operations. For more information about SQLite, see
http://www.sqlite.org.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with SQLite. You can:

■ Create tables, and add columns.

■ Alter tables, and add columns.

■ Copy To Project, where you copy tables and their columns and primary keys from
a connection to a SQLite database to an offline database which emulates SQLite.

■ Constraints, indexes and the column properties can be modeled in an offline
database, but DDL is only generated for tables and columns; there is no support

Connecting to Databases

Connecting to and Working with Databases 26-21

for generating constraints (including primary keys) on tables, or generating any
other object type (for example, indexes, views, triggers). This means that for tables
in an online SQLite database, the Create/Edit Table dialog only shows the
columns panel.

To create a database connection to SQLite:
■ Download a Java JDBC driver for SQLite and create a library for it.

■ Create a database connection to SQLite.

■ Use the following values:

– Connection Type: Generic JDBC

– Username and Password: leave blank

– Driver Class: org.sqlite.JDBC

– Library: the library you created for the driver.

– JDBC URL: jdbc:sqlite://path/database-name, where path is the path
of the database file and database-name is the name of the SQLite database at
the specified location. If the database does not exist at specified location, it will
be created when the connection is made.

26.4.3.6 How to Create a Connection to Sybase ASE
JDeveloper allows you to connect to Sybase Adaptive Server Enterprise 12.5 or 15, or
to emulate Sybase ASE 12.5 or 15 for offline database operations. For more information
about Sybase Adaptive Server Enterprise, see www.sybase.com.

The Create Table or Edit Table dialog is generic, and some features may not be
available when working with Sybase ASE. You can:

■ Create tables:

– Add column(s)

– Add primary key and foreign key constraints

Add column(s)

■ Alter tables:

– Add column(s)

– Drop column(s)

– Add constraint

– Drop constraint

You can connect to Sybase ASE using the WebLogic JDBC driver or using Sybase’s
native driver.

To connect to Sybase ASE using the WebLogic JDBC driver:
1. Create a database connection to the Sybase ASE database.

Use the following values:

■ Connection Type: Generic JDBC

Note: Column default values are not supported

Importing and Exporting Data

26-22 User's Guide for Oracle JDeveloper

■ Username and Password: enter the appropriate values for the connection.

■ Driver Class: weblogic.jdbc.sybase.SybaseDriver

■ JDBC URL:
jdbc:weblogic:sybase://machine-name:port;DatabaseName=data
bas-name

To connect to Sybase ASE using the native driver:
1. From www.sybase.com, download and install the appropriate Sybase JDBC driver:

■ For Sybase ASE 12.5, choose jConnect Version:5.5 or later.

■ For Sybase ASE 15, choose jConnect Version: 6.0.5 or later.

2. Set up the user library to contain the following:

install-directory\jConnect-5_5\classes\jconn2.jar install_
directory\\jConnect-5_5\classes\jTDS2.jar

3. Create a database connection to Sybase ASE.

Use the following values:

■ Connection Type: Generic JDBC

■ Username and Password: enter the appropriate values for the connection.

■ Driver Class:

– For Sybase ASE 12.5, use com.sybase.jdbc2.jdbc.SybDriver

– For Sybase ASE 15 use com.sybase.jdbc3.jdbc.SybDriver

■ Library: the library you created for the driver.

■ JDBC URL: jdbc:sybase:Tds:machine:port/database-name

26.5 Importing and Exporting Data
You can import data into tables in a database through a database connection.

You can import data from:

■ csv, a file containing comma-separated values including a header row for column
identifiers.

■ xls, a file in Microsoft Excel format (only for import into existing and new tables).

You can import the data into:

■ A existing table in the database.

■ A new table that you create as part of the import process.

■ Using a SQL*Loader control file.

■ An external table.

Note: You cannot import date into offline tables as offline tables are
just representations of database tables.

Importing and Exporting Data

Connecting to and Working with Databases 26-23

26.5.1 Importing Data Using SQL*Loader
When you choose the SQL*Loader option in the Data Import Wizard, JDeveloper
creates the following files in the same location as the import file containing the data:
table.ctl, which contains information about the file containing the data and the table
into which it can be imported. table.bat and table.sh, to run the import.

26.5.2 Importing Data Into an External Table
You can import data into an external table, which is a flat file in which you can query
data as though it were an Oracle table.

When you choose the External Table option, JDeveloper creates the SQL and displays
it in the SQL Worksheet where you can examine it and make any necessary changes
before running the script.

26.5.3 How to Import Data into Existing Tables
You can import data into a table in a database through a database connection.

The following import file formats are supported:

■ csv, a file containing comma-separated values including a header row for column
identifiers.

■ xls, a file in Microsoft Excel format.

To import data to an existing database table:
1. From the main menu, choose View > Database > Database Navigator to open the

Database Navigator.

2. If necessary, create a connection to the database.

3. Expand the node for the database connection, the schema, Tables, and select the
table node you want to import data to.

4. Right-click and choose Import Data and in the Open dialog enter or browse to the
location of the file.

Click OK to launch the Data Import Wizard.

For more information at any time, press F1 or click Help from within the wizard.

5. On the Column Definition page of the Data Import wizard, enter the name of the
new table.

26.5.4 How to Import Data to New Tables
You can import data into a database table that you create as part of the import process.

To import data to a new database table:
1. From the main menu, choose View > Database > Database Navigator to open the

Database Navigator.

2. If necessary, create a connection to the database.

3. Expand the node for the database connection, the schema, Tables, and select the
table node you want to import data to.

4. Right-click and choose Import Data and in the Open dialog enter or browse to the
location of the file. Click OK to launch the Data Import Wizard.

Importing and Exporting Data

26-24 User's Guide for Oracle JDeveloper

For more information at any time, press F1 or click Help from within the wizard.

5. On the Column Definition page of the Data Import wizard, enter the name of the
new table.

26.5.5 How to Import Data Using SQL*Loader
You can create a SQL*Loader control file which can be used to import data.

To import data to a SQL*Loader control file:
1. From the main menu, choose View > Database > Database Navigator to open the

Database Navigator.

2. If necessary, create a connection to the database.

3. Expand the node for the database connection, the schema, Tables, and select the
table node you want to import data to.

4. Right-click and choose Import Data and in the Open dialog enter or browse to the
location of the file.

Click OK to launch the Data Import Wizard.

For more information at any time, press F1 or click Help from within the wizard.

5. On the Data Preview page of the Data Import wizard, choose SQL*Loader Table.

6. On the Options page of the Data Import wizard, choose the options for the
generated file.

7. When you complete the Data Import wizard, the SQL*Loader control file called
table.ctl is created in the same location as the data file, along with a table.bat
and table.sh files which allow you to run it. If you selected Send to worksheet on
the Finish page of the Data Import wizard, the SQL defining the table is displayed
in the SQL Worksheet.

26.5.6 How to Import Data Using External Tables
You can import data into tables in a database through a database connection.

To import data to an external table:
1. If necessary, create a connection to the database.

2. Expand the node for the database connection, the schema, Tables, and select the
table node you want to import data to.

3. Expand the node for the database connection, the schema, Tables, and select the
table node you want to import data to.

4. Right-click and choose Import Data and in the Open dialog enter or browse to the
location of the file.

5. Click OK to launch the Data Import Wizard.

For more information at any time, press F1 or click Help from within the wizard.

6. On the Data Preview page of the Data Import wizard, choose External Table.

7. On the Options page of the Data Import wizard, choose the options for the
generated file. When you complete the Data Import wizard, the SQL is displayed
in the SQL Worksheet, where you can examine it and make any changes. When
you are satisfied, right-click in the Worksheet, and choose Run in SQL*Plus.

Importing and Exporting Data

Connecting to and Working with Databases 26-25

26.5.7 Exporting Data from Databases
You can export data from tables in a database through a database connection.

The data can be saved to a file or to the clipboard. The following formats are
supported:

■ csv, to create a file containing comma-separated values including a header row
for column identifiers.

■ fixed, to create a file where records are the same byte length.

■ html, to create an HTML file containing a table with the data. insert, to create a
file containing SQL INSERT statements.

■ loader, to create a SQL*Loader control file.

■ text, to create a text file.

■ ttbulkcp, to create a data files to be used with the TimesTen ttbulkcp command
line utility. For more information, see Oracle TimesTen In-Memory Database 11g at
http://www.oracle.com/technology/products/timesten/index.html
.

■ xls, to create a Microsoft Excel .xls file. The file will contain two worksheets,
Export Worksheet, which contains the data, and SQL which contains the SQL
statement used to export the data.

■ xml, to create a file containing XML tags and data.

In the Export Data dialog, you can limit the data to be exported by selecting only some
columns, and by entering a WHERE clause.

You can also export data from a database using the Export Database wizard.

26.5.8 How to Export Data to Files
You can export data from tables in a database through a database connection.

To export data from a database table:
1. From the main menu, choose View > Database > Database Navigator to open the

Database Navigator.

2. If necessary, create a connection to the database.

3. Expand the node for the database connection, the schema, Tables, and select the
table node you want to export data from.

Note: You can choose a different delimiter.

Note: If you encounter problems exporting large tables to Microsoft
Excel files, try adding the following line to the jdeveloper.conf
file to increase heap size, and then restarting JDeveloper:

AddVMOption -Xmx1024M

If the number of table rows exceeds 65,536, JDeveloper writes the rows
to multiple worksheets within the .xls file.

Copying, Comparing, and Exporting Databases

26-26 User's Guide for Oracle JDeveloper

4. Right-click and choose Export Data to open the Export Data dialog.

For more information at any time, press F1 or click Help from within the wizard.

26.6 Copying, Comparing, and Exporting Databases
You can copy database objects from a source schema to a destination schema. You can
export database objects and data to a DDL file.

26.6.1 How to Copy Databases
You can copy database objects from a source schema to a destination schema, subject
to any restrictions depending on the type of operation, which determines the behavior
if objects of the same name exist in the destination schema.

You must have the source and the destination database connections already defined.

To copy a database:
1. From the main menu, choose Tools > Database > Database Copy to open the New

Copy wizard.

For more information at any time, press F1 or click Help from within the wizard.

26.6.2 How to Compare Database Schemas
You can find differences between objects of the same type and name (for example,
tables named CUSTOMERS) in two different schemas, and optionally update the
objects in one schema (destination) to reflect differences in the other schema (source).

Using the Diff wizard requires the licensing of the Oracle Change Management option
for Oracle Database. To purchase a license, contact your Oracle sales representative or
authorized Oracle Reseller, or go to the Oracle Store to buy online at
http://shop.oracle.com

You must have the source and the destination database connections already defined.

To compare database schemas:
1. From the main menu, choose Tools > Database > Database Diff to open the Diff

wizard.

For more information at any time, press F1 or click Help from within the wizard.

26.6.3 How to Export Databases
You can export some or all objects of one or more types of database objects to a file
containing SQL data definition language (DDL) statements to create these objects.
Export Database wizard allows you to: Specify details of the DDL file that is
generated. Select the database object objects to be exported. Choose to export data, and
apply filters to specify the data to be included in the generated file.

You must have already defined a connection to the database you want to export.

To export a database:
1. From the main menu, choose Tools > Database > Database Export to open the

Export Database wizard.

For more information at any time, press F1 or click Help from within the wizard.

Working with Database Reports

Connecting to and Working with Databases 26-27

26.7 Working with Oracle and Non-Oracle Databases
This section describes how to work with Oracle Database, as well as with non-Oracle
databases. There are limitations on what you can do with JDeveloper with different
databases. For more information, see the relevant information in Section 26.4.2, "How
to Create Connections to Oracle Databases" and Section 26.4.3, "How to Create
Connections to Non-Oracle Databases."

26.8 Working with Database Reports
JDeveloper provides many reports about a database and its objects. You can also create
your own user-defined database reports.

You can also run reports on offline database objects.

26.8.1 Using Database Reports
JDeveloper provides many reports about a database and its objects. You can also create
your own user-defined database reports.

For some reports, you are prompted for bind variables before the report is generated.
These bind variables enable you to further restrict the output. The default value for all
bind variables is null, which implies no further restrictions.

The Database Reports Navigator allows you to run reports which query the database
for the latest information. The time required to display specific reports will vary, and
may be affected by the number and complexity of objects involved, and by the speed
of the network connection to the database.

There are a number of predefined reports about the database and its objects.

You can also create your own user-defined reports.

You can examine the underlying SQL for a report, for example, to help you create your
own report.

Database reports are organized in folders, and reports and folders can be exported.

You can share reports by exporting them.

The person who wants to share the report then adds it to their instance of JDeveloper
using the Preferences dialog. Reports that have been exported can be imported into
folders under the User Defined Reports node.

26.8.1.1 How to Run Database Reports
The Database Reports Navigator allows you to run reports which query the database
for the latest information. The time required to display specific reports will vary, and
may be affected by the number and complexity of objects involved, and by the speed
of the network connection to the database.

Running a database report:
1. If it is not open, open the Database Reports Navigator. In the main menu, choose

View > Database > Database Reports.

2. Locate the report you want to run, right-click and choose Open, which will
overwrite any previous results in the Reports Viewer window, or Open New to
open a new instance of the Reports Viewer.

3. If the Bind Variables dialog is displayed, enter the bind variables you want to use.
For more information at any time, click F1 or Help in the Bind Variables dialog.

Working with Database Reports

26-28 User's Guide for Oracle JDeveloper

The report results are displayed in the Reports Viewer.

26.8.1.2 How to View the SQL for a Report
You can view the underlying SQL for a database report in the SQL Worksheet.

To view the SQL for a database report:
1. If it is not open, open the Database Reports Navigator. In the main menu, choose

View > Database > Database Reports.

2. Run the report.

3. In the Reports Viewer, click the Run Report in SQL Worksheet button. The SQL
Worksheet opens displaying the SQL code for the report.

26.8.1.3 How to Create User-Defined Database Reports
You can define your own reports for database features and objects.

To create user-defined reports:
1. If it is not open, open the Database Reports Navigator. In the main menu, choose

View > Database > Database Reports.

2. Right-click the User Defined Reports node, or a folder that you have created under
this node, and choose Add Report.

3. In the Create Report dialog, enter a name and the SQL for the report. For more
information at any time, click F1 or Help in the Create Report dialog.

26.8.1.4 How to Edit User-Defined Database Reports
You can edit user-defined reports.

To edit a user-defined report:
1. If it is not open, open the Database Reports Navigator. In the main menu, choose

View > Database > Database Reports.

2. Open the User Defined Reports node, and right-click on the report you want to
edit, and choose Edit.

3. In the Create Report dialog, enter a name and the SQL for the report. For more
information at any time, click F1 or Help in the Create Report dialog.

26.8.1.5 How to Create Reports Folders
You can organize user-defined reports in folders.

To create a folder:
1. If it is not open, open the Database Reports Navigator. In the main menu, choose

View > Database > Database Reports.

2. Right-click the User Defined Reports node, and choose Add Folder.

3. In the Create Folder dialog, enter a name for the folder. For more information at
any time, click F1 or Help in the dialog

26.8.1.6 How to Export User-Defined Reports
You can export database reports or folders of database reports.

Working with Database Reports

Connecting to and Working with Databases 26-29

If you are sharing a report, you export it, and users who want to share the report, then
make it available in their instance of JDeveloper.

To export a database report or folder:
1. If it is not open, open the Database Reports Navigator. In the main menu, choose

View > Database > Database Reports.

2. Right-click the report or folder you want to share, and choose Export.

3. Enter a location for the report in the Save dialog. The default name for the report is
explain.xml.

26.8.1.7 How to Import User-Defined Reports
After you have exported database reports and folders, you can import them to a
user-defined folder.

You need to first create the folder to hold the report.

This can also be a simple way to share database reports.

To import a database report or folder:
1. If it is not open, open the Database Reports Navigator. In the main menu, choose

View > Database > Database Reports.

2. Under the User Defined Reports node, right-click the folder you want to add the
report to, and choose Import.

3. In the Open dialog, enter or browse to the location for the exported report in the
Save dialog. The default name for the report is explain.xml.

How to Share Database Reports
You can share database reports. The report is exported, then you add it to your
invocation of JDeveloper.

Before a report can be shared:

■ The report must be run.

■ The report must then be exported.

Sharing a database report:
1. From the main menu, choose Tools > Preferences.

2. In the Preferences dialog, select Database > User-Defined Extensions. For more
information at any time, press F1 or click Help from within the Preferences dialog.

3. Click Add Row, and under Type select REPORT, and under Location enter or
browse to the location of the exported report.

4. Restart JDeveloper.

5. Choose View > Database > Database Reports to open the Database Reports
Navigator. The shared report is listed under the Shared Reports node in the
navigator.

26.8.2 Reference: Pre-Defined Database Reports
This section describes the pre-defined reports available under the Data Dictionary
Reports node in the Database Reports navigator.

Working with Database Reports

26-30 User's Guide for Oracle JDeveloper

The reports are grouped into categories, with one or more different reports available in
that category.

■ About Your Database Reports

These reports list release information about the database associated with the
connection. The reports include Version Banner (database settings) and National
Language Support Parameters (NLS_xxx parameter values for globalization
support).

■ All Objects Reports

These reports list information about all objects accessible to the user associated
with the specified database connection, not just objects owned by the user.

■ All Objects: For each object, lists the owner, name, type (table, view, index, and
so on), status (valid or invalid), the date it was created, and the date when the
last data definition language (DDL) operation was performed on it. The Last
DDL date can help you to find if any changes to the object definitions have
been made on or after a specific time.

■ Collection Types: Lists information about each collection type. The
information includes the type owner, element type name and owner, and
type-dependent specific information.

■ Dependencies: For each object with references to it, lists information about
references to (uses of) that object.

■ Invalid Objects: Lists all objects that have a status of invalid.

■ Object Count by Type: For each type of object associated with a specific owner,
lists the number of objects. This report might help you to identify users that
have created an especially large number of objects, particularly objects of a
specific type.

■ Public Database Links: Lists all public database links.

■ Public Synonyms: Lists all public synonyms.

■ Application Express Reports

These reports list information about Oracle Application Express 3.0.1 (or later)
applications, pages, schemas, UI defaults, and workspaces. If you select a
connection for a schema that owns any Oracle Application Express 3.0.1 (or later)
applications, the Application Express reports list information about applications,
pages, schemas, UI defaults, and workspaces. For more information, see Oracle
Application Express Administration Guide.

■ ASH and AWR Reports

These reports list information provided by the Active Session History (ASH) and
Automated Workload Repository (AWR) features.

■ Database Administration Reports

These reports list usage information about system resources. This information can
help you to manage storage, user accounts, and sessions efficiently. (The user for
the database connection must have the DBA role to see most Database
Administration reports.)

■ All Tables: Contains the reports that are also grouped under Table reports,
including Quality Assurance reports.

■ Cursors: Provide information about cursors, including cursors by session
(including open cursors and cursor details.

Working with Database Reports

Connecting to and Working with Databases 26-31

■ Database Parameters: Provide information about all database parameters or
only those parameters that are not set to their default values.

■ Locks: Provide information about locks, including the user associated with
each.

■ Sessions: Provide information about sessions, selected and ordered by various
criteria.

■ Storage: Provide usage and allocation information for tablespaces and data
files.

■ Top SQL: Provide information about SQL statements, selected and ordered by
various criteria. This information might help you to identify SQL statements
that are being executed more often than expected or that are taking more time
than expected.

■ Users: Provide information about database users, selected and ordered by
various criteria. For example, you can find out which users were created most
recently, which user accounts have expired, and which users use object types
and how many objects each owns.

■ Data Dictionary Reports

These reports list information about the data dictionary views that are accessible in
the database. Examples of data dictionary views are ALL_OBJECTS and USER_
TABLES.

■ Dictionary View Columns: For each Oracle data dictionary view, lists
information about the columns in the view.

■ Dictionary Views: Lists each Oracle data dictionary view and (in most cases) a
comment describing its contents or purpose.

■ Jobs Reports

These reports list information about jobs running on the database.

■ All Jobs: Lists information about all jobs running on the database. The
information includes the start time of its last run, current run, and next
scheduled run.

■ DBA Jobs: Lists information about each job for which a DBA user is associated
with the database connection. The information includes the start time of its
last run, current run, and next scheduled run.

■ Your Jobs: Lists information about each job for which the user associated with
the database connection is the log user, privilege user, or schema user. The
information includes the start time of its last run, current run, and next
scheduled run.

■ PLSQL Reports

These reports list information about your PL/SQL objects and allow you to search
the source of those objects.

■ Program Unit Arguments: For each argument (parameter) in a program unit,
lists the program unit name, the argument position (1, 2, 3, and so on), the
argument name, and whether the argument is input-only (In), output-only
(Out), or both input and output (In/Out).

■ Search Source Code: For each PL/SQL object, lists the source code for each
line, and allows the source to be searched for occurrences of the specified
variable.

Working with Database Reports

26-32 User's Guide for Oracle JDeveloper

■ Unit Line Counts: For each PL/SQL object, lists the number of source code
lines. This information can help you to identify complex objects (for example,
to identify code that may need to be simplified or divided into several objects).

■ Security Reports

These reports list information about users that have been granted privileges, and
in some cases about the users that granted the privileges. This information can
help you (or the database administrator if you are not a DBA) to understand
possible security issues and vulnerabilities, and to decide on the appropriate
action to take (for example, revoking certain privileges from users that do not need
those privileges).

■ Auditing: Lists information about audit policies.

■ Encryption: Lists information about encrypted columns.

■ Grants and Privileges: Includes the following reports:

– Column Privileges: For each privilege granted on a specific column in a
specific table, lists the user that granted the privilege, the user to which
the privilege was granted, the table, the privilege, and whether the user to
which the privilege was granted can grant that privilege to other users.

– Object Grants: For each privilege granted on a specific table, lists the user
that granted the privilege, the user to which the privilege was granted, the
table, the privilege, and whether the user to which the privilege was
granted can grant that privilege to other users.

– Role Privileges: For each granted role, lists the user to which the role was
granted, the role, whether the role was granted with the ADMIN option,
and whether the role is designated as a default role for the user.

– System Privileges: For each privilege granted to the user associated with
the database connection, lists the privilege and whether it was granted
with the ADMIN option.

■ Policies: Lists information about policies.

■ Public Grants: Lists information about privileges granted to the PUBLIC role.

■ Streams Reports

These reports list information about stream rules.

■ All Stream Rules: Lists information about all stream rules. The information
includes stream type and name, rule set owner and name, rule owner and
name, rule set type, streams rule type, and subsetting operation.

■ Your Stream Rules: Lists information about each stream rule for which the
user associated with the database connection is the rule owner or rule set
owner. The information includes stream type and name, rule set owner and
name, rule owner and name, rule set type, streams rule type, and subsetting
operation.

■ Table Reports

These reports list information about tables owned by the user associated with the
specified connection. This information is not specifically designed to identify
problem areas; however, depending on your resources and requirements, some of
the information might indicate things that you should monitor or address.

For table reports, the owner is the user associated with the database connection.

Working with Database Reports

Connecting to and Working with Databases 26-33

■ Columns: For each table, lists each column, its data type, and whether it can
contain a null value. Also includes:

■ Data type Occurrences: For each table owner, lists each data type and how
many times it is used.

■ Comments for tables and columns: For each table and for each column in each
table, lists the descriptive comments (if any) associated with it. Also includes a
report of tables without comments. If database developers use the COMMENT
statement when creating or modifying tables, this report can provide useful
information about the purposes of tables and columns

■ Constraints: Includes the following reports related to constraints:

■ All Constraints: For each table, lists each associated constraint, including its
type (unique constraint, check constraint, primary key, foreign key) and status
(enabled or disabled).

■ Check Constraints: For each check constraint, lists information that includes
the owner, the table name, the constraint name, the constraint status (enabled
or disabled), and the constraint specification.

■ Enabled Constraints and Disabled Constraints: For each constraint with a
status of enabled or disabled, lists the table name, constraint name, constraint
type (unique constraint, check constraint, primary key, foreign key), and
status. A disabled constraint is not enforced when rows are added or
modified; to have a disabled constraint enforced, you must edit the table and
set the status of the constraint to Enabled (see the appropriate tabs for the
Create/Edit Table (with advanced options) dialog box).

■ Foreign Key Constraints: For each foreign key constraint, lists information that
includes the owner, the table name, the constraint name, the column that the
constraint is against, the table that the constraint references, and the constraint
in the table that is referenced.

■ Primary Key Constraints: For primary key constraint, lists information that
includes the owner, the table name, the constraint name, the constraint status
(enabled or disabled), and the column name.

■ Unique Constraints: For each unique constraint, lists information that includes
the owner, the table name, the constraint name, the constraint status (enabled
or disabled), and the column name.

■ Indexes: Includes information about all indexes, indexes by status, indexes by
type, and unused indexes.

■ Organization: Specialized reports list information about partitioned tables,
clustered tables, and index-organized tables.

■ Quality Assurance: (See Quality Assurance reports.)

■ Statistics: For each table, lists statistical information, including when it was
last analyzed, the total number of rows, the average row length, and the table
type. In addition, specialized reports order the results by most rows and
largest average row length.

■ Storage: Lists information about the table count by tablespace and the tables in
each tablespace.

■ Triggers: Lists information about all triggers, disabled triggers, and enabled
triggers.

Troubleshooting Database Connections

26-34 User's Guide for Oracle JDeveloper

■ User Synonyms: Displays information about either all user synonyms or those
user synonyms containing the string that you specify in the Enter Bind
Variables dialog box (deselect Null in that box to enter a string).

■ User Tables: Displays information about either all tables or those tables
containing the string that you specify in the Enter Bind Variables dialog box
(deselect Null in that box to enter a string).

■ Quality Assurance reports: These are table reports that identify conditions that
are not technically errors, but that usually indicate flaws in the database
design. These flaws can result in various problems, such as logic errors and
the need for additional application coding to work around the errors, as well
as poor performance with queries at run time.

■ Tables without Primary Keys: Lists tables that do not have a primary key
defined. A primary key is a column (or set of columns) that uniquely identifies
each row in the table. Although tables are not required to have a primary key,
it is strongly recommended that you create or designate a primary key for
each table. Primary key columns are indexed, which enhances performance
with queries, and they are required to be unique and not null, providing some
automatic validation of input data. Primary keys can also be used with foreign
keys to provide referential integrity.

■ Tables without Indexes: Lists tables that do not have any indexes. If a column
in a table has an index defined on it, queries that use the column are usually
much faster and more efficient than if there is no index on the column,
especially if there are many rows in the table and many different data values
in the column.

■ Tables with Unindexed Foreign Keys: Lists any foreign keys that do not have
an associated index. A foreign key is a column (or set of columns) that
references a primary key: that is, each value in the foreign key must match a
value in its associated primary key. Foreign key columns are often joined in
queries, and an index usually improves performance significantly for queries
that use a column. If an unindexed foreign key is used in queries, you may be
able to improve run-time performance by creating an index on that foreign
key.

■ XML Reports

These reports list information about XML objects.

■ XML Schemas: For each user that owns any XML objects, lists information
about each object, including the schema URL of the XSD file containing the
schema definition.

26.9 Troubleshooting Database Connections
This section contains information to help you if you have problems connecting to a
database.

26.9.1 Deploying to a Database that Uses an Incompatible JDK Version
If you get the following ORA-29552: verification warning:
java.lang.UnsupportedClassVersionError when deploying Java to the
database you need to change the version of the JDK used for that project to a version
compatible with that used by the database.

This version of JDeveloper uses Java JDK Version 1.6.

Troubleshooting Database Connections

Connecting to and Working with Databases 26-35

For information about changing the Java SE on a project by project basis, see the
section on setting the target Java SE in How to Set Properties for Individual Projects.

You can download previous releases of Java SE from
http://www.oracle.com/technetwork/java/javase/downloads/previous
-jsp-138793.html.

Table 26–1 JDK Version Used by Different Database Versions

RDBMS Version JDK Version

9.2 1.3.1

10.2 1.4.2_04

11.1 1.5.0_10

11.2 1.5.0_10

Troubleshooting Database Connections

26-36 User's Guide for Oracle JDeveloper

27

Designing Databases Within Oracle JDeveloper 27-1

27Designing Databases Within Oracle
JDeveloper

This chapter describes how to work with database objects in a database connection. It
also contains information about working with offline databases in JDeveloper to create
and edit offline database objects that can then be generated to a script database
connection.

This chapter includes the following sections:

■ Section 27.1, "About Designing Databases Within Oracle JDeveloper"

■ Section 27.2, "Creating, Editing, and Dropping Database Objects"

■ Section 27.3, "Creating Scripts from Offline and Database Objects"

27.1 About Designing Databases Within Oracle JDeveloper
You can use JDeveloper to:

■ Create, edit, or delete database objects

■ Create, edit, or delete offline database objects

■ Work with offline versions of database definitions, and then generate those
definitions to a file that is processed immediately or at a time you choose to create
a table or other database objects via the database connection

■ Model offline databases, and model database objects in a live database connection
on a diagram. For more information about modeling databases, see Section 23.5,
"Database Diagram."

27.2 Creating, Editing, and Dropping Database Objects
You can create database objects and offline database definitions, you can edit those
objects, and you can delete them or drop them a database connection.

27.2.1 Working with Offline Database Definitions
This section describes how to work with database objects, such as tables, views,
constraints, outside the context of a database schema. Offline database is a technology
in JDeveloper that allows you to create and edit database object definitions within a
project, saved as .xml files, using the same editors that are used to create and edit
database objects on live database connections.

Creating, Editing, and Dropping Database Objects

27-2 User's Guide for Oracle JDeveloper

You can create new offline database objects, or import them from a connection to a live
database. After you have finished working with them, you can generate DDL that can
be used to create and update database definitions in online database schemas.

The JDeveloper Offline database supports the following object types:

■ Function

■ Index

■ Materialized View

■ Materialized View Log

■ Package

■ Procedure

■ Sequence

■ Synonym

■ Table

■ Tablespace

■ Trigger

■ Type

■ View

For more information about Oracle Database support of any of these object types, see
the Oracle Database SQL Language Reference.

Working with Offline Database Definitions
When you work with offline database definitions in JDeveloper, you work with objects
that are stored as XML files, but which provide a model of objects in a live database
connections. You can generate offline database definitions to live database connections
to create, alter, or drop database objects.

JDeveloper provides the tools you need to create and edit database objects such as
tables and constraints outside the context of a database. For example

■ You can create new tables and views and generate the information to a database.

■ You can create new tables and views and generate the information to a file, which
you can edit and later run on a database connection.

■ You can import tables and views from a database schema, make the changes you
want and then generate the changes back to the same database schema, to a new
database schema, or to a file that you can run against a database at a later date.
JDeveloper allows you to manually reconcile changes before committing them to a
database.

■ You can use the modeling tools in JDeveloper to visualize your offline database
objects on a diagram. For more information about modeling databases, see
Section 23.5, "Database Diagram."

How to Set Paths for Offline Database Files
You can configure a project's settings to specify the root locations for offline database
objects available to that project. The database path is configured by default, so you
only need to change it if you want to:

■ Include offline database objects that are stored in another project

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 27-3

■ Store new offline database object files somewhere else.

Offline database objects can be shared between projects by adding their file system
location to the database path for a project. The order in which file system locations are
entered in the database path signifies the order in which the directories are searched
for offline database objects. The first location in the database path is the location in
which new offline database object files are stored.

If you are modeling database objects, the model path (located on the Modelers
preferences page in the Project Properties dialog) is used to specify the file location for
the diagram.

You can set a default root directory for database objects that will be used for all new
projects.

To set the default root directory for database objects for new projects:
1. Choose Application > Default Project Properties.

2. Select Project > Source Paths > Offline Database, and enter the root directory.

You can change the database path for an existing project.

Setting the database path for an existing project:
1. Right-click the project and choose Project Properties.

2. Select Project > Source Paths > Offline Database, and enter the file system
location for your project's offline database objects. Separate multiple file system
locations using semicolons (;).

3. You can selectively include and exclude subfolders using the Included and
Excluded tabs. For more information, press F1 or click Help from within the
dialog.

27.2.1.1 Offline Databases
JDeveloper works with offline database definitions in the context of offline databases
that act as containers in a similar way to packages. In the Application Navigator, the
offline database is shown below the Offline Database Sources node, shown in
Figure 27–1.

Note: When you are adding another database path to a project, you
should save your work before proceeding. When you change the
database path, the project reloads the offline database object
definitions so any unsaved work for example, changes to tables,
views, schemas or new objects that you have not yet saved, may be
lost.

Creating, Editing, and Dropping Database Objects

27-4 User's Guide for Oracle JDeveloper

Figure 27–1 Offline Database in the Application Navigator

In this case, a Java class and a database diagram have been created in the package
project1, which is under the Application Sources node, and some offline database
definitions have been created in an offline database called DATABASE1, which is under
the Offline Database Sources node.

When you create an offline database, you choose the database emulation the offline
database should have.

27.2.1.2 Configuring Offline Database Emulation
You can specify the type of database an offline database emulates. This determines the
data types supported in the project.

The Oracle Database options available are:

■ Oracle 11g Database Release 1

■ MySQL Database Server 4.1.x

■ MySQL Database Server 5.x

■ Oracle 11g Database Release 2 (default)

■ Oracle Database 10g Release 1

■ Oracle Database 10g Release 2

■ Oracle Database 10g Express Edition Release 2

■ Oracle Database 11g Express Edition Release 2

■ Oracle Database 10g Lite Release 1

■ Oracle Database 10g Lite Release 3

■ Oracle 8i Server Release 3

■ Oracle 9i Database Release 2

■ TimesTen Database Server 11g

■ TimesTen Database Server 6.0

■ TimesTen Database Server 7.0

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 27-5

The non-Oracle database options available are:

■ Apache Derby 10.5

■ DB2 Universal Database 8.1

■ DB2 Universal Database 9.5

■ Generic JDBC Database

■ Informix Dynamic Server 10.0

■ Informix Dynamic Server 11.5

■ Microsoft SQL Server 2005

■ Microsoft SQL Server 2008

■ SQLite Database 3.6

■ Sybase Adaptive Server Enterprise 12.5

■ Sybase Adaptive Server Enterprise 15

27.2.1.3 How to Create Offline Databases
An offline database is a node in the Application Navigator that contains offline
schemas and offline database object definitions.

To create an offline database:
1. In the navigator, locate the project you want to work in.

2. Right-click a project or anything in it, and choose New to display the New Gallery.

3. From the New Gallery, expand Database Tier, and select Offline Database
Objects, and select Offline Database.

4. In the Create Offline Database dialog, enter a name for the offline database and
choose the database type to emulate.

For more information at any time, press F1 or click Help from within Create
Offline Database dialog.

27.2.1.4 Offline Schemas
JDeveloper works with offline database definitions in the context of offline databases.
Within the offline databases, schemas are the equivalent of schemas in live database
connections. In the Application Navigator, the offline schema is shown below the
Offline Database Sources node, illustrated in Figure 27–2.

Creating, Editing, and Dropping Database Objects

27-6 User's Guide for Oracle JDeveloper

Figure 27–2 Offline Schema in Application Navigator

In this case, a Java class and a database diagram have been created in the package
project1, which is under the Application Sources node, and some offline database
definitions have been created in a schema called MYSCHEMA, which is in an offline
database called DATABASE1 under the Offline Database Sources node.

27.2.1.5 How to Create Offline Schemas

To create an offline schema:
1. In the navigator, locate the project you want to work in.

2. Right-click a project or anything in it, and choose New to display the New Gallery.

3. From the New Gallery, expand Database Tier, and select Offline Database
Objects, and select Schema.

4. In the Offline Database dialog, choose the offline database to create the schema in.

5. In the Create Schema dialog, enter a name for the offline schema. For more
information at any time, press F1 or click Help from within Create Schema dialog.

Context Menu Shortcut:
In the Application Navigator, right-click the offline database, and choose New
Schema.

27.2.1.6 How to Create Offline Database Objects
You can create offline database objects from the New Gallery, or from the context menu
of an offline database or offline schema in the Application Navigator. The process is
similar regardless of the offline database object type.

About Tables
The types of tables that are available are:

■ Normal. This is a regular database table which can be partitioned. A partitioned
table is a table that is organized into smaller and more manageable pieces called
partitions. SQL queries and DML statements do not need to be modified in order
to access partitioned tables; however, after partitions are defined, DDL statements

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 27-7

can access and manipulate individual partitions rather than entire tables or
indexes. Also, partitioning is entirely transparent to applications.

■ External. An external table is a read-only table whose metadata is stored in the
database but whose data is stored outside the database. Among other capabilities,
external tables enable you to query data without first loading it into the database.

■ Index Organized. An index-organized table is a table in which the rows, both
primary key column values and non-key column values, are maintained in an
index built on the primary key. Index-organized tables can be used to store index
structures as tables in Oracle Database. Index-organized tables are best suited for
primary key-based access and manipulation.

■ Temporary. The temporary table definition persists in the same way as the
definition of a regular table, but the table segment and any data in the temporary
table persist only for the duration of either the transaction or the session, and the
table is not stored permanently in the database. Temporary tables cannot be
partitioned or index organized.

About Partitions
You can partition a table, an index, or a materialized view. A partitioned table or
materialized view is a table or materialized view that is organized into smaller and
more manageable pieces called partitions. SQL queries and DML statements do not
need to be modified in order to access partitioned tables; however, after partitions are
defined, DDL statements can access and manipulate individual partitions rather than
entire tables or indexes. Also, partitioning is entirely transparent to applications.

Temporary tables cannot be partitioned.

A partitioned index consists of partitions containing an entry for each value that
appears in the indexed column(s) of the table.

There are three types of partitions:

■ RANGE, which partitions the table on ranges of values from the column list. For
an index-organized table this must be a subset of the primary key columns of the
table.

■ HASH, which partitions the table using the hash method. Rows are assigned to
partitions using a hash function on values found in columns designated as the
partitioning key.

■ LIST, which partitions the table on lists of literal values from a column. This is
useful for controlling how individual rows map to specific partitions.

If you have a RANGE partition on a table or index, you can additionally subpartition
the table or index by HASH or LIST. Composite partitioning is a combination of two
partitioning methods to further divide the data into subpartitions.

You can define subpartition templates which will be used in any partition for which
you do not explicitly define subpartitions.

Note: You can only create and use relational table definitions in
offline schemas, you cannot create and use object relational table
definitions.

Creating, Editing, and Dropping Database Objects

27-8 User's Guide for Oracle JDeveloper

About Indexes
You can create indexes on columns in tables in order to speed up queries. Indexes
provide faster access to data for operations that return a small portion of a table's
rows. In general, you may want to create an index on a column in any of the following
situations:

■ The column is queried frequently.

■ A referential integrity constraint exists on the column.

■ A unique key integrity constraint exists on the column.

You can create an index on any column; however, if the column is not used in any of
these situations, creating an index on the column does not increase performance and
the index takes up resources unnecessarily. Although the database creates an index for
you on a column with an integrity constraint, explicitly creating an index on such a
column is recommended. You can use the SQL Worksheet's execution plan to show a
theoretical execution plan of a given query statement.

Indexes can be normal, where the index is either non-unique, unique, or bitmap, or
they can be domain indexes.

In a non-unique normal index, the index can contain multiple identical values. In a
unique normal index, no duplicate values are permitted. Use a unique normal index
when values are unique in the column. In a bitmap normal index, rowids associated
with a key value are stored as a bitmap. These are useful for systems in which data is
not frequently updated by many concurrent systems, or where there is a small range of
values.

Domain indexes are user-defined indexes, each of which indexes data in an
application-specific domain. They are built using the indexing logic supplied by a
user-defined indextype. An indextype provides an efficient mechanism to access data
that satisfy certain operator predicates. Typically, the user-defined indextype is part of
an Oracle option, like the Spatial option.

Working with User-Defined Data Types
JDeveloper allows you to define your own data types, which can be either object types
and collection types.

Object types are abstractions of the real-world entities—for example, purchase
orders—that application programs deal with. An object type is a schema object with
three kinds of components:

■ A name, which serves to identify the object type uniquely within that schema.

■ Attributes, which model the structure and state of the real world entity. Attributes
are built-in types or other user-defined types.

Note: A table or index in Oracle Database which uses a hash
partition by quantity will be displayed in JDeveloper as having
individual hash partitions. You can either specify your individual
partitions manually using the Create or Edit Table or Materialized
View dialog, or define them by quantity and let the database do the
work for you. Whichever way you choose to define your partitions,
when you edit the database table or materialized view in JDeveloper,
they will be displayed as individual partitions.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 27-9

■ Methods, which are functions or procedures written in PL/SQL and stored in the
database, or written in a language like C and stored externally. Methods
implement operations the application can perform on the real world entity.

An object type is a template. A structured data unit that matches the template is called
an object.

JDeveloper allows you to create an object type specification, or an object type
specification and body.

When you create a new object type spec, it is similar to

TYPE TYPE1 AS OBJECT (a null);

When you create an object type body, it is similar to

CREATE TYPE TYPE1 AS VARRAY(1) OF null;
/

Collection types are different. Each collection type describes a data unit made up of an
indefinite number of elements, all of the same data type. The collection types are array
types and table types.

Array types and table types are schema objects. The corresponding data units are
called VARRAYs and nested tables. When there is no danger of confusion, we often
refer to the collection types as VARRAYs and nested tables.

Collection types have constructor methods. The name of the constructor method is the
name of the type, and its argument is a comma-separated list of the new collection's
elements. The constructor method is a function. It returns the new collection as its
value.

An expression consisting of the type name followed by empty parentheses represents a
call to the constructor method to create an empty collection of that type. An empty
collection is different from a null collection.

JDeveloper allows you to create array types and table types.

n array type is similar to

TYPE TYPE1 AS VARRAY(1) OF null;

A table type is similar to

TYPE TYPE1 AS TABLE OF null;

About Materialized Views
Materialized views are database objects that contain the results of a query. The FROM
clause of the query can name tables, views, and other materialized views. You can
model, create, and edit materialized views in a live database connection, and offline
materialized views in an offline database in JDeveloper.

When importing materialized views from Oracle Database to a JDeveloper project:

■ If a materialized view on the database specifies WITHOUT REDUCED
PRECISION, when it is imported into JDeveloper it will use reduced precision,
and the Reduced Precision option on the Properties page of the Edit Materialized

Note: In order to use data types when the project is configured for
database emulation other than Oracle Database, the database it
emulates must support type creation.

Creating, Editing, and Dropping Database Objects

27-10 User's Guide for Oracle JDeveloper

View dialog is selected. If it is important that the materialized view does not
reduce precision, select No Reduced Precision in the dialog.

■ If a materialized view on the database specifies USING ROLLBACK SEGMENT
and USING TRUSTED CONSTRAINTS, when it is imported into JDeveloper no
rollback segment is selected on the Properties page of the Edit Materialized View
dialog, and the constraint is shown as Enforced. If necessary, change the options in
the Edit Materialized View dialog

Validating Date and Time Values
When you create offline table definitions or tables in a database and use date and time
default values, JDeveloper validates these values. For a date, you can use:

■ Oracle date functions

■ A quoted string of the form DD-MON-RR, where:

– The month can be spelled out in full.

– The year can be written in full, e.g., 2011.

– The separators (-) can be absent, or any non-alphanumeric character combined
with spaces.

For a time stamp, you can use a quoted string of the form DD-MON-RR HH.MI.SSXFF
AM TZR, where:

■ The month can be spelled out in full.

■ The year can be written in full, e.g., 2011.

■ The hours and minutes must be present.

■ Seconds, fractions of second, AM/PM, and time zone are optional.

■ The separators (-) can be absent, or any non-alphanumeric character combined
with spaces.

When you import tables from a database, date and time values are validated according
to the rules above. If the validation prevents you from importing a table from Oracle
Database, you can turn it off.

To turn off date and time validation:
1. Choose Tools > Preferences > Database Connections.

2. Uncheck Validate date and time default values.

To create an offline type definition:
1. In the Application Navigator, expand the workspace and project you want to work

in.

2. Right-click a project or anything in it, or an offline schema or anything in it, and
choose New to display the New Gallery.

3. From the New Gallery, expand Database Tier, and select Offline Database Objects.

4. Select Type to launch the Create Offline Type dialog.

5. Enter parameters and select options to define the type.

For more information at any time, press F1 or click Help from within the Create
Offline Type dialog.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 27-11

Context Menu Shortcut:
In the Application Navigator, right-click the offline schema, select New Database
Object, then select New Type.

You can edit user-defined types by double-clicking the type in the Application
Navigator. The SQL comprising the type opens in the source editor.

To create offline database object definitions:

1. n the Application Navigator, right-click a project or anything in it, and choose
New to display the New Gallery.

2. From the New Gallery, expand Database Tier, and select Offline Database
Objects.

3. Select the offline database object you want to create to launch the Create dialog or
wizard.

For more information at any time, press F1 or click Help from within the Create
Offline Type dialog.

Context Menu Shortcut:
In the Application Navigator, right-click the offline schema, select New Database
Object, then select object you want to create.

To drop an offline database definition:
1. In the navigator, expand the project, offline database, and offline schema

containing the offline object. Right-click the offline object, and choose Delete.

2. Right-click the offline object, and choose Delete.

Alternatively, right-click the offline table and choose File > Delete.

27.2.1.7 How to Import Offline Database Definitions Based on Database Objects
You can drag tables, views, materialized views, synonyms, and sequences from a
database schema onto a database diagram, where they become accessible as offline
database objects.

Another way of working with database objects as offline database objects is to import
them from a database to an offline database.

To drag objects onto a database diagram:
1. Create a new database diagram.

Alternatively, open an existing diagram.

2. Choose the database connection. Go to either:

Note: You can only create and use relational table definitions in
offline schemas, you cannot create and use object relational table
definitions.

Note: If the offline table has any dependencies, the Confirm Delete
dialog warns you and allows you to see the usages. If you still choose
to delete the offline table, the Cascade Confirm Delete dialog warns
you which objects will also be deleted.

Creating, Editing, and Dropping Database Objects

27-12 User's Guide for Oracle JDeveloper

■ View > Database > Database Navigator.

■ Application Resources in the Application Navigator.

Expand IDE Connections or application, and select a database connection.

3. In the connection, expand the schema and expand the node you want: Tables,
Views, Materialized Views, Sequences, or Synonyms.

4. Select the object you want to model, and drag it onto the database diagram. This
opens the Specify Location dialog. Ensure that Copy Objects to Project is selected,
and click OK. The object is now displayed on the diagram and listed in the
Application Navigator.

You can drag more than one object of the same type onto a database diagram, by
holding down the Ctrl key as you select them.

How to Copy Database Objects and Offline Database Definitions to Projects
You can copy database objects from a database schema to an offline database where
they become available as offline database objects. You can also copy offline database
objects to a project.

If you try to copy database objects to an offline database which emulates a different
database version you will see an error message giving you guidance on how to
proceed. In general, it is a good idea to make sure that the offline database uses the
same database emulation as the source database.

You can apply filters in the wizard to only display the objects you are interested in,
and when there are a large number of objects in the schema you can turn off
auto-query so that the wizard does not refresh every time you type a filter character.

You can apply filters to select the objects that are displayed as available for import. In
the Object Picker page (step 3 of the wizard), you can:

■ Enter characters in Name Filter to filter the list of available objects by name. Name
Filter is case sensitive.

■ When there are a large number of objects, you can turn off Auto-Query, and click
Query after you have entered the filter you want to use.

To import database objects:
1. In the Application Navigator, select the project you want to work in.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Database Tier and select Offline Database Objects.

4. In the Items list, double-click Copy Database Objects to a Project to launch the
Copy Database Objects to a Project wizard.

For more information at any time, press F1 or click Help from within the wizard.

Note: If you import the same object more than once a warning
message is displayed. If you are using Copy to Project and choose to
proceed, you can replace or delete the existing object. If you drag a
database object onto the diagram and choose to proceed the new
object overwrites the existing one.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 27-13

27.2.1.8 Offline Tables and Foreign Keys
When you import a table from a live database schema to JDeveloper, information
about any foreign keys will not necessarily be available. The following sections discuss
how foreign key information is treated in different cases.

Importing Tables at Both Ends of a Foreign Key
This is the simplest case. When JDeveloper imports tables that have foreign keys
between them, information about the foreign key is also imported. Therefore the
foreign key is correctly shown on a database diagram and on the Constraint
Information page of the Edit Offline Table dialog.

After you have finished working on the tables you can choose to generate your
changes directly back to the database.

Importing a Table at One End of a Foreign Key
In the case that JDeveloper imports a table that has a foreign key, but the table at the
other end of the key is not imported, an unvalidated foreign key reference (called a
name-based foreign key) is used. The foreign key is displayed in the Constraints
compartment of the owning table, but not as association lines on the database
diagram. The table dialog will show the foreign key as broken. The name-based
foreign key is not validated, but the DDL is correct so that changes can be generated
directly to a database.

Best Practice
From the information above you can see that if you are importing tables to act as the
basis of a new database schema, then you do not need to worry about foreign keys to
tables that you are not interested in. You can safely make your changes and generate
the online tables in a new schema.

However if you are importing tables so that you can make the changes you want and
then generate the changes back to the same database schema you should either:

■ Import all tables that have a foreign key relationship, whether you intend to
change them or not, so that you generate the correct information about the foreign
keys to a SQL file or directly to the database. The Choose Operation page of the
Copy Database Objects to a Project wizard allows you to import dependencies.

■ Import just the tables you want to change and rely on the name-based foreign keys
to hold the information

27.2.1.9 How to Refresh Offline Database Objects
You can refresh any imported offline object from the database connection it was
originally imported from. Note that if you reimport the object, you will lose any
changes you have made in the offline object.

Note: You cannot refresh an object that was created as an offline
object in JDeveloper and then generated to the database. If you make
changes to the object in the database and want those changes to be
reflected in the offline object, you must import the object from the
database and overwrite the offline object by selecting Automatically
replace existing objects on the Select Target Schema page, or selecting
Yes on the Confirm Overwrite message at the end of the wizard.

Creating, Editing, and Dropping Database Objects

27-14 User's Guide for Oracle JDeveloper

To reimport an object from a database connection:
1. Right-click the offline object in the Application Navigator, and choose Refresh

from db-connection.

2. When the Confirm Offline Object Overwrite dialog appears, check that you want
to reimport the object and then click Yes. Otherwise click No. This may take a few
seconds.

27.2.1.10 How to Create Objects from Templates
You can create offline database objects based on templates, for example: To use a
default set of storage options for all tables created. To use a default set of user property
values for all tables created. To use a set of default columns for all tables created. A
template table can create a default primary key, a column sequence, and a trigger.

When you create a new object using the template, the properties that are set on the
template are copied to the new object and therefore pre-populate the options in the
create dialog. When the namespace of owned objects is not the parent object, the name
must be unique within the schema, not just within the parent object. For example,
Index and Constraint names must be unique within the schema, not just within the
owning Table, Materialized View, or View.

How to Create Offline Templates
You can create offline database objects from templates.

To create default templates for an offline database:
1. Create a new offline database.

2. In the Create Offline Database dialog, select Initialize Default Templates. When
you click OK, the offline database is created, along with default template objects
which have the name TEMPLATE_object. You can edit the template database
objects by right-clicking the one you want and choosing Properties, which opens
the Edit object dialog.

To edit the default templates for a new offline database:
1. If you are creating a new offline database, select Edit Default Templates in the

Create Offline Database dialog.

2. When you click OK, the Default Templates dialog opens where you can edit the
default template for each object type. For more information at any time, press F1
or click Help from within the Default Templates dialog.

To edit the default templates for an existing offline database:
1. In the Application Navigator, right-click the offline database and choose

Properties.

2. Navigate to the Default Templates page of the dialog, where you can edit the
default template for each object type. For more information at any time, press F1
or click Help from within the Edit Offline Database dialog.

How to Create Offline Database Objects from Templates
You can create offline database objects from templates as offline database objects in the
Application Navigator, or as modeled offline database objects on a database diagram.

Before creating offline database objects based on templates, you first need to create the
templates.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 27-15

To create an offline database object based on a template:
1. In the navigator, right-click a project or anything in it, and choose New to display

the New Gallery.

2. From the New Gallery, expand Database Tier, and select Offline Database
Objects.

3. Select Database Object from Template to launch the Choose Template Object
dialog. For more information at any time, press F1 or click Help from within the
Create object dialog.

4. Choose the object type to create from a template. When you click OK, the Create
object dialog opens, pre populated with the values in the template. For more
information at any time, press F1 or click Help from within the Create object
dialog.

When you click OK the object is created and listed in the Application Navigator
under the offline database and schema.

You can also open the Choose Template Object dialog from the context menu of an
offline database, or any node under it, in the Application Navigator.

To quickly create an offline database object based on a template:
1. Right-click the offline database node in the Application Navigator, or any node

under it, and choose New Database Object > From Template.

To quickly create an offline database object based on another offline database
object:
1. In the Application Navigator, right-click the offline database object you want to

base a new object on and choose Use as Template.

2. The Edit dialog for the type of object opens, pre populated with the properties of
the source object.

27.2.1.11 Working with User Property Libraries
You can add user defined properties to database objects. For an instance of a database
object; these user defined properties can be assigned specific values.

You can work with libraries that can limit the properties you can define for an offline
database object. For example, you can determine that all tables must have a column of
a particular type, or that only certain values are allowed, or that a property is
mandatory.

User property libraries are defined in the context of an offline database. First you have
to define user properties for the types of offline database objects you want to use. Then
you can use the libraries when creating offline database objects in the offline database
that the library is defined for.

User property libraries can contain properties defined for:

■ Tables, columns, constraints, indexes

■ Functions, packages, procedures

■ Materialized Views

■ Materialized View Logs

■ Sequences

■ Synonyms

Creating, Editing, and Dropping Database Objects

27-16 User's Guide for Oracle JDeveloper

■ Tablespaces

■ Triggers

■ Types

■ Views

27.2.1.11.1 How to Create and Edit User Property Libraries User property libraries are
independent of offline databases, but can be added to them using the offline database
edit dialog.

To create or use a user property library:
1. In the Application Navigator, expand the project, right-click the offline database

and choose Properties.

2. In the Edit Offline Database dialog, choose User Property Libraries.

3. You can:

■ Create a new library. In this case, you enter a filename and location for the
library.

■ Add a library that exists in the file system. In this case, you browse to the
library location on the file system.

■ Edit an existing library by selecting it from the list.

4. Enter values for the user properties in the Edit User Property Library File dialog.
For more information at any time, click F1 or press Help in the dialog.

Once you have created a user property library for an offline database object type, you
can use it to store user property value specific to that instance of the object.

You can provide validation for the user defined property value to validate the
database objects by writing your own validation code. This is an advanced procedure
which is outside the scope of this user guide. For more information see
UserPropertyValidationManager in Oracle Fusion Middleware Java API Reference
for Oracle Extension SDK. For information about using the Extension SDK, see Oracle
Fusion Middleware Developer's Guide for Oracle JDeveloper Extensions.

27.2.1.11.2 How to Use User Property Libraries Use user properties for database objects

Before you can use user properties in offline database objects, you must define one or
more user property libraries for the offline database you are working in.

To use user properties in an offline database object:
1. Create the offline database object.

2. Navigate to the User Properties page or tab of the offline database object dialog,
and enter values for the user properties.

27.2.1.12 How to Generate Offline Database Objects to the Database
The Generate SQL from Offline Database Objects wizard allows you to choose how to
update a database schema with the offline objects that you have created or edited. You
can:

■ Create or replace the objects in the database.

If you choose to generate a SQL file, it will contain CREATE and DROP
statements.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 27-17

■ Update existing database schema objects with the changes you have made to the
offline database objects. JDeveloper first reconciles the offline database definitions
against the objects in the database schema to identify the changes necessary. You
can choose to do a manual reconcile and select only some of the changes.

If you choose to generate a SQL file, it will contain ALTER statements.

Whether you are generating changes to a database, or reconciling changes, you can
choose to:

■ Generate a SQL file that you can examine, and run against the database later.

■ Make the changes directly to the database.

■ Make the changes to the database and also generate a SQL file.

Alternatively, if you just want to generate one or more offline tables back to the
database connection they were originally imported from, you can do this directly from
the navigator.

27.2.1.12.1 Reconciliation issues This section contains information about problems you
may come across when reconciling.

27.2.1.12.2 Cannot modify constraints Constraints can be created or dropped during
reconciliation; they cannot be modified. The only ALTER TABLE reconciliations that
can be performed are ADD CONSTRAINT, DROP CONSTRAINT, ADD COLUMN, DROP
COLUMN, and WIDEN COLUMN.

27.2.1.12.3 Cannot reconcile renamed tables You can change the name of a table when
you import it or while you are editing it offline. If you try to reconcile the renamed
table back to the database, you will receive an error message because the database
does not have a record of the table with its new name.

To avoid this, create the renamed table in the database, do not reconcile or replace it.

How to Generate Database Definitions to a Database

27.2.1.12.4 How to Generate Database Definitions to a File Create a SQL file containing the
CREATE and DROP statements that you can run against an online database schema.

Note: If you have made changes to tables that have foreign keys, it is
possible that the foreign keys will be dropped when you generate
your changes to the database.

Creating, Editing, and Dropping Database Objects

27-18 User's Guide for Oracle JDeveloper

To create the file:
1. In the Application Navigator, expand the application and project.

2. Right-click an offline schema and choose New to display the New Gallery.

3. From the New Gallery, expand Database Tier, and select Offline Database
Objects.

4. Select SQL Generated from Offline Database Objects to launch the Generate
SQL from Offline Database Objects wizard.

5. On the page specify details for the generated file, then click Next.

6. On the Finish page, click Finish to create the file.

Context Menu Shortcut:

In the navigator, right-click one or more offline database definitions and choose
Generate to

or On the database diagram select one or more modeled database definitions,
right-click and choose Synchronize with Database > Generate To.

27.2.1.13 Renaming Offline Database Objects
JDeveloper has a limited ability to keep track of renamed offline database objects such
as tables and sub objects such as columns or constraints. In some circumstances
JDeveloper will drop the database object with the unchanged name and create a new
database object with the new name, which can lead to loss of data. You need to be
aware of the situations when this can arise so as to avoid them.

This can occur when an offline database object is generated to a database connection. If
you then change the name of the offline database object or of a sub object such as a
column or index, and then generate the changed offline database object to a database
connection, in the database the object with the original name is dropped and a new
object using the new name is created.

A different situation which can lead to loss of data is when an object is imported from
a database connection, then the name of an offline database sub object is changed. In
this case, the first time you generate to a database connection the database sub object is
correctly updated. However if you attempt to generate to the database connection a

Note: If you have made changes to tables that have foreign keys, it is
possible that the foreign keys will be dropped when you generate
your changes to the database.

If you have one or more offline database definitions containing
information that you want to generate to a database, you can use this
method. However if you want to quickly generate one or more offline
database definitions back to their original database connection, you
can do this from the navigator.

When you have an offline version of an online database table,
JDeveloper keeps track of the information comprising the offline
database table columns behind the scenes. When the database is
updated outside JDeveloper, for example when the generated SQL
script is run in a SQL session, or when another user updates the
database, JDeveloper cannot track the link between the offline
database table and the table in the database. To get around this, you
must refresh the offline schema objects from the database.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 27-19

second time the sub object with the original name is dropped and a new database sub
object with the new name is created. The reason that this happens is because Copy to
Project uses the original name in an internal reference to the online sub object.

27.2.1.14 Using Offline Database Reports
JDeveloper provides many reports about an offline database and its objects. You can
also create your own user-defined reports for offline database objects.

27.2.1.14.1 Offline Database Reports JDeveloper comes with a set of pre-built report
definitions, and you can also define your own report definitions.

You can use the pre-built reports directly to provide information about an offline
database, or you can alter them to create a report tailored to your specific
requirements.

Once you have created a pre-built report, you can examine the SQL that makes up the
query for the report, and if necessary change it. You can also set parameters in the
report query that are called when the report is run.

27.2.1.14.2 How to Use Pre-built Reports The pre-built reports quickly provide useful
reports which provide the following queries for an offline database:

■ OBJECT_COUNT, which lists the number of schema objects of each object type.

■ OBJECT_LIST, which lists all schema objects in the offline database.

■ TABLE_COLUMNS, which lists all tables with their column information.

■ TABLE_COLUMN_COUNT, which lists all tables with their column count.

■ TABLE_NO_PKS, which displays all tables that do not have a primary key.

When you run the Pre-Built Reports wizard, a separate file is generated for each of the
pre-built reports that you choose to the location that you specified, and the file is listed
in the Application Navigator under Resources.

You can examine the query for one of the pre-built reports by creating a new offline
database report definition, and basing it on the pre-built report. You can also create a
new report based on a pre-built report.

How to use predefined reports:
1. In the Application Navigator, expand the application and project.

2. Right-click an offline database and choose New to display the New Gallery.

3. From the New Gallery, expand Database Tier, and select Offline Database
Objects.

4. Select Pre-Built Reports to launch the Pre-Built Reports wizard.

5. Choose the reports you want to generate and if necessary click Next to change the
offline database that you want to run the report on.

Note: If you specify a location that is outside the current project the
reports are generated, but they are not listed in the Application
Navigator. The files have the file name pre-built-report.report, and
they are structured as XML files.

Creating, Editing, and Dropping Database Objects

27-20 User's Guide for Oracle JDeveloper

6. Click Finish. The reports you have chosen are listed in the Application Navigator
under the offline database node.

To edit a predefined report:
1. In the Application Navigator, expand the application, project and offline database.

2. Right-click the report and choose Properties to open the Edit Report dialog, where
you can examine and change the properties.

3. On the Report Definition page, change the name of the report. Change other
details as required, for example, you can change the offline database that the
report is to run on.

4. To change the SQL query for the report, either change the SQL on the Query
Definition page, or expand the Query Definition node and declaratively define the
SQL query. You can use the Check Syntax button on the Query Definition page to
check that the SQL parses.

5. To add parameters to the query, use the Report Parameters page.

6. To change the format that the report is published in, use the Publish Report page.

To run a pre-built report:
■ In the Application Navigator, right-click the report and choose Run. The report is

run against the offline database you specified. The results are either displayed in
the Reports Log window (default), or in the location and format that you have
chosen in the Publish Report page of the Edit Report dialog.

27.2.1.14.3 How to Define Report Definitions You can define your own report definitions.
You can either define a query from scratch, or you can base the new report definition
on an existing report or on one of the pre-built reports.

You can specify that just the report definition is produced, or you can specify that
when the report definition is run a comma-separated file is produced, or that a
formatted HTML document is produced.

If you choose to generate an HTML document, you can optionally specify that a CSS
file is used, and you can edit the default boilerplate text that formats the body of the
HTML document.

How to create a report:
1. In the Application Navigator, expand the application and project.

2. Right-click an offline database and choose New to display the New Gallery.

3. From the New Gallery, expand Database Tier, and select Offline Database
Objects.

4. Select Reports to launch the Create Report wizard.

5. Enter a name for the report, and choose whether to copy report details from a
pre-built report, from an existing report, or whether to create a new report from
scratch.

6. Change the offline database the report is to run on in the Offline Database page.

7. Create or examine the SQL query for the report in the Query Definition page. You
can use the pages under the Query Definition node to declaratively create the SQL
Query.

Creating, Editing, and Dropping Database Objects

Designing Databases Within Oracle JDeveloper 27-21

8. If you want to use parameters with the report, enter them in the Report
Parameters page.

9. Click Finish. The new report is listed in the Application Navigator under the
offline database node.

To run a report:
■ In the Application Navigator, right-click the report and choose Run. The report is

run against the offline database you specified. The results are either displayed in
the Reports Log window (default), or in the location and format that you have
chosen in the Publish Report page of the Edit Report dialog.

27.2.1.14.4 How to Use Boilerplate Text with HTML Reports JDeveloper provides some
boiler-plate code to help you to format the report, and it includes three new HTML
tags:

■ <report/>, which defines the report output.

■ <query/>, which defines the text of the query used to generate the report.

■ <rows/>, which is the number of rows in the report.

The boiler-plate code provided is:

Example 27–1 Boiler-plate code for User-Defined Reports

<h1>Table Report</h1>
<p>Query used:</p>
<pre><query/></pre>
<p>The report output is:</p>
<report/>
<p>Report complete. <rows/> row(s) returned.</p>

You can edit this in the Create or Edit Report dialog to customize the report.

27.2.1.14.5 How to Edit User-Defined Reports You can change the properties of defined
reports:

■ Change the name of the report, or the directory where it is stored.

■ Change the database connection you want to use.

■ Use parameters to define a query for the report.

■ Choose the format that the report should be published in.

To edit a report:
1. In the Application Navigator, expand the application, project and offline database.

2. Right-click the report and choose Properties to open the Edit Report dialog, where
you can examine and change the properties.

27.2.1.15 Transforming from a UML Model
You can transform a UML Class model to an offline database model using the Offline
Database Objects from UML Class Model wizard. For more information, see
Section 22.7.1, "How to Transform UML and Offline Databases."

Creating, Editing, and Dropping Database Objects

27-22 User's Guide for Oracle JDeveloper

27.2.1.16 Working with Offline Database Objects in Source Control Systems
Developer provides a number of features for developing in teams, including several
version control software systems. These are described in Chapter 6, "Versioning
Applications with Source Control".

Offline table definitions can be version controlled and shared using a source control
system. JDeveloper provides a compare tool optimized for working with offline table
definitions:

■ You can compare any offline db object. You can either compare with previous
version, or get a full version history and compare any two versions.

■ You can track name changes and the identity of objects.

■ You can check for consistency, for example:

– Ensuring that a column which is used in a key is not dropped.

– That a constraint which uses an absent column is not added.

– That a primary key column cannot be optional.

27.2.2 Working with Database Objects
You can create database objects in a database connection in the Database Navigator.

You must have a database connection in order to create database objects, and the user
name used to create that connection must have the privilege to create the database
object, either by having been granted the appropriate privileges (CREATE, DROP, and
so on) or having been granted a role such as administrator that contains the privilege.

For more information about Oracle Database objects, see the Oracle Database SQL
Language Reference.

To create a database object in the Database Navigator:
1. If necessary, choose View > Database > Database Navigator.

2. Expand IDE Connections or application, and expand the database connection.

3. Navigate to the node for the database object type you want to create. Right-click
and choose New object from the context menu.

Alternatively, click File > New to open the New Gallery. In the New Gallery,
expand Database Tier, and select Database Objects. Select the offline database
object type you want to create to launch the Create dialog or wizard.

4. Complete the Create object dialog.

For more information at any time, press F1 or click Help from within the Create
object dialog.

Note: While you can only compare versions of offline database
objects using a source control system, for example to see the
dependency of a constraint on a column, you can manually reconcile
changes before committing them to a database using the Generate
SQL from Offline Database Objects wizard. For more information, see
Section 27.2.1.12, "How to Generate Offline Database Objects to the
Database."

Creating Scripts from Offline and Database Objects

Designing Databases Within Oracle JDeveloper 27-23

To edit a database object:
1. If necessary, choose View > Database > Database Navigator.

2. Expand IDE Connections or application, and expand the database connection, and
navigate to the node and database object you want to edit.

3. Right-click and choose Edit to open the Edit object dialog.

For more information at any time, press F1 or click Help from within the Create
object dialog.

To drop a database object:
1. If necessary, choose View > Database > Database Navigator.

2. Expand IDE Connections or application, and expand the database connection, and
navigate to the node and database object you want to drop.

3. Right-click and choose Drop.

27.2.3 Using Database Reports
JDeveloper provides a number of predefined reports about the database and its
objects. You can also create your own user-defined database reports.

Database reports that query the database for latest information are run from the
Database Reports Navigator. For more information, see Section 25.3, "Using the
Database Reports Navigator."

27.3 Creating Scripts from Offline and Database Objects
You can generate database objects and offline database definitions to SQL scripts. You
can also generate tables to Oracle MetaBase (OMB) scripts, which can be imported into
Oracle Warehouse Builder.

27.3.1 How to Create SQL Scripts
You can create SQL scripts from offline database definitions in the Application
Navigator, or from database objects in the Database Navigator.

To create a SQL script from a database object in the Database Navigator or from
an offline database object in the Application Navigator:
1. Either choose View > Database > Database Navigator, expand the database

connection and schema, and right-click the database object you want to create the
script from

or

Choose View > Application Navigator, navigate to the offline database definition
you want to create the script from.

2. Choose Generate to SQL script.

3. The Generate SQL from Database Objects dialog opens at the Choose Operation
page. For more information at any time, press F1 or click Help in the dialog.

4. Complete the dialog. The script is created and opened in the SQL Worksheet.

Creating Scripts from Offline and Database Objects

27-24 User's Guide for Oracle JDeveloper

27.3.2 How to Create OMB Scripts from Tables
You can create scripts formatted as Oracle MetaBase (OMB) scripts for Oracle
Warehouse Builder from offline tables in the Application Navigator.

The default name of the script is omb_scriptn.tcl, and it is generated into the
current project and appears in the navigator under the same offline database as the
tables from which is it generated.

To create a OMB script from a table in the Application Navigator:
1. Choose View > Application Navigator, navigate to the offline table or tables you

want to create the script from.

2. Choose Generate to OMB script. The script is created and opened in the source
editor.

Creating Scripts from Offline and Database Objects

Designing Databases Within Oracle JDeveloper 27-25

Creating Scripts from Offline and Database Objects

27-26 User's Guide for Oracle JDeveloper

Creating Scripts from Offline and Database Objects

Designing Databases Within Oracle JDeveloper 27-27

Creating Scripts from Offline and Database Objects

27-28 User's Guide for Oracle JDeveloper

28

Using Java in the Database 28-1

28Using Java in the Database

JDeveloper supports features that allow you to write and execute Java programs that
access Oracle Databases.

This chapter includes the following sections:

■ Section 28.1, "About Using Java in the Database"

■ Section 28.2, "Choosing SQLJ or JDBC"

■ Section 28.3, "Accessing Oracle Objects and PL/SQL Packages using Java"

■ Section 28.4, "Using Java Stored Procedures"

28.1 About Using Java in the Database
There are three aspects to using Java in the database:

■ Using SQLJ or JDBC, both of which can be used to embed SQL in Java programs.

■ Accessing database objects and PL/SQL packages from Java programs.

■ Using Java stored procedures, which are Java methods that reside and run inside
the database.

28.2 Choosing SQLJ or JDBC
JDeveloper supports two mechanisms for embedding SQL in Java programs:

■ SQLJ: If you know the PL/SQL tables and columns involved at compile time
(static application), you can use SQLJ. SQLJ is an industry standard for defining
precompiled SQL code in Java programs.

SQLJ allows you to code at a higher level than JDBC, by embedding SQL
statements directly in your Java code. The SQLJ precompiler that is integrated into
JDeveloper translates the SQL into Java plus JDBC code for you. SQLJ with
JDeveloper lets you write and debug applications much faster than you can using
just JDBC.

■ JDBC: If you require fine-grained control over database access, or if you are
developing an application that requires precise information about database (or
instance) metadata, you can code your application entirely in Java using the JDBC
API.

You can mix JDBC calls with SQLJ statements in your program. One way to do this is
through connection context sharing.

Choosing SQLJ or JDBC

28-2 User's Guide for Oracle JDeveloper

28.2.1 Using SQLJ
SQLJ is a standard way to embed static SQL statements in Java programs. SQLJ
applications are portable and can communicate with databases from multiple vendors
using standard JDBC drivers.

SQLJ provides a way to develop applications both on the client side and on the
middle-tier that access databases using Java. Developing in SQLJ is fast and efficient,
and JDeveloper completely supports SQLJ development. You can create or include
SQLJ files in your JDeveloper projects. When you compile a project that contains SQLJ
source files, JDeveloper automatically calls the SQLJ translator, or precompiler. The
translator produces completely standard Java source code, with calls to JDBC methods
to provide the database support. JDeveloper then compiles the Java that the SQLJ
translator generates.

For more information, see the Oracle Database SQLJ Developer's Guide.

28.2.2 Using Oracle JDBC Drivers
JDBC provides Java programs with low-level access to databases.

Oracle JDBC drivers can be grouped into two main categories with the following
attributes:

■ Java-based drivers (thin client / Type 4 driver):

– are implemented entirely in Java

– are highly portable

– can be downloaded from the server system to a web browser

– can connect using the TCP/IP protocol

– are the only option for applets (due to security restrictions)

■ OCI-based drivers (Type 2 driver):

– are implemented using native method libraries (OCI DLLs)

– have OCI libraries that must be available on the client system

– cannot be downloaded to a browser

– can connect using any Net8 protocol

– deliver high performance

The following figure illustrates how JDBC components and the driver run in the
same memory space as an applet.

Choosing SQLJ or JDBC

Using Java in the Database 28-3

Figure 28–1 JDBC Components

The following figure illustrates how the Oracle JDBC OCI drivers run in a separate
memory space from your Java application. These JDBC drivers make OCI calls to a
separately loaded file.

Figure 28–2 Oracle JDBC OCI Drivers

28.2.3 SQLJ versus JDBC
How does SQLJ compare to JDBC? Here are some of the advantages that SQLJ offers
over coding directly in JDBC:

Note: Take care not to confuse the terms JDBC and JDBC drivers. All
Java applications, no matter how they are developed or where they
execute, ultimately use the JDBC-level drivers to connect to Oracle.
However, coding using the pure JDBC API is low-level development,
akin to using the Oracle Call Interface (OCI) to develop a database
application. Like the OCI, the JDBC API provides a very powerful, but
also very code-intensive, way of developing an application.

Choosing SQLJ or JDBC

28-4 User's Guide for Oracle JDeveloper

■ SQLJ programs require fewer lines of code than JDBC programs. They are shorter,
and hence easier to debug.

■ SQLJ can perform syntactic and semantic checking on the code, using database
connections at compile time.

■ SQLJ provides strong type-checking of query results and other return parameters,
while JDBC values are passed to and from SQL without having been checked at
compile time.

■ SQLJ provides a simplified way of processing SQL statements. Instead of having
to write separate method calls to bind each input parameter and retrieve each
select list item, you can write one SQL statement that uses Java host variables.
SQLJ takes care of the binding for you.

However, JDBC provides finer-grained control over the execution of SQL statements
and offers true dynamic SQL capability. If your application requires dynamic
capability (discovery of database or instance metadata at runtime), then you should
use JDBC.

28.2.4 Embedding SQL in Java Programs with SQLJ
You have to perform a number of tasks to embed SQL in Java programs with SQLJ.

28.2.4.1 How to Create SQL Files
You can create a new SQL (.sql) file and add it to the current project.

To create a SQL file:
1. In the Application Navigator, select the project.

2. From the main menu, choose File > New to open the New Gallery.

3. In the New Gallery, in the Categories tree, select Database Tier then Database
Files. In the Items list, double-click SQL File.

4. In the Create SQL File dialog, provide the details to describe the new file.

For more information at any time, press F1 or click Help from within the dialog.

5. Click OK.

An empty SQL file is added to the current project and opened for editing.

28.2.4.2 How to Create SQLJ Classes
Create a new SQLJ (.sqlj) file and add it to the current project.

To create a new SQLJ file:
1. In the Navigator, select the project.

2. From the main menu, choose File > New to open the New Gallery.

3. In the Categories tree, expand Database Tier and select Database Files.

For more information at any time, press F1 or click Help from within the dialog.

4. In the Items list, double-click SQLJ Class to open the Create SQLJ Class dialog.

5. In the Create SQLJ File dialog, provide the details to describe the new file.

For more information at any time, press F1 or click Help from within the dialog.

6. Click OK.

Choosing SQLJ or JDBC

Using Java in the Database 28-5

A skeleton SQLJ class will be added to the current project and be opened for editing.

28.2.4.3 How to Compile SQLJ Classes
You can compile SQLJ classes into Java .class files.

To compile a SQLJ class:
1. Set the project's SQLJ translator options to control how the file is compiled.

2. In the Application Navigator, locate and select the SQLJ class.

3. Right-click the class, and choose Make.

The status bar at the bottom of the JDeveloper window shows the result of the
compilation. Errors, if any, are listed in the log window.

28.2.4.4 How to Use Named SQLJ Connection Contexts
A SQLJ executable statement can designate a connection context object that specifies
the database connection where the SQL operation in that clause will execute. If the
SQLJ statement omits the connection context clause, then the default connection
context is used.

28.2.4.5 How to Declare a SQLJ Connection Context Class
A connection context is an object of a connection context class, which you define using
a SQLJ connection declaration.

To declare a context class:
1. Declare a context class.

Named connection contexts are not required: SQLJ statements that omit the
connection context name use the default connection context.

For example, this statement declares the context class MyConnectionContext:

#sql context MyConnectionContext;

Context classes extend sqlj.runtime.ref.ConnectionContextImpl and
implement sqlj.runtime.ConnectionContext.

After you have declared a context class, create a context object.

28.2.4.6 How to Create a Connection Context Object
Before it can be used in an SQLJ statement, a declared connection context must be
created.

To create a context object:
1. Named connection contexts are not required: SQLJ statements that omit the

connection context name use the default connection context.

For example, use this statement to create an instance thisCtx for the connection
context class MyConnectionContext:

MyConnectionContext thisCtx = new MyConnectionContext (myPath, myUID, myPasswd,
autocommit

Choosing SQLJ or JDBC

28-6 User's Guide for Oracle JDeveloper

28.2.4.7 How to Debug SQLJ Classes
You debug SQLJ code by debugging the SQLJ source directly, not the generated Java
code.

SQLJ is debugged in JDeveloper in the same manner as other source code.

For more information, see the Oracle Database SQLJ Developer's Guide.

28.2.4.8 How to Debug SQLJ Classes
You debug SQLJ code by debugging the SQLJ source directly, not the generated Java
code.

SQLJ is debugged in JDeveloper in the same manner as other source code.

For more information, see the Oracle Database SQLJ Developer's Guide.

28.2.4.9 How to Set SQLJ Translator Options
You can control the translation of SQLJ classes through the controls in the Project
Properties dialog:

■ Provide syntactic as well as semantic checking of SQL code.

■ Provide syntax and type checking on the SQL statements.

■ Test the compatibility of Java and SQL expressions at compile time.

■ Specify a connection to a database server.

■ Check the semantics of your SQL statements against the database schemas
specified by connection contexts.

To set the SQLJ translator options:
1. In the Application Navigator, select the project that contains the SQLJ file.

2. Choose Application > Project Properties > Compiler and select SQLJ.

3. In the SQLJ panel, set the compilation options.

4. Click OK.

You can set SQLJ translator properties for all projects by choosing Default Project
Properties from the Application menu

28.2.4.10 How to Use SQLJ Connection Options
SQLJ connection options specify the database connection for online checking. The
general form for connection options is

-option@context=value

where option is one of the four options listed below.

The context tag is a connection context type, which permits the use of separate
exemplar schemas for each of the connection contexts. If you omit the connection
context type, the value will be used for any SQL statements that use the default
connection context. The driver option does not allow a context tag.

The options are:

■ user This option specifies the user name for connecting to a database in order to
perform semantic analysis of the SQL expressions embedded in a SQLJ program. It
contains the user name, for example:

Choosing SQLJ or JDBC

Using Java in the Database 28-7

-user=hr

The user command line option may include a connection context type. For
example:

-user@Ctx1=hr

Whenever a user name is required for the connection to a database context Ctx1,
SQLJ uses the user option that was tagged with Ctx1. If it can not find one, SQLJ
issues a message and looks for an untagged user option to use instead.

Specifying a user value indicates to SQLJ that online checking is to be performed.
If you do not specify the user option, SQLJ does not connect to the database for
semantic analysis. There is no default value for the user option.

If you have turned on online checking by default (by specifying, for example,
-user=hr), then in order to disable online checking for a particular connection
context type Ctx2, you must explicitly specify an empty user name, for example:

-user@Ctx2Z

■ password This option specifies a password for the user. The password will be
requested interactively if it is not supplied. This option can be tagged with a
connection context type. Examples of the two forms are:

-password=hr
-password@Ctx1=hr

■ url This option specifies a JDBC URL for establishing a database connection. The
default is jdbc:oracle:oci9:@. This option can be tagged with a connection
context type. For example:

-url=jdbc:oracle:oci8:@ -url@Ctx1=jdbc:oracle:thin:@<local_host>:1521:orcl

■ driver This option specifies a list of JDBC drivers that should be registered in
order to interpret JDBC connection URLs for online analysis. The default is
oracle.jdbc.driver.OracleDriver. For example:

-driver=sun.jdbc.odbc.JdbcOdbcDriver,oracle.jdbc.driver.OracleDriver

This option cannot be tagged with a connection context type.

28.2.5 Embedding SQL in Java Programs with JDBC
JDBC provides Java programs with low-level access to databases.

For more information, see the Oracle Database SQLJ Developer's Guide.

28.2.5.1 How to Choose a JDBC Driver
JDBC uses a driver manager to support different drivers, so that you can connect to
multiple database servers. To connect your database application to a data server, you
must have available the appropriate JDBC driver. JDeveloper provides the Oracle Thin
and OCI JDBC drivers. OCI for Oracle is the default driver. If you wish you may install
a non-default JDBC driver.

Consider the following when choosing a JDBC driver to use for your application or
applet:

■ If you are writing an applet, you must use the JDBC Thin driver. JDBC OCI-based
driver classes will not work inside a Web browser, because they call native (C
language) methods.

Choosing SQLJ or JDBC

28-8 User's Guide for Oracle JDeveloper

■ If you are writing a client application for an Oracle client environment and need
maximum performance, then choose the JDBC OCI driver.

■ For code that runs in an Oracle server acting as a middle tier, use the server-side
Thin driver.

■ If your code will run inside the target Oracle server, then use the JDBC server-side
internal driver to access that server. You can also access remote servers using the
server-side Thin driver.

■ If performance is critical to your application, you want maximum scalability of the
Oracle server, or you need the enhanced availability features like TAF or the
enhanced proxy features like middle-tier authentication, then choose the OCI
driver.

28.2.5.2 How to Modify a Project to Use a Non-Default JDBC Driver
If your JDeveloper programming environment as been modified to allow the use of a
non-default JDBC driver, you can modify the current project to use the new driver by
performing these steps.

To modify the project:
1. In the Application Navigator, select the project.

2. Choose Application > Project Properties > Profiles > Development > Libraries.

3. Select the driver's library from the list displayed, and transfer it to the Selected
Libraries list. The driver's library was created when you registered the driver.

4. If necessary, order the list of selected libraries so that the library you have just
added appears before other driver libraries, or libraries that pull in other driver
libraries. These include:

■ Oracle JDBC

■ Enterprise Java Beans

If necessary, select the library you added and drag it up to the top of the list.

5. Click OK to save your changes and close the dialog.

28.2.5.3 How to Code a JDBC Connection
You can establish a database connection in pure JDBC code.

A summary is given here, but for more information, see "Getting Started" in the Oracle
Database JDBC Developer's Guide.

Note: When the JDBC Thin driver is used with an applet, the client
browser must have the capability to support Java sockets.

Note: JDeveloper does not supply the server-side Thin driver.

Note: JDeveloper does not supply the server-side Thin driver.

Accessing Oracle Objects and PL/SQL Packages using Java

Using Java in the Database 28-9

To code a JDBC Connection:
1. Import the JDBC classes using the statement

import java.sql.*;

This statement is required for all JDBC programming.

2. Register the JDBC drivers. If you are using an Oracle JDBC driver and use a
constructor that uses the static Oracle.connect() method to set the default
connection, the Oracle JDBC drivers are automatically registered.

Alternatively, if you are using an Oracle JDBC driver, but do not use
Oracle.connect(), then you must manually register the Oracle Driver class
using the statement

DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

If you are not using an Oracle JDBC driver, then you must register an appropriate
driver class:

DriverManager.registerDriver(new mydriver.jdbc.driver.MyDriver());

In any case, you must also set your connection URL, user name, and password.

3. Get a connection to a data server using a getConnection() method, for
example

Connection conn = DriverManager.getConnection(parameters...);

28.3 Accessing Oracle Objects and PL/SQL Packages using Java
Use Oracle JPublisher to access Oracle objects and PL/SQL packages from your Java
programs. Oracle JPublisher lets you specify and customize the mapping of Oracle
object types, reference types, and collection types to Java classes in a strongly typed
paradigm

You can use JPublisher to access Oracle objects and PL/SQL packages from your Java
programs. JPublisher lets you specify and customize the mapping of Oracle object
types, reference types, and collection types to Java classes in a strongly typed
paradigm.

Also, SQLJ programmers who want to call stored procedures declared in PL/SQL
packages can use JPublisher to generate SQLJ wrapper classes for the packages. The
SQLJ wrapper classes let you invoke the PL/SQL stored procedures, and pass and
return values from them, directly from your SQLJ program.

To access Oracle objects and PL/SQL packages using Java:
1. Create the desired object data types (Oracle objects) and PL/SQL packages in the

database. It is recommended that any custom classes or interfaces you use in
Oracle Database implement the oracle.sql.CustomDatum interface.

2. Use JPublisher to generate source code — Java and SQLJ files — that represents
the Oracle objects, PL/SQL packages, user-defined types, and REF types.

3. Import these classes into your application code.

4. Use the methods in the generated classes to access and manipulate the Oracle
Objects and their attributes.

Accessing Oracle Objects and PL/SQL Packages using Java

28-10 User's Guide for Oracle JDeveloper

5. Compile all classes (the code generated by Oracle JPublisher and your code). The
SQLJ compiler compiles the .sqlj files, and the Java or SQLJ compiler compiles
the .java files.

6. Run your compiled application.

This process is illustrated in the following figure:

Figure 28–3 Oracle Objects and PL/SQL Packages

28.3.1 How to Use JPublisher
Oracle JPublisher increases your productivity by letting you access Oracle objects and
PL/SQL packages from your Java programs. Oracle JPublisher lets you specify and
customize the mapping of Oracle object types, reference types, and collection types
(VARRAYs or nested tables) to Java classes in a strongly typed paradigm

JPublisher
JPublisher increases your productivity by letting you access Oracle objects and
PL/SQL packages from your Java programs. JPublisher lets you specify and customize
the mapping of Oracle object types, reference types, and collection types (VARRAYs or
nested tables) to Java classes in a strongly typed paradigm.

SQLJ programmers who want to call stored procedures declared in PL/SQL packages
can use JPublisher to generate SQLJ wrapper classes for the packages. The SQLJ
wrapper classes let you invoke the PL/SQL stored procedures, and pass and return
values from them, directly from your SQLJ program.

For more information, see the Oracle Database JPublisher User's Guide.

Accessing Oracle Objects and PL/SQL Packages using Java

Using Java in the Database 28-11

Object Types and JPublisher
JPublisher allows your Java language applications to use user-defined object types in
Oracle Database. These objects can be user-defined objects, VARRAYs, nested tables,
index-by tables, or REFs to object types. If you intend to have your Java-language
application access object data, then it must represent the data in a Java format.
JPublisher helps you do this by creating the mapping between object types and Java
classes, and between object attribute types and their corresponding Java types.

The mapping is determined by both:

■ The selected Java mapping option.

■ The object's data type category.

Additionally, JPublisher generates get and set accessor methods for each of the object’s
attributes, and optionally generates a wrapper method for each of the object’s stored
procedures. A wrapper method is a method that invokes a stored procedure that
executes in the database. Wrapper methods generated by JPublisher are always
instance methods even when the original object methods are static.

The following table summarizes the types of Java classes that JPublisher generates for
objects.

Classes generated by JPublisher implement either the oracle.sql.CustomDatum
interface or the java.sql.SQLData interface. Either interface makes it possible to
transfer object type instances between the database and your Java program. It is
recommended that you use the oracle.sql.CustomDatum interface.

PL/SQL Packages and JPublisher
You might want to call stored procedures in a PL/SQL package from your Java
application. The stored procedure can be implemented in PL/SQL, or it can be a Java
method that has been published to PL/SQL. Java arguments and functions are passed
to and returned from the stored procedure.

To help you do this, you can direct JPublisher to create a class containing a wrapper
method for each subprogram in the package. Like object methods, the wrapper
methods generated for each subprogram are always instance methods even when the
original method is static. The wrapper methods that JPublisher generates provide a
convenient way to invoke PL/SQL stored procedures from Java code or to invoke a
Java stored procedure from a client Java program.

JPublisher lets you generate Java wrappers by selecting an individual package, or by
selecting the Packages node to select all of the packages in the schema. If you call
PL/SQL code that includes subprograms at the top-level, JPublisher generates a single
class containing a wrapper method for each top-level subprogram.

Table 28–1 Mapping SQL Type to Java Class

SQL type Java class mapping

user-defined object type Java class with accessor methods to get and set each attribute of
the object, and optional wrapper methods to call the object's
stored procedures.

VARRAY,

nested table,

index-by table.

Java classes that can get and set the following:

■ The entire array

■ A subset of the array

■ An individual element of the array

REF to an object type Java class to get and set the object to which the REF refers.

Accessing Oracle Objects and PL/SQL Packages using Java

28-12 User's Guide for Oracle JDeveloper

For PL/SQL functions, whether you generate Java for a single PL/SQL function or
multiple functions, JPublisher generates a single class. For a single function, the class
contains a single wrapper method for the function. For multiple functions, the class
contains a wrapper method for each function.

For PL/SQL procedures, whether you generate Java for a single PL/SQL procedure or
multiple procedures, JPublisher generates a single class. For a single procedure, the
class contains a single wrapper method for the procedure. For multiple procedures, the
class contains a wrapper method for each procedure

Java Mapping Options
The mapping options you select for data type categories determine the set of type
mappings that JPublisher uses to translate object types and PL/SQL packages into
Java classes:

■ For object types, JPublisher applies the mappings to the object's attributes and to
the arguments and results of any methods included with the object. The mappings
control the types that the generated accessor methods should support, that is,
what types the get methods should return and the set methods should require.

■ For PL/SQL packages, JPublisher applies the mappings to the arguments and
results of the methods.

■ For a collection type (that is, nested tables and VARRAYs), JPublisher applies the
mappings to the element type of the collection.

■ For user-defined types (usertypes category) JPublisher generates CustomDatum
classes or SQLData classes and generates code for collection and REF types.

You may select from the following mapping options:

■ Oracle Mapping represents data in PL/SQL format.

■ JDBC Mapping represents simple data types as Java primitive types.

■ Object JDBC Mapping represents simple data types as Java wrapper classes.

■ BigDecimal Mapping uses a common class to represent all numeric types.

For more information, see the Oracle Database JPublisher User's Guide.

Mapping Built-in Types
Syntax: jpub.builtintypes={jdbc|oracle}

The builtintypes parameter (and its JPublisher wizard equivalent Built-in Types)
controls type mappings for all the built-in database types except the LOB and BFILE
types (controlled by the lobtypes parameter) and the different numeric types
(controlled by the numbertypes parameter). The following table lists the database
types affected by the builtintypes parameter, and shows their Java type mappings
for builtintypes=oracle and for builtintypes=jdbc (the default).

Accessing Oracle Objects and PL/SQL Packages using Java

Using Java in the Database 28-13

Mapping LOB Types
Syntax: lobtypes={jdbc|oracle}

The lobtypes parameter (and its JPublisher wizard equivalent LOB Types) controls
type mappings for the LOB types. The following table shows how these types are
mapped for lobtypes=oracle (the default) and for lobtypes=jdbc.

The BFILE type does not appear in this table, because it has only one mapping. It is
always mapped to oracle.sql.BFILE, because there is no java.sql.BFILE class.

Mapping Numeric Types
Syntax: jpub.numbertypes={jdbc|objectjdbc|bigdecimal|oracle}

The numbertypes parameter (and its JPublisher wizard equivalent Number Types)
controls type mappings for numeric PL/SQL types. Four choices are available:

■ The jdbc mapping maps most numeric database types to Java primitive types
such as int and float, and maps DECIMAL and NUMBER to
java.math.BigDecimal.

■ The objectjdbc mapping (the default) maps most numeric database types to
Java wrapper classes such as java.lang.Integer and java.lang.Float,
and maps DECIMAL and NUMBER to java.math.BigDecimal.

■ The bigdecimal mapping maps all numeric database types to
java.math.BigDecimal. The oracle mapping maps all numeric database types
to oracle.sql.NUMBER.

■ The oracle mapping maps all numeric database types to oracle.sql.NUMBER.

The following table lists the PL/SQL types affected by the numbertypes option, and
shows their Java type mappings for numbertypes=jdbc and
numbertypes=objectjdbc (the default).

Table 28–2 Built In Mapping Types

PL/SQL Data Type
Oracle Mapping
Class JDBC Mapping

CHAR

CHARACTER

 LONG

STRING

VARCHAR

VARCHAR2

oracle.sql.CHAR java.lang.String

RAW

LONG RAW

oracle.sql.RAW byte[]

DATE oracle.sql.DATE java.sql.Timesta
mp

Table 28–3 LOB Type Mapping

PL/SQL Data Type
Oracle Mapping
Class JDBC Mapping Class

CLOB oracle.sql.CLOB java.sql.CLOB

BLOB oracle.sql.BLOB java.sql.BLOB

Accessing Oracle Objects and PL/SQL Packages using Java

28-14 User's Guide for Oracle JDeveloper

Mapping User-Defined Types
Syntax: jpub.usertypes={oracle|jdbc}

The usertypes parameter (and its JPublisher wizard equivalent User Types)
controls whether JPublisher generates CustomDatum classes or SQLData classes for
user-defined types:

■ When usertypes=oracle (the default), JPublisher generates CustomDatum
classes for object, collection, and REF types.

■

When usertypes=jdbc, JPublisher generates SQLData classes for object types.
JPublisher does not generate anything for collection or REF types. Use
java.sql.Array for all collection types, and java.sql.Ref for all REF types.

28.3.2 JPublisher Output
JPublisher generates a Java class for each object type that it translates. For each object
type, JPublisher generates a type.java file (or a type.sqlj file if wrapper methods
were requested) for the class code and a typeRef.java file for the code for the REF
class of the Java type. For example, if you define an EMPLOYEE PL/SQL object type,
JPublisher generates an employee.java file and an employeeRef.java file.

For each collection type (nested table or VARRAY) it translates, JPublisher generates a
type.java file. For nested tables, the generated class has methods to get and set
the nested table as an entire array and to get and set individual elements of the table.
JPublisher translates collection types when generating CustomDatum classes but not
when generating SQLData classes. JPublisher does not generate a typeRef.java file
for nested tables or VARRAYs. This is because PL/SQL does not allow a REF to be
made to these types.

For PL/SQL packages, JPublisher generates classes containing wrapper methods as
SQLJ files. JPublisher also generates method wrappers in your class that invoke the
associated package methods executing in the server. This is specified by the Include
Methods option.

Table 28–4 Numeric Type Mapping

PL/SQL Data type
JDBC Mapping
Class

Object JDBC
Mapping

BINARY_INTEGER

INT

INTEGER

NATURAL

NATURALN

PLS_INTEGER

POSITIVE

POSITIVEN

SIGNTYPE

int java.lang.Intege
r

SMALLINT short java.lang.Float

REAL float java.lang.Double

Accessing Oracle Objects and PL/SQL Packages using Java

Using Java in the Database 28-15

28.3.3 Properties Files
A properties file is an optional text file where you can specify frequently used
parameters or parameters that you cannot specify in the JPublisher wizard. Note that if
you need only the default output of JPublisher, then you do not need a properties file.

The properties file is designated in the JPublisher wizard.

In a properties file, you enter one (and only one) parameter and its associated value on
each line. Each parameter name must be preceded with the prefix "jpub." and you
cannot use any white space within a line. You can enter any parameter except the
props parameter in the properties file. JPublisher processes the parameters, in order,
from the top of the list to the bottom. If you specify a parameter more than once,
JPublisher uses the last encountered value.

A properties file might contain the following:

jpub.case=lower
jpub.package=package1
jpub.numbertypes=jdbc
jpub.lobtypes=jdbc
jpub.builtintypes=jdbc
jpub.usertypes=jdbc
jpub.omit_schema_names
jpub.methods=true
jpub.input=mySchema.txt
jpub.sql=employee:oracleEmployee

28.3.4 How to Enhance JPublisher-Generated Classes
You can enhance the functionality of a custom Java class generated by JPublisher by
adding methods and transient fields to it. For example:

■ Extend the class. That is, treat the JPublisher-generated class as a superclass, write
a subclass to extend its functionality, and then map the object type to the subclass.

■ Write a new class that delegates the functionality provided by the
JPublisher-generated class to a field whose type is the generated class.

■ Add methods to the class. This is not recommended if you anticipate running
JPublisher at some future time to regenerate the class. If you regenerate a class that
you have modified in this way, your changes (that is, the methods you have
added) will be overwritten. Even if you direct JPublisher output to a separate file,
you will still need to merge your changes into the file.

28.3.5 How to Extend JPublisher-Generated Classes
The Declaration Name and Use Name fields in the JPublisher wizard give you the
flexibility of extending generated classes. In the Declaration Name field, enter the
name of the class that you want JPublisher to generate from the given database object.
In the Use Name field, enter the name of the class that your Java program will use to
represent the database object.

Note: Since version 8.1.6, the wrapper methods that JPublisher
generates to invoke stored procedures are in SQLJ only. Classes
generated by JPublisher that contain wrapper methods must be
compiled by SQLJ.

Accessing Oracle Objects and PL/SQL Packages using Java

28-16 User's Guide for Oracle JDeveloper

When publishing an object type where Use Name is different from Declaration Name,
JPublisher creates a declaration_name.sqlj file and a use_nameRef.java file,
where use_name represents the object type in your Java program.

JPublisher expects that you have written the class use_name, which extends
declaration_name. If you do not provide this class, then the use_nameRef.java
file will not compile.

For example, suppose you want JPublisher to generate the class JAddress from the
PL/SQL object type ADDRESS. You have also written a class, MyAddress, to represent
ADDRESS objects, where MyAddress either extends the functionality provided by
JAddress or has a JAddress field.

Under this scenario, select ADDRESS in the Database Browser and right-click Generate
Java. In the JPublisher wizard, enter JAddress in the Declaration Name field and
MyAddress in the Use Name field. JPublisher will generate the custom Java class
JAddress, and map the ADDRESS object to the MyAddress class—not to the JAddress
class. JPublisher will also produce a reference class for MyAddress, not JAddress.

This is how JPublisher will alter the code it generates:

■ JPublisher generates the REF class MyAddressRef rather than JAddressRef.

■ JPublisher uses the MyAddress class, instead of the JAddress class, to represent
attributes whose database type is ADDRESS. This situation occurs in classes
generated by JPublisher, or in classes written by the user.

■ JPublisher uses the MyAddress class, instead of the JAddress class to represent
VARRAY and nested table elements whose database type is ADDRESS.

■ JPublisher will use the MyAddress factory, instead of the JAddress factory, when
the CustomDatumFactory interface is used to construct Java objects whose
database type is ADDRESS. This situation will occur both in classes generated by
JPublisher, and in classes written by the user.

The class that you create (for example, MyAddress.java) must have the following
features:

■ The class must have a no-argument constructor. The easiest way to construct a
properly initialized object is to invoke the constructor of the superclass, either
explicitly or implicitly.

■ The class must implement the CustomDatum interface. The simplest way to do
this is to inherit the toDatum() method from the superclass.

■ You must also implement the CustomDatumFactory interface, either in the same
class or in a different one. For example, you could have a class Employee that
implements CustomDatum and a class EmployeeFactory that implements
CustomDatumFactory.

28.3.6 JPublisher Options
JPublisher options can be set for these types of PL/SQL subprograms in your schema.

How to Set JPublisher Options
JPublisher options can be set for these types of PL/SQL subprograms in your schema:

■ Functions

■ Package Bodies

■ Packages

Accessing Oracle Objects and PL/SQL Packages using Java

Using Java in the Database 28-17

■ Procedures

For more information, see the Oracle Database JPublisher User's Guide.

To set JPublisher options for PL/SQL subprograms in a schema:
1. In the Connection Manager, navigate a schema to find and select the node for the

subprogram type

2. Right-click and choose Generate Java to launch the JPublisher wizard. For more
help at any time, press F1 or click Help in the wizard.

How to Generate Classes for Packages and Wrapper Methods for Methods
Set the JPublisher methods option in the JPublisher wizard by checking Include
Methods

The value of the methods option determines whether JPublisher generates classes for
PL/SQL packages and wrapper methods for methods in packages and object types.

If selected, JPublisher generates PL/SQL classes and methods. This is default behavior.

If not selected, JPublisher does not generate PL/SQL classes and methods.

How to Omit the Schema Name from Generated Names
Set the JPublisher omit_schema_names option in the JPublisher wizard by checking
the Omit Schema Names box.

The value of the omit_schema_names option determines whether certain object type
and PL/SQL wrapper names generated by JPublisher include the schema name. If an
object type or wrapper name generated by JPublisher does not include the schema
name, the type or wrapper is looked up in the schema associated with the current
connection when the code generated by JPublisher is executed. This makes it possible
for you to use classes generated by JPublisher with a connection other than the one
used when JPublisher was invoked. However, the type or package must be declared
identically in the two schemas.

If selected, an object type or wrapper name generated by JPublisher is qualified with a
schema name only if either:

■ You declare the object type or wrapper in a schema other than the one to which
JPublisher is connected; or

■ You declare the object type or wrapper with a schema name in the properties file
or INPUT file.

That is, an object type or wrapper from another schema requires a schema name to
identify it, and the use of a schema name with the type or package in the properties
file or INPUT file overrides the omit_schema_names option.

If not selected, every object type or wrapper name generated by JPublisher is qualified
with a schema name. This is default behavior.

How to Set the Package Name for Generated Classes
The package option specifies the name of the Java package JPublisher generates. The
name of the package appears in a package declaration in each Java file. The directory
structure also reflects the package name. An explicit name in the INPUT file, after the
sql option, overrides the value given to the package option.

Using Java Stored Procedures

28-18 User's Guide for Oracle JDeveloper

To set the package option:
1. Set the JPublisher package option in the JPublisher wizard by providing a name in

the Package field.

28.4 Using Java Stored Procedures
A Java stored procedure is a Java method that resides and runs in a database. Stored
procedures can help improve the performance of database applications because they
are efficient: they are stored in the RDBMS in executable form, and run in the RDBMS
(rather than the client) memory space.

Use JDeveloper to write methods in Java for new stored procedures and deploy them
to Oracle Database. When you deploy a Java class to Oracle, you can select the
methods that you want to publish to PL/SQL for use as stored procedures. Methods
can be deployed together in a package or separately.

For more information, see "Developing Java Stored Procedures" in the Oracle Database
JPublisher User's Guide.

A stored procedure is a program that resides and runs in a database. Application
developers can use stored procedures to help improve the performance of a database
application. Procedure calls are quick and efficient because a stored procedure is
compiled once and stored in an executable form. Because a stored procedure runs in
the RDBMS memory space, complex functions run faster than a routine run by a client.
You can also use stored procedures to group PL/SQL statements so that they are
executed in a single call. This reduces network traffic and improves round-trip
response times. By designing applications around a common set of stored procedures,
you can avoid redundant coding and increase your productivity.

A Java stored procedure contains Java public static methods that are published to
PL/SQL and stored in Oracle Database for general use. To publish Java methods, you
write call specifications, that map Java method names, parameter types, and return
types to their PL/SQL counterparts. This allows a Java stored procedure to be
executed from an application as if it were a PL/SQL stored procedure. When called by
client applications, a Java stored procedure can accept arguments, reference Java
classes, and return Java result values.

Using Java Stored Procedures

Using Java in the Database 28-19

Figure 28–4 Java Stored Procedure Deployment

Any Java class can be deployed to Oracle Database and the conforming methods of the
class can be published to PL/SQL as stored procedures. These Java stored procedures
can then be executed from an application as if they were PL/SQL stored procedures.
Java stored procedures can be an entry point for your application into other (Java and
non-Java) procedures deployed to Oracle Database.

Deploying and publishing Java stored procedures to Oracle Database generates call
specifications that act as PL/SQL wrappers for each of the methods selected for
publishing. The PL/SQL wrappers allow the stored procedures to be accessible from
SQL*Plus, JDBC, or any other Oracle application environment.

The call specifications (the PL/SQL wrappers) for Java stored procedure packages and
methods deployed to a database schema can be inspected through Oracle Database
connection. Only published Java stored procedures appear as PL/SQL blocks, and
only public static methods in Java classes can be published to PL/SQL when
deployed. Java classes can be deployed without being published, in which case they
are not seen in the PL/SQL nodes.

Depending on how Java stored procedures were published, they appear in one of the
following nodes under a schema:

■ Packages include call specs for Java stored procedures deployed in packages.

■ Functions include call specs for Java stored procedures deployed as functions (that
return a value).

■ Procedures include call specs for Java stored procedures deployed as procedures
(that do not return a value).

To view a Java stored procedure's call specification, find its node in the schema's
hierarchy, and double-click it.

How to Create Java Stored Procedures
You create Java stored procedures by first developing business application logic in a
Java class file. Declare methods that are to become stored procedures as public static.

Using Java Stored Procedures

28-20 User's Guide for Oracle JDeveloper

Use the editor in JDeveloper to add and edit business logic in the Java class. During
deployment to Oracle Database, all public static methods included in the class file are
available to be published to PL/SQL as stored procedures. You can choose which
public static methods in the class to be published to PL/SQL.

There are different JDeveloper Java stored procedure creation scenarios:

■ Use an existing Java class and make any necessary edits to the public static
methods in the class that will be deployed to Oracle Database. The existing class
could include public static methods used for validation or database triggers. The
methods in the class might also be in local use by several applications. These
methods could be deployed to Oracle Database and used by multiple applications
from the database. The deployed methods could also supplement existing PL/SQL
stored procedures and functions.

■ Create a new class with methods designed for publishing as stored procedures.
Use the editor in JDeveloper to create the public static methods that will be
exposed as stored procedures. Write in industry-standard Java and use the original
Java class for other application deployments. In Oracle Database, this
programming could supplement existing PL/SQL stored procedures.

For example, assume the following Java package Welcome was created with the public
class Greeting and the public static method Hello().

package Welcome;
 public class Greeting {
 public static String Hello() {
 return "Hello World!";
 }

When this package is deployed to Oracle Database and the Hello() method is
published there, the call spec for the package as viewed in the source editor looks like
this:

PACKAGE WELCOME AS
FUNCTION HELLO RETURN VARCHAR2
AS LANGUAGE JAVA
NAME 'Welcome.Greeting.Hello() return java.lang.String'
END WELCOME;

How to Deploy Java Stored Procedures
You create a deployment profile for Java stored procedures, then deploy the classes
and, optionally, any public static methods in JDeveloper using the settings in the
profile.

Deploying to the database uses the information provided in the Deployment Profile
wizard and two Oracle Database utilities:

■ loadjava loads the Java class containing the stored procedures to Oracle
Database.

■ publish generates the PL/SQL call spec wrappers for the loaded public static
methods. Publishing enables the Java methods to be called as PL/SQL functions or
procedures.

To deploy Java stored procedures in JDeveloper:
1. If necessary, create a database connection in JDeveloper.

2. If necessary, create a deployment profile for Loadjava and Java stored procedures.

Using Java Stored Procedures

Using Java in the Database 28-21

3. Deploy the objects.

How to Create a Deployment Profile for Loadjava and Java Stored Procedures
The Loadjava and Java stored procedure deployment profile is very similar to the
simple archive profile, except that the selected contents of the profile will be uploaded
into Oracle Database via the command-line tool loadjava or in the case of Java stored
procedures, they are stored in Oracle Database for general use.

To create a deployment profile for Loadjava or Java stored procedures in
JDeveloper:
1. In the Application Navigator, select the project in which you want to create the

deployment profile.

2. Choose File > New to open the New Gallery.

3. In the Categories tree, expand Database Tier and select Database Files. In the
Items list, double-click Loadjava and Java Stored Procedures.

If the category or item is not found, make sure the correct project is selected, and
select All Technologies in the Filter By dropdown list.

4. In the Create Deployment Profile dialog, specify a location for the deployment
profile or accept the defaults. The deployment profile is named with a .deploy
filename extension.

5. Click Save to display the Loadjava and Java Stored Procedures Deployment
Profile Settings dialog. Configure the settings for each page as appropriate, and
click OK when you are done.

The newly created storedProc.deploy deployment profile appears in the
navigator below the specified project.

6. Select and right-click storedProc.deploy in the Navigator. Choose from the
available context menu options.

7. (Optional) If you choose Add Stored Procedure Package, choose the methods you
want to load as a stored procedure. For each Java method callable from SQL a call
spec is required, which exposes the method's top-level entry point to the database.
Typically, only a few call specs are needed. JDeveloper generates the call spec for
you from this page.

8. Select a method and click Settings.

If a method on the list is dimmed, this indicates a problem with deploying this
method as a Java stored procedure. Click Why not? for an explanation.

For more information, see "Developing Java Stored Procedures" in the Oracle
Database JPublisher User's Guide.

9. Configure the Method Settings as required. These settings allow you to customize
the parts of the CREATE PROCEDURE and CREATE FUNCTION SQL statements
that are used to customize the stored procedure.

10. (Optional) Right-click and choose Preview SQL Statements to display a dialog
that shows the SQL statements used to load the specifically selected item in the
Navigator. In the case of top-level procedures or functions and packages, you will
see complete SQL statements. In the case of packaged procedures or functions, you

Note: Make sure that you have configured a database connection in
JDeveloper before you complete this task.

Using Java Stored Procedures

28-22 User's Guide for Oracle JDeveloper

will only see fragments of SQL statements which represent the portion of the
CREATE PACKAGE BODY statement corresponding to the packaged procedure or
function.

■ (Optional) If you choose Add PL/SQL Package, enter the name of a PL/SQL
package that you want to start building.

■ (Optional) Right-click and choose Preview SQL Statements to display a
dialog that shows the SQL statements used to load the specifically selected
item in the Navigator. In the case of top-level procedures or functions and
packages, you will see complete SQL statements. In the case of packaged
procedures or functions, you will only see fragments of SQL statements which
represent the portion of the CREATE PACKAGE BODY statement
corresponding to the packaged procedure or function.

■ To deploy the profile, see Deploying Loadjava and Java Stored Procedures
Profile.

How to Deploy to Oracle Databases
If necessary:

■ Create a database connection in JDeveloper.

■ Create a deployment profile for Loadjava and Java stored procedures.

To deploy Loadjava and Java stored procedures in JDeveloper:
1. Right-click storedProc.deploy which appears in the Navigator below the

specified project.

2. From the context menu, choose Deploy to and select one of the already existing
database connections; the Java application's source files are uploaded directly into
the selected database.

Or, choose New Connection to display the Create Database Connection Wizard.

3. (Optional) If you want to edit the deployment profile, right-click
storedProc.deploy in the Navigator below the specified project and choose
Settings.

How to Invoke Java Stored Procedures
The SQL CALL statement lets you call Java stored procedures.

Note: If you are deploying to Oracle9i Database release 2 (9.2) or
later, set the compiler's target to 1.1 or 1.2. in the Project Properties
dialog, available from the Application menu.

Note: If you are deploying your files as both compiled files and
source files and you have selected either -resolve or -andresolve
in the Resolver page, then the deployment profile will only upload the
source files. The reason is that when loadjava resolves the uploaded
.java source files, loadjava also compiles the .java source files into
.class files. You will only see the source files when previewing the
loadjava deployment profile settings.

Using Java Stored Procedures

Using Java in the Database 28-23

To invoke a Java Stored Procedure using SQL:
1. In SQL*Plus, execute the CALL statement interactively to invoke a Java stored

procedure, using the syntax:

CALL [schema_name.][{package_name | object_type_name}][@dblink_name]
 { procedure_name ([param[, param]...])
 | function_name ([param[, param]...]) INTO :host_variable};
where param represents this syntax:
{literal | :host_variable}

Host variables, that is variables declared in a host environment, must be prefixed
with a colon. The following examples show that a host variable cannot appear
twice in the same CALL statement, and that a subprogram with no parameters
must be called with an empty parameter list:

CALL swap(:x, :x); -- illegal, duplicate host variables

CALL balance() INTO :current_balance; -- () required

To invoke a Java stored procedure using JDBC:
1. Java stored procedures invoked from JDBC must be encapsulated in

CallableStatement objects.

Create a callable statement object:

■ Declare a callable statement object. For example:

private CallableStatement checkIn;

■ Initialize the callable statement object by calling prepareCall on the
connection with a SQL CALL statement for the stored procedure. For example:

checkIn = connection.prepareCall(quot;{call NPL.CHECKIN(?, ?, ?)}");

2. Register the callable statement object's output parameters. Call
registerOutParameter for each output parameter, identifying it by position,
and declaring its type. For example, if the second parameter is an SQL INTEGER
(which maps to a Java int), and the third is a SQL VARCHAR (which maps to a
Java String), then:

newCustomer.registerOutParameter(2, Types.INTEGER);
newCustomer.registerOutParameter(3, Types.VARCHAR);

3. Execute the callable statement object:

■ Provide the callable statement object's input parameters by calling a set
method, identifying the parameter by position, and assigning it a value. For
example, if the first parameter is an int input parameter:

checkIn.setInt(1, bookID);

■ Execute the callable statement object. For example:

checkIn.execute();

Note: The number of parameters in the stored procedure is
represented by the number of place-holders in the SQL call.

Using Java Stored Procedures

28-24 User's Guide for Oracle JDeveloper

■ Extract the callable statement object's output parameters. Call a get method for
each output parameter, identifying the parameter by position. The get
methods return values of corresponding Java types. For example:

int daysLate = checkIn.getInt(2);
String title = checkIn.getString(3);

To invoke a Java stored procedure using SQLJ:
1. Declare and initialize input and in-out variables. For example, if the first

parameter is an int input parameter:

int bookID = scanID();

2. Declare output variables. For example:

int daysLate; String title;

3. Invoke the stored procedure in a SQLJ statement. In the statement identify the
parameters by name, and designate them as :in, :out, or :inout. For example:

#sql { call NPL.CHECKIN (:in bookID, :out daysLate, :out title)}

Return values will be assigned to output and input variables.

To Invoke a Java Stored Procedure using PL/SQL
1. Use a CALL statement in the trigger body clause of a PL/SQL statement to invoke

a stored procedure, and pass arguments to it.

The CALL statement's arguments can be:

■ Literal values.

■ SQL expressions, but not bind variables.

■ Column references, qualified by correlation names.

Correlation names are prefixes to column references. Use these names to qualify
whether the reference applies to the existing column value of the row being
processed by the trigger or the value being written by the triggering event:

■ OLD refers to the value of the column prior to the triggering operation.

■ NEW refers to the value being assigned to the column by the triggering
operation. It is possible for the trigger body to redefine this value before the
triggering operation occurs.

An example of a complete trigger definition:

CREATE TRIGGER check_salary
BEFORE UPDATE OF salary ON employee
CALL salaryCheck(:new.job, :old.salary, :new.salary, :old.employee

CREATE TRIGGER check_salary

BEFORE UPDATE OF salary ON employee

CALL salaryCheck(:new.job, :old.salary, :new.salary, :old.employeeID)

How to Test Java Stored Procedures
For stored procedures deployed in packages, access the stored procedure by the
package name and/or the stored procedure name set during deployment. The package
name may be the default name taken from the project or another name entered during

Using Java Stored Procedures

Using Java in the Database 28-25

deployment. The stored procedure name may be the default name taken from the
method name or a name chosen for the stored procedure during deployment. Stored
Procedures may also be deployed without packages.

For example, assume a public static method hello()is in the Java package Welcome
and the public class Greeting. Further assume it is deployed in a package
Openings.

You could execute a PL/SQL query to the deployed stored procedure that executes the
public static method deployed there and returns the result. To invoke SQL*Plus from
within JDeveloper, right-click a connection or select it from the Tools menu.

With a working connection to the database, your SQL*Plus client could execute the
following:

package Welcome;
 public class Greeting {
 public static String Hello() {
 return "Hello World!";
 }
 }

You could execute a PL/SQL query to the deployed stored procedure that executes the
public static method deployed there and returns the result. To invoke SQL*Plus from
within JDeveloper, right-click a connection or select it from the Tools menu.

With a working connection to the database, your SQL*Plus client could execute the
following:

select Openings.Hello() from dual;
Openings.Hello()

 Executing the code displays:

Hello World!

For stored procedures deployed separately (not in packages), access the stored
procedure by the stored procedure name set during deployment. The stored procedure
name may be the default name taken from the method name or a name chosen for the
stored procedure during deployment.

For example, for a public static method hello() that was deployed as hello from a
class greeting and package welcome, you could execute a PL/SQL query to the
deployed stored procedure that returns the result.

Assume the above hello() method as the example method, but this time assume it
was deployed without a package.

With a working connection to the database, your SQL*Plus client could execute the
following:

select Openings.Hello() from dual;

Openings.Hello()

The executed code displays:

Note: The reference to the stored procedure call spec uses
package.method syntax; the name of the class from which the method
originated is not part of the call.

Using Java Stored Procedures

28-26 User's Guide for Oracle JDeveloper

Hello World!

28.4.1 How to Debug Java Stored Procedures
Debug Java stored procedures through a database connection.

To debug PL/SQL:
1. Choose View > Database > Database Navigator.

2. Expand IDE Connections or application, and select a database connection.

3. Expand a schema, and find a node with the name of the object type (for example,
Package), and expand the node.

4. In the node, right-click the PL/SQL program, and choose Debug.

5. A Debug PL/SQL window opens. Select a target and parameter(s), and click OK.

6. JDeveloper debugs the program. Check status windows for progress and
information.

Additional information is available in Debugging PL/SQL Programs and Java Stored
Procedures.

28.4.2 How to Remove Java Stored Procedures

To drop a stored procedure:
1. Choose View > Database > Database Navigator.

2. Expand IDE Connections or application, and select a database connection.

3. Expand the connection and select a schema.

4. Expand the schema and locate the object you wish to remove. Depending on how
Java stored procedures were published, they appear in one of these nodes:

■ Packages includes call specs for Java stored procedures deployed in packages.

■ Functions includes call specs for Java stored procedures deployed as functions
(that return a value).

■ Procedures includes call specs for Java stored procedures deployed as
procedures (that do not return a value).

5. Select the object and right-click to display the context menu and choose Drop.

29

Running and Debugging PL/SQL and Java Stored Procedures 29-1

29Running and Debugging PL/SQL and Java
Stored Procedures

This chapter describes how you can use JDeveloper to write methods in Java for stored
procedures and deploy them to the database.

This chapter includes the following sections:

■ Section 29.1, "About Running and Debugging PL/SQL and Java Stored
Procedures"

■ Section 29.2, "Running and Debugging Functions, Procedures, and Packages"

■ Section 29.3, "Debugging PL/SQL Programs and Java Stored Procedures"

29.1 About Running and Debugging PL/SQL and Java Stored Procedures
A Java stored procedure is a Java method that resides and runs in a database. Stored
procedures can help improve the performance of database applications because they
are efficient: they are stored in the RDBMS in executable form, and run in the RDBMS
(rather than the client) memory space.

When you deploy a Java class to the database, you can select the methods that you
want to publish to PL/SQL for use as stored procedures. Methods can be deployed
together in a package or separately.

29.2 Running and Debugging Functions, Procedures, and Packages
JDeveloper lets you run and debug PL/SQL program units. For example, you can
specify parameters being passed or return values from a function giving you more
control over what is run and providing you output details about what was tested.

To run or debug functions, procedures, and packages:
1. Choose View > Database > Database Navigator.

2. Expand IDE Connections or application, and select a database connection.

3. Expand a schema and expand the appropriate node depending on what you are
debugging (Procedure, Function, or Package body):

Note: The procedures or functions in Oracle Database can be either
standalone or within a package.

Debugging PL/SQL Programs and Java Stored Procedures

29-2 User's Guide for Oracle JDeveloper

■ Optional for debugging only) Right-click and choose Compile for Debug from
the context menu of the node for the object that you are debugging. This
compiles the PL/SQL program in INTERPRETED mode.

■ (Optional for debugging only) Select the function, procedure, or package that
you want to debug and double-click to open it in the editor.

■ (Optional for debugging only) Set a breakpoint in your PL/SQL code by
clicking to the left of the margin.

4. Make sure that either the editor or the procedure in the navigator is currently
selected.

5. Click Debug, or if you want to run without debugging, click Run.

6. The Run PL/SQL dialog is displayed.

1. Select a Target which is the name of the procedure or function that you want
to debug. Notice that the content in the Parameters and PL/SQL Block boxes
change dynamically when the target changes.

2. The Parameters box lists the target's arguments (if applicable).

3. The PL/SQL Block box displays code that was custom generated by
JDeveloper for the selected target. Depending on what the function or
procedure does, you may need to replace the NULL values with reasonable
values so that these are passed into the procedure, function, or package. In
some cases, you may need to write additional code to initialize values to be
passed as arguments. In this case, you can edit the PL/SQL block text as
necessary.

7. Click OK to execute or debug the target.

8. Analyze the output information displayed in the Log window. In the case of
functions, the return value will be displayed. DBMS_OUTPUT messages will also be
displayed.

29.3 Debugging PL/SQL Programs and Java Stored Procedures
In addition to debugging Java programs, the JDeveloper debugger enables you to
debug PL/SQL programs and Java stored procedures in Oracle Databases.

29.3.1 Debugging PL/SQL Objects
JDeveloper supports both PL/SQL and Java stored procedures debugging in a single
IDE tool. When debugging PL/SQL, the source code you are debugging must be
stored in Oracle Database. For Java stored procedures, the source code should be in
your JDeveloper project and the compiled code should be deployed in the database.

Note: The breakpoint must be set on an executable line of code. If
the debugger does not stop, the breakpoint may have not been set on
an executable line of code (verify that the breakpoint was verified).

Note: You will have a choice of target only if you choose to run or
debug a package that contains more than one program unit

Debugging PL/SQL Programs and Java Stored Procedures

Running and Debugging PL/SQL and Java Stored Procedures 29-3

Also, the way the debug action is initiated is different depending on whether you are
performing local or remote debugging. When debugging PL/SQL, this distinction is
described as follows:

■ Local debugging - JDeveloper automatically launches the program you want to
debug, also referred to as the debuggee process, and then attaches the debugger to
that program.

■ Remote debugging - You must manually launch the program you want to debug
with an Oracle client such as SQL*Plus, Dbms_Job, an OCI program, or a trigger
firing. You must then establish the connection from the database debuggee process
to the JDeveloper debugger. After the debuggee is launched and the JDeveloper
debugger is attached to it, remote debugging is very similar to local debugging.

PL/SQL and Java stored procedure debugging information is displayed in the various
JDeveloper debugger windows including the Smart Data, Data, Watches, Inspector,
Stack, and Classes windows.

The Threads window, Heap window, and Monitors window are not applicable when
debugging PL/SQL code.

When debugging PL/SQL, the user can use PL/SQL expressions in the Watches and
Inspector windows as well as conditional breakpoints, including table element access;
for example, mytable(i*10). This capability includes tables which are declared in
functions, procedures, packages, and package bodies.

29.3.1.1 PL/SQL objects you can debug with JDeveloper
You can debug a PL/SQL program calling PL/SQL, PL/SQL calling a Java stored
procedure (Oracle9i Release 2 and later databases), and a PL/SQL program issuing a
SQL statement that fires a trigger.

You can initiate debugging PL/SQL from the following objects:

■ Stand-alone procedures

■ Stand-alone functions

■ Packaged procedures

■ Packaged functions

Any other PL/SQL object can be traced into as long as it meets the prerequisites, and
as long as it is invoked from one of the above. For more information, see Section 29.3.3,
"Debugging PL/SQL and Java Stored Procedures Prerequisites."

29.3.1.2 What You May Need to Know
Consider the following when debugging triggers, Java stored procedures, and Oracle
object types:

■ Although you cannot initiate debugging for these objects, you can step into them.
For example, you cannot start debugging a trigger, but you can debug a procedure
that adds records. To debug a trigger, set a breakpoint in the trigger, then debug
the procedure that causes the trigger to fire. The debugger will stop at that
breakpoint.

■ Debugging and stepping into Java stored procedures is supported in the Oracle9i
Release 2 and later databases. These procedures should be included in the
JDeveloper project and the source should be consistent with what is deployed in
Oracle Database. To debug a Java stored procedure, set a breakpoint in the Java
stored procedure, then debug the PL/SQL that calls the Java stored procedure.
Alternatively, you can debug the PL/SQL and step into the Java stored procedure.

Debugging PL/SQL Programs and Java Stored Procedures

29-4 User's Guide for Oracle JDeveloper

29.3.1.3 Appearance of debug information in supported Oracle Database
The debugger uses the database's JPDA (Java Platform Debugger Architecture)
implementation. JPDA is the industry standard for Java debugging and the JPDA
implementation in the database allows you to seamlessly debug Java and PL/SQL.

What You May Need to Know
■ If you want to configure the debugging behavior (for remote debugging or for

setting the Classes Include and Exclude lists), you must have an active application
and project to access the project's debugger settings in the Application > Project
Properties - Run/Debug/Profile page.

■ The following command is used to connect the debuggee session to the debugger:

DBMS_DEBUG_JDWP.CONNECT_TCP(<host_name>, <port>)

For local debugging, JDeveloper issues this command for you. For remote
debugging, you will need to issue this command in the same session that you use
to call the PL/SQL you want to debug.

■ When entering an expression in the Watches window, local variables can be
entered in any case; for example, v_value or V_Value. Package variables are also
case-insensitive, but the prefix leading up to the variable name is case-sensitive;
for example:

$Oracle.Package.SCOTT.MY_PACKAGE.g_var

The simplest way to add a package variable to the Watches window is to drag and
drop the variable from the Data Window or to drag and drop the package from the
Classes Window.

29.3.2 How to Specify the Database Debugger Port
When the database debugger is running, for example to debug PL/SQL through a
database connection, the ports used are randomly assigned. This can cause problems
with firewalls, and to avoid them you can edit the ide.properties file to ensure that a
specific port is used.

To specify the port:
1. If necessary, close JDeveloper.

2. In a text editor, open jdev_
install/jdeveloper/jdev/system/oracle.jdeveloper.release_
number/ide.properties.

3. Type the following:

DatabaseDebuggerPortOverride=port_number

where port_number is the port number you want the debugger to use.

4. Save ide.properties. When you restart JDeveloper, the port you specified will
be used.

29.3.3 Debugging PL/SQL and Java Stored Procedures Prerequisites
You can debug PL/SQL and Java stored procedures in JDeveloper.

Refer to the appropriate section below for additional information.

Debugging PL/SQL Programs and Java Stored Procedures

Running and Debugging PL/SQL and Java Stored Procedures 29-5

29.3.3.1 Prerequisites for Debugging PL/SQL and Java Stored Procedures
Ensure that the following prerequisites have been met before performing PL/SQL
debugging:

■ Your database user account must have these privileges:

DEBUG ANY PROCEDURE

DEBUG CONNECT SESSION

■ The PL/SQL code must be compiled in INTERPRETED mode. You cannot debug
PL/SQL code that is compiled in NATIVE mode. You set this mode in the
database's init.ora file. See Oracle Database documentation for more
information about this file.

■ If you do not have an active application and project, the debugger will use the
properties defined in the Default Project Properties dialog, available from the
Application menu. However, it is recommended that you create a application and
a project that you will use when you debug PL/SQL. In the Launch Settings page
of the Edit Run Configuration dialog (Edit button on the Run/Debug/Profile page
of the Project Properties dialog, which is available from the Application menu),
you should ensure that the Attempt to Run Active File Before Default check box
is selected (default setting). This will instruct the debugger to run the active file
(for example a PL/SQL procedure selected in the navigator or open the active file
in the editor) when you start debugging.

■ PL/SQL objects must be compiled with the DEBUG option enabled. Choose one of
these techniques to accomplish this task:

– Ensure that Generate PL/SQL Debug Information is selected in Database
Connections page of the Preferences dialog (available from the Tools menu),
then create or recompile the objects you want to debug.

– In SQL*Plus, execute ALTER SESSION SET PLSQL_DEBUG = true, then
create or recompile the object you want to debug.

– In SQL*Plus, execute ALTER <procedure, function, package>
<name> COMPILE DEBUG;

29.3.3.2 Prerequisites for Debugging Java Stored Procedures
Ensure that the following prerequisites have been met before performing Java stored
procedures debugging:

■ The Java code must be deployed to the database and compiled with debug
information. From JDeveloper, make sure the Include Debug Information check
box is selected in the Compiler page of the Project Properties dialog (available
from the Application menu), then deploy the Java stored procedure.

■ To step through a Java stored procedure, the Java source must be available in your
JDeveloper project and must be consistent with what is deployed to the database.

29.3.4 How to Locally Debug PL/SQL Programs
When locally debugging PL/SQL programs, the call to initiate debugging is made
directly from within JDeveloper. JDeveloper automatically launches the program you
want to debug, also referred to as the debuggee process, and then attaches the
debugger to that program.

Make sure that you've completed the prerequisites listed above.

Debugging PL/SQL Programs and Java Stored Procedures

29-6 User's Guide for Oracle JDeveloper

To locally debug a PL/SQL program in JDeveloper:
1. Choose View > Database > Database Navigator.

2. Expand IDE Connections or application, and select a database connection.

3. Expand a schema and expand the appropriate node depending on what you are
debugging: Procedure, Function, or Package Body.

4. Select the procedure, function, or package that you want to debug and
double-click to open it in the editor.

5. Set a breakpoint in the PL/SQL code by left-clicking in the margin.

6. Make sure that the PL/SQL program unit you want to debug is currently selected
in the Navigator.

7. Click the Debug toolbar button.

8. JDeveloper halts the execution at the first breakpoint (providing that this was set
in the Start Debugging Option in the Project Properties dialog) and displays the
state in the debugger windows.

9. Look at the debug information displayed in the JDeveloper debugger windows.
For more information, see Section 19.6, "About the Debugger."

10. Resume debugging the PL/SQL program until you are satisfied.

29.3.5 How to Remotely Debug PL/SQL Programs
The main difference between remote debugging and local debugging PL/SQL
programs is how you start the debugging session. For remote debugging, you must
manually launch the program you want to debug with an Oracle client such as
SQL*Plus, Dbms_Job, an OCI program, or a trigger firing. You must then establish the
connection from the database program you want to debug (debuggee) to the
JDeveloper debugger. After the debuggee is launched and the JDeveloper debugger is
attached to it, remote debugging is very similar to local debugging.

You can use the debugger with PL/SQL programs and Java stored procedures in
Oracle Database.

Make sure that you've completed the documented prerequisites, listed in
Section 29.3.3, "Debugging PL/SQL and Java Stored Procedures Prerequisites."

To remotely debug a PL/SQL program using JDeveloper:
1. If you don't already have one, create a database connection.

2. If you don't already have one, create a project.

3. In the Application Navigator, right-click the project and choose Project Properties.

4. Choose Run/Debug/Profile.

5. Either select an existing run configuration or create a new one, and click Edit.

Note: The breakpoint must be set on an executable line of code. If the
debugger does not stop, the breakpoint may have not been set on an
executable line of code (check that the breakpoint was verified). Also,
verify that the debugging PL/SQL prerequisites were met. In
particular, make sure that the PL/SQL program is compiled in
INTERPRETED mode.

Debugging PL/SQL Programs and Java Stored Procedures

Running and Debugging PL/SQL and Java Stored Procedures 29-7

6. In the Edit Run Configuration dialog, select PL/SQL and choose the database
connection.

7. Select Tool Settings - Debugger - Remote and set the remote debugging
preferences.

8. In the Database Navigator, right click the connection and chose Remote Debug.

9. In the Database Navigator, expand the Database node and navigate to the
procedure, function, or package that you want to debug and double-click to open
it in the source editor.

10. In the source editor, set a breakpoint in your PL/SQL code by left-clicking in the
margin.

11. In the Application Navigator, right-click the project and choose Debug.

12. In the displayed dialog, enter the appropriate listening port number and click OK.
You can choose any valid port number that is not in use by another process. In this
example, the port number used is 4000.

13. Use an Oracle client such as SQL*Plus to issue the debugger connection command.
Whatever client you use, make sure that the session which issues the debugger
connection commands is the same session which executes your PL/SQL program
containing the breakpoints.

For example, if you are using SQL*Plus, issue the following commands to open a
TCP/IP connection to the designated machine and port for the JDWP session:

EXEC DBMS_DEBUG_JDWP.CONNECT_TCP('123.456.789.012', '4000')

where 123.456.789.012is the IP address or host name where JDeveloper is
running, and 4000 is the port number on which the debugger is listening.

From this point on, when you make a call to the PL/SQL code containing the
breakpoint, the JDeveloper debugger is activated.

14. When the debugger accepts a debugging connection, the new debugging process
is reflected in the Processes folder in the Run Manager. Also, the Log window
should display a message similar to the following:

Debugger accepted connection from remote process on port 4000.

In addition, notice that the layout in JDeveloper has switched from Design layout
to Debugging layout (bottom-right of window). Also, the debugging windows
including Stack, Data, and Watches, should now be visible.

In the Run Manager, an icon indicates that the port is continuing to listen and can
accept multiple debugging connections.

15. Back in the Oracle client, issue a command which invokes the PL/SQL program
unit containing your breakpoint. For example, in SQL*Plus, issue a command
similar to the following:

EXEC FOO;

Note: If you want to bypass this dialog the next time you are
debugging on this port, select the Save Parameters check box from this
dialog.

In the Run Manager window, you should see which indicates that the
debugger is listening for debugging connections.

Debugging PL/SQL Programs and Java Stored Procedures

29-8 User's Guide for Oracle JDeveloper

where FOO is the name of a PL/SQL procedure.

16. JDeveloper halts the execution at the first breakpoint (providing this was set in the
Start Debugging Option in the Project Properties dialog, available from the
Application menu) and displays the state in the debugger windows. For more
information, see Section 19.6.5, "How to Set the Debugger Start Options."

17. Step into and resume debugging the PL/SQL procedure until you are satisfied.
For more information, see Section 19.6, "About the Debugger."

18. When you are finished debugging, disconnect the debuggee using the disconnect
command. For example, from SQL*Plus, enter:

EXEC DBMS_DEBUG_JDWP.DISCONNECT;

The following message appears:

Debugger disconnected from remote process.

19. To terminate the listening port, right-click the Run icon in the Run Manager and
choose Stop Listening.

29.3.6 Using Acceptable Legal PL/SQL Expressions in the Debugger
If you are debugging PL/SQL, then you can use PL/SQL expressions in the Watches
window, Inspector window, Breakpoint conditions, and Breakpoint Log expressions.

The following table lists examples of acceptable legal PL/SQL expressions that you
can use in the debugger.

Table 29–1 PL/SQL Expressions that can be used in the debugger

PL/SQL Expression Example

Simple variable name counter

Field Access myrecord.Dept_No

Table element mytable(3)

Comparison operation myrecord.Dept_No = 100

mytable(3) > 7

counter IS NULL

counter IS NOT NULL

employee.salary BETWEEN 25000 AND 50000

Arithmetic operation counter * size

x + y + z

Logical operation employee.exempt AND employee.active

employee.exempt OR employee.active

Package variable name $Oracle.Package.HR.MyPackage.MyVariable

Fully-qualified Package
name

$Oracle.Package.HR

PackageBody variable name $Oracle.PackageBody.HR.MyPackage.MyVariable

Fully-qualified
PackageBody name

$Oracle.PackageBody.HR

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide in Release 11.1.2.2.0
	Part I Getting Started with Oracle JDeveloper
	1 Introduction to Oracle JDeveloper
	1.1 About Oracle JDeveloper
	1.2 Oracle JDeveloper Information Resources
	1.3 Migrating to Oracle JDeveloper 11g

	2 Oracle JDeveloper Accessibility Information
	2.1 About Oracle JDeveloper Accessibility
	2.2 Using a Screen Reader and Java Access Bridge with Oracle JDeveloper
	2.3 Oracle JDeveloper Features That Support Accessibility
	2.3.1 Keyboard Access
	2.3.2 Screen Reader Readability
	2.3.3 Flexibility in Font and Color Choices
	2.3.4 No Audio-only Feedback
	2.3.5 No Dependency on Blinking Cursor and Animation
	2.3.6 Screen Magnifier Usability
	2.3.7 How to Change the Editor or Tabbed View of a File
	2.3.8 How to Read Text in a Multi-line Edit Field
	2.3.9 How to Read the Line Number in the Source Editor
	2.3.10 How to Access Exception Stack HTML Links and Generated Javadoc Links in the Log Window

	2.4 Recommendations for Customizing Oracle JDeveloper
	2.4.1 How to Customize the Accelerators Keys
	2.4.2 How to Pass a Conflicting Accelerator Key to Oracle JDeveloper
	2.4.3 How to Change the Look and Feel of the IDE
	2.4.4 How to Customize the Fonts in Editors
	2.4.5 How to Customize Syntax Highlighting
	2.4.6 How to Display Line Numbers in Editors
	2.4.7 How to Change the Timing for Code Insight
	2.4.8 How to Specify the Columns in the Debugger

	2.5 Highly Visual Features of Oracle JDeveloper

	3 Working with Oracle JDeveloper
	3.1 About Working with Oracle JDeveloper
	3.2 Working with JDeveloper Roles
	3.2.1 How to Change the JDeveloper Role

	3.3 How to Manage JDeveloper Features
	3.4 Working With Windows In the IDE
	3.4.1 How to Maximize Windows
	3.4.2 How to Minimize and Restore Dockable Windows in the IDE
	3.4.3 How to Dock Windows in the IDE
	3.4.4 About Dockable Windows in the IDE
	3.4.5 How to Close and Reopen Dockable Windows in the IDE
	3.4.6 How to Restore Window Layout to Factory Settings

	3.5 Navigating The IDE
	3.5.1 How to Work With Shortcut Keys In The IDE
	3.5.2 Keyboard Navigation In JDeveloper
	3.5.2.1 Common Navigation Keys
	3.5.2.2 Navigation In Standard Components
	3.5.2.3 Navigating Complex Controls
	3.5.2.4 Navigation in Specific Components

	3.6 Customizing the IDE
	3.6.1 How to Change the Look and Feel of the IDE
	3.6.2 How to Customize the General Environment for the IDE
	3.6.3 How to Customize Dockable Windows in the IDE
	3.6.4 How to Customize the Compare Window in the IDE
	3.6.5 How to Customize the Component Palette
	3.6.5.1 How to Add a Page to the Palette
	3.6.5.2 How to Add a JavaBeans Component to the Palette
	3.6.5.3 How to Remove a Page from the Palette
	3.6.5.4 How to Remove a Component from the Palette

	3.6.6 How to Change Roles in JDeveloper
	3.6.7 How to Associate File Types with JDeveloper

	3.7 Working with the Resource Palette
	3.7.1 How to Open the Resource Palette
	3.7.2 How to Work With IDE Connections
	3.7.2.1 Resource Palette Connection Descriptor Properties Location
	3.7.2.2 Defining the Scope of a Connection
	3.7.2.3 How to Create IDE Connections
	3.7.2.4 How to Edit IDE Connections
	3.7.2.5 How to Add IDE Connections to Applications

	3.7.3 How to Search the Resource Palette
	3.7.3.1 Performing a simple search
	3.7.3.2 Performing an advanced search

	3.7.4 How to Reuse Resource Palette Searches
	3.7.5 How to Filter Resource Palette Contents
	3.7.6 How to Import and Export Catalogs and Connections
	3.7.7 How to Refresh the Resource Palette
	3.7.8 How to Work With Resource Palette Catalogs
	3.7.8.1 How to Create Catalogs
	3.7.8.2 How to Rename Catalogs

	3.7.9 How to Work with Catalog Folders
	3.7.9.1 How to Create Folders
	3.7.9.2 How to Create Dynamic Folders
	3.7.9.3 How to Add Resources to a Catalog

	3.8 Working with Source Files
	3.8.1 Using the Source Editor
	3.8.1.1 Features Available From the Context Menu

	3.8.2 How to Set Preferences for the Source Editor
	3.8.3 How to Customize Code Templates for the Source Editor
	3.8.4 How to Manage Source Files in the Editor Window
	3.8.4.1 Maximizing the View of a File
	3.8.4.2 Navigating Between Open Files in the Editor Window
	3.8.4.3 How to Display the List of All Currently Open Files
	3.8.4.4 How to Access a Recently Opened File
	3.8.4.5 How to Open Multiple Editors for a File
	3.8.4.6 Viewing More Than One File at a Time
	3.8.4.7 How to Quickly Close Files in the Editor Window

	3.8.5 Working with Mouseover Popups
	3.8.6 How to Locate a Source Node in the Navigator
	3.8.7 How to Set Bookmarks in Source Files
	3.8.8 How to Edit Source Files
	3.8.8.1 How to Open Source Files in the Source Editor
	3.8.8.2 How to Edit Source Code with an External Editor
	3.8.8.3 How to Insert a Code Snippet from the Component Palette into Source Files
	3.8.8.4 How to Record and Play Back Macros in Source Files
	3.8.8.5 How to Create Tasks

	3.8.9 How to Compare Source Files
	3.8.10 How to Revert to the Last Saved Version of a File
	3.8.11 How to Search Source Files
	3.8.12 How to Print Source Files
	3.8.13 Reference: Regular Search Expressions

	3.9 Working with Extensions
	3.9.1 How to Install Extensions with Check for Updates
	3.9.2 How to Install Extensions from the Provider's Web Site
	3.9.3 How to Install Extensions Directly from OTN
	3.9.4 How to Install Extensions Using the JDeveloper dropins Directory

	3.10 Using the Online Help
	3.10.1 Using the Help Center
	3.10.2 How to Open the Online Help
	3.10.3 How to Search the Documentation
	3.10.4 How to Add Bookmarks to the Favorites Page
	3.10.5 How to Customize the Online Help Display
	3.10.6 How to Open and Close Multiple Help Topics
	3.10.7 How to Print Help Topics

	3.11 Common Development Tools
	3.11.1 Application Overview
	3.11.1.1 Checklist
	3.11.1.2 File Summary Pages

	3.11.2 File List
	3.11.2.1 File List Tab Header
	3.11.2.2 Search Criteria Area
	3.11.2.3 Search Results Table

	3.11.3 Compare Window
	3.11.3.1 Toolbar
	3.11.3.2 Source and Target Areas

	3.11.4 Application Navigator
	3.11.4.1 Application Navigator Toolbar
	3.11.4.2 Application Operations
	3.11.4.3 Projects Panel Operations
	3.11.4.4 Application Resources Panel Operations
	3.11.4.5 Data Controls Panel Operations
	3.11.4.6 Recently Opened Files Panel Operations

	3.11.5 Application Server Navigator
	3.11.6 Structure Window
	3.11.6.1 Structure Window Toolbar
	3.11.6.2 Structure Window Views

	3.11.7 Application Navigator - Data Controls Panel
	3.11.8 Log Window
	3.11.9 Status Window
	3.11.10 Tasks Window

	3.12 Adding External Tools to JDeveloper

	Part II Developing Applications with Oracle JDeveloper
	4 Getting Started with Developing Applications with Oracle JDeveloper
	4.1 About Developing Applications with Oracle JDeveloper

	5 Working with Applications and Projects
	5.1 About Working with Applications and Projects
	5.2 Creating Applications and Projects
	5.2.1 How to Create an Application
	5.2.2 How to Create a Custom Application
	5.2.3 How to Create a New Project
	5.2.3.1 How to Create a New Project
	5.2.3.2 How to Create a New Custom Project

	5.3 Managing Applications and Projects
	5.3.1 How to Open an Existing Application or Project
	5.3.2 How to Import Existing Source Files into JDeveloper
	5.3.2.1 Importing Existing Files into a New JDeveloper Project
	5.3.2.2 How to Import a WAR File into a New JDeveloper Project
	5.3.2.3 Importing an EAR File into a New JDeveloper Application

	5.3.3 How to Import Files into a Project
	5.3.3.1 How to Import Files into a Project

	5.3.4 How to Manage Folders and Java Packages in a Project
	5.3.5 How to Manage Working Sets
	5.3.6 How to Browse Files in JDeveloper Without Adding Them to a Project
	5.3.7 How to View an Archive
	5.3.8 How to View an Image File in JDeveloper
	5.3.9 How to Set Default Project Properties
	5.3.10 How to Set Properties for Individual Projects
	5.3.10.1 How to Include Libraries in a Project
	5.3.10.2 How to Remove Libraries from a Project
	5.3.10.3 How to Set the Target Java SE for a Project
	5.3.10.4 How to Manage Project Dependencies
	5.3.10.5 How to Associate Features with a Project
	5.3.10.6 How to Set Javadoc Properties for a Project

	5.3.11 How to Manage Application and Project Templates
	5.3.11.1 How to Define a New Application Template
	5.3.11.2 How to Define a New Project Template
	5.3.11.3 How to Share Application and Project Templates
	5.3.11.4 How to Edit an Existing Application or Project Template
	5.3.11.5 How to Delete an Existing Application or Project Template

	5.4 Managing Application, Project, or Individual Files
	5.4.1 How to Save an Application or Project
	5.4.2 How to Save an Individual Component or File
	5.4.3 How to Rename an Application, Project, or Individual Component
	5.4.4 How to Relocate an Application, Project, or Project Contents
	5.4.5 How to Close an Application, Project, or Other File
	5.4.6 How to Remove a File from a Project
	5.4.7 How to Remove a Project from an Application
	5.4.8 How to Remove an Application

	5.5 Managing Libraries and Java SEs Outside the Project Scope
	5.5.1 How to Import Libraries or Java SEs Outside the Project Scope
	5.5.2 How to Create Libraries or Java SEs Outside the Project Scope
	5.5.3 How to Edit Libraries or Java SEs Outside the Project Scope
	5.5.4 How to Delete Libraries or Java SEs Outside the Project Scope

	6 Versioning Applications with Source Control
	6.1 About Versioning Applications with Source Control
	6.2 Downloading Source Control Extensions in Oracle JDeveloper
	6.3 Using Subversion with Oracle JDeveloper
	6.3.1 How To Set Up Subversion and JDeveloper
	6.3.1.1 How to Connect to a Subversion Repository Through a Proxy Server
	6.3.1.2 How to Check the Installation
	6.3.1.3 How to Create a Subversion Repository
	6.3.1.4 How to Create or Edit a Subversion Connection
	6.3.1.5 How to View Subversion Repository Content
	6.3.1.6 How to Check Out Files from the Subversion Repository
	6.3.1.7 How to Update Files from the Subversion Repository
	6.3.1.8 How to Import JDeveloper Files Into Subversion

	6.3.2 How to Work with Files in Subversion
	6.3.2.1 How to Add a File to Subversion Control
	6.3.2.2 How to Use Change Sets
	6.3.2.3 How to View the History of a File
	6.3.2.4 How to Commit Files to the Subversion Repository
	6.3.2.5 How to Use Templates in Subversion
	6.3.2.6 How to Revert Files to their Previous State
	6.3.2.7 How to Replace a File with the Subversion Base Revision
	6.3.2.8 How to Compare Files in Subversion
	6.3.2.9 How to Resolve Conflicts in File Versions
	6.3.2.10 How to Resolve Conflicts in Subversion
	6.3.2.11 How to Resolve Property Conflicts in Subversion
	6.3.2.12 How to Use the Merge Wizard
	6.3.2.13 How to Work with Branches and Tags
	6.3.2.14 How to Add and View Subversion Properties
	6.3.2.15 How to View the Status of a Subversion File
	6.3.2.16 How to Refresh the Status of Files Under Subversion Control
	6.3.2.17 How to Remove Files from Subversion Control

	6.3.3 How to Use Export Features
	6.3.3.1 How to Create and Apply Patches
	6.3.3.2 How to Export Subversion Controlled Files from JDeveloper
	6.3.3.3 How to Export and Import Subversion Repository Connection Details

	6.4 Using Concurrent Version System (CVS) with Oracle JDeveloper
	6.4.1 How to Set Up CVS with Oracle JDeveloper
	6.4.1.1 How to Configure JDeveloper for Use with CVS
	6.4.1.2 How to Create a CVS Connection
	6.4.1.3 How To Import JDeveloper Project Files Into CVS
	6.4.1.4 How to Check Out CVS Modules

	6.4.2 How to Configure CVS For Use with JDeveloper
	6.4.2.1 How to Create a Local CVS Repository
	6.4.2.2 How to Configure SSH (Secure Shell), CVS and JDeveloper
	6.4.2.3 How to Choose a Character Set (Local Client Only)
	6.4.2.4 How to Log In to CVS
	6.4.2.5 How to Access Local Files with CVS

	6.4.3 How to Use CVS After Configuration
	6.4.3.1 How to Update a Project, Folder, or File in CVS
	6.4.3.2 How to Edit and Watch Files in CVS
	6.4.3.3 How to Commit Changes to CVS
	6.4.3.4 How to Merge Files in CVS

	6.4.4 How to Work with Branches in CVS
	6.4.4.1 How to Create a New Branch
	6.4.4.2 How to Use Branches in CVS
	6.4.4.3 How to use Tags in CVS

	6.4.5 How to Work with Files in CVS
	6.4.5.1 How to Refresh the Display of CVS Objects
	6.4.5.2 How to Add and Remove Files
	6.4.5.3 How to Use CVS Templates
	6.4.5.4 How to Compare Files in CVS
	6.4.5.5 How to Replace a File with a CVS Revision
	6.4.5.6 How to View the History and Status of a File
	6.4.5.7 How to Lock and Unlock Files
	6.4.5.8 How to Work with Revisions and Tags

	6.4.6 How to Use External Tools and Export Features
	6.4.6.1 How to Use an External Diff Tool with CVS
	6.4.6.2 How to Export a CVS Module
	6.4.6.3 How to Copy the CVSROOT Path to the Clipboard

	6.4.7 How to Create and Apply Patches

	6.5 Using Perforce with Oracle JDeveloper
	6.5.1 How to Set Up Perforce with JDeveloper
	6.5.1.1 How to Install Perforce Components for Use with JDeveloper
	6.5.1.2 How to Configure JDeveloper for Use with Perforce
	6.5.1.3 How to Connect to Perforce
	6.5.1.4 How to Make Multiple Connections to Perforce
	6.5.1.5 How to Bring Files Under Perforce Control
	6.5.1.6 How to Import JDeveloper Files Into Perforce

	6.5.2 How to Work with Files in Perforce
	6.5.2.1 How to Synchronize Local Files With the Controlled Versions
	6.5.2.2 How to Synchronize Files With the Perforce Navigator
	6.5.2.3 How to Filter Files By Perforce Workspace
	6.5.2.4 How to Edit Files
	6.5.2.5 How to Submit Changed Files to the Perforce Depot
	6.5.2.6 How to Resolve Conflicts in File Versions
	6.5.2.7 How to Resolve Conflicts in File Versions
	6.5.2.8 How to Refresh the Status of Files under Perforce Control
	6.5.2.9 How to Delete Files

	6.5.3 How to Work with Changelists
	6.5.3.1 How to Create a Perforce Changelist
	6.5.3.2 How to Annotate a Perforce Revision or Changelist
	6.5.3.3 How to Add Files to a Perforce Changelist
	6.5.3.4 How to Submit a Perforce Changelist
	6.5.3.5 How to Use the Changelist Browser

	6.5.4 How to Create and Apply Patches

	6.6 Using Serena Dimensions with Oracle JDeveloper
	6.6.1 How to Set Up Dimensions and JDeveloper
	6.6.1.1 How to Connect to a Dimensions Repository
	6.6.1.2 How to Disconnect from a Dimensions Repository
	6.6.1.3 How to Add Files to Dimensions Control
	6.6.1.4 How to Remove Files from Dimensions Control
	6.6.1.5 How to Set the Current Project

	6.6.2 How to Work with Files in Dimensions
	6.6.2.1 How to Import Files to Dimensions
	6.6.2.2 Using Navigator Icon Overlays
	6.6.2.3 How to Download a Dimensions Project
	6.6.2.4 How to Check Out Files
	6.6.2.5 How to Undo a File Checkout
	6.6.2.6 How to Check In Files
	6.6.2.7 About the Pending Changes List

	6.7 Using Rational ClearCase with Oracle JDeveloper
	6.7.1 How to Configure JDeveloper to Use Rational ClearCase
	6.7.2 How to Add a File to ClearCase
	6.7.3 How to Refresh the Status of Objects under ClearCase Control
	6.7.4 How to Remove a File From ClearCase
	6.7.5 How to Check In a File to ClearCase
	6.7.6 How to Check Out a File From ClearCase
	6.7.7 How to Undo a ClearCase Checkout
	6.7.8 How to List ClearCase Checkouts
	6.7.9 How to Compare Files Checked In to ClearCase
	6.7.10 How to Display the History of a ClearCase File
	6.7.11 How to Display the Description of a ClearCase File

	6.8 Using Team System with Oracle JDeveloper
	6.8.1 How to Set Up Team System and JDeveloper
	6.8.1.1 How to Set Up Team System for Use with JDeveloper
	6.8.1.2 How to Configure JDeveloper for Use with Team System

	6.8.2 How to Work with Files in Team System
	6.8.2.1 How to Get Versions of Files from the Team System Server
	6.8.2.2 How to Add FIles to Team System Control
	6.8.2.3 How to Check Out Files
	6.8.2.4 How to View the Status of a File
	6.8.2.5 How to Refresh the Status of Files
	6.8.2.6 How to Check In Files
	6.8.2.7 How to Resolve Conflicts in File Versions
	6.8.2.8 How to Undo Changes to Files
	6.8.2.9 How to Replace a File with the Team System Base Version
	6.8.2.10 How to View the History of a File
	6.8.2.11 How to Compare Files In Team System
	6.8.2.12 How to Shelve and Unshelve Files
	6.8.2.13 How to Delete Files

	6.8.3 How to Use Import and Export Features
	6.8.3.1 How to Create Patches
	6.8.3.2 How to Apply Patches

	6.9 Using WebDAV with JDeveloper
	6.9.1 WebDAV Server Requirements
	6.9.2 How to Create a WebDAV Connection
	6.9.3 How to Access a WebDAV-Enabled Server Via a Proxy Server
	6.9.4 How to Modify a WebDAV Connection
	6.9.5 How to Refresh a WebDAV Connection
	6.9.6 How to Delete a WebDAV Connection

	7 Building, Running and Debugging Applications
	7.1 About Building, Running and Debugging Applications
	7.2 Building Applications
	7.2.1 Make and Rebuild
	7.2.2 Apache Ant
	7.2.3 Apache Maven

	7.3 Running Applications
	7.3.1 Run Manager

	7.4 Debugging Applications
	7.4.1 How to Use the Debugger
	7.4.2 Technologies that Use Debugging

	8 Auditing and Profiling Applications
	8.1 About Auditing and Profiling Applications
	8.2 Auditing Applications
	8.3 Monitoring HTTP Using the HTTP Analyzer
	8.3.1 How to Use the Log Window
	8.3.2 How to Use the Test Window
	8.3.3 How to Use the Instances Window
	8.3.4 What Happens When You Run the HTTP Analyzer
	8.3.5 How to Specify HTTP Analyzer Settings
	8.3.6 How to Use Multiple Instances
	8.3.7 How to Configure External Web Browsers
	8.3.8 Using SSL
	8.3.8.1 HTTPS Keystore
	8.3.8.2 Username Token
	8.3.8.3 X509 Certificates
	8.3.8.4 STS Configuration
	8.3.8.5 How to Use HTTPS
	8.3.8.6 How to Configure Credentials for Testing Web Service Policies

	8.3.9 How to Run the HTTP Analyzer
	8.3.10 How to Debug Web Pages Using the HTTP Analyzer
	8.3.11 How to Edit and Resend HTTP Requests
	8.3.12 How to Use Rules to Determine Behavior
	8.3.12.1 Using the Pass Through Rule
	8.3.12.2 Using the Forward Rule
	8.3.12.3 Using the URL Substitution Rule
	8.3.12.4 Using the Tape Rule

	8.3.13 How to Set Rules
	8.3.14 Using the HTTP Analyzer with Web Services
	8.3.14.1 Testing Web Services with the HTTP Analyzer
	8.3.14.2 Using the HTTP Analyzer with RESTful Web Services

	8.3.15 Using the HTTP Analyzer with WebSockets
	8.3.16 Reference: Troubleshooting the HTTP Analyzer
	8.3.16.1 Running the HTTP Analyzer While Another Application is Running
	8.3.16.2 Changing Proxy Settings

	8.4 Profiling Applications

	9 Deploying Applications
	9.1 About Deploying Applications
	9.1.1 Developing Applications with the Integrated Application Server
	9.1.2 Developing Applications to Deploy to Standalone Application Servers
	9.1.3 Understanding the Archive Formats
	9.1.4 Understanding Deployment Profiles
	9.1.5 Understanding Deployment Descriptors
	9.1.6 Configuring Deployment Using Deployment Plans
	9.1.7 Deploying from the Java Edition

	9.2 Running Java EE Applications in the Integrated Application Server
	9.2.1 Understanding the Integrated Application Server Log Window
	9.2.2 Rules Governing Deployment to the Integrated Application Server
	9.2.3 Working with Integrated Application Servers
	9.2.3.1 How to Create a New Integrated Application Server Connection
	9.2.3.2 How to Run and Debug with an Integrated Application Server
	9.2.3.3 Working with the Default Domain
	9.2.3.4 One-Click Running of Applications in the Integrated Application Server
	9.2.3.5 How to Start the Integrated Application Server
	9.2.3.6 How to Cancel a Running Deployment
	9.2.3.7 How to Terminate an Integrated Application Server
	9.2.3.8 How to Configure Startup and Shutdown Behavior for Integrated Application Servers
	9.2.3.9 How to Log In to the Integrated WebLogic Server Administration Console

	9.3 Connecting and Deploying Java EE Applications to Application Servers
	9.3.1 How to Create a Connection to the Target Application Server
	9.3.2 How to Create and Edit Deployment Profiles
	9.3.2.1 About Deployment Profiles
	9.3.2.2 Creating Deployment Profiles
	9.3.2.3 Viewing and Changing Deployment Profile Properties
	9.3.2.4 Configuring Deployment Profiles

	9.3.3 How to Create and Edit Deployment Descriptors
	9.3.3.1 About Deployment Descriptors
	9.3.3.2 About Library Dependencies
	9.3.3.3 Creating Deployment Descriptors
	9.3.3.4 Viewing or Modifying Deployment Descriptor Properties

	9.3.4 How to Configure Global Deployment Preferences
	9.3.5 How to Pass Options to Target Connections When Deploying
	9.3.6 How to Configure Applications for Deployment
	9.3.6.1 How to Configure an Application for Deployment to Oracle WebLogic Server
	9.3.6.2 How to Configure a Client Application for Deployment
	9.3.6.3 How to Configure an Applet for Deployment
	9.3.6.4 Setting Up JDBC Data Sources on Oracle WebLogic Server
	9.3.6.5 Preparing an Application for Deployment to a Third Party Server

	9.3.7 How to Use Deployment Plans
	9.3.7.1 How to Create and Use Deployment Plans
	9.3.7.2 How to Generate Deployment Plans

	9.4 Deploying Java Applications
	9.4.1 Deploying to a Java JAR
	9.4.2 Deploying to an OSGi Bundle

	9.5 Deploying Java EE Applications
	9.5.1 How to Deploy to the Application Server from JDeveloper
	9.5.2 How to Deploy a RAR File
	9.5.3 How to Add a Resource Adapter Archive (RAR) to the EAR
	9.5.4 How to Deploy a Metadata Archive (MAR) File
	9.5.5 How to Deploy an Applet as a WAR File
	9.5.6 How to Deploy a Shared Library Archive
	9.5.7 How to Deploy to a Managed Server That Is Down

	9.6 Post-Deployment Configuration
	9.7 Testing the Application and Verifying Deployment
	9.8 Deploying from the Command Line
	9.8.1 How to Deploy from the Command Line
	9.8.1.1 Command Usage
	9.8.1.2 How to Override Without Editing a Build Script

	9.8.2 How to Deploy Multiple Profiles from the Command Line
	9.8.2.1 How to Use Wildcard Samples
	9.8.2.2 How to Use Built-in Macros
	9.8.2.3 How to Create a Log File for Batch Deployment

	9.8.3 How to Deploy from the Command Line Using Ant
	9.8.3.1 How to Generate an Ant Build Script
	9.8.3.2 About The build.xml File
	9.8.3.3 About The build.properties File

	9.9 Deploying Using Java Web Start
	9.9.1 Purpose of the Java Web Start Technology
	9.9.1.1 Files Generated by the Create Java Web Start-Enabled Wizard
	9.9.1.2 Role of the Web Server in JDeveloper

	9.9.2 How to Create a Java Web Start File
	9.9.3 How to Create an ADF Swing Web Archive for Java Web Start
	9.9.4 How to Create a Java Client Web Archive for Java Web Start
	9.9.5 How to Create a Java Web Start JNLP Definition for Java Clients
	9.9.6 How to Deploy an ADF Swing Web Application Archive for Java Web Start
	9.9.7 How to Deploy a Java Client Web Application Archive for Java Web Start

	9.10 Deploying Using Weblogic SCA Spring
	9.10.1 About WebLogic SCA
	9.10.2 About Spring
	9.10.3 Installing the Weblogic SCA Spring Extension
	9.10.4 Using Oracle WebLogic SCA
	9.10.4.1 How to Create WebLogic SCA Projects
	9.10.4.2 How to Edit Oracle WebLogic SCA Definition Files
	9.10.4.3 How to Deploy WebLogic SCA Applications to Integrated WebLogic Server
	9.10.4.4 How to Deploy WebLogic SCA Applications to Oracle WebLogic Server

	9.10.5 Using Spring
	9.10.5.1 How to Create Spring Bean Applications
	9.10.5.2 What Happens When You Create a Spring Bean Configuration File

	9.11 Troubleshooting Deployment
	9.11.1 Common Deployment Issues
	9.11.1.1 [Deployer: 149164] The domain edit lock is owned by another session in exclusive mode - hence this deployment operation cannot proceed

	9.11.2 How to Troubleshoot Deployment to Integrated Application Servers
	9.11.2.1 Stopping Integrated Application Server
	9.11.2.2 Running Out of Memory
	9.11.2.3 Reinstalling JDeveloper in a Different Location

	9.11.3 How to Troubleshoot Deployment to Oracle WebLogic Server
	9.11.3.1 ORA-01005: null password given; logon denied
	9.11.3.2 ORA-01017: invalid username/password; logon denied
	9.11.3.3 [Oracle JDBC Driver] Kerberos Authentication was requested, but is not supported by this Oracle Server
	9.11.3.4 Application Does Not Work After Creating a Global Data Source from the Oracle WebLogic Server Administration Console
	9.11.3.5 Redeploying an Application to a Server that is Down
	9.11.3.6 Attempting to Deploy to a Server that No Longer Exists
	9.11.3.7 Deploying to a remove server fails with HTTP Error Code 502
	9.11.3.8 No Credential Mapper Entry Found

	9.11.4 How to Troubleshoot Deployment to IBM WebSphere
	9.11.4.1 Deployment Fails When EAR Contains Spaces
	9.11.4.2 Application Displays Administrative Console User Name

	Part III Developing Java EE Applications
	10 Getting Started with Developing Java EE Applications
	10.1 About Developing Java EE Applications
	10.1.1 Java EE and Oracle Application Developer Framework

	10.2 About Web Page Tools
	10.3 About Enterprise JavaBeans and Java Persistence Components
	10.4 About Oracle TopLink
	10.5 About Secure Applications
	10.6 About Applications That Use XML
	10.7 About Applications That Use Web Services

	11 Developing Applications Using Web Page Tools
	11.1 About Developing Applications Using Web Page Tools
	11.1.1 Getting to Know the Source Editor Features
	11.1.2 How to Work in the Visual Editing Environment
	11.1.2.1 How to Expand and Collapse Container Elements
	11.1.2.2 How to Customize the Visual Editor Environment
	11.1.2.3 How to Display Invisible Elements
	11.1.2.4 How to Execute JSP Tags in the JSP Visual Editor
	11.1.2.5 How to Display JSP Tags by Name Only
	11.1.2.6 How to Change Keyboard Preferences
	11.1.2.7 How to Select Web Page Elements
	11.1.2.8 How to Select Insertion Points in the Design Tools
	11.1.2.9 How to Insert Web Page Elements
	11.1.2.10 How to Set and Modify Web Page Element Properties
	11.1.2.11 How to Set a Data Source for a Property
	11.1.2.12 How to Set Properties for Multiple Elements
	11.1.2.13 How to Use Basic Commands to Manage Your Elements
	11.1.2.14 How to Work with Data Tables
	11.1.2.15 How to Work with Panel Grids
	11.1.2.16 How to Paste Markup Code in JSP and HTML Pages
	11.1.2.17 How to View and Edit Web Page Head Content

	11.1.3 How to Use the Property Inspector
	11.1.3.1 Editing Properties
	11.1.3.2 Writing Custom Property Editors
	11.1.3.3 Additional Features for Customization Developers

	11.1.4 How to Use the Component Palette
	11.1.4.1 Using the Component Palette Features
	11.1.4.2 Overview of the Component Palette Features

	11.1.5 How to Use the Overview Editor for JSF Configuration Files
	11.1.6 How to Plan Your Page Flow With JSF Navigation Diagrams
	11.1.6.1 How to Work with Navigation Diagrams
	11.1.6.2 How to Plan Page and the Navigation Flows
	11.1.6.3 How to Use the JSF Navigation Diagrammer to Manipulate JSF Pages
	11.1.6.4 How to Use the JSF Navigation Diagrammer for JSF Navigation Case
	11.1.6.5 How to Publish a Diagram as a Graphic

	11.1.7 How to Use Code Insight For Faster Web Page Coding

	11.2 Developing Applications with JavaServer Faces
	11.2.1 How to Build Your JSF Application
	11.2.1.1 How to Build Your Application Framework
	11.2.1.2 How to Create Your JSF Pages and Related Business Services

	11.2.2 How to Build your JSF Business Component Framework
	11.2.2.1 Support for Standard JSF Component Tag Attributes
	11.2.2.2 How to Work with Managed Beans
	11.2.2.3 How to Work with Automatic Component Binding
	11.2.2.4 How to Bind Components to JSF Pages
	11.2.2.5 How to Bind Components with EL Expressions
	11.2.2.6 How to Use Automatic Component Binding for Components that Allow Method Binding
	11.2.2.7 How to Use Localized Resource Bundles in JSF
	11.2.2.8 How to Work with Facets
	11.2.2.9 How to Build JSF Views with Facelets
	11.2.2.10 How to Convert and Validate JSF Input Data
	11.2.2.11 How to Display Error Messages
	11.2.2.12 How to Configure JSF Applications

	11.2.3 How to Run and Test JSF Applications

	11.3 Developing Applications with HTML Pages
	11.3.1 How To Build Your HTML Pages
	11.3.2 How to Work with Cascading Style Sheets
	11.3.2.1 How to Select and Group CSS Elements
	11.3.2.2 How to Use the CSS Basic Tools

	11.3.3 How to Work with HTML Tables
	11.3.3.1 How to Format Tables and Cells

	11.3.4 How to Work with HTML Forms, Text, and Images
	11.3.4.1 How to Work with HTML Forms
	11.3.4.2 How to Work with HTML Text
	11.3.4.3 How to Work with HTML Images

	11.4 Working with Java Server Pages
	11.4.1 How to Build Your JSP Application
	11.4.1.1 JSP Core Components
	11.4.1.2 How to Create JSP Pages
	11.4.1.3 How to Register a Servlet Filter in a JSP Page
	11.4.1.4 Understanding Flow Control in JSP Pages

	11.4.2 How to Debug and Deploy JSPs
	11.4.3 How to Run a JSP
	11.4.4 Understanding JSP Segments

	11.5 Developing Applications with Java Servlets
	11.5.1 Understanding Servlet Support in JDeveloper
	11.5.1.1 What You May Need to Know About Servlet Filters
	11.5.1.2 What You May Need to Know About Servlet Listeners
	11.5.1.3 How to Generate an HTTP Servlet

	11.5.2 Implementing Basic Methods for an HTTP Servlet
	11.5.2.1 How to Use the HTTPServletRequest Object
	11.5.2.2 How to Use the HTTPServletResponse Object

	11.5.3 How to Create a Servlet Filter
	11.5.4 How to Create a Servlet Listener
	11.5.5 Registering a Servlet Filter in a JSP Page
	11.5.6 How to Run a Servlet
	11.5.7 How to Debug a Servlet
	11.5.8 How to Deploy a Servlet

	11.6 Developing Applications with Script Languages
	11.6.1 Script Language Support in JDeveloper
	11.6.1.1 How to Work with JavaScript Code Insight
	11.6.1.2 How to Use Breadcrumb Support
	11.6.1.3 How to Use Structure Pane Support

	11.6.2 Working with Script Languages
	11.6.2.1 How to Create a Script
	11.6.2.2 How to Add Script Language Elements to an HTML or JSP Page
	11.6.2.3 How to Set Syntax Highlighting
	11.6.2.4 How to Associate JavaScript File Extensions
	11.6.2.5 How to Create a JSON File

	11.6.3 Refactoring JavaScript Code
	11.6.3.1 Finding Usages of Code Elements
	11.6.3.2 Renaming a JavaScript Code Element
	11.6.3.3 Deleting a JavaScript Code Element
	11.6.3.4 How to Preview a Refactoring Operation
	11.6.3.5 How to Reformat JavaScript Code
	11.6.3.6 How to Change Code Formatting Preferences
	11.6.3.7 How to Use Code Folding
	11.6.3.8 How to Refactor and Move a File

	11.7 Working with JSP and Facelet Tag Libraries
	11.7.1 How to Use Tag Libraries with Your Web Pages
	11.7.2 How to Work with Custom Tag Libraries

	12 Developing with EJB and JPA Components
	12.1 About Developing with EJB and JPA Components
	12.2 Support For EJB Versions and Features
	12.3 Building EJB 3.0 Applications and Development Process
	12.3.1 EJB 3.0 Application Development Process
	12.3.1.1 Creating Entities
	12.3.1.2 Creating Session Beans and Facades
	12.3.1.3 Deploying EJBs
	12.3.1.4 Testing EJBs Remotely
	12.3.1.5 Registering Business Services with Oracle ADF Data Controls

	12.4 How to Work with an EJB Business Services Layer
	12.5 Using Java EE Design Patterns in Oracle JDeveloper
	12.6 Building a Persistence Tier
	12.6.1 About JPA Entities and the Java Persistence API
	12.6.1.1 JPA Entities are POJOs
	12.6.1.2 Metadata Annotations for O-R Mapping
	12.6.1.3 Inheritance and Polymorphism Support
	12.6.1.4 Simplified EntityManager API for CRUD Operations
	12.6.1.5 Query Enhancements

	12.6.2 How to Create JPA Entities
	12.6.3 About SDO For EJB/JPA
	12.6.4 Using an EJB/POJO-based ADF-BC Service for Deployment to the SOA Platform
	12.6.5 How to Create an SDO Service Interface for JPA Entities
	12.6.5.1 How to Configure an EJB/POJO-based ADF-BC Service for Deployment to the SOA Platform
	12.6.5.2 File Types Created to Support Your SDO Architecture

	12.6.6 How to Generate Database Tables from JPA Entities
	12.6.7 JDK 5 Annotations for EJB/JPA
	12.6.7.1 EJB 3.0
	12.6.7.2 JPA 1.0

	12.6.8 How to Annotate Java Classes
	12.6.9 Representing Relationships Between Entities
	12.6.10 Java Persistence Query Language
	12.6.11 JPA Object-Relational Mappings
	12.6.12 How to Use Java Service Facades

	12.7 Implementing Business Processes in Session Beans
	12.7.1 Using Session Facades
	12.7.2 How to Create a Session Bean
	12.7.3 How to Create Session or Message-Driven Beans in Modules
	12.7.4 How to Add, Delete, and Edit EJB Methods
	12.7.5 How to Add a Field to an EJB
	12.7.6 How to Remove a Field From an EJB
	12.7.7 Customizing Business Logic with EJB Environment Entries
	12.7.8 Exposing Data to Clients
	12.7.9 How to Identify Resource References
	12.7.10 How to Define a Primary Key for an Entity
	12.7.11 How to Specify a Primary Key for ADF Binding
	12.7.12 How to Use ADF Data Controls for EJBs

	12.8 Modeling EJB/JPA Components on a Diagram
	12.9 Deploying EJB Modules and JPA Persistence Units
	12.9.1 About EJB Modules
	12.9.2 About JPA Persistence Units
	12.9.3 How to Create a JPA Persistence Unit
	12.9.4 How to Remove EJBs in a Module
	12.9.5 How to Import EJBs into JDeveloper
	12.9.6 How to Modify EJB/ADF Applications to Deploy to Websphere Application Server

	12.10 Running and Testing EJB/JPA Components
	12.10.1 How to Test EJB/JPA Components Using the Integrated Server
	12.10.2 How to Test EJB/JPA Components Using a Remote Server
	12.10.3 How to Test EJB Unit with JUnit

	13 Developing TopLink Mappings
	13.1 About Developing TopLink Mappings
	13.1.1 Considering the Impedance Mismatch
	13.1.2 Designing TopLink Applications
	13.1.3 Using TopLink in Application Design
	13.1.4 Creating TopLink Metadata
	13.1.5 Creating Project Metadata
	13.1.6 Creating Session Metadata
	13.1.7 Using TopLink Descriptors
	13.1.7.1 Relational Descriptors
	13.1.7.2 EIS Descriptors
	13.1.7.3 XML Descriptors

	13.1.8 Using TopLink Mappings
	13.1.8.1 Relational Mapping Types
	13.1.8.2 EIS Mapping Types
	13.1.8.3 XML Mapping Types

	13.1.9 Understanding the TopLink Editor
	13.1.9.1 Managing TopLink Maps
	13.1.9.2 Managing TopLink Sessions
	13.1.9.3 Managing Persistence Configurations
	13.1.9.4 The TopLink Structure View Toolbar
	13.1.9.5 TopLink Project Elements in the Application Navigator
	13.1.9.6 TopLink Editor Tabs in the Editor Window
	13.1.9.7 TopLink Project Elements in the Structure View
	13.1.9.8 Using the TopLink Structure View Toolbar
	13.1.9.9 TopLink Mapping Status Report in Message Log
	13.1.9.10 Configuring TopLink Preferences
	13.1.9.11 How to Create a TopLink Mapping Project
	13.1.9.12 How to Use Converter Mappings
	13.1.9.13 How to Automap TopLink Descriptors
	13.1.9.14 Data Source Login Information

	13.2 Developing TopLink JPA Projects
	13.2.1 How to Create and Configure a JPA Persistence Descriptor (persistence.xml)
	13.2.2 How to Create Persistence Units
	13.2.3 How to Configure Persistence Units
	13.2.4 How to Create JPA Descriptors
	13.2.4.1 How to Configure Persistence Unit Defaults
	13.2.4.2 How to Configure Generators
	13.2.4.3 How to Configure Queries

	13.2.5 Using JPA Mappings
	13.2.6 Using TopLink Extensions

	13.3 Developing TopLink Relational Projects
	13.3.1 How to Create Relational Projects and Object Maps
	13.3.2 How to Create Relational Descriptors
	13.3.3 How to Configure Relational Descriptors

	13.4 Developing TopLink XML Projects
	13.4.1 How to Create XML Projects
	13.4.2 How to Create XML Object Maps
	13.4.3 How to Create XML Descriptors
	13.4.4 How to Add XML Schemas

	13.5 Developing TopLink EIS Projects
	13.5.1 How to Create EIS Projects
	13.5.2 How to Create EIS Object Maps
	13.5.3 How to Create EIS Descriptors
	13.5.4 Using EIS Data Sources

	13.6 Developing TopLink Sessions
	13.6.1 How to Create a New Sessions Configuration File
	13.6.2 How to Create Sessions
	13.6.3 Acquiring Sessions at Runtime
	13.6.4 How to Create Session Brokers
	13.6.5 How to Create Data Source Logins
	13.6.6 How to Create Connection Pools

	13.7 Developing TopLink Applications
	13.7.1 Using TopLink the Cache
	13.7.1.1 Object Identity
	13.7.1.2 Querying and the Cache
	13.7.1.3 Handling Stale Data
	13.7.1.4 Explicit Query Refreshes
	13.7.1.5 Cache Invalidation
	13.7.1.6 Cache Coordination
	13.7.1.7 Cache Isolation
	13.7.1.8 Cache Locking and Transaction Isolation

	13.7.2 How to Configure the TopLink Cache
	13.7.3 Using Queries
	13.7.3.1 TopLink Query Languages
	13.7.3.2 TopLink Query Types

	13.7.4 How to Create Queries
	13.7.5 Using Basic Query API
	13.7.6 Using Advanced Query API
	13.7.6.1 Redirect Queries
	13.7.6.2 Historical Queries
	13.7.6.3 Fetch Groups
	13.7.6.4 Read-Only Queries
	13.7.6.5 Interfaces
	13.7.6.6 Inheritance Hierarchy
	13.7.6.7 Additional Join Expressions
	13.7.6.8 EJB Finders
	13.7.6.9 Cursor and Stream Query Results

	13.7.7 How to Create TopLink Expressions
	13.7.8 Understanding TopLink Transactions
	13.7.9 TopLink Transactions and the Unit of Work

	14 Developing Secure Applications
	14.1 About Developing Secure Applications
	14.1.1 Understanding Java EE Applications and Oracle Platform Security Services for Java (OPSS)
	14.1.2 Understanding Fusion Web Applications and ADF Security
	14.1.3 Understanding Container-managed Security
	14.1.4 Additional Functionality

	14.2 Securing Applications in Phases
	14.3 About Web Application Security and JDeveloper Support
	14.4 Handling User Authentication in Web Applications
	14.4.1 About Authentication Type Choices
	14.4.1.1 BASIC authentication
	14.4.1.2 FORM authentication
	14.4.1.3 CLIENT-CERT authentication

	14.4.2 Encrypting Passwords for a Target Domain
	14.4.2.1 weblogic.security.Encrypt

	14.4.3 How to Create an Identity Store
	14.4.4 How to Add Test Users to the Identity Store
	14.4.5 How to Add Enterprise Roles to the Identity Store
	14.4.6 How to Create a Credential Store
	14.4.7 How to Add a Login Module
	14.4.8 How to Authenticate Through a Custom Login Module
	14.4.9 How to Add a Key Store
	14.4.10 How to Enable an Anonymous Provider
	14.4.11 How to Add Credentials to Users in the Identity Store
	14.4.12 How to Choose the Authentication Type for the Web Application

	14.5 Securing Application Resources in Web Applications
	14.5.1 How to Secure Application Resources Using the jazn-data.xml Overview Editor
	14.5.2 How to Secure ADF Resources Using ADF Security in Fusion Web Applications

	14.6 Configuring an Application-Level Policy Store
	14.6.1 About Policy Stores
	14.6.2 About Principals, Permissions and Grants
	14.6.3 How to Add Application Roles to an Application Policy Store
	14.6.4 How to Add Member Users or Enterprise Roles to an Application Role
	14.6.5 How to Create Custom Resource Types
	14.6.6 How to Add Resource Grants to the Application Policy Store
	14.6.7 How to Add Entitlement Grants to the Application Policy Store
	14.6.8 How to Create a Custom JAAS Permission Class
	14.6.9 How to Add Grants to the System Policy Store

	14.7 Migrating the Policy Stores
	14.7.1 How to Migrate the Policy Stores
	14.7.2 Migrating Application Policies
	14.7.3 Migrating Credentials
	14.7.4 Migrating Users and Groups

	14.8 Securing Development with JDBC

	15 Developing Applications Using XML
	15.1 About Developing Applications Using XML
	15.2 Using the XML Editors
	15.2.1 Understanding XML Editing Features
	15.2.2 Understanding the XML Editor Toolbar

	15.3 Creating XML Files in Oracle JDeveloper
	15.3.1 Localizing with XML
	15.3.1.1 How to Create a New XLIFF file
	15.3.1.2 What You May Need to Know About XLIFF Files

	15.3.2 How to Import and Register XML Schemas
	15.3.3 How to Add an XML Element to the Palette
	15.3.4 How to Generate Java Classes from XML Schemas with JAXB

	15.4 Editing XML Files in Oracle JDeveloper
	15.4.1 How to Set Editing Options for the XML Editor
	15.4.2 Using XQuery with XML
	15.4.2.1 How to Create a New XQuery File
	15.4.2.2 What You May Need to Know About XPath Expression Syntax

	15.5 Working with XML Schemas
	15.5.1 Working with Attributes in the XSD Visual Editor
	15.5.2 What Happens When You Create an XML Schema in the XSD Visual Editor
	15.5.3 Understanding the XSD Component Display in the XSD Visual Editor
	15.5.3.1 XSD Component Selection
	15.5.3.2 XML Schema Component
	15.5.3.3 Choice Component
	15.5.3.4 All Component
	15.5.3.5 Sequence Component
	15.5.3.6 Cardinality and Ordinality
	15.5.3.7 ComplexType Component
	15.5.3.8 Attribute Group Component
	15.5.3.9 Union Component
	15.5.3.10 List Component

	15.5.4 How to Generate an XML Schema from XML Documents
	15.5.5 How to Generate an XSD File from a DTD File
	15.5.6 How to Display an XSD File for Editing
	15.5.7 How to Create an Image of the XSD Visual Editor Design Tab
	15.5.8 How to Navigate with Grab Scroll in the XSD Visual Editor
	15.5.9 How to Expand and Collapse the XSD Component Display
	15.5.10 How to Zoom In and Out in the XSD Visual Editor
	15.5.11 How to Select XSD Components
	15.5.11.1 What Happens When You Select a Component in the XSD Visual Editor

	15.5.12 How to Select Target Positions for XSD Components
	15.5.13 How to Insert XSD Components
	15.5.14 How to Set and Modify XSD Component Properties
	15.5.15 How to Set Properties for Multiple Components
	15.5.16 How to Cut, Copy, and Paste XSD Components
	15.5.16.1 Cutting Components
	15.5.16.2 Copying Components
	15.5.16.3 Pasting Elements

	15.5.17 How to Move XSD Components
	15.5.18 How to Delete XSD Components

	15.6 Developing Databound XML Pages with XSQL Servlet
	15.6.1 Supporting XSQL Servlet Clients
	15.6.1.1 What is XSQL Servlet?
	15.6.1.2 How Can You Use XSQL Servlet?

	15.6.2 How to Create an XSQL File
	15.6.3 How to Edit XML Files with XSQL Tags
	15.6.4 How to Add XSQL Tags
	15.6.5 How to Check the Syntax in XSQL Files
	15.6.6 How to Create XSQL Servlet Clients that Access the Database
	15.6.7 Creating XSQL Servlet Clients for Business Components
	15.6.7.1 What You May Need to Know About Business Components XSQL Action Handlers

	15.6.8 How to Creating a Custom Action Handler for XSQL
	15.6.9 How to Run and Deploy XSQL Servlet Clients
	15.6.10 How to View Output from Running XSQL Files as Raw XML Data
	15.6.11 How to Format XML Data with a Style Sheet
	15.6.12 How to Create an XSL Style Sheet for XSQL Files
	15.6.13 How to Modify the XSQL Configuration File
	15.6.14 Using XML Metadata Properties in XSQL Files
	15.6.14.1 Using XML_ELEMENT
	15.6.14.2 Using XML_ROW_ELEMENT
	15.6.14.3 Using XML_CDATA
	15.6.14.4 Using XML_EXPLICIT_NULL

	16 Developing Applications Using Web Services
	16.1 About Developing Applications using Web Services
	16.1.1 Discovering and Using Web Services
	16.1.2 Developing and Deploying Web Services

	16.2 Using JDeveloper to Create and Use Web Services
	16.2.1 How to Use Proxy Settings and JDeveloper
	16.2.2 How to Set the Context Root for Web Services
	16.2.3 How to Configure Connections to Use with Web Services
	16.2.4 How to Work with Type Mappings
	16.2.5 How to Work with PL/SQL Web Services and Types
	16.2.6 How to Choose Your Deployment Platform
	16.2.7 How to Work with Web Services Code Insight
	16.2.8 How to Migrate JAX-RPC 10.1.3 Web Services

	16.3 Working with Web Services in a UDDI Registry
	16.3.1 How to Define UDDI Registry Connections
	16.3.1.1 Creating UDDI Registry Connections
	16.3.1.2 Editing the Name of UDDI Registry Connections
	16.3.1.3 Changing the View of UDDI Registry Connections
	16.3.1.4 Refreshing UDDI Registry Connections
	16.3.1.5 Deleting UDDI Registry Connections

	16.3.2 How to Configure the View of UDDI Registry Connections
	16.3.2.1 Choosing Business View
	16.3.2.2 Choosing Category View

	16.3.3 How to Search for Web Services in a UDDI Registry
	16.3.4 How to Generate Proxies to Use Web Services Located in a UDDI Registry
	16.3.5 How to Display Reports of Web Services Located in a UDDI Registry
	16.3.6 How to Publish Web Services to a UDDI Registry

	16.4 Creating Web Service Clients
	16.4.1 How to Create the Client and Proxy Classes
	16.4.2 How to Use Web Service Client and Proxy Classes
	16.4.2.1 How to Use a Stand-Alone Client Application
	16.4.2.2 How to Use the Java Standard Edition (SE) Client Application
	16.4.2.3 How to Use the Java EE Component Client Application Deployed to WebLogic Server

	16.4.3 How to View the WSDL Used to Create the Web Service Client
	16.4.4 How to Update the Web Service WSDL at Run Time
	16.4.4.1 How to Use an XML Catalog File
	16.4.4.2 How to Use Web Service Injection (@WebServiceRef) and a Deployment Plan

	16.4.5 How to Regenerate Web Service Client and Proxy Classes
	16.4.6 How to Manage the Web Service Clients
	16.4.7 How to Reference Web Services Using the @WebServiceRef Annotation

	16.5 Creating SOAP Web Services (Bottom-Up)
	16.5.1 How to Create Java Web Services
	16.5.2 How to Use JSR-181 Annotations
	16.5.3 How to Create PL/SQL Web Services
	16.5.4 How to Create TopLink Database Web Service Providers
	16.5.5 How to Use Web Service Atomic Transactions
	16.5.6 How to Regenerate Web Services from Source
	16.5.7 How to Use Handlers
	16.5.8 How to Expose Superclass Methods for JAX-RPC
	16.5.9 How to Handle Overloaded Methods
	16.5.10 How to Set Mappings between Java Methods and WSDL Operations Using the JAX-RPC Mapping File Editor

	16.6 Creating SOAP Web Services from WSDL (Top Down)
	16.7 Creating RESTful Web Services
	16.7.1 How to Add the Jersey JAX-RS Reference Implementation to Your Project
	16.7.2 How to Create JAX-RS Web Services and Clients

	16.8 Managing WSDLs
	16.8.1 How to Create WSDL Documents
	16.8.2 How to Add a WSDL to a Web Service Project
	16.8.3 How to Display the WSDL for a Web Service
	16.8.4 How to Save a WSDL to Your Local Directory

	16.9 Using Policies with Web Services
	16.9.1 What You May Need to Know About Oracle WSM Policies
	16.9.2 What You May Need to Know About Oracle WebLogic Web Service Policies
	16.9.3 How to Attach Policies to Web Services
	16.9.4 How to Attach Oracle WSM Policies to Web Service Clients
	16.9.5 How to Invoke Web Services Secured Using WebLogic Web Service Policies
	16.9.6 How to Edit and Remove Policies from Web Services
	16.9.7 How to Use Custom Web Service Policies
	16.9.7.1 Using Custom Oracle WSM Policies
	16.9.7.2 Using Custom Oracle WebLogic Web Service Policies

	16.9.8 How to Use a Different Oracle WSM Policy Store

	16.10 Editing and Deleting Web Services
	16.11 Testing and Debugging Web Services
	16.11.1 How to Test Web Services in a Browser
	16.11.2 How to Debug Web Services

	16.12 Deploying Web Services
	16.12.1 How to Deploy Web Services to Integrated WebLogic Server
	16.12.2 How to Deploy Web Services to Oracle WebLogic Server
	16.12.3 How to Undeploy Web Services

	16.13 Monitoring and Analyzing Web Services
	16.13.1 How to Analyze Web Services in the Navigator
	16.13.2 How to Create and Analyze Web Service Logs
	16.13.2.1 What You May Need to Know About Performing an Analysis of a Web Service

	16.13.3 How to Analyze Web Services Running in the Integrated Server
	16.13.3.1 Changing the Endpoint Address
	16.13.3.2 Changing the Endpoint Address Without Modifying the WSDL (JAX-WS Only)

	16.13.4 How to Examine Web Services using the HTTP Analyzer

	Part IV Developing Java Applications
	17 Getting Started with Developing Java Applications
	17.1 About Developing Java Applications
	17.2 About the Java Source Editor
	17.3 Understanding Java Source Editor Features
	17.3.1 Using Code Insight
	17.3.1.1 Adding Annotations to Your Java Code

	17.3.2 Using Code Peek
	17.3.3 Using Scroll Tips
	17.3.4 Searching Incrementally
	17.3.5 Using Shortcut Keys
	17.3.6 Bookmarking
	17.3.7 Browsing Java Source
	17.3.8 Using Code Templates

	17.4 Setting Preferences for the Java Source Editor
	17.4.1 How to Set Code Insight Options for the Java Source Editor
	17.4.2 How to Set Comment and Brace-Matching Options for the Java Source Editor
	17.4.3 How to Enable Automatic Import Assistance for the Java Source Editor
	17.4.4 How to Set Import Statement Sorting Options for the Java Source Editor

	17.5 Using Toolbar Options
	17.6 Using the Quick Outline Window
	17.7 About the Java UI Visual Editor
	17.7.1 Java Swing and AWT Components

	18 Programming in Java
	18.1 About Programming in Java
	18.2 Navigating in Java Code
	18.2.1 How to Browse Classes or Interfaces
	18.2.2 How to Locate the Declaration of a Variable, Class, or Method
	18.2.3 How to Find the Usages of a Class or Interface
	18.2.4 How to Find the Usages of a Method
	18.2.5 How to Find the Usages of a Field
	18.2.6 How to Find the Usages of a Local Variable or Parameter
	18.2.7 How to Find Overridden Method Definitions
	18.2.8 How to Find Implemented Method Declarations
	18.2.9 How to View the Hierarchy of a Class or Interface
	18.2.10 Stepping Through the Members of a Class

	18.3 Editing Java Code
	18.3.1 Editing Code with the Java Visual Editor
	18.3.2 Opening the Java Visual Editor
	18.3.3 Understanding Java Visual Editor Proxy Classes
	18.3.4 Registering a Java Visual Editor Proxy for Custom Components
	18.3.5 How to Create a New Java Class
	18.3.6 How to Create a New Java Interface
	18.3.7 How to Implement a Java Interface
	18.3.8 How to Override Methods
	18.3.9 How to Use Code Templates
	18.3.10 Using Predefined Code Templates
	18.3.11 How to Expand or Narrow Selected Text
	18.3.12 How to Surround Code with Coding Constructs
	18.3.13 Adding an Import Statement
	18.3.14 How to Organize Import Statements

	18.4 Adding Documentation Comments
	18.4.1 How to Add Documentation Comments
	18.4.2 How to Edit Documentation Comments
	18.4.3 How to Update Documentation Comments
	18.4.4 How to Audit Documentation Comments

	18.5 How to Customize Javadoc Options for the Java Source Editor
	18.5.1 How to Add Documentation Comments
	18.5.2 How to Set Javadoc Properties for a Project
	18.5.3 How to View Javadoc for a Code Element Using Quick Javadoc
	18.5.4 How to Preview Documentation Comments

	18.6 Building Java Projects
	18.6.1 Building with Make and Rebuild Commands
	18.6.1.1 Compiling with Make
	18.6.1.2 Compiling with Rebuild
	18.6.1.3 Understanding Dependency Checking
	18.6.1.4 How to Configure Your Project for Compiling
	18.6.1.5 How to Specify a Native Encoding for Compiling

	18.6.2 Compiling Applications and Projects
	18.6.2.1 Compiling from the Command Line

	18.6.3 Cleaning Applications and Projects
	18.6.3.1 How to Run the Clean Command

	18.6.4 How to Run Javadoc
	18.6.5 Building with Apache Ant
	18.6.5.1 Running Ant on Project Buildfile Targets
	18.6.5.2 Using the Ant Tool in the IDE

	18.6.6 Building and Running with Apache Maven
	18.6.6.1 Understanding the Project Object Model
	18.6.6.2 How to Create a Project Object Model
	18.6.6.3 How to Create a Maven POM for a Project
	18.6.6.4 How to Generate a Project Object Model from an Application
	18.6.6.5 Creating a Maven Template
	18.6.6.6 How to Run a Maven Project
	18.6.6.7 How to Change the Maven Version
	18.6.6.8 How to Set Project Properties
	18.6.6.9 How to Set Log Window Preferences

	18.6.7 Creating a Profile Manually

	18.7 Working with JavaBeans
	18.7.1 Using JavaBeans in JDeveloper
	18.7.2 How to Create a JavaBean
	18.7.3 How to Create a BeanInfo Class
	18.7.4 How to Implement an Event-Handling Method
	18.7.5 What Happens When You Create an Event-Handling Method
	18.7.6 Understanding Anonymous Adapters
	18.7.7 Understanding Standard Event Adapters
	18.7.8 How to Make Standard Adapters the Default for Your Projects
	18.7.9 How to Select an Event-Handling Adapter
	18.7.10 How to Create an Event Set
	18.7.11 How to Create a Customizer
	18.7.12 How to Make a Component Capable of Firing Events

	18.8 Refactoring Java Projects
	18.8.1 Refactoring on Java Class Diagrams
	18.8.2 How to Invoke a Refactoring Operation
	18.8.3 How to Rename a Code Element
	18.8.4 How to Delete a Code Element
	18.8.5 How to Preview a Refactoring Operation
	18.8.6 Refactoring Classes and Interfaces
	18.8.6.1 How to Move a Package, Class, or Interface
	18.8.6.2 How to Duplicate a Class or Interface
	18.8.6.3 How to Extract an Interface from a Class
	18.8.6.4 How to Extract a Superclass
	18.8.6.5 How to Use Supertypes Where Possible
	18.8.6.6 How to Convert an Anonymous Class to an Inner Class
	18.8.6.7 How to Move an Inner Class

	18.8.7 Refactoring Members
	18.8.7.1 How to Move a Class Member
	18.8.7.2 How to Change the Signature of a Method
	18.8.7.3 How to Change a Method to a Static Method
	18.8.7.4 How to Pull Members Up into a Superclass
	18.8.7.5 How to Push Members Down into Subclasses

	18.8.8 Refactoring Expressions
	18.8.8.1 How to Inline a Method Call
	18.8.8.2 How to Introduce a Field
	18.8.8.3 How to Introduce a Variable
	18.8.8.4 How to Introduce a Parameter
	18.8.8.5 How to Introduce a Constant
	18.8.8.6 How to Extract a Method
	18.8.8.7 How to Replace a Constructor with a Factory Method
	18.8.8.8 How to Encapsulate a Field
	18.8.8.9 How to Invert a Boolean Expression

	18.9 Optimizing Application Performance
	18.9.1 Understanding Audit Rules
	18.9.2 Understanding Audit Metrics
	18.9.3 Using the Auditing Tools
	18.9.3.1 Using the Audit Window Report Panel
	18.9.3.2 Using the Audit Window Toolbar
	18.9.3.3 Using Filters
	18.9.3.4 Using the Audit Window Context Menu

	18.9.4 How to Audit Java Code in JDeveloper
	18.9.5 Auditing Java Code from the Command Line
	18.9.6 How to Run Audit to Generate an Audit Report
	18.9.7 How to Audit Serializable Fields That Do Not Have The serialVersionUID
	18.9.8 How to Audit Unserializable Fields
	18.9.9 Viewing an Audit report
	18.9.10 Refreshing an Audit Report
	18.9.11 Organizing Audit Report Columns
	18.9.12 How to Organize Audit Report Rows
	18.9.13 How to Filter Audit Report Rows
	18.9.14 How to Save an Audit Report
	18.9.15 How to Inspect an Audit Report Violation or Measurement
	18.9.16 How to Fix an Audit Rule Violation
	18.9.17 How to Fix a Construct's Audit Rule Violations
	18.9.18 How to Hide Audit Rule Violations
	18.9.19 How to Hide Audit Report Measurements
	18.9.20 Managing Audit Profiles
	18.9.21 How to Create an Audit Profile
	18.9.22 How to Modify an Audit Profile
	18.9.23 How to Delete an Audit Profile
	18.9.24 How to Import or Export an Audit Profile
	18.9.25 How to Browse Audit Rules, Code Assists, and Metrics
	18.9.26 How to Activate and Deactivate Components of an Audit Profile
	18.9.27 How to Set Property Values for an Audit Test

	18.10 Profiling a Project
	18.10.1 Understanding Memory Profiler Views
	18.10.2 Profiling an Application
	18.10.3 Configuring Profilers
	18.10.4 Understanding CPU Profiling
	18.10.5 Understanding Memory Profiling
	18.10.6 Understanding Profiler Performance
	18.10.7 Understanding Profiler Use Cases
	18.10.8 How to Profile a Project in JDeveloper
	18.10.9 CPU Profiling
	18.10.10 Understanding CPU Profiler Views
	18.10.11 Understanding CPU Time Sampling Results
	18.10.12 Understanding Method Call Counts Results
	18.10.13 How to Set Options for the CPU Profiler
	18.10.14 How to Start the CPU Profiler
	18.10.15 Memory Profiling
	18.10.15.1 Understanding Memory Profiler Views
	18.10.15.2 Understanding Reference Snapshots
	18.10.15.3 How to Set Options for the Memory Profiler
	18.10.15.4 How to Start a Memory Profiling Session

	18.10.16 Profiling Remotely
	18.10.17 Understanding Profiler Agent Support for JVMs
	18.10.18 How to Invoke the Profiler Agent
	18.10.19 How to Connect the Profiler Remotely to a Java Program
	18.10.20 How to Dynamically Attach and Detach the Profiler To a Running Process
	18.10.21 How to Set Profile Points
	18.10.22 Saving and Opening Profiler Sessions
	18.10.23 How to Open HPROF Format Heap Dumps

	18.11 Modeling Java Classes
	18.11.1 Modeling Dependencies
	18.11.2 Creating Java Classes, Interfaces, and Enums
	18.11.2.1 Modeling Java Interfaces
	18.11.2.2 Modeling Inner Java Classes and Inner Java Interfaces
	18.11.2.3 Modeling Enums

	18.11.3 Modeling Composition on a Java Class Diagram
	18.11.4 Modeling Inheritance on a Java Class Diagram
	18.11.4.1 Extending Modeled Java Classes
	18.11.4.2 Implementing Modeled Java Interfaces

	18.11.5 Modeling Java Fields and Methods
	18.11.6 Modeling Packages on a Java Class Diagram
	18.11.7 How to Display Related Classes on a Diagram
	18.11.8 How to Hide References between Java Classes
	18.11.9 What Happens When You Model a Java Class
	18.11.10 How to Create a Diagram of Java Classes

	18.12 Unit Testing with JUnit
	18.12.1 How to Install JUnit
	18.12.2 Creating a JUnit Test for a Java Project
	18.12.3 How to Create a JUnit Custom Test Fixture
	18.12.4 How to Create a JUnit JDBC Test Fixture
	18.12.5 Creating a JUnit Test Case
	18.12.6 Creating a JUnit Test Suite
	18.12.7 How to Add a Test to a JUnit Test Case
	18.12.8 How to Update a Test Suite with all Test Cases in the Project
	18.12.9 How to Run JUnit Test Suites

	19 Running and Debugging Java Programs
	19.1 About Running and Debugging Java Programs
	19.2 Understanding the Run Manager
	19.3 How to Configure a Project for Running
	19.4 Running an Applet
	19.4.1 Using an HTML File to Store Arguments

	19.5 How to Run a Project or File
	19.5.1 How to Run a Project from the Command Line
	19.5.2 How to Change the Java Virtual Machine
	19.5.3 Setting the Classpath for Programs
	19.5.3.1 Setting the CLASSPATH Environment Variable (for java.exe)
	19.5.3.2 Using the JDeveloper Library CLASSPATH
	19.5.3.3 Setting the CLASSPATH to Include Your Projects
	19.5.3.4 Setting the CLASSPATH Parameter (for java.exe)
	19.5.3.5 Embedding the CLASSPATH Parameters in the <APPLET> Tag

	19.6 About the Debugger
	19.6.1 Understanding the Debugger Icons
	19.6.2 How to Debug a Project in JDeveloper
	19.6.3 How to Debug ADF Components
	19.6.4 How to Configure a Project for Debugging
	19.6.5 How to Set the Debugger Start Options
	19.6.6 How to Launch the Debugger
	19.6.7 How to Export Debug Information to a File
	19.6.8 Using the Source Editor When Debugging
	19.6.9 Using Java Expressions in the Debugger
	19.6.10 Moving Through Code While Debugging
	19.6.11 Stepping Into a Method
	19.6.12 Stepping Over a Method
	19.6.13 Controlling Which Classes Are Traced Into
	19.6.14 How to Step Through Behavior as Guided by Tracing Lists
	19.6.15 How to Locate the Execution Point for a Thread
	19.6.16 How to Run to the Cursor Location
	19.6.17 How to Pause and Resume the Debugger
	19.6.18 How to Terminate a Debugging Session
	19.6.19 How to View the Debugger Log
	19.6.20 How to Debug an Applet
	19.6.21 How to Debug a Javascript Program

	19.7 Using the Debugger Windows
	19.7.1 Using the Breakpoints Window
	19.7.2 How to Use the Smart Data Window
	19.7.3 How to Use the Data Window
	19.7.4 How to Use the Watches Window
	19.7.5 How to Use the Inspector Window
	19.7.6 How to Use the Heap Window
	19.7.7 How to Use the Stack Window
	19.7.8 How to Use the Classes Window
	19.7.9 How to Use the Monitors Window
	19.7.10 How to Use the Threads Window
	19.7.11 How to Set Preferences for the Debugger Windows

	19.8 Managing Breakpoints
	19.8.1 About Verified and Unverified Breakpoints
	19.8.2 Understanding Deadlocks
	19.8.3 Understanding the Deadlock Breakpoint
	19.8.4 Understanding Grouped Breakpoints
	19.8.5 How to Edit a Breakpoint
	19.8.6 How to Set Source Breakpoints
	19.8.7 How to Control Breakpoint Behavior
	19.8.8 How Disable and Delete Breakpoints
	19.8.9 How to Set Instance Breakpoints
	19.8.10 How to Set Exception Breakpoints
	19.8.11 How to Make a Breakpoint Conditional
	19.8.12 Using Pass Count Breakpoints
	19.8.13 How to Examine Breakpoints with the Breakpoints Window
	19.8.14 How to Manage Breakpoint Groups

	19.9 Examining Program State in Debugger Windows
	19.9.1 How to Inspect and Modify Data Elements
	19.9.2 How to Set Expression Watches
	19.9.3 How to Modify Expressions in the Inspector Window
	19.9.4 How to Show and Hide Fields in the Filtered Classes List

	19.10 Debugging Remote Java Programs
	19.10.1 How to Start a Java Process in Debug Mode
	19.10.2 How to Remote Debug Using the Javascript Debugger
	19.10.3 How to Use a Project Configured for Remote Debugging
	19.10.4 How to Configure JPDA Remote Debugging

	20 Implementing Java Swing User Interfaces
	20.1 About Implementing Java Swing User Interfaces
	20.2 Understanding the JDeveloper User Interface Design Tools
	20.3 Controlling the Look and Feel of a Swing Application
	20.3.1 How to Change the Oracle Look and Feel
	20.3.2 How to Change the Windows Look and Feel
	20.3.3 How to Change the Metal Look and Feel

	20.4 Working with Java Swing and AWT Components
	20.4.1 Using Swing JavaBeans Components
	20.4.2 Using AWT JavaBeans

	20.5 Working with Layout Managers
	20.5.1 Understanding Sizing Properties
	20.5.2 Understanding Layouts Provided with JDeveloper
	20.5.3 Using BorderLayout
	20.5.4 Using BoxLayout2
	20.5.5 Using CardLayout
	20.5.5.1 How to Create a CardLayout Container
	20.5.5.2 How to Specify the Gap Surrounding a CardLayout Container

	20.5.6 Using FlowLayout
	20.5.7 Using FormLayout
	20.5.8 Using GridLayout
	20.5.9 Using GridBagLayout
	20.5.9.1 Understanding GridBagLayout Constraints
	20.5.9.2 Setting GridBagConstraints Manually in the Source Code
	20.5.9.3 Modifying Existing GridBagLayout Code to Work in the Java Visual Editor
	20.5.9.4 Designing GridBagLayout Visually in the Java Visual Editor

	20.5.10 Converting to GridBagLayout
	20.5.11 Adding Components to a GridBagLayout Container
	20.5.12 How to Set GridBagConstraints in the Constraints Property Editor
	20.5.13 Displaying the Grid
	20.5.14 Using the Mouse to Change Constraints
	20.5.15 Using the GridBagLayout Popup Menu
	20.5.16 GridBagConstraints
	20.5.17 Using OverlayLayout2
	20.5.18 Using PaneLayout
	20.5.19 How Components are Added to PaneLayout
	20.5.20 How to Create a PaneLayout Container in the Java Visual Editor
	20.5.21 Using VerticalFlowLayout
	20.5.22 Using XYLayout
	20.5.23 Understanding Layout Properties
	20.5.24 Understanding Layout Constraints
	20.5.25 Determining the Size and Location of Your UI Window at Runtime
	20.5.26 Sizing a Window Automatically with pack()
	20.5.27 How the preferredSize is Calculated for a Container
	20.5.28 Portable Layouts
	20.5.29 Explicitly Setting the Size of a Window Using setSize()
	20.5.30 Making the Size of your UI Portable to Various Platforms
	20.5.31 Positioning a Window on the Screen
	20.5.32 Placing the Sizing and Positioning Method Calls in your Code
	20.5.33 Working with Nested Containers and Layouts
	20.5.33.1 How to Create Nested Panels

	20.5.34 Adding Custom Layout Managers

	20.6 Prototyping Your UI with Layout Properties
	20.6.1 Using null Layout for Prototyping
	20.6.2 Designing the Big Regions First
	20.6.3 Saving Before Experimenting
	20.6.4 Selecting a Final Layout Manager

	20.7 Working with Containers and Components
	20.7.1 Using Windows
	20.7.2 Using Panels
	20.7.3 Using Lightweight Swing Containers
	20.7.4 Understanding Component Properties in the Property Inspector
	20.7.5 Setting Property Values in the Property Inspector
	20.7.6 Setting Shared Properties for Multiple Components
	20.7.7 Laying Out Your User Interface
	20.7.8 How to Create a Frame
	20.7.9 How to Create a Panel
	20.7.10 How to Create a Dialog Box
	20.7.11 How to Use a Dialog Box That is Not a Bean
	20.7.12 How to Create a Tabbed Pane

	20.8 Working with Components in a Container
	20.8.1 How to Add Components to Your User Interface
	20.8.2 How to Set Component Properties at Design Time
	20.8.3 How to Change the Layout for a Container
	20.8.4 How to Modify Component Layout Constraints
	20.8.5 How to Select Components in Your User Interface
	20.8.6 How to Size and Move Components
	20.8.7 How to Group Components
	20.8.8 How to Change Component Z-Order
	20.8.9 How to Cut, Copy, Paste and Delete Components
	20.8.10 How to Copy a Component
	20.8.11 How to Cut a Component
	20.8.12 How to Paste a Component
	20.8.13 How to Delete a Component from your UI

	20.9 Working with Menus
	20.9.1 Understanding Menu Components
	20.9.2 Using the Menu Editor
	20.9.3 Interacting with the Code Editor and the Property Inspector
	20.9.4 How to Add a Menu Component to a Frame
	20.9.5 How to Add a Popup Menu
	20.9.6 How to Create a Submenu
	20.9.7 Customizing Menus with the Menu Editor
	20.9.8 How to Add a Menu Item
	20.9.9 How to Disable a Menu Item
	20.9.10 How to Specify Accelerators
	20.9.11 How to Insert a Separator Bar
	20.9.12 How to Create Checkable Menu Items
	20.9.13 How to Insert and Delete Menus and Menu Items
	20.9.14 How to Move a Menu Item

	20.10 Working with Event Handling
	20.10.1 How to Attach Event Handling Code to Menu Events
	20.10.2 How to Attach Event-Handling Code to a Component Event

	20.11 Working with Applets
	20.11.1 How to Create an Applet
	20.11.2 How to Create an Applet HTML File
	20.11.3 How to Convert an HTML Page that Contains an Applet
	20.11.4 Deploying Applets
	20.11.4.1 How to Configure an Applet for Deployment
	20.11.4.2 How to Deploy an Applet as a WAR File

	20.12 Working with the UI Debugger
	20.12.1 Working with UI Debugger Windows
	20.12.2 How to Start the UI Debugger
	20.12.3 Examining the Application Component Hierarchy
	20.12.4 How to Display Component Information in the Watches Window
	20.12.5 How to Inspect a UI Component in an Inspector Window
	20.12.6 How to Trace Events Generated by Components
	20.12.7 How to Show Event Listeners
	20.12.8 How to Remote Debug GUI Applications
	20.12.9 Automatic Discovery of Listeners

	Part V Developing Applications Using Modeling
	21 Getting Started With Application Modeling Using Diagrams
	21.1 About Modeling with Diagrams
	21.2 Diagram Types
	21.2.1 UML Diagrams
	21.2.2 Business Services Diagrams

	21.3 How to Set Paths for a Modeling Project

	22 Creating, Using and Managing Diagrams
	22.1 About Creating, Using, and Managing Diagrams
	22.2 How to Use the Basic Diagramming Commands
	22.3 Working with Diagram Nodes and Elements
	22.3.1 How to Work with Nodes
	22.3.2 How to Work with Diagram Elements
	22.3.2.1 How to Resize and Move Diagram Elements
	22.3.2.2 How to Delete Diagram Elements
	22.3.2.3 How to Undo the Last Action on a Diagram
	22.3.2.4 How To Create UML Elements Independently of a Diagram

	22.4 How to Work with Diagram Annotations
	22.5 Changing the Way a Diagram is Viewed
	22.5.1 How to Hide, Show, and Layout Connectors on Diagram
	22.5.1.1 How to Show and Hide Page Breaks
	22.5.1.2 How to Lay Out Connectors on a Diagram

	22.6 Laying out Diagrams
	22.6.1 How to Use Diagram Layout Styles
	22.6.1.1 Hierarchical UML Diagram Layout
	22.6.1.2 Symmetrical Diagram
	22.6.1.3 Orthogonal UML Layout
	22.6.1.4 Grid Diagram
	22.6.1.5 How to Use the Diagram Grid to Lay Out Diagrams

	22.6.2 How to Align and Distribute Diagram Elements
	22.6.3 How to Layout Diagram Elements

	22.7 Transforming Java Classes and Interfaces
	22.7.1 How to Transform UML and Offline Databases
	22.7.2 Using DatabaseProfile

	22.8 Importing and Exporting UML Using XMI
	22.8.1 How to Import and Export UML Models Using XMI
	22.8.2 Typical Error Messages When Importing

	22.9 Using UML Profiles
	22.10 Working with UML Class Diagrams
	22.10.1 How to Work with Class Diagrams
	22.10.1.1 How to Read a Class Diagram
	22.10.1.2 How to Specify UML Operation Notation

	22.10.2 Refactoring Class Diagrams
	22.10.2.1 How to Invoke a Refactoring Operation

	22.11 Working with UML Activity Diagrams
	22.11.1 How to Work with Activity Diagrams
	22.11.1.1 Getting a Closer Look at the Activity Diagram Elements

	22.12 Working with Sequence Diagrams
	22.12.1 How to Work with Sequence Diagrams
	22.12.1.1 Getting A Closer Look at the Sequence Diagram Elements
	22.12.1.2 How to Work with Sequence Diagram Combined Fragment Locks
	22.12.1.3 Using Combined Fragments

	22.13 Working with Use Case Diagrams
	22.13.1 How to Work with Use Case Diagrams
	22.13.1.1 Getting A Closer Look at the Use Case Diagram Elements
	22.13.1.2 How to Work with Use Case Templates
	22.13.1.3 How to Work with Use Case Component Palette Templates

	22.14 How Diagrams are Stored on Disk
	22.15 How UML Elements are Stored on Disk

	23 Developing Java EE and Java Applications Using Modeling
	23.1 About Developing Java EE and Java Applications Using Modeling
	23.2 Business Component Diagram
	23.3 Modeling EJB/JPA Components on a Diagram
	23.3.1 Creating a Diagram of EJB/JPA Components
	23.3.2 How to Read an EJB/JPA Components Diagram
	23.3.3 How to Model a JPA Relationship
	23.3.4 How to Model an EJB/JPA Component On a Diagram
	23.3.5 Modeling Properties and Methods
	23.3.5.1 Creating Properties on Modeled Beans
	23.3.5.2 Creating Methods on Modeled Beans

	23.3.6 How to Model Cross Component References
	23.3.7 How to Display the Implementing Source Code for a Modeled Bean
	23.3.8 How to Display the Source Code for a Modeled Bean
	23.3.9 How to Change the Accessibility of a Property or Method
	23.3.10 How to Reverse-Engineer a JPA Entity on a Diagram

	23.4 Java Class Diagram
	23.5 Database Diagram
	23.5.1 How to Work with the Database Modeling Features
	23.5.1.1 Benefits of Database Modeling
	23.5.1.2 How to Get Started with Database Modeling
	23.5.1.3 How to Change the Database or Schema

	Part VI Working with Databases
	24 Getting Started with Working with Databases
	24.1 About Working with Databases
	24.1.1 Connecting to and Working with Databases
	24.1.2 Designing Databases

	24.2 Getting Started With Oracle Database 10g Express Edition
	24.3 How to Manage Database Preferences and Properties

	25 Using the Database Tools
	25.1 Using the Database Navigator
	25.2 Using the Structure Window
	25.3 Using the Database Reports Navigator
	25.4 Using the Find Database Object Window
	25.5 Using the SQL Worksheet
	25.5.1 Using Execution Plan
	25.5.2 How to Recall Statements from the SQL Worksheet History

	25.6 Using the SQL History Window
	25.7 Using the Snippets Window
	25.8 Using the Database Object Viewer
	25.8.1 Database Object Viewer Tabs Toolbars

	25.9 Using SQL*Plus
	25.10 DBMS Output Window
	25.11 OWA Output Window

	26 Connecting to and Working with Databases
	26.1 About Connecting to and with Working with Databases
	26.2 Configuring Database Connections
	26.2.1 Connection Scope
	26.2.2 What Happens When You Create a Database Connection
	26.2.3 About Connection Properties Deployment
	26.2.4 How to Create Database Connections
	26.2.5 Connecting to Oracle Database Using OCI8
	26.2.6 How to Edit Database Connections
	26.2.7 How to Export and import Database Connections
	26.2.7.1 Exporting Database Connections
	26.2.7.2 Importing Database Connections

	26.2.8 How to Open and Close Database Connections
	26.2.9 How to Delete Database Connections
	26.2.10 How to Register a New Third-Party JDBC Driver
	26.2.11 How to Create User Libraries for Non-Oracle Databases
	26.2.12 Reference: Connection Requirements for Oracle's Type 2 JDBC Drivers (OCI)

	26.3 Browsing and Searching Databases
	26.3.1 Browsing Databases
	26.3.1.1 Browsing Online Databases
	26.3.1.2 Browsing Offline Database Objects
	26.3.1.3 How to View Online and Offline Database Objects

	26.3.2 How to Browse online Database Objects
	26.3.3 How to Browse Offline Databases and Schemas
	26.3.4 How to Use Database Filters
	26.3.5 How to Enable and Disable Database Filters
	26.3.6 How to Open a Database Table in the Database Object Viewer
	26.3.7 How to Edit Table Data
	26.3.8 How to Find Objects in the Database

	26.4 Connecting to Databases
	26.4.1 What Happens When You Create a Connection to a Database
	26.4.2 How to Create Connections to Oracle Databases
	26.4.2.1 How to Create a Connection to Oracle Database
	26.4.2.2 How to Create a Connection to MySQL
	26.4.2.3 How to Create a Connection to Oracle TimesTen In-Memory Database
	26.4.2.4 How to Create a Connection to Oracle Database Lite

	26.4.3 How to Create Connections to Non-Oracle Databases
	26.4.3.1 How to Create a Connection to Apache Derby
	26.4.3.2 How to Create a Connection to IBM DB2 Universal Database
	26.4.3.3 How to Create a Connection to IBM Informix Dynamic Server
	26.4.3.4 How to Create a Connection to Microsoft SQL Server
	26.4.3.5 How to Create a Connection to SQLite
	26.4.3.6 How to Create a Connection to Sybase ASE

	26.5 Importing and Exporting Data
	26.5.1 Importing Data Using SQL*Loader
	26.5.2 Importing Data Into an External Table
	26.5.3 How to Import Data into Existing Tables
	26.5.4 How to Import Data to New Tables
	26.5.5 How to Import Data Using SQL*Loader
	26.5.6 How to Import Data Using External Tables
	26.5.7 Exporting Data from Databases
	26.5.8 How to Export Data to Files

	26.6 Copying, Comparing, and Exporting Databases
	26.6.1 How to Copy Databases
	26.6.2 How to Compare Database Schemas
	26.6.3 How to Export Databases

	26.7 Working with Oracle and Non-Oracle Databases
	26.8 Working with Database Reports
	26.8.1 Using Database Reports
	26.8.1.1 How to Run Database Reports
	26.8.1.2 How to View the SQL for a Report
	26.8.1.3 How to Create User-Defined Database Reports
	26.8.1.4 How to Edit User-Defined Database Reports
	26.8.1.5 How to Create Reports Folders
	26.8.1.6 How to Export User-Defined Reports
	26.8.1.7 How to Import User-Defined Reports

	26.8.2 Reference: Pre-Defined Database Reports

	26.9 Troubleshooting Database Connections
	26.9.1 Deploying to a Database that Uses an Incompatible JDK Version

	27 Designing Databases Within Oracle JDeveloper
	27.1 About Designing Databases Within Oracle JDeveloper
	27.2 Creating, Editing, and Dropping Database Objects
	27.2.1 Working with Offline Database Definitions
	27.2.1.1 Offline Databases
	27.2.1.2 Configuring Offline Database Emulation
	27.2.1.3 How to Create Offline Databases
	27.2.1.4 Offline Schemas
	27.2.1.5 How to Create Offline Schemas
	27.2.1.6 How to Create Offline Database Objects
	27.2.1.7 How to Import Offline Database Definitions Based on Database Objects
	27.2.1.8 Offline Tables and Foreign Keys
	27.2.1.9 How to Refresh Offline Database Objects
	27.2.1.10 How to Create Objects from Templates
	27.2.1.11 Working with User Property Libraries
	27.2.1.12 How to Generate Offline Database Objects to the Database
	27.2.1.13 Renaming Offline Database Objects
	27.2.1.14 Using Offline Database Reports
	27.2.1.15 Transforming from a UML Model
	27.2.1.16 Working with Offline Database Objects in Source Control Systems

	27.2.2 Working with Database Objects
	27.2.3 Using Database Reports

	27.3 Creating Scripts from Offline and Database Objects
	27.3.1 How to Create SQL Scripts
	27.3.2 How to Create OMB Scripts from Tables

	28 Using Java in the Database
	28.1 About Using Java in the Database
	28.2 Choosing SQLJ or JDBC
	28.2.1 Using SQLJ
	28.2.2 Using Oracle JDBC Drivers
	28.2.3 SQLJ versus JDBC
	28.2.4 Embedding SQL in Java Programs with SQLJ
	28.2.4.1 How to Create SQL Files
	28.2.4.2 How to Create SQLJ Classes
	28.2.4.3 How to Compile SQLJ Classes
	28.2.4.4 How to Use Named SQLJ Connection Contexts
	28.2.4.5 How to Declare a SQLJ Connection Context Class
	28.2.4.6 How to Create a Connection Context Object
	28.2.4.7 How to Debug SQLJ Classes
	28.2.4.8 How to Debug SQLJ Classes
	28.2.4.9 How to Set SQLJ Translator Options
	28.2.4.10 How to Use SQLJ Connection Options

	28.2.5 Embedding SQL in Java Programs with JDBC
	28.2.5.1 How to Choose a JDBC Driver
	28.2.5.2 How to Modify a Project to Use a Non-Default JDBC Driver
	28.2.5.3 How to Code a JDBC Connection

	28.3 Accessing Oracle Objects and PL/SQL Packages using Java
	28.3.1 How to Use JPublisher
	28.3.2 JPublisher Output
	28.3.3 Properties Files
	28.3.4 How to Enhance JPublisher-Generated Classes
	28.3.5 How to Extend JPublisher-Generated Classes
	28.3.6 JPublisher Options

	28.4 Using Java Stored Procedures
	28.4.1 How to Debug Java Stored Procedures
	28.4.2 How to Remove Java Stored Procedures

	29 Running and Debugging PL/SQL and Java Stored Procedures
	29.1 About Running and Debugging PL/SQL and Java Stored Procedures
	29.2 Running and Debugging Functions, Procedures, and Packages
	29.3 Debugging PL/SQL Programs and Java Stored Procedures
	29.3.1 Debugging PL/SQL Objects
	29.3.1.1 PL/SQL objects you can debug with JDeveloper
	29.3.1.2 What You May Need to Know
	29.3.1.3 Appearance of debug information in supported Oracle Database

	29.3.2 How to Specify the Database Debugger Port
	29.3.3 Debugging PL/SQL and Java Stored Procedures Prerequisites
	29.3.3.1 Prerequisites for Debugging PL/SQL and Java Stored Procedures
	29.3.3.2 Prerequisites for Debugging Java Stored Procedures

	29.3.4 How to Locally Debug PL/SQL Programs
	29.3.5 How to Remotely Debug PL/SQL Programs
	29.3.6 Using Acceptable Legal PL/SQL Expressions in the Debugger

